1 /* Convert tree expression to rtl instructions, for GNU compiler. 2 Copyright (C) 1988-2017 Free Software Foundation, Inc. 3 4 This file is part of GCC. 5 6 GCC is free software; you can redistribute it and/or modify it under 7 the terms of the GNU General Public License as published by the Free 8 Software Foundation; either version 3, or (at your option) any later 9 version. 10 11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 12 WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with GCC; see the file COPYING3. If not see 18 <http://www.gnu.org/licenses/>. */ 19 20 #include "config.h" 21 #include "system.h" 22 #include "coretypes.h" 23 #include "backend.h" 24 #include "target.h" 25 #include "rtl.h" 26 #include "tree.h" 27 #include "gimple.h" 28 #include "predict.h" 29 #include "memmodel.h" 30 #include "tm_p.h" 31 #include "ssa.h" 32 #include "expmed.h" 33 #include "optabs.h" 34 #include "regs.h" 35 #include "emit-rtl.h" 36 #include "recog.h" 37 #include "cgraph.h" 38 #include "diagnostic.h" 39 #include "alias.h" 40 #include "fold-const.h" 41 #include "stor-layout.h" 42 #include "attribs.h" 43 #include "varasm.h" 44 #include "except.h" 45 #include "insn-attr.h" 46 #include "dojump.h" 47 #include "explow.h" 48 #include "calls.h" 49 #include "stmt.h" 50 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */ 51 #include "expr.h" 52 #include "optabs-tree.h" 53 #include "libfuncs.h" 54 #include "reload.h" 55 #include "langhooks.h" 56 #include "common/common-target.h" 57 #include "tree-ssa-live.h" 58 #include "tree-outof-ssa.h" 59 #include "tree-ssa-address.h" 60 #include "builtins.h" 61 #include "tree-chkp.h" 62 #include "rtl-chkp.h" 63 #include "ccmp.h" 64 65 66 /* If this is nonzero, we do not bother generating VOLATILE 67 around volatile memory references, and we are willing to 68 output indirect addresses. If cse is to follow, we reject 69 indirect addresses so a useful potential cse is generated; 70 if it is used only once, instruction combination will produce 71 the same indirect address eventually. */ 72 int cse_not_expected; 73 74 static bool block_move_libcall_safe_for_call_parm (void); 75 static bool emit_block_move_via_movmem (rtx, rtx, rtx, unsigned, unsigned, HOST_WIDE_INT, 76 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT, 77 unsigned HOST_WIDE_INT); 78 static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned); 79 static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int); 80 static rtx_insn *compress_float_constant (rtx, rtx); 81 static rtx get_subtarget (rtx); 82 static void store_constructor_field (rtx, unsigned HOST_WIDE_INT, 83 HOST_WIDE_INT, unsigned HOST_WIDE_INT, 84 unsigned HOST_WIDE_INT, machine_mode, 85 tree, int, alias_set_type, bool); 86 static void store_constructor (tree, rtx, int, HOST_WIDE_INT, bool); 87 static rtx store_field (rtx, HOST_WIDE_INT, HOST_WIDE_INT, 88 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT, 89 machine_mode, tree, alias_set_type, bool, bool); 90 91 static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (const_tree, const_tree); 92 93 static int is_aligning_offset (const_tree, const_tree); 94 static rtx reduce_to_bit_field_precision (rtx, rtx, tree); 95 static rtx do_store_flag (sepops, rtx, machine_mode); 96 #ifdef PUSH_ROUNDING 97 static void emit_single_push_insn (machine_mode, rtx, tree); 98 #endif 99 static void do_tablejump (rtx, machine_mode, rtx, rtx, rtx, int); 100 static rtx const_vector_from_tree (tree); 101 static rtx const_scalar_mask_from_tree (tree); 102 static tree tree_expr_size (const_tree); 103 static HOST_WIDE_INT int_expr_size (tree); 104 105 106 /* This is run to set up which modes can be used 107 directly in memory and to initialize the block move optab. It is run 108 at the beginning of compilation and when the target is reinitialized. */ 109 110 void 111 init_expr_target (void) 112 { 113 rtx pat; 114 machine_mode mode; 115 int num_clobbers; 116 rtx mem, mem1; 117 rtx reg; 118 119 /* Try indexing by frame ptr and try by stack ptr. 120 It is known that on the Convex the stack ptr isn't a valid index. 121 With luck, one or the other is valid on any machine. */ 122 mem = gen_rtx_MEM (word_mode, stack_pointer_rtx); 123 mem1 = gen_rtx_MEM (word_mode, frame_pointer_rtx); 124 125 /* A scratch register we can modify in-place below to avoid 126 useless RTL allocations. */ 127 reg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1); 128 129 rtx_insn *insn = as_a<rtx_insn *> (rtx_alloc (INSN)); 130 pat = gen_rtx_SET (NULL_RTX, NULL_RTX); 131 PATTERN (insn) = pat; 132 133 for (mode = VOIDmode; (int) mode < NUM_MACHINE_MODES; 134 mode = (machine_mode) ((int) mode + 1)) 135 { 136 int regno; 137 138 direct_load[(int) mode] = direct_store[(int) mode] = 0; 139 PUT_MODE (mem, mode); 140 PUT_MODE (mem1, mode); 141 142 /* See if there is some register that can be used in this mode and 143 directly loaded or stored from memory. */ 144 145 if (mode != VOIDmode && mode != BLKmode) 146 for (regno = 0; regno < FIRST_PSEUDO_REGISTER 147 && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0); 148 regno++) 149 { 150 if (! HARD_REGNO_MODE_OK (regno, mode)) 151 continue; 152 153 set_mode_and_regno (reg, mode, regno); 154 155 SET_SRC (pat) = mem; 156 SET_DEST (pat) = reg; 157 if (recog (pat, insn, &num_clobbers) >= 0) 158 direct_load[(int) mode] = 1; 159 160 SET_SRC (pat) = mem1; 161 SET_DEST (pat) = reg; 162 if (recog (pat, insn, &num_clobbers) >= 0) 163 direct_load[(int) mode] = 1; 164 165 SET_SRC (pat) = reg; 166 SET_DEST (pat) = mem; 167 if (recog (pat, insn, &num_clobbers) >= 0) 168 direct_store[(int) mode] = 1; 169 170 SET_SRC (pat) = reg; 171 SET_DEST (pat) = mem1; 172 if (recog (pat, insn, &num_clobbers) >= 0) 173 direct_store[(int) mode] = 1; 174 } 175 } 176 177 mem = gen_rtx_MEM (VOIDmode, gen_raw_REG (Pmode, LAST_VIRTUAL_REGISTER + 1)); 178 179 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode; 180 mode = GET_MODE_WIDER_MODE (mode)) 181 { 182 machine_mode srcmode; 183 for (srcmode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); srcmode != mode; 184 srcmode = GET_MODE_WIDER_MODE (srcmode)) 185 { 186 enum insn_code ic; 187 188 ic = can_extend_p (mode, srcmode, 0); 189 if (ic == CODE_FOR_nothing) 190 continue; 191 192 PUT_MODE (mem, srcmode); 193 194 if (insn_operand_matches (ic, 1, mem)) 195 float_extend_from_mem[mode][srcmode] = true; 196 } 197 } 198 } 199 200 /* This is run at the start of compiling a function. */ 201 202 void 203 init_expr (void) 204 { 205 memset (&crtl->expr, 0, sizeof (crtl->expr)); 206 } 207 208 /* Copy data from FROM to TO, where the machine modes are not the same. 209 Both modes may be integer, or both may be floating, or both may be 210 fixed-point. 211 UNSIGNEDP should be nonzero if FROM is an unsigned type. 212 This causes zero-extension instead of sign-extension. */ 213 214 void 215 convert_move (rtx to, rtx from, int unsignedp) 216 { 217 machine_mode to_mode = GET_MODE (to); 218 machine_mode from_mode = GET_MODE (from); 219 int to_real = SCALAR_FLOAT_MODE_P (to_mode); 220 int from_real = SCALAR_FLOAT_MODE_P (from_mode); 221 enum insn_code code; 222 rtx libcall; 223 224 /* rtx code for making an equivalent value. */ 225 enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN 226 : (unsignedp ? ZERO_EXTEND : SIGN_EXTEND)); 227 228 229 gcc_assert (to_real == from_real); 230 gcc_assert (to_mode != BLKmode); 231 gcc_assert (from_mode != BLKmode); 232 233 /* If the source and destination are already the same, then there's 234 nothing to do. */ 235 if (to == from) 236 return; 237 238 /* If FROM is a SUBREG that indicates that we have already done at least 239 the required extension, strip it. We don't handle such SUBREGs as 240 TO here. */ 241 242 if (GET_CODE (from) == SUBREG && SUBREG_PROMOTED_VAR_P (from) 243 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (from))) 244 >= GET_MODE_PRECISION (to_mode)) 245 && SUBREG_CHECK_PROMOTED_SIGN (from, unsignedp)) 246 from = gen_lowpart (to_mode, from), from_mode = to_mode; 247 248 gcc_assert (GET_CODE (to) != SUBREG || !SUBREG_PROMOTED_VAR_P (to)); 249 250 if (to_mode == from_mode 251 || (from_mode == VOIDmode && CONSTANT_P (from))) 252 { 253 emit_move_insn (to, from); 254 return; 255 } 256 257 if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode)) 258 { 259 gcc_assert (GET_MODE_BITSIZE (from_mode) == GET_MODE_BITSIZE (to_mode)); 260 261 if (VECTOR_MODE_P (to_mode)) 262 from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0); 263 else 264 to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0); 265 266 emit_move_insn (to, from); 267 return; 268 } 269 270 if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT) 271 { 272 convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp); 273 convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp); 274 return; 275 } 276 277 if (to_real) 278 { 279 rtx value; 280 rtx_insn *insns; 281 convert_optab tab; 282 283 gcc_assert ((GET_MODE_PRECISION (from_mode) 284 != GET_MODE_PRECISION (to_mode)) 285 || (DECIMAL_FLOAT_MODE_P (from_mode) 286 != DECIMAL_FLOAT_MODE_P (to_mode))); 287 288 if (GET_MODE_PRECISION (from_mode) == GET_MODE_PRECISION (to_mode)) 289 /* Conversion between decimal float and binary float, same size. */ 290 tab = DECIMAL_FLOAT_MODE_P (from_mode) ? trunc_optab : sext_optab; 291 else if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode)) 292 tab = sext_optab; 293 else 294 tab = trunc_optab; 295 296 /* Try converting directly if the insn is supported. */ 297 298 code = convert_optab_handler (tab, to_mode, from_mode); 299 if (code != CODE_FOR_nothing) 300 { 301 emit_unop_insn (code, to, from, 302 tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE); 303 return; 304 } 305 306 /* Otherwise use a libcall. */ 307 libcall = convert_optab_libfunc (tab, to_mode, from_mode); 308 309 /* Is this conversion implemented yet? */ 310 gcc_assert (libcall); 311 312 start_sequence (); 313 value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode, 314 1, from, from_mode); 315 insns = get_insns (); 316 end_sequence (); 317 emit_libcall_block (insns, to, value, 318 tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode, 319 from) 320 : gen_rtx_FLOAT_EXTEND (to_mode, from)); 321 return; 322 } 323 324 /* Handle pointer conversion. */ /* SPEE 900220. */ 325 /* If the target has a converter from FROM_MODE to TO_MODE, use it. */ 326 { 327 convert_optab ctab; 328 329 if (GET_MODE_PRECISION (from_mode) > GET_MODE_PRECISION (to_mode)) 330 ctab = trunc_optab; 331 else if (unsignedp) 332 ctab = zext_optab; 333 else 334 ctab = sext_optab; 335 336 if (convert_optab_handler (ctab, to_mode, from_mode) 337 != CODE_FOR_nothing) 338 { 339 emit_unop_insn (convert_optab_handler (ctab, to_mode, from_mode), 340 to, from, UNKNOWN); 341 return; 342 } 343 } 344 345 /* Targets are expected to provide conversion insns between PxImode and 346 xImode for all MODE_PARTIAL_INT modes they use, but no others. */ 347 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT) 348 { 349 machine_mode full_mode 350 = smallest_mode_for_size (GET_MODE_BITSIZE (to_mode), MODE_INT); 351 352 gcc_assert (convert_optab_handler (trunc_optab, to_mode, full_mode) 353 != CODE_FOR_nothing); 354 355 if (full_mode != from_mode) 356 from = convert_to_mode (full_mode, from, unsignedp); 357 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, full_mode), 358 to, from, UNKNOWN); 359 return; 360 } 361 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT) 362 { 363 rtx new_from; 364 machine_mode full_mode 365 = smallest_mode_for_size (GET_MODE_BITSIZE (from_mode), MODE_INT); 366 convert_optab ctab = unsignedp ? zext_optab : sext_optab; 367 enum insn_code icode; 368 369 icode = convert_optab_handler (ctab, full_mode, from_mode); 370 gcc_assert (icode != CODE_FOR_nothing); 371 372 if (to_mode == full_mode) 373 { 374 emit_unop_insn (icode, to, from, UNKNOWN); 375 return; 376 } 377 378 new_from = gen_reg_rtx (full_mode); 379 emit_unop_insn (icode, new_from, from, UNKNOWN); 380 381 /* else proceed to integer conversions below. */ 382 from_mode = full_mode; 383 from = new_from; 384 } 385 386 /* Make sure both are fixed-point modes or both are not. */ 387 gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode) == 388 ALL_SCALAR_FIXED_POINT_MODE_P (to_mode)); 389 if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode)) 390 { 391 /* If we widen from_mode to to_mode and they are in the same class, 392 we won't saturate the result. 393 Otherwise, always saturate the result to play safe. */ 394 if (GET_MODE_CLASS (from_mode) == GET_MODE_CLASS (to_mode) 395 && GET_MODE_SIZE (from_mode) < GET_MODE_SIZE (to_mode)) 396 expand_fixed_convert (to, from, 0, 0); 397 else 398 expand_fixed_convert (to, from, 0, 1); 399 return; 400 } 401 402 /* Now both modes are integers. */ 403 404 /* Handle expanding beyond a word. */ 405 if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode) 406 && GET_MODE_PRECISION (to_mode) > BITS_PER_WORD) 407 { 408 rtx_insn *insns; 409 rtx lowpart; 410 rtx fill_value; 411 rtx lowfrom; 412 int i; 413 machine_mode lowpart_mode; 414 int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD); 415 416 /* Try converting directly if the insn is supported. */ 417 if ((code = can_extend_p (to_mode, from_mode, unsignedp)) 418 != CODE_FOR_nothing) 419 { 420 /* If FROM is a SUBREG, put it into a register. Do this 421 so that we always generate the same set of insns for 422 better cse'ing; if an intermediate assignment occurred, 423 we won't be doing the operation directly on the SUBREG. */ 424 if (optimize > 0 && GET_CODE (from) == SUBREG) 425 from = force_reg (from_mode, from); 426 emit_unop_insn (code, to, from, equiv_code); 427 return; 428 } 429 /* Next, try converting via full word. */ 430 else if (GET_MODE_PRECISION (from_mode) < BITS_PER_WORD 431 && ((code = can_extend_p (to_mode, word_mode, unsignedp)) 432 != CODE_FOR_nothing)) 433 { 434 rtx word_to = gen_reg_rtx (word_mode); 435 if (REG_P (to)) 436 { 437 if (reg_overlap_mentioned_p (to, from)) 438 from = force_reg (from_mode, from); 439 emit_clobber (to); 440 } 441 convert_move (word_to, from, unsignedp); 442 emit_unop_insn (code, to, word_to, equiv_code); 443 return; 444 } 445 446 /* No special multiword conversion insn; do it by hand. */ 447 start_sequence (); 448 449 /* Since we will turn this into a no conflict block, we must ensure 450 the source does not overlap the target so force it into an isolated 451 register when maybe so. Likewise for any MEM input, since the 452 conversion sequence might require several references to it and we 453 must ensure we're getting the same value every time. */ 454 455 if (MEM_P (from) || reg_overlap_mentioned_p (to, from)) 456 from = force_reg (from_mode, from); 457 458 /* Get a copy of FROM widened to a word, if necessary. */ 459 if (GET_MODE_PRECISION (from_mode) < BITS_PER_WORD) 460 lowpart_mode = word_mode; 461 else 462 lowpart_mode = from_mode; 463 464 lowfrom = convert_to_mode (lowpart_mode, from, unsignedp); 465 466 lowpart = gen_lowpart (lowpart_mode, to); 467 emit_move_insn (lowpart, lowfrom); 468 469 /* Compute the value to put in each remaining word. */ 470 if (unsignedp) 471 fill_value = const0_rtx; 472 else 473 fill_value = emit_store_flag_force (gen_reg_rtx (word_mode), 474 LT, lowfrom, const0_rtx, 475 lowpart_mode, 0, -1); 476 477 /* Fill the remaining words. */ 478 for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++) 479 { 480 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i); 481 rtx subword = operand_subword (to, index, 1, to_mode); 482 483 gcc_assert (subword); 484 485 if (fill_value != subword) 486 emit_move_insn (subword, fill_value); 487 } 488 489 insns = get_insns (); 490 end_sequence (); 491 492 emit_insn (insns); 493 return; 494 } 495 496 /* Truncating multi-word to a word or less. */ 497 if (GET_MODE_PRECISION (from_mode) > BITS_PER_WORD 498 && GET_MODE_PRECISION (to_mode) <= BITS_PER_WORD) 499 { 500 if (!((MEM_P (from) 501 && ! MEM_VOLATILE_P (from) 502 && direct_load[(int) to_mode] 503 && ! mode_dependent_address_p (XEXP (from, 0), 504 MEM_ADDR_SPACE (from))) 505 || REG_P (from) 506 || GET_CODE (from) == SUBREG)) 507 from = force_reg (from_mode, from); 508 convert_move (to, gen_lowpart (word_mode, from), 0); 509 return; 510 } 511 512 /* Now follow all the conversions between integers 513 no more than a word long. */ 514 515 /* For truncation, usually we can just refer to FROM in a narrower mode. */ 516 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode) 517 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode, from_mode)) 518 { 519 if (!((MEM_P (from) 520 && ! MEM_VOLATILE_P (from) 521 && direct_load[(int) to_mode] 522 && ! mode_dependent_address_p (XEXP (from, 0), 523 MEM_ADDR_SPACE (from))) 524 || REG_P (from) 525 || GET_CODE (from) == SUBREG)) 526 from = force_reg (from_mode, from); 527 if (REG_P (from) && REGNO (from) < FIRST_PSEUDO_REGISTER 528 && ! HARD_REGNO_MODE_OK (REGNO (from), to_mode)) 529 from = copy_to_reg (from); 530 emit_move_insn (to, gen_lowpart (to_mode, from)); 531 return; 532 } 533 534 /* Handle extension. */ 535 if (GET_MODE_PRECISION (to_mode) > GET_MODE_PRECISION (from_mode)) 536 { 537 /* Convert directly if that works. */ 538 if ((code = can_extend_p (to_mode, from_mode, unsignedp)) 539 != CODE_FOR_nothing) 540 { 541 emit_unop_insn (code, to, from, equiv_code); 542 return; 543 } 544 else 545 { 546 machine_mode intermediate; 547 rtx tmp; 548 int shift_amount; 549 550 /* Search for a mode to convert via. */ 551 for (intermediate = from_mode; intermediate != VOIDmode; 552 intermediate = GET_MODE_WIDER_MODE (intermediate)) 553 if (((can_extend_p (to_mode, intermediate, unsignedp) 554 != CODE_FOR_nothing) 555 || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate) 556 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode, intermediate))) 557 && (can_extend_p (intermediate, from_mode, unsignedp) 558 != CODE_FOR_nothing)) 559 { 560 convert_move (to, convert_to_mode (intermediate, from, 561 unsignedp), unsignedp); 562 return; 563 } 564 565 /* No suitable intermediate mode. 566 Generate what we need with shifts. */ 567 shift_amount = (GET_MODE_PRECISION (to_mode) 568 - GET_MODE_PRECISION (from_mode)); 569 from = gen_lowpart (to_mode, force_reg (from_mode, from)); 570 tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount, 571 to, unsignedp); 572 tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount, 573 to, unsignedp); 574 if (tmp != to) 575 emit_move_insn (to, tmp); 576 return; 577 } 578 } 579 580 /* Support special truncate insns for certain modes. */ 581 if (convert_optab_handler (trunc_optab, to_mode, 582 from_mode) != CODE_FOR_nothing) 583 { 584 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, from_mode), 585 to, from, UNKNOWN); 586 return; 587 } 588 589 /* Handle truncation of volatile memrefs, and so on; 590 the things that couldn't be truncated directly, 591 and for which there was no special instruction. 592 593 ??? Code above formerly short-circuited this, for most integer 594 mode pairs, with a force_reg in from_mode followed by a recursive 595 call to this routine. Appears always to have been wrong. */ 596 if (GET_MODE_PRECISION (to_mode) < GET_MODE_PRECISION (from_mode)) 597 { 598 rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from)); 599 emit_move_insn (to, temp); 600 return; 601 } 602 603 /* Mode combination is not recognized. */ 604 gcc_unreachable (); 605 } 606 607 /* Return an rtx for a value that would result 608 from converting X to mode MODE. 609 Both X and MODE may be floating, or both integer. 610 UNSIGNEDP is nonzero if X is an unsigned value. 611 This can be done by referring to a part of X in place 612 or by copying to a new temporary with conversion. */ 613 614 rtx 615 convert_to_mode (machine_mode mode, rtx x, int unsignedp) 616 { 617 return convert_modes (mode, VOIDmode, x, unsignedp); 618 } 619 620 /* Return an rtx for a value that would result 621 from converting X from mode OLDMODE to mode MODE. 622 Both modes may be floating, or both integer. 623 UNSIGNEDP is nonzero if X is an unsigned value. 624 625 This can be done by referring to a part of X in place 626 or by copying to a new temporary with conversion. 627 628 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */ 629 630 rtx 631 convert_modes (machine_mode mode, machine_mode oldmode, rtx x, int unsignedp) 632 { 633 rtx temp; 634 635 /* If FROM is a SUBREG that indicates that we have already done at least 636 the required extension, strip it. */ 637 638 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x) 639 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) >= GET_MODE_SIZE (mode) 640 && SUBREG_CHECK_PROMOTED_SIGN (x, unsignedp)) 641 x = gen_lowpart (mode, SUBREG_REG (x)); 642 643 if (GET_MODE (x) != VOIDmode) 644 oldmode = GET_MODE (x); 645 646 if (mode == oldmode) 647 return x; 648 649 if (CONST_SCALAR_INT_P (x) && GET_MODE_CLASS (mode) == MODE_INT) 650 { 651 /* If the caller did not tell us the old mode, then there is not 652 much to do with respect to canonicalization. We have to 653 assume that all the bits are significant. */ 654 if (GET_MODE_CLASS (oldmode) != MODE_INT) 655 oldmode = MAX_MODE_INT; 656 wide_int w = wide_int::from (rtx_mode_t (x, oldmode), 657 GET_MODE_PRECISION (mode), 658 unsignedp ? UNSIGNED : SIGNED); 659 return immed_wide_int_const (w, mode); 660 } 661 662 /* We can do this with a gen_lowpart if both desired and current modes 663 are integer, and this is either a constant integer, a register, or a 664 non-volatile MEM. */ 665 if (GET_MODE_CLASS (mode) == MODE_INT 666 && GET_MODE_CLASS (oldmode) == MODE_INT 667 && GET_MODE_PRECISION (mode) <= GET_MODE_PRECISION (oldmode) 668 && ((MEM_P (x) && !MEM_VOLATILE_P (x) && direct_load[(int) mode]) 669 || (REG_P (x) 670 && (!HARD_REGISTER_P (x) 671 || HARD_REGNO_MODE_OK (REGNO (x), mode)) 672 && TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x))))) 673 674 return gen_lowpart (mode, x); 675 676 /* Converting from integer constant into mode is always equivalent to an 677 subreg operation. */ 678 if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode) 679 { 680 gcc_assert (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (oldmode)); 681 return simplify_gen_subreg (mode, x, oldmode, 0); 682 } 683 684 temp = gen_reg_rtx (mode); 685 convert_move (temp, x, unsignedp); 686 return temp; 687 } 688 689 /* Return the largest alignment we can use for doing a move (or store) 690 of MAX_PIECES. ALIGN is the largest alignment we could use. */ 691 692 static unsigned int 693 alignment_for_piecewise_move (unsigned int max_pieces, unsigned int align) 694 { 695 machine_mode tmode; 696 697 tmode = mode_for_size (max_pieces * BITS_PER_UNIT, MODE_INT, 1); 698 if (align >= GET_MODE_ALIGNMENT (tmode)) 699 align = GET_MODE_ALIGNMENT (tmode); 700 else 701 { 702 machine_mode tmode, xmode; 703 704 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode; 705 tmode != VOIDmode; 706 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode)) 707 if (GET_MODE_SIZE (tmode) > max_pieces 708 || SLOW_UNALIGNED_ACCESS (tmode, align)) 709 break; 710 711 align = MAX (align, GET_MODE_ALIGNMENT (xmode)); 712 } 713 714 return align; 715 } 716 717 /* Return the widest integer mode no wider than SIZE. If no such mode 718 can be found, return VOIDmode. */ 719 720 static machine_mode 721 widest_int_mode_for_size (unsigned int size) 722 { 723 machine_mode tmode, mode = VOIDmode; 724 725 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT); 726 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode)) 727 if (GET_MODE_SIZE (tmode) < size) 728 mode = tmode; 729 730 return mode; 731 } 732 733 /* Determine whether an operation OP on LEN bytes with alignment ALIGN can 734 and should be performed piecewise. */ 735 736 static bool 737 can_do_by_pieces (unsigned HOST_WIDE_INT len, unsigned int align, 738 enum by_pieces_operation op) 739 { 740 return targetm.use_by_pieces_infrastructure_p (len, align, op, 741 optimize_insn_for_speed_p ()); 742 } 743 744 /* Determine whether the LEN bytes can be moved by using several move 745 instructions. Return nonzero if a call to move_by_pieces should 746 succeed. */ 747 748 bool 749 can_move_by_pieces (unsigned HOST_WIDE_INT len, unsigned int align) 750 { 751 return can_do_by_pieces (len, align, MOVE_BY_PIECES); 752 } 753 754 /* Return number of insns required to perform operation OP by pieces 755 for L bytes. ALIGN (in bits) is maximum alignment we can assume. */ 756 757 unsigned HOST_WIDE_INT 758 by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align, 759 unsigned int max_size, by_pieces_operation op) 760 { 761 unsigned HOST_WIDE_INT n_insns = 0; 762 763 align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align); 764 765 while (max_size > 1 && l > 0) 766 { 767 machine_mode mode; 768 enum insn_code icode; 769 770 mode = widest_int_mode_for_size (max_size); 771 772 if (mode == VOIDmode) 773 break; 774 unsigned int modesize = GET_MODE_SIZE (mode); 775 776 icode = optab_handler (mov_optab, mode); 777 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode)) 778 { 779 unsigned HOST_WIDE_INT n_pieces = l / modesize; 780 l %= modesize; 781 switch (op) 782 { 783 default: 784 n_insns += n_pieces; 785 break; 786 787 case COMPARE_BY_PIECES: 788 int batch = targetm.compare_by_pieces_branch_ratio (mode); 789 int batch_ops = 4 * batch - 1; 790 unsigned HOST_WIDE_INT full = n_pieces / batch; 791 n_insns += full * batch_ops; 792 if (n_pieces % batch != 0) 793 n_insns++; 794 break; 795 796 } 797 } 798 max_size = modesize; 799 } 800 801 gcc_assert (!l); 802 return n_insns; 803 } 804 805 /* Used when performing piecewise block operations, holds information 806 about one of the memory objects involved. The member functions 807 can be used to generate code for loading from the object and 808 updating the address when iterating. */ 809 810 class pieces_addr 811 { 812 /* The object being referenced, a MEM. Can be NULL_RTX to indicate 813 stack pushes. */ 814 rtx m_obj; 815 /* The address of the object. Can differ from that seen in the 816 MEM rtx if we copied the address to a register. */ 817 rtx m_addr; 818 /* Nonzero if the address on the object has an autoincrement already, 819 signifies whether that was an increment or decrement. */ 820 signed char m_addr_inc; 821 /* Nonzero if we intend to use autoinc without the address already 822 having autoinc form. We will insert add insns around each memory 823 reference, expecting later passes to form autoinc addressing modes. 824 The only supported options are predecrement and postincrement. */ 825 signed char m_explicit_inc; 826 /* True if we have either of the two possible cases of using 827 autoincrement. */ 828 bool m_auto; 829 /* True if this is an address to be used for load operations rather 830 than stores. */ 831 bool m_is_load; 832 833 /* Optionally, a function to obtain constants for any given offset into 834 the objects, and data associated with it. */ 835 by_pieces_constfn m_constfn; 836 void *m_cfndata; 837 public: 838 pieces_addr (rtx, bool, by_pieces_constfn, void *); 839 rtx adjust (machine_mode, HOST_WIDE_INT); 840 void increment_address (HOST_WIDE_INT); 841 void maybe_predec (HOST_WIDE_INT); 842 void maybe_postinc (HOST_WIDE_INT); 843 void decide_autoinc (machine_mode, bool, HOST_WIDE_INT); 844 int get_addr_inc () 845 { 846 return m_addr_inc; 847 } 848 }; 849 850 /* Initialize a pieces_addr structure from an object OBJ. IS_LOAD is 851 true if the operation to be performed on this object is a load 852 rather than a store. For stores, OBJ can be NULL, in which case we 853 assume the operation is a stack push. For loads, the optional 854 CONSTFN and its associated CFNDATA can be used in place of the 855 memory load. */ 856 857 pieces_addr::pieces_addr (rtx obj, bool is_load, by_pieces_constfn constfn, 858 void *cfndata) 859 : m_obj (obj), m_is_load (is_load), m_constfn (constfn), m_cfndata (cfndata) 860 { 861 m_addr_inc = 0; 862 m_auto = false; 863 if (obj) 864 { 865 rtx addr = XEXP (obj, 0); 866 rtx_code code = GET_CODE (addr); 867 m_addr = addr; 868 bool dec = code == PRE_DEC || code == POST_DEC; 869 bool inc = code == PRE_INC || code == POST_INC; 870 m_auto = inc || dec; 871 if (m_auto) 872 m_addr_inc = dec ? -1 : 1; 873 874 /* While we have always looked for these codes here, the code 875 implementing the memory operation has never handled them. 876 Support could be added later if necessary or beneficial. */ 877 gcc_assert (code != PRE_INC && code != POST_DEC); 878 } 879 else 880 { 881 m_addr = NULL_RTX; 882 if (!is_load) 883 { 884 m_auto = true; 885 if (STACK_GROWS_DOWNWARD) 886 m_addr_inc = -1; 887 else 888 m_addr_inc = 1; 889 } 890 else 891 gcc_assert (constfn != NULL); 892 } 893 m_explicit_inc = 0; 894 if (constfn) 895 gcc_assert (is_load); 896 } 897 898 /* Decide whether to use autoinc for an address involved in a memory op. 899 MODE is the mode of the accesses, REVERSE is true if we've decided to 900 perform the operation starting from the end, and LEN is the length of 901 the operation. Don't override an earlier decision to set m_auto. */ 902 903 void 904 pieces_addr::decide_autoinc (machine_mode ARG_UNUSED (mode), bool reverse, 905 HOST_WIDE_INT len) 906 { 907 if (m_auto || m_obj == NULL_RTX) 908 return; 909 910 bool use_predec = (m_is_load 911 ? USE_LOAD_PRE_DECREMENT (mode) 912 : USE_STORE_PRE_DECREMENT (mode)); 913 bool use_postinc = (m_is_load 914 ? USE_LOAD_POST_INCREMENT (mode) 915 : USE_STORE_POST_INCREMENT (mode)); 916 machine_mode addr_mode = get_address_mode (m_obj); 917 918 if (use_predec && reverse) 919 { 920 m_addr = copy_to_mode_reg (addr_mode, 921 plus_constant (addr_mode, 922 m_addr, len)); 923 m_auto = true; 924 m_explicit_inc = -1; 925 } 926 else if (use_postinc && !reverse) 927 { 928 m_addr = copy_to_mode_reg (addr_mode, m_addr); 929 m_auto = true; 930 m_explicit_inc = 1; 931 } 932 else if (CONSTANT_P (m_addr)) 933 m_addr = copy_to_mode_reg (addr_mode, m_addr); 934 } 935 936 /* Adjust the address to refer to the data at OFFSET in MODE. If we 937 are using autoincrement for this address, we don't add the offset, 938 but we still modify the MEM's properties. */ 939 940 rtx 941 pieces_addr::adjust (machine_mode mode, HOST_WIDE_INT offset) 942 { 943 if (m_constfn) 944 return m_constfn (m_cfndata, offset, mode); 945 if (m_obj == NULL_RTX) 946 return NULL_RTX; 947 if (m_auto) 948 return adjust_automodify_address (m_obj, mode, m_addr, offset); 949 else 950 return adjust_address (m_obj, mode, offset); 951 } 952 953 /* Emit an add instruction to increment the address by SIZE. */ 954 955 void 956 pieces_addr::increment_address (HOST_WIDE_INT size) 957 { 958 rtx amount = gen_int_mode (size, GET_MODE (m_addr)); 959 emit_insn (gen_add2_insn (m_addr, amount)); 960 } 961 962 /* If we are supposed to decrement the address after each access, emit code 963 to do so now. Increment by SIZE (which has should have the correct sign 964 already). */ 965 966 void 967 pieces_addr::maybe_predec (HOST_WIDE_INT size) 968 { 969 if (m_explicit_inc >= 0) 970 return; 971 gcc_assert (HAVE_PRE_DECREMENT); 972 increment_address (size); 973 } 974 975 /* If we are supposed to decrement the address after each access, emit code 976 to do so now. Increment by SIZE. */ 977 978 void 979 pieces_addr::maybe_postinc (HOST_WIDE_INT size) 980 { 981 if (m_explicit_inc <= 0) 982 return; 983 gcc_assert (HAVE_POST_INCREMENT); 984 increment_address (size); 985 } 986 987 /* This structure is used by do_op_by_pieces to describe the operation 988 to be performed. */ 989 990 class op_by_pieces_d 991 { 992 protected: 993 pieces_addr m_to, m_from; 994 unsigned HOST_WIDE_INT m_len; 995 HOST_WIDE_INT m_offset; 996 unsigned int m_align; 997 unsigned int m_max_size; 998 bool m_reverse; 999 1000 /* Virtual functions, overriden by derived classes for the specific 1001 operation. */ 1002 virtual void generate (rtx, rtx, machine_mode) = 0; 1003 virtual bool prepare_mode (machine_mode, unsigned int) = 0; 1004 virtual void finish_mode (machine_mode) 1005 { 1006 } 1007 1008 public: 1009 op_by_pieces_d (rtx, bool, rtx, bool, by_pieces_constfn, void *, 1010 unsigned HOST_WIDE_INT, unsigned int); 1011 void run (); 1012 }; 1013 1014 /* The constructor for an op_by_pieces_d structure. We require two 1015 objects named TO and FROM, which are identified as loads or stores 1016 by TO_LOAD and FROM_LOAD. If FROM is a load, the optional FROM_CFN 1017 and its associated FROM_CFN_DATA can be used to replace loads with 1018 constant values. LEN describes the length of the operation. */ 1019 1020 op_by_pieces_d::op_by_pieces_d (rtx to, bool to_load, 1021 rtx from, bool from_load, 1022 by_pieces_constfn from_cfn, 1023 void *from_cfn_data, 1024 unsigned HOST_WIDE_INT len, 1025 unsigned int align) 1026 : m_to (to, to_load, NULL, NULL), 1027 m_from (from, from_load, from_cfn, from_cfn_data), 1028 m_len (len), m_max_size (MOVE_MAX_PIECES + 1) 1029 { 1030 int toi = m_to.get_addr_inc (); 1031 int fromi = m_from.get_addr_inc (); 1032 if (toi >= 0 && fromi >= 0) 1033 m_reverse = false; 1034 else if (toi <= 0 && fromi <= 0) 1035 m_reverse = true; 1036 else 1037 gcc_unreachable (); 1038 1039 m_offset = m_reverse ? len : 0; 1040 align = MIN (to ? MEM_ALIGN (to) : align, 1041 from ? MEM_ALIGN (from) : align); 1042 1043 /* If copying requires more than two move insns, 1044 copy addresses to registers (to make displacements shorter) 1045 and use post-increment if available. */ 1046 if (by_pieces_ninsns (len, align, m_max_size, MOVE_BY_PIECES) > 2) 1047 { 1048 /* Find the mode of the largest comparison. */ 1049 machine_mode mode = widest_int_mode_for_size (m_max_size); 1050 1051 m_from.decide_autoinc (mode, m_reverse, len); 1052 m_to.decide_autoinc (mode, m_reverse, len); 1053 } 1054 1055 align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align); 1056 m_align = align; 1057 } 1058 1059 /* This function contains the main loop used for expanding a block 1060 operation. First move what we can in the largest integer mode, 1061 then go to successively smaller modes. For every access, call 1062 GENFUN with the two operands and the EXTRA_DATA. */ 1063 1064 void 1065 op_by_pieces_d::run () 1066 { 1067 while (m_max_size > 1 && m_len > 0) 1068 { 1069 machine_mode mode = widest_int_mode_for_size (m_max_size); 1070 1071 if (mode == VOIDmode) 1072 break; 1073 1074 if (prepare_mode (mode, m_align)) 1075 { 1076 unsigned int size = GET_MODE_SIZE (mode); 1077 rtx to1 = NULL_RTX, from1; 1078 1079 while (m_len >= size) 1080 { 1081 if (m_reverse) 1082 m_offset -= size; 1083 1084 to1 = m_to.adjust (mode, m_offset); 1085 from1 = m_from.adjust (mode, m_offset); 1086 1087 m_to.maybe_predec (-(HOST_WIDE_INT)size); 1088 m_from.maybe_predec (-(HOST_WIDE_INT)size); 1089 1090 generate (to1, from1, mode); 1091 1092 m_to.maybe_postinc (size); 1093 m_from.maybe_postinc (size); 1094 1095 if (!m_reverse) 1096 m_offset += size; 1097 1098 m_len -= size; 1099 } 1100 1101 finish_mode (mode); 1102 } 1103 1104 m_max_size = GET_MODE_SIZE (mode); 1105 } 1106 1107 /* The code above should have handled everything. */ 1108 gcc_assert (!m_len); 1109 } 1110 1111 /* Derived class from op_by_pieces_d, providing support for block move 1112 operations. */ 1113 1114 class move_by_pieces_d : public op_by_pieces_d 1115 { 1116 insn_gen_fn m_gen_fun; 1117 void generate (rtx, rtx, machine_mode); 1118 bool prepare_mode (machine_mode, unsigned int); 1119 1120 public: 1121 move_by_pieces_d (rtx to, rtx from, unsigned HOST_WIDE_INT len, 1122 unsigned int align) 1123 : op_by_pieces_d (to, false, from, true, NULL, NULL, len, align) 1124 { 1125 } 1126 rtx finish_endp (int); 1127 }; 1128 1129 /* Return true if MODE can be used for a set of copies, given an 1130 alignment ALIGN. Prepare whatever data is necessary for later 1131 calls to generate. */ 1132 1133 bool 1134 move_by_pieces_d::prepare_mode (machine_mode mode, unsigned int align) 1135 { 1136 insn_code icode = optab_handler (mov_optab, mode); 1137 m_gen_fun = GEN_FCN (icode); 1138 return icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode); 1139 } 1140 1141 /* A callback used when iterating for a compare_by_pieces_operation. 1142 OP0 and OP1 are the values that have been loaded and should be 1143 compared in MODE. If OP0 is NULL, this means we should generate a 1144 push; otherwise EXTRA_DATA holds a pointer to a pointer to the insn 1145 gen function that should be used to generate the mode. */ 1146 1147 void 1148 move_by_pieces_d::generate (rtx op0, rtx op1, 1149 machine_mode mode ATTRIBUTE_UNUSED) 1150 { 1151 #ifdef PUSH_ROUNDING 1152 if (op0 == NULL_RTX) 1153 { 1154 emit_single_push_insn (mode, op1, NULL); 1155 return; 1156 } 1157 #endif 1158 emit_insn (m_gen_fun (op0, op1)); 1159 } 1160 1161 /* Perform the final adjustment at the end of a string to obtain the 1162 correct return value for the block operation. If ENDP is 1 return 1163 memory at the end ala mempcpy, and if ENDP is 2 return memory the 1164 end minus one byte ala stpcpy. */ 1165 1166 rtx 1167 move_by_pieces_d::finish_endp (int endp) 1168 { 1169 gcc_assert (!m_reverse); 1170 if (endp == 2) 1171 { 1172 m_to.maybe_postinc (-1); 1173 --m_offset; 1174 } 1175 return m_to.adjust (QImode, m_offset); 1176 } 1177 1178 /* Generate several move instructions to copy LEN bytes from block FROM to 1179 block TO. (These are MEM rtx's with BLKmode). 1180 1181 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is 1182 used to push FROM to the stack. 1183 1184 ALIGN is maximum stack alignment we can assume. 1185 1186 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala 1187 mempcpy, and if ENDP is 2 return memory the end minus one byte ala 1188 stpcpy. */ 1189 1190 rtx 1191 move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len, 1192 unsigned int align, int endp) 1193 { 1194 #ifndef PUSH_ROUNDING 1195 if (to == NULL) 1196 gcc_unreachable (); 1197 #endif 1198 1199 move_by_pieces_d data (to, from, len, align); 1200 1201 data.run (); 1202 1203 if (endp) 1204 return data.finish_endp (endp); 1205 else 1206 return to; 1207 } 1208 1209 /* Derived class from op_by_pieces_d, providing support for block move 1210 operations. */ 1211 1212 class store_by_pieces_d : public op_by_pieces_d 1213 { 1214 insn_gen_fn m_gen_fun; 1215 void generate (rtx, rtx, machine_mode); 1216 bool prepare_mode (machine_mode, unsigned int); 1217 1218 public: 1219 store_by_pieces_d (rtx to, by_pieces_constfn cfn, void *cfn_data, 1220 unsigned HOST_WIDE_INT len, unsigned int align) 1221 : op_by_pieces_d (to, false, NULL_RTX, true, cfn, cfn_data, len, align) 1222 { 1223 } 1224 rtx finish_endp (int); 1225 }; 1226 1227 /* Return true if MODE can be used for a set of stores, given an 1228 alignment ALIGN. Prepare whatever data is necessary for later 1229 calls to generate. */ 1230 1231 bool 1232 store_by_pieces_d::prepare_mode (machine_mode mode, unsigned int align) 1233 { 1234 insn_code icode = optab_handler (mov_optab, mode); 1235 m_gen_fun = GEN_FCN (icode); 1236 return icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode); 1237 } 1238 1239 /* A callback used when iterating for a store_by_pieces_operation. 1240 OP0 and OP1 are the values that have been loaded and should be 1241 compared in MODE. If OP0 is NULL, this means we should generate a 1242 push; otherwise EXTRA_DATA holds a pointer to a pointer to the insn 1243 gen function that should be used to generate the mode. */ 1244 1245 void 1246 store_by_pieces_d::generate (rtx op0, rtx op1, machine_mode) 1247 { 1248 emit_insn (m_gen_fun (op0, op1)); 1249 } 1250 1251 /* Perform the final adjustment at the end of a string to obtain the 1252 correct return value for the block operation. If ENDP is 1 return 1253 memory at the end ala mempcpy, and if ENDP is 2 return memory the 1254 end minus one byte ala stpcpy. */ 1255 1256 rtx 1257 store_by_pieces_d::finish_endp (int endp) 1258 { 1259 gcc_assert (!m_reverse); 1260 if (endp == 2) 1261 { 1262 m_to.maybe_postinc (-1); 1263 --m_offset; 1264 } 1265 return m_to.adjust (QImode, m_offset); 1266 } 1267 1268 /* Determine whether the LEN bytes generated by CONSTFUN can be 1269 stored to memory using several move instructions. CONSTFUNDATA is 1270 a pointer which will be passed as argument in every CONSTFUN call. 1271 ALIGN is maximum alignment we can assume. MEMSETP is true if this is 1272 a memset operation and false if it's a copy of a constant string. 1273 Return nonzero if a call to store_by_pieces should succeed. */ 1274 1275 int 1276 can_store_by_pieces (unsigned HOST_WIDE_INT len, 1277 rtx (*constfun) (void *, HOST_WIDE_INT, machine_mode), 1278 void *constfundata, unsigned int align, bool memsetp) 1279 { 1280 unsigned HOST_WIDE_INT l; 1281 unsigned int max_size; 1282 HOST_WIDE_INT offset = 0; 1283 machine_mode mode; 1284 enum insn_code icode; 1285 int reverse; 1286 /* cst is set but not used if LEGITIMATE_CONSTANT doesn't use it. */ 1287 rtx cst ATTRIBUTE_UNUSED; 1288 1289 if (len == 0) 1290 return 1; 1291 1292 if (!targetm.use_by_pieces_infrastructure_p (len, align, 1293 memsetp 1294 ? SET_BY_PIECES 1295 : STORE_BY_PIECES, 1296 optimize_insn_for_speed_p ())) 1297 return 0; 1298 1299 align = alignment_for_piecewise_move (STORE_MAX_PIECES, align); 1300 1301 /* We would first store what we can in the largest integer mode, then go to 1302 successively smaller modes. */ 1303 1304 for (reverse = 0; 1305 reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT); 1306 reverse++) 1307 { 1308 l = len; 1309 max_size = STORE_MAX_PIECES + 1; 1310 while (max_size > 1 && l > 0) 1311 { 1312 mode = widest_int_mode_for_size (max_size); 1313 1314 if (mode == VOIDmode) 1315 break; 1316 1317 icode = optab_handler (mov_optab, mode); 1318 if (icode != CODE_FOR_nothing 1319 && align >= GET_MODE_ALIGNMENT (mode)) 1320 { 1321 unsigned int size = GET_MODE_SIZE (mode); 1322 1323 while (l >= size) 1324 { 1325 if (reverse) 1326 offset -= size; 1327 1328 cst = (*constfun) (constfundata, offset, mode); 1329 if (!targetm.legitimate_constant_p (mode, cst)) 1330 return 0; 1331 1332 if (!reverse) 1333 offset += size; 1334 1335 l -= size; 1336 } 1337 } 1338 1339 max_size = GET_MODE_SIZE (mode); 1340 } 1341 1342 /* The code above should have handled everything. */ 1343 gcc_assert (!l); 1344 } 1345 1346 return 1; 1347 } 1348 1349 /* Generate several move instructions to store LEN bytes generated by 1350 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a 1351 pointer which will be passed as argument in every CONSTFUN call. 1352 ALIGN is maximum alignment we can assume. MEMSETP is true if this is 1353 a memset operation and false if it's a copy of a constant string. 1354 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala 1355 mempcpy, and if ENDP is 2 return memory the end minus one byte ala 1356 stpcpy. */ 1357 1358 rtx 1359 store_by_pieces (rtx to, unsigned HOST_WIDE_INT len, 1360 rtx (*constfun) (void *, HOST_WIDE_INT, machine_mode), 1361 void *constfundata, unsigned int align, bool memsetp, int endp) 1362 { 1363 if (len == 0) 1364 { 1365 gcc_assert (endp != 2); 1366 return to; 1367 } 1368 1369 gcc_assert (targetm.use_by_pieces_infrastructure_p 1370 (len, align, 1371 memsetp ? SET_BY_PIECES : STORE_BY_PIECES, 1372 optimize_insn_for_speed_p ())); 1373 1374 store_by_pieces_d data (to, constfun, constfundata, len, align); 1375 data.run (); 1376 1377 if (endp) 1378 return data.finish_endp (endp); 1379 else 1380 return to; 1381 } 1382 1383 /* Callback routine for clear_by_pieces. 1384 Return const0_rtx unconditionally. */ 1385 1386 static rtx 1387 clear_by_pieces_1 (void *, HOST_WIDE_INT, machine_mode) 1388 { 1389 return const0_rtx; 1390 } 1391 1392 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM 1393 rtx with BLKmode). ALIGN is maximum alignment we can assume. */ 1394 1395 static void 1396 clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align) 1397 { 1398 if (len == 0) 1399 return; 1400 1401 store_by_pieces_d data (to, clear_by_pieces_1, NULL, len, align); 1402 data.run (); 1403 } 1404 1405 /* Context used by compare_by_pieces_genfn. It stores the fail label 1406 to jump to in case of miscomparison, and for branch ratios greater than 1, 1407 it stores an accumulator and the current and maximum counts before 1408 emitting another branch. */ 1409 1410 class compare_by_pieces_d : public op_by_pieces_d 1411 { 1412 rtx_code_label *m_fail_label; 1413 rtx m_accumulator; 1414 int m_count, m_batch; 1415 1416 void generate (rtx, rtx, machine_mode); 1417 bool prepare_mode (machine_mode, unsigned int); 1418 void finish_mode (machine_mode); 1419 public: 1420 compare_by_pieces_d (rtx op0, rtx op1, by_pieces_constfn op1_cfn, 1421 void *op1_cfn_data, HOST_WIDE_INT len, int align, 1422 rtx_code_label *fail_label) 1423 : op_by_pieces_d (op0, true, op1, true, op1_cfn, op1_cfn_data, len, align) 1424 { 1425 m_fail_label = fail_label; 1426 } 1427 }; 1428 1429 /* A callback used when iterating for a compare_by_pieces_operation. 1430 OP0 and OP1 are the values that have been loaded and should be 1431 compared in MODE. DATA holds a pointer to the compare_by_pieces_data 1432 context structure. */ 1433 1434 void 1435 compare_by_pieces_d::generate (rtx op0, rtx op1, machine_mode mode) 1436 { 1437 if (m_batch > 1) 1438 { 1439 rtx temp = expand_binop (mode, sub_optab, op0, op1, NULL_RTX, 1440 true, OPTAB_LIB_WIDEN); 1441 if (m_count != 0) 1442 temp = expand_binop (mode, ior_optab, m_accumulator, temp, temp, 1443 true, OPTAB_LIB_WIDEN); 1444 m_accumulator = temp; 1445 1446 if (++m_count < m_batch) 1447 return; 1448 1449 m_count = 0; 1450 op0 = m_accumulator; 1451 op1 = const0_rtx; 1452 m_accumulator = NULL_RTX; 1453 } 1454 do_compare_rtx_and_jump (op0, op1, NE, true, mode, NULL_RTX, NULL, 1455 m_fail_label, -1); 1456 } 1457 1458 /* Return true if MODE can be used for a set of moves and comparisons, 1459 given an alignment ALIGN. Prepare whatever data is necessary for 1460 later calls to generate. */ 1461 1462 bool 1463 compare_by_pieces_d::prepare_mode (machine_mode mode, unsigned int align) 1464 { 1465 insn_code icode = optab_handler (mov_optab, mode); 1466 if (icode == CODE_FOR_nothing 1467 || align < GET_MODE_ALIGNMENT (mode) 1468 || !can_compare_p (EQ, mode, ccp_jump)) 1469 return false; 1470 m_batch = targetm.compare_by_pieces_branch_ratio (mode); 1471 if (m_batch < 0) 1472 return false; 1473 m_accumulator = NULL_RTX; 1474 m_count = 0; 1475 return true; 1476 } 1477 1478 /* Called after expanding a series of comparisons in MODE. If we have 1479 accumulated results for which we haven't emitted a branch yet, do 1480 so now. */ 1481 1482 void 1483 compare_by_pieces_d::finish_mode (machine_mode mode) 1484 { 1485 if (m_accumulator != NULL_RTX) 1486 do_compare_rtx_and_jump (m_accumulator, const0_rtx, NE, true, mode, 1487 NULL_RTX, NULL, m_fail_label, -1); 1488 } 1489 1490 /* Generate several move instructions to compare LEN bytes from blocks 1491 ARG0 and ARG1. (These are MEM rtx's with BLKmode). 1492 1493 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is 1494 used to push FROM to the stack. 1495 1496 ALIGN is maximum stack alignment we can assume. 1497 1498 Optionally, the caller can pass a constfn and associated data in A1_CFN 1499 and A1_CFN_DATA. describing that the second operand being compared is a 1500 known constant and how to obtain its data. */ 1501 1502 static rtx 1503 compare_by_pieces (rtx arg0, rtx arg1, unsigned HOST_WIDE_INT len, 1504 rtx target, unsigned int align, 1505 by_pieces_constfn a1_cfn, void *a1_cfn_data) 1506 { 1507 rtx_code_label *fail_label = gen_label_rtx (); 1508 rtx_code_label *end_label = gen_label_rtx (); 1509 1510 if (target == NULL_RTX 1511 || !REG_P (target) || REGNO (target) < FIRST_PSEUDO_REGISTER) 1512 target = gen_reg_rtx (TYPE_MODE (integer_type_node)); 1513 1514 compare_by_pieces_d data (arg0, arg1, a1_cfn, a1_cfn_data, len, align, 1515 fail_label); 1516 1517 data.run (); 1518 1519 emit_move_insn (target, const0_rtx); 1520 emit_jump (end_label); 1521 emit_barrier (); 1522 emit_label (fail_label); 1523 emit_move_insn (target, const1_rtx); 1524 emit_label (end_label); 1525 1526 return target; 1527 } 1528 1529 /* Emit code to move a block Y to a block X. This may be done with 1530 string-move instructions, with multiple scalar move instructions, 1531 or with a library call. 1532 1533 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode. 1534 SIZE is an rtx that says how long they are. 1535 ALIGN is the maximum alignment we can assume they have. 1536 METHOD describes what kind of copy this is, and what mechanisms may be used. 1537 MIN_SIZE is the minimal size of block to move 1538 MAX_SIZE is the maximal size of block to move, if it can not be represented 1539 in unsigned HOST_WIDE_INT, than it is mask of all ones. 1540 1541 Return the address of the new block, if memcpy is called and returns it, 1542 0 otherwise. */ 1543 1544 rtx 1545 emit_block_move_hints (rtx x, rtx y, rtx size, enum block_op_methods method, 1546 unsigned int expected_align, HOST_WIDE_INT expected_size, 1547 unsigned HOST_WIDE_INT min_size, 1548 unsigned HOST_WIDE_INT max_size, 1549 unsigned HOST_WIDE_INT probable_max_size) 1550 { 1551 bool may_use_call; 1552 rtx retval = 0; 1553 unsigned int align; 1554 1555 gcc_assert (size); 1556 if (CONST_INT_P (size) && INTVAL (size) == 0) 1557 return 0; 1558 1559 switch (method) 1560 { 1561 case BLOCK_OP_NORMAL: 1562 case BLOCK_OP_TAILCALL: 1563 may_use_call = true; 1564 break; 1565 1566 case BLOCK_OP_CALL_PARM: 1567 may_use_call = block_move_libcall_safe_for_call_parm (); 1568 1569 /* Make inhibit_defer_pop nonzero around the library call 1570 to force it to pop the arguments right away. */ 1571 NO_DEFER_POP; 1572 break; 1573 1574 case BLOCK_OP_NO_LIBCALL: 1575 may_use_call = false; 1576 break; 1577 1578 default: 1579 gcc_unreachable (); 1580 } 1581 1582 gcc_assert (MEM_P (x) && MEM_P (y)); 1583 align = MIN (MEM_ALIGN (x), MEM_ALIGN (y)); 1584 gcc_assert (align >= BITS_PER_UNIT); 1585 1586 /* Make sure we've got BLKmode addresses; store_one_arg can decide that 1587 block copy is more efficient for other large modes, e.g. DCmode. */ 1588 x = adjust_address (x, BLKmode, 0); 1589 y = adjust_address (y, BLKmode, 0); 1590 1591 /* Set MEM_SIZE as appropriate for this block copy. The main place this 1592 can be incorrect is coming from __builtin_memcpy. */ 1593 if (CONST_INT_P (size)) 1594 { 1595 x = shallow_copy_rtx (x); 1596 y = shallow_copy_rtx (y); 1597 set_mem_size (x, INTVAL (size)); 1598 set_mem_size (y, INTVAL (size)); 1599 } 1600 1601 if (CONST_INT_P (size) && can_move_by_pieces (INTVAL (size), align)) 1602 move_by_pieces (x, y, INTVAL (size), align, 0); 1603 else if (emit_block_move_via_movmem (x, y, size, align, 1604 expected_align, expected_size, 1605 min_size, max_size, probable_max_size)) 1606 ; 1607 else if (may_use_call 1608 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (x)) 1609 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (y))) 1610 retval = emit_block_copy_via_libcall (x, y, size, 1611 method == BLOCK_OP_TAILCALL); 1612 1613 else 1614 emit_block_move_via_loop (x, y, size, align); 1615 1616 if (method == BLOCK_OP_CALL_PARM) 1617 OK_DEFER_POP; 1618 1619 return retval; 1620 } 1621 1622 rtx 1623 emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method) 1624 { 1625 unsigned HOST_WIDE_INT max, min = 0; 1626 if (GET_CODE (size) == CONST_INT) 1627 min = max = UINTVAL (size); 1628 else 1629 max = GET_MODE_MASK (GET_MODE (size)); 1630 return emit_block_move_hints (x, y, size, method, 0, -1, 1631 min, max, max); 1632 } 1633 1634 /* A subroutine of emit_block_move. Returns true if calling the 1635 block move libcall will not clobber any parameters which may have 1636 already been placed on the stack. */ 1637 1638 static bool 1639 block_move_libcall_safe_for_call_parm (void) 1640 { 1641 #if defined (REG_PARM_STACK_SPACE) 1642 tree fn; 1643 #endif 1644 1645 /* If arguments are pushed on the stack, then they're safe. */ 1646 if (PUSH_ARGS) 1647 return true; 1648 1649 /* If registers go on the stack anyway, any argument is sure to clobber 1650 an outgoing argument. */ 1651 #if defined (REG_PARM_STACK_SPACE) 1652 fn = builtin_decl_implicit (BUILT_IN_MEMCPY); 1653 /* Avoid set but not used warning if *REG_PARM_STACK_SPACE doesn't 1654 depend on its argument. */ 1655 (void) fn; 1656 if (OUTGOING_REG_PARM_STACK_SPACE ((!fn ? NULL_TREE : TREE_TYPE (fn))) 1657 && REG_PARM_STACK_SPACE (fn) != 0) 1658 return false; 1659 #endif 1660 1661 /* If any argument goes in memory, then it might clobber an outgoing 1662 argument. */ 1663 { 1664 CUMULATIVE_ARGS args_so_far_v; 1665 cumulative_args_t args_so_far; 1666 tree fn, arg; 1667 1668 fn = builtin_decl_implicit (BUILT_IN_MEMCPY); 1669 INIT_CUMULATIVE_ARGS (args_so_far_v, TREE_TYPE (fn), NULL_RTX, 0, 3); 1670 args_so_far = pack_cumulative_args (&args_so_far_v); 1671 1672 arg = TYPE_ARG_TYPES (TREE_TYPE (fn)); 1673 for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg)) 1674 { 1675 machine_mode mode = TYPE_MODE (TREE_VALUE (arg)); 1676 rtx tmp = targetm.calls.function_arg (args_so_far, mode, 1677 NULL_TREE, true); 1678 if (!tmp || !REG_P (tmp)) 1679 return false; 1680 if (targetm.calls.arg_partial_bytes (args_so_far, mode, NULL, 1)) 1681 return false; 1682 targetm.calls.function_arg_advance (args_so_far, mode, 1683 NULL_TREE, true); 1684 } 1685 } 1686 return true; 1687 } 1688 1689 /* A subroutine of emit_block_move. Expand a movmem pattern; 1690 return true if successful. */ 1691 1692 static bool 1693 emit_block_move_via_movmem (rtx x, rtx y, rtx size, unsigned int align, 1694 unsigned int expected_align, HOST_WIDE_INT expected_size, 1695 unsigned HOST_WIDE_INT min_size, 1696 unsigned HOST_WIDE_INT max_size, 1697 unsigned HOST_WIDE_INT probable_max_size) 1698 { 1699 int save_volatile_ok = volatile_ok; 1700 machine_mode mode; 1701 1702 if (expected_align < align) 1703 expected_align = align; 1704 if (expected_size != -1) 1705 { 1706 if ((unsigned HOST_WIDE_INT)expected_size > probable_max_size) 1707 expected_size = probable_max_size; 1708 if ((unsigned HOST_WIDE_INT)expected_size < min_size) 1709 expected_size = min_size; 1710 } 1711 1712 /* Since this is a move insn, we don't care about volatility. */ 1713 volatile_ok = 1; 1714 1715 /* Try the most limited insn first, because there's no point 1716 including more than one in the machine description unless 1717 the more limited one has some advantage. */ 1718 1719 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode; 1720 mode = GET_MODE_WIDER_MODE (mode)) 1721 { 1722 enum insn_code code = direct_optab_handler (movmem_optab, mode); 1723 1724 if (code != CODE_FOR_nothing 1725 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT 1726 here because if SIZE is less than the mode mask, as it is 1727 returned by the macro, it will definitely be less than the 1728 actual mode mask. Since SIZE is within the Pmode address 1729 space, we limit MODE to Pmode. */ 1730 && ((CONST_INT_P (size) 1731 && ((unsigned HOST_WIDE_INT) INTVAL (size) 1732 <= (GET_MODE_MASK (mode) >> 1))) 1733 || max_size <= (GET_MODE_MASK (mode) >> 1) 1734 || GET_MODE_BITSIZE (mode) >= GET_MODE_BITSIZE (Pmode))) 1735 { 1736 struct expand_operand ops[9]; 1737 unsigned int nops; 1738 1739 /* ??? When called via emit_block_move_for_call, it'd be 1740 nice if there were some way to inform the backend, so 1741 that it doesn't fail the expansion because it thinks 1742 emitting the libcall would be more efficient. */ 1743 nops = insn_data[(int) code].n_generator_args; 1744 gcc_assert (nops == 4 || nops == 6 || nops == 8 || nops == 9); 1745 1746 create_fixed_operand (&ops[0], x); 1747 create_fixed_operand (&ops[1], y); 1748 /* The check above guarantees that this size conversion is valid. */ 1749 create_convert_operand_to (&ops[2], size, mode, true); 1750 create_integer_operand (&ops[3], align / BITS_PER_UNIT); 1751 if (nops >= 6) 1752 { 1753 create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT); 1754 create_integer_operand (&ops[5], expected_size); 1755 } 1756 if (nops >= 8) 1757 { 1758 create_integer_operand (&ops[6], min_size); 1759 /* If we can not represent the maximal size, 1760 make parameter NULL. */ 1761 if ((HOST_WIDE_INT) max_size != -1) 1762 create_integer_operand (&ops[7], max_size); 1763 else 1764 create_fixed_operand (&ops[7], NULL); 1765 } 1766 if (nops == 9) 1767 { 1768 /* If we can not represent the maximal size, 1769 make parameter NULL. */ 1770 if ((HOST_WIDE_INT) probable_max_size != -1) 1771 create_integer_operand (&ops[8], probable_max_size); 1772 else 1773 create_fixed_operand (&ops[8], NULL); 1774 } 1775 if (maybe_expand_insn (code, nops, ops)) 1776 { 1777 volatile_ok = save_volatile_ok; 1778 return true; 1779 } 1780 } 1781 } 1782 1783 volatile_ok = save_volatile_ok; 1784 return false; 1785 } 1786 1787 /* A subroutine of emit_block_move. Copy the data via an explicit 1788 loop. This is used only when libcalls are forbidden. */ 1789 /* ??? It'd be nice to copy in hunks larger than QImode. */ 1790 1791 static void 1792 emit_block_move_via_loop (rtx x, rtx y, rtx size, 1793 unsigned int align ATTRIBUTE_UNUSED) 1794 { 1795 rtx_code_label *cmp_label, *top_label; 1796 rtx iter, x_addr, y_addr, tmp; 1797 machine_mode x_addr_mode = get_address_mode (x); 1798 machine_mode y_addr_mode = get_address_mode (y); 1799 machine_mode iter_mode; 1800 1801 iter_mode = GET_MODE (size); 1802 if (iter_mode == VOIDmode) 1803 iter_mode = word_mode; 1804 1805 top_label = gen_label_rtx (); 1806 cmp_label = gen_label_rtx (); 1807 iter = gen_reg_rtx (iter_mode); 1808 1809 emit_move_insn (iter, const0_rtx); 1810 1811 x_addr = force_operand (XEXP (x, 0), NULL_RTX); 1812 y_addr = force_operand (XEXP (y, 0), NULL_RTX); 1813 do_pending_stack_adjust (); 1814 1815 emit_jump (cmp_label); 1816 emit_label (top_label); 1817 1818 tmp = convert_modes (x_addr_mode, iter_mode, iter, true); 1819 x_addr = simplify_gen_binary (PLUS, x_addr_mode, x_addr, tmp); 1820 1821 if (x_addr_mode != y_addr_mode) 1822 tmp = convert_modes (y_addr_mode, iter_mode, iter, true); 1823 y_addr = simplify_gen_binary (PLUS, y_addr_mode, y_addr, tmp); 1824 1825 x = change_address (x, QImode, x_addr); 1826 y = change_address (y, QImode, y_addr); 1827 1828 emit_move_insn (x, y); 1829 1830 tmp = expand_simple_binop (iter_mode, PLUS, iter, const1_rtx, iter, 1831 true, OPTAB_LIB_WIDEN); 1832 if (tmp != iter) 1833 emit_move_insn (iter, tmp); 1834 1835 emit_label (cmp_label); 1836 1837 emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode, 1838 true, top_label, REG_BR_PROB_BASE * 90 / 100); 1839 } 1840 1841 /* Expand a call to memcpy or memmove or memcmp, and return the result. 1842 TAILCALL is true if this is a tail call. */ 1843 1844 rtx 1845 emit_block_op_via_libcall (enum built_in_function fncode, rtx dst, rtx src, 1846 rtx size, bool tailcall) 1847 { 1848 rtx dst_addr, src_addr; 1849 tree call_expr, dst_tree, src_tree, size_tree; 1850 machine_mode size_mode; 1851 1852 /* Since dst and src are passed to a libcall, mark the corresponding 1853 tree EXPR as addressable. */ 1854 tree dst_expr = MEM_EXPR (dst); 1855 tree src_expr = MEM_EXPR (src); 1856 if (dst_expr) 1857 mark_addressable (dst_expr); 1858 if (src_expr) 1859 mark_addressable (src_expr); 1860 1861 dst_addr = copy_addr_to_reg (XEXP (dst, 0)); 1862 dst_addr = convert_memory_address (ptr_mode, dst_addr); 1863 dst_tree = make_tree (ptr_type_node, dst_addr); 1864 1865 src_addr = copy_addr_to_reg (XEXP (src, 0)); 1866 src_addr = convert_memory_address (ptr_mode, src_addr); 1867 src_tree = make_tree (ptr_type_node, src_addr); 1868 1869 size_mode = TYPE_MODE (sizetype); 1870 size = convert_to_mode (size_mode, size, 1); 1871 size = copy_to_mode_reg (size_mode, size); 1872 size_tree = make_tree (sizetype, size); 1873 1874 /* It is incorrect to use the libcall calling conventions for calls to 1875 memcpy/memmove/memcmp because they can be provided by the user. */ 1876 tree fn = builtin_decl_implicit (fncode); 1877 call_expr = build_call_expr (fn, 3, dst_tree, src_tree, size_tree); 1878 CALL_EXPR_TAILCALL (call_expr) = tailcall; 1879 1880 return expand_call (call_expr, NULL_RTX, false); 1881 } 1882 1883 /* Try to expand cmpstrn or cmpmem operation ICODE with the given operands. 1884 ARG3_TYPE is the type of ARG3_RTX. Return the result rtx on success, 1885 otherwise return null. */ 1886 1887 rtx 1888 expand_cmpstrn_or_cmpmem (insn_code icode, rtx target, rtx arg1_rtx, 1889 rtx arg2_rtx, tree arg3_type, rtx arg3_rtx, 1890 HOST_WIDE_INT align) 1891 { 1892 machine_mode insn_mode = insn_data[icode].operand[0].mode; 1893 1894 if (target && (!REG_P (target) || HARD_REGISTER_P (target))) 1895 target = NULL_RTX; 1896 1897 struct expand_operand ops[5]; 1898 create_output_operand (&ops[0], target, insn_mode); 1899 create_fixed_operand (&ops[1], arg1_rtx); 1900 create_fixed_operand (&ops[2], arg2_rtx); 1901 create_convert_operand_from (&ops[3], arg3_rtx, TYPE_MODE (arg3_type), 1902 TYPE_UNSIGNED (arg3_type)); 1903 create_integer_operand (&ops[4], align); 1904 if (maybe_expand_insn (icode, 5, ops)) 1905 return ops[0].value; 1906 return NULL_RTX; 1907 } 1908 1909 /* Expand a block compare between X and Y with length LEN using the 1910 cmpmem optab, placing the result in TARGET. LEN_TYPE is the type 1911 of the expression that was used to calculate the length. ALIGN 1912 gives the known minimum common alignment. */ 1913 1914 static rtx 1915 emit_block_cmp_via_cmpmem (rtx x, rtx y, rtx len, tree len_type, rtx target, 1916 unsigned align) 1917 { 1918 /* Note: The cmpstrnsi pattern, if it exists, is not suitable for 1919 implementing memcmp because it will stop if it encounters two 1920 zero bytes. */ 1921 insn_code icode = direct_optab_handler (cmpmem_optab, SImode); 1922 1923 if (icode == CODE_FOR_nothing) 1924 return NULL_RTX; 1925 1926 return expand_cmpstrn_or_cmpmem (icode, target, x, y, len_type, len, align); 1927 } 1928 1929 /* Emit code to compare a block Y to a block X. This may be done with 1930 string-compare instructions, with multiple scalar instructions, 1931 or with a library call. 1932 1933 Both X and Y must be MEM rtx's. LEN is an rtx that says how long 1934 they are. LEN_TYPE is the type of the expression that was used to 1935 calculate it. 1936 1937 If EQUALITY_ONLY is true, it means we don't have to return the tri-state 1938 value of a normal memcmp call, instead we can just compare for equality. 1939 If FORCE_LIBCALL is true, we should emit a call to memcmp rather than 1940 returning NULL_RTX. 1941 1942 Optionally, the caller can pass a constfn and associated data in Y_CFN 1943 and Y_CFN_DATA. describing that the second operand being compared is a 1944 known constant and how to obtain its data. 1945 Return the result of the comparison, or NULL_RTX if we failed to 1946 perform the operation. */ 1947 1948 rtx 1949 emit_block_cmp_hints (rtx x, rtx y, rtx len, tree len_type, rtx target, 1950 bool equality_only, by_pieces_constfn y_cfn, 1951 void *y_cfndata) 1952 { 1953 rtx result = 0; 1954 1955 if (CONST_INT_P (len) && INTVAL (len) == 0) 1956 return const0_rtx; 1957 1958 gcc_assert (MEM_P (x) && MEM_P (y)); 1959 unsigned int align = MIN (MEM_ALIGN (x), MEM_ALIGN (y)); 1960 gcc_assert (align >= BITS_PER_UNIT); 1961 1962 x = adjust_address (x, BLKmode, 0); 1963 y = adjust_address (y, BLKmode, 0); 1964 1965 if (equality_only 1966 && CONST_INT_P (len) 1967 && can_do_by_pieces (INTVAL (len), align, COMPARE_BY_PIECES)) 1968 result = compare_by_pieces (x, y, INTVAL (len), target, align, 1969 y_cfn, y_cfndata); 1970 else 1971 result = emit_block_cmp_via_cmpmem (x, y, len, len_type, target, align); 1972 1973 return result; 1974 } 1975 1976 /* Copy all or part of a value X into registers starting at REGNO. 1977 The number of registers to be filled is NREGS. */ 1978 1979 void 1980 move_block_to_reg (int regno, rtx x, int nregs, machine_mode mode) 1981 { 1982 if (nregs == 0) 1983 return; 1984 1985 if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x)) 1986 x = validize_mem (force_const_mem (mode, x)); 1987 1988 /* See if the machine can do this with a load multiple insn. */ 1989 if (targetm.have_load_multiple ()) 1990 { 1991 rtx_insn *last = get_last_insn (); 1992 rtx first = gen_rtx_REG (word_mode, regno); 1993 if (rtx_insn *pat = targetm.gen_load_multiple (first, x, 1994 GEN_INT (nregs))) 1995 { 1996 emit_insn (pat); 1997 return; 1998 } 1999 else 2000 delete_insns_since (last); 2001 } 2002 2003 for (int i = 0; i < nregs; i++) 2004 emit_move_insn (gen_rtx_REG (word_mode, regno + i), 2005 operand_subword_force (x, i, mode)); 2006 } 2007 2008 /* Copy all or part of a BLKmode value X out of registers starting at REGNO. 2009 The number of registers to be filled is NREGS. */ 2010 2011 void 2012 move_block_from_reg (int regno, rtx x, int nregs) 2013 { 2014 if (nregs == 0) 2015 return; 2016 2017 /* See if the machine can do this with a store multiple insn. */ 2018 if (targetm.have_store_multiple ()) 2019 { 2020 rtx_insn *last = get_last_insn (); 2021 rtx first = gen_rtx_REG (word_mode, regno); 2022 if (rtx_insn *pat = targetm.gen_store_multiple (x, first, 2023 GEN_INT (nregs))) 2024 { 2025 emit_insn (pat); 2026 return; 2027 } 2028 else 2029 delete_insns_since (last); 2030 } 2031 2032 for (int i = 0; i < nregs; i++) 2033 { 2034 rtx tem = operand_subword (x, i, 1, BLKmode); 2035 2036 gcc_assert (tem); 2037 2038 emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i)); 2039 } 2040 } 2041 2042 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from 2043 ORIG, where ORIG is a non-consecutive group of registers represented by 2044 a PARALLEL. The clone is identical to the original except in that the 2045 original set of registers is replaced by a new set of pseudo registers. 2046 The new set has the same modes as the original set. */ 2047 2048 rtx 2049 gen_group_rtx (rtx orig) 2050 { 2051 int i, length; 2052 rtx *tmps; 2053 2054 gcc_assert (GET_CODE (orig) == PARALLEL); 2055 2056 length = XVECLEN (orig, 0); 2057 tmps = XALLOCAVEC (rtx, length); 2058 2059 /* Skip a NULL entry in first slot. */ 2060 i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1; 2061 2062 if (i) 2063 tmps[0] = 0; 2064 2065 for (; i < length; i++) 2066 { 2067 machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0)); 2068 rtx offset = XEXP (XVECEXP (orig, 0, i), 1); 2069 2070 tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset); 2071 } 2072 2073 return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps)); 2074 } 2075 2076 /* A subroutine of emit_group_load. Arguments as for emit_group_load, 2077 except that values are placed in TMPS[i], and must later be moved 2078 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */ 2079 2080 static void 2081 emit_group_load_1 (rtx *tmps, rtx dst, rtx orig_src, tree type, int ssize) 2082 { 2083 rtx src; 2084 int start, i; 2085 machine_mode m = GET_MODE (orig_src); 2086 2087 gcc_assert (GET_CODE (dst) == PARALLEL); 2088 2089 if (m != VOIDmode 2090 && !SCALAR_INT_MODE_P (m) 2091 && !MEM_P (orig_src) 2092 && GET_CODE (orig_src) != CONCAT) 2093 { 2094 machine_mode imode = int_mode_for_mode (GET_MODE (orig_src)); 2095 if (imode == BLKmode) 2096 src = assign_stack_temp (GET_MODE (orig_src), ssize); 2097 else 2098 src = gen_reg_rtx (imode); 2099 if (imode != BLKmode) 2100 src = gen_lowpart (GET_MODE (orig_src), src); 2101 emit_move_insn (src, orig_src); 2102 /* ...and back again. */ 2103 if (imode != BLKmode) 2104 src = gen_lowpart (imode, src); 2105 emit_group_load_1 (tmps, dst, src, type, ssize); 2106 return; 2107 } 2108 2109 /* Check for a NULL entry, used to indicate that the parameter goes 2110 both on the stack and in registers. */ 2111 if (XEXP (XVECEXP (dst, 0, 0), 0)) 2112 start = 0; 2113 else 2114 start = 1; 2115 2116 /* Process the pieces. */ 2117 for (i = start; i < XVECLEN (dst, 0); i++) 2118 { 2119 machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0)); 2120 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (dst, 0, i), 1)); 2121 unsigned int bytelen = GET_MODE_SIZE (mode); 2122 int shift = 0; 2123 2124 /* Handle trailing fragments that run over the size of the struct. */ 2125 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize) 2126 { 2127 /* Arrange to shift the fragment to where it belongs. 2128 extract_bit_field loads to the lsb of the reg. */ 2129 if ( 2130 #ifdef BLOCK_REG_PADDING 2131 BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start) 2132 == (BYTES_BIG_ENDIAN ? upward : downward) 2133 #else 2134 BYTES_BIG_ENDIAN 2135 #endif 2136 ) 2137 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT; 2138 bytelen = ssize - bytepos; 2139 gcc_assert (bytelen > 0); 2140 } 2141 2142 /* If we won't be loading directly from memory, protect the real source 2143 from strange tricks we might play; but make sure that the source can 2144 be loaded directly into the destination. */ 2145 src = orig_src; 2146 if (!MEM_P (orig_src) 2147 && (!CONSTANT_P (orig_src) 2148 || (GET_MODE (orig_src) != mode 2149 && GET_MODE (orig_src) != VOIDmode))) 2150 { 2151 if (GET_MODE (orig_src) == VOIDmode) 2152 src = gen_reg_rtx (mode); 2153 else 2154 src = gen_reg_rtx (GET_MODE (orig_src)); 2155 2156 emit_move_insn (src, orig_src); 2157 } 2158 2159 /* Optimize the access just a bit. */ 2160 if (MEM_P (src) 2161 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (src)) 2162 || MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode)) 2163 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0 2164 && bytelen == GET_MODE_SIZE (mode)) 2165 { 2166 tmps[i] = gen_reg_rtx (mode); 2167 emit_move_insn (tmps[i], adjust_address (src, mode, bytepos)); 2168 } 2169 else if (COMPLEX_MODE_P (mode) 2170 && GET_MODE (src) == mode 2171 && bytelen == GET_MODE_SIZE (mode)) 2172 /* Let emit_move_complex do the bulk of the work. */ 2173 tmps[i] = src; 2174 else if (GET_CODE (src) == CONCAT) 2175 { 2176 unsigned int slen = GET_MODE_SIZE (GET_MODE (src)); 2177 unsigned int slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0))); 2178 unsigned int elt = bytepos / slen0; 2179 unsigned int subpos = bytepos % slen0; 2180 2181 if (subpos + bytelen <= slen0) 2182 { 2183 /* The following assumes that the concatenated objects all 2184 have the same size. In this case, a simple calculation 2185 can be used to determine the object and the bit field 2186 to be extracted. */ 2187 tmps[i] = XEXP (src, elt); 2188 if (subpos != 0 2189 || subpos + bytelen != slen0 2190 || (!CONSTANT_P (tmps[i]) 2191 && (!REG_P (tmps[i]) || GET_MODE (tmps[i]) != mode))) 2192 tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT, 2193 subpos * BITS_PER_UNIT, 2194 1, NULL_RTX, mode, mode, false); 2195 } 2196 else 2197 { 2198 rtx mem; 2199 2200 gcc_assert (!bytepos); 2201 mem = assign_stack_temp (GET_MODE (src), slen); 2202 emit_move_insn (mem, src); 2203 tmps[i] = extract_bit_field (mem, bytelen * BITS_PER_UNIT, 2204 0, 1, NULL_RTX, mode, mode, false); 2205 } 2206 } 2207 /* FIXME: A SIMD parallel will eventually lead to a subreg of a 2208 SIMD register, which is currently broken. While we get GCC 2209 to emit proper RTL for these cases, let's dump to memory. */ 2210 else if (VECTOR_MODE_P (GET_MODE (dst)) 2211 && REG_P (src)) 2212 { 2213 int slen = GET_MODE_SIZE (GET_MODE (src)); 2214 rtx mem; 2215 2216 mem = assign_stack_temp (GET_MODE (src), slen); 2217 emit_move_insn (mem, src); 2218 tmps[i] = adjust_address (mem, mode, (int) bytepos); 2219 } 2220 else if (CONSTANT_P (src) && GET_MODE (dst) != BLKmode 2221 && XVECLEN (dst, 0) > 1) 2222 tmps[i] = simplify_gen_subreg (mode, src, GET_MODE (dst), bytepos); 2223 else if (CONSTANT_P (src)) 2224 { 2225 HOST_WIDE_INT len = (HOST_WIDE_INT) bytelen; 2226 2227 if (len == ssize) 2228 tmps[i] = src; 2229 else 2230 { 2231 rtx first, second; 2232 2233 /* TODO: const_wide_int can have sizes other than this... */ 2234 gcc_assert (2 * len == ssize); 2235 split_double (src, &first, &second); 2236 if (i) 2237 tmps[i] = second; 2238 else 2239 tmps[i] = first; 2240 } 2241 } 2242 else if (REG_P (src) && GET_MODE (src) == mode) 2243 tmps[i] = src; 2244 else 2245 tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT, 2246 bytepos * BITS_PER_UNIT, 1, NULL_RTX, 2247 mode, mode, false); 2248 2249 if (shift) 2250 tmps[i] = expand_shift (LSHIFT_EXPR, mode, tmps[i], 2251 shift, tmps[i], 0); 2252 } 2253 } 2254 2255 /* Emit code to move a block SRC of type TYPE to a block DST, 2256 where DST is non-consecutive registers represented by a PARALLEL. 2257 SSIZE represents the total size of block ORIG_SRC in bytes, or -1 2258 if not known. */ 2259 2260 void 2261 emit_group_load (rtx dst, rtx src, tree type, int ssize) 2262 { 2263 rtx *tmps; 2264 int i; 2265 2266 tmps = XALLOCAVEC (rtx, XVECLEN (dst, 0)); 2267 emit_group_load_1 (tmps, dst, src, type, ssize); 2268 2269 /* Copy the extracted pieces into the proper (probable) hard regs. */ 2270 for (i = 0; i < XVECLEN (dst, 0); i++) 2271 { 2272 rtx d = XEXP (XVECEXP (dst, 0, i), 0); 2273 if (d == NULL) 2274 continue; 2275 emit_move_insn (d, tmps[i]); 2276 } 2277 } 2278 2279 /* Similar, but load SRC into new pseudos in a format that looks like 2280 PARALLEL. This can later be fed to emit_group_move to get things 2281 in the right place. */ 2282 2283 rtx 2284 emit_group_load_into_temps (rtx parallel, rtx src, tree type, int ssize) 2285 { 2286 rtvec vec; 2287 int i; 2288 2289 vec = rtvec_alloc (XVECLEN (parallel, 0)); 2290 emit_group_load_1 (&RTVEC_ELT (vec, 0), parallel, src, type, ssize); 2291 2292 /* Convert the vector to look just like the original PARALLEL, except 2293 with the computed values. */ 2294 for (i = 0; i < XVECLEN (parallel, 0); i++) 2295 { 2296 rtx e = XVECEXP (parallel, 0, i); 2297 rtx d = XEXP (e, 0); 2298 2299 if (d) 2300 { 2301 d = force_reg (GET_MODE (d), RTVEC_ELT (vec, i)); 2302 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), d, XEXP (e, 1)); 2303 } 2304 RTVEC_ELT (vec, i) = e; 2305 } 2306 2307 return gen_rtx_PARALLEL (GET_MODE (parallel), vec); 2308 } 2309 2310 /* Emit code to move a block SRC to block DST, where SRC and DST are 2311 non-consecutive groups of registers, each represented by a PARALLEL. */ 2312 2313 void 2314 emit_group_move (rtx dst, rtx src) 2315 { 2316 int i; 2317 2318 gcc_assert (GET_CODE (src) == PARALLEL 2319 && GET_CODE (dst) == PARALLEL 2320 && XVECLEN (src, 0) == XVECLEN (dst, 0)); 2321 2322 /* Skip first entry if NULL. */ 2323 for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++) 2324 emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0), 2325 XEXP (XVECEXP (src, 0, i), 0)); 2326 } 2327 2328 /* Move a group of registers represented by a PARALLEL into pseudos. */ 2329 2330 rtx 2331 emit_group_move_into_temps (rtx src) 2332 { 2333 rtvec vec = rtvec_alloc (XVECLEN (src, 0)); 2334 int i; 2335 2336 for (i = 0; i < XVECLEN (src, 0); i++) 2337 { 2338 rtx e = XVECEXP (src, 0, i); 2339 rtx d = XEXP (e, 0); 2340 2341 if (d) 2342 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), copy_to_reg (d), XEXP (e, 1)); 2343 RTVEC_ELT (vec, i) = e; 2344 } 2345 2346 return gen_rtx_PARALLEL (GET_MODE (src), vec); 2347 } 2348 2349 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE, 2350 where SRC is non-consecutive registers represented by a PARALLEL. 2351 SSIZE represents the total size of block ORIG_DST, or -1 if not 2352 known. */ 2353 2354 void 2355 emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED, int ssize) 2356 { 2357 rtx *tmps, dst; 2358 int start, finish, i; 2359 machine_mode m = GET_MODE (orig_dst); 2360 2361 gcc_assert (GET_CODE (src) == PARALLEL); 2362 2363 if (!SCALAR_INT_MODE_P (m) 2364 && !MEM_P (orig_dst) && GET_CODE (orig_dst) != CONCAT) 2365 { 2366 machine_mode imode = int_mode_for_mode (GET_MODE (orig_dst)); 2367 if (imode == BLKmode) 2368 dst = assign_stack_temp (GET_MODE (orig_dst), ssize); 2369 else 2370 dst = gen_reg_rtx (imode); 2371 emit_group_store (dst, src, type, ssize); 2372 if (imode != BLKmode) 2373 dst = gen_lowpart (GET_MODE (orig_dst), dst); 2374 emit_move_insn (orig_dst, dst); 2375 return; 2376 } 2377 2378 /* Check for a NULL entry, used to indicate that the parameter goes 2379 both on the stack and in registers. */ 2380 if (XEXP (XVECEXP (src, 0, 0), 0)) 2381 start = 0; 2382 else 2383 start = 1; 2384 finish = XVECLEN (src, 0); 2385 2386 tmps = XALLOCAVEC (rtx, finish); 2387 2388 /* Copy the (probable) hard regs into pseudos. */ 2389 for (i = start; i < finish; i++) 2390 { 2391 rtx reg = XEXP (XVECEXP (src, 0, i), 0); 2392 if (!REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER) 2393 { 2394 tmps[i] = gen_reg_rtx (GET_MODE (reg)); 2395 emit_move_insn (tmps[i], reg); 2396 } 2397 else 2398 tmps[i] = reg; 2399 } 2400 2401 /* If we won't be storing directly into memory, protect the real destination 2402 from strange tricks we might play. */ 2403 dst = orig_dst; 2404 if (GET_CODE (dst) == PARALLEL) 2405 { 2406 rtx temp; 2407 2408 /* We can get a PARALLEL dst if there is a conditional expression in 2409 a return statement. In that case, the dst and src are the same, 2410 so no action is necessary. */ 2411 if (rtx_equal_p (dst, src)) 2412 return; 2413 2414 /* It is unclear if we can ever reach here, but we may as well handle 2415 it. Allocate a temporary, and split this into a store/load to/from 2416 the temporary. */ 2417 temp = assign_stack_temp (GET_MODE (dst), ssize); 2418 emit_group_store (temp, src, type, ssize); 2419 emit_group_load (dst, temp, type, ssize); 2420 return; 2421 } 2422 else if (!MEM_P (dst) && GET_CODE (dst) != CONCAT) 2423 { 2424 machine_mode outer = GET_MODE (dst); 2425 machine_mode inner; 2426 HOST_WIDE_INT bytepos; 2427 bool done = false; 2428 rtx temp; 2429 2430 if (!REG_P (dst) || REGNO (dst) < FIRST_PSEUDO_REGISTER) 2431 dst = gen_reg_rtx (outer); 2432 2433 /* Make life a bit easier for combine. */ 2434 /* If the first element of the vector is the low part 2435 of the destination mode, use a paradoxical subreg to 2436 initialize the destination. */ 2437 if (start < finish) 2438 { 2439 inner = GET_MODE (tmps[start]); 2440 bytepos = subreg_lowpart_offset (inner, outer); 2441 if (INTVAL (XEXP (XVECEXP (src, 0, start), 1)) == bytepos) 2442 { 2443 temp = simplify_gen_subreg (outer, tmps[start], 2444 inner, 0); 2445 if (temp) 2446 { 2447 emit_move_insn (dst, temp); 2448 done = true; 2449 start++; 2450 } 2451 } 2452 } 2453 2454 /* If the first element wasn't the low part, try the last. */ 2455 if (!done 2456 && start < finish - 1) 2457 { 2458 inner = GET_MODE (tmps[finish - 1]); 2459 bytepos = subreg_lowpart_offset (inner, outer); 2460 if (INTVAL (XEXP (XVECEXP (src, 0, finish - 1), 1)) == bytepos) 2461 { 2462 temp = simplify_gen_subreg (outer, tmps[finish - 1], 2463 inner, 0); 2464 if (temp) 2465 { 2466 emit_move_insn (dst, temp); 2467 done = true; 2468 finish--; 2469 } 2470 } 2471 } 2472 2473 /* Otherwise, simply initialize the result to zero. */ 2474 if (!done) 2475 emit_move_insn (dst, CONST0_RTX (outer)); 2476 } 2477 2478 /* Process the pieces. */ 2479 for (i = start; i < finish; i++) 2480 { 2481 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (src, 0, i), 1)); 2482 machine_mode mode = GET_MODE (tmps[i]); 2483 unsigned int bytelen = GET_MODE_SIZE (mode); 2484 unsigned int adj_bytelen; 2485 rtx dest = dst; 2486 2487 /* Handle trailing fragments that run over the size of the struct. */ 2488 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize) 2489 adj_bytelen = ssize - bytepos; 2490 else 2491 adj_bytelen = bytelen; 2492 2493 if (GET_CODE (dst) == CONCAT) 2494 { 2495 if (bytepos + adj_bytelen 2496 <= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)))) 2497 dest = XEXP (dst, 0); 2498 else if (bytepos >= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)))) 2499 { 2500 bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))); 2501 dest = XEXP (dst, 1); 2502 } 2503 else 2504 { 2505 machine_mode dest_mode = GET_MODE (dest); 2506 machine_mode tmp_mode = GET_MODE (tmps[i]); 2507 2508 gcc_assert (bytepos == 0 && XVECLEN (src, 0)); 2509 2510 if (GET_MODE_ALIGNMENT (dest_mode) 2511 >= GET_MODE_ALIGNMENT (tmp_mode)) 2512 { 2513 dest = assign_stack_temp (dest_mode, 2514 GET_MODE_SIZE (dest_mode)); 2515 emit_move_insn (adjust_address (dest, 2516 tmp_mode, 2517 bytepos), 2518 tmps[i]); 2519 dst = dest; 2520 } 2521 else 2522 { 2523 dest = assign_stack_temp (tmp_mode, 2524 GET_MODE_SIZE (tmp_mode)); 2525 emit_move_insn (dest, tmps[i]); 2526 dst = adjust_address (dest, dest_mode, bytepos); 2527 } 2528 break; 2529 } 2530 } 2531 2532 /* Handle trailing fragments that run over the size of the struct. */ 2533 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize) 2534 { 2535 /* store_bit_field always takes its value from the lsb. 2536 Move the fragment to the lsb if it's not already there. */ 2537 if ( 2538 #ifdef BLOCK_REG_PADDING 2539 BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start) 2540 == (BYTES_BIG_ENDIAN ? upward : downward) 2541 #else 2542 BYTES_BIG_ENDIAN 2543 #endif 2544 ) 2545 { 2546 int shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT; 2547 tmps[i] = expand_shift (RSHIFT_EXPR, mode, tmps[i], 2548 shift, tmps[i], 0); 2549 } 2550 2551 /* Make sure not to write past the end of the struct. */ 2552 store_bit_field (dest, 2553 adj_bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT, 2554 bytepos * BITS_PER_UNIT, ssize * BITS_PER_UNIT - 1, 2555 VOIDmode, tmps[i], false); 2556 } 2557 2558 /* Optimize the access just a bit. */ 2559 else if (MEM_P (dest) 2560 && (!SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (dest)) 2561 || MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode)) 2562 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0 2563 && bytelen == GET_MODE_SIZE (mode)) 2564 emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]); 2565 2566 else 2567 store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT, 2568 0, 0, mode, tmps[i], false); 2569 } 2570 2571 /* Copy from the pseudo into the (probable) hard reg. */ 2572 if (orig_dst != dst) 2573 emit_move_insn (orig_dst, dst); 2574 } 2575 2576 /* Return a form of X that does not use a PARALLEL. TYPE is the type 2577 of the value stored in X. */ 2578 2579 rtx 2580 maybe_emit_group_store (rtx x, tree type) 2581 { 2582 machine_mode mode = TYPE_MODE (type); 2583 gcc_checking_assert (GET_MODE (x) == VOIDmode || GET_MODE (x) == mode); 2584 if (GET_CODE (x) == PARALLEL) 2585 { 2586 rtx result = gen_reg_rtx (mode); 2587 emit_group_store (result, x, type, int_size_in_bytes (type)); 2588 return result; 2589 } 2590 return x; 2591 } 2592 2593 /* Copy a BLKmode object of TYPE out of a register SRCREG into TARGET. 2594 2595 This is used on targets that return BLKmode values in registers. */ 2596 2597 static void 2598 copy_blkmode_from_reg (rtx target, rtx srcreg, tree type) 2599 { 2600 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type); 2601 rtx src = NULL, dst = NULL; 2602 unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD); 2603 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0; 2604 machine_mode mode = GET_MODE (srcreg); 2605 machine_mode tmode = GET_MODE (target); 2606 machine_mode copy_mode; 2607 2608 /* BLKmode registers created in the back-end shouldn't have survived. */ 2609 gcc_assert (mode != BLKmode); 2610 2611 /* If the structure doesn't take up a whole number of words, see whether 2612 SRCREG is padded on the left or on the right. If it's on the left, 2613 set PADDING_CORRECTION to the number of bits to skip. 2614 2615 In most ABIs, the structure will be returned at the least end of 2616 the register, which translates to right padding on little-endian 2617 targets and left padding on big-endian targets. The opposite 2618 holds if the structure is returned at the most significant 2619 end of the register. */ 2620 if (bytes % UNITS_PER_WORD != 0 2621 && (targetm.calls.return_in_msb (type) 2622 ? !BYTES_BIG_ENDIAN 2623 : BYTES_BIG_ENDIAN)) 2624 padding_correction 2625 = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT)); 2626 2627 /* We can use a single move if we have an exact mode for the size. */ 2628 else if (MEM_P (target) 2629 && (!SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (target)) 2630 || MEM_ALIGN (target) >= GET_MODE_ALIGNMENT (mode)) 2631 && bytes == GET_MODE_SIZE (mode)) 2632 { 2633 emit_move_insn (adjust_address (target, mode, 0), srcreg); 2634 return; 2635 } 2636 2637 /* And if we additionally have the same mode for a register. */ 2638 else if (REG_P (target) 2639 && GET_MODE (target) == mode 2640 && bytes == GET_MODE_SIZE (mode)) 2641 { 2642 emit_move_insn (target, srcreg); 2643 return; 2644 } 2645 2646 /* This code assumes srcreg is at least a full word. If it isn't, copy it 2647 into a new pseudo which is a full word. */ 2648 if (GET_MODE_SIZE (mode) < UNITS_PER_WORD) 2649 { 2650 srcreg = convert_to_mode (word_mode, srcreg, TYPE_UNSIGNED (type)); 2651 mode = word_mode; 2652 } 2653 2654 /* Copy the structure BITSIZE bits at a time. If the target lives in 2655 memory, take care of not reading/writing past its end by selecting 2656 a copy mode suited to BITSIZE. This should always be possible given 2657 how it is computed. 2658 2659 If the target lives in register, make sure not to select a copy mode 2660 larger than the mode of the register. 2661 2662 We could probably emit more efficient code for machines which do not use 2663 strict alignment, but it doesn't seem worth the effort at the current 2664 time. */ 2665 2666 copy_mode = word_mode; 2667 if (MEM_P (target)) 2668 { 2669 machine_mode mem_mode = mode_for_size (bitsize, MODE_INT, 1); 2670 if (mem_mode != BLKmode) 2671 copy_mode = mem_mode; 2672 } 2673 else if (REG_P (target) && GET_MODE_BITSIZE (tmode) < BITS_PER_WORD) 2674 copy_mode = tmode; 2675 2676 for (bitpos = 0, xbitpos = padding_correction; 2677 bitpos < bytes * BITS_PER_UNIT; 2678 bitpos += bitsize, xbitpos += bitsize) 2679 { 2680 /* We need a new source operand each time xbitpos is on a 2681 word boundary and when xbitpos == padding_correction 2682 (the first time through). */ 2683 if (xbitpos % BITS_PER_WORD == 0 || xbitpos == padding_correction) 2684 src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD, mode); 2685 2686 /* We need a new destination operand each time bitpos is on 2687 a word boundary. */ 2688 if (REG_P (target) && GET_MODE_BITSIZE (tmode) < BITS_PER_WORD) 2689 dst = target; 2690 else if (bitpos % BITS_PER_WORD == 0) 2691 dst = operand_subword (target, bitpos / BITS_PER_WORD, 1, tmode); 2692 2693 /* Use xbitpos for the source extraction (right justified) and 2694 bitpos for the destination store (left justified). */ 2695 store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, 0, 0, copy_mode, 2696 extract_bit_field (src, bitsize, 2697 xbitpos % BITS_PER_WORD, 1, 2698 NULL_RTX, copy_mode, copy_mode, 2699 false), 2700 false); 2701 } 2702 } 2703 2704 /* Copy BLKmode value SRC into a register of mode MODE. Return the 2705 register if it contains any data, otherwise return null. 2706 2707 This is used on targets that return BLKmode values in registers. */ 2708 2709 rtx 2710 copy_blkmode_to_reg (machine_mode mode, tree src) 2711 { 2712 int i, n_regs; 2713 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0, bytes; 2714 unsigned int bitsize; 2715 rtx *dst_words, dst, x, src_word = NULL_RTX, dst_word = NULL_RTX; 2716 machine_mode dst_mode; 2717 2718 gcc_assert (TYPE_MODE (TREE_TYPE (src)) == BLKmode); 2719 2720 x = expand_normal (src); 2721 2722 bytes = int_size_in_bytes (TREE_TYPE (src)); 2723 if (bytes == 0) 2724 return NULL_RTX; 2725 2726 /* If the structure doesn't take up a whole number of words, see 2727 whether the register value should be padded on the left or on 2728 the right. Set PADDING_CORRECTION to the number of padding 2729 bits needed on the left side. 2730 2731 In most ABIs, the structure will be returned at the least end of 2732 the register, which translates to right padding on little-endian 2733 targets and left padding on big-endian targets. The opposite 2734 holds if the structure is returned at the most significant 2735 end of the register. */ 2736 if (bytes % UNITS_PER_WORD != 0 2737 && (targetm.calls.return_in_msb (TREE_TYPE (src)) 2738 ? !BYTES_BIG_ENDIAN 2739 : BYTES_BIG_ENDIAN)) 2740 padding_correction = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) 2741 * BITS_PER_UNIT)); 2742 2743 n_regs = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD; 2744 dst_words = XALLOCAVEC (rtx, n_regs); 2745 bitsize = MIN (TYPE_ALIGN (TREE_TYPE (src)), BITS_PER_WORD); 2746 2747 /* Copy the structure BITSIZE bits at a time. */ 2748 for (bitpos = 0, xbitpos = padding_correction; 2749 bitpos < bytes * BITS_PER_UNIT; 2750 bitpos += bitsize, xbitpos += bitsize) 2751 { 2752 /* We need a new destination pseudo each time xbitpos is 2753 on a word boundary and when xbitpos == padding_correction 2754 (the first time through). */ 2755 if (xbitpos % BITS_PER_WORD == 0 2756 || xbitpos == padding_correction) 2757 { 2758 /* Generate an appropriate register. */ 2759 dst_word = gen_reg_rtx (word_mode); 2760 dst_words[xbitpos / BITS_PER_WORD] = dst_word; 2761 2762 /* Clear the destination before we move anything into it. */ 2763 emit_move_insn (dst_word, CONST0_RTX (word_mode)); 2764 } 2765 2766 /* We need a new source operand each time bitpos is on a word 2767 boundary. */ 2768 if (bitpos % BITS_PER_WORD == 0) 2769 src_word = operand_subword_force (x, bitpos / BITS_PER_WORD, BLKmode); 2770 2771 /* Use bitpos for the source extraction (left justified) and 2772 xbitpos for the destination store (right justified). */ 2773 store_bit_field (dst_word, bitsize, xbitpos % BITS_PER_WORD, 2774 0, 0, word_mode, 2775 extract_bit_field (src_word, bitsize, 2776 bitpos % BITS_PER_WORD, 1, 2777 NULL_RTX, word_mode, word_mode, 2778 false), 2779 false); 2780 } 2781 2782 if (mode == BLKmode) 2783 { 2784 /* Find the smallest integer mode large enough to hold the 2785 entire structure. */ 2786 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); 2787 mode != VOIDmode; 2788 mode = GET_MODE_WIDER_MODE (mode)) 2789 /* Have we found a large enough mode? */ 2790 if (GET_MODE_SIZE (mode) >= bytes) 2791 break; 2792 2793 /* A suitable mode should have been found. */ 2794 gcc_assert (mode != VOIDmode); 2795 } 2796 2797 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (word_mode)) 2798 dst_mode = word_mode; 2799 else 2800 dst_mode = mode; 2801 dst = gen_reg_rtx (dst_mode); 2802 2803 for (i = 0; i < n_regs; i++) 2804 emit_move_insn (operand_subword (dst, i, 0, dst_mode), dst_words[i]); 2805 2806 if (mode != dst_mode) 2807 dst = gen_lowpart (mode, dst); 2808 2809 return dst; 2810 } 2811 2812 /* Add a USE expression for REG to the (possibly empty) list pointed 2813 to by CALL_FUSAGE. REG must denote a hard register. */ 2814 2815 void 2816 use_reg_mode (rtx *call_fusage, rtx reg, machine_mode mode) 2817 { 2818 gcc_assert (REG_P (reg)); 2819 2820 if (!HARD_REGISTER_P (reg)) 2821 return; 2822 2823 *call_fusage 2824 = gen_rtx_EXPR_LIST (mode, gen_rtx_USE (VOIDmode, reg), *call_fusage); 2825 } 2826 2827 /* Add a CLOBBER expression for REG to the (possibly empty) list pointed 2828 to by CALL_FUSAGE. REG must denote a hard register. */ 2829 2830 void 2831 clobber_reg_mode (rtx *call_fusage, rtx reg, machine_mode mode) 2832 { 2833 gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER); 2834 2835 *call_fusage 2836 = gen_rtx_EXPR_LIST (mode, gen_rtx_CLOBBER (VOIDmode, reg), *call_fusage); 2837 } 2838 2839 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs, 2840 starting at REGNO. All of these registers must be hard registers. */ 2841 2842 void 2843 use_regs (rtx *call_fusage, int regno, int nregs) 2844 { 2845 int i; 2846 2847 gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER); 2848 2849 for (i = 0; i < nregs; i++) 2850 use_reg (call_fusage, regno_reg_rtx[regno + i]); 2851 } 2852 2853 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the 2854 PARALLEL REGS. This is for calls that pass values in multiple 2855 non-contiguous locations. The Irix 6 ABI has examples of this. */ 2856 2857 void 2858 use_group_regs (rtx *call_fusage, rtx regs) 2859 { 2860 int i; 2861 2862 for (i = 0; i < XVECLEN (regs, 0); i++) 2863 { 2864 rtx reg = XEXP (XVECEXP (regs, 0, i), 0); 2865 2866 /* A NULL entry means the parameter goes both on the stack and in 2867 registers. This can also be a MEM for targets that pass values 2868 partially on the stack and partially in registers. */ 2869 if (reg != 0 && REG_P (reg)) 2870 use_reg (call_fusage, reg); 2871 } 2872 } 2873 2874 /* Return the defining gimple statement for SSA_NAME NAME if it is an 2875 assigment and the code of the expresion on the RHS is CODE. Return 2876 NULL otherwise. */ 2877 2878 static gimple * 2879 get_def_for_expr (tree name, enum tree_code code) 2880 { 2881 gimple *def_stmt; 2882 2883 if (TREE_CODE (name) != SSA_NAME) 2884 return NULL; 2885 2886 def_stmt = get_gimple_for_ssa_name (name); 2887 if (!def_stmt 2888 || gimple_assign_rhs_code (def_stmt) != code) 2889 return NULL; 2890 2891 return def_stmt; 2892 } 2893 2894 /* Return the defining gimple statement for SSA_NAME NAME if it is an 2895 assigment and the class of the expresion on the RHS is CLASS. Return 2896 NULL otherwise. */ 2897 2898 static gimple * 2899 get_def_for_expr_class (tree name, enum tree_code_class tclass) 2900 { 2901 gimple *def_stmt; 2902 2903 if (TREE_CODE (name) != SSA_NAME) 2904 return NULL; 2905 2906 def_stmt = get_gimple_for_ssa_name (name); 2907 if (!def_stmt 2908 || TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt)) != tclass) 2909 return NULL; 2910 2911 return def_stmt; 2912 } 2913 2914 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is 2915 its length in bytes. */ 2916 2917 rtx 2918 clear_storage_hints (rtx object, rtx size, enum block_op_methods method, 2919 unsigned int expected_align, HOST_WIDE_INT expected_size, 2920 unsigned HOST_WIDE_INT min_size, 2921 unsigned HOST_WIDE_INT max_size, 2922 unsigned HOST_WIDE_INT probable_max_size) 2923 { 2924 machine_mode mode = GET_MODE (object); 2925 unsigned int align; 2926 2927 gcc_assert (method == BLOCK_OP_NORMAL || method == BLOCK_OP_TAILCALL); 2928 2929 /* If OBJECT is not BLKmode and SIZE is the same size as its mode, 2930 just move a zero. Otherwise, do this a piece at a time. */ 2931 if (mode != BLKmode 2932 && CONST_INT_P (size) 2933 && INTVAL (size) == (HOST_WIDE_INT) GET_MODE_SIZE (mode)) 2934 { 2935 rtx zero = CONST0_RTX (mode); 2936 if (zero != NULL) 2937 { 2938 emit_move_insn (object, zero); 2939 return NULL; 2940 } 2941 2942 if (COMPLEX_MODE_P (mode)) 2943 { 2944 zero = CONST0_RTX (GET_MODE_INNER (mode)); 2945 if (zero != NULL) 2946 { 2947 write_complex_part (object, zero, 0); 2948 write_complex_part (object, zero, 1); 2949 return NULL; 2950 } 2951 } 2952 } 2953 2954 if (size == const0_rtx) 2955 return NULL; 2956 2957 align = MEM_ALIGN (object); 2958 2959 if (CONST_INT_P (size) 2960 && targetm.use_by_pieces_infrastructure_p (INTVAL (size), align, 2961 CLEAR_BY_PIECES, 2962 optimize_insn_for_speed_p ())) 2963 clear_by_pieces (object, INTVAL (size), align); 2964 else if (set_storage_via_setmem (object, size, const0_rtx, align, 2965 expected_align, expected_size, 2966 min_size, max_size, probable_max_size)) 2967 ; 2968 else if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (object))) 2969 return set_storage_via_libcall (object, size, const0_rtx, 2970 method == BLOCK_OP_TAILCALL); 2971 else 2972 gcc_unreachable (); 2973 2974 return NULL; 2975 } 2976 2977 rtx 2978 clear_storage (rtx object, rtx size, enum block_op_methods method) 2979 { 2980 unsigned HOST_WIDE_INT max, min = 0; 2981 if (GET_CODE (size) == CONST_INT) 2982 min = max = UINTVAL (size); 2983 else 2984 max = GET_MODE_MASK (GET_MODE (size)); 2985 return clear_storage_hints (object, size, method, 0, -1, min, max, max); 2986 } 2987 2988 2989 /* A subroutine of clear_storage. Expand a call to memset. 2990 Return the return value of memset, 0 otherwise. */ 2991 2992 rtx 2993 set_storage_via_libcall (rtx object, rtx size, rtx val, bool tailcall) 2994 { 2995 tree call_expr, fn, object_tree, size_tree, val_tree; 2996 machine_mode size_mode; 2997 2998 object = copy_addr_to_reg (XEXP (object, 0)); 2999 object_tree = make_tree (ptr_type_node, object); 3000 3001 if (!CONST_INT_P (val)) 3002 val = convert_to_mode (TYPE_MODE (integer_type_node), val, 1); 3003 val_tree = make_tree (integer_type_node, val); 3004 3005 size_mode = TYPE_MODE (sizetype); 3006 size = convert_to_mode (size_mode, size, 1); 3007 size = copy_to_mode_reg (size_mode, size); 3008 size_tree = make_tree (sizetype, size); 3009 3010 /* It is incorrect to use the libcall calling conventions for calls to 3011 memset because it can be provided by the user. */ 3012 fn = builtin_decl_implicit (BUILT_IN_MEMSET); 3013 call_expr = build_call_expr (fn, 3, object_tree, val_tree, size_tree); 3014 CALL_EXPR_TAILCALL (call_expr) = tailcall; 3015 3016 return expand_call (call_expr, NULL_RTX, false); 3017 } 3018 3019 /* Expand a setmem pattern; return true if successful. */ 3020 3021 bool 3022 set_storage_via_setmem (rtx object, rtx size, rtx val, unsigned int align, 3023 unsigned int expected_align, HOST_WIDE_INT expected_size, 3024 unsigned HOST_WIDE_INT min_size, 3025 unsigned HOST_WIDE_INT max_size, 3026 unsigned HOST_WIDE_INT probable_max_size) 3027 { 3028 /* Try the most limited insn first, because there's no point 3029 including more than one in the machine description unless 3030 the more limited one has some advantage. */ 3031 3032 machine_mode mode; 3033 3034 if (expected_align < align) 3035 expected_align = align; 3036 if (expected_size != -1) 3037 { 3038 if ((unsigned HOST_WIDE_INT)expected_size > max_size) 3039 expected_size = max_size; 3040 if ((unsigned HOST_WIDE_INT)expected_size < min_size) 3041 expected_size = min_size; 3042 } 3043 3044 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode; 3045 mode = GET_MODE_WIDER_MODE (mode)) 3046 { 3047 enum insn_code code = direct_optab_handler (setmem_optab, mode); 3048 3049 if (code != CODE_FOR_nothing 3050 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT 3051 here because if SIZE is less than the mode mask, as it is 3052 returned by the macro, it will definitely be less than the 3053 actual mode mask. Since SIZE is within the Pmode address 3054 space, we limit MODE to Pmode. */ 3055 && ((CONST_INT_P (size) 3056 && ((unsigned HOST_WIDE_INT) INTVAL (size) 3057 <= (GET_MODE_MASK (mode) >> 1))) 3058 || max_size <= (GET_MODE_MASK (mode) >> 1) 3059 || GET_MODE_BITSIZE (mode) >= GET_MODE_BITSIZE (Pmode))) 3060 { 3061 struct expand_operand ops[9]; 3062 unsigned int nops; 3063 3064 nops = insn_data[(int) code].n_generator_args; 3065 gcc_assert (nops == 4 || nops == 6 || nops == 8 || nops == 9); 3066 3067 create_fixed_operand (&ops[0], object); 3068 /* The check above guarantees that this size conversion is valid. */ 3069 create_convert_operand_to (&ops[1], size, mode, true); 3070 create_convert_operand_from (&ops[2], val, byte_mode, true); 3071 create_integer_operand (&ops[3], align / BITS_PER_UNIT); 3072 if (nops >= 6) 3073 { 3074 create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT); 3075 create_integer_operand (&ops[5], expected_size); 3076 } 3077 if (nops >= 8) 3078 { 3079 create_integer_operand (&ops[6], min_size); 3080 /* If we can not represent the maximal size, 3081 make parameter NULL. */ 3082 if ((HOST_WIDE_INT) max_size != -1) 3083 create_integer_operand (&ops[7], max_size); 3084 else 3085 create_fixed_operand (&ops[7], NULL); 3086 } 3087 if (nops == 9) 3088 { 3089 /* If we can not represent the maximal size, 3090 make parameter NULL. */ 3091 if ((HOST_WIDE_INT) probable_max_size != -1) 3092 create_integer_operand (&ops[8], probable_max_size); 3093 else 3094 create_fixed_operand (&ops[8], NULL); 3095 } 3096 if (maybe_expand_insn (code, nops, ops)) 3097 return true; 3098 } 3099 } 3100 3101 return false; 3102 } 3103 3104 3105 /* Write to one of the components of the complex value CPLX. Write VAL to 3106 the real part if IMAG_P is false, and the imaginary part if its true. */ 3107 3108 void 3109 write_complex_part (rtx cplx, rtx val, bool imag_p) 3110 { 3111 machine_mode cmode; 3112 machine_mode imode; 3113 unsigned ibitsize; 3114 3115 if (GET_CODE (cplx) == CONCAT) 3116 { 3117 emit_move_insn (XEXP (cplx, imag_p), val); 3118 return; 3119 } 3120 3121 cmode = GET_MODE (cplx); 3122 imode = GET_MODE_INNER (cmode); 3123 ibitsize = GET_MODE_BITSIZE (imode); 3124 3125 /* For MEMs simplify_gen_subreg may generate an invalid new address 3126 because, e.g., the original address is considered mode-dependent 3127 by the target, which restricts simplify_subreg from invoking 3128 adjust_address_nv. Instead of preparing fallback support for an 3129 invalid address, we call adjust_address_nv directly. */ 3130 if (MEM_P (cplx)) 3131 { 3132 emit_move_insn (adjust_address_nv (cplx, imode, 3133 imag_p ? GET_MODE_SIZE (imode) : 0), 3134 val); 3135 return; 3136 } 3137 3138 /* If the sub-object is at least word sized, then we know that subregging 3139 will work. This special case is important, since store_bit_field 3140 wants to operate on integer modes, and there's rarely an OImode to 3141 correspond to TCmode. */ 3142 if (ibitsize >= BITS_PER_WORD 3143 /* For hard regs we have exact predicates. Assume we can split 3144 the original object if it spans an even number of hard regs. 3145 This special case is important for SCmode on 64-bit platforms 3146 where the natural size of floating-point regs is 32-bit. */ 3147 || (REG_P (cplx) 3148 && REGNO (cplx) < FIRST_PSEUDO_REGISTER 3149 && REG_NREGS (cplx) % 2 == 0)) 3150 { 3151 rtx part = simplify_gen_subreg (imode, cplx, cmode, 3152 imag_p ? GET_MODE_SIZE (imode) : 0); 3153 if (part) 3154 { 3155 emit_move_insn (part, val); 3156 return; 3157 } 3158 else 3159 /* simplify_gen_subreg may fail for sub-word MEMs. */ 3160 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD); 3161 } 3162 3163 store_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, 0, 0, imode, val, 3164 false); 3165 } 3166 3167 /* Extract one of the components of the complex value CPLX. Extract the 3168 real part if IMAG_P is false, and the imaginary part if it's true. */ 3169 3170 rtx 3171 read_complex_part (rtx cplx, bool imag_p) 3172 { 3173 machine_mode cmode, imode; 3174 unsigned ibitsize; 3175 3176 if (GET_CODE (cplx) == CONCAT) 3177 return XEXP (cplx, imag_p); 3178 3179 cmode = GET_MODE (cplx); 3180 imode = GET_MODE_INNER (cmode); 3181 ibitsize = GET_MODE_BITSIZE (imode); 3182 3183 /* Special case reads from complex constants that got spilled to memory. */ 3184 if (MEM_P (cplx) && GET_CODE (XEXP (cplx, 0)) == SYMBOL_REF) 3185 { 3186 tree decl = SYMBOL_REF_DECL (XEXP (cplx, 0)); 3187 if (decl && TREE_CODE (decl) == COMPLEX_CST) 3188 { 3189 tree part = imag_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl); 3190 if (CONSTANT_CLASS_P (part)) 3191 return expand_expr (part, NULL_RTX, imode, EXPAND_NORMAL); 3192 } 3193 } 3194 3195 /* For MEMs simplify_gen_subreg may generate an invalid new address 3196 because, e.g., the original address is considered mode-dependent 3197 by the target, which restricts simplify_subreg from invoking 3198 adjust_address_nv. Instead of preparing fallback support for an 3199 invalid address, we call adjust_address_nv directly. */ 3200 if (MEM_P (cplx)) 3201 return adjust_address_nv (cplx, imode, 3202 imag_p ? GET_MODE_SIZE (imode) : 0); 3203 3204 /* If the sub-object is at least word sized, then we know that subregging 3205 will work. This special case is important, since extract_bit_field 3206 wants to operate on integer modes, and there's rarely an OImode to 3207 correspond to TCmode. */ 3208 if (ibitsize >= BITS_PER_WORD 3209 /* For hard regs we have exact predicates. Assume we can split 3210 the original object if it spans an even number of hard regs. 3211 This special case is important for SCmode on 64-bit platforms 3212 where the natural size of floating-point regs is 32-bit. */ 3213 || (REG_P (cplx) 3214 && REGNO (cplx) < FIRST_PSEUDO_REGISTER 3215 && REG_NREGS (cplx) % 2 == 0)) 3216 { 3217 rtx ret = simplify_gen_subreg (imode, cplx, cmode, 3218 imag_p ? GET_MODE_SIZE (imode) : 0); 3219 if (ret) 3220 return ret; 3221 else 3222 /* simplify_gen_subreg may fail for sub-word MEMs. */ 3223 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD); 3224 } 3225 3226 return extract_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, 3227 true, NULL_RTX, imode, imode, false); 3228 } 3229 3230 /* A subroutine of emit_move_insn_1. Yet another lowpart generator. 3231 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be 3232 represented in NEW_MODE. If FORCE is true, this will never happen, as 3233 we'll force-create a SUBREG if needed. */ 3234 3235 static rtx 3236 emit_move_change_mode (machine_mode new_mode, 3237 machine_mode old_mode, rtx x, bool force) 3238 { 3239 rtx ret; 3240 3241 if (push_operand (x, GET_MODE (x))) 3242 { 3243 ret = gen_rtx_MEM (new_mode, XEXP (x, 0)); 3244 MEM_COPY_ATTRIBUTES (ret, x); 3245 } 3246 else if (MEM_P (x)) 3247 { 3248 /* We don't have to worry about changing the address since the 3249 size in bytes is supposed to be the same. */ 3250 if (reload_in_progress) 3251 { 3252 /* Copy the MEM to change the mode and move any 3253 substitutions from the old MEM to the new one. */ 3254 ret = adjust_address_nv (x, new_mode, 0); 3255 copy_replacements (x, ret); 3256 } 3257 else 3258 ret = adjust_address (x, new_mode, 0); 3259 } 3260 else 3261 { 3262 /* Note that we do want simplify_subreg's behavior of validating 3263 that the new mode is ok for a hard register. If we were to use 3264 simplify_gen_subreg, we would create the subreg, but would 3265 probably run into the target not being able to implement it. */ 3266 /* Except, of course, when FORCE is true, when this is exactly what 3267 we want. Which is needed for CCmodes on some targets. */ 3268 if (force) 3269 ret = simplify_gen_subreg (new_mode, x, old_mode, 0); 3270 else 3271 ret = simplify_subreg (new_mode, x, old_mode, 0); 3272 } 3273 3274 return ret; 3275 } 3276 3277 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using 3278 an integer mode of the same size as MODE. Returns the instruction 3279 emitted, or NULL if such a move could not be generated. */ 3280 3281 static rtx_insn * 3282 emit_move_via_integer (machine_mode mode, rtx x, rtx y, bool force) 3283 { 3284 machine_mode imode; 3285 enum insn_code code; 3286 3287 /* There must exist a mode of the exact size we require. */ 3288 imode = int_mode_for_mode (mode); 3289 if (imode == BLKmode) 3290 return NULL; 3291 3292 /* The target must support moves in this mode. */ 3293 code = optab_handler (mov_optab, imode); 3294 if (code == CODE_FOR_nothing) 3295 return NULL; 3296 3297 x = emit_move_change_mode (imode, mode, x, force); 3298 if (x == NULL_RTX) 3299 return NULL; 3300 y = emit_move_change_mode (imode, mode, y, force); 3301 if (y == NULL_RTX) 3302 return NULL; 3303 return emit_insn (GEN_FCN (code) (x, y)); 3304 } 3305 3306 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE. 3307 Return an equivalent MEM that does not use an auto-increment. */ 3308 3309 rtx 3310 emit_move_resolve_push (machine_mode mode, rtx x) 3311 { 3312 enum rtx_code code = GET_CODE (XEXP (x, 0)); 3313 HOST_WIDE_INT adjust; 3314 rtx temp; 3315 3316 adjust = GET_MODE_SIZE (mode); 3317 #ifdef PUSH_ROUNDING 3318 adjust = PUSH_ROUNDING (adjust); 3319 #endif 3320 if (code == PRE_DEC || code == POST_DEC) 3321 adjust = -adjust; 3322 else if (code == PRE_MODIFY || code == POST_MODIFY) 3323 { 3324 rtx expr = XEXP (XEXP (x, 0), 1); 3325 HOST_WIDE_INT val; 3326 3327 gcc_assert (GET_CODE (expr) == PLUS || GET_CODE (expr) == MINUS); 3328 gcc_assert (CONST_INT_P (XEXP (expr, 1))); 3329 val = INTVAL (XEXP (expr, 1)); 3330 if (GET_CODE (expr) == MINUS) 3331 val = -val; 3332 gcc_assert (adjust == val || adjust == -val); 3333 adjust = val; 3334 } 3335 3336 /* Do not use anti_adjust_stack, since we don't want to update 3337 stack_pointer_delta. */ 3338 temp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx, 3339 gen_int_mode (adjust, Pmode), stack_pointer_rtx, 3340 0, OPTAB_LIB_WIDEN); 3341 if (temp != stack_pointer_rtx) 3342 emit_move_insn (stack_pointer_rtx, temp); 3343 3344 switch (code) 3345 { 3346 case PRE_INC: 3347 case PRE_DEC: 3348 case PRE_MODIFY: 3349 temp = stack_pointer_rtx; 3350 break; 3351 case POST_INC: 3352 case POST_DEC: 3353 case POST_MODIFY: 3354 temp = plus_constant (Pmode, stack_pointer_rtx, -adjust); 3355 break; 3356 default: 3357 gcc_unreachable (); 3358 } 3359 3360 return replace_equiv_address (x, temp); 3361 } 3362 3363 /* A subroutine of emit_move_complex. Generate a move from Y into X. 3364 X is known to satisfy push_operand, and MODE is known to be complex. 3365 Returns the last instruction emitted. */ 3366 3367 rtx_insn * 3368 emit_move_complex_push (machine_mode mode, rtx x, rtx y) 3369 { 3370 machine_mode submode = GET_MODE_INNER (mode); 3371 bool imag_first; 3372 3373 #ifdef PUSH_ROUNDING 3374 unsigned int submodesize = GET_MODE_SIZE (submode); 3375 3376 /* In case we output to the stack, but the size is smaller than the 3377 machine can push exactly, we need to use move instructions. */ 3378 if (PUSH_ROUNDING (submodesize) != submodesize) 3379 { 3380 x = emit_move_resolve_push (mode, x); 3381 return emit_move_insn (x, y); 3382 } 3383 #endif 3384 3385 /* Note that the real part always precedes the imag part in memory 3386 regardless of machine's endianness. */ 3387 switch (GET_CODE (XEXP (x, 0))) 3388 { 3389 case PRE_DEC: 3390 case POST_DEC: 3391 imag_first = true; 3392 break; 3393 case PRE_INC: 3394 case POST_INC: 3395 imag_first = false; 3396 break; 3397 default: 3398 gcc_unreachable (); 3399 } 3400 3401 emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)), 3402 read_complex_part (y, imag_first)); 3403 return emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)), 3404 read_complex_part (y, !imag_first)); 3405 } 3406 3407 /* A subroutine of emit_move_complex. Perform the move from Y to X 3408 via two moves of the parts. Returns the last instruction emitted. */ 3409 3410 rtx_insn * 3411 emit_move_complex_parts (rtx x, rtx y) 3412 { 3413 /* Show the output dies here. This is necessary for SUBREGs 3414 of pseudos since we cannot track their lifetimes correctly; 3415 hard regs shouldn't appear here except as return values. */ 3416 if (!reload_completed && !reload_in_progress 3417 && REG_P (x) && !reg_overlap_mentioned_p (x, y)) 3418 emit_clobber (x); 3419 3420 write_complex_part (x, read_complex_part (y, false), false); 3421 write_complex_part (x, read_complex_part (y, true), true); 3422 3423 return get_last_insn (); 3424 } 3425 3426 /* A subroutine of emit_move_insn_1. Generate a move from Y into X. 3427 MODE is known to be complex. Returns the last instruction emitted. */ 3428 3429 static rtx_insn * 3430 emit_move_complex (machine_mode mode, rtx x, rtx y) 3431 { 3432 bool try_int; 3433 3434 /* Need to take special care for pushes, to maintain proper ordering 3435 of the data, and possibly extra padding. */ 3436 if (push_operand (x, mode)) 3437 return emit_move_complex_push (mode, x, y); 3438 3439 /* See if we can coerce the target into moving both values at once, except 3440 for floating point where we favor moving as parts if this is easy. */ 3441 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT 3442 && optab_handler (mov_optab, GET_MODE_INNER (mode)) != CODE_FOR_nothing 3443 && !(REG_P (x) 3444 && HARD_REGISTER_P (x) 3445 && REG_NREGS (x) == 1) 3446 && !(REG_P (y) 3447 && HARD_REGISTER_P (y) 3448 && REG_NREGS (y) == 1)) 3449 try_int = false; 3450 /* Not possible if the values are inherently not adjacent. */ 3451 else if (GET_CODE (x) == CONCAT || GET_CODE (y) == CONCAT) 3452 try_int = false; 3453 /* Is possible if both are registers (or subregs of registers). */ 3454 else if (register_operand (x, mode) && register_operand (y, mode)) 3455 try_int = true; 3456 /* If one of the operands is a memory, and alignment constraints 3457 are friendly enough, we may be able to do combined memory operations. 3458 We do not attempt this if Y is a constant because that combination is 3459 usually better with the by-parts thing below. */ 3460 else if ((MEM_P (x) ? !CONSTANT_P (y) : MEM_P (y)) 3461 && (!STRICT_ALIGNMENT 3462 || get_mode_alignment (mode) == BIGGEST_ALIGNMENT)) 3463 try_int = true; 3464 else 3465 try_int = false; 3466 3467 if (try_int) 3468 { 3469 rtx_insn *ret; 3470 3471 /* For memory to memory moves, optimal behavior can be had with the 3472 existing block move logic. */ 3473 if (MEM_P (x) && MEM_P (y)) 3474 { 3475 emit_block_move (x, y, GEN_INT (GET_MODE_SIZE (mode)), 3476 BLOCK_OP_NO_LIBCALL); 3477 return get_last_insn (); 3478 } 3479 3480 ret = emit_move_via_integer (mode, x, y, true); 3481 if (ret) 3482 return ret; 3483 } 3484 3485 return emit_move_complex_parts (x, y); 3486 } 3487 3488 /* A subroutine of emit_move_insn_1. Generate a move from Y into X. 3489 MODE is known to be MODE_CC. Returns the last instruction emitted. */ 3490 3491 static rtx_insn * 3492 emit_move_ccmode (machine_mode mode, rtx x, rtx y) 3493 { 3494 rtx_insn *ret; 3495 3496 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */ 3497 if (mode != CCmode) 3498 { 3499 enum insn_code code = optab_handler (mov_optab, CCmode); 3500 if (code != CODE_FOR_nothing) 3501 { 3502 x = emit_move_change_mode (CCmode, mode, x, true); 3503 y = emit_move_change_mode (CCmode, mode, y, true); 3504 return emit_insn (GEN_FCN (code) (x, y)); 3505 } 3506 } 3507 3508 /* Otherwise, find the MODE_INT mode of the same width. */ 3509 ret = emit_move_via_integer (mode, x, y, false); 3510 gcc_assert (ret != NULL); 3511 return ret; 3512 } 3513 3514 /* Return true if word I of OP lies entirely in the 3515 undefined bits of a paradoxical subreg. */ 3516 3517 static bool 3518 undefined_operand_subword_p (const_rtx op, int i) 3519 { 3520 machine_mode innermode, innermostmode; 3521 int offset; 3522 if (GET_CODE (op) != SUBREG) 3523 return false; 3524 innermode = GET_MODE (op); 3525 innermostmode = GET_MODE (SUBREG_REG (op)); 3526 offset = i * UNITS_PER_WORD + SUBREG_BYTE (op); 3527 /* The SUBREG_BYTE represents offset, as if the value were stored in 3528 memory, except for a paradoxical subreg where we define 3529 SUBREG_BYTE to be 0; undo this exception as in 3530 simplify_subreg. */ 3531 if (SUBREG_BYTE (op) == 0 3532 && GET_MODE_SIZE (innermostmode) < GET_MODE_SIZE (innermode)) 3533 { 3534 int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (innermode)); 3535 if (WORDS_BIG_ENDIAN) 3536 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD; 3537 if (BYTES_BIG_ENDIAN) 3538 offset += difference % UNITS_PER_WORD; 3539 } 3540 if (offset >= GET_MODE_SIZE (innermostmode) 3541 || offset <= -GET_MODE_SIZE (word_mode)) 3542 return true; 3543 return false; 3544 } 3545 3546 /* A subroutine of emit_move_insn_1. Generate a move from Y into X. 3547 MODE is any multi-word or full-word mode that lacks a move_insn 3548 pattern. Note that you will get better code if you define such 3549 patterns, even if they must turn into multiple assembler instructions. */ 3550 3551 static rtx_insn * 3552 emit_move_multi_word (machine_mode mode, rtx x, rtx y) 3553 { 3554 rtx_insn *last_insn = 0; 3555 rtx_insn *seq; 3556 rtx inner; 3557 bool need_clobber; 3558 int i; 3559 3560 gcc_assert (GET_MODE_SIZE (mode) >= UNITS_PER_WORD); 3561 3562 /* If X is a push on the stack, do the push now and replace 3563 X with a reference to the stack pointer. */ 3564 if (push_operand (x, mode)) 3565 x = emit_move_resolve_push (mode, x); 3566 3567 /* If we are in reload, see if either operand is a MEM whose address 3568 is scheduled for replacement. */ 3569 if (reload_in_progress && MEM_P (x) 3570 && (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0)) 3571 x = replace_equiv_address_nv (x, inner); 3572 if (reload_in_progress && MEM_P (y) 3573 && (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0)) 3574 y = replace_equiv_address_nv (y, inner); 3575 3576 start_sequence (); 3577 3578 need_clobber = false; 3579 for (i = 0; 3580 i < (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD; 3581 i++) 3582 { 3583 rtx xpart = operand_subword (x, i, 1, mode); 3584 rtx ypart; 3585 3586 /* Do not generate code for a move if it would come entirely 3587 from the undefined bits of a paradoxical subreg. */ 3588 if (undefined_operand_subword_p (y, i)) 3589 continue; 3590 3591 ypart = operand_subword (y, i, 1, mode); 3592 3593 /* If we can't get a part of Y, put Y into memory if it is a 3594 constant. Otherwise, force it into a register. Then we must 3595 be able to get a part of Y. */ 3596 if (ypart == 0 && CONSTANT_P (y)) 3597 { 3598 y = use_anchored_address (force_const_mem (mode, y)); 3599 ypart = operand_subword (y, i, 1, mode); 3600 } 3601 else if (ypart == 0) 3602 ypart = operand_subword_force (y, i, mode); 3603 3604 gcc_assert (xpart && ypart); 3605 3606 need_clobber |= (GET_CODE (xpart) == SUBREG); 3607 3608 last_insn = emit_move_insn (xpart, ypart); 3609 } 3610 3611 seq = get_insns (); 3612 end_sequence (); 3613 3614 /* Show the output dies here. This is necessary for SUBREGs 3615 of pseudos since we cannot track their lifetimes correctly; 3616 hard regs shouldn't appear here except as return values. 3617 We never want to emit such a clobber after reload. */ 3618 if (x != y 3619 && ! (reload_in_progress || reload_completed) 3620 && need_clobber != 0) 3621 emit_clobber (x); 3622 3623 emit_insn (seq); 3624 3625 return last_insn; 3626 } 3627 3628 /* Low level part of emit_move_insn. 3629 Called just like emit_move_insn, but assumes X and Y 3630 are basically valid. */ 3631 3632 rtx_insn * 3633 emit_move_insn_1 (rtx x, rtx y) 3634 { 3635 machine_mode mode = GET_MODE (x); 3636 enum insn_code code; 3637 3638 gcc_assert ((unsigned int) mode < (unsigned int) MAX_MACHINE_MODE); 3639 3640 code = optab_handler (mov_optab, mode); 3641 if (code != CODE_FOR_nothing) 3642 return emit_insn (GEN_FCN (code) (x, y)); 3643 3644 /* Expand complex moves by moving real part and imag part. */ 3645 if (COMPLEX_MODE_P (mode)) 3646 return emit_move_complex (mode, x, y); 3647 3648 if (GET_MODE_CLASS (mode) == MODE_DECIMAL_FLOAT 3649 || ALL_FIXED_POINT_MODE_P (mode)) 3650 { 3651 rtx_insn *result = emit_move_via_integer (mode, x, y, true); 3652 3653 /* If we can't find an integer mode, use multi words. */ 3654 if (result) 3655 return result; 3656 else 3657 return emit_move_multi_word (mode, x, y); 3658 } 3659 3660 if (GET_MODE_CLASS (mode) == MODE_CC) 3661 return emit_move_ccmode (mode, x, y); 3662 3663 /* Try using a move pattern for the corresponding integer mode. This is 3664 only safe when simplify_subreg can convert MODE constants into integer 3665 constants. At present, it can only do this reliably if the value 3666 fits within a HOST_WIDE_INT. */ 3667 if (!CONSTANT_P (y) || GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT) 3668 { 3669 rtx_insn *ret = emit_move_via_integer (mode, x, y, lra_in_progress); 3670 3671 if (ret) 3672 { 3673 if (! lra_in_progress || recog (PATTERN (ret), ret, 0) >= 0) 3674 return ret; 3675 } 3676 } 3677 3678 return emit_move_multi_word (mode, x, y); 3679 } 3680 3681 /* Generate code to copy Y into X. 3682 Both Y and X must have the same mode, except that 3683 Y can be a constant with VOIDmode. 3684 This mode cannot be BLKmode; use emit_block_move for that. 3685 3686 Return the last instruction emitted. */ 3687 3688 rtx_insn * 3689 emit_move_insn (rtx x, rtx y) 3690 { 3691 machine_mode mode = GET_MODE (x); 3692 rtx y_cst = NULL_RTX; 3693 rtx_insn *last_insn; 3694 rtx set; 3695 3696 gcc_assert (mode != BLKmode 3697 && (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode)); 3698 3699 if (CONSTANT_P (y)) 3700 { 3701 if (optimize 3702 && SCALAR_FLOAT_MODE_P (GET_MODE (x)) 3703 && (last_insn = compress_float_constant (x, y))) 3704 return last_insn; 3705 3706 y_cst = y; 3707 3708 if (!targetm.legitimate_constant_p (mode, y)) 3709 { 3710 y = force_const_mem (mode, y); 3711 3712 /* If the target's cannot_force_const_mem prevented the spill, 3713 assume that the target's move expanders will also take care 3714 of the non-legitimate constant. */ 3715 if (!y) 3716 y = y_cst; 3717 else 3718 y = use_anchored_address (y); 3719 } 3720 } 3721 3722 /* If X or Y are memory references, verify that their addresses are valid 3723 for the machine. */ 3724 if (MEM_P (x) 3725 && (! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0), 3726 MEM_ADDR_SPACE (x)) 3727 && ! push_operand (x, GET_MODE (x)))) 3728 x = validize_mem (x); 3729 3730 if (MEM_P (y) 3731 && ! memory_address_addr_space_p (GET_MODE (y), XEXP (y, 0), 3732 MEM_ADDR_SPACE (y))) 3733 y = validize_mem (y); 3734 3735 gcc_assert (mode != BLKmode); 3736 3737 last_insn = emit_move_insn_1 (x, y); 3738 3739 if (y_cst && REG_P (x) 3740 && (set = single_set (last_insn)) != NULL_RTX 3741 && SET_DEST (set) == x 3742 && ! rtx_equal_p (y_cst, SET_SRC (set))) 3743 set_unique_reg_note (last_insn, REG_EQUAL, copy_rtx (y_cst)); 3744 3745 return last_insn; 3746 } 3747 3748 /* Generate the body of an instruction to copy Y into X. 3749 It may be a list of insns, if one insn isn't enough. */ 3750 3751 rtx_insn * 3752 gen_move_insn (rtx x, rtx y) 3753 { 3754 rtx_insn *seq; 3755 3756 start_sequence (); 3757 emit_move_insn_1 (x, y); 3758 seq = get_insns (); 3759 end_sequence (); 3760 return seq; 3761 } 3762 3763 /* If Y is representable exactly in a narrower mode, and the target can 3764 perform the extension directly from constant or memory, then emit the 3765 move as an extension. */ 3766 3767 static rtx_insn * 3768 compress_float_constant (rtx x, rtx y) 3769 { 3770 machine_mode dstmode = GET_MODE (x); 3771 machine_mode orig_srcmode = GET_MODE (y); 3772 machine_mode srcmode; 3773 const REAL_VALUE_TYPE *r; 3774 int oldcost, newcost; 3775 bool speed = optimize_insn_for_speed_p (); 3776 3777 r = CONST_DOUBLE_REAL_VALUE (y); 3778 3779 if (targetm.legitimate_constant_p (dstmode, y)) 3780 oldcost = set_src_cost (y, orig_srcmode, speed); 3781 else 3782 oldcost = set_src_cost (force_const_mem (dstmode, y), dstmode, speed); 3783 3784 for (srcmode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode)); 3785 srcmode != orig_srcmode; 3786 srcmode = GET_MODE_WIDER_MODE (srcmode)) 3787 { 3788 enum insn_code ic; 3789 rtx trunc_y; 3790 rtx_insn *last_insn; 3791 3792 /* Skip if the target can't extend this way. */ 3793 ic = can_extend_p (dstmode, srcmode, 0); 3794 if (ic == CODE_FOR_nothing) 3795 continue; 3796 3797 /* Skip if the narrowed value isn't exact. */ 3798 if (! exact_real_truncate (srcmode, r)) 3799 continue; 3800 3801 trunc_y = const_double_from_real_value (*r, srcmode); 3802 3803 if (targetm.legitimate_constant_p (srcmode, trunc_y)) 3804 { 3805 /* Skip if the target needs extra instructions to perform 3806 the extension. */ 3807 if (!insn_operand_matches (ic, 1, trunc_y)) 3808 continue; 3809 /* This is valid, but may not be cheaper than the original. */ 3810 newcost = set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y), 3811 dstmode, speed); 3812 if (oldcost < newcost) 3813 continue; 3814 } 3815 else if (float_extend_from_mem[dstmode][srcmode]) 3816 { 3817 trunc_y = force_const_mem (srcmode, trunc_y); 3818 /* This is valid, but may not be cheaper than the original. */ 3819 newcost = set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y), 3820 dstmode, speed); 3821 if (oldcost < newcost) 3822 continue; 3823 trunc_y = validize_mem (trunc_y); 3824 } 3825 else 3826 continue; 3827 3828 /* For CSE's benefit, force the compressed constant pool entry 3829 into a new pseudo. This constant may be used in different modes, 3830 and if not, combine will put things back together for us. */ 3831 trunc_y = force_reg (srcmode, trunc_y); 3832 3833 /* If x is a hard register, perform the extension into a pseudo, 3834 so that e.g. stack realignment code is aware of it. */ 3835 rtx target = x; 3836 if (REG_P (x) && HARD_REGISTER_P (x)) 3837 target = gen_reg_rtx (dstmode); 3838 3839 emit_unop_insn (ic, target, trunc_y, UNKNOWN); 3840 last_insn = get_last_insn (); 3841 3842 if (REG_P (target)) 3843 set_unique_reg_note (last_insn, REG_EQUAL, y); 3844 3845 if (target != x) 3846 return emit_move_insn (x, target); 3847 return last_insn; 3848 } 3849 3850 return NULL; 3851 } 3852 3853 /* Pushing data onto the stack. */ 3854 3855 /* Push a block of length SIZE (perhaps variable) 3856 and return an rtx to address the beginning of the block. 3857 The value may be virtual_outgoing_args_rtx. 3858 3859 EXTRA is the number of bytes of padding to push in addition to SIZE. 3860 BELOW nonzero means this padding comes at low addresses; 3861 otherwise, the padding comes at high addresses. */ 3862 3863 rtx 3864 push_block (rtx size, int extra, int below) 3865 { 3866 rtx temp; 3867 3868 size = convert_modes (Pmode, ptr_mode, size, 1); 3869 if (CONSTANT_P (size)) 3870 anti_adjust_stack (plus_constant (Pmode, size, extra)); 3871 else if (REG_P (size) && extra == 0) 3872 anti_adjust_stack (size); 3873 else 3874 { 3875 temp = copy_to_mode_reg (Pmode, size); 3876 if (extra != 0) 3877 temp = expand_binop (Pmode, add_optab, temp, 3878 gen_int_mode (extra, Pmode), 3879 temp, 0, OPTAB_LIB_WIDEN); 3880 anti_adjust_stack (temp); 3881 } 3882 3883 if (STACK_GROWS_DOWNWARD) 3884 { 3885 temp = virtual_outgoing_args_rtx; 3886 if (extra != 0 && below) 3887 temp = plus_constant (Pmode, temp, extra); 3888 } 3889 else 3890 { 3891 if (CONST_INT_P (size)) 3892 temp = plus_constant (Pmode, virtual_outgoing_args_rtx, 3893 -INTVAL (size) - (below ? 0 : extra)); 3894 else if (extra != 0 && !below) 3895 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx, 3896 negate_rtx (Pmode, plus_constant (Pmode, size, 3897 extra))); 3898 else 3899 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx, 3900 negate_rtx (Pmode, size)); 3901 } 3902 3903 return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT), temp); 3904 } 3905 3906 /* A utility routine that returns the base of an auto-inc memory, or NULL. */ 3907 3908 static rtx 3909 mem_autoinc_base (rtx mem) 3910 { 3911 if (MEM_P (mem)) 3912 { 3913 rtx addr = XEXP (mem, 0); 3914 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC) 3915 return XEXP (addr, 0); 3916 } 3917 return NULL; 3918 } 3919 3920 /* A utility routine used here, in reload, and in try_split. The insns 3921 after PREV up to and including LAST are known to adjust the stack, 3922 with a final value of END_ARGS_SIZE. Iterate backward from LAST 3923 placing notes as appropriate. PREV may be NULL, indicating the 3924 entire insn sequence prior to LAST should be scanned. 3925 3926 The set of allowed stack pointer modifications is small: 3927 (1) One or more auto-inc style memory references (aka pushes), 3928 (2) One or more addition/subtraction with the SP as destination, 3929 (3) A single move insn with the SP as destination, 3930 (4) A call_pop insn, 3931 (5) Noreturn call insns if !ACCUMULATE_OUTGOING_ARGS. 3932 3933 Insns in the sequence that do not modify the SP are ignored, 3934 except for noreturn calls. 3935 3936 The return value is the amount of adjustment that can be trivially 3937 verified, via immediate operand or auto-inc. If the adjustment 3938 cannot be trivially extracted, the return value is INT_MIN. */ 3939 3940 HOST_WIDE_INT 3941 find_args_size_adjust (rtx_insn *insn) 3942 { 3943 rtx dest, set, pat; 3944 int i; 3945 3946 pat = PATTERN (insn); 3947 set = NULL; 3948 3949 /* Look for a call_pop pattern. */ 3950 if (CALL_P (insn)) 3951 { 3952 /* We have to allow non-call_pop patterns for the case 3953 of emit_single_push_insn of a TLS address. */ 3954 if (GET_CODE (pat) != PARALLEL) 3955 return 0; 3956 3957 /* All call_pop have a stack pointer adjust in the parallel. 3958 The call itself is always first, and the stack adjust is 3959 usually last, so search from the end. */ 3960 for (i = XVECLEN (pat, 0) - 1; i > 0; --i) 3961 { 3962 set = XVECEXP (pat, 0, i); 3963 if (GET_CODE (set) != SET) 3964 continue; 3965 dest = SET_DEST (set); 3966 if (dest == stack_pointer_rtx) 3967 break; 3968 } 3969 /* We'd better have found the stack pointer adjust. */ 3970 if (i == 0) 3971 return 0; 3972 /* Fall through to process the extracted SET and DEST 3973 as if it was a standalone insn. */ 3974 } 3975 else if (GET_CODE (pat) == SET) 3976 set = pat; 3977 else if ((set = single_set (insn)) != NULL) 3978 ; 3979 else if (GET_CODE (pat) == PARALLEL) 3980 { 3981 /* ??? Some older ports use a parallel with a stack adjust 3982 and a store for a PUSH_ROUNDING pattern, rather than a 3983 PRE/POST_MODIFY rtx. Don't force them to update yet... */ 3984 /* ??? See h8300 and m68k, pushqi1. */ 3985 for (i = XVECLEN (pat, 0) - 1; i >= 0; --i) 3986 { 3987 set = XVECEXP (pat, 0, i); 3988 if (GET_CODE (set) != SET) 3989 continue; 3990 dest = SET_DEST (set); 3991 if (dest == stack_pointer_rtx) 3992 break; 3993 3994 /* We do not expect an auto-inc of the sp in the parallel. */ 3995 gcc_checking_assert (mem_autoinc_base (dest) != stack_pointer_rtx); 3996 gcc_checking_assert (mem_autoinc_base (SET_SRC (set)) 3997 != stack_pointer_rtx); 3998 } 3999 if (i < 0) 4000 return 0; 4001 } 4002 else 4003 return 0; 4004 4005 dest = SET_DEST (set); 4006 4007 /* Look for direct modifications of the stack pointer. */ 4008 if (REG_P (dest) && REGNO (dest) == STACK_POINTER_REGNUM) 4009 { 4010 /* Look for a trivial adjustment, otherwise assume nothing. */ 4011 /* Note that the SPU restore_stack_block pattern refers to 4012 the stack pointer in V4SImode. Consider that non-trivial. */ 4013 if (SCALAR_INT_MODE_P (GET_MODE (dest)) 4014 && GET_CODE (SET_SRC (set)) == PLUS 4015 && XEXP (SET_SRC (set), 0) == stack_pointer_rtx 4016 && CONST_INT_P (XEXP (SET_SRC (set), 1))) 4017 return INTVAL (XEXP (SET_SRC (set), 1)); 4018 /* ??? Reload can generate no-op moves, which will be cleaned 4019 up later. Recognize it and continue searching. */ 4020 else if (rtx_equal_p (dest, SET_SRC (set))) 4021 return 0; 4022 else 4023 return HOST_WIDE_INT_MIN; 4024 } 4025 else 4026 { 4027 rtx mem, addr; 4028 4029 /* Otherwise only think about autoinc patterns. */ 4030 if (mem_autoinc_base (dest) == stack_pointer_rtx) 4031 { 4032 mem = dest; 4033 gcc_checking_assert (mem_autoinc_base (SET_SRC (set)) 4034 != stack_pointer_rtx); 4035 } 4036 else if (mem_autoinc_base (SET_SRC (set)) == stack_pointer_rtx) 4037 mem = SET_SRC (set); 4038 else 4039 return 0; 4040 4041 addr = XEXP (mem, 0); 4042 switch (GET_CODE (addr)) 4043 { 4044 case PRE_INC: 4045 case POST_INC: 4046 return GET_MODE_SIZE (GET_MODE (mem)); 4047 case PRE_DEC: 4048 case POST_DEC: 4049 return -GET_MODE_SIZE (GET_MODE (mem)); 4050 case PRE_MODIFY: 4051 case POST_MODIFY: 4052 addr = XEXP (addr, 1); 4053 gcc_assert (GET_CODE (addr) == PLUS); 4054 gcc_assert (XEXP (addr, 0) == stack_pointer_rtx); 4055 gcc_assert (CONST_INT_P (XEXP (addr, 1))); 4056 return INTVAL (XEXP (addr, 1)); 4057 default: 4058 gcc_unreachable (); 4059 } 4060 } 4061 } 4062 4063 int 4064 fixup_args_size_notes (rtx_insn *prev, rtx_insn *last, int end_args_size) 4065 { 4066 int args_size = end_args_size; 4067 bool saw_unknown = false; 4068 rtx_insn *insn; 4069 4070 for (insn = last; insn != prev; insn = PREV_INSN (insn)) 4071 { 4072 HOST_WIDE_INT this_delta; 4073 4074 if (!NONDEBUG_INSN_P (insn)) 4075 continue; 4076 4077 this_delta = find_args_size_adjust (insn); 4078 if (this_delta == 0) 4079 { 4080 if (!CALL_P (insn) 4081 || ACCUMULATE_OUTGOING_ARGS 4082 || find_reg_note (insn, REG_NORETURN, NULL_RTX) == NULL_RTX) 4083 continue; 4084 } 4085 4086 gcc_assert (!saw_unknown); 4087 if (this_delta == HOST_WIDE_INT_MIN) 4088 saw_unknown = true; 4089 4090 add_reg_note (insn, REG_ARGS_SIZE, GEN_INT (args_size)); 4091 if (STACK_GROWS_DOWNWARD) 4092 this_delta = -(unsigned HOST_WIDE_INT) this_delta; 4093 4094 args_size -= this_delta; 4095 } 4096 4097 return saw_unknown ? INT_MIN : args_size; 4098 } 4099 4100 #ifdef PUSH_ROUNDING 4101 /* Emit single push insn. */ 4102 4103 static void 4104 emit_single_push_insn_1 (machine_mode mode, rtx x, tree type) 4105 { 4106 rtx dest_addr; 4107 unsigned rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode)); 4108 rtx dest; 4109 enum insn_code icode; 4110 4111 stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode)); 4112 /* If there is push pattern, use it. Otherwise try old way of throwing 4113 MEM representing push operation to move expander. */ 4114 icode = optab_handler (push_optab, mode); 4115 if (icode != CODE_FOR_nothing) 4116 { 4117 struct expand_operand ops[1]; 4118 4119 create_input_operand (&ops[0], x, mode); 4120 if (maybe_expand_insn (icode, 1, ops)) 4121 return; 4122 } 4123 if (GET_MODE_SIZE (mode) == rounded_size) 4124 dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx); 4125 /* If we are to pad downward, adjust the stack pointer first and 4126 then store X into the stack location using an offset. This is 4127 because emit_move_insn does not know how to pad; it does not have 4128 access to type. */ 4129 else if (FUNCTION_ARG_PADDING (mode, type) == downward) 4130 { 4131 unsigned padding_size = rounded_size - GET_MODE_SIZE (mode); 4132 HOST_WIDE_INT offset; 4133 4134 emit_move_insn (stack_pointer_rtx, 4135 expand_binop (Pmode, 4136 STACK_GROWS_DOWNWARD ? sub_optab 4137 : add_optab, 4138 stack_pointer_rtx, 4139 gen_int_mode (rounded_size, Pmode), 4140 NULL_RTX, 0, OPTAB_LIB_WIDEN)); 4141 4142 offset = (HOST_WIDE_INT) padding_size; 4143 if (STACK_GROWS_DOWNWARD && STACK_PUSH_CODE == POST_DEC) 4144 /* We have already decremented the stack pointer, so get the 4145 previous value. */ 4146 offset += (HOST_WIDE_INT) rounded_size; 4147 4148 if (!STACK_GROWS_DOWNWARD && STACK_PUSH_CODE == POST_INC) 4149 /* We have already incremented the stack pointer, so get the 4150 previous value. */ 4151 offset -= (HOST_WIDE_INT) rounded_size; 4152 4153 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx, 4154 gen_int_mode (offset, Pmode)); 4155 } 4156 else 4157 { 4158 if (STACK_GROWS_DOWNWARD) 4159 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */ 4160 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx, 4161 gen_int_mode (-(HOST_WIDE_INT) rounded_size, 4162 Pmode)); 4163 else 4164 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */ 4165 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx, 4166 gen_int_mode (rounded_size, Pmode)); 4167 4168 dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr); 4169 } 4170 4171 dest = gen_rtx_MEM (mode, dest_addr); 4172 4173 if (type != 0) 4174 { 4175 set_mem_attributes (dest, type, 1); 4176 4177 if (cfun->tail_call_marked) 4178 /* Function incoming arguments may overlap with sibling call 4179 outgoing arguments and we cannot allow reordering of reads 4180 from function arguments with stores to outgoing arguments 4181 of sibling calls. */ 4182 set_mem_alias_set (dest, 0); 4183 } 4184 emit_move_insn (dest, x); 4185 } 4186 4187 /* Emit and annotate a single push insn. */ 4188 4189 static void 4190 emit_single_push_insn (machine_mode mode, rtx x, tree type) 4191 { 4192 int delta, old_delta = stack_pointer_delta; 4193 rtx_insn *prev = get_last_insn (); 4194 rtx_insn *last; 4195 4196 emit_single_push_insn_1 (mode, x, type); 4197 4198 last = get_last_insn (); 4199 4200 /* Notice the common case where we emitted exactly one insn. */ 4201 if (PREV_INSN (last) == prev) 4202 { 4203 add_reg_note (last, REG_ARGS_SIZE, GEN_INT (stack_pointer_delta)); 4204 return; 4205 } 4206 4207 delta = fixup_args_size_notes (prev, last, stack_pointer_delta); 4208 gcc_assert (delta == INT_MIN || delta == old_delta); 4209 } 4210 #endif 4211 4212 /* If reading SIZE bytes from X will end up reading from 4213 Y return the number of bytes that overlap. Return -1 4214 if there is no overlap or -2 if we can't determine 4215 (for example when X and Y have different base registers). */ 4216 4217 static int 4218 memory_load_overlap (rtx x, rtx y, HOST_WIDE_INT size) 4219 { 4220 rtx tmp = plus_constant (Pmode, x, size); 4221 rtx sub = simplify_gen_binary (MINUS, Pmode, tmp, y); 4222 4223 if (!CONST_INT_P (sub)) 4224 return -2; 4225 4226 HOST_WIDE_INT val = INTVAL (sub); 4227 4228 return IN_RANGE (val, 1, size) ? val : -1; 4229 } 4230 4231 /* Generate code to push X onto the stack, assuming it has mode MODE and 4232 type TYPE. 4233 MODE is redundant except when X is a CONST_INT (since they don't 4234 carry mode info). 4235 SIZE is an rtx for the size of data to be copied (in bytes), 4236 needed only if X is BLKmode. 4237 Return true if successful. May return false if asked to push a 4238 partial argument during a sibcall optimization (as specified by 4239 SIBCALL_P) and the incoming and outgoing pointers cannot be shown 4240 to not overlap. 4241 4242 ALIGN (in bits) is maximum alignment we can assume. 4243 4244 If PARTIAL and REG are both nonzero, then copy that many of the first 4245 bytes of X into registers starting with REG, and push the rest of X. 4246 The amount of space pushed is decreased by PARTIAL bytes. 4247 REG must be a hard register in this case. 4248 If REG is zero but PARTIAL is not, take any all others actions for an 4249 argument partially in registers, but do not actually load any 4250 registers. 4251 4252 EXTRA is the amount in bytes of extra space to leave next to this arg. 4253 This is ignored if an argument block has already been allocated. 4254 4255 On a machine that lacks real push insns, ARGS_ADDR is the address of 4256 the bottom of the argument block for this call. We use indexing off there 4257 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a 4258 argument block has not been preallocated. 4259 4260 ARGS_SO_FAR is the size of args previously pushed for this call. 4261 4262 REG_PARM_STACK_SPACE is nonzero if functions require stack space 4263 for arguments passed in registers. If nonzero, it will be the number 4264 of bytes required. */ 4265 4266 bool 4267 emit_push_insn (rtx x, machine_mode mode, tree type, rtx size, 4268 unsigned int align, int partial, rtx reg, int extra, 4269 rtx args_addr, rtx args_so_far, int reg_parm_stack_space, 4270 rtx alignment_pad, bool sibcall_p) 4271 { 4272 rtx xinner; 4273 enum direction stack_direction = STACK_GROWS_DOWNWARD ? downward : upward; 4274 4275 /* Decide where to pad the argument: `downward' for below, 4276 `upward' for above, or `none' for don't pad it. 4277 Default is below for small data on big-endian machines; else above. */ 4278 enum direction where_pad = FUNCTION_ARG_PADDING (mode, type); 4279 4280 /* Invert direction if stack is post-decrement. 4281 FIXME: why? */ 4282 if (STACK_PUSH_CODE == POST_DEC) 4283 if (where_pad != none) 4284 where_pad = (where_pad == downward ? upward : downward); 4285 4286 xinner = x; 4287 4288 int nregs = partial / UNITS_PER_WORD; 4289 rtx *tmp_regs = NULL; 4290 int overlapping = 0; 4291 4292 if (mode == BLKmode 4293 || (STRICT_ALIGNMENT && align < GET_MODE_ALIGNMENT (mode) 4294 && type != NULL_TREE)) 4295 { 4296 /* Copy a block into the stack, entirely or partially. */ 4297 4298 rtx temp; 4299 int used; 4300 int offset; 4301 int skip; 4302 4303 offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT); 4304 used = partial - offset; 4305 4306 if (mode != BLKmode) 4307 { 4308 /* A value is to be stored in an insufficiently aligned 4309 stack slot; copy via a suitably aligned slot if 4310 necessary. */ 4311 size = GEN_INT (GET_MODE_SIZE (mode)); 4312 if (!MEM_P (xinner)) 4313 { 4314 temp = assign_temp (type, 1, 1); 4315 emit_move_insn (temp, xinner); 4316 xinner = temp; 4317 } 4318 } 4319 4320 gcc_assert (size); 4321 4322 /* USED is now the # of bytes we need not copy to the stack 4323 because registers will take care of them. */ 4324 4325 if (partial != 0) 4326 xinner = adjust_address (xinner, BLKmode, used); 4327 4328 /* If the partial register-part of the arg counts in its stack size, 4329 skip the part of stack space corresponding to the registers. 4330 Otherwise, start copying to the beginning of the stack space, 4331 by setting SKIP to 0. */ 4332 skip = (reg_parm_stack_space == 0) ? 0 : used; 4333 4334 #ifdef PUSH_ROUNDING 4335 /* Do it with several push insns if that doesn't take lots of insns 4336 and if there is no difficulty with push insns that skip bytes 4337 on the stack for alignment purposes. */ 4338 if (args_addr == 0 4339 && PUSH_ARGS 4340 && CONST_INT_P (size) 4341 && skip == 0 4342 && MEM_ALIGN (xinner) >= align 4343 && can_move_by_pieces ((unsigned) INTVAL (size) - used, align) 4344 /* Here we avoid the case of a structure whose weak alignment 4345 forces many pushes of a small amount of data, 4346 and such small pushes do rounding that causes trouble. */ 4347 && ((! SLOW_UNALIGNED_ACCESS (word_mode, align)) 4348 || align >= BIGGEST_ALIGNMENT 4349 || (PUSH_ROUNDING (align / BITS_PER_UNIT) 4350 == (align / BITS_PER_UNIT))) 4351 && (HOST_WIDE_INT) PUSH_ROUNDING (INTVAL (size)) == INTVAL (size)) 4352 { 4353 /* Push padding now if padding above and stack grows down, 4354 or if padding below and stack grows up. 4355 But if space already allocated, this has already been done. */ 4356 if (extra && args_addr == 0 4357 && where_pad != none && where_pad != stack_direction) 4358 anti_adjust_stack (GEN_INT (extra)); 4359 4360 move_by_pieces (NULL, xinner, INTVAL (size) - used, align, 0); 4361 } 4362 else 4363 #endif /* PUSH_ROUNDING */ 4364 { 4365 rtx target; 4366 4367 /* Otherwise make space on the stack and copy the data 4368 to the address of that space. */ 4369 4370 /* Deduct words put into registers from the size we must copy. */ 4371 if (partial != 0) 4372 { 4373 if (CONST_INT_P (size)) 4374 size = GEN_INT (INTVAL (size) - used); 4375 else 4376 size = expand_binop (GET_MODE (size), sub_optab, size, 4377 gen_int_mode (used, GET_MODE (size)), 4378 NULL_RTX, 0, OPTAB_LIB_WIDEN); 4379 } 4380 4381 /* Get the address of the stack space. 4382 In this case, we do not deal with EXTRA separately. 4383 A single stack adjust will do. */ 4384 if (! args_addr) 4385 { 4386 temp = push_block (size, extra, where_pad == downward); 4387 extra = 0; 4388 } 4389 else if (CONST_INT_P (args_so_far)) 4390 temp = memory_address (BLKmode, 4391 plus_constant (Pmode, args_addr, 4392 skip + INTVAL (args_so_far))); 4393 else 4394 temp = memory_address (BLKmode, 4395 plus_constant (Pmode, 4396 gen_rtx_PLUS (Pmode, 4397 args_addr, 4398 args_so_far), 4399 skip)); 4400 4401 if (!ACCUMULATE_OUTGOING_ARGS) 4402 { 4403 /* If the source is referenced relative to the stack pointer, 4404 copy it to another register to stabilize it. We do not need 4405 to do this if we know that we won't be changing sp. */ 4406 4407 if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp) 4408 || reg_mentioned_p (virtual_outgoing_args_rtx, temp)) 4409 temp = copy_to_reg (temp); 4410 } 4411 4412 target = gen_rtx_MEM (BLKmode, temp); 4413 4414 /* We do *not* set_mem_attributes here, because incoming arguments 4415 may overlap with sibling call outgoing arguments and we cannot 4416 allow reordering of reads from function arguments with stores 4417 to outgoing arguments of sibling calls. We do, however, want 4418 to record the alignment of the stack slot. */ 4419 /* ALIGN may well be better aligned than TYPE, e.g. due to 4420 PARM_BOUNDARY. Assume the caller isn't lying. */ 4421 set_mem_align (target, align); 4422 4423 /* If part should go in registers and pushing to that part would 4424 overwrite some of the values that need to go into regs, load the 4425 overlapping values into temporary pseudos to be moved into the hard 4426 regs at the end after the stack pushing has completed. 4427 We cannot load them directly into the hard regs here because 4428 they can be clobbered by the block move expansions. 4429 See PR 65358. */ 4430 4431 if (partial > 0 && reg != 0 && mode == BLKmode 4432 && GET_CODE (reg) != PARALLEL) 4433 { 4434 overlapping = memory_load_overlap (XEXP (x, 0), temp, partial); 4435 if (overlapping > 0) 4436 { 4437 gcc_assert (overlapping % UNITS_PER_WORD == 0); 4438 overlapping /= UNITS_PER_WORD; 4439 4440 tmp_regs = XALLOCAVEC (rtx, overlapping); 4441 4442 for (int i = 0; i < overlapping; i++) 4443 tmp_regs[i] = gen_reg_rtx (word_mode); 4444 4445 for (int i = 0; i < overlapping; i++) 4446 emit_move_insn (tmp_regs[i], 4447 operand_subword_force (target, i, mode)); 4448 } 4449 else if (overlapping == -1) 4450 overlapping = 0; 4451 /* Could not determine whether there is overlap. 4452 Fail the sibcall. */ 4453 else 4454 { 4455 overlapping = 0; 4456 if (sibcall_p) 4457 return false; 4458 } 4459 } 4460 emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM); 4461 } 4462 } 4463 else if (partial > 0) 4464 { 4465 /* Scalar partly in registers. */ 4466 4467 int size = GET_MODE_SIZE (mode) / UNITS_PER_WORD; 4468 int i; 4469 int not_stack; 4470 /* # bytes of start of argument 4471 that we must make space for but need not store. */ 4472 int offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT); 4473 int args_offset = INTVAL (args_so_far); 4474 int skip; 4475 4476 /* Push padding now if padding above and stack grows down, 4477 or if padding below and stack grows up. 4478 But if space already allocated, this has already been done. */ 4479 if (extra && args_addr == 0 4480 && where_pad != none && where_pad != stack_direction) 4481 anti_adjust_stack (GEN_INT (extra)); 4482 4483 /* If we make space by pushing it, we might as well push 4484 the real data. Otherwise, we can leave OFFSET nonzero 4485 and leave the space uninitialized. */ 4486 if (args_addr == 0) 4487 offset = 0; 4488 4489 /* Now NOT_STACK gets the number of words that we don't need to 4490 allocate on the stack. Convert OFFSET to words too. */ 4491 not_stack = (partial - offset) / UNITS_PER_WORD; 4492 offset /= UNITS_PER_WORD; 4493 4494 /* If the partial register-part of the arg counts in its stack size, 4495 skip the part of stack space corresponding to the registers. 4496 Otherwise, start copying to the beginning of the stack space, 4497 by setting SKIP to 0. */ 4498 skip = (reg_parm_stack_space == 0) ? 0 : not_stack; 4499 4500 if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x)) 4501 x = validize_mem (force_const_mem (mode, x)); 4502 4503 /* If X is a hard register in a non-integer mode, copy it into a pseudo; 4504 SUBREGs of such registers are not allowed. */ 4505 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER 4506 && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT)) 4507 x = copy_to_reg (x); 4508 4509 /* Loop over all the words allocated on the stack for this arg. */ 4510 /* We can do it by words, because any scalar bigger than a word 4511 has a size a multiple of a word. */ 4512 for (i = size - 1; i >= not_stack; i--) 4513 if (i >= not_stack + offset) 4514 if (!emit_push_insn (operand_subword_force (x, i, mode), 4515 word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX, 4516 0, args_addr, 4517 GEN_INT (args_offset + ((i - not_stack + skip) 4518 * UNITS_PER_WORD)), 4519 reg_parm_stack_space, alignment_pad, sibcall_p)) 4520 return false; 4521 } 4522 else 4523 { 4524 rtx addr; 4525 rtx dest; 4526 4527 /* Push padding now if padding above and stack grows down, 4528 or if padding below and stack grows up. 4529 But if space already allocated, this has already been done. */ 4530 if (extra && args_addr == 0 4531 && where_pad != none && where_pad != stack_direction) 4532 anti_adjust_stack (GEN_INT (extra)); 4533 4534 #ifdef PUSH_ROUNDING 4535 if (args_addr == 0 && PUSH_ARGS) 4536 emit_single_push_insn (mode, x, type); 4537 else 4538 #endif 4539 { 4540 if (CONST_INT_P (args_so_far)) 4541 addr 4542 = memory_address (mode, 4543 plus_constant (Pmode, args_addr, 4544 INTVAL (args_so_far))); 4545 else 4546 addr = memory_address (mode, gen_rtx_PLUS (Pmode, args_addr, 4547 args_so_far)); 4548 dest = gen_rtx_MEM (mode, addr); 4549 4550 /* We do *not* set_mem_attributes here, because incoming arguments 4551 may overlap with sibling call outgoing arguments and we cannot 4552 allow reordering of reads from function arguments with stores 4553 to outgoing arguments of sibling calls. We do, however, want 4554 to record the alignment of the stack slot. */ 4555 /* ALIGN may well be better aligned than TYPE, e.g. due to 4556 PARM_BOUNDARY. Assume the caller isn't lying. */ 4557 set_mem_align (dest, align); 4558 4559 emit_move_insn (dest, x); 4560 } 4561 } 4562 4563 /* Move the partial arguments into the registers and any overlapping 4564 values that we moved into the pseudos in tmp_regs. */ 4565 if (partial > 0 && reg != 0) 4566 { 4567 /* Handle calls that pass values in multiple non-contiguous locations. 4568 The Irix 6 ABI has examples of this. */ 4569 if (GET_CODE (reg) == PARALLEL) 4570 emit_group_load (reg, x, type, -1); 4571 else 4572 { 4573 gcc_assert (partial % UNITS_PER_WORD == 0); 4574 move_block_to_reg (REGNO (reg), x, nregs - overlapping, mode); 4575 4576 for (int i = 0; i < overlapping; i++) 4577 emit_move_insn (gen_rtx_REG (word_mode, REGNO (reg) 4578 + nregs - overlapping + i), 4579 tmp_regs[i]); 4580 4581 } 4582 } 4583 4584 if (extra && args_addr == 0 && where_pad == stack_direction) 4585 anti_adjust_stack (GEN_INT (extra)); 4586 4587 if (alignment_pad && args_addr == 0) 4588 anti_adjust_stack (alignment_pad); 4589 4590 return true; 4591 } 4592 4593 /* Return X if X can be used as a subtarget in a sequence of arithmetic 4594 operations. */ 4595 4596 static rtx 4597 get_subtarget (rtx x) 4598 { 4599 return (optimize 4600 || x == 0 4601 /* Only registers can be subtargets. */ 4602 || !REG_P (x) 4603 /* Don't use hard regs to avoid extending their life. */ 4604 || REGNO (x) < FIRST_PSEUDO_REGISTER 4605 ? 0 : x); 4606 } 4607 4608 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where 4609 FIELD is a bitfield. Returns true if the optimization was successful, 4610 and there's nothing else to do. */ 4611 4612 static bool 4613 optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize, 4614 unsigned HOST_WIDE_INT bitpos, 4615 unsigned HOST_WIDE_INT bitregion_start, 4616 unsigned HOST_WIDE_INT bitregion_end, 4617 machine_mode mode1, rtx str_rtx, 4618 tree to, tree src, bool reverse) 4619 { 4620 machine_mode str_mode = GET_MODE (str_rtx); 4621 unsigned int str_bitsize = GET_MODE_BITSIZE (str_mode); 4622 tree op0, op1; 4623 rtx value, result; 4624 optab binop; 4625 gimple *srcstmt; 4626 enum tree_code code; 4627 4628 if (mode1 != VOIDmode 4629 || bitsize >= BITS_PER_WORD 4630 || str_bitsize > BITS_PER_WORD 4631 || TREE_SIDE_EFFECTS (to) 4632 || TREE_THIS_VOLATILE (to)) 4633 return false; 4634 4635 STRIP_NOPS (src); 4636 if (TREE_CODE (src) != SSA_NAME) 4637 return false; 4638 if (TREE_CODE (TREE_TYPE (src)) != INTEGER_TYPE) 4639 return false; 4640 4641 srcstmt = get_gimple_for_ssa_name (src); 4642 if (!srcstmt 4643 || TREE_CODE_CLASS (gimple_assign_rhs_code (srcstmt)) != tcc_binary) 4644 return false; 4645 4646 code = gimple_assign_rhs_code (srcstmt); 4647 4648 op0 = gimple_assign_rhs1 (srcstmt); 4649 4650 /* If OP0 is an SSA_NAME, then we want to walk the use-def chain 4651 to find its initialization. Hopefully the initialization will 4652 be from a bitfield load. */ 4653 if (TREE_CODE (op0) == SSA_NAME) 4654 { 4655 gimple *op0stmt = get_gimple_for_ssa_name (op0); 4656 4657 /* We want to eventually have OP0 be the same as TO, which 4658 should be a bitfield. */ 4659 if (!op0stmt 4660 || !is_gimple_assign (op0stmt) 4661 || gimple_assign_rhs_code (op0stmt) != TREE_CODE (to)) 4662 return false; 4663 op0 = gimple_assign_rhs1 (op0stmt); 4664 } 4665 4666 op1 = gimple_assign_rhs2 (srcstmt); 4667 4668 if (!operand_equal_p (to, op0, 0)) 4669 return false; 4670 4671 if (MEM_P (str_rtx)) 4672 { 4673 unsigned HOST_WIDE_INT offset1; 4674 4675 if (str_bitsize == 0 || str_bitsize > BITS_PER_WORD) 4676 str_mode = word_mode; 4677 str_mode = get_best_mode (bitsize, bitpos, 4678 bitregion_start, bitregion_end, 4679 MEM_ALIGN (str_rtx), str_mode, 0); 4680 if (str_mode == VOIDmode) 4681 return false; 4682 str_bitsize = GET_MODE_BITSIZE (str_mode); 4683 4684 offset1 = bitpos; 4685 bitpos %= str_bitsize; 4686 offset1 = (offset1 - bitpos) / BITS_PER_UNIT; 4687 str_rtx = adjust_address (str_rtx, str_mode, offset1); 4688 } 4689 else if (!REG_P (str_rtx) && GET_CODE (str_rtx) != SUBREG) 4690 return false; 4691 else 4692 gcc_assert (!reverse); 4693 4694 /* If the bit field covers the whole REG/MEM, store_field 4695 will likely generate better code. */ 4696 if (bitsize >= str_bitsize) 4697 return false; 4698 4699 /* We can't handle fields split across multiple entities. */ 4700 if (bitpos + bitsize > str_bitsize) 4701 return false; 4702 4703 if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN) 4704 bitpos = str_bitsize - bitpos - bitsize; 4705 4706 switch (code) 4707 { 4708 case PLUS_EXPR: 4709 case MINUS_EXPR: 4710 /* For now, just optimize the case of the topmost bitfield 4711 where we don't need to do any masking and also 4712 1 bit bitfields where xor can be used. 4713 We might win by one instruction for the other bitfields 4714 too if insv/extv instructions aren't used, so that 4715 can be added later. */ 4716 if ((reverse || bitpos + bitsize != str_bitsize) 4717 && (bitsize != 1 || TREE_CODE (op1) != INTEGER_CST)) 4718 break; 4719 4720 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL); 4721 value = convert_modes (str_mode, 4722 TYPE_MODE (TREE_TYPE (op1)), value, 4723 TYPE_UNSIGNED (TREE_TYPE (op1))); 4724 4725 /* We may be accessing data outside the field, which means 4726 we can alias adjacent data. */ 4727 if (MEM_P (str_rtx)) 4728 { 4729 str_rtx = shallow_copy_rtx (str_rtx); 4730 set_mem_alias_set (str_rtx, 0); 4731 set_mem_expr (str_rtx, 0); 4732 } 4733 4734 if (bitsize == 1 && (reverse || bitpos + bitsize != str_bitsize)) 4735 { 4736 value = expand_and (str_mode, value, const1_rtx, NULL); 4737 binop = xor_optab; 4738 } 4739 else 4740 binop = code == PLUS_EXPR ? add_optab : sub_optab; 4741 4742 value = expand_shift (LSHIFT_EXPR, str_mode, value, bitpos, NULL_RTX, 1); 4743 if (reverse) 4744 value = flip_storage_order (str_mode, value); 4745 result = expand_binop (str_mode, binop, str_rtx, 4746 value, str_rtx, 1, OPTAB_WIDEN); 4747 if (result != str_rtx) 4748 emit_move_insn (str_rtx, result); 4749 return true; 4750 4751 case BIT_IOR_EXPR: 4752 case BIT_XOR_EXPR: 4753 if (TREE_CODE (op1) != INTEGER_CST) 4754 break; 4755 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL); 4756 value = convert_modes (str_mode, 4757 TYPE_MODE (TREE_TYPE (op1)), value, 4758 TYPE_UNSIGNED (TREE_TYPE (op1))); 4759 4760 /* We may be accessing data outside the field, which means 4761 we can alias adjacent data. */ 4762 if (MEM_P (str_rtx)) 4763 { 4764 str_rtx = shallow_copy_rtx (str_rtx); 4765 set_mem_alias_set (str_rtx, 0); 4766 set_mem_expr (str_rtx, 0); 4767 } 4768 4769 binop = code == BIT_IOR_EXPR ? ior_optab : xor_optab; 4770 if (bitpos + bitsize != str_bitsize) 4771 { 4772 rtx mask = gen_int_mode ((HOST_WIDE_INT_1U << bitsize) - 1, 4773 str_mode); 4774 value = expand_and (str_mode, value, mask, NULL_RTX); 4775 } 4776 value = expand_shift (LSHIFT_EXPR, str_mode, value, bitpos, NULL_RTX, 1); 4777 if (reverse) 4778 value = flip_storage_order (str_mode, value); 4779 result = expand_binop (str_mode, binop, str_rtx, 4780 value, str_rtx, 1, OPTAB_WIDEN); 4781 if (result != str_rtx) 4782 emit_move_insn (str_rtx, result); 4783 return true; 4784 4785 default: 4786 break; 4787 } 4788 4789 return false; 4790 } 4791 4792 /* In the C++ memory model, consecutive bit fields in a structure are 4793 considered one memory location. 4794 4795 Given a COMPONENT_REF EXP at position (BITPOS, OFFSET), this function 4796 returns the bit range of consecutive bits in which this COMPONENT_REF 4797 belongs. The values are returned in *BITSTART and *BITEND. *BITPOS 4798 and *OFFSET may be adjusted in the process. 4799 4800 If the access does not need to be restricted, 0 is returned in both 4801 *BITSTART and *BITEND. */ 4802 4803 void 4804 get_bit_range (unsigned HOST_WIDE_INT *bitstart, 4805 unsigned HOST_WIDE_INT *bitend, 4806 tree exp, 4807 HOST_WIDE_INT *bitpos, 4808 tree *offset) 4809 { 4810 HOST_WIDE_INT bitoffset; 4811 tree field, repr; 4812 4813 gcc_assert (TREE_CODE (exp) == COMPONENT_REF); 4814 4815 field = TREE_OPERAND (exp, 1); 4816 repr = DECL_BIT_FIELD_REPRESENTATIVE (field); 4817 /* If we do not have a DECL_BIT_FIELD_REPRESENTATIVE there is no 4818 need to limit the range we can access. */ 4819 if (!repr) 4820 { 4821 *bitstart = *bitend = 0; 4822 return; 4823 } 4824 4825 /* If we have a DECL_BIT_FIELD_REPRESENTATIVE but the enclosing record is 4826 part of a larger bit field, then the representative does not serve any 4827 useful purpose. This can occur in Ada. */ 4828 if (handled_component_p (TREE_OPERAND (exp, 0))) 4829 { 4830 machine_mode rmode; 4831 HOST_WIDE_INT rbitsize, rbitpos; 4832 tree roffset; 4833 int unsignedp, reversep, volatilep = 0; 4834 get_inner_reference (TREE_OPERAND (exp, 0), &rbitsize, &rbitpos, 4835 &roffset, &rmode, &unsignedp, &reversep, 4836 &volatilep); 4837 if ((rbitpos % BITS_PER_UNIT) != 0) 4838 { 4839 *bitstart = *bitend = 0; 4840 return; 4841 } 4842 } 4843 4844 /* Compute the adjustment to bitpos from the offset of the field 4845 relative to the representative. DECL_FIELD_OFFSET of field and 4846 repr are the same by construction if they are not constants, 4847 see finish_bitfield_layout. */ 4848 if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)) 4849 && tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr))) 4850 bitoffset = (tree_to_uhwi (DECL_FIELD_OFFSET (field)) 4851 - tree_to_uhwi (DECL_FIELD_OFFSET (repr))) * BITS_PER_UNIT; 4852 else 4853 bitoffset = 0; 4854 bitoffset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field)) 4855 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr))); 4856 4857 /* If the adjustment is larger than bitpos, we would have a negative bit 4858 position for the lower bound and this may wreak havoc later. Adjust 4859 offset and bitpos to make the lower bound non-negative in that case. */ 4860 if (bitoffset > *bitpos) 4861 { 4862 HOST_WIDE_INT adjust = bitoffset - *bitpos; 4863 gcc_assert ((adjust % BITS_PER_UNIT) == 0); 4864 4865 *bitpos += adjust; 4866 if (*offset == NULL_TREE) 4867 *offset = size_int (-adjust / BITS_PER_UNIT); 4868 else 4869 *offset 4870 = size_binop (MINUS_EXPR, *offset, size_int (adjust / BITS_PER_UNIT)); 4871 *bitstart = 0; 4872 } 4873 else 4874 *bitstart = *bitpos - bitoffset; 4875 4876 *bitend = *bitstart + tree_to_uhwi (DECL_SIZE (repr)) - 1; 4877 } 4878 4879 /* Returns true if ADDR is an ADDR_EXPR of a DECL that does not reside 4880 in memory and has non-BLKmode. DECL_RTL must not be a MEM; if 4881 DECL_RTL was not set yet, return NORTL. */ 4882 4883 static inline bool 4884 addr_expr_of_non_mem_decl_p_1 (tree addr, bool nortl) 4885 { 4886 if (TREE_CODE (addr) != ADDR_EXPR) 4887 return false; 4888 4889 tree base = TREE_OPERAND (addr, 0); 4890 4891 if (!DECL_P (base) 4892 || TREE_ADDRESSABLE (base) 4893 || DECL_MODE (base) == BLKmode) 4894 return false; 4895 4896 if (!DECL_RTL_SET_P (base)) 4897 return nortl; 4898 4899 return (!MEM_P (DECL_RTL (base))); 4900 } 4901 4902 /* Returns true if the MEM_REF REF refers to an object that does not 4903 reside in memory and has non-BLKmode. */ 4904 4905 static inline bool 4906 mem_ref_refers_to_non_mem_p (tree ref) 4907 { 4908 tree base = TREE_OPERAND (ref, 0); 4909 return addr_expr_of_non_mem_decl_p_1 (base, false); 4910 } 4911 4912 /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL 4913 is true, try generating a nontemporal store. */ 4914 4915 void 4916 expand_assignment (tree to, tree from, bool nontemporal) 4917 { 4918 rtx to_rtx = 0; 4919 rtx result; 4920 machine_mode mode; 4921 unsigned int align; 4922 enum insn_code icode; 4923 4924 /* Don't crash if the lhs of the assignment was erroneous. */ 4925 if (TREE_CODE (to) == ERROR_MARK) 4926 { 4927 expand_normal (from); 4928 return; 4929 } 4930 4931 /* Optimize away no-op moves without side-effects. */ 4932 if (operand_equal_p (to, from, 0)) 4933 return; 4934 4935 /* Handle misaligned stores. */ 4936 mode = TYPE_MODE (TREE_TYPE (to)); 4937 if ((TREE_CODE (to) == MEM_REF 4938 || TREE_CODE (to) == TARGET_MEM_REF) 4939 && mode != BLKmode 4940 && !mem_ref_refers_to_non_mem_p (to) 4941 && ((align = get_object_alignment (to)) 4942 < GET_MODE_ALIGNMENT (mode)) 4943 && (((icode = optab_handler (movmisalign_optab, mode)) 4944 != CODE_FOR_nothing) 4945 || SLOW_UNALIGNED_ACCESS (mode, align))) 4946 { 4947 rtx reg, mem; 4948 4949 reg = expand_expr (from, NULL_RTX, VOIDmode, EXPAND_NORMAL); 4950 reg = force_not_mem (reg); 4951 mem = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE); 4952 if (TREE_CODE (to) == MEM_REF && REF_REVERSE_STORAGE_ORDER (to)) 4953 reg = flip_storage_order (mode, reg); 4954 4955 if (icode != CODE_FOR_nothing) 4956 { 4957 struct expand_operand ops[2]; 4958 4959 create_fixed_operand (&ops[0], mem); 4960 create_input_operand (&ops[1], reg, mode); 4961 /* The movmisalign<mode> pattern cannot fail, else the assignment 4962 would silently be omitted. */ 4963 expand_insn (icode, 2, ops); 4964 } 4965 else 4966 store_bit_field (mem, GET_MODE_BITSIZE (mode), 0, 0, 0, mode, reg, 4967 false); 4968 return; 4969 } 4970 4971 /* Assignment of a structure component needs special treatment 4972 if the structure component's rtx is not simply a MEM. 4973 Assignment of an array element at a constant index, and assignment of 4974 an array element in an unaligned packed structure field, has the same 4975 problem. Same for (partially) storing into a non-memory object. */ 4976 if (handled_component_p (to) 4977 || (TREE_CODE (to) == MEM_REF 4978 && (REF_REVERSE_STORAGE_ORDER (to) 4979 || mem_ref_refers_to_non_mem_p (to))) 4980 || TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE) 4981 { 4982 machine_mode mode1; 4983 HOST_WIDE_INT bitsize, bitpos; 4984 unsigned HOST_WIDE_INT bitregion_start = 0; 4985 unsigned HOST_WIDE_INT bitregion_end = 0; 4986 tree offset; 4987 int unsignedp, reversep, volatilep = 0; 4988 tree tem; 4989 4990 push_temp_slots (); 4991 tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1, 4992 &unsignedp, &reversep, &volatilep); 4993 4994 /* Make sure bitpos is not negative, it can wreak havoc later. */ 4995 if (bitpos < 0) 4996 { 4997 gcc_assert (offset == NULL_TREE); 4998 offset = size_int (bitpos >> LOG2_BITS_PER_UNIT); 4999 bitpos &= BITS_PER_UNIT - 1; 5000 } 5001 5002 if (TREE_CODE (to) == COMPONENT_REF 5003 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (to, 1))) 5004 get_bit_range (&bitregion_start, &bitregion_end, to, &bitpos, &offset); 5005 /* The C++ memory model naturally applies to byte-aligned fields. 5006 However, if we do not have a DECL_BIT_FIELD_TYPE but BITPOS or 5007 BITSIZE are not byte-aligned, there is no need to limit the range 5008 we can access. This can occur with packed structures in Ada. */ 5009 else if (bitsize > 0 5010 && bitsize % BITS_PER_UNIT == 0 5011 && bitpos % BITS_PER_UNIT == 0) 5012 { 5013 bitregion_start = bitpos; 5014 bitregion_end = bitpos + bitsize - 1; 5015 } 5016 5017 to_rtx = expand_expr (tem, NULL_RTX, VOIDmode, EXPAND_WRITE); 5018 5019 /* If the field has a mode, we want to access it in the 5020 field's mode, not the computed mode. 5021 If a MEM has VOIDmode (external with incomplete type), 5022 use BLKmode for it instead. */ 5023 if (MEM_P (to_rtx)) 5024 { 5025 if (mode1 != VOIDmode) 5026 to_rtx = adjust_address (to_rtx, mode1, 0); 5027 else if (GET_MODE (to_rtx) == VOIDmode) 5028 to_rtx = adjust_address (to_rtx, BLKmode, 0); 5029 } 5030 5031 if (offset != 0) 5032 { 5033 machine_mode address_mode; 5034 rtx offset_rtx; 5035 5036 if (!MEM_P (to_rtx)) 5037 { 5038 /* We can get constant negative offsets into arrays with broken 5039 user code. Translate this to a trap instead of ICEing. */ 5040 gcc_assert (TREE_CODE (offset) == INTEGER_CST); 5041 expand_builtin_trap (); 5042 to_rtx = gen_rtx_MEM (BLKmode, const0_rtx); 5043 } 5044 5045 offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM); 5046 address_mode = get_address_mode (to_rtx); 5047 if (GET_MODE (offset_rtx) != address_mode) 5048 { 5049 /* We cannot be sure that the RTL in offset_rtx is valid outside 5050 of a memory address context, so force it into a register 5051 before attempting to convert it to the desired mode. */ 5052 offset_rtx = force_operand (offset_rtx, NULL_RTX); 5053 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0); 5054 } 5055 5056 /* If we have an expression in OFFSET_RTX and a non-zero 5057 byte offset in BITPOS, adding the byte offset before the 5058 OFFSET_RTX results in better intermediate code, which makes 5059 later rtl optimization passes perform better. 5060 5061 We prefer intermediate code like this: 5062 5063 r124:DI=r123:DI+0x18 5064 [r124:DI]=r121:DI 5065 5066 ... instead of ... 5067 5068 r124:DI=r123:DI+0x10 5069 [r124:DI+0x8]=r121:DI 5070 5071 This is only done for aligned data values, as these can 5072 be expected to result in single move instructions. */ 5073 if (mode1 != VOIDmode 5074 && bitpos != 0 5075 && bitsize > 0 5076 && (bitpos % bitsize) == 0 5077 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0 5078 && MEM_ALIGN (to_rtx) >= GET_MODE_ALIGNMENT (mode1)) 5079 { 5080 to_rtx = adjust_address (to_rtx, mode1, bitpos / BITS_PER_UNIT); 5081 bitregion_start = 0; 5082 if (bitregion_end >= (unsigned HOST_WIDE_INT) bitpos) 5083 bitregion_end -= bitpos; 5084 bitpos = 0; 5085 } 5086 5087 to_rtx = offset_address (to_rtx, offset_rtx, 5088 highest_pow2_factor_for_target (to, 5089 offset)); 5090 } 5091 5092 /* No action is needed if the target is not a memory and the field 5093 lies completely outside that target. This can occur if the source 5094 code contains an out-of-bounds access to a small array. */ 5095 if (!MEM_P (to_rtx) 5096 && GET_MODE (to_rtx) != BLKmode 5097 && (unsigned HOST_WIDE_INT) bitpos 5098 >= GET_MODE_PRECISION (GET_MODE (to_rtx))) 5099 { 5100 expand_normal (from); 5101 result = NULL; 5102 } 5103 /* Handle expand_expr of a complex value returning a CONCAT. */ 5104 else if (GET_CODE (to_rtx) == CONCAT) 5105 { 5106 unsigned short mode_bitsize = GET_MODE_BITSIZE (GET_MODE (to_rtx)); 5107 if (TYPE_MODE (TREE_TYPE (from)) == GET_MODE (to_rtx) 5108 && COMPLEX_MODE_P (GET_MODE (to_rtx)) 5109 && bitpos == 0 5110 && bitsize == mode_bitsize) 5111 result = store_expr (from, to_rtx, false, nontemporal, reversep); 5112 else if (COMPLEX_MODE_P (GET_MODE (to_rtx)) 5113 && (TYPE_MODE (TREE_TYPE (from)) 5114 == GET_MODE_INNER (GET_MODE (to_rtx))) 5115 && bitsize == mode_bitsize / 2 5116 && (bitpos == 0 || bitpos == mode_bitsize / 2)) 5117 result = store_expr (from, XEXP (to_rtx, bitpos != 0), false, 5118 nontemporal, reversep); 5119 else if (bitpos + bitsize <= mode_bitsize / 2) 5120 result = store_field (XEXP (to_rtx, 0), bitsize, bitpos, 5121 bitregion_start, bitregion_end, 5122 mode1, from, get_alias_set (to), 5123 nontemporal, reversep); 5124 else if (bitpos >= mode_bitsize / 2) 5125 result = store_field (XEXP (to_rtx, 1), bitsize, 5126 bitpos - mode_bitsize / 2, 5127 bitregion_start, bitregion_end, 5128 mode1, from, get_alias_set (to), 5129 nontemporal, reversep); 5130 else if (bitpos == 0 && bitsize == mode_bitsize) 5131 { 5132 result = expand_normal (from); 5133 if (GET_CODE (result) == CONCAT) 5134 { 5135 machine_mode to_mode = GET_MODE_INNER (GET_MODE (to_rtx)); 5136 machine_mode from_mode = GET_MODE_INNER (GET_MODE (result)); 5137 rtx from_real 5138 = simplify_gen_subreg (to_mode, XEXP (result, 0), 5139 from_mode, 0); 5140 rtx from_imag 5141 = simplify_gen_subreg (to_mode, XEXP (result, 1), 5142 from_mode, 0); 5143 if (!from_real || !from_imag) 5144 goto concat_store_slow; 5145 emit_move_insn (XEXP (to_rtx, 0), from_real); 5146 emit_move_insn (XEXP (to_rtx, 1), from_imag); 5147 } 5148 else 5149 { 5150 rtx from_rtx; 5151 if (MEM_P (result)) 5152 from_rtx = change_address (result, GET_MODE (to_rtx), 5153 NULL_RTX); 5154 else 5155 from_rtx 5156 = simplify_gen_subreg (GET_MODE (to_rtx), result, 5157 TYPE_MODE (TREE_TYPE (from)), 0); 5158 if (from_rtx) 5159 { 5160 emit_move_insn (XEXP (to_rtx, 0), 5161 read_complex_part (from_rtx, false)); 5162 emit_move_insn (XEXP (to_rtx, 1), 5163 read_complex_part (from_rtx, true)); 5164 } 5165 else 5166 { 5167 machine_mode to_mode 5168 = GET_MODE_INNER (GET_MODE (to_rtx)); 5169 rtx from_real 5170 = simplify_gen_subreg (to_mode, result, 5171 TYPE_MODE (TREE_TYPE (from)), 5172 0); 5173 rtx from_imag 5174 = simplify_gen_subreg (to_mode, result, 5175 TYPE_MODE (TREE_TYPE (from)), 5176 GET_MODE_SIZE (to_mode)); 5177 if (!from_real || !from_imag) 5178 goto concat_store_slow; 5179 emit_move_insn (XEXP (to_rtx, 0), from_real); 5180 emit_move_insn (XEXP (to_rtx, 1), from_imag); 5181 } 5182 } 5183 } 5184 else 5185 { 5186 concat_store_slow:; 5187 rtx temp = assign_stack_temp (GET_MODE (to_rtx), 5188 GET_MODE_SIZE (GET_MODE (to_rtx))); 5189 write_complex_part (temp, XEXP (to_rtx, 0), false); 5190 write_complex_part (temp, XEXP (to_rtx, 1), true); 5191 result = store_field (temp, bitsize, bitpos, 5192 bitregion_start, bitregion_end, 5193 mode1, from, get_alias_set (to), 5194 nontemporal, reversep); 5195 emit_move_insn (XEXP (to_rtx, 0), read_complex_part (temp, false)); 5196 emit_move_insn (XEXP (to_rtx, 1), read_complex_part (temp, true)); 5197 } 5198 } 5199 /* For calls to functions returning variable length structures, if TO_RTX 5200 is not a MEM, go through a MEM because we must not create temporaries 5201 of the VLA type. */ 5202 else if (!MEM_P (to_rtx) 5203 && TREE_CODE (from) == CALL_EXPR 5204 && COMPLETE_TYPE_P (TREE_TYPE (from)) 5205 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) != INTEGER_CST) 5206 { 5207 rtx temp = assign_stack_temp (GET_MODE (to_rtx), 5208 GET_MODE_SIZE (GET_MODE (to_rtx))); 5209 result = store_field (temp, bitsize, bitpos, bitregion_start, 5210 bitregion_end, mode1, from, get_alias_set (to), 5211 nontemporal, reversep); 5212 emit_move_insn (to_rtx, temp); 5213 } 5214 else 5215 { 5216 if (MEM_P (to_rtx)) 5217 { 5218 /* If the field is at offset zero, we could have been given the 5219 DECL_RTX of the parent struct. Don't munge it. */ 5220 to_rtx = shallow_copy_rtx (to_rtx); 5221 set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos); 5222 if (volatilep) 5223 MEM_VOLATILE_P (to_rtx) = 1; 5224 } 5225 5226 if (optimize_bitfield_assignment_op (bitsize, bitpos, 5227 bitregion_start, bitregion_end, 5228 mode1, to_rtx, to, from, 5229 reversep)) 5230 result = NULL; 5231 else 5232 result = store_field (to_rtx, bitsize, bitpos, 5233 bitregion_start, bitregion_end, 5234 mode1, from, get_alias_set (to), 5235 nontemporal, reversep); 5236 } 5237 5238 if (result) 5239 preserve_temp_slots (result); 5240 pop_temp_slots (); 5241 return; 5242 } 5243 5244 /* If the rhs is a function call and its value is not an aggregate, 5245 call the function before we start to compute the lhs. 5246 This is needed for correct code for cases such as 5247 val = setjmp (buf) on machines where reference to val 5248 requires loading up part of an address in a separate insn. 5249 5250 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG 5251 since it might be a promoted variable where the zero- or sign- extension 5252 needs to be done. Handling this in the normal way is safe because no 5253 computation is done before the call. The same is true for SSA names. */ 5254 if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from) 5255 && COMPLETE_TYPE_P (TREE_TYPE (from)) 5256 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST 5257 && ! (((VAR_P (to) 5258 || TREE_CODE (to) == PARM_DECL 5259 || TREE_CODE (to) == RESULT_DECL) 5260 && REG_P (DECL_RTL (to))) 5261 || TREE_CODE (to) == SSA_NAME)) 5262 { 5263 rtx value; 5264 rtx bounds; 5265 5266 push_temp_slots (); 5267 value = expand_normal (from); 5268 5269 /* Split value and bounds to store them separately. */ 5270 chkp_split_slot (value, &value, &bounds); 5271 5272 if (to_rtx == 0) 5273 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE); 5274 5275 /* Handle calls that return values in multiple non-contiguous locations. 5276 The Irix 6 ABI has examples of this. */ 5277 if (GET_CODE (to_rtx) == PARALLEL) 5278 { 5279 if (GET_CODE (value) == PARALLEL) 5280 emit_group_move (to_rtx, value); 5281 else 5282 emit_group_load (to_rtx, value, TREE_TYPE (from), 5283 int_size_in_bytes (TREE_TYPE (from))); 5284 } 5285 else if (GET_CODE (value) == PARALLEL) 5286 emit_group_store (to_rtx, value, TREE_TYPE (from), 5287 int_size_in_bytes (TREE_TYPE (from))); 5288 else if (GET_MODE (to_rtx) == BLKmode) 5289 { 5290 /* Handle calls that return BLKmode values in registers. */ 5291 if (REG_P (value)) 5292 copy_blkmode_from_reg (to_rtx, value, TREE_TYPE (from)); 5293 else 5294 emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL); 5295 } 5296 else 5297 { 5298 if (POINTER_TYPE_P (TREE_TYPE (to))) 5299 value = convert_memory_address_addr_space 5300 (GET_MODE (to_rtx), value, 5301 TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (to)))); 5302 5303 emit_move_insn (to_rtx, value); 5304 } 5305 5306 /* Store bounds if required. */ 5307 if (bounds 5308 && (BOUNDED_P (to) || chkp_type_has_pointer (TREE_TYPE (to)))) 5309 { 5310 gcc_assert (MEM_P (to_rtx)); 5311 chkp_emit_bounds_store (bounds, value, to_rtx); 5312 } 5313 5314 preserve_temp_slots (to_rtx); 5315 pop_temp_slots (); 5316 return; 5317 } 5318 5319 /* Ordinary treatment. Expand TO to get a REG or MEM rtx. */ 5320 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE); 5321 5322 /* Don't move directly into a return register. */ 5323 if (TREE_CODE (to) == RESULT_DECL 5324 && (REG_P (to_rtx) || GET_CODE (to_rtx) == PARALLEL)) 5325 { 5326 rtx temp; 5327 5328 push_temp_slots (); 5329 5330 /* If the source is itself a return value, it still is in a pseudo at 5331 this point so we can move it back to the return register directly. */ 5332 if (REG_P (to_rtx) 5333 && TYPE_MODE (TREE_TYPE (from)) == BLKmode 5334 && TREE_CODE (from) != CALL_EXPR) 5335 temp = copy_blkmode_to_reg (GET_MODE (to_rtx), from); 5336 else 5337 temp = expand_expr (from, NULL_RTX, GET_MODE (to_rtx), EXPAND_NORMAL); 5338 5339 /* Handle calls that return values in multiple non-contiguous locations. 5340 The Irix 6 ABI has examples of this. */ 5341 if (GET_CODE (to_rtx) == PARALLEL) 5342 { 5343 if (GET_CODE (temp) == PARALLEL) 5344 emit_group_move (to_rtx, temp); 5345 else 5346 emit_group_load (to_rtx, temp, TREE_TYPE (from), 5347 int_size_in_bytes (TREE_TYPE (from))); 5348 } 5349 else if (temp) 5350 emit_move_insn (to_rtx, temp); 5351 5352 preserve_temp_slots (to_rtx); 5353 pop_temp_slots (); 5354 return; 5355 } 5356 5357 /* In case we are returning the contents of an object which overlaps 5358 the place the value is being stored, use a safe function when copying 5359 a value through a pointer into a structure value return block. */ 5360 if (TREE_CODE (to) == RESULT_DECL 5361 && TREE_CODE (from) == INDIRECT_REF 5362 && ADDR_SPACE_GENERIC_P 5363 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (from, 0))))) 5364 && refs_may_alias_p (to, from) 5365 && cfun->returns_struct 5366 && !cfun->returns_pcc_struct) 5367 { 5368 rtx from_rtx, size; 5369 5370 push_temp_slots (); 5371 size = expr_size (from); 5372 from_rtx = expand_normal (from); 5373 5374 emit_block_move_via_libcall (XEXP (to_rtx, 0), XEXP (from_rtx, 0), size); 5375 5376 preserve_temp_slots (to_rtx); 5377 pop_temp_slots (); 5378 return; 5379 } 5380 5381 /* Compute FROM and store the value in the rtx we got. */ 5382 5383 push_temp_slots (); 5384 result = store_expr_with_bounds (from, to_rtx, 0, nontemporal, false, to); 5385 preserve_temp_slots (result); 5386 pop_temp_slots (); 5387 return; 5388 } 5389 5390 /* Emits nontemporal store insn that moves FROM to TO. Returns true if this 5391 succeeded, false otherwise. */ 5392 5393 bool 5394 emit_storent_insn (rtx to, rtx from) 5395 { 5396 struct expand_operand ops[2]; 5397 machine_mode mode = GET_MODE (to); 5398 enum insn_code code = optab_handler (storent_optab, mode); 5399 5400 if (code == CODE_FOR_nothing) 5401 return false; 5402 5403 create_fixed_operand (&ops[0], to); 5404 create_input_operand (&ops[1], from, mode); 5405 return maybe_expand_insn (code, 2, ops); 5406 } 5407 5408 /* Generate code for computing expression EXP, 5409 and storing the value into TARGET. 5410 5411 If the mode is BLKmode then we may return TARGET itself. 5412 It turns out that in BLKmode it doesn't cause a problem. 5413 because C has no operators that could combine two different 5414 assignments into the same BLKmode object with different values 5415 with no sequence point. Will other languages need this to 5416 be more thorough? 5417 5418 If CALL_PARAM_P is nonzero, this is a store into a call param on the 5419 stack, and block moves may need to be treated specially. 5420 5421 If NONTEMPORAL is true, try using a nontemporal store instruction. 5422 5423 If REVERSE is true, the store is to be done in reverse order. 5424 5425 If BTARGET is not NULL then computed bounds of EXP are 5426 associated with BTARGET. */ 5427 5428 rtx 5429 store_expr_with_bounds (tree exp, rtx target, int call_param_p, 5430 bool nontemporal, bool reverse, tree btarget) 5431 { 5432 rtx temp; 5433 rtx alt_rtl = NULL_RTX; 5434 location_t loc = curr_insn_location (); 5435 5436 if (VOID_TYPE_P (TREE_TYPE (exp))) 5437 { 5438 /* C++ can generate ?: expressions with a throw expression in one 5439 branch and an rvalue in the other. Here, we resolve attempts to 5440 store the throw expression's nonexistent result. */ 5441 gcc_assert (!call_param_p); 5442 expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL); 5443 return NULL_RTX; 5444 } 5445 if (TREE_CODE (exp) == COMPOUND_EXPR) 5446 { 5447 /* Perform first part of compound expression, then assign from second 5448 part. */ 5449 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, 5450 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL); 5451 return store_expr_with_bounds (TREE_OPERAND (exp, 1), target, 5452 call_param_p, nontemporal, reverse, 5453 btarget); 5454 } 5455 else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode) 5456 { 5457 /* For conditional expression, get safe form of the target. Then 5458 test the condition, doing the appropriate assignment on either 5459 side. This avoids the creation of unnecessary temporaries. 5460 For non-BLKmode, it is more efficient not to do this. */ 5461 5462 rtx_code_label *lab1 = gen_label_rtx (), *lab2 = gen_label_rtx (); 5463 5464 do_pending_stack_adjust (); 5465 NO_DEFER_POP; 5466 jumpifnot (TREE_OPERAND (exp, 0), lab1, -1); 5467 store_expr_with_bounds (TREE_OPERAND (exp, 1), target, call_param_p, 5468 nontemporal, reverse, btarget); 5469 emit_jump_insn (targetm.gen_jump (lab2)); 5470 emit_barrier (); 5471 emit_label (lab1); 5472 store_expr_with_bounds (TREE_OPERAND (exp, 2), target, call_param_p, 5473 nontemporal, reverse, btarget); 5474 emit_label (lab2); 5475 OK_DEFER_POP; 5476 5477 return NULL_RTX; 5478 } 5479 else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target)) 5480 /* If this is a scalar in a register that is stored in a wider mode 5481 than the declared mode, compute the result into its declared mode 5482 and then convert to the wider mode. Our value is the computed 5483 expression. */ 5484 { 5485 rtx inner_target = 0; 5486 5487 /* We can do the conversion inside EXP, which will often result 5488 in some optimizations. Do the conversion in two steps: first 5489 change the signedness, if needed, then the extend. But don't 5490 do this if the type of EXP is a subtype of something else 5491 since then the conversion might involve more than just 5492 converting modes. */ 5493 if (INTEGRAL_TYPE_P (TREE_TYPE (exp)) 5494 && TREE_TYPE (TREE_TYPE (exp)) == 0 5495 && GET_MODE_PRECISION (GET_MODE (target)) 5496 == TYPE_PRECISION (TREE_TYPE (exp))) 5497 { 5498 if (!SUBREG_CHECK_PROMOTED_SIGN (target, 5499 TYPE_UNSIGNED (TREE_TYPE (exp)))) 5500 { 5501 /* Some types, e.g. Fortran's logical*4, won't have a signed 5502 version, so use the mode instead. */ 5503 tree ntype 5504 = (signed_or_unsigned_type_for 5505 (SUBREG_PROMOTED_SIGN (target), TREE_TYPE (exp))); 5506 if (ntype == NULL) 5507 ntype = lang_hooks.types.type_for_mode 5508 (TYPE_MODE (TREE_TYPE (exp)), 5509 SUBREG_PROMOTED_SIGN (target)); 5510 5511 exp = fold_convert_loc (loc, ntype, exp); 5512 } 5513 5514 exp = fold_convert_loc (loc, lang_hooks.types.type_for_mode 5515 (GET_MODE (SUBREG_REG (target)), 5516 SUBREG_PROMOTED_SIGN (target)), 5517 exp); 5518 5519 inner_target = SUBREG_REG (target); 5520 } 5521 5522 temp = expand_expr (exp, inner_target, VOIDmode, 5523 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL); 5524 5525 /* Handle bounds returned by call. */ 5526 if (TREE_CODE (exp) == CALL_EXPR) 5527 { 5528 rtx bounds; 5529 chkp_split_slot (temp, &temp, &bounds); 5530 if (bounds && btarget) 5531 { 5532 gcc_assert (TREE_CODE (btarget) == SSA_NAME); 5533 rtx tmp = targetm.calls.load_returned_bounds (bounds); 5534 chkp_set_rtl_bounds (btarget, tmp); 5535 } 5536 } 5537 5538 /* If TEMP is a VOIDmode constant, use convert_modes to make 5539 sure that we properly convert it. */ 5540 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode) 5541 { 5542 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)), 5543 temp, SUBREG_PROMOTED_SIGN (target)); 5544 temp = convert_modes (GET_MODE (SUBREG_REG (target)), 5545 GET_MODE (target), temp, 5546 SUBREG_PROMOTED_SIGN (target)); 5547 } 5548 5549 convert_move (SUBREG_REG (target), temp, 5550 SUBREG_PROMOTED_SIGN (target)); 5551 5552 return NULL_RTX; 5553 } 5554 else if ((TREE_CODE (exp) == STRING_CST 5555 || (TREE_CODE (exp) == MEM_REF 5556 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR 5557 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)) 5558 == STRING_CST 5559 && integer_zerop (TREE_OPERAND (exp, 1)))) 5560 && !nontemporal && !call_param_p 5561 && MEM_P (target)) 5562 { 5563 /* Optimize initialization of an array with a STRING_CST. */ 5564 HOST_WIDE_INT exp_len, str_copy_len; 5565 rtx dest_mem; 5566 tree str = TREE_CODE (exp) == STRING_CST 5567 ? exp : TREE_OPERAND (TREE_OPERAND (exp, 0), 0); 5568 5569 exp_len = int_expr_size (exp); 5570 if (exp_len <= 0) 5571 goto normal_expr; 5572 5573 if (TREE_STRING_LENGTH (str) <= 0) 5574 goto normal_expr; 5575 5576 str_copy_len = strlen (TREE_STRING_POINTER (str)); 5577 if (str_copy_len < TREE_STRING_LENGTH (str) - 1) 5578 goto normal_expr; 5579 5580 str_copy_len = TREE_STRING_LENGTH (str); 5581 if ((STORE_MAX_PIECES & (STORE_MAX_PIECES - 1)) == 0 5582 && TREE_STRING_POINTER (str)[TREE_STRING_LENGTH (str) - 1] == '\0') 5583 { 5584 str_copy_len += STORE_MAX_PIECES - 1; 5585 str_copy_len &= ~(STORE_MAX_PIECES - 1); 5586 } 5587 str_copy_len = MIN (str_copy_len, exp_len); 5588 if (!can_store_by_pieces (str_copy_len, builtin_strncpy_read_str, 5589 CONST_CAST (char *, TREE_STRING_POINTER (str)), 5590 MEM_ALIGN (target), false)) 5591 goto normal_expr; 5592 5593 dest_mem = target; 5594 5595 dest_mem = store_by_pieces (dest_mem, 5596 str_copy_len, builtin_strncpy_read_str, 5597 CONST_CAST (char *, 5598 TREE_STRING_POINTER (str)), 5599 MEM_ALIGN (target), false, 5600 exp_len > str_copy_len ? 1 : 0); 5601 if (exp_len > str_copy_len) 5602 clear_storage (adjust_address (dest_mem, BLKmode, 0), 5603 GEN_INT (exp_len - str_copy_len), 5604 BLOCK_OP_NORMAL); 5605 return NULL_RTX; 5606 } 5607 else 5608 { 5609 rtx tmp_target; 5610 5611 normal_expr: 5612 /* If we want to use a nontemporal or a reverse order store, force the 5613 value into a register first. */ 5614 tmp_target = nontemporal || reverse ? NULL_RTX : target; 5615 temp = expand_expr_real (exp, tmp_target, GET_MODE (target), 5616 (call_param_p 5617 ? EXPAND_STACK_PARM : EXPAND_NORMAL), 5618 &alt_rtl, false); 5619 5620 /* Handle bounds returned by call. */ 5621 if (TREE_CODE (exp) == CALL_EXPR) 5622 { 5623 rtx bounds; 5624 chkp_split_slot (temp, &temp, &bounds); 5625 if (bounds && btarget) 5626 { 5627 gcc_assert (TREE_CODE (btarget) == SSA_NAME); 5628 rtx tmp = targetm.calls.load_returned_bounds (bounds); 5629 chkp_set_rtl_bounds (btarget, tmp); 5630 } 5631 } 5632 } 5633 5634 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not 5635 the same as that of TARGET, adjust the constant. This is needed, for 5636 example, in case it is a CONST_DOUBLE or CONST_WIDE_INT and we want 5637 only a word-sized value. */ 5638 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode 5639 && TREE_CODE (exp) != ERROR_MARK 5640 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp))) 5641 { 5642 if (GET_MODE_CLASS (GET_MODE (target)) 5643 != GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (exp))) 5644 && GET_MODE_BITSIZE (GET_MODE (target)) 5645 == GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp)))) 5646 { 5647 rtx t = simplify_gen_subreg (GET_MODE (target), temp, 5648 TYPE_MODE (TREE_TYPE (exp)), 0); 5649 if (t) 5650 temp = t; 5651 } 5652 if (GET_MODE (temp) == VOIDmode) 5653 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)), 5654 temp, TYPE_UNSIGNED (TREE_TYPE (exp))); 5655 } 5656 5657 /* If value was not generated in the target, store it there. 5658 Convert the value to TARGET's type first if necessary and emit the 5659 pending incrementations that have been queued when expanding EXP. 5660 Note that we cannot emit the whole queue blindly because this will 5661 effectively disable the POST_INC optimization later. 5662 5663 If TEMP and TARGET compare equal according to rtx_equal_p, but 5664 one or both of them are volatile memory refs, we have to distinguish 5665 two cases: 5666 - expand_expr has used TARGET. In this case, we must not generate 5667 another copy. This can be detected by TARGET being equal according 5668 to == . 5669 - expand_expr has not used TARGET - that means that the source just 5670 happens to have the same RTX form. Since temp will have been created 5671 by expand_expr, it will compare unequal according to == . 5672 We must generate a copy in this case, to reach the correct number 5673 of volatile memory references. */ 5674 5675 if ((! rtx_equal_p (temp, target) 5676 || (temp != target && (side_effects_p (temp) 5677 || side_effects_p (target)))) 5678 && TREE_CODE (exp) != ERROR_MARK 5679 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET, 5680 but TARGET is not valid memory reference, TEMP will differ 5681 from TARGET although it is really the same location. */ 5682 && !(alt_rtl 5683 && rtx_equal_p (alt_rtl, target) 5684 && !side_effects_p (alt_rtl) 5685 && !side_effects_p (target)) 5686 /* If there's nothing to copy, don't bother. Don't call 5687 expr_size unless necessary, because some front-ends (C++) 5688 expr_size-hook must not be given objects that are not 5689 supposed to be bit-copied or bit-initialized. */ 5690 && expr_size (exp) != const0_rtx) 5691 { 5692 if (GET_MODE (temp) != GET_MODE (target) && GET_MODE (temp) != VOIDmode) 5693 { 5694 if (GET_MODE (target) == BLKmode) 5695 { 5696 /* Handle calls that return BLKmode values in registers. */ 5697 if (REG_P (temp) && TREE_CODE (exp) == CALL_EXPR) 5698 copy_blkmode_from_reg (target, temp, TREE_TYPE (exp)); 5699 else 5700 store_bit_field (target, 5701 INTVAL (expr_size (exp)) * BITS_PER_UNIT, 5702 0, 0, 0, GET_MODE (temp), temp, reverse); 5703 } 5704 else 5705 convert_move (target, temp, TYPE_UNSIGNED (TREE_TYPE (exp))); 5706 } 5707 5708 else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST) 5709 { 5710 /* Handle copying a string constant into an array. The string 5711 constant may be shorter than the array. So copy just the string's 5712 actual length, and clear the rest. First get the size of the data 5713 type of the string, which is actually the size of the target. */ 5714 rtx size = expr_size (exp); 5715 5716 if (CONST_INT_P (size) 5717 && INTVAL (size) < TREE_STRING_LENGTH (exp)) 5718 emit_block_move (target, temp, size, 5719 (call_param_p 5720 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL)); 5721 else 5722 { 5723 machine_mode pointer_mode 5724 = targetm.addr_space.pointer_mode (MEM_ADDR_SPACE (target)); 5725 machine_mode address_mode = get_address_mode (target); 5726 5727 /* Compute the size of the data to copy from the string. */ 5728 tree copy_size 5729 = size_binop_loc (loc, MIN_EXPR, 5730 make_tree (sizetype, size), 5731 size_int (TREE_STRING_LENGTH (exp))); 5732 rtx copy_size_rtx 5733 = expand_expr (copy_size, NULL_RTX, VOIDmode, 5734 (call_param_p 5735 ? EXPAND_STACK_PARM : EXPAND_NORMAL)); 5736 rtx_code_label *label = 0; 5737 5738 /* Copy that much. */ 5739 copy_size_rtx = convert_to_mode (pointer_mode, copy_size_rtx, 5740 TYPE_UNSIGNED (sizetype)); 5741 emit_block_move (target, temp, copy_size_rtx, 5742 (call_param_p 5743 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL)); 5744 5745 /* Figure out how much is left in TARGET that we have to clear. 5746 Do all calculations in pointer_mode. */ 5747 if (CONST_INT_P (copy_size_rtx)) 5748 { 5749 size = plus_constant (address_mode, size, 5750 -INTVAL (copy_size_rtx)); 5751 target = adjust_address (target, BLKmode, 5752 INTVAL (copy_size_rtx)); 5753 } 5754 else 5755 { 5756 size = expand_binop (TYPE_MODE (sizetype), sub_optab, size, 5757 copy_size_rtx, NULL_RTX, 0, 5758 OPTAB_LIB_WIDEN); 5759 5760 if (GET_MODE (copy_size_rtx) != address_mode) 5761 copy_size_rtx = convert_to_mode (address_mode, 5762 copy_size_rtx, 5763 TYPE_UNSIGNED (sizetype)); 5764 5765 target = offset_address (target, copy_size_rtx, 5766 highest_pow2_factor (copy_size)); 5767 label = gen_label_rtx (); 5768 emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX, 5769 GET_MODE (size), 0, label); 5770 } 5771 5772 if (size != const0_rtx) 5773 clear_storage (target, size, BLOCK_OP_NORMAL); 5774 5775 if (label) 5776 emit_label (label); 5777 } 5778 } 5779 /* Handle calls that return values in multiple non-contiguous locations. 5780 The Irix 6 ABI has examples of this. */ 5781 else if (GET_CODE (target) == PARALLEL) 5782 { 5783 if (GET_CODE (temp) == PARALLEL) 5784 emit_group_move (target, temp); 5785 else 5786 emit_group_load (target, temp, TREE_TYPE (exp), 5787 int_size_in_bytes (TREE_TYPE (exp))); 5788 } 5789 else if (GET_CODE (temp) == PARALLEL) 5790 emit_group_store (target, temp, TREE_TYPE (exp), 5791 int_size_in_bytes (TREE_TYPE (exp))); 5792 else if (GET_MODE (temp) == BLKmode) 5793 emit_block_move (target, temp, expr_size (exp), 5794 (call_param_p 5795 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL)); 5796 /* If we emit a nontemporal store, there is nothing else to do. */ 5797 else if (nontemporal && emit_storent_insn (target, temp)) 5798 ; 5799 else 5800 { 5801 if (reverse) 5802 temp = flip_storage_order (GET_MODE (target), temp); 5803 temp = force_operand (temp, target); 5804 if (temp != target) 5805 emit_move_insn (target, temp); 5806 } 5807 } 5808 5809 return NULL_RTX; 5810 } 5811 5812 /* Same as store_expr_with_bounds but ignoring bounds of EXP. */ 5813 rtx 5814 store_expr (tree exp, rtx target, int call_param_p, bool nontemporal, 5815 bool reverse) 5816 { 5817 return store_expr_with_bounds (exp, target, call_param_p, nontemporal, 5818 reverse, NULL); 5819 } 5820 5821 /* Return true if field F of structure TYPE is a flexible array. */ 5822 5823 static bool 5824 flexible_array_member_p (const_tree f, const_tree type) 5825 { 5826 const_tree tf; 5827 5828 tf = TREE_TYPE (f); 5829 return (DECL_CHAIN (f) == NULL 5830 && TREE_CODE (tf) == ARRAY_TYPE 5831 && TYPE_DOMAIN (tf) 5832 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf)) 5833 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf))) 5834 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf)) 5835 && int_size_in_bytes (type) >= 0); 5836 } 5837 5838 /* If FOR_CTOR_P, return the number of top-level elements that a constructor 5839 must have in order for it to completely initialize a value of type TYPE. 5840 Return -1 if the number isn't known. 5841 5842 If !FOR_CTOR_P, return an estimate of the number of scalars in TYPE. */ 5843 5844 static HOST_WIDE_INT 5845 count_type_elements (const_tree type, bool for_ctor_p) 5846 { 5847 switch (TREE_CODE (type)) 5848 { 5849 case ARRAY_TYPE: 5850 { 5851 tree nelts; 5852 5853 nelts = array_type_nelts (type); 5854 if (nelts && tree_fits_uhwi_p (nelts)) 5855 { 5856 unsigned HOST_WIDE_INT n; 5857 5858 n = tree_to_uhwi (nelts) + 1; 5859 if (n == 0 || for_ctor_p) 5860 return n; 5861 else 5862 return n * count_type_elements (TREE_TYPE (type), false); 5863 } 5864 return for_ctor_p ? -1 : 1; 5865 } 5866 5867 case RECORD_TYPE: 5868 { 5869 unsigned HOST_WIDE_INT n; 5870 tree f; 5871 5872 n = 0; 5873 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f)) 5874 if (TREE_CODE (f) == FIELD_DECL) 5875 { 5876 if (!for_ctor_p) 5877 n += count_type_elements (TREE_TYPE (f), false); 5878 else if (!flexible_array_member_p (f, type)) 5879 /* Don't count flexible arrays, which are not supposed 5880 to be initialized. */ 5881 n += 1; 5882 } 5883 5884 return n; 5885 } 5886 5887 case UNION_TYPE: 5888 case QUAL_UNION_TYPE: 5889 { 5890 tree f; 5891 HOST_WIDE_INT n, m; 5892 5893 gcc_assert (!for_ctor_p); 5894 /* Estimate the number of scalars in each field and pick the 5895 maximum. Other estimates would do instead; the idea is simply 5896 to make sure that the estimate is not sensitive to the ordering 5897 of the fields. */ 5898 n = 1; 5899 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f)) 5900 if (TREE_CODE (f) == FIELD_DECL) 5901 { 5902 m = count_type_elements (TREE_TYPE (f), false); 5903 /* If the field doesn't span the whole union, add an extra 5904 scalar for the rest. */ 5905 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (f)), 5906 TYPE_SIZE (type)) != 1) 5907 m++; 5908 if (n < m) 5909 n = m; 5910 } 5911 return n; 5912 } 5913 5914 case COMPLEX_TYPE: 5915 return 2; 5916 5917 case VECTOR_TYPE: 5918 return TYPE_VECTOR_SUBPARTS (type); 5919 5920 case INTEGER_TYPE: 5921 case REAL_TYPE: 5922 case FIXED_POINT_TYPE: 5923 case ENUMERAL_TYPE: 5924 case BOOLEAN_TYPE: 5925 case POINTER_TYPE: 5926 case OFFSET_TYPE: 5927 case REFERENCE_TYPE: 5928 case NULLPTR_TYPE: 5929 return 1; 5930 5931 case ERROR_MARK: 5932 return 0; 5933 5934 case VOID_TYPE: 5935 case METHOD_TYPE: 5936 case FUNCTION_TYPE: 5937 case LANG_TYPE: 5938 default: 5939 gcc_unreachable (); 5940 } 5941 } 5942 5943 /* Helper for categorize_ctor_elements. Identical interface. */ 5944 5945 static bool 5946 categorize_ctor_elements_1 (const_tree ctor, HOST_WIDE_INT *p_nz_elts, 5947 HOST_WIDE_INT *p_init_elts, bool *p_complete) 5948 { 5949 unsigned HOST_WIDE_INT idx; 5950 HOST_WIDE_INT nz_elts, init_elts, num_fields; 5951 tree value, purpose, elt_type; 5952 5953 /* Whether CTOR is a valid constant initializer, in accordance with what 5954 initializer_constant_valid_p does. If inferred from the constructor 5955 elements, true until proven otherwise. */ 5956 bool const_from_elts_p = constructor_static_from_elts_p (ctor); 5957 bool const_p = const_from_elts_p ? true : TREE_STATIC (ctor); 5958 5959 nz_elts = 0; 5960 init_elts = 0; 5961 num_fields = 0; 5962 elt_type = NULL_TREE; 5963 5964 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, purpose, value) 5965 { 5966 HOST_WIDE_INT mult = 1; 5967 5968 if (purpose && TREE_CODE (purpose) == RANGE_EXPR) 5969 { 5970 tree lo_index = TREE_OPERAND (purpose, 0); 5971 tree hi_index = TREE_OPERAND (purpose, 1); 5972 5973 if (tree_fits_uhwi_p (lo_index) && tree_fits_uhwi_p (hi_index)) 5974 mult = (tree_to_uhwi (hi_index) 5975 - tree_to_uhwi (lo_index) + 1); 5976 } 5977 num_fields += mult; 5978 elt_type = TREE_TYPE (value); 5979 5980 switch (TREE_CODE (value)) 5981 { 5982 case CONSTRUCTOR: 5983 { 5984 HOST_WIDE_INT nz = 0, ic = 0; 5985 5986 bool const_elt_p = categorize_ctor_elements_1 (value, &nz, &ic, 5987 p_complete); 5988 5989 nz_elts += mult * nz; 5990 init_elts += mult * ic; 5991 5992 if (const_from_elts_p && const_p) 5993 const_p = const_elt_p; 5994 } 5995 break; 5996 5997 case INTEGER_CST: 5998 case REAL_CST: 5999 case FIXED_CST: 6000 if (!initializer_zerop (value)) 6001 nz_elts += mult; 6002 init_elts += mult; 6003 break; 6004 6005 case STRING_CST: 6006 nz_elts += mult * TREE_STRING_LENGTH (value); 6007 init_elts += mult * TREE_STRING_LENGTH (value); 6008 break; 6009 6010 case COMPLEX_CST: 6011 if (!initializer_zerop (TREE_REALPART (value))) 6012 nz_elts += mult; 6013 if (!initializer_zerop (TREE_IMAGPART (value))) 6014 nz_elts += mult; 6015 init_elts += mult; 6016 break; 6017 6018 case VECTOR_CST: 6019 { 6020 unsigned i; 6021 for (i = 0; i < VECTOR_CST_NELTS (value); ++i) 6022 { 6023 tree v = VECTOR_CST_ELT (value, i); 6024 if (!initializer_zerop (v)) 6025 nz_elts += mult; 6026 init_elts += mult; 6027 } 6028 } 6029 break; 6030 6031 default: 6032 { 6033 HOST_WIDE_INT tc = count_type_elements (elt_type, false); 6034 nz_elts += mult * tc; 6035 init_elts += mult * tc; 6036 6037 if (const_from_elts_p && const_p) 6038 const_p 6039 = initializer_constant_valid_p (value, 6040 elt_type, 6041 TYPE_REVERSE_STORAGE_ORDER 6042 (TREE_TYPE (ctor))) 6043 != NULL_TREE; 6044 } 6045 break; 6046 } 6047 } 6048 6049 if (*p_complete && !complete_ctor_at_level_p (TREE_TYPE (ctor), 6050 num_fields, elt_type)) 6051 *p_complete = false; 6052 6053 *p_nz_elts += nz_elts; 6054 *p_init_elts += init_elts; 6055 6056 return const_p; 6057 } 6058 6059 /* Examine CTOR to discover: 6060 * how many scalar fields are set to nonzero values, 6061 and place it in *P_NZ_ELTS; 6062 * how many scalar fields in total are in CTOR, 6063 and place it in *P_ELT_COUNT. 6064 * whether the constructor is complete -- in the sense that every 6065 meaningful byte is explicitly given a value -- 6066 and place it in *P_COMPLETE. 6067 6068 Return whether or not CTOR is a valid static constant initializer, the same 6069 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */ 6070 6071 bool 6072 categorize_ctor_elements (const_tree ctor, HOST_WIDE_INT *p_nz_elts, 6073 HOST_WIDE_INT *p_init_elts, bool *p_complete) 6074 { 6075 *p_nz_elts = 0; 6076 *p_init_elts = 0; 6077 *p_complete = true; 6078 6079 return categorize_ctor_elements_1 (ctor, p_nz_elts, p_init_elts, p_complete); 6080 } 6081 6082 /* TYPE is initialized by a constructor with NUM_ELTS elements, the last 6083 of which had type LAST_TYPE. Each element was itself a complete 6084 initializer, in the sense that every meaningful byte was explicitly 6085 given a value. Return true if the same is true for the constructor 6086 as a whole. */ 6087 6088 bool 6089 complete_ctor_at_level_p (const_tree type, HOST_WIDE_INT num_elts, 6090 const_tree last_type) 6091 { 6092 if (TREE_CODE (type) == UNION_TYPE 6093 || TREE_CODE (type) == QUAL_UNION_TYPE) 6094 { 6095 if (num_elts == 0) 6096 return false; 6097 6098 gcc_assert (num_elts == 1 && last_type); 6099 6100 /* ??? We could look at each element of the union, and find the 6101 largest element. Which would avoid comparing the size of the 6102 initialized element against any tail padding in the union. 6103 Doesn't seem worth the effort... */ 6104 return simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (last_type)) == 1; 6105 } 6106 6107 return count_type_elements (type, true) == num_elts; 6108 } 6109 6110 /* Return 1 if EXP contains mostly (3/4) zeros. */ 6111 6112 static int 6113 mostly_zeros_p (const_tree exp) 6114 { 6115 if (TREE_CODE (exp) == CONSTRUCTOR) 6116 { 6117 HOST_WIDE_INT nz_elts, init_elts; 6118 bool complete_p; 6119 6120 categorize_ctor_elements (exp, &nz_elts, &init_elts, &complete_p); 6121 return !complete_p || nz_elts < init_elts / 4; 6122 } 6123 6124 return initializer_zerop (exp); 6125 } 6126 6127 /* Return 1 if EXP contains all zeros. */ 6128 6129 static int 6130 all_zeros_p (const_tree exp) 6131 { 6132 if (TREE_CODE (exp) == CONSTRUCTOR) 6133 { 6134 HOST_WIDE_INT nz_elts, init_elts; 6135 bool complete_p; 6136 6137 categorize_ctor_elements (exp, &nz_elts, &init_elts, &complete_p); 6138 return nz_elts == 0; 6139 } 6140 6141 return initializer_zerop (exp); 6142 } 6143 6144 /* Helper function for store_constructor. 6145 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field. 6146 CLEARED is as for store_constructor. 6147 ALIAS_SET is the alias set to use for any stores. 6148 If REVERSE is true, the store is to be done in reverse order. 6149 6150 This provides a recursive shortcut back to store_constructor when it isn't 6151 necessary to go through store_field. This is so that we can pass through 6152 the cleared field to let store_constructor know that we may not have to 6153 clear a substructure if the outer structure has already been cleared. */ 6154 6155 static void 6156 store_constructor_field (rtx target, unsigned HOST_WIDE_INT bitsize, 6157 HOST_WIDE_INT bitpos, 6158 unsigned HOST_WIDE_INT bitregion_start, 6159 unsigned HOST_WIDE_INT bitregion_end, 6160 machine_mode mode, 6161 tree exp, int cleared, 6162 alias_set_type alias_set, bool reverse) 6163 { 6164 if (TREE_CODE (exp) == CONSTRUCTOR 6165 /* We can only call store_constructor recursively if the size and 6166 bit position are on a byte boundary. */ 6167 && bitpos % BITS_PER_UNIT == 0 6168 && (bitsize > 0 && bitsize % BITS_PER_UNIT == 0) 6169 /* If we have a nonzero bitpos for a register target, then we just 6170 let store_field do the bitfield handling. This is unlikely to 6171 generate unnecessary clear instructions anyways. */ 6172 && (bitpos == 0 || MEM_P (target))) 6173 { 6174 if (MEM_P (target)) 6175 target 6176 = adjust_address (target, 6177 GET_MODE (target) == BLKmode 6178 || 0 != (bitpos 6179 % GET_MODE_ALIGNMENT (GET_MODE (target))) 6180 ? BLKmode : VOIDmode, bitpos / BITS_PER_UNIT); 6181 6182 6183 /* Update the alias set, if required. */ 6184 if (MEM_P (target) && ! MEM_KEEP_ALIAS_SET_P (target) 6185 && MEM_ALIAS_SET (target) != 0) 6186 { 6187 target = copy_rtx (target); 6188 set_mem_alias_set (target, alias_set); 6189 } 6190 6191 store_constructor (exp, target, cleared, bitsize / BITS_PER_UNIT, 6192 reverse); 6193 } 6194 else 6195 store_field (target, bitsize, bitpos, bitregion_start, bitregion_end, mode, 6196 exp, alias_set, false, reverse); 6197 } 6198 6199 6200 /* Returns the number of FIELD_DECLs in TYPE. */ 6201 6202 static int 6203 fields_length (const_tree type) 6204 { 6205 tree t = TYPE_FIELDS (type); 6206 int count = 0; 6207 6208 for (; t; t = DECL_CHAIN (t)) 6209 if (TREE_CODE (t) == FIELD_DECL) 6210 ++count; 6211 6212 return count; 6213 } 6214 6215 6216 /* Store the value of constructor EXP into the rtx TARGET. 6217 TARGET is either a REG or a MEM; we know it cannot conflict, since 6218 safe_from_p has been called. 6219 CLEARED is true if TARGET is known to have been zero'd. 6220 SIZE is the number of bytes of TARGET we are allowed to modify: this 6221 may not be the same as the size of EXP if we are assigning to a field 6222 which has been packed to exclude padding bits. 6223 If REVERSE is true, the store is to be done in reverse order. */ 6224 6225 static void 6226 store_constructor (tree exp, rtx target, int cleared, HOST_WIDE_INT size, 6227 bool reverse) 6228 { 6229 tree type = TREE_TYPE (exp); 6230 HOST_WIDE_INT exp_size = int_size_in_bytes (type); 6231 HOST_WIDE_INT bitregion_end = size > 0 ? size * BITS_PER_UNIT - 1 : 0; 6232 6233 switch (TREE_CODE (type)) 6234 { 6235 case RECORD_TYPE: 6236 case UNION_TYPE: 6237 case QUAL_UNION_TYPE: 6238 { 6239 unsigned HOST_WIDE_INT idx; 6240 tree field, value; 6241 6242 /* The storage order is specified for every aggregate type. */ 6243 reverse = TYPE_REVERSE_STORAGE_ORDER (type); 6244 6245 /* If size is zero or the target is already cleared, do nothing. */ 6246 if (size == 0 || cleared) 6247 cleared = 1; 6248 /* We either clear the aggregate or indicate the value is dead. */ 6249 else if ((TREE_CODE (type) == UNION_TYPE 6250 || TREE_CODE (type) == QUAL_UNION_TYPE) 6251 && ! CONSTRUCTOR_ELTS (exp)) 6252 /* If the constructor is empty, clear the union. */ 6253 { 6254 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL); 6255 cleared = 1; 6256 } 6257 6258 /* If we are building a static constructor into a register, 6259 set the initial value as zero so we can fold the value into 6260 a constant. But if more than one register is involved, 6261 this probably loses. */ 6262 else if (REG_P (target) && TREE_STATIC (exp) 6263 && GET_MODE_SIZE (GET_MODE (target)) <= UNITS_PER_WORD) 6264 { 6265 emit_move_insn (target, CONST0_RTX (GET_MODE (target))); 6266 cleared = 1; 6267 } 6268 6269 /* If the constructor has fewer fields than the structure or 6270 if we are initializing the structure to mostly zeros, clear 6271 the whole structure first. Don't do this if TARGET is a 6272 register whose mode size isn't equal to SIZE since 6273 clear_storage can't handle this case. */ 6274 else if (size > 0 6275 && (((int) CONSTRUCTOR_NELTS (exp) != fields_length (type)) 6276 || mostly_zeros_p (exp)) 6277 && (!REG_P (target) 6278 || ((HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (target)) 6279 == size))) 6280 { 6281 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL); 6282 cleared = 1; 6283 } 6284 6285 if (REG_P (target) && !cleared) 6286 emit_clobber (target); 6287 6288 /* Store each element of the constructor into the 6289 corresponding field of TARGET. */ 6290 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, field, value) 6291 { 6292 machine_mode mode; 6293 HOST_WIDE_INT bitsize; 6294 HOST_WIDE_INT bitpos = 0; 6295 tree offset; 6296 rtx to_rtx = target; 6297 6298 /* Just ignore missing fields. We cleared the whole 6299 structure, above, if any fields are missing. */ 6300 if (field == 0) 6301 continue; 6302 6303 if (cleared && initializer_zerop (value)) 6304 continue; 6305 6306 if (tree_fits_uhwi_p (DECL_SIZE (field))) 6307 bitsize = tree_to_uhwi (DECL_SIZE (field)); 6308 else 6309 gcc_unreachable (); 6310 6311 mode = DECL_MODE (field); 6312 if (DECL_BIT_FIELD (field)) 6313 mode = VOIDmode; 6314 6315 offset = DECL_FIELD_OFFSET (field); 6316 if (tree_fits_shwi_p (offset) 6317 && tree_fits_shwi_p (bit_position (field))) 6318 { 6319 bitpos = int_bit_position (field); 6320 offset = NULL_TREE; 6321 } 6322 else 6323 gcc_unreachable (); 6324 6325 /* If this initializes a field that is smaller than a 6326 word, at the start of a word, try to widen it to a full 6327 word. This special case allows us to output C++ member 6328 function initializations in a form that the optimizers 6329 can understand. */ 6330 if (WORD_REGISTER_OPERATIONS 6331 && REG_P (target) 6332 && bitsize < BITS_PER_WORD 6333 && bitpos % BITS_PER_WORD == 0 6334 && GET_MODE_CLASS (mode) == MODE_INT 6335 && TREE_CODE (value) == INTEGER_CST 6336 && exp_size >= 0 6337 && bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT) 6338 { 6339 tree type = TREE_TYPE (value); 6340 6341 if (TYPE_PRECISION (type) < BITS_PER_WORD) 6342 { 6343 type = lang_hooks.types.type_for_mode 6344 (word_mode, TYPE_UNSIGNED (type)); 6345 value = fold_convert (type, value); 6346 /* Make sure the bits beyond the original bitsize are zero 6347 so that we can correctly avoid extra zeroing stores in 6348 later constructor elements. */ 6349 tree bitsize_mask 6350 = wide_int_to_tree (type, wi::mask (bitsize, false, 6351 BITS_PER_WORD)); 6352 value = fold_build2 (BIT_AND_EXPR, type, value, bitsize_mask); 6353 } 6354 6355 if (BYTES_BIG_ENDIAN) 6356 value 6357 = fold_build2 (LSHIFT_EXPR, type, value, 6358 build_int_cst (type, 6359 BITS_PER_WORD - bitsize)); 6360 bitsize = BITS_PER_WORD; 6361 mode = word_mode; 6362 } 6363 6364 if (MEM_P (to_rtx) && !MEM_KEEP_ALIAS_SET_P (to_rtx) 6365 && DECL_NONADDRESSABLE_P (field)) 6366 { 6367 to_rtx = copy_rtx (to_rtx); 6368 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1; 6369 } 6370 6371 store_constructor_field (to_rtx, bitsize, bitpos, 6372 0, bitregion_end, mode, 6373 value, cleared, 6374 get_alias_set (TREE_TYPE (field)), 6375 reverse); 6376 } 6377 break; 6378 } 6379 case ARRAY_TYPE: 6380 { 6381 tree value, index; 6382 unsigned HOST_WIDE_INT i; 6383 int need_to_clear; 6384 tree domain; 6385 tree elttype = TREE_TYPE (type); 6386 int const_bounds_p; 6387 HOST_WIDE_INT minelt = 0; 6388 HOST_WIDE_INT maxelt = 0; 6389 6390 /* The storage order is specified for every aggregate type. */ 6391 reverse = TYPE_REVERSE_STORAGE_ORDER (type); 6392 6393 domain = TYPE_DOMAIN (type); 6394 const_bounds_p = (TYPE_MIN_VALUE (domain) 6395 && TYPE_MAX_VALUE (domain) 6396 && tree_fits_shwi_p (TYPE_MIN_VALUE (domain)) 6397 && tree_fits_shwi_p (TYPE_MAX_VALUE (domain))); 6398 6399 /* If we have constant bounds for the range of the type, get them. */ 6400 if (const_bounds_p) 6401 { 6402 minelt = tree_to_shwi (TYPE_MIN_VALUE (domain)); 6403 maxelt = tree_to_shwi (TYPE_MAX_VALUE (domain)); 6404 } 6405 6406 /* If the constructor has fewer elements than the array, clear 6407 the whole array first. Similarly if this is static 6408 constructor of a non-BLKmode object. */ 6409 if (cleared) 6410 need_to_clear = 0; 6411 else if (REG_P (target) && TREE_STATIC (exp)) 6412 need_to_clear = 1; 6413 else 6414 { 6415 unsigned HOST_WIDE_INT idx; 6416 tree index, value; 6417 HOST_WIDE_INT count = 0, zero_count = 0; 6418 need_to_clear = ! const_bounds_p; 6419 6420 /* This loop is a more accurate version of the loop in 6421 mostly_zeros_p (it handles RANGE_EXPR in an index). It 6422 is also needed to check for missing elements. */ 6423 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, index, value) 6424 { 6425 HOST_WIDE_INT this_node_count; 6426 6427 if (need_to_clear) 6428 break; 6429 6430 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR) 6431 { 6432 tree lo_index = TREE_OPERAND (index, 0); 6433 tree hi_index = TREE_OPERAND (index, 1); 6434 6435 if (! tree_fits_uhwi_p (lo_index) 6436 || ! tree_fits_uhwi_p (hi_index)) 6437 { 6438 need_to_clear = 1; 6439 break; 6440 } 6441 6442 this_node_count = (tree_to_uhwi (hi_index) 6443 - tree_to_uhwi (lo_index) + 1); 6444 } 6445 else 6446 this_node_count = 1; 6447 6448 count += this_node_count; 6449 if (mostly_zeros_p (value)) 6450 zero_count += this_node_count; 6451 } 6452 6453 /* Clear the entire array first if there are any missing 6454 elements, or if the incidence of zero elements is >= 6455 75%. */ 6456 if (! need_to_clear 6457 && (count < maxelt - minelt + 1 6458 || 4 * zero_count >= 3 * count)) 6459 need_to_clear = 1; 6460 } 6461 6462 if (need_to_clear && size > 0) 6463 { 6464 if (REG_P (target)) 6465 emit_move_insn (target, CONST0_RTX (GET_MODE (target))); 6466 else 6467 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL); 6468 cleared = 1; 6469 } 6470 6471 if (!cleared && REG_P (target)) 6472 /* Inform later passes that the old value is dead. */ 6473 emit_clobber (target); 6474 6475 /* Store each element of the constructor into the 6476 corresponding element of TARGET, determined by counting the 6477 elements. */ 6478 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), i, index, value) 6479 { 6480 machine_mode mode; 6481 HOST_WIDE_INT bitsize; 6482 HOST_WIDE_INT bitpos; 6483 rtx xtarget = target; 6484 6485 if (cleared && initializer_zerop (value)) 6486 continue; 6487 6488 mode = TYPE_MODE (elttype); 6489 if (mode == BLKmode) 6490 bitsize = (tree_fits_uhwi_p (TYPE_SIZE (elttype)) 6491 ? tree_to_uhwi (TYPE_SIZE (elttype)) 6492 : -1); 6493 else 6494 bitsize = GET_MODE_BITSIZE (mode); 6495 6496 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR) 6497 { 6498 tree lo_index = TREE_OPERAND (index, 0); 6499 tree hi_index = TREE_OPERAND (index, 1); 6500 rtx index_r, pos_rtx; 6501 HOST_WIDE_INT lo, hi, count; 6502 tree position; 6503 6504 /* If the range is constant and "small", unroll the loop. */ 6505 if (const_bounds_p 6506 && tree_fits_shwi_p (lo_index) 6507 && tree_fits_shwi_p (hi_index) 6508 && (lo = tree_to_shwi (lo_index), 6509 hi = tree_to_shwi (hi_index), 6510 count = hi - lo + 1, 6511 (!MEM_P (target) 6512 || count <= 2 6513 || (tree_fits_uhwi_p (TYPE_SIZE (elttype)) 6514 && (tree_to_uhwi (TYPE_SIZE (elttype)) * count 6515 <= 40 * 8))))) 6516 { 6517 lo -= minelt; hi -= minelt; 6518 for (; lo <= hi; lo++) 6519 { 6520 bitpos = lo * tree_to_shwi (TYPE_SIZE (elttype)); 6521 6522 if (MEM_P (target) 6523 && !MEM_KEEP_ALIAS_SET_P (target) 6524 && TREE_CODE (type) == ARRAY_TYPE 6525 && TYPE_NONALIASED_COMPONENT (type)) 6526 { 6527 target = copy_rtx (target); 6528 MEM_KEEP_ALIAS_SET_P (target) = 1; 6529 } 6530 6531 store_constructor_field 6532 (target, bitsize, bitpos, 0, bitregion_end, 6533 mode, value, cleared, 6534 get_alias_set (elttype), reverse); 6535 } 6536 } 6537 else 6538 { 6539 rtx_code_label *loop_start = gen_label_rtx (); 6540 rtx_code_label *loop_end = gen_label_rtx (); 6541 tree exit_cond; 6542 6543 expand_normal (hi_index); 6544 6545 index = build_decl (EXPR_LOCATION (exp), 6546 VAR_DECL, NULL_TREE, domain); 6547 index_r = gen_reg_rtx (promote_decl_mode (index, NULL)); 6548 SET_DECL_RTL (index, index_r); 6549 store_expr (lo_index, index_r, 0, false, reverse); 6550 6551 /* Build the head of the loop. */ 6552 do_pending_stack_adjust (); 6553 emit_label (loop_start); 6554 6555 /* Assign value to element index. */ 6556 position = 6557 fold_convert (ssizetype, 6558 fold_build2 (MINUS_EXPR, 6559 TREE_TYPE (index), 6560 index, 6561 TYPE_MIN_VALUE (domain))); 6562 6563 position = 6564 size_binop (MULT_EXPR, position, 6565 fold_convert (ssizetype, 6566 TYPE_SIZE_UNIT (elttype))); 6567 6568 pos_rtx = expand_normal (position); 6569 xtarget = offset_address (target, pos_rtx, 6570 highest_pow2_factor (position)); 6571 xtarget = adjust_address (xtarget, mode, 0); 6572 if (TREE_CODE (value) == CONSTRUCTOR) 6573 store_constructor (value, xtarget, cleared, 6574 bitsize / BITS_PER_UNIT, reverse); 6575 else 6576 store_expr (value, xtarget, 0, false, reverse); 6577 6578 /* Generate a conditional jump to exit the loop. */ 6579 exit_cond = build2 (LT_EXPR, integer_type_node, 6580 index, hi_index); 6581 jumpif (exit_cond, loop_end, -1); 6582 6583 /* Update the loop counter, and jump to the head of 6584 the loop. */ 6585 expand_assignment (index, 6586 build2 (PLUS_EXPR, TREE_TYPE (index), 6587 index, integer_one_node), 6588 false); 6589 6590 emit_jump (loop_start); 6591 6592 /* Build the end of the loop. */ 6593 emit_label (loop_end); 6594 } 6595 } 6596 else if ((index != 0 && ! tree_fits_shwi_p (index)) 6597 || ! tree_fits_uhwi_p (TYPE_SIZE (elttype))) 6598 { 6599 tree position; 6600 6601 if (index == 0) 6602 index = ssize_int (1); 6603 6604 if (minelt) 6605 index = fold_convert (ssizetype, 6606 fold_build2 (MINUS_EXPR, 6607 TREE_TYPE (index), 6608 index, 6609 TYPE_MIN_VALUE (domain))); 6610 6611 position = 6612 size_binop (MULT_EXPR, index, 6613 fold_convert (ssizetype, 6614 TYPE_SIZE_UNIT (elttype))); 6615 xtarget = offset_address (target, 6616 expand_normal (position), 6617 highest_pow2_factor (position)); 6618 xtarget = adjust_address (xtarget, mode, 0); 6619 store_expr (value, xtarget, 0, false, reverse); 6620 } 6621 else 6622 { 6623 if (index != 0) 6624 bitpos = ((tree_to_shwi (index) - minelt) 6625 * tree_to_uhwi (TYPE_SIZE (elttype))); 6626 else 6627 bitpos = (i * tree_to_uhwi (TYPE_SIZE (elttype))); 6628 6629 if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target) 6630 && TREE_CODE (type) == ARRAY_TYPE 6631 && TYPE_NONALIASED_COMPONENT (type)) 6632 { 6633 target = copy_rtx (target); 6634 MEM_KEEP_ALIAS_SET_P (target) = 1; 6635 } 6636 store_constructor_field (target, bitsize, bitpos, 0, 6637 bitregion_end, mode, value, 6638 cleared, get_alias_set (elttype), 6639 reverse); 6640 } 6641 } 6642 break; 6643 } 6644 6645 case VECTOR_TYPE: 6646 { 6647 unsigned HOST_WIDE_INT idx; 6648 constructor_elt *ce; 6649 int i; 6650 int need_to_clear; 6651 int icode = CODE_FOR_nothing; 6652 tree elttype = TREE_TYPE (type); 6653 int elt_size = tree_to_uhwi (TYPE_SIZE (elttype)); 6654 machine_mode eltmode = TYPE_MODE (elttype); 6655 HOST_WIDE_INT bitsize; 6656 HOST_WIDE_INT bitpos; 6657 rtvec vector = NULL; 6658 unsigned n_elts; 6659 alias_set_type alias; 6660 6661 gcc_assert (eltmode != BLKmode); 6662 6663 n_elts = TYPE_VECTOR_SUBPARTS (type); 6664 if (REG_P (target) && VECTOR_MODE_P (GET_MODE (target))) 6665 { 6666 machine_mode mode = GET_MODE (target); 6667 6668 icode = (int) optab_handler (vec_init_optab, mode); 6669 /* Don't use vec_init<mode> if some elements have VECTOR_TYPE. */ 6670 if (icode != CODE_FOR_nothing) 6671 { 6672 tree value; 6673 6674 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value) 6675 if (TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE) 6676 { 6677 icode = CODE_FOR_nothing; 6678 break; 6679 } 6680 } 6681 if (icode != CODE_FOR_nothing) 6682 { 6683 unsigned int i; 6684 6685 vector = rtvec_alloc (n_elts); 6686 for (i = 0; i < n_elts; i++) 6687 RTVEC_ELT (vector, i) = CONST0_RTX (GET_MODE_INNER (mode)); 6688 } 6689 } 6690 6691 /* If the constructor has fewer elements than the vector, 6692 clear the whole array first. Similarly if this is static 6693 constructor of a non-BLKmode object. */ 6694 if (cleared) 6695 need_to_clear = 0; 6696 else if (REG_P (target) && TREE_STATIC (exp)) 6697 need_to_clear = 1; 6698 else 6699 { 6700 unsigned HOST_WIDE_INT count = 0, zero_count = 0; 6701 tree value; 6702 6703 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value) 6704 { 6705 int n_elts_here = tree_to_uhwi 6706 (int_const_binop (TRUNC_DIV_EXPR, 6707 TYPE_SIZE (TREE_TYPE (value)), 6708 TYPE_SIZE (elttype))); 6709 6710 count += n_elts_here; 6711 if (mostly_zeros_p (value)) 6712 zero_count += n_elts_here; 6713 } 6714 6715 /* Clear the entire vector first if there are any missing elements, 6716 or if the incidence of zero elements is >= 75%. */ 6717 need_to_clear = (count < n_elts || 4 * zero_count >= 3 * count); 6718 } 6719 6720 if (need_to_clear && size > 0 && !vector) 6721 { 6722 if (REG_P (target)) 6723 emit_move_insn (target, CONST0_RTX (GET_MODE (target))); 6724 else 6725 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL); 6726 cleared = 1; 6727 } 6728 6729 /* Inform later passes that the old value is dead. */ 6730 if (!cleared && !vector && REG_P (target)) 6731 emit_move_insn (target, CONST0_RTX (GET_MODE (target))); 6732 6733 if (MEM_P (target)) 6734 alias = MEM_ALIAS_SET (target); 6735 else 6736 alias = get_alias_set (elttype); 6737 6738 /* Store each element of the constructor into the corresponding 6739 element of TARGET, determined by counting the elements. */ 6740 for (idx = 0, i = 0; 6741 vec_safe_iterate (CONSTRUCTOR_ELTS (exp), idx, &ce); 6742 idx++, i += bitsize / elt_size) 6743 { 6744 HOST_WIDE_INT eltpos; 6745 tree value = ce->value; 6746 6747 bitsize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (value))); 6748 if (cleared && initializer_zerop (value)) 6749 continue; 6750 6751 if (ce->index) 6752 eltpos = tree_to_uhwi (ce->index); 6753 else 6754 eltpos = i; 6755 6756 if (vector) 6757 { 6758 /* vec_init<mode> should not be used if there are VECTOR_TYPE 6759 elements. */ 6760 gcc_assert (TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE); 6761 RTVEC_ELT (vector, eltpos) 6762 = expand_normal (value); 6763 } 6764 else 6765 { 6766 machine_mode value_mode = 6767 TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE 6768 ? TYPE_MODE (TREE_TYPE (value)) 6769 : eltmode; 6770 bitpos = eltpos * elt_size; 6771 store_constructor_field (target, bitsize, bitpos, 0, 6772 bitregion_end, value_mode, 6773 value, cleared, alias, reverse); 6774 } 6775 } 6776 6777 if (vector) 6778 emit_insn (GEN_FCN (icode) 6779 (target, 6780 gen_rtx_PARALLEL (GET_MODE (target), vector))); 6781 break; 6782 } 6783 6784 default: 6785 gcc_unreachable (); 6786 } 6787 } 6788 6789 /* Store the value of EXP (an expression tree) 6790 into a subfield of TARGET which has mode MODE and occupies 6791 BITSIZE bits, starting BITPOS bits from the start of TARGET. 6792 If MODE is VOIDmode, it means that we are storing into a bit-field. 6793 6794 BITREGION_START is bitpos of the first bitfield in this region. 6795 BITREGION_END is the bitpos of the ending bitfield in this region. 6796 These two fields are 0, if the C++ memory model does not apply, 6797 or we are not interested in keeping track of bitfield regions. 6798 6799 Always return const0_rtx unless we have something particular to 6800 return. 6801 6802 ALIAS_SET is the alias set for the destination. This value will 6803 (in general) be different from that for TARGET, since TARGET is a 6804 reference to the containing structure. 6805 6806 If NONTEMPORAL is true, try generating a nontemporal store. 6807 6808 If REVERSE is true, the store is to be done in reverse order. */ 6809 6810 static rtx 6811 store_field (rtx target, HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos, 6812 unsigned HOST_WIDE_INT bitregion_start, 6813 unsigned HOST_WIDE_INT bitregion_end, 6814 machine_mode mode, tree exp, 6815 alias_set_type alias_set, bool nontemporal, bool reverse) 6816 { 6817 if (TREE_CODE (exp) == ERROR_MARK) 6818 return const0_rtx; 6819 6820 /* If we have nothing to store, do nothing unless the expression has 6821 side-effects. Don't do that for zero sized addressable lhs of 6822 calls. */ 6823 if (bitsize == 0 6824 && (!TREE_ADDRESSABLE (TREE_TYPE (exp)) 6825 || TREE_CODE (exp) != CALL_EXPR)) 6826 return expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL); 6827 6828 if (GET_CODE (target) == CONCAT) 6829 { 6830 /* We're storing into a struct containing a single __complex. */ 6831 6832 gcc_assert (!bitpos); 6833 return store_expr (exp, target, 0, nontemporal, reverse); 6834 } 6835 6836 /* If the structure is in a register or if the component 6837 is a bit field, we cannot use addressing to access it. 6838 Use bit-field techniques or SUBREG to store in it. */ 6839 6840 if (mode == VOIDmode 6841 || (mode != BLKmode && ! direct_store[(int) mode] 6842 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT 6843 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT) 6844 || REG_P (target) 6845 || GET_CODE (target) == SUBREG 6846 /* If the field isn't aligned enough to store as an ordinary memref, 6847 store it as a bit field. */ 6848 || (mode != BLKmode 6849 && ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode)) 6850 || bitpos % GET_MODE_ALIGNMENT (mode)) 6851 && SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (target))) 6852 || (bitpos % BITS_PER_UNIT != 0))) 6853 || (bitsize >= 0 && mode != BLKmode 6854 && GET_MODE_BITSIZE (mode) > bitsize) 6855 /* If the RHS and field are a constant size and the size of the 6856 RHS isn't the same size as the bitfield, we must use bitfield 6857 operations. */ 6858 || (bitsize >= 0 6859 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST 6860 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) != 0 6861 /* Except for initialization of full bytes from a CONSTRUCTOR, which 6862 we will handle specially below. */ 6863 && !(TREE_CODE (exp) == CONSTRUCTOR 6864 && bitsize % BITS_PER_UNIT == 0) 6865 /* And except for bitwise copying of TREE_ADDRESSABLE types, 6866 where the FIELD_DECL has the right bitsize, but TREE_TYPE (exp) 6867 includes some extra padding. store_expr / expand_expr will in 6868 that case call get_inner_reference that will have the bitsize 6869 we check here and thus the block move will not clobber the 6870 padding that shouldn't be clobbered. In the future we could 6871 replace the TREE_ADDRESSABLE check with a check that 6872 get_base_address needs to live in memory. */ 6873 && (!TREE_ADDRESSABLE (TREE_TYPE (exp)) 6874 || TREE_CODE (exp) != COMPONENT_REF 6875 || TREE_CODE (DECL_SIZE (TREE_OPERAND (exp, 1))) != INTEGER_CST 6876 || (bitsize % BITS_PER_UNIT != 0) 6877 || (bitpos % BITS_PER_UNIT != 0) 6878 || (compare_tree_int (DECL_SIZE (TREE_OPERAND (exp, 1)), bitsize) 6879 != 0))) 6880 /* If we are expanding a MEM_REF of a non-BLKmode non-addressable 6881 decl we must use bitfield operations. */ 6882 || (bitsize >= 0 6883 && TREE_CODE (exp) == MEM_REF 6884 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR 6885 && DECL_P (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)) 6886 && !TREE_ADDRESSABLE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)) 6887 && DECL_MODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)) != BLKmode)) 6888 { 6889 rtx temp; 6890 gimple *nop_def; 6891 6892 /* If EXP is a NOP_EXPR of precision less than its mode, then that 6893 implies a mask operation. If the precision is the same size as 6894 the field we're storing into, that mask is redundant. This is 6895 particularly common with bit field assignments generated by the 6896 C front end. */ 6897 nop_def = get_def_for_expr (exp, NOP_EXPR); 6898 if (nop_def) 6899 { 6900 tree type = TREE_TYPE (exp); 6901 if (INTEGRAL_TYPE_P (type) 6902 && TYPE_PRECISION (type) < GET_MODE_BITSIZE (TYPE_MODE (type)) 6903 && bitsize == TYPE_PRECISION (type)) 6904 { 6905 tree op = gimple_assign_rhs1 (nop_def); 6906 type = TREE_TYPE (op); 6907 if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) >= bitsize) 6908 exp = op; 6909 } 6910 } 6911 6912 temp = expand_normal (exp); 6913 6914 /* Handle calls that return values in multiple non-contiguous locations. 6915 The Irix 6 ABI has examples of this. */ 6916 if (GET_CODE (temp) == PARALLEL) 6917 { 6918 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (exp)); 6919 machine_mode temp_mode = GET_MODE (temp); 6920 if (temp_mode == BLKmode || temp_mode == VOIDmode) 6921 temp_mode = smallest_mode_for_size (size * BITS_PER_UNIT, MODE_INT); 6922 rtx temp_target = gen_reg_rtx (temp_mode); 6923 emit_group_store (temp_target, temp, TREE_TYPE (exp), size); 6924 temp = temp_target; 6925 } 6926 6927 /* Handle calls that return BLKmode values in registers. */ 6928 else if (mode == BLKmode && REG_P (temp) && TREE_CODE (exp) == CALL_EXPR) 6929 { 6930 rtx temp_target = gen_reg_rtx (GET_MODE (temp)); 6931 copy_blkmode_from_reg (temp_target, temp, TREE_TYPE (exp)); 6932 temp = temp_target; 6933 } 6934 6935 /* If the value has aggregate type and an integral mode then, if BITSIZE 6936 is narrower than this mode and this is for big-endian data, we first 6937 need to put the value into the low-order bits for store_bit_field, 6938 except when MODE is BLKmode and BITSIZE larger than the word size 6939 (see the handling of fields larger than a word in store_bit_field). 6940 Moreover, the field may be not aligned on a byte boundary; in this 6941 case, if it has reverse storage order, it needs to be accessed as a 6942 scalar field with reverse storage order and we must first put the 6943 value into target order. */ 6944 if (AGGREGATE_TYPE_P (TREE_TYPE (exp)) 6945 && GET_MODE_CLASS (GET_MODE (temp)) == MODE_INT) 6946 { 6947 HOST_WIDE_INT size = GET_MODE_BITSIZE (GET_MODE (temp)); 6948 6949 reverse = TYPE_REVERSE_STORAGE_ORDER (TREE_TYPE (exp)); 6950 6951 if (reverse) 6952 temp = flip_storage_order (GET_MODE (temp), temp); 6953 6954 if (bitsize < size 6955 && reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN 6956 && !(mode == BLKmode && bitsize > BITS_PER_WORD)) 6957 temp = expand_shift (RSHIFT_EXPR, GET_MODE (temp), temp, 6958 size - bitsize, NULL_RTX, 1); 6959 } 6960 6961 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to MODE. */ 6962 if (mode != VOIDmode && mode != BLKmode 6963 && mode != TYPE_MODE (TREE_TYPE (exp))) 6964 temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1); 6965 6966 /* If the mode of TEMP and TARGET is BLKmode, both must be in memory 6967 and BITPOS must be aligned on a byte boundary. If so, we simply do 6968 a block copy. Likewise for a BLKmode-like TARGET. */ 6969 if (GET_MODE (temp) == BLKmode 6970 && (GET_MODE (target) == BLKmode 6971 || (MEM_P (target) 6972 && GET_MODE_CLASS (GET_MODE (target)) == MODE_INT 6973 && (bitpos % BITS_PER_UNIT) == 0 6974 && (bitsize % BITS_PER_UNIT) == 0))) 6975 { 6976 gcc_assert (MEM_P (target) && MEM_P (temp) 6977 && (bitpos % BITS_PER_UNIT) == 0); 6978 6979 target = adjust_address (target, VOIDmode, bitpos / BITS_PER_UNIT); 6980 emit_block_move (target, temp, 6981 GEN_INT ((bitsize + BITS_PER_UNIT - 1) 6982 / BITS_PER_UNIT), 6983 BLOCK_OP_NORMAL); 6984 6985 return const0_rtx; 6986 } 6987 6988 /* If the mode of TEMP is still BLKmode and BITSIZE not larger than the 6989 word size, we need to load the value (see again store_bit_field). */ 6990 if (GET_MODE (temp) == BLKmode && bitsize <= BITS_PER_WORD) 6991 { 6992 machine_mode temp_mode = smallest_mode_for_size (bitsize, MODE_INT); 6993 temp = extract_bit_field (temp, bitsize, 0, 1, NULL_RTX, temp_mode, 6994 temp_mode, false); 6995 } 6996 6997 /* Store the value in the bitfield. */ 6998 store_bit_field (target, bitsize, bitpos, 6999 bitregion_start, bitregion_end, 7000 mode, temp, reverse); 7001 7002 return const0_rtx; 7003 } 7004 else 7005 { 7006 /* Now build a reference to just the desired component. */ 7007 rtx to_rtx = adjust_address (target, mode, bitpos / BITS_PER_UNIT); 7008 7009 if (to_rtx == target) 7010 to_rtx = copy_rtx (to_rtx); 7011 7012 if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0) 7013 set_mem_alias_set (to_rtx, alias_set); 7014 7015 /* Above we avoided using bitfield operations for storing a CONSTRUCTOR 7016 into a target smaller than its type; handle that case now. */ 7017 if (TREE_CODE (exp) == CONSTRUCTOR && bitsize >= 0) 7018 { 7019 gcc_assert (bitsize % BITS_PER_UNIT == 0); 7020 store_constructor (exp, to_rtx, 0, bitsize / BITS_PER_UNIT, reverse); 7021 return to_rtx; 7022 } 7023 7024 return store_expr (exp, to_rtx, 0, nontemporal, reverse); 7025 } 7026 } 7027 7028 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF, 7029 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these 7030 codes and find the ultimate containing object, which we return. 7031 7032 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the 7033 bit position, *PUNSIGNEDP to the signedness and *PREVERSEP to the 7034 storage order of the field. 7035 If the position of the field is variable, we store a tree 7036 giving the variable offset (in units) in *POFFSET. 7037 This offset is in addition to the bit position. 7038 If the position is not variable, we store 0 in *POFFSET. 7039 7040 If any of the extraction expressions is volatile, 7041 we store 1 in *PVOLATILEP. Otherwise we don't change that. 7042 7043 If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode. 7044 Otherwise, it is a mode that can be used to access the field. 7045 7046 If the field describes a variable-sized object, *PMODE is set to 7047 BLKmode and *PBITSIZE is set to -1. An access cannot be made in 7048 this case, but the address of the object can be found. */ 7049 7050 tree 7051 get_inner_reference (tree exp, HOST_WIDE_INT *pbitsize, 7052 HOST_WIDE_INT *pbitpos, tree *poffset, 7053 machine_mode *pmode, int *punsignedp, 7054 int *preversep, int *pvolatilep) 7055 { 7056 tree size_tree = 0; 7057 machine_mode mode = VOIDmode; 7058 bool blkmode_bitfield = false; 7059 tree offset = size_zero_node; 7060 offset_int bit_offset = 0; 7061 7062 /* First get the mode, signedness, storage order and size. We do this from 7063 just the outermost expression. */ 7064 *pbitsize = -1; 7065 if (TREE_CODE (exp) == COMPONENT_REF) 7066 { 7067 tree field = TREE_OPERAND (exp, 1); 7068 size_tree = DECL_SIZE (field); 7069 if (flag_strict_volatile_bitfields > 0 7070 && TREE_THIS_VOLATILE (exp) 7071 && DECL_BIT_FIELD_TYPE (field) 7072 && DECL_MODE (field) != BLKmode) 7073 /* Volatile bitfields should be accessed in the mode of the 7074 field's type, not the mode computed based on the bit 7075 size. */ 7076 mode = TYPE_MODE (DECL_BIT_FIELD_TYPE (field)); 7077 else if (!DECL_BIT_FIELD (field)) 7078 { 7079 mode = DECL_MODE (field); 7080 /* For vector fields re-check the target flags, as DECL_MODE 7081 could have been set with different target flags than 7082 the current function has. */ 7083 if (mode == BLKmode 7084 && VECTOR_TYPE_P (TREE_TYPE (field)) 7085 && VECTOR_MODE_P (TYPE_MODE_RAW (TREE_TYPE (field)))) 7086 mode = TYPE_MODE (TREE_TYPE (field)); 7087 } 7088 else if (DECL_MODE (field) == BLKmode) 7089 blkmode_bitfield = true; 7090 7091 *punsignedp = DECL_UNSIGNED (field); 7092 } 7093 else if (TREE_CODE (exp) == BIT_FIELD_REF) 7094 { 7095 size_tree = TREE_OPERAND (exp, 1); 7096 *punsignedp = (! INTEGRAL_TYPE_P (TREE_TYPE (exp)) 7097 || TYPE_UNSIGNED (TREE_TYPE (exp))); 7098 7099 /* For vector types, with the correct size of access, use the mode of 7100 inner type. */ 7101 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == VECTOR_TYPE 7102 && TREE_TYPE (exp) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))) 7103 && tree_int_cst_equal (size_tree, TYPE_SIZE (TREE_TYPE (exp)))) 7104 mode = TYPE_MODE (TREE_TYPE (exp)); 7105 } 7106 else 7107 { 7108 mode = TYPE_MODE (TREE_TYPE (exp)); 7109 *punsignedp = TYPE_UNSIGNED (TREE_TYPE (exp)); 7110 7111 if (mode == BLKmode) 7112 size_tree = TYPE_SIZE (TREE_TYPE (exp)); 7113 else 7114 *pbitsize = GET_MODE_BITSIZE (mode); 7115 } 7116 7117 if (size_tree != 0) 7118 { 7119 if (! tree_fits_uhwi_p (size_tree)) 7120 mode = BLKmode, *pbitsize = -1; 7121 else 7122 *pbitsize = tree_to_uhwi (size_tree); 7123 } 7124 7125 *preversep = reverse_storage_order_for_component_p (exp); 7126 7127 /* Compute cumulative bit-offset for nested component-refs and array-refs, 7128 and find the ultimate containing object. */ 7129 while (1) 7130 { 7131 switch (TREE_CODE (exp)) 7132 { 7133 case BIT_FIELD_REF: 7134 bit_offset += wi::to_offset (TREE_OPERAND (exp, 2)); 7135 break; 7136 7137 case COMPONENT_REF: 7138 { 7139 tree field = TREE_OPERAND (exp, 1); 7140 tree this_offset = component_ref_field_offset (exp); 7141 7142 /* If this field hasn't been filled in yet, don't go past it. 7143 This should only happen when folding expressions made during 7144 type construction. */ 7145 if (this_offset == 0) 7146 break; 7147 7148 offset = size_binop (PLUS_EXPR, offset, this_offset); 7149 bit_offset += wi::to_offset (DECL_FIELD_BIT_OFFSET (field)); 7150 7151 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */ 7152 } 7153 break; 7154 7155 case ARRAY_REF: 7156 case ARRAY_RANGE_REF: 7157 { 7158 tree index = TREE_OPERAND (exp, 1); 7159 tree low_bound = array_ref_low_bound (exp); 7160 tree unit_size = array_ref_element_size (exp); 7161 7162 /* We assume all arrays have sizes that are a multiple of a byte. 7163 First subtract the lower bound, if any, in the type of the 7164 index, then convert to sizetype and multiply by the size of 7165 the array element. */ 7166 if (! integer_zerop (low_bound)) 7167 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index), 7168 index, low_bound); 7169 7170 offset = size_binop (PLUS_EXPR, offset, 7171 size_binop (MULT_EXPR, 7172 fold_convert (sizetype, index), 7173 unit_size)); 7174 } 7175 break; 7176 7177 case REALPART_EXPR: 7178 break; 7179 7180 case IMAGPART_EXPR: 7181 bit_offset += *pbitsize; 7182 break; 7183 7184 case VIEW_CONVERT_EXPR: 7185 break; 7186 7187 case MEM_REF: 7188 /* Hand back the decl for MEM[&decl, off]. */ 7189 if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR) 7190 { 7191 tree off = TREE_OPERAND (exp, 1); 7192 if (!integer_zerop (off)) 7193 { 7194 offset_int boff, coff = mem_ref_offset (exp); 7195 boff = coff << LOG2_BITS_PER_UNIT; 7196 bit_offset += boff; 7197 } 7198 exp = TREE_OPERAND (TREE_OPERAND (exp, 0), 0); 7199 } 7200 goto done; 7201 7202 default: 7203 goto done; 7204 } 7205 7206 /* If any reference in the chain is volatile, the effect is volatile. */ 7207 if (TREE_THIS_VOLATILE (exp)) 7208 *pvolatilep = 1; 7209 7210 exp = TREE_OPERAND (exp, 0); 7211 } 7212 done: 7213 7214 /* If OFFSET is constant, see if we can return the whole thing as a 7215 constant bit position. Make sure to handle overflow during 7216 this conversion. */ 7217 if (TREE_CODE (offset) == INTEGER_CST) 7218 { 7219 offset_int tem = wi::sext (wi::to_offset (offset), 7220 TYPE_PRECISION (sizetype)); 7221 tem <<= LOG2_BITS_PER_UNIT; 7222 tem += bit_offset; 7223 if (wi::fits_shwi_p (tem)) 7224 { 7225 *pbitpos = tem.to_shwi (); 7226 *poffset = offset = NULL_TREE; 7227 } 7228 } 7229 7230 /* Otherwise, split it up. */ 7231 if (offset) 7232 { 7233 /* Avoid returning a negative bitpos as this may wreak havoc later. */ 7234 if (wi::neg_p (bit_offset) || !wi::fits_shwi_p (bit_offset)) 7235 { 7236 offset_int mask = wi::mask <offset_int> (LOG2_BITS_PER_UNIT, false); 7237 offset_int tem = bit_offset.and_not (mask); 7238 /* TEM is the bitpos rounded to BITS_PER_UNIT towards -Inf. 7239 Subtract it to BIT_OFFSET and add it (scaled) to OFFSET. */ 7240 bit_offset -= tem; 7241 tem >>= LOG2_BITS_PER_UNIT; 7242 offset = size_binop (PLUS_EXPR, offset, 7243 wide_int_to_tree (sizetype, tem)); 7244 } 7245 7246 *pbitpos = bit_offset.to_shwi (); 7247 *poffset = offset; 7248 } 7249 7250 /* We can use BLKmode for a byte-aligned BLKmode bitfield. */ 7251 if (mode == VOIDmode 7252 && blkmode_bitfield 7253 && (*pbitpos % BITS_PER_UNIT) == 0 7254 && (*pbitsize % BITS_PER_UNIT) == 0) 7255 *pmode = BLKmode; 7256 else 7257 *pmode = mode; 7258 7259 return exp; 7260 } 7261 7262 /* Alignment in bits the TARGET of an assignment may be assumed to have. */ 7263 7264 static unsigned HOST_WIDE_INT 7265 target_align (const_tree target) 7266 { 7267 /* We might have a chain of nested references with intermediate misaligning 7268 bitfields components, so need to recurse to find out. */ 7269 7270 unsigned HOST_WIDE_INT this_align, outer_align; 7271 7272 switch (TREE_CODE (target)) 7273 { 7274 case BIT_FIELD_REF: 7275 return 1; 7276 7277 case COMPONENT_REF: 7278 this_align = DECL_ALIGN (TREE_OPERAND (target, 1)); 7279 outer_align = target_align (TREE_OPERAND (target, 0)); 7280 return MIN (this_align, outer_align); 7281 7282 case ARRAY_REF: 7283 case ARRAY_RANGE_REF: 7284 this_align = TYPE_ALIGN (TREE_TYPE (target)); 7285 outer_align = target_align (TREE_OPERAND (target, 0)); 7286 return MIN (this_align, outer_align); 7287 7288 CASE_CONVERT: 7289 case NON_LVALUE_EXPR: 7290 case VIEW_CONVERT_EXPR: 7291 this_align = TYPE_ALIGN (TREE_TYPE (target)); 7292 outer_align = target_align (TREE_OPERAND (target, 0)); 7293 return MAX (this_align, outer_align); 7294 7295 default: 7296 return TYPE_ALIGN (TREE_TYPE (target)); 7297 } 7298 } 7299 7300 7301 /* Given an rtx VALUE that may contain additions and multiplications, return 7302 an equivalent value that just refers to a register, memory, or constant. 7303 This is done by generating instructions to perform the arithmetic and 7304 returning a pseudo-register containing the value. 7305 7306 The returned value may be a REG, SUBREG, MEM or constant. */ 7307 7308 rtx 7309 force_operand (rtx value, rtx target) 7310 { 7311 rtx op1, op2; 7312 /* Use subtarget as the target for operand 0 of a binary operation. */ 7313 rtx subtarget = get_subtarget (target); 7314 enum rtx_code code = GET_CODE (value); 7315 7316 /* Check for subreg applied to an expression produced by loop optimizer. */ 7317 if (code == SUBREG 7318 && !REG_P (SUBREG_REG (value)) 7319 && !MEM_P (SUBREG_REG (value))) 7320 { 7321 value 7322 = simplify_gen_subreg (GET_MODE (value), 7323 force_reg (GET_MODE (SUBREG_REG (value)), 7324 force_operand (SUBREG_REG (value), 7325 NULL_RTX)), 7326 GET_MODE (SUBREG_REG (value)), 7327 SUBREG_BYTE (value)); 7328 code = GET_CODE (value); 7329 } 7330 7331 /* Check for a PIC address load. */ 7332 if ((code == PLUS || code == MINUS) 7333 && XEXP (value, 0) == pic_offset_table_rtx 7334 && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF 7335 || GET_CODE (XEXP (value, 1)) == LABEL_REF 7336 || GET_CODE (XEXP (value, 1)) == CONST)) 7337 { 7338 if (!subtarget) 7339 subtarget = gen_reg_rtx (GET_MODE (value)); 7340 emit_move_insn (subtarget, value); 7341 return subtarget; 7342 } 7343 7344 if (ARITHMETIC_P (value)) 7345 { 7346 op2 = XEXP (value, 1); 7347 if (!CONSTANT_P (op2) && !(REG_P (op2) && op2 != subtarget)) 7348 subtarget = 0; 7349 if (code == MINUS && CONST_INT_P (op2)) 7350 { 7351 code = PLUS; 7352 op2 = negate_rtx (GET_MODE (value), op2); 7353 } 7354 7355 /* Check for an addition with OP2 a constant integer and our first 7356 operand a PLUS of a virtual register and something else. In that 7357 case, we want to emit the sum of the virtual register and the 7358 constant first and then add the other value. This allows virtual 7359 register instantiation to simply modify the constant rather than 7360 creating another one around this addition. */ 7361 if (code == PLUS && CONST_INT_P (op2) 7362 && GET_CODE (XEXP (value, 0)) == PLUS 7363 && REG_P (XEXP (XEXP (value, 0), 0)) 7364 && REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER 7365 && REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER) 7366 { 7367 rtx temp = expand_simple_binop (GET_MODE (value), code, 7368 XEXP (XEXP (value, 0), 0), op2, 7369 subtarget, 0, OPTAB_LIB_WIDEN); 7370 return expand_simple_binop (GET_MODE (value), code, temp, 7371 force_operand (XEXP (XEXP (value, 7372 0), 1), 0), 7373 target, 0, OPTAB_LIB_WIDEN); 7374 } 7375 7376 op1 = force_operand (XEXP (value, 0), subtarget); 7377 op2 = force_operand (op2, NULL_RTX); 7378 switch (code) 7379 { 7380 case MULT: 7381 return expand_mult (GET_MODE (value), op1, op2, target, 1); 7382 case DIV: 7383 if (!INTEGRAL_MODE_P (GET_MODE (value))) 7384 return expand_simple_binop (GET_MODE (value), code, op1, op2, 7385 target, 1, OPTAB_LIB_WIDEN); 7386 else 7387 return expand_divmod (0, 7388 FLOAT_MODE_P (GET_MODE (value)) 7389 ? RDIV_EXPR : TRUNC_DIV_EXPR, 7390 GET_MODE (value), op1, op2, target, 0); 7391 case MOD: 7392 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2, 7393 target, 0); 7394 case UDIV: 7395 return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), op1, op2, 7396 target, 1); 7397 case UMOD: 7398 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2, 7399 target, 1); 7400 case ASHIFTRT: 7401 return expand_simple_binop (GET_MODE (value), code, op1, op2, 7402 target, 0, OPTAB_LIB_WIDEN); 7403 default: 7404 return expand_simple_binop (GET_MODE (value), code, op1, op2, 7405 target, 1, OPTAB_LIB_WIDEN); 7406 } 7407 } 7408 if (UNARY_P (value)) 7409 { 7410 if (!target) 7411 target = gen_reg_rtx (GET_MODE (value)); 7412 op1 = force_operand (XEXP (value, 0), NULL_RTX); 7413 switch (code) 7414 { 7415 case ZERO_EXTEND: 7416 case SIGN_EXTEND: 7417 case TRUNCATE: 7418 case FLOAT_EXTEND: 7419 case FLOAT_TRUNCATE: 7420 convert_move (target, op1, code == ZERO_EXTEND); 7421 return target; 7422 7423 case FIX: 7424 case UNSIGNED_FIX: 7425 expand_fix (target, op1, code == UNSIGNED_FIX); 7426 return target; 7427 7428 case FLOAT: 7429 case UNSIGNED_FLOAT: 7430 expand_float (target, op1, code == UNSIGNED_FLOAT); 7431 return target; 7432 7433 default: 7434 return expand_simple_unop (GET_MODE (value), code, op1, target, 0); 7435 } 7436 } 7437 7438 #ifdef INSN_SCHEDULING 7439 /* On machines that have insn scheduling, we want all memory reference to be 7440 explicit, so we need to deal with such paradoxical SUBREGs. */ 7441 if (paradoxical_subreg_p (value) && MEM_P (SUBREG_REG (value))) 7442 value 7443 = simplify_gen_subreg (GET_MODE (value), 7444 force_reg (GET_MODE (SUBREG_REG (value)), 7445 force_operand (SUBREG_REG (value), 7446 NULL_RTX)), 7447 GET_MODE (SUBREG_REG (value)), 7448 SUBREG_BYTE (value)); 7449 #endif 7450 7451 return value; 7452 } 7453 7454 /* Subroutine of expand_expr: return nonzero iff there is no way that 7455 EXP can reference X, which is being modified. TOP_P is nonzero if this 7456 call is going to be used to determine whether we need a temporary 7457 for EXP, as opposed to a recursive call to this function. 7458 7459 It is always safe for this routine to return zero since it merely 7460 searches for optimization opportunities. */ 7461 7462 int 7463 safe_from_p (const_rtx x, tree exp, int top_p) 7464 { 7465 rtx exp_rtl = 0; 7466 int i, nops; 7467 7468 if (x == 0 7469 /* If EXP has varying size, we MUST use a target since we currently 7470 have no way of allocating temporaries of variable size 7471 (except for arrays that have TYPE_ARRAY_MAX_SIZE set). 7472 So we assume here that something at a higher level has prevented a 7473 clash. This is somewhat bogus, but the best we can do. Only 7474 do this when X is BLKmode and when we are at the top level. */ 7475 || (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp)) 7476 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST 7477 && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE 7478 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE 7479 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp))) 7480 != INTEGER_CST) 7481 && GET_MODE (x) == BLKmode) 7482 /* If X is in the outgoing argument area, it is always safe. */ 7483 || (MEM_P (x) 7484 && (XEXP (x, 0) == virtual_outgoing_args_rtx 7485 || (GET_CODE (XEXP (x, 0)) == PLUS 7486 && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx)))) 7487 return 1; 7488 7489 /* If this is a subreg of a hard register, declare it unsafe, otherwise, 7490 find the underlying pseudo. */ 7491 if (GET_CODE (x) == SUBREG) 7492 { 7493 x = SUBREG_REG (x); 7494 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER) 7495 return 0; 7496 } 7497 7498 /* Now look at our tree code and possibly recurse. */ 7499 switch (TREE_CODE_CLASS (TREE_CODE (exp))) 7500 { 7501 case tcc_declaration: 7502 exp_rtl = DECL_RTL_IF_SET (exp); 7503 break; 7504 7505 case tcc_constant: 7506 return 1; 7507 7508 case tcc_exceptional: 7509 if (TREE_CODE (exp) == TREE_LIST) 7510 { 7511 while (1) 7512 { 7513 if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0)) 7514 return 0; 7515 exp = TREE_CHAIN (exp); 7516 if (!exp) 7517 return 1; 7518 if (TREE_CODE (exp) != TREE_LIST) 7519 return safe_from_p (x, exp, 0); 7520 } 7521 } 7522 else if (TREE_CODE (exp) == CONSTRUCTOR) 7523 { 7524 constructor_elt *ce; 7525 unsigned HOST_WIDE_INT idx; 7526 7527 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (exp), idx, ce) 7528 if ((ce->index != NULL_TREE && !safe_from_p (x, ce->index, 0)) 7529 || !safe_from_p (x, ce->value, 0)) 7530 return 0; 7531 return 1; 7532 } 7533 else if (TREE_CODE (exp) == ERROR_MARK) 7534 return 1; /* An already-visited SAVE_EXPR? */ 7535 else 7536 return 0; 7537 7538 case tcc_statement: 7539 /* The only case we look at here is the DECL_INITIAL inside a 7540 DECL_EXPR. */ 7541 return (TREE_CODE (exp) != DECL_EXPR 7542 || TREE_CODE (DECL_EXPR_DECL (exp)) != VAR_DECL 7543 || !DECL_INITIAL (DECL_EXPR_DECL (exp)) 7544 || safe_from_p (x, DECL_INITIAL (DECL_EXPR_DECL (exp)), 0)); 7545 7546 case tcc_binary: 7547 case tcc_comparison: 7548 if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0)) 7549 return 0; 7550 /* Fall through. */ 7551 7552 case tcc_unary: 7553 return safe_from_p (x, TREE_OPERAND (exp, 0), 0); 7554 7555 case tcc_expression: 7556 case tcc_reference: 7557 case tcc_vl_exp: 7558 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in 7559 the expression. If it is set, we conflict iff we are that rtx or 7560 both are in memory. Otherwise, we check all operands of the 7561 expression recursively. */ 7562 7563 switch (TREE_CODE (exp)) 7564 { 7565 case ADDR_EXPR: 7566 /* If the operand is static or we are static, we can't conflict. 7567 Likewise if we don't conflict with the operand at all. */ 7568 if (staticp (TREE_OPERAND (exp, 0)) 7569 || TREE_STATIC (exp) 7570 || safe_from_p (x, TREE_OPERAND (exp, 0), 0)) 7571 return 1; 7572 7573 /* Otherwise, the only way this can conflict is if we are taking 7574 the address of a DECL a that address if part of X, which is 7575 very rare. */ 7576 exp = TREE_OPERAND (exp, 0); 7577 if (DECL_P (exp)) 7578 { 7579 if (!DECL_RTL_SET_P (exp) 7580 || !MEM_P (DECL_RTL (exp))) 7581 return 0; 7582 else 7583 exp_rtl = XEXP (DECL_RTL (exp), 0); 7584 } 7585 break; 7586 7587 case MEM_REF: 7588 if (MEM_P (x) 7589 && alias_sets_conflict_p (MEM_ALIAS_SET (x), 7590 get_alias_set (exp))) 7591 return 0; 7592 break; 7593 7594 case CALL_EXPR: 7595 /* Assume that the call will clobber all hard registers and 7596 all of memory. */ 7597 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER) 7598 || MEM_P (x)) 7599 return 0; 7600 break; 7601 7602 case WITH_CLEANUP_EXPR: 7603 case CLEANUP_POINT_EXPR: 7604 /* Lowered by gimplify.c. */ 7605 gcc_unreachable (); 7606 7607 case SAVE_EXPR: 7608 return safe_from_p (x, TREE_OPERAND (exp, 0), 0); 7609 7610 default: 7611 break; 7612 } 7613 7614 /* If we have an rtx, we do not need to scan our operands. */ 7615 if (exp_rtl) 7616 break; 7617 7618 nops = TREE_OPERAND_LENGTH (exp); 7619 for (i = 0; i < nops; i++) 7620 if (TREE_OPERAND (exp, i) != 0 7621 && ! safe_from_p (x, TREE_OPERAND (exp, i), 0)) 7622 return 0; 7623 7624 break; 7625 7626 case tcc_type: 7627 /* Should never get a type here. */ 7628 gcc_unreachable (); 7629 } 7630 7631 /* If we have an rtl, find any enclosed object. Then see if we conflict 7632 with it. */ 7633 if (exp_rtl) 7634 { 7635 if (GET_CODE (exp_rtl) == SUBREG) 7636 { 7637 exp_rtl = SUBREG_REG (exp_rtl); 7638 if (REG_P (exp_rtl) 7639 && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER) 7640 return 0; 7641 } 7642 7643 /* If the rtl is X, then it is not safe. Otherwise, it is unless both 7644 are memory and they conflict. */ 7645 return ! (rtx_equal_p (x, exp_rtl) 7646 || (MEM_P (x) && MEM_P (exp_rtl) 7647 && true_dependence (exp_rtl, VOIDmode, x))); 7648 } 7649 7650 /* If we reach here, it is safe. */ 7651 return 1; 7652 } 7653 7654 7655 /* Return the highest power of two that EXP is known to be a multiple of. 7656 This is used in updating alignment of MEMs in array references. */ 7657 7658 unsigned HOST_WIDE_INT 7659 highest_pow2_factor (const_tree exp) 7660 { 7661 unsigned HOST_WIDE_INT ret; 7662 int trailing_zeros = tree_ctz (exp); 7663 if (trailing_zeros >= HOST_BITS_PER_WIDE_INT) 7664 return BIGGEST_ALIGNMENT; 7665 ret = HOST_WIDE_INT_1U << trailing_zeros; 7666 if (ret > BIGGEST_ALIGNMENT) 7667 return BIGGEST_ALIGNMENT; 7668 return ret; 7669 } 7670 7671 /* Similar, except that the alignment requirements of TARGET are 7672 taken into account. Assume it is at least as aligned as its 7673 type, unless it is a COMPONENT_REF in which case the layout of 7674 the structure gives the alignment. */ 7675 7676 static unsigned HOST_WIDE_INT 7677 highest_pow2_factor_for_target (const_tree target, const_tree exp) 7678 { 7679 unsigned HOST_WIDE_INT talign = target_align (target) / BITS_PER_UNIT; 7680 unsigned HOST_WIDE_INT factor = highest_pow2_factor (exp); 7681 7682 return MAX (factor, talign); 7683 } 7684 7685 /* Convert the tree comparison code TCODE to the rtl one where the 7686 signedness is UNSIGNEDP. */ 7687 7688 static enum rtx_code 7689 convert_tree_comp_to_rtx (enum tree_code tcode, int unsignedp) 7690 { 7691 enum rtx_code code; 7692 switch (tcode) 7693 { 7694 case EQ_EXPR: 7695 code = EQ; 7696 break; 7697 case NE_EXPR: 7698 code = NE; 7699 break; 7700 case LT_EXPR: 7701 code = unsignedp ? LTU : LT; 7702 break; 7703 case LE_EXPR: 7704 code = unsignedp ? LEU : LE; 7705 break; 7706 case GT_EXPR: 7707 code = unsignedp ? GTU : GT; 7708 break; 7709 case GE_EXPR: 7710 code = unsignedp ? GEU : GE; 7711 break; 7712 case UNORDERED_EXPR: 7713 code = UNORDERED; 7714 break; 7715 case ORDERED_EXPR: 7716 code = ORDERED; 7717 break; 7718 case UNLT_EXPR: 7719 code = UNLT; 7720 break; 7721 case UNLE_EXPR: 7722 code = UNLE; 7723 break; 7724 case UNGT_EXPR: 7725 code = UNGT; 7726 break; 7727 case UNGE_EXPR: 7728 code = UNGE; 7729 break; 7730 case UNEQ_EXPR: 7731 code = UNEQ; 7732 break; 7733 case LTGT_EXPR: 7734 code = LTGT; 7735 break; 7736 7737 default: 7738 gcc_unreachable (); 7739 } 7740 return code; 7741 } 7742 7743 /* Subroutine of expand_expr. Expand the two operands of a binary 7744 expression EXP0 and EXP1 placing the results in OP0 and OP1. 7745 The value may be stored in TARGET if TARGET is nonzero. The 7746 MODIFIER argument is as documented by expand_expr. */ 7747 7748 void 7749 expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1, 7750 enum expand_modifier modifier) 7751 { 7752 if (! safe_from_p (target, exp1, 1)) 7753 target = 0; 7754 if (operand_equal_p (exp0, exp1, 0)) 7755 { 7756 *op0 = expand_expr (exp0, target, VOIDmode, modifier); 7757 *op1 = copy_rtx (*op0); 7758 } 7759 else 7760 { 7761 *op0 = expand_expr (exp0, target, VOIDmode, modifier); 7762 *op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier); 7763 } 7764 } 7765 7766 7767 /* Return a MEM that contains constant EXP. DEFER is as for 7768 output_constant_def and MODIFIER is as for expand_expr. */ 7769 7770 static rtx 7771 expand_expr_constant (tree exp, int defer, enum expand_modifier modifier) 7772 { 7773 rtx mem; 7774 7775 mem = output_constant_def (exp, defer); 7776 if (modifier != EXPAND_INITIALIZER) 7777 mem = use_anchored_address (mem); 7778 return mem; 7779 } 7780 7781 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP. 7782 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */ 7783 7784 static rtx 7785 expand_expr_addr_expr_1 (tree exp, rtx target, machine_mode tmode, 7786 enum expand_modifier modifier, addr_space_t as) 7787 { 7788 rtx result, subtarget; 7789 tree inner, offset; 7790 HOST_WIDE_INT bitsize, bitpos; 7791 int unsignedp, reversep, volatilep = 0; 7792 machine_mode mode1; 7793 7794 /* If we are taking the address of a constant and are at the top level, 7795 we have to use output_constant_def since we can't call force_const_mem 7796 at top level. */ 7797 /* ??? This should be considered a front-end bug. We should not be 7798 generating ADDR_EXPR of something that isn't an LVALUE. The only 7799 exception here is STRING_CST. */ 7800 if (CONSTANT_CLASS_P (exp)) 7801 { 7802 result = XEXP (expand_expr_constant (exp, 0, modifier), 0); 7803 if (modifier < EXPAND_SUM) 7804 result = force_operand (result, target); 7805 return result; 7806 } 7807 7808 /* Everything must be something allowed by is_gimple_addressable. */ 7809 switch (TREE_CODE (exp)) 7810 { 7811 case INDIRECT_REF: 7812 /* This case will happen via recursion for &a->b. */ 7813 return expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier); 7814 7815 case MEM_REF: 7816 { 7817 tree tem = TREE_OPERAND (exp, 0); 7818 if (!integer_zerop (TREE_OPERAND (exp, 1))) 7819 tem = fold_build_pointer_plus (tem, TREE_OPERAND (exp, 1)); 7820 return expand_expr (tem, target, tmode, modifier); 7821 } 7822 7823 case CONST_DECL: 7824 /* Expand the initializer like constants above. */ 7825 result = XEXP (expand_expr_constant (DECL_INITIAL (exp), 7826 0, modifier), 0); 7827 if (modifier < EXPAND_SUM) 7828 result = force_operand (result, target); 7829 return result; 7830 7831 case REALPART_EXPR: 7832 /* The real part of the complex number is always first, therefore 7833 the address is the same as the address of the parent object. */ 7834 offset = 0; 7835 bitpos = 0; 7836 inner = TREE_OPERAND (exp, 0); 7837 break; 7838 7839 case IMAGPART_EXPR: 7840 /* The imaginary part of the complex number is always second. 7841 The expression is therefore always offset by the size of the 7842 scalar type. */ 7843 offset = 0; 7844 bitpos = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp))); 7845 inner = TREE_OPERAND (exp, 0); 7846 break; 7847 7848 case COMPOUND_LITERAL_EXPR: 7849 /* Allow COMPOUND_LITERAL_EXPR in initializers or coming from 7850 initializers, if e.g. rtl_for_decl_init is called on DECL_INITIAL 7851 with COMPOUND_LITERAL_EXPRs in it, or ARRAY_REF on a const static 7852 array with address of COMPOUND_LITERAL_EXPR in DECL_INITIAL; 7853 the initializers aren't gimplified. */ 7854 if (COMPOUND_LITERAL_EXPR_DECL (exp) 7855 && TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (exp))) 7856 return expand_expr_addr_expr_1 (COMPOUND_LITERAL_EXPR_DECL (exp), 7857 target, tmode, modifier, as); 7858 /* FALLTHRU */ 7859 default: 7860 /* If the object is a DECL, then expand it for its rtl. Don't bypass 7861 expand_expr, as that can have various side effects; LABEL_DECLs for 7862 example, may not have their DECL_RTL set yet. Expand the rtl of 7863 CONSTRUCTORs too, which should yield a memory reference for the 7864 constructor's contents. Assume language specific tree nodes can 7865 be expanded in some interesting way. */ 7866 gcc_assert (TREE_CODE (exp) < LAST_AND_UNUSED_TREE_CODE); 7867 if (DECL_P (exp) 7868 || TREE_CODE (exp) == CONSTRUCTOR 7869 || TREE_CODE (exp) == COMPOUND_LITERAL_EXPR) 7870 { 7871 result = expand_expr (exp, target, tmode, 7872 modifier == EXPAND_INITIALIZER 7873 ? EXPAND_INITIALIZER : EXPAND_CONST_ADDRESS); 7874 7875 /* If the DECL isn't in memory, then the DECL wasn't properly 7876 marked TREE_ADDRESSABLE, which will be either a front-end 7877 or a tree optimizer bug. */ 7878 7879 gcc_assert (MEM_P (result)); 7880 result = XEXP (result, 0); 7881 7882 /* ??? Is this needed anymore? */ 7883 if (DECL_P (exp)) 7884 TREE_USED (exp) = 1; 7885 7886 if (modifier != EXPAND_INITIALIZER 7887 && modifier != EXPAND_CONST_ADDRESS 7888 && modifier != EXPAND_SUM) 7889 result = force_operand (result, target); 7890 return result; 7891 } 7892 7893 /* Pass FALSE as the last argument to get_inner_reference although 7894 we are expanding to RTL. The rationale is that we know how to 7895 handle "aligning nodes" here: we can just bypass them because 7896 they won't change the final object whose address will be returned 7897 (they actually exist only for that purpose). */ 7898 inner = get_inner_reference (exp, &bitsize, &bitpos, &offset, &mode1, 7899 &unsignedp, &reversep, &volatilep); 7900 break; 7901 } 7902 7903 /* We must have made progress. */ 7904 gcc_assert (inner != exp); 7905 7906 subtarget = offset || bitpos ? NULL_RTX : target; 7907 /* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than 7908 inner alignment, force the inner to be sufficiently aligned. */ 7909 if (CONSTANT_CLASS_P (inner) 7910 && TYPE_ALIGN (TREE_TYPE (inner)) < TYPE_ALIGN (TREE_TYPE (exp))) 7911 { 7912 inner = copy_node (inner); 7913 TREE_TYPE (inner) = copy_node (TREE_TYPE (inner)); 7914 SET_TYPE_ALIGN (TREE_TYPE (inner), TYPE_ALIGN (TREE_TYPE (exp))); 7915 TYPE_USER_ALIGN (TREE_TYPE (inner)) = 1; 7916 } 7917 result = expand_expr_addr_expr_1 (inner, subtarget, tmode, modifier, as); 7918 7919 if (offset) 7920 { 7921 rtx tmp; 7922 7923 if (modifier != EXPAND_NORMAL) 7924 result = force_operand (result, NULL); 7925 tmp = expand_expr (offset, NULL_RTX, tmode, 7926 modifier == EXPAND_INITIALIZER 7927 ? EXPAND_INITIALIZER : EXPAND_NORMAL); 7928 7929 /* expand_expr is allowed to return an object in a mode other 7930 than TMODE. If it did, we need to convert. */ 7931 if (GET_MODE (tmp) != VOIDmode && tmode != GET_MODE (tmp)) 7932 tmp = convert_modes (tmode, GET_MODE (tmp), 7933 tmp, TYPE_UNSIGNED (TREE_TYPE (offset))); 7934 result = convert_memory_address_addr_space (tmode, result, as); 7935 tmp = convert_memory_address_addr_space (tmode, tmp, as); 7936 7937 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER) 7938 result = simplify_gen_binary (PLUS, tmode, result, tmp); 7939 else 7940 { 7941 subtarget = bitpos ? NULL_RTX : target; 7942 result = expand_simple_binop (tmode, PLUS, result, tmp, subtarget, 7943 1, OPTAB_LIB_WIDEN); 7944 } 7945 } 7946 7947 if (bitpos) 7948 { 7949 /* Someone beforehand should have rejected taking the address 7950 of such an object. */ 7951 gcc_assert ((bitpos % BITS_PER_UNIT) == 0); 7952 7953 result = convert_memory_address_addr_space (tmode, result, as); 7954 result = plus_constant (tmode, result, bitpos / BITS_PER_UNIT); 7955 if (modifier < EXPAND_SUM) 7956 result = force_operand (result, target); 7957 } 7958 7959 return result; 7960 } 7961 7962 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR. 7963 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */ 7964 7965 static rtx 7966 expand_expr_addr_expr (tree exp, rtx target, machine_mode tmode, 7967 enum expand_modifier modifier) 7968 { 7969 addr_space_t as = ADDR_SPACE_GENERIC; 7970 machine_mode address_mode = Pmode; 7971 machine_mode pointer_mode = ptr_mode; 7972 machine_mode rmode; 7973 rtx result; 7974 7975 /* Target mode of VOIDmode says "whatever's natural". */ 7976 if (tmode == VOIDmode) 7977 tmode = TYPE_MODE (TREE_TYPE (exp)); 7978 7979 if (POINTER_TYPE_P (TREE_TYPE (exp))) 7980 { 7981 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp))); 7982 address_mode = targetm.addr_space.address_mode (as); 7983 pointer_mode = targetm.addr_space.pointer_mode (as); 7984 } 7985 7986 /* We can get called with some Weird Things if the user does silliness 7987 like "(short) &a". In that case, convert_memory_address won't do 7988 the right thing, so ignore the given target mode. */ 7989 if (tmode != address_mode && tmode != pointer_mode) 7990 tmode = address_mode; 7991 7992 result = expand_expr_addr_expr_1 (TREE_OPERAND (exp, 0), target, 7993 tmode, modifier, as); 7994 7995 /* Despite expand_expr claims concerning ignoring TMODE when not 7996 strictly convenient, stuff breaks if we don't honor it. Note 7997 that combined with the above, we only do this for pointer modes. */ 7998 rmode = GET_MODE (result); 7999 if (rmode == VOIDmode) 8000 rmode = tmode; 8001 if (rmode != tmode) 8002 result = convert_memory_address_addr_space (tmode, result, as); 8003 8004 return result; 8005 } 8006 8007 /* Generate code for computing CONSTRUCTOR EXP. 8008 An rtx for the computed value is returned. If AVOID_TEMP_MEM 8009 is TRUE, instead of creating a temporary variable in memory 8010 NULL is returned and the caller needs to handle it differently. */ 8011 8012 static rtx 8013 expand_constructor (tree exp, rtx target, enum expand_modifier modifier, 8014 bool avoid_temp_mem) 8015 { 8016 tree type = TREE_TYPE (exp); 8017 machine_mode mode = TYPE_MODE (type); 8018 8019 /* Try to avoid creating a temporary at all. This is possible 8020 if all of the initializer is zero. 8021 FIXME: try to handle all [0..255] initializers we can handle 8022 with memset. */ 8023 if (TREE_STATIC (exp) 8024 && !TREE_ADDRESSABLE (exp) 8025 && target != 0 && mode == BLKmode 8026 && all_zeros_p (exp)) 8027 { 8028 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL); 8029 return target; 8030 } 8031 8032 /* All elts simple constants => refer to a constant in memory. But 8033 if this is a non-BLKmode mode, let it store a field at a time 8034 since that should make a CONST_INT, CONST_WIDE_INT or 8035 CONST_DOUBLE when we fold. Likewise, if we have a target we can 8036 use, it is best to store directly into the target unless the type 8037 is large enough that memcpy will be used. If we are making an 8038 initializer and all operands are constant, put it in memory as 8039 well. 8040 8041 FIXME: Avoid trying to fill vector constructors piece-meal. 8042 Output them with output_constant_def below unless we're sure 8043 they're zeros. This should go away when vector initializers 8044 are treated like VECTOR_CST instead of arrays. */ 8045 if ((TREE_STATIC (exp) 8046 && ((mode == BLKmode 8047 && ! (target != 0 && safe_from_p (target, exp, 1))) 8048 || TREE_ADDRESSABLE (exp) 8049 || (tree_fits_uhwi_p (TYPE_SIZE_UNIT (type)) 8050 && (! can_move_by_pieces 8051 (tree_to_uhwi (TYPE_SIZE_UNIT (type)), 8052 TYPE_ALIGN (type))) 8053 && ! mostly_zeros_p (exp)))) 8054 || ((modifier == EXPAND_INITIALIZER || modifier == EXPAND_CONST_ADDRESS) 8055 && TREE_CONSTANT (exp))) 8056 { 8057 rtx constructor; 8058 8059 if (avoid_temp_mem) 8060 return NULL_RTX; 8061 8062 constructor = expand_expr_constant (exp, 1, modifier); 8063 8064 if (modifier != EXPAND_CONST_ADDRESS 8065 && modifier != EXPAND_INITIALIZER 8066 && modifier != EXPAND_SUM) 8067 constructor = validize_mem (constructor); 8068 8069 return constructor; 8070 } 8071 8072 /* Handle calls that pass values in multiple non-contiguous 8073 locations. The Irix 6 ABI has examples of this. */ 8074 if (target == 0 || ! safe_from_p (target, exp, 1) 8075 || GET_CODE (target) == PARALLEL || modifier == EXPAND_STACK_PARM) 8076 { 8077 if (avoid_temp_mem) 8078 return NULL_RTX; 8079 8080 target = assign_temp (type, TREE_ADDRESSABLE (exp), 1); 8081 } 8082 8083 store_constructor (exp, target, 0, int_expr_size (exp), false); 8084 return target; 8085 } 8086 8087 8088 /* expand_expr: generate code for computing expression EXP. 8089 An rtx for the computed value is returned. The value is never null. 8090 In the case of a void EXP, const0_rtx is returned. 8091 8092 The value may be stored in TARGET if TARGET is nonzero. 8093 TARGET is just a suggestion; callers must assume that 8094 the rtx returned may not be the same as TARGET. 8095 8096 If TARGET is CONST0_RTX, it means that the value will be ignored. 8097 8098 If TMODE is not VOIDmode, it suggests generating the 8099 result in mode TMODE. But this is done only when convenient. 8100 Otherwise, TMODE is ignored and the value generated in its natural mode. 8101 TMODE is just a suggestion; callers must assume that 8102 the rtx returned may not have mode TMODE. 8103 8104 Note that TARGET may have neither TMODE nor MODE. In that case, it 8105 probably will not be used. 8106 8107 If MODIFIER is EXPAND_SUM then when EXP is an addition 8108 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...)) 8109 or a nest of (PLUS ...) and (MINUS ...) where the terms are 8110 products as above, or REG or MEM, or constant. 8111 Ordinarily in such cases we would output mul or add instructions 8112 and then return a pseudo reg containing the sum. 8113 8114 EXPAND_INITIALIZER is much like EXPAND_SUM except that 8115 it also marks a label as absolutely required (it can't be dead). 8116 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns. 8117 This is used for outputting expressions used in initializers. 8118 8119 EXPAND_CONST_ADDRESS says that it is okay to return a MEM 8120 with a constant address even if that address is not normally legitimate. 8121 EXPAND_INITIALIZER and EXPAND_SUM also have this effect. 8122 8123 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for 8124 a call parameter. Such targets require special care as we haven't yet 8125 marked TARGET so that it's safe from being trashed by libcalls. We 8126 don't want to use TARGET for anything but the final result; 8127 Intermediate values must go elsewhere. Additionally, calls to 8128 emit_block_move will be flagged with BLOCK_OP_CALL_PARM. 8129 8130 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid 8131 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the 8132 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a 8133 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on 8134 recursively. 8135 8136 If INNER_REFERENCE_P is true, we are expanding an inner reference. 8137 In this case, we don't adjust a returned MEM rtx that wouldn't be 8138 sufficiently aligned for its mode; instead, it's up to the caller 8139 to deal with it afterwards. This is used to make sure that unaligned 8140 base objects for which out-of-bounds accesses are supported, for 8141 example record types with trailing arrays, aren't realigned behind 8142 the back of the caller. 8143 The normal operating mode is to pass FALSE for this parameter. */ 8144 8145 rtx 8146 expand_expr_real (tree exp, rtx target, machine_mode tmode, 8147 enum expand_modifier modifier, rtx *alt_rtl, 8148 bool inner_reference_p) 8149 { 8150 rtx ret; 8151 8152 /* Handle ERROR_MARK before anybody tries to access its type. */ 8153 if (TREE_CODE (exp) == ERROR_MARK 8154 || (TREE_CODE (TREE_TYPE (exp)) == ERROR_MARK)) 8155 { 8156 ret = CONST0_RTX (tmode); 8157 return ret ? ret : const0_rtx; 8158 } 8159 8160 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl, 8161 inner_reference_p); 8162 return ret; 8163 } 8164 8165 /* Try to expand the conditional expression which is represented by 8166 TREEOP0 ? TREEOP1 : TREEOP2 using conditonal moves. If it succeeds 8167 return the rtl reg which represents the result. Otherwise return 8168 NULL_RTX. */ 8169 8170 static rtx 8171 expand_cond_expr_using_cmove (tree treeop0 ATTRIBUTE_UNUSED, 8172 tree treeop1 ATTRIBUTE_UNUSED, 8173 tree treeop2 ATTRIBUTE_UNUSED) 8174 { 8175 rtx insn; 8176 rtx op00, op01, op1, op2; 8177 enum rtx_code comparison_code; 8178 machine_mode comparison_mode; 8179 gimple *srcstmt; 8180 rtx temp; 8181 tree type = TREE_TYPE (treeop1); 8182 int unsignedp = TYPE_UNSIGNED (type); 8183 machine_mode mode = TYPE_MODE (type); 8184 machine_mode orig_mode = mode; 8185 static bool expanding_cond_expr_using_cmove = false; 8186 8187 /* Conditional move expansion can end up TERing two operands which, 8188 when recursively hitting conditional expressions can result in 8189 exponential behavior if the cmove expansion ultimatively fails. 8190 It's hardly profitable to TER a cmove into a cmove so avoid doing 8191 that by failing early if we end up recursing. */ 8192 if (expanding_cond_expr_using_cmove) 8193 return NULL_RTX; 8194 8195 /* If we cannot do a conditional move on the mode, try doing it 8196 with the promoted mode. */ 8197 if (!can_conditionally_move_p (mode)) 8198 { 8199 mode = promote_mode (type, mode, &unsignedp); 8200 if (!can_conditionally_move_p (mode)) 8201 return NULL_RTX; 8202 temp = assign_temp (type, 0, 0); /* Use promoted mode for temp. */ 8203 } 8204 else 8205 temp = assign_temp (type, 0, 1); 8206 8207 expanding_cond_expr_using_cmove = true; 8208 start_sequence (); 8209 expand_operands (treeop1, treeop2, 8210 temp, &op1, &op2, EXPAND_NORMAL); 8211 8212 if (TREE_CODE (treeop0) == SSA_NAME 8213 && (srcstmt = get_def_for_expr_class (treeop0, tcc_comparison))) 8214 { 8215 tree type = TREE_TYPE (gimple_assign_rhs1 (srcstmt)); 8216 enum tree_code cmpcode = gimple_assign_rhs_code (srcstmt); 8217 op00 = expand_normal (gimple_assign_rhs1 (srcstmt)); 8218 op01 = expand_normal (gimple_assign_rhs2 (srcstmt)); 8219 comparison_mode = TYPE_MODE (type); 8220 unsignedp = TYPE_UNSIGNED (type); 8221 comparison_code = convert_tree_comp_to_rtx (cmpcode, unsignedp); 8222 } 8223 else if (COMPARISON_CLASS_P (treeop0)) 8224 { 8225 tree type = TREE_TYPE (TREE_OPERAND (treeop0, 0)); 8226 enum tree_code cmpcode = TREE_CODE (treeop0); 8227 op00 = expand_normal (TREE_OPERAND (treeop0, 0)); 8228 op01 = expand_normal (TREE_OPERAND (treeop0, 1)); 8229 unsignedp = TYPE_UNSIGNED (type); 8230 comparison_mode = TYPE_MODE (type); 8231 comparison_code = convert_tree_comp_to_rtx (cmpcode, unsignedp); 8232 } 8233 else 8234 { 8235 op00 = expand_normal (treeop0); 8236 op01 = const0_rtx; 8237 comparison_code = NE; 8238 comparison_mode = GET_MODE (op00); 8239 if (comparison_mode == VOIDmode) 8240 comparison_mode = TYPE_MODE (TREE_TYPE (treeop0)); 8241 } 8242 expanding_cond_expr_using_cmove = false; 8243 8244 if (GET_MODE (op1) != mode) 8245 op1 = gen_lowpart (mode, op1); 8246 8247 if (GET_MODE (op2) != mode) 8248 op2 = gen_lowpart (mode, op2); 8249 8250 /* Try to emit the conditional move. */ 8251 insn = emit_conditional_move (temp, comparison_code, 8252 op00, op01, comparison_mode, 8253 op1, op2, mode, 8254 unsignedp); 8255 8256 /* If we could do the conditional move, emit the sequence, 8257 and return. */ 8258 if (insn) 8259 { 8260 rtx_insn *seq = get_insns (); 8261 end_sequence (); 8262 emit_insn (seq); 8263 return convert_modes (orig_mode, mode, temp, 0); 8264 } 8265 8266 /* Otherwise discard the sequence and fall back to code with 8267 branches. */ 8268 end_sequence (); 8269 return NULL_RTX; 8270 } 8271 8272 rtx 8273 expand_expr_real_2 (sepops ops, rtx target, machine_mode tmode, 8274 enum expand_modifier modifier) 8275 { 8276 rtx op0, op1, op2, temp; 8277 rtx_code_label *lab; 8278 tree type; 8279 int unsignedp; 8280 machine_mode mode; 8281 enum tree_code code = ops->code; 8282 optab this_optab; 8283 rtx subtarget, original_target; 8284 int ignore; 8285 bool reduce_bit_field; 8286 location_t loc = ops->location; 8287 tree treeop0, treeop1, treeop2; 8288 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field \ 8289 ? reduce_to_bit_field_precision ((expr), \ 8290 target, \ 8291 type) \ 8292 : (expr)) 8293 8294 type = ops->type; 8295 mode = TYPE_MODE (type); 8296 unsignedp = TYPE_UNSIGNED (type); 8297 8298 treeop0 = ops->op0; 8299 treeop1 = ops->op1; 8300 treeop2 = ops->op2; 8301 8302 /* We should be called only on simple (binary or unary) expressions, 8303 exactly those that are valid in gimple expressions that aren't 8304 GIMPLE_SINGLE_RHS (or invalid). */ 8305 gcc_assert (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS 8306 || get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS 8307 || get_gimple_rhs_class (code) == GIMPLE_TERNARY_RHS); 8308 8309 ignore = (target == const0_rtx 8310 || ((CONVERT_EXPR_CODE_P (code) 8311 || code == COND_EXPR || code == VIEW_CONVERT_EXPR) 8312 && TREE_CODE (type) == VOID_TYPE)); 8313 8314 /* We should be called only if we need the result. */ 8315 gcc_assert (!ignore); 8316 8317 /* An operation in what may be a bit-field type needs the 8318 result to be reduced to the precision of the bit-field type, 8319 which is narrower than that of the type's mode. */ 8320 reduce_bit_field = (INTEGRAL_TYPE_P (type) 8321 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type)); 8322 8323 if (reduce_bit_field && modifier == EXPAND_STACK_PARM) 8324 target = 0; 8325 8326 /* Use subtarget as the target for operand 0 of a binary operation. */ 8327 subtarget = get_subtarget (target); 8328 original_target = target; 8329 8330 switch (code) 8331 { 8332 case NON_LVALUE_EXPR: 8333 case PAREN_EXPR: 8334 CASE_CONVERT: 8335 if (treeop0 == error_mark_node) 8336 return const0_rtx; 8337 8338 if (TREE_CODE (type) == UNION_TYPE) 8339 { 8340 tree valtype = TREE_TYPE (treeop0); 8341 8342 /* If both input and output are BLKmode, this conversion isn't doing 8343 anything except possibly changing memory attribute. */ 8344 if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode) 8345 { 8346 rtx result = expand_expr (treeop0, target, tmode, 8347 modifier); 8348 8349 result = copy_rtx (result); 8350 set_mem_attributes (result, type, 0); 8351 return result; 8352 } 8353 8354 if (target == 0) 8355 { 8356 if (TYPE_MODE (type) != BLKmode) 8357 target = gen_reg_rtx (TYPE_MODE (type)); 8358 else 8359 target = assign_temp (type, 1, 1); 8360 } 8361 8362 if (MEM_P (target)) 8363 /* Store data into beginning of memory target. */ 8364 store_expr (treeop0, 8365 adjust_address (target, TYPE_MODE (valtype), 0), 8366 modifier == EXPAND_STACK_PARM, 8367 false, TYPE_REVERSE_STORAGE_ORDER (type)); 8368 8369 else 8370 { 8371 gcc_assert (REG_P (target) 8372 && !TYPE_REVERSE_STORAGE_ORDER (type)); 8373 8374 /* Store this field into a union of the proper type. */ 8375 store_field (target, 8376 MIN ((int_size_in_bytes (TREE_TYPE 8377 (treeop0)) 8378 * BITS_PER_UNIT), 8379 (HOST_WIDE_INT) GET_MODE_BITSIZE (mode)), 8380 0, 0, 0, TYPE_MODE (valtype), treeop0, 0, 8381 false, false); 8382 } 8383 8384 /* Return the entire union. */ 8385 return target; 8386 } 8387 8388 if (mode == TYPE_MODE (TREE_TYPE (treeop0))) 8389 { 8390 op0 = expand_expr (treeop0, target, VOIDmode, 8391 modifier); 8392 8393 /* If the signedness of the conversion differs and OP0 is 8394 a promoted SUBREG, clear that indication since we now 8395 have to do the proper extension. */ 8396 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)) != unsignedp 8397 && GET_CODE (op0) == SUBREG) 8398 SUBREG_PROMOTED_VAR_P (op0) = 0; 8399 8400 return REDUCE_BIT_FIELD (op0); 8401 } 8402 8403 op0 = expand_expr (treeop0, NULL_RTX, mode, 8404 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier); 8405 if (GET_MODE (op0) == mode) 8406 ; 8407 8408 /* If OP0 is a constant, just convert it into the proper mode. */ 8409 else if (CONSTANT_P (op0)) 8410 { 8411 tree inner_type = TREE_TYPE (treeop0); 8412 machine_mode inner_mode = GET_MODE (op0); 8413 8414 if (inner_mode == VOIDmode) 8415 inner_mode = TYPE_MODE (inner_type); 8416 8417 if (modifier == EXPAND_INITIALIZER) 8418 op0 = lowpart_subreg (mode, op0, inner_mode); 8419 else 8420 op0= convert_modes (mode, inner_mode, op0, 8421 TYPE_UNSIGNED (inner_type)); 8422 } 8423 8424 else if (modifier == EXPAND_INITIALIZER) 8425 op0 = gen_rtx_fmt_e (TYPE_UNSIGNED (TREE_TYPE (treeop0)) 8426 ? ZERO_EXTEND : SIGN_EXTEND, mode, op0); 8427 8428 else if (target == 0) 8429 op0 = convert_to_mode (mode, op0, 8430 TYPE_UNSIGNED (TREE_TYPE 8431 (treeop0))); 8432 else 8433 { 8434 convert_move (target, op0, 8435 TYPE_UNSIGNED (TREE_TYPE (treeop0))); 8436 op0 = target; 8437 } 8438 8439 return REDUCE_BIT_FIELD (op0); 8440 8441 case ADDR_SPACE_CONVERT_EXPR: 8442 { 8443 tree treeop0_type = TREE_TYPE (treeop0); 8444 8445 gcc_assert (POINTER_TYPE_P (type)); 8446 gcc_assert (POINTER_TYPE_P (treeop0_type)); 8447 8448 addr_space_t as_to = TYPE_ADDR_SPACE (TREE_TYPE (type)); 8449 addr_space_t as_from = TYPE_ADDR_SPACE (TREE_TYPE (treeop0_type)); 8450 8451 /* Conversions between pointers to the same address space should 8452 have been implemented via CONVERT_EXPR / NOP_EXPR. */ 8453 gcc_assert (as_to != as_from); 8454 8455 op0 = expand_expr (treeop0, NULL_RTX, VOIDmode, modifier); 8456 8457 /* Ask target code to handle conversion between pointers 8458 to overlapping address spaces. */ 8459 if (targetm.addr_space.subset_p (as_to, as_from) 8460 || targetm.addr_space.subset_p (as_from, as_to)) 8461 { 8462 op0 = targetm.addr_space.convert (op0, treeop0_type, type); 8463 } 8464 else 8465 { 8466 /* For disjoint address spaces, converting anything but a null 8467 pointer invokes undefined behavior. We truncate or extend the 8468 value as if we'd converted via integers, which handles 0 as 8469 required, and all others as the programmer likely expects. */ 8470 #ifndef POINTERS_EXTEND_UNSIGNED 8471 const int POINTERS_EXTEND_UNSIGNED = 1; 8472 #endif 8473 op0 = convert_modes (mode, TYPE_MODE (treeop0_type), 8474 op0, POINTERS_EXTEND_UNSIGNED); 8475 } 8476 gcc_assert (op0); 8477 return op0; 8478 } 8479 8480 case POINTER_PLUS_EXPR: 8481 /* Even though the sizetype mode and the pointer's mode can be different 8482 expand is able to handle this correctly and get the correct result out 8483 of the PLUS_EXPR code. */ 8484 /* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR 8485 if sizetype precision is smaller than pointer precision. */ 8486 if (TYPE_PRECISION (sizetype) < TYPE_PRECISION (type)) 8487 treeop1 = fold_convert_loc (loc, type, 8488 fold_convert_loc (loc, ssizetype, 8489 treeop1)); 8490 /* If sizetype precision is larger than pointer precision, truncate the 8491 offset to have matching modes. */ 8492 else if (TYPE_PRECISION (sizetype) > TYPE_PRECISION (type)) 8493 treeop1 = fold_convert_loc (loc, type, treeop1); 8494 /* FALLTHRU */ 8495 8496 case PLUS_EXPR: 8497 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and 8498 something else, make sure we add the register to the constant and 8499 then to the other thing. This case can occur during strength 8500 reduction and doing it this way will produce better code if the 8501 frame pointer or argument pointer is eliminated. 8502 8503 fold-const.c will ensure that the constant is always in the inner 8504 PLUS_EXPR, so the only case we need to do anything about is if 8505 sp, ap, or fp is our second argument, in which case we must swap 8506 the innermost first argument and our second argument. */ 8507 8508 if (TREE_CODE (treeop0) == PLUS_EXPR 8509 && TREE_CODE (TREE_OPERAND (treeop0, 1)) == INTEGER_CST 8510 && VAR_P (treeop1) 8511 && (DECL_RTL (treeop1) == frame_pointer_rtx 8512 || DECL_RTL (treeop1) == stack_pointer_rtx 8513 || DECL_RTL (treeop1) == arg_pointer_rtx)) 8514 { 8515 gcc_unreachable (); 8516 } 8517 8518 /* If the result is to be ptr_mode and we are adding an integer to 8519 something, we might be forming a constant. So try to use 8520 plus_constant. If it produces a sum and we can't accept it, 8521 use force_operand. This allows P = &ARR[const] to generate 8522 efficient code on machines where a SYMBOL_REF is not a valid 8523 address. 8524 8525 If this is an EXPAND_SUM call, always return the sum. */ 8526 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER 8527 || (mode == ptr_mode && (unsignedp || ! flag_trapv))) 8528 { 8529 if (modifier == EXPAND_STACK_PARM) 8530 target = 0; 8531 if (TREE_CODE (treeop0) == INTEGER_CST 8532 && GET_MODE_PRECISION (mode) <= HOST_BITS_PER_WIDE_INT 8533 && TREE_CONSTANT (treeop1)) 8534 { 8535 rtx constant_part; 8536 HOST_WIDE_INT wc; 8537 machine_mode wmode = TYPE_MODE (TREE_TYPE (treeop1)); 8538 8539 op1 = expand_expr (treeop1, subtarget, VOIDmode, 8540 EXPAND_SUM); 8541 /* Use wi::shwi to ensure that the constant is 8542 truncated according to the mode of OP1, then sign extended 8543 to a HOST_WIDE_INT. Using the constant directly can result 8544 in non-canonical RTL in a 64x32 cross compile. */ 8545 wc = TREE_INT_CST_LOW (treeop0); 8546 constant_part = 8547 immed_wide_int_const (wi::shwi (wc, wmode), wmode); 8548 op1 = plus_constant (mode, op1, INTVAL (constant_part)); 8549 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER) 8550 op1 = force_operand (op1, target); 8551 return REDUCE_BIT_FIELD (op1); 8552 } 8553 8554 else if (TREE_CODE (treeop1) == INTEGER_CST 8555 && GET_MODE_PRECISION (mode) <= HOST_BITS_PER_WIDE_INT 8556 && TREE_CONSTANT (treeop0)) 8557 { 8558 rtx constant_part; 8559 HOST_WIDE_INT wc; 8560 machine_mode wmode = TYPE_MODE (TREE_TYPE (treeop0)); 8561 8562 op0 = expand_expr (treeop0, subtarget, VOIDmode, 8563 (modifier == EXPAND_INITIALIZER 8564 ? EXPAND_INITIALIZER : EXPAND_SUM)); 8565 if (! CONSTANT_P (op0)) 8566 { 8567 op1 = expand_expr (treeop1, NULL_RTX, 8568 VOIDmode, modifier); 8569 /* Return a PLUS if modifier says it's OK. */ 8570 if (modifier == EXPAND_SUM 8571 || modifier == EXPAND_INITIALIZER) 8572 return simplify_gen_binary (PLUS, mode, op0, op1); 8573 goto binop2; 8574 } 8575 /* Use wi::shwi to ensure that the constant is 8576 truncated according to the mode of OP1, then sign extended 8577 to a HOST_WIDE_INT. Using the constant directly can result 8578 in non-canonical RTL in a 64x32 cross compile. */ 8579 wc = TREE_INT_CST_LOW (treeop1); 8580 constant_part 8581 = immed_wide_int_const (wi::shwi (wc, wmode), wmode); 8582 op0 = plus_constant (mode, op0, INTVAL (constant_part)); 8583 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER) 8584 op0 = force_operand (op0, target); 8585 return REDUCE_BIT_FIELD (op0); 8586 } 8587 } 8588 8589 /* Use TER to expand pointer addition of a negated value 8590 as pointer subtraction. */ 8591 if ((POINTER_TYPE_P (TREE_TYPE (treeop0)) 8592 || (TREE_CODE (TREE_TYPE (treeop0)) == VECTOR_TYPE 8593 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (treeop0))))) 8594 && TREE_CODE (treeop1) == SSA_NAME 8595 && TYPE_MODE (TREE_TYPE (treeop0)) 8596 == TYPE_MODE (TREE_TYPE (treeop1))) 8597 { 8598 gimple *def = get_def_for_expr (treeop1, NEGATE_EXPR); 8599 if (def) 8600 { 8601 treeop1 = gimple_assign_rhs1 (def); 8602 code = MINUS_EXPR; 8603 goto do_minus; 8604 } 8605 } 8606 8607 /* No sense saving up arithmetic to be done 8608 if it's all in the wrong mode to form part of an address. 8609 And force_operand won't know whether to sign-extend or 8610 zero-extend. */ 8611 if (modifier != EXPAND_INITIALIZER 8612 && (modifier != EXPAND_SUM || mode != ptr_mode)) 8613 { 8614 expand_operands (treeop0, treeop1, 8615 subtarget, &op0, &op1, modifier); 8616 if (op0 == const0_rtx) 8617 return op1; 8618 if (op1 == const0_rtx) 8619 return op0; 8620 goto binop2; 8621 } 8622 8623 expand_operands (treeop0, treeop1, 8624 subtarget, &op0, &op1, modifier); 8625 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1)); 8626 8627 case MINUS_EXPR: 8628 do_minus: 8629 /* For initializers, we are allowed to return a MINUS of two 8630 symbolic constants. Here we handle all cases when both operands 8631 are constant. */ 8632 /* Handle difference of two symbolic constants, 8633 for the sake of an initializer. */ 8634 if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER) 8635 && really_constant_p (treeop0) 8636 && really_constant_p (treeop1)) 8637 { 8638 expand_operands (treeop0, treeop1, 8639 NULL_RTX, &op0, &op1, modifier); 8640 8641 /* If the last operand is a CONST_INT, use plus_constant of 8642 the negated constant. Else make the MINUS. */ 8643 if (CONST_INT_P (op1)) 8644 return REDUCE_BIT_FIELD (plus_constant (mode, op0, 8645 -INTVAL (op1))); 8646 else 8647 return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode, op0, op1)); 8648 } 8649 8650 /* No sense saving up arithmetic to be done 8651 if it's all in the wrong mode to form part of an address. 8652 And force_operand won't know whether to sign-extend or 8653 zero-extend. */ 8654 if (modifier != EXPAND_INITIALIZER 8655 && (modifier != EXPAND_SUM || mode != ptr_mode)) 8656 goto binop; 8657 8658 expand_operands (treeop0, treeop1, 8659 subtarget, &op0, &op1, modifier); 8660 8661 /* Convert A - const to A + (-const). */ 8662 if (CONST_INT_P (op1)) 8663 { 8664 op1 = negate_rtx (mode, op1); 8665 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1)); 8666 } 8667 8668 goto binop2; 8669 8670 case WIDEN_MULT_PLUS_EXPR: 8671 case WIDEN_MULT_MINUS_EXPR: 8672 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL); 8673 op2 = expand_normal (treeop2); 8674 target = expand_widen_pattern_expr (ops, op0, op1, op2, 8675 target, unsignedp); 8676 return target; 8677 8678 case WIDEN_MULT_EXPR: 8679 /* If first operand is constant, swap them. 8680 Thus the following special case checks need only 8681 check the second operand. */ 8682 if (TREE_CODE (treeop0) == INTEGER_CST) 8683 std::swap (treeop0, treeop1); 8684 8685 /* First, check if we have a multiplication of one signed and one 8686 unsigned operand. */ 8687 if (TREE_CODE (treeop1) != INTEGER_CST 8688 && (TYPE_UNSIGNED (TREE_TYPE (treeop0)) 8689 != TYPE_UNSIGNED (TREE_TYPE (treeop1)))) 8690 { 8691 machine_mode innermode = TYPE_MODE (TREE_TYPE (treeop0)); 8692 this_optab = usmul_widen_optab; 8693 if (find_widening_optab_handler (this_optab, mode, innermode, 0) 8694 != CODE_FOR_nothing) 8695 { 8696 if (TYPE_UNSIGNED (TREE_TYPE (treeop0))) 8697 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, 8698 EXPAND_NORMAL); 8699 else 8700 expand_operands (treeop0, treeop1, NULL_RTX, &op1, &op0, 8701 EXPAND_NORMAL); 8702 /* op0 and op1 might still be constant, despite the above 8703 != INTEGER_CST check. Handle it. */ 8704 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode) 8705 { 8706 op0 = convert_modes (mode, innermode, op0, true); 8707 op1 = convert_modes (mode, innermode, op1, false); 8708 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, 8709 target, unsignedp)); 8710 } 8711 goto binop3; 8712 } 8713 } 8714 /* Check for a multiplication with matching signedness. */ 8715 else if ((TREE_CODE (treeop1) == INTEGER_CST 8716 && int_fits_type_p (treeop1, TREE_TYPE (treeop0))) 8717 || (TYPE_UNSIGNED (TREE_TYPE (treeop1)) 8718 == TYPE_UNSIGNED (TREE_TYPE (treeop0)))) 8719 { 8720 tree op0type = TREE_TYPE (treeop0); 8721 machine_mode innermode = TYPE_MODE (op0type); 8722 bool zextend_p = TYPE_UNSIGNED (op0type); 8723 optab other_optab = zextend_p ? smul_widen_optab : umul_widen_optab; 8724 this_optab = zextend_p ? umul_widen_optab : smul_widen_optab; 8725 8726 if (TREE_CODE (treeop0) != INTEGER_CST) 8727 { 8728 if (find_widening_optab_handler (this_optab, mode, innermode, 0) 8729 != CODE_FOR_nothing) 8730 { 8731 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, 8732 EXPAND_NORMAL); 8733 /* op0 and op1 might still be constant, despite the above 8734 != INTEGER_CST check. Handle it. */ 8735 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode) 8736 { 8737 widen_mult_const: 8738 op0 = convert_modes (mode, innermode, op0, zextend_p); 8739 op1 8740 = convert_modes (mode, innermode, op1, 8741 TYPE_UNSIGNED (TREE_TYPE (treeop1))); 8742 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, 8743 target, 8744 unsignedp)); 8745 } 8746 temp = expand_widening_mult (mode, op0, op1, target, 8747 unsignedp, this_optab); 8748 return REDUCE_BIT_FIELD (temp); 8749 } 8750 if (find_widening_optab_handler (other_optab, mode, innermode, 0) 8751 != CODE_FOR_nothing 8752 && innermode == word_mode) 8753 { 8754 rtx htem, hipart; 8755 op0 = expand_normal (treeop0); 8756 op1 = expand_normal (treeop1); 8757 /* op0 and op1 might be constants, despite the above 8758 != INTEGER_CST check. Handle it. */ 8759 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode) 8760 goto widen_mult_const; 8761 if (TREE_CODE (treeop1) == INTEGER_CST) 8762 op1 = convert_modes (mode, word_mode, op1, 8763 TYPE_UNSIGNED (TREE_TYPE (treeop1))); 8764 temp = expand_binop (mode, other_optab, op0, op1, target, 8765 unsignedp, OPTAB_LIB_WIDEN); 8766 hipart = gen_highpart (innermode, temp); 8767 htem = expand_mult_highpart_adjust (innermode, hipart, 8768 op0, op1, hipart, 8769 zextend_p); 8770 if (htem != hipart) 8771 emit_move_insn (hipart, htem); 8772 return REDUCE_BIT_FIELD (temp); 8773 } 8774 } 8775 } 8776 treeop0 = fold_build1 (CONVERT_EXPR, type, treeop0); 8777 treeop1 = fold_build1 (CONVERT_EXPR, type, treeop1); 8778 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL); 8779 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp)); 8780 8781 case FMA_EXPR: 8782 { 8783 optab opt = fma_optab; 8784 gimple *def0, *def2; 8785 8786 /* If there is no insn for FMA, emit it as __builtin_fma{,f,l} 8787 call. */ 8788 if (optab_handler (fma_optab, mode) == CODE_FOR_nothing) 8789 { 8790 tree fn = mathfn_built_in (TREE_TYPE (treeop0), BUILT_IN_FMA); 8791 tree call_expr; 8792 8793 gcc_assert (fn != NULL_TREE); 8794 call_expr = build_call_expr (fn, 3, treeop0, treeop1, treeop2); 8795 return expand_builtin (call_expr, target, subtarget, mode, false); 8796 } 8797 8798 def0 = get_def_for_expr (treeop0, NEGATE_EXPR); 8799 /* The multiplication is commutative - look at its 2nd operand 8800 if the first isn't fed by a negate. */ 8801 if (!def0) 8802 { 8803 def0 = get_def_for_expr (treeop1, NEGATE_EXPR); 8804 /* Swap operands if the 2nd operand is fed by a negate. */ 8805 if (def0) 8806 std::swap (treeop0, treeop1); 8807 } 8808 def2 = get_def_for_expr (treeop2, NEGATE_EXPR); 8809 8810 op0 = op2 = NULL; 8811 8812 if (def0 && def2 8813 && optab_handler (fnms_optab, mode) != CODE_FOR_nothing) 8814 { 8815 opt = fnms_optab; 8816 op0 = expand_normal (gimple_assign_rhs1 (def0)); 8817 op2 = expand_normal (gimple_assign_rhs1 (def2)); 8818 } 8819 else if (def0 8820 && optab_handler (fnma_optab, mode) != CODE_FOR_nothing) 8821 { 8822 opt = fnma_optab; 8823 op0 = expand_normal (gimple_assign_rhs1 (def0)); 8824 } 8825 else if (def2 8826 && optab_handler (fms_optab, mode) != CODE_FOR_nothing) 8827 { 8828 opt = fms_optab; 8829 op2 = expand_normal (gimple_assign_rhs1 (def2)); 8830 } 8831 8832 if (op0 == NULL) 8833 op0 = expand_expr (treeop0, subtarget, VOIDmode, EXPAND_NORMAL); 8834 if (op2 == NULL) 8835 op2 = expand_normal (treeop2); 8836 op1 = expand_normal (treeop1); 8837 8838 return expand_ternary_op (TYPE_MODE (type), opt, 8839 op0, op1, op2, target, 0); 8840 } 8841 8842 case MULT_EXPR: 8843 /* If this is a fixed-point operation, then we cannot use the code 8844 below because "expand_mult" doesn't support sat/no-sat fixed-point 8845 multiplications. */ 8846 if (ALL_FIXED_POINT_MODE_P (mode)) 8847 goto binop; 8848 8849 /* If first operand is constant, swap them. 8850 Thus the following special case checks need only 8851 check the second operand. */ 8852 if (TREE_CODE (treeop0) == INTEGER_CST) 8853 std::swap (treeop0, treeop1); 8854 8855 /* Attempt to return something suitable for generating an 8856 indexed address, for machines that support that. */ 8857 8858 if (modifier == EXPAND_SUM && mode == ptr_mode 8859 && tree_fits_shwi_p (treeop1)) 8860 { 8861 tree exp1 = treeop1; 8862 8863 op0 = expand_expr (treeop0, subtarget, VOIDmode, 8864 EXPAND_SUM); 8865 8866 if (!REG_P (op0)) 8867 op0 = force_operand (op0, NULL_RTX); 8868 if (!REG_P (op0)) 8869 op0 = copy_to_mode_reg (mode, op0); 8870 8871 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode, op0, 8872 gen_int_mode (tree_to_shwi (exp1), 8873 TYPE_MODE (TREE_TYPE (exp1))))); 8874 } 8875 8876 if (modifier == EXPAND_STACK_PARM) 8877 target = 0; 8878 8879 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL); 8880 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp)); 8881 8882 case TRUNC_MOD_EXPR: 8883 case FLOOR_MOD_EXPR: 8884 case CEIL_MOD_EXPR: 8885 case ROUND_MOD_EXPR: 8886 8887 case TRUNC_DIV_EXPR: 8888 case FLOOR_DIV_EXPR: 8889 case CEIL_DIV_EXPR: 8890 case ROUND_DIV_EXPR: 8891 case EXACT_DIV_EXPR: 8892 { 8893 /* If this is a fixed-point operation, then we cannot use the code 8894 below because "expand_divmod" doesn't support sat/no-sat fixed-point 8895 divisions. */ 8896 if (ALL_FIXED_POINT_MODE_P (mode)) 8897 goto binop; 8898 8899 if (modifier == EXPAND_STACK_PARM) 8900 target = 0; 8901 /* Possible optimization: compute the dividend with EXPAND_SUM 8902 then if the divisor is constant can optimize the case 8903 where some terms of the dividend have coeffs divisible by it. */ 8904 expand_operands (treeop0, treeop1, 8905 subtarget, &op0, &op1, EXPAND_NORMAL); 8906 bool mod_p = code == TRUNC_MOD_EXPR || code == FLOOR_MOD_EXPR 8907 || code == CEIL_MOD_EXPR || code == ROUND_MOD_EXPR; 8908 if (SCALAR_INT_MODE_P (mode) 8909 && optimize >= 2 8910 && get_range_pos_neg (treeop0) == 1 8911 && get_range_pos_neg (treeop1) == 1) 8912 { 8913 /* If both arguments are known to be positive when interpreted 8914 as signed, we can expand it as both signed and unsigned 8915 division or modulo. Choose the cheaper sequence in that case. */ 8916 bool speed_p = optimize_insn_for_speed_p (); 8917 do_pending_stack_adjust (); 8918 start_sequence (); 8919 rtx uns_ret = expand_divmod (mod_p, code, mode, op0, op1, target, 1); 8920 rtx_insn *uns_insns = get_insns (); 8921 end_sequence (); 8922 start_sequence (); 8923 rtx sgn_ret = expand_divmod (mod_p, code, mode, op0, op1, target, 0); 8924 rtx_insn *sgn_insns = get_insns (); 8925 end_sequence (); 8926 unsigned uns_cost = seq_cost (uns_insns, speed_p); 8927 unsigned sgn_cost = seq_cost (sgn_insns, speed_p); 8928 if (uns_cost < sgn_cost || (uns_cost == sgn_cost && unsignedp)) 8929 { 8930 emit_insn (uns_insns); 8931 return uns_ret; 8932 } 8933 emit_insn (sgn_insns); 8934 return sgn_ret; 8935 } 8936 return expand_divmod (mod_p, code, mode, op0, op1, target, unsignedp); 8937 } 8938 case RDIV_EXPR: 8939 goto binop; 8940 8941 case MULT_HIGHPART_EXPR: 8942 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL); 8943 temp = expand_mult_highpart (mode, op0, op1, target, unsignedp); 8944 gcc_assert (temp); 8945 return temp; 8946 8947 case FIXED_CONVERT_EXPR: 8948 op0 = expand_normal (treeop0); 8949 if (target == 0 || modifier == EXPAND_STACK_PARM) 8950 target = gen_reg_rtx (mode); 8951 8952 if ((TREE_CODE (TREE_TYPE (treeop0)) == INTEGER_TYPE 8953 && TYPE_UNSIGNED (TREE_TYPE (treeop0))) 8954 || (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type))) 8955 expand_fixed_convert (target, op0, 1, TYPE_SATURATING (type)); 8956 else 8957 expand_fixed_convert (target, op0, 0, TYPE_SATURATING (type)); 8958 return target; 8959 8960 case FIX_TRUNC_EXPR: 8961 op0 = expand_normal (treeop0); 8962 if (target == 0 || modifier == EXPAND_STACK_PARM) 8963 target = gen_reg_rtx (mode); 8964 expand_fix (target, op0, unsignedp); 8965 return target; 8966 8967 case FLOAT_EXPR: 8968 op0 = expand_normal (treeop0); 8969 if (target == 0 || modifier == EXPAND_STACK_PARM) 8970 target = gen_reg_rtx (mode); 8971 /* expand_float can't figure out what to do if FROM has VOIDmode. 8972 So give it the correct mode. With -O, cse will optimize this. */ 8973 if (GET_MODE (op0) == VOIDmode) 8974 op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (treeop0)), 8975 op0); 8976 expand_float (target, op0, 8977 TYPE_UNSIGNED (TREE_TYPE (treeop0))); 8978 return target; 8979 8980 case NEGATE_EXPR: 8981 op0 = expand_expr (treeop0, subtarget, 8982 VOIDmode, EXPAND_NORMAL); 8983 if (modifier == EXPAND_STACK_PARM) 8984 target = 0; 8985 temp = expand_unop (mode, 8986 optab_for_tree_code (NEGATE_EXPR, type, 8987 optab_default), 8988 op0, target, 0); 8989 gcc_assert (temp); 8990 return REDUCE_BIT_FIELD (temp); 8991 8992 case ABS_EXPR: 8993 op0 = expand_expr (treeop0, subtarget, 8994 VOIDmode, EXPAND_NORMAL); 8995 if (modifier == EXPAND_STACK_PARM) 8996 target = 0; 8997 8998 /* ABS_EXPR is not valid for complex arguments. */ 8999 gcc_assert (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT 9000 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT); 9001 9002 /* Unsigned abs is simply the operand. Testing here means we don't 9003 risk generating incorrect code below. */ 9004 if (TYPE_UNSIGNED (type)) 9005 return op0; 9006 9007 return expand_abs (mode, op0, target, unsignedp, 9008 safe_from_p (target, treeop0, 1)); 9009 9010 case MAX_EXPR: 9011 case MIN_EXPR: 9012 target = original_target; 9013 if (target == 0 9014 || modifier == EXPAND_STACK_PARM 9015 || (MEM_P (target) && MEM_VOLATILE_P (target)) 9016 || GET_MODE (target) != mode 9017 || (REG_P (target) 9018 && REGNO (target) < FIRST_PSEUDO_REGISTER)) 9019 target = gen_reg_rtx (mode); 9020 expand_operands (treeop0, treeop1, 9021 target, &op0, &op1, EXPAND_NORMAL); 9022 9023 /* First try to do it with a special MIN or MAX instruction. 9024 If that does not win, use a conditional jump to select the proper 9025 value. */ 9026 this_optab = optab_for_tree_code (code, type, optab_default); 9027 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp, 9028 OPTAB_WIDEN); 9029 if (temp != 0) 9030 return temp; 9031 9032 /* For vector MIN <x, y>, expand it a VEC_COND_EXPR <x <= y, x, y> 9033 and similarly for MAX <x, y>. */ 9034 if (VECTOR_TYPE_P (type)) 9035 { 9036 tree t0 = make_tree (type, op0); 9037 tree t1 = make_tree (type, op1); 9038 tree comparison = build2 (code == MIN_EXPR ? LE_EXPR : GE_EXPR, 9039 type, t0, t1); 9040 return expand_vec_cond_expr (type, comparison, t0, t1, 9041 original_target); 9042 } 9043 9044 /* At this point, a MEM target is no longer useful; we will get better 9045 code without it. */ 9046 9047 if (! REG_P (target)) 9048 target = gen_reg_rtx (mode); 9049 9050 /* If op1 was placed in target, swap op0 and op1. */ 9051 if (target != op0 && target == op1) 9052 std::swap (op0, op1); 9053 9054 /* We generate better code and avoid problems with op1 mentioning 9055 target by forcing op1 into a pseudo if it isn't a constant. */ 9056 if (! CONSTANT_P (op1)) 9057 op1 = force_reg (mode, op1); 9058 9059 { 9060 enum rtx_code comparison_code; 9061 rtx cmpop1 = op1; 9062 9063 if (code == MAX_EXPR) 9064 comparison_code = unsignedp ? GEU : GE; 9065 else 9066 comparison_code = unsignedp ? LEU : LE; 9067 9068 /* Canonicalize to comparisons against 0. */ 9069 if (op1 == const1_rtx) 9070 { 9071 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1) 9072 or (a != 0 ? a : 1) for unsigned. 9073 For MIN we are safe converting (a <= 1 ? a : 1) 9074 into (a <= 0 ? a : 1) */ 9075 cmpop1 = const0_rtx; 9076 if (code == MAX_EXPR) 9077 comparison_code = unsignedp ? NE : GT; 9078 } 9079 if (op1 == constm1_rtx && !unsignedp) 9080 { 9081 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1) 9082 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */ 9083 cmpop1 = const0_rtx; 9084 if (code == MIN_EXPR) 9085 comparison_code = LT; 9086 } 9087 9088 /* Use a conditional move if possible. */ 9089 if (can_conditionally_move_p (mode)) 9090 { 9091 rtx insn; 9092 9093 start_sequence (); 9094 9095 /* Try to emit the conditional move. */ 9096 insn = emit_conditional_move (target, comparison_code, 9097 op0, cmpop1, mode, 9098 op0, op1, mode, 9099 unsignedp); 9100 9101 /* If we could do the conditional move, emit the sequence, 9102 and return. */ 9103 if (insn) 9104 { 9105 rtx_insn *seq = get_insns (); 9106 end_sequence (); 9107 emit_insn (seq); 9108 return target; 9109 } 9110 9111 /* Otherwise discard the sequence and fall back to code with 9112 branches. */ 9113 end_sequence (); 9114 } 9115 9116 if (target != op0) 9117 emit_move_insn (target, op0); 9118 9119 lab = gen_label_rtx (); 9120 do_compare_rtx_and_jump (target, cmpop1, comparison_code, 9121 unsignedp, mode, NULL_RTX, NULL, lab, 9122 -1); 9123 } 9124 emit_move_insn (target, op1); 9125 emit_label (lab); 9126 return target; 9127 9128 case BIT_NOT_EXPR: 9129 op0 = expand_expr (treeop0, subtarget, 9130 VOIDmode, EXPAND_NORMAL); 9131 if (modifier == EXPAND_STACK_PARM) 9132 target = 0; 9133 /* In case we have to reduce the result to bitfield precision 9134 for unsigned bitfield expand this as XOR with a proper constant 9135 instead. */ 9136 if (reduce_bit_field && TYPE_UNSIGNED (type)) 9137 { 9138 wide_int mask = wi::mask (TYPE_PRECISION (type), 9139 false, GET_MODE_PRECISION (mode)); 9140 9141 temp = expand_binop (mode, xor_optab, op0, 9142 immed_wide_int_const (mask, mode), 9143 target, 1, OPTAB_LIB_WIDEN); 9144 } 9145 else 9146 temp = expand_unop (mode, one_cmpl_optab, op0, target, 1); 9147 gcc_assert (temp); 9148 return temp; 9149 9150 /* ??? Can optimize bitwise operations with one arg constant. 9151 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b) 9152 and (a bitwise1 b) bitwise2 b (etc) 9153 but that is probably not worth while. */ 9154 9155 case BIT_AND_EXPR: 9156 case BIT_IOR_EXPR: 9157 case BIT_XOR_EXPR: 9158 goto binop; 9159 9160 case LROTATE_EXPR: 9161 case RROTATE_EXPR: 9162 gcc_assert (VECTOR_MODE_P (TYPE_MODE (type)) 9163 || (GET_MODE_PRECISION (TYPE_MODE (type)) 9164 == TYPE_PRECISION (type))); 9165 /* fall through */ 9166 9167 case LSHIFT_EXPR: 9168 case RSHIFT_EXPR: 9169 { 9170 /* If this is a fixed-point operation, then we cannot use the code 9171 below because "expand_shift" doesn't support sat/no-sat fixed-point 9172 shifts. */ 9173 if (ALL_FIXED_POINT_MODE_P (mode)) 9174 goto binop; 9175 9176 if (! safe_from_p (subtarget, treeop1, 1)) 9177 subtarget = 0; 9178 if (modifier == EXPAND_STACK_PARM) 9179 target = 0; 9180 op0 = expand_expr (treeop0, subtarget, 9181 VOIDmode, EXPAND_NORMAL); 9182 9183 /* Left shift optimization when shifting across word_size boundary. 9184 9185 If mode == GET_MODE_WIDER_MODE (word_mode), then normally 9186 there isn't native instruction to support this wide mode 9187 left shift. Given below scenario: 9188 9189 Type A = (Type) B << C 9190 9191 |< T >| 9192 | dest_high | dest_low | 9193 9194 | word_size | 9195 9196 If the shift amount C caused we shift B to across the word 9197 size boundary, i.e part of B shifted into high half of 9198 destination register, and part of B remains in the low 9199 half, then GCC will use the following left shift expand 9200 logic: 9201 9202 1. Initialize dest_low to B. 9203 2. Initialize every bit of dest_high to the sign bit of B. 9204 3. Logic left shift dest_low by C bit to finalize dest_low. 9205 The value of dest_low before this shift is kept in a temp D. 9206 4. Logic left shift dest_high by C. 9207 5. Logic right shift D by (word_size - C). 9208 6. Or the result of 4 and 5 to finalize dest_high. 9209 9210 While, by checking gimple statements, if operand B is 9211 coming from signed extension, then we can simplify above 9212 expand logic into: 9213 9214 1. dest_high = src_low >> (word_size - C). 9215 2. dest_low = src_low << C. 9216 9217 We can use one arithmetic right shift to finish all the 9218 purpose of steps 2, 4, 5, 6, thus we reduce the steps 9219 needed from 6 into 2. 9220 9221 The case is similar for zero extension, except that we 9222 initialize dest_high to zero rather than copies of the sign 9223 bit from B. Furthermore, we need to use a logical right shift 9224 in this case. 9225 9226 The choice of sign-extension versus zero-extension is 9227 determined entirely by whether or not B is signed and is 9228 independent of the current setting of unsignedp. */ 9229 9230 temp = NULL_RTX; 9231 if (code == LSHIFT_EXPR 9232 && target 9233 && REG_P (target) 9234 && mode == GET_MODE_WIDER_MODE (word_mode) 9235 && GET_MODE_SIZE (mode) == 2 * GET_MODE_SIZE (word_mode) 9236 && TREE_CONSTANT (treeop1) 9237 && TREE_CODE (treeop0) == SSA_NAME) 9238 { 9239 gimple *def = SSA_NAME_DEF_STMT (treeop0); 9240 if (is_gimple_assign (def) 9241 && gimple_assign_rhs_code (def) == NOP_EXPR) 9242 { 9243 machine_mode rmode = TYPE_MODE 9244 (TREE_TYPE (gimple_assign_rhs1 (def))); 9245 9246 if (GET_MODE_SIZE (rmode) < GET_MODE_SIZE (mode) 9247 && TREE_INT_CST_LOW (treeop1) < GET_MODE_BITSIZE (word_mode) 9248 && ((TREE_INT_CST_LOW (treeop1) + GET_MODE_BITSIZE (rmode)) 9249 >= GET_MODE_BITSIZE (word_mode))) 9250 { 9251 rtx_insn *seq, *seq_old; 9252 unsigned int high_off = subreg_highpart_offset (word_mode, 9253 mode); 9254 bool extend_unsigned 9255 = TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def))); 9256 rtx low = lowpart_subreg (word_mode, op0, mode); 9257 rtx dest_low = lowpart_subreg (word_mode, target, mode); 9258 rtx dest_high = simplify_gen_subreg (word_mode, target, 9259 mode, high_off); 9260 HOST_WIDE_INT ramount = (BITS_PER_WORD 9261 - TREE_INT_CST_LOW (treeop1)); 9262 tree rshift = build_int_cst (TREE_TYPE (treeop1), ramount); 9263 9264 start_sequence (); 9265 /* dest_high = src_low >> (word_size - C). */ 9266 temp = expand_variable_shift (RSHIFT_EXPR, word_mode, low, 9267 rshift, dest_high, 9268 extend_unsigned); 9269 if (temp != dest_high) 9270 emit_move_insn (dest_high, temp); 9271 9272 /* dest_low = src_low << C. */ 9273 temp = expand_variable_shift (LSHIFT_EXPR, word_mode, low, 9274 treeop1, dest_low, unsignedp); 9275 if (temp != dest_low) 9276 emit_move_insn (dest_low, temp); 9277 9278 seq = get_insns (); 9279 end_sequence (); 9280 temp = target ; 9281 9282 if (have_insn_for (ASHIFT, mode)) 9283 { 9284 bool speed_p = optimize_insn_for_speed_p (); 9285 start_sequence (); 9286 rtx ret_old = expand_variable_shift (code, mode, op0, 9287 treeop1, target, 9288 unsignedp); 9289 9290 seq_old = get_insns (); 9291 end_sequence (); 9292 if (seq_cost (seq, speed_p) 9293 >= seq_cost (seq_old, speed_p)) 9294 { 9295 seq = seq_old; 9296 temp = ret_old; 9297 } 9298 } 9299 emit_insn (seq); 9300 } 9301 } 9302 } 9303 9304 if (temp == NULL_RTX) 9305 temp = expand_variable_shift (code, mode, op0, treeop1, target, 9306 unsignedp); 9307 if (code == LSHIFT_EXPR) 9308 temp = REDUCE_BIT_FIELD (temp); 9309 return temp; 9310 } 9311 9312 /* Could determine the answer when only additive constants differ. Also, 9313 the addition of one can be handled by changing the condition. */ 9314 case LT_EXPR: 9315 case LE_EXPR: 9316 case GT_EXPR: 9317 case GE_EXPR: 9318 case EQ_EXPR: 9319 case NE_EXPR: 9320 case UNORDERED_EXPR: 9321 case ORDERED_EXPR: 9322 case UNLT_EXPR: 9323 case UNLE_EXPR: 9324 case UNGT_EXPR: 9325 case UNGE_EXPR: 9326 case UNEQ_EXPR: 9327 case LTGT_EXPR: 9328 { 9329 temp = do_store_flag (ops, 9330 modifier != EXPAND_STACK_PARM ? target : NULL_RTX, 9331 tmode != VOIDmode ? tmode : mode); 9332 if (temp) 9333 return temp; 9334 9335 /* Use a compare and a jump for BLKmode comparisons, or for function 9336 type comparisons is have_canonicalize_funcptr_for_compare. */ 9337 9338 if ((target == 0 9339 || modifier == EXPAND_STACK_PARM 9340 || ! safe_from_p (target, treeop0, 1) 9341 || ! safe_from_p (target, treeop1, 1) 9342 /* Make sure we don't have a hard reg (such as function's return 9343 value) live across basic blocks, if not optimizing. */ 9344 || (!optimize && REG_P (target) 9345 && REGNO (target) < FIRST_PSEUDO_REGISTER))) 9346 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode); 9347 9348 emit_move_insn (target, const0_rtx); 9349 9350 rtx_code_label *lab1 = gen_label_rtx (); 9351 jumpifnot_1 (code, treeop0, treeop1, lab1, -1); 9352 9353 if (TYPE_PRECISION (type) == 1 && !TYPE_UNSIGNED (type)) 9354 emit_move_insn (target, constm1_rtx); 9355 else 9356 emit_move_insn (target, const1_rtx); 9357 9358 emit_label (lab1); 9359 return target; 9360 } 9361 case COMPLEX_EXPR: 9362 /* Get the rtx code of the operands. */ 9363 op0 = expand_normal (treeop0); 9364 op1 = expand_normal (treeop1); 9365 9366 if (!target) 9367 target = gen_reg_rtx (TYPE_MODE (type)); 9368 else 9369 /* If target overlaps with op1, then either we need to force 9370 op1 into a pseudo (if target also overlaps with op0), 9371 or write the complex parts in reverse order. */ 9372 switch (GET_CODE (target)) 9373 { 9374 case CONCAT: 9375 if (reg_overlap_mentioned_p (XEXP (target, 0), op1)) 9376 { 9377 if (reg_overlap_mentioned_p (XEXP (target, 1), op0)) 9378 { 9379 complex_expr_force_op1: 9380 temp = gen_reg_rtx (GET_MODE_INNER (GET_MODE (target))); 9381 emit_move_insn (temp, op1); 9382 op1 = temp; 9383 break; 9384 } 9385 complex_expr_swap_order: 9386 /* Move the imaginary (op1) and real (op0) parts to their 9387 location. */ 9388 write_complex_part (target, op1, true); 9389 write_complex_part (target, op0, false); 9390 9391 return target; 9392 } 9393 break; 9394 case MEM: 9395 temp = adjust_address_nv (target, 9396 GET_MODE_INNER (GET_MODE (target)), 0); 9397 if (reg_overlap_mentioned_p (temp, op1)) 9398 { 9399 machine_mode imode = GET_MODE_INNER (GET_MODE (target)); 9400 temp = adjust_address_nv (target, imode, 9401 GET_MODE_SIZE (imode)); 9402 if (reg_overlap_mentioned_p (temp, op0)) 9403 goto complex_expr_force_op1; 9404 goto complex_expr_swap_order; 9405 } 9406 break; 9407 default: 9408 if (reg_overlap_mentioned_p (target, op1)) 9409 { 9410 if (reg_overlap_mentioned_p (target, op0)) 9411 goto complex_expr_force_op1; 9412 goto complex_expr_swap_order; 9413 } 9414 break; 9415 } 9416 9417 /* Move the real (op0) and imaginary (op1) parts to their location. */ 9418 write_complex_part (target, op0, false); 9419 write_complex_part (target, op1, true); 9420 9421 return target; 9422 9423 case WIDEN_SUM_EXPR: 9424 { 9425 tree oprnd0 = treeop0; 9426 tree oprnd1 = treeop1; 9427 9428 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL); 9429 target = expand_widen_pattern_expr (ops, op0, NULL_RTX, op1, 9430 target, unsignedp); 9431 return target; 9432 } 9433 9434 case REDUC_MAX_EXPR: 9435 case REDUC_MIN_EXPR: 9436 case REDUC_PLUS_EXPR: 9437 { 9438 op0 = expand_normal (treeop0); 9439 this_optab = optab_for_tree_code (code, type, optab_default); 9440 machine_mode vec_mode = TYPE_MODE (TREE_TYPE (treeop0)); 9441 9442 struct expand_operand ops[2]; 9443 enum insn_code icode = optab_handler (this_optab, vec_mode); 9444 9445 create_output_operand (&ops[0], target, mode); 9446 create_input_operand (&ops[1], op0, vec_mode); 9447 expand_insn (icode, 2, ops); 9448 target = ops[0].value; 9449 if (GET_MODE (target) != mode) 9450 return gen_lowpart (tmode, target); 9451 return target; 9452 } 9453 9454 case VEC_UNPACK_HI_EXPR: 9455 case VEC_UNPACK_LO_EXPR: 9456 { 9457 op0 = expand_normal (treeop0); 9458 temp = expand_widen_pattern_expr (ops, op0, NULL_RTX, NULL_RTX, 9459 target, unsignedp); 9460 gcc_assert (temp); 9461 return temp; 9462 } 9463 9464 case VEC_UNPACK_FLOAT_HI_EXPR: 9465 case VEC_UNPACK_FLOAT_LO_EXPR: 9466 { 9467 op0 = expand_normal (treeop0); 9468 /* The signedness is determined from input operand. */ 9469 temp = expand_widen_pattern_expr 9470 (ops, op0, NULL_RTX, NULL_RTX, 9471 target, TYPE_UNSIGNED (TREE_TYPE (treeop0))); 9472 9473 gcc_assert (temp); 9474 return temp; 9475 } 9476 9477 case VEC_WIDEN_MULT_HI_EXPR: 9478 case VEC_WIDEN_MULT_LO_EXPR: 9479 case VEC_WIDEN_MULT_EVEN_EXPR: 9480 case VEC_WIDEN_MULT_ODD_EXPR: 9481 case VEC_WIDEN_LSHIFT_HI_EXPR: 9482 case VEC_WIDEN_LSHIFT_LO_EXPR: 9483 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL); 9484 target = expand_widen_pattern_expr (ops, op0, op1, NULL_RTX, 9485 target, unsignedp); 9486 gcc_assert (target); 9487 return target; 9488 9489 case VEC_PACK_TRUNC_EXPR: 9490 case VEC_PACK_SAT_EXPR: 9491 case VEC_PACK_FIX_TRUNC_EXPR: 9492 mode = TYPE_MODE (TREE_TYPE (treeop0)); 9493 goto binop; 9494 9495 case VEC_PERM_EXPR: 9496 expand_operands (treeop0, treeop1, target, &op0, &op1, EXPAND_NORMAL); 9497 op2 = expand_normal (treeop2); 9498 9499 /* Careful here: if the target doesn't support integral vector modes, 9500 a constant selection vector could wind up smooshed into a normal 9501 integral constant. */ 9502 if (CONSTANT_P (op2) && GET_CODE (op2) != CONST_VECTOR) 9503 { 9504 tree sel_type = TREE_TYPE (treeop2); 9505 machine_mode vmode 9506 = mode_for_vector (TYPE_MODE (TREE_TYPE (sel_type)), 9507 TYPE_VECTOR_SUBPARTS (sel_type)); 9508 gcc_assert (GET_MODE_CLASS (vmode) == MODE_VECTOR_INT); 9509 op2 = simplify_subreg (vmode, op2, TYPE_MODE (sel_type), 0); 9510 gcc_assert (op2 && GET_CODE (op2) == CONST_VECTOR); 9511 } 9512 else 9513 gcc_assert (GET_MODE_CLASS (GET_MODE (op2)) == MODE_VECTOR_INT); 9514 9515 temp = expand_vec_perm (mode, op0, op1, op2, target); 9516 gcc_assert (temp); 9517 return temp; 9518 9519 case DOT_PROD_EXPR: 9520 { 9521 tree oprnd0 = treeop0; 9522 tree oprnd1 = treeop1; 9523 tree oprnd2 = treeop2; 9524 rtx op2; 9525 9526 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL); 9527 op2 = expand_normal (oprnd2); 9528 target = expand_widen_pattern_expr (ops, op0, op1, op2, 9529 target, unsignedp); 9530 return target; 9531 } 9532 9533 case SAD_EXPR: 9534 { 9535 tree oprnd0 = treeop0; 9536 tree oprnd1 = treeop1; 9537 tree oprnd2 = treeop2; 9538 rtx op2; 9539 9540 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL); 9541 op2 = expand_normal (oprnd2); 9542 target = expand_widen_pattern_expr (ops, op0, op1, op2, 9543 target, unsignedp); 9544 return target; 9545 } 9546 9547 case REALIGN_LOAD_EXPR: 9548 { 9549 tree oprnd0 = treeop0; 9550 tree oprnd1 = treeop1; 9551 tree oprnd2 = treeop2; 9552 rtx op2; 9553 9554 this_optab = optab_for_tree_code (code, type, optab_default); 9555 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL); 9556 op2 = expand_normal (oprnd2); 9557 temp = expand_ternary_op (mode, this_optab, op0, op1, op2, 9558 target, unsignedp); 9559 gcc_assert (temp); 9560 return temp; 9561 } 9562 9563 case COND_EXPR: 9564 { 9565 /* A COND_EXPR with its type being VOID_TYPE represents a 9566 conditional jump and is handled in 9567 expand_gimple_cond_expr. */ 9568 gcc_assert (!VOID_TYPE_P (type)); 9569 9570 /* Note that COND_EXPRs whose type is a structure or union 9571 are required to be constructed to contain assignments of 9572 a temporary variable, so that we can evaluate them here 9573 for side effect only. If type is void, we must do likewise. */ 9574 9575 gcc_assert (!TREE_ADDRESSABLE (type) 9576 && !ignore 9577 && TREE_TYPE (treeop1) != void_type_node 9578 && TREE_TYPE (treeop2) != void_type_node); 9579 9580 temp = expand_cond_expr_using_cmove (treeop0, treeop1, treeop2); 9581 if (temp) 9582 return temp; 9583 9584 /* If we are not to produce a result, we have no target. Otherwise, 9585 if a target was specified use it; it will not be used as an 9586 intermediate target unless it is safe. If no target, use a 9587 temporary. */ 9588 9589 if (modifier != EXPAND_STACK_PARM 9590 && original_target 9591 && safe_from_p (original_target, treeop0, 1) 9592 && GET_MODE (original_target) == mode 9593 && !MEM_P (original_target)) 9594 temp = original_target; 9595 else 9596 temp = assign_temp (type, 0, 1); 9597 9598 do_pending_stack_adjust (); 9599 NO_DEFER_POP; 9600 rtx_code_label *lab0 = gen_label_rtx (); 9601 rtx_code_label *lab1 = gen_label_rtx (); 9602 jumpifnot (treeop0, lab0, -1); 9603 store_expr (treeop1, temp, 9604 modifier == EXPAND_STACK_PARM, 9605 false, false); 9606 9607 emit_jump_insn (targetm.gen_jump (lab1)); 9608 emit_barrier (); 9609 emit_label (lab0); 9610 store_expr (treeop2, temp, 9611 modifier == EXPAND_STACK_PARM, 9612 false, false); 9613 9614 emit_label (lab1); 9615 OK_DEFER_POP; 9616 return temp; 9617 } 9618 9619 case VEC_COND_EXPR: 9620 target = expand_vec_cond_expr (type, treeop0, treeop1, treeop2, target); 9621 return target; 9622 9623 case BIT_INSERT_EXPR: 9624 { 9625 unsigned bitpos = tree_to_uhwi (treeop2); 9626 unsigned bitsize; 9627 if (INTEGRAL_TYPE_P (TREE_TYPE (treeop1))) 9628 bitsize = TYPE_PRECISION (TREE_TYPE (treeop1)); 9629 else 9630 bitsize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (treeop1))); 9631 rtx op0 = expand_normal (treeop0); 9632 rtx op1 = expand_normal (treeop1); 9633 rtx dst = gen_reg_rtx (mode); 9634 emit_move_insn (dst, op0); 9635 store_bit_field (dst, bitsize, bitpos, 0, 0, 9636 TYPE_MODE (TREE_TYPE (treeop1)), op1, false); 9637 return dst; 9638 } 9639 9640 default: 9641 gcc_unreachable (); 9642 } 9643 9644 /* Here to do an ordinary binary operator. */ 9645 binop: 9646 expand_operands (treeop0, treeop1, 9647 subtarget, &op0, &op1, EXPAND_NORMAL); 9648 binop2: 9649 this_optab = optab_for_tree_code (code, type, optab_default); 9650 binop3: 9651 if (modifier == EXPAND_STACK_PARM) 9652 target = 0; 9653 temp = expand_binop (mode, this_optab, op0, op1, target, 9654 unsignedp, OPTAB_LIB_WIDEN); 9655 gcc_assert (temp); 9656 /* Bitwise operations do not need bitfield reduction as we expect their 9657 operands being properly truncated. */ 9658 if (code == BIT_XOR_EXPR 9659 || code == BIT_AND_EXPR 9660 || code == BIT_IOR_EXPR) 9661 return temp; 9662 return REDUCE_BIT_FIELD (temp); 9663 } 9664 #undef REDUCE_BIT_FIELD 9665 9666 9667 /* Return TRUE if expression STMT is suitable for replacement. 9668 Never consider memory loads as replaceable, because those don't ever lead 9669 into constant expressions. */ 9670 9671 static bool 9672 stmt_is_replaceable_p (gimple *stmt) 9673 { 9674 if (ssa_is_replaceable_p (stmt)) 9675 { 9676 /* Don't move around loads. */ 9677 if (!gimple_assign_single_p (stmt) 9678 || is_gimple_val (gimple_assign_rhs1 (stmt))) 9679 return true; 9680 } 9681 return false; 9682 } 9683 9684 rtx 9685 expand_expr_real_1 (tree exp, rtx target, machine_mode tmode, 9686 enum expand_modifier modifier, rtx *alt_rtl, 9687 bool inner_reference_p) 9688 { 9689 rtx op0, op1, temp, decl_rtl; 9690 tree type; 9691 int unsignedp; 9692 machine_mode mode, dmode; 9693 enum tree_code code = TREE_CODE (exp); 9694 rtx subtarget, original_target; 9695 int ignore; 9696 tree context; 9697 bool reduce_bit_field; 9698 location_t loc = EXPR_LOCATION (exp); 9699 struct separate_ops ops; 9700 tree treeop0, treeop1, treeop2; 9701 tree ssa_name = NULL_TREE; 9702 gimple *g; 9703 9704 type = TREE_TYPE (exp); 9705 mode = TYPE_MODE (type); 9706 unsignedp = TYPE_UNSIGNED (type); 9707 9708 treeop0 = treeop1 = treeop2 = NULL_TREE; 9709 if (!VL_EXP_CLASS_P (exp)) 9710 switch (TREE_CODE_LENGTH (code)) 9711 { 9712 default: 9713 case 3: treeop2 = TREE_OPERAND (exp, 2); /* FALLTHRU */ 9714 case 2: treeop1 = TREE_OPERAND (exp, 1); /* FALLTHRU */ 9715 case 1: treeop0 = TREE_OPERAND (exp, 0); /* FALLTHRU */ 9716 case 0: break; 9717 } 9718 ops.code = code; 9719 ops.type = type; 9720 ops.op0 = treeop0; 9721 ops.op1 = treeop1; 9722 ops.op2 = treeop2; 9723 ops.location = loc; 9724 9725 ignore = (target == const0_rtx 9726 || ((CONVERT_EXPR_CODE_P (code) 9727 || code == COND_EXPR || code == VIEW_CONVERT_EXPR) 9728 && TREE_CODE (type) == VOID_TYPE)); 9729 9730 /* An operation in what may be a bit-field type needs the 9731 result to be reduced to the precision of the bit-field type, 9732 which is narrower than that of the type's mode. */ 9733 reduce_bit_field = (!ignore 9734 && INTEGRAL_TYPE_P (type) 9735 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type)); 9736 9737 /* If we are going to ignore this result, we need only do something 9738 if there is a side-effect somewhere in the expression. If there 9739 is, short-circuit the most common cases here. Note that we must 9740 not call expand_expr with anything but const0_rtx in case this 9741 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */ 9742 9743 if (ignore) 9744 { 9745 if (! TREE_SIDE_EFFECTS (exp)) 9746 return const0_rtx; 9747 9748 /* Ensure we reference a volatile object even if value is ignored, but 9749 don't do this if all we are doing is taking its address. */ 9750 if (TREE_THIS_VOLATILE (exp) 9751 && TREE_CODE (exp) != FUNCTION_DECL 9752 && mode != VOIDmode && mode != BLKmode 9753 && modifier != EXPAND_CONST_ADDRESS) 9754 { 9755 temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier); 9756 if (MEM_P (temp)) 9757 copy_to_reg (temp); 9758 return const0_rtx; 9759 } 9760 9761 if (TREE_CODE_CLASS (code) == tcc_unary 9762 || code == BIT_FIELD_REF 9763 || code == COMPONENT_REF 9764 || code == INDIRECT_REF) 9765 return expand_expr (treeop0, const0_rtx, VOIDmode, 9766 modifier); 9767 9768 else if (TREE_CODE_CLASS (code) == tcc_binary 9769 || TREE_CODE_CLASS (code) == tcc_comparison 9770 || code == ARRAY_REF || code == ARRAY_RANGE_REF) 9771 { 9772 expand_expr (treeop0, const0_rtx, VOIDmode, modifier); 9773 expand_expr (treeop1, const0_rtx, VOIDmode, modifier); 9774 return const0_rtx; 9775 } 9776 9777 target = 0; 9778 } 9779 9780 if (reduce_bit_field && modifier == EXPAND_STACK_PARM) 9781 target = 0; 9782 9783 /* Use subtarget as the target for operand 0 of a binary operation. */ 9784 subtarget = get_subtarget (target); 9785 original_target = target; 9786 9787 switch (code) 9788 { 9789 case LABEL_DECL: 9790 { 9791 tree function = decl_function_context (exp); 9792 9793 temp = label_rtx (exp); 9794 temp = gen_rtx_LABEL_REF (Pmode, temp); 9795 9796 if (function != current_function_decl 9797 && function != 0) 9798 LABEL_REF_NONLOCAL_P (temp) = 1; 9799 9800 temp = gen_rtx_MEM (FUNCTION_MODE, temp); 9801 return temp; 9802 } 9803 9804 case SSA_NAME: 9805 /* ??? ivopts calls expander, without any preparation from 9806 out-of-ssa. So fake instructions as if this was an access to the 9807 base variable. This unnecessarily allocates a pseudo, see how we can 9808 reuse it, if partition base vars have it set already. */ 9809 if (!currently_expanding_to_rtl) 9810 { 9811 tree var = SSA_NAME_VAR (exp); 9812 if (var && DECL_RTL_SET_P (var)) 9813 return DECL_RTL (var); 9814 return gen_raw_REG (TYPE_MODE (TREE_TYPE (exp)), 9815 LAST_VIRTUAL_REGISTER + 1); 9816 } 9817 9818 g = get_gimple_for_ssa_name (exp); 9819 /* For EXPAND_INITIALIZER try harder to get something simpler. */ 9820 if (g == NULL 9821 && modifier == EXPAND_INITIALIZER 9822 && !SSA_NAME_IS_DEFAULT_DEF (exp) 9823 && (optimize || !SSA_NAME_VAR (exp) 9824 || DECL_IGNORED_P (SSA_NAME_VAR (exp))) 9825 && stmt_is_replaceable_p (SSA_NAME_DEF_STMT (exp))) 9826 g = SSA_NAME_DEF_STMT (exp); 9827 if (g) 9828 { 9829 rtx r; 9830 location_t saved_loc = curr_insn_location (); 9831 location_t loc = gimple_location (g); 9832 if (loc != UNKNOWN_LOCATION) 9833 set_curr_insn_location (loc); 9834 ops.code = gimple_assign_rhs_code (g); 9835 switch (get_gimple_rhs_class (ops.code)) 9836 { 9837 case GIMPLE_TERNARY_RHS: 9838 ops.op2 = gimple_assign_rhs3 (g); 9839 /* Fallthru */ 9840 case GIMPLE_BINARY_RHS: 9841 ops.op1 = gimple_assign_rhs2 (g); 9842 9843 /* Try to expand conditonal compare. */ 9844 if (targetm.gen_ccmp_first) 9845 { 9846 gcc_checking_assert (targetm.gen_ccmp_next != NULL); 9847 r = expand_ccmp_expr (g); 9848 if (r) 9849 break; 9850 } 9851 /* Fallthru */ 9852 case GIMPLE_UNARY_RHS: 9853 ops.op0 = gimple_assign_rhs1 (g); 9854 ops.type = TREE_TYPE (gimple_assign_lhs (g)); 9855 ops.location = loc; 9856 r = expand_expr_real_2 (&ops, target, tmode, modifier); 9857 break; 9858 case GIMPLE_SINGLE_RHS: 9859 { 9860 r = expand_expr_real (gimple_assign_rhs1 (g), target, 9861 tmode, modifier, NULL, inner_reference_p); 9862 break; 9863 } 9864 default: 9865 gcc_unreachable (); 9866 } 9867 set_curr_insn_location (saved_loc); 9868 if (REG_P (r) && !REG_EXPR (r)) 9869 set_reg_attrs_for_decl_rtl (SSA_NAME_VAR (exp), r); 9870 return r; 9871 } 9872 9873 ssa_name = exp; 9874 decl_rtl = get_rtx_for_ssa_name (ssa_name); 9875 exp = SSA_NAME_VAR (ssa_name); 9876 goto expand_decl_rtl; 9877 9878 case PARM_DECL: 9879 case VAR_DECL: 9880 /* If a static var's type was incomplete when the decl was written, 9881 but the type is complete now, lay out the decl now. */ 9882 if (DECL_SIZE (exp) == 0 9883 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp)) 9884 && (TREE_STATIC (exp) || DECL_EXTERNAL (exp))) 9885 layout_decl (exp, 0); 9886 9887 /* fall through */ 9888 9889 case FUNCTION_DECL: 9890 case RESULT_DECL: 9891 decl_rtl = DECL_RTL (exp); 9892 expand_decl_rtl: 9893 gcc_assert (decl_rtl); 9894 9895 /* DECL_MODE might change when TYPE_MODE depends on attribute target 9896 settings for VECTOR_TYPE_P that might switch for the function. */ 9897 if (currently_expanding_to_rtl 9898 && code == VAR_DECL && MEM_P (decl_rtl) 9899 && VECTOR_TYPE_P (type) && exp && DECL_MODE (exp) != mode) 9900 decl_rtl = change_address (decl_rtl, TYPE_MODE (type), 0); 9901 else 9902 decl_rtl = copy_rtx (decl_rtl); 9903 9904 /* Record writes to register variables. */ 9905 if (modifier == EXPAND_WRITE 9906 && REG_P (decl_rtl) 9907 && HARD_REGISTER_P (decl_rtl)) 9908 add_to_hard_reg_set (&crtl->asm_clobbers, 9909 GET_MODE (decl_rtl), REGNO (decl_rtl)); 9910 9911 /* Ensure variable marked as used even if it doesn't go through 9912 a parser. If it hasn't be used yet, write out an external 9913 definition. */ 9914 if (exp) 9915 TREE_USED (exp) = 1; 9916 9917 /* Show we haven't gotten RTL for this yet. */ 9918 temp = 0; 9919 9920 /* Variables inherited from containing functions should have 9921 been lowered by this point. */ 9922 if (exp) 9923 context = decl_function_context (exp); 9924 gcc_assert (!exp 9925 || SCOPE_FILE_SCOPE_P (context) 9926 || context == current_function_decl 9927 || TREE_STATIC (exp) 9928 || DECL_EXTERNAL (exp) 9929 /* ??? C++ creates functions that are not TREE_STATIC. */ 9930 || TREE_CODE (exp) == FUNCTION_DECL); 9931 9932 /* This is the case of an array whose size is to be determined 9933 from its initializer, while the initializer is still being parsed. 9934 ??? We aren't parsing while expanding anymore. */ 9935 9936 if (MEM_P (decl_rtl) && REG_P (XEXP (decl_rtl, 0))) 9937 temp = validize_mem (decl_rtl); 9938 9939 /* If DECL_RTL is memory, we are in the normal case and the 9940 address is not valid, get the address into a register. */ 9941 9942 else if (MEM_P (decl_rtl) && modifier != EXPAND_INITIALIZER) 9943 { 9944 if (alt_rtl) 9945 *alt_rtl = decl_rtl; 9946 decl_rtl = use_anchored_address (decl_rtl); 9947 if (modifier != EXPAND_CONST_ADDRESS 9948 && modifier != EXPAND_SUM 9949 && !memory_address_addr_space_p (exp ? DECL_MODE (exp) 9950 : GET_MODE (decl_rtl), 9951 XEXP (decl_rtl, 0), 9952 MEM_ADDR_SPACE (decl_rtl))) 9953 temp = replace_equiv_address (decl_rtl, 9954 copy_rtx (XEXP (decl_rtl, 0))); 9955 } 9956 9957 /* If we got something, return it. But first, set the alignment 9958 if the address is a register. */ 9959 if (temp != 0) 9960 { 9961 if (exp && MEM_P (temp) && REG_P (XEXP (temp, 0))) 9962 mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp)); 9963 9964 return temp; 9965 } 9966 9967 if (exp) 9968 dmode = DECL_MODE (exp); 9969 else 9970 dmode = TYPE_MODE (TREE_TYPE (ssa_name)); 9971 9972 /* If the mode of DECL_RTL does not match that of the decl, 9973 there are two cases: we are dealing with a BLKmode value 9974 that is returned in a register, or we are dealing with 9975 a promoted value. In the latter case, return a SUBREG 9976 of the wanted mode, but mark it so that we know that it 9977 was already extended. */ 9978 if (REG_P (decl_rtl) 9979 && dmode != BLKmode 9980 && GET_MODE (decl_rtl) != dmode) 9981 { 9982 machine_mode pmode; 9983 9984 /* Get the signedness to be used for this variable. Ensure we get 9985 the same mode we got when the variable was declared. */ 9986 if (code != SSA_NAME) 9987 pmode = promote_decl_mode (exp, &unsignedp); 9988 else if ((g = SSA_NAME_DEF_STMT (ssa_name)) 9989 && gimple_code (g) == GIMPLE_CALL 9990 && !gimple_call_internal_p (g)) 9991 pmode = promote_function_mode (type, mode, &unsignedp, 9992 gimple_call_fntype (g), 9993 2); 9994 else 9995 pmode = promote_ssa_mode (ssa_name, &unsignedp); 9996 gcc_assert (GET_MODE (decl_rtl) == pmode); 9997 9998 temp = gen_lowpart_SUBREG (mode, decl_rtl); 9999 SUBREG_PROMOTED_VAR_P (temp) = 1; 10000 SUBREG_PROMOTED_SET (temp, unsignedp); 10001 return temp; 10002 } 10003 10004 return decl_rtl; 10005 10006 case INTEGER_CST: 10007 /* Given that TYPE_PRECISION (type) is not always equal to 10008 GET_MODE_PRECISION (TYPE_MODE (type)), we need to extend from 10009 the former to the latter according to the signedness of the 10010 type. */ 10011 temp = immed_wide_int_const (wi::to_wide 10012 (exp, 10013 GET_MODE_PRECISION (TYPE_MODE (type))), 10014 TYPE_MODE (type)); 10015 return temp; 10016 10017 case VECTOR_CST: 10018 { 10019 tree tmp = NULL_TREE; 10020 if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT 10021 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT 10022 || GET_MODE_CLASS (mode) == MODE_VECTOR_FRACT 10023 || GET_MODE_CLASS (mode) == MODE_VECTOR_UFRACT 10024 || GET_MODE_CLASS (mode) == MODE_VECTOR_ACCUM 10025 || GET_MODE_CLASS (mode) == MODE_VECTOR_UACCUM) 10026 return const_vector_from_tree (exp); 10027 if (GET_MODE_CLASS (mode) == MODE_INT) 10028 { 10029 if (VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (exp))) 10030 return const_scalar_mask_from_tree (exp); 10031 else 10032 { 10033 tree type_for_mode = lang_hooks.types.type_for_mode (mode, 1); 10034 if (type_for_mode) 10035 tmp = fold_unary_loc (loc, VIEW_CONVERT_EXPR, 10036 type_for_mode, exp); 10037 } 10038 } 10039 if (!tmp) 10040 { 10041 vec<constructor_elt, va_gc> *v; 10042 unsigned i; 10043 vec_alloc (v, VECTOR_CST_NELTS (exp)); 10044 for (i = 0; i < VECTOR_CST_NELTS (exp); ++i) 10045 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, VECTOR_CST_ELT (exp, i)); 10046 tmp = build_constructor (type, v); 10047 } 10048 return expand_expr (tmp, ignore ? const0_rtx : target, 10049 tmode, modifier); 10050 } 10051 10052 case CONST_DECL: 10053 if (modifier == EXPAND_WRITE) 10054 { 10055 /* Writing into CONST_DECL is always invalid, but handle it 10056 gracefully. */ 10057 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (exp)); 10058 machine_mode address_mode = targetm.addr_space.address_mode (as); 10059 op0 = expand_expr_addr_expr_1 (exp, NULL_RTX, address_mode, 10060 EXPAND_NORMAL, as); 10061 op0 = memory_address_addr_space (mode, op0, as); 10062 temp = gen_rtx_MEM (mode, op0); 10063 set_mem_addr_space (temp, as); 10064 return temp; 10065 } 10066 return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier); 10067 10068 case REAL_CST: 10069 /* If optimized, generate immediate CONST_DOUBLE 10070 which will be turned into memory by reload if necessary. 10071 10072 We used to force a register so that loop.c could see it. But 10073 this does not allow gen_* patterns to perform optimizations with 10074 the constants. It also produces two insns in cases like "x = 1.0;". 10075 On most machines, floating-point constants are not permitted in 10076 many insns, so we'd end up copying it to a register in any case. 10077 10078 Now, we do the copying in expand_binop, if appropriate. */ 10079 return const_double_from_real_value (TREE_REAL_CST (exp), 10080 TYPE_MODE (TREE_TYPE (exp))); 10081 10082 case FIXED_CST: 10083 return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp), 10084 TYPE_MODE (TREE_TYPE (exp))); 10085 10086 case COMPLEX_CST: 10087 /* Handle evaluating a complex constant in a CONCAT target. */ 10088 if (original_target && GET_CODE (original_target) == CONCAT) 10089 { 10090 machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp))); 10091 rtx rtarg, itarg; 10092 10093 rtarg = XEXP (original_target, 0); 10094 itarg = XEXP (original_target, 1); 10095 10096 /* Move the real and imaginary parts separately. */ 10097 op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, EXPAND_NORMAL); 10098 op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, EXPAND_NORMAL); 10099 10100 if (op0 != rtarg) 10101 emit_move_insn (rtarg, op0); 10102 if (op1 != itarg) 10103 emit_move_insn (itarg, op1); 10104 10105 return original_target; 10106 } 10107 10108 /* fall through */ 10109 10110 case STRING_CST: 10111 temp = expand_expr_constant (exp, 1, modifier); 10112 10113 /* temp contains a constant address. 10114 On RISC machines where a constant address isn't valid, 10115 make some insns to get that address into a register. */ 10116 if (modifier != EXPAND_CONST_ADDRESS 10117 && modifier != EXPAND_INITIALIZER 10118 && modifier != EXPAND_SUM 10119 && ! memory_address_addr_space_p (mode, XEXP (temp, 0), 10120 MEM_ADDR_SPACE (temp))) 10121 return replace_equiv_address (temp, 10122 copy_rtx (XEXP (temp, 0))); 10123 return temp; 10124 10125 case SAVE_EXPR: 10126 { 10127 tree val = treeop0; 10128 rtx ret = expand_expr_real_1 (val, target, tmode, modifier, alt_rtl, 10129 inner_reference_p); 10130 10131 if (!SAVE_EXPR_RESOLVED_P (exp)) 10132 { 10133 /* We can indeed still hit this case, typically via builtin 10134 expanders calling save_expr immediately before expanding 10135 something. Assume this means that we only have to deal 10136 with non-BLKmode values. */ 10137 gcc_assert (GET_MODE (ret) != BLKmode); 10138 10139 val = build_decl (curr_insn_location (), 10140 VAR_DECL, NULL, TREE_TYPE (exp)); 10141 DECL_ARTIFICIAL (val) = 1; 10142 DECL_IGNORED_P (val) = 1; 10143 treeop0 = val; 10144 TREE_OPERAND (exp, 0) = treeop0; 10145 SAVE_EXPR_RESOLVED_P (exp) = 1; 10146 10147 if (!CONSTANT_P (ret)) 10148 ret = copy_to_reg (ret); 10149 SET_DECL_RTL (val, ret); 10150 } 10151 10152 return ret; 10153 } 10154 10155 10156 case CONSTRUCTOR: 10157 /* If we don't need the result, just ensure we evaluate any 10158 subexpressions. */ 10159 if (ignore) 10160 { 10161 unsigned HOST_WIDE_INT idx; 10162 tree value; 10163 10164 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value) 10165 expand_expr (value, const0_rtx, VOIDmode, EXPAND_NORMAL); 10166 10167 return const0_rtx; 10168 } 10169 10170 return expand_constructor (exp, target, modifier, false); 10171 10172 case TARGET_MEM_REF: 10173 { 10174 addr_space_t as 10175 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)))); 10176 enum insn_code icode; 10177 unsigned int align; 10178 10179 op0 = addr_for_mem_ref (exp, as, true); 10180 op0 = memory_address_addr_space (mode, op0, as); 10181 temp = gen_rtx_MEM (mode, op0); 10182 set_mem_attributes (temp, exp, 0); 10183 set_mem_addr_space (temp, as); 10184 align = get_object_alignment (exp); 10185 if (modifier != EXPAND_WRITE 10186 && modifier != EXPAND_MEMORY 10187 && mode != BLKmode 10188 && align < GET_MODE_ALIGNMENT (mode) 10189 /* If the target does not have special handling for unaligned 10190 loads of mode then it can use regular moves for them. */ 10191 && ((icode = optab_handler (movmisalign_optab, mode)) 10192 != CODE_FOR_nothing)) 10193 { 10194 struct expand_operand ops[2]; 10195 10196 /* We've already validated the memory, and we're creating a 10197 new pseudo destination. The predicates really can't fail, 10198 nor can the generator. */ 10199 create_output_operand (&ops[0], NULL_RTX, mode); 10200 create_fixed_operand (&ops[1], temp); 10201 expand_insn (icode, 2, ops); 10202 temp = ops[0].value; 10203 } 10204 return temp; 10205 } 10206 10207 case MEM_REF: 10208 { 10209 const bool reverse = REF_REVERSE_STORAGE_ORDER (exp); 10210 addr_space_t as 10211 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)))); 10212 machine_mode address_mode; 10213 tree base = TREE_OPERAND (exp, 0); 10214 gimple *def_stmt; 10215 enum insn_code icode; 10216 unsigned align; 10217 /* Handle expansion of non-aliased memory with non-BLKmode. That 10218 might end up in a register. */ 10219 if (mem_ref_refers_to_non_mem_p (exp)) 10220 { 10221 HOST_WIDE_INT offset = mem_ref_offset (exp).to_short_addr (); 10222 base = TREE_OPERAND (base, 0); 10223 if (offset == 0 10224 && !reverse 10225 && tree_fits_uhwi_p (TYPE_SIZE (type)) 10226 && (GET_MODE_BITSIZE (DECL_MODE (base)) 10227 == tree_to_uhwi (TYPE_SIZE (type)))) 10228 return expand_expr (build1 (VIEW_CONVERT_EXPR, type, base), 10229 target, tmode, modifier); 10230 if (TYPE_MODE (type) == BLKmode) 10231 { 10232 temp = assign_stack_temp (DECL_MODE (base), 10233 GET_MODE_SIZE (DECL_MODE (base))); 10234 store_expr (base, temp, 0, false, false); 10235 temp = adjust_address (temp, BLKmode, offset); 10236 set_mem_size (temp, int_size_in_bytes (type)); 10237 return temp; 10238 } 10239 exp = build3 (BIT_FIELD_REF, type, base, TYPE_SIZE (type), 10240 bitsize_int (offset * BITS_PER_UNIT)); 10241 REF_REVERSE_STORAGE_ORDER (exp) = reverse; 10242 return expand_expr (exp, target, tmode, modifier); 10243 } 10244 address_mode = targetm.addr_space.address_mode (as); 10245 base = TREE_OPERAND (exp, 0); 10246 if ((def_stmt = get_def_for_expr (base, BIT_AND_EXPR))) 10247 { 10248 tree mask = gimple_assign_rhs2 (def_stmt); 10249 base = build2 (BIT_AND_EXPR, TREE_TYPE (base), 10250 gimple_assign_rhs1 (def_stmt), mask); 10251 TREE_OPERAND (exp, 0) = base; 10252 } 10253 align = get_object_alignment (exp); 10254 op0 = expand_expr (base, NULL_RTX, VOIDmode, EXPAND_SUM); 10255 op0 = memory_address_addr_space (mode, op0, as); 10256 if (!integer_zerop (TREE_OPERAND (exp, 1))) 10257 { 10258 rtx off = immed_wide_int_const (mem_ref_offset (exp), address_mode); 10259 op0 = simplify_gen_binary (PLUS, address_mode, op0, off); 10260 op0 = memory_address_addr_space (mode, op0, as); 10261 } 10262 temp = gen_rtx_MEM (mode, op0); 10263 set_mem_attributes (temp, exp, 0); 10264 set_mem_addr_space (temp, as); 10265 if (TREE_THIS_VOLATILE (exp)) 10266 MEM_VOLATILE_P (temp) = 1; 10267 if (modifier != EXPAND_WRITE 10268 && modifier != EXPAND_MEMORY 10269 && !inner_reference_p 10270 && mode != BLKmode 10271 && align < GET_MODE_ALIGNMENT (mode)) 10272 { 10273 if ((icode = optab_handler (movmisalign_optab, mode)) 10274 != CODE_FOR_nothing) 10275 { 10276 struct expand_operand ops[2]; 10277 10278 /* We've already validated the memory, and we're creating a 10279 new pseudo destination. The predicates really can't fail, 10280 nor can the generator. */ 10281 create_output_operand (&ops[0], NULL_RTX, mode); 10282 create_fixed_operand (&ops[1], temp); 10283 expand_insn (icode, 2, ops); 10284 temp = ops[0].value; 10285 } 10286 else if (SLOW_UNALIGNED_ACCESS (mode, align)) 10287 temp = extract_bit_field (temp, GET_MODE_BITSIZE (mode), 10288 0, TYPE_UNSIGNED (TREE_TYPE (exp)), 10289 (modifier == EXPAND_STACK_PARM 10290 ? NULL_RTX : target), 10291 mode, mode, false); 10292 } 10293 if (reverse 10294 && modifier != EXPAND_MEMORY 10295 && modifier != EXPAND_WRITE) 10296 temp = flip_storage_order (mode, temp); 10297 return temp; 10298 } 10299 10300 case ARRAY_REF: 10301 10302 { 10303 tree array = treeop0; 10304 tree index = treeop1; 10305 tree init; 10306 10307 /* Fold an expression like: "foo"[2]. 10308 This is not done in fold so it won't happen inside &. 10309 Don't fold if this is for wide characters since it's too 10310 difficult to do correctly and this is a very rare case. */ 10311 10312 if (modifier != EXPAND_CONST_ADDRESS 10313 && modifier != EXPAND_INITIALIZER 10314 && modifier != EXPAND_MEMORY) 10315 { 10316 tree t = fold_read_from_constant_string (exp); 10317 10318 if (t) 10319 return expand_expr (t, target, tmode, modifier); 10320 } 10321 10322 /* If this is a constant index into a constant array, 10323 just get the value from the array. Handle both the cases when 10324 we have an explicit constructor and when our operand is a variable 10325 that was declared const. */ 10326 10327 if (modifier != EXPAND_CONST_ADDRESS 10328 && modifier != EXPAND_INITIALIZER 10329 && modifier != EXPAND_MEMORY 10330 && TREE_CODE (array) == CONSTRUCTOR 10331 && ! TREE_SIDE_EFFECTS (array) 10332 && TREE_CODE (index) == INTEGER_CST) 10333 { 10334 unsigned HOST_WIDE_INT ix; 10335 tree field, value; 10336 10337 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array), ix, 10338 field, value) 10339 if (tree_int_cst_equal (field, index)) 10340 { 10341 if (!TREE_SIDE_EFFECTS (value)) 10342 return expand_expr (fold (value), target, tmode, modifier); 10343 break; 10344 } 10345 } 10346 10347 else if (optimize >= 1 10348 && modifier != EXPAND_CONST_ADDRESS 10349 && modifier != EXPAND_INITIALIZER 10350 && modifier != EXPAND_MEMORY 10351 && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array) 10352 && TREE_CODE (index) == INTEGER_CST 10353 && (VAR_P (array) || TREE_CODE (array) == CONST_DECL) 10354 && (init = ctor_for_folding (array)) != error_mark_node) 10355 { 10356 if (init == NULL_TREE) 10357 { 10358 tree value = build_zero_cst (type); 10359 if (TREE_CODE (value) == CONSTRUCTOR) 10360 { 10361 /* If VALUE is a CONSTRUCTOR, this optimization is only 10362 useful if this doesn't store the CONSTRUCTOR into 10363 memory. If it does, it is more efficient to just 10364 load the data from the array directly. */ 10365 rtx ret = expand_constructor (value, target, 10366 modifier, true); 10367 if (ret == NULL_RTX) 10368 value = NULL_TREE; 10369 } 10370 10371 if (value) 10372 return expand_expr (value, target, tmode, modifier); 10373 } 10374 else if (TREE_CODE (init) == CONSTRUCTOR) 10375 { 10376 unsigned HOST_WIDE_INT ix; 10377 tree field, value; 10378 10379 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), ix, 10380 field, value) 10381 if (tree_int_cst_equal (field, index)) 10382 { 10383 if (TREE_SIDE_EFFECTS (value)) 10384 break; 10385 10386 if (TREE_CODE (value) == CONSTRUCTOR) 10387 { 10388 /* If VALUE is a CONSTRUCTOR, this 10389 optimization is only useful if 10390 this doesn't store the CONSTRUCTOR 10391 into memory. If it does, it is more 10392 efficient to just load the data from 10393 the array directly. */ 10394 rtx ret = expand_constructor (value, target, 10395 modifier, true); 10396 if (ret == NULL_RTX) 10397 break; 10398 } 10399 10400 return 10401 expand_expr (fold (value), target, tmode, modifier); 10402 } 10403 } 10404 else if (TREE_CODE (init) == STRING_CST) 10405 { 10406 tree low_bound = array_ref_low_bound (exp); 10407 tree index1 = fold_convert_loc (loc, sizetype, treeop1); 10408 10409 /* Optimize the special case of a zero lower bound. 10410 10411 We convert the lower bound to sizetype to avoid problems 10412 with constant folding. E.g. suppose the lower bound is 10413 1 and its mode is QI. Without the conversion 10414 (ARRAY + (INDEX - (unsigned char)1)) 10415 becomes 10416 (ARRAY + (-(unsigned char)1) + INDEX) 10417 which becomes 10418 (ARRAY + 255 + INDEX). Oops! */ 10419 if (!integer_zerop (low_bound)) 10420 index1 = size_diffop_loc (loc, index1, 10421 fold_convert_loc (loc, sizetype, 10422 low_bound)); 10423 10424 if (tree_fits_uhwi_p (index1) 10425 && compare_tree_int (index1, TREE_STRING_LENGTH (init)) < 0) 10426 { 10427 tree type = TREE_TYPE (TREE_TYPE (init)); 10428 machine_mode mode = TYPE_MODE (type); 10429 10430 if (GET_MODE_CLASS (mode) == MODE_INT 10431 && GET_MODE_SIZE (mode) == 1) 10432 return gen_int_mode (TREE_STRING_POINTER (init) 10433 [TREE_INT_CST_LOW (index1)], 10434 mode); 10435 } 10436 } 10437 } 10438 } 10439 goto normal_inner_ref; 10440 10441 case COMPONENT_REF: 10442 /* If the operand is a CONSTRUCTOR, we can just extract the 10443 appropriate field if it is present. */ 10444 if (TREE_CODE (treeop0) == CONSTRUCTOR) 10445 { 10446 unsigned HOST_WIDE_INT idx; 10447 tree field, value; 10448 10449 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (treeop0), 10450 idx, field, value) 10451 if (field == treeop1 10452 /* We can normally use the value of the field in the 10453 CONSTRUCTOR. However, if this is a bitfield in 10454 an integral mode that we can fit in a HOST_WIDE_INT, 10455 we must mask only the number of bits in the bitfield, 10456 since this is done implicitly by the constructor. If 10457 the bitfield does not meet either of those conditions, 10458 we can't do this optimization. */ 10459 && (! DECL_BIT_FIELD (field) 10460 || ((GET_MODE_CLASS (DECL_MODE (field)) == MODE_INT) 10461 && (GET_MODE_PRECISION (DECL_MODE (field)) 10462 <= HOST_BITS_PER_WIDE_INT)))) 10463 { 10464 if (DECL_BIT_FIELD (field) 10465 && modifier == EXPAND_STACK_PARM) 10466 target = 0; 10467 op0 = expand_expr (value, target, tmode, modifier); 10468 if (DECL_BIT_FIELD (field)) 10469 { 10470 HOST_WIDE_INT bitsize = TREE_INT_CST_LOW (DECL_SIZE (field)); 10471 machine_mode imode = TYPE_MODE (TREE_TYPE (field)); 10472 10473 if (TYPE_UNSIGNED (TREE_TYPE (field))) 10474 { 10475 op1 = gen_int_mode ((HOST_WIDE_INT_1 << bitsize) - 1, 10476 imode); 10477 op0 = expand_and (imode, op0, op1, target); 10478 } 10479 else 10480 { 10481 int count = GET_MODE_PRECISION (imode) - bitsize; 10482 10483 op0 = expand_shift (LSHIFT_EXPR, imode, op0, count, 10484 target, 0); 10485 op0 = expand_shift (RSHIFT_EXPR, imode, op0, count, 10486 target, 0); 10487 } 10488 } 10489 10490 return op0; 10491 } 10492 } 10493 goto normal_inner_ref; 10494 10495 case BIT_FIELD_REF: 10496 case ARRAY_RANGE_REF: 10497 normal_inner_ref: 10498 { 10499 machine_mode mode1, mode2; 10500 HOST_WIDE_INT bitsize, bitpos; 10501 tree offset; 10502 int reversep, volatilep = 0, must_force_mem; 10503 tree tem 10504 = get_inner_reference (exp, &bitsize, &bitpos, &offset, &mode1, 10505 &unsignedp, &reversep, &volatilep); 10506 rtx orig_op0, memloc; 10507 bool clear_mem_expr = false; 10508 10509 /* If we got back the original object, something is wrong. Perhaps 10510 we are evaluating an expression too early. In any event, don't 10511 infinitely recurse. */ 10512 gcc_assert (tem != exp); 10513 10514 /* If TEM's type is a union of variable size, pass TARGET to the inner 10515 computation, since it will need a temporary and TARGET is known 10516 to have to do. This occurs in unchecked conversion in Ada. */ 10517 orig_op0 = op0 10518 = expand_expr_real (tem, 10519 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE 10520 && COMPLETE_TYPE_P (TREE_TYPE (tem)) 10521 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem))) 10522 != INTEGER_CST) 10523 && modifier != EXPAND_STACK_PARM 10524 ? target : NULL_RTX), 10525 VOIDmode, 10526 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier, 10527 NULL, true); 10528 10529 /* If the field has a mode, we want to access it in the 10530 field's mode, not the computed mode. 10531 If a MEM has VOIDmode (external with incomplete type), 10532 use BLKmode for it instead. */ 10533 if (MEM_P (op0)) 10534 { 10535 if (mode1 != VOIDmode) 10536 op0 = adjust_address (op0, mode1, 0); 10537 else if (GET_MODE (op0) == VOIDmode) 10538 op0 = adjust_address (op0, BLKmode, 0); 10539 } 10540 10541 mode2 10542 = CONSTANT_P (op0) ? TYPE_MODE (TREE_TYPE (tem)) : GET_MODE (op0); 10543 10544 /* If we have either an offset, a BLKmode result, or a reference 10545 outside the underlying object, we must force it to memory. 10546 Such a case can occur in Ada if we have unchecked conversion 10547 of an expression from a scalar type to an aggregate type or 10548 for an ARRAY_RANGE_REF whose type is BLKmode, or if we were 10549 passed a partially uninitialized object or a view-conversion 10550 to a larger size. */ 10551 must_force_mem = (offset 10552 || mode1 == BLKmode 10553 || bitpos + bitsize > GET_MODE_BITSIZE (mode2)); 10554 10555 /* Handle CONCAT first. */ 10556 if (GET_CODE (op0) == CONCAT && !must_force_mem) 10557 { 10558 if (bitpos == 0 10559 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)) 10560 && COMPLEX_MODE_P (mode1) 10561 && COMPLEX_MODE_P (GET_MODE (op0)) 10562 && (GET_MODE_PRECISION (GET_MODE_INNER (mode1)) 10563 == GET_MODE_PRECISION (GET_MODE_INNER (GET_MODE (op0))))) 10564 { 10565 if (reversep) 10566 op0 = flip_storage_order (GET_MODE (op0), op0); 10567 if (mode1 != GET_MODE (op0)) 10568 { 10569 rtx parts[2]; 10570 for (int i = 0; i < 2; i++) 10571 { 10572 rtx op = read_complex_part (op0, i != 0); 10573 if (GET_CODE (op) == SUBREG) 10574 op = force_reg (GET_MODE (op), op); 10575 rtx temp = gen_lowpart_common (GET_MODE_INNER (mode1), 10576 op); 10577 if (temp) 10578 op = temp; 10579 else 10580 { 10581 if (!REG_P (op) && !MEM_P (op)) 10582 op = force_reg (GET_MODE (op), op); 10583 op = gen_lowpart (GET_MODE_INNER (mode1), op); 10584 } 10585 parts[i] = op; 10586 } 10587 op0 = gen_rtx_CONCAT (mode1, parts[0], parts[1]); 10588 } 10589 return op0; 10590 } 10591 if (bitpos == 0 10592 && bitsize == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))) 10593 && bitsize) 10594 { 10595 op0 = XEXP (op0, 0); 10596 mode2 = GET_MODE (op0); 10597 } 10598 else if (bitpos == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))) 10599 && bitsize == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 1))) 10600 && bitpos 10601 && bitsize) 10602 { 10603 op0 = XEXP (op0, 1); 10604 bitpos = 0; 10605 mode2 = GET_MODE (op0); 10606 } 10607 else 10608 /* Otherwise force into memory. */ 10609 must_force_mem = 1; 10610 } 10611 10612 /* If this is a constant, put it in a register if it is a legitimate 10613 constant and we don't need a memory reference. */ 10614 if (CONSTANT_P (op0) 10615 && mode2 != BLKmode 10616 && targetm.legitimate_constant_p (mode2, op0) 10617 && !must_force_mem) 10618 op0 = force_reg (mode2, op0); 10619 10620 /* Otherwise, if this is a constant, try to force it to the constant 10621 pool. Note that back-ends, e.g. MIPS, may refuse to do so if it 10622 is a legitimate constant. */ 10623 else if (CONSTANT_P (op0) && (memloc = force_const_mem (mode2, op0))) 10624 op0 = validize_mem (memloc); 10625 10626 /* Otherwise, if this is a constant or the object is not in memory 10627 and need be, put it there. */ 10628 else if (CONSTANT_P (op0) || (!MEM_P (op0) && must_force_mem)) 10629 { 10630 memloc = assign_temp (TREE_TYPE (tem), 1, 1); 10631 emit_move_insn (memloc, op0); 10632 op0 = memloc; 10633 clear_mem_expr = true; 10634 } 10635 10636 if (offset) 10637 { 10638 machine_mode address_mode; 10639 rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, 10640 EXPAND_SUM); 10641 10642 gcc_assert (MEM_P (op0)); 10643 10644 address_mode = get_address_mode (op0); 10645 if (GET_MODE (offset_rtx) != address_mode) 10646 { 10647 /* We cannot be sure that the RTL in offset_rtx is valid outside 10648 of a memory address context, so force it into a register 10649 before attempting to convert it to the desired mode. */ 10650 offset_rtx = force_operand (offset_rtx, NULL_RTX); 10651 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0); 10652 } 10653 10654 /* See the comment in expand_assignment for the rationale. */ 10655 if (mode1 != VOIDmode 10656 && bitpos != 0 10657 && bitsize > 0 10658 && (bitpos % bitsize) == 0 10659 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0 10660 && MEM_ALIGN (op0) >= GET_MODE_ALIGNMENT (mode1)) 10661 { 10662 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT); 10663 bitpos = 0; 10664 } 10665 10666 op0 = offset_address (op0, offset_rtx, 10667 highest_pow2_factor (offset)); 10668 } 10669 10670 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT, 10671 record its alignment as BIGGEST_ALIGNMENT. */ 10672 if (MEM_P (op0) && bitpos == 0 && offset != 0 10673 && is_aligning_offset (offset, tem)) 10674 set_mem_align (op0, BIGGEST_ALIGNMENT); 10675 10676 /* Don't forget about volatility even if this is a bitfield. */ 10677 if (MEM_P (op0) && volatilep && ! MEM_VOLATILE_P (op0)) 10678 { 10679 if (op0 == orig_op0) 10680 op0 = copy_rtx (op0); 10681 10682 MEM_VOLATILE_P (op0) = 1; 10683 } 10684 10685 /* In cases where an aligned union has an unaligned object 10686 as a field, we might be extracting a BLKmode value from 10687 an integer-mode (e.g., SImode) object. Handle this case 10688 by doing the extract into an object as wide as the field 10689 (which we know to be the width of a basic mode), then 10690 storing into memory, and changing the mode to BLKmode. */ 10691 if (mode1 == VOIDmode 10692 || REG_P (op0) || GET_CODE (op0) == SUBREG 10693 || (mode1 != BLKmode && ! direct_load[(int) mode1] 10694 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT 10695 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT 10696 && modifier != EXPAND_CONST_ADDRESS 10697 && modifier != EXPAND_INITIALIZER 10698 && modifier != EXPAND_MEMORY) 10699 /* If the bitfield is volatile and the bitsize 10700 is narrower than the access size of the bitfield, 10701 we need to extract bitfields from the access. */ 10702 || (volatilep && TREE_CODE (exp) == COMPONENT_REF 10703 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (exp, 1)) 10704 && mode1 != BLKmode 10705 && bitsize < GET_MODE_SIZE (mode1) * BITS_PER_UNIT) 10706 /* If the field isn't aligned enough to fetch as a memref, 10707 fetch it as a bit field. */ 10708 || (mode1 != BLKmode 10709 && (((TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode) 10710 || (bitpos % GET_MODE_ALIGNMENT (mode) != 0) 10711 || (MEM_P (op0) 10712 && (MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1) 10713 || (bitpos % GET_MODE_ALIGNMENT (mode1) != 0)))) 10714 && modifier != EXPAND_MEMORY 10715 && ((modifier == EXPAND_CONST_ADDRESS 10716 || modifier == EXPAND_INITIALIZER) 10717 ? STRICT_ALIGNMENT 10718 : SLOW_UNALIGNED_ACCESS (mode1, MEM_ALIGN (op0)))) 10719 || (bitpos % BITS_PER_UNIT != 0))) 10720 /* If the type and the field are a constant size and the 10721 size of the type isn't the same size as the bitfield, 10722 we must use bitfield operations. */ 10723 || (bitsize >= 0 10724 && TYPE_SIZE (TREE_TYPE (exp)) 10725 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST 10726 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), 10727 bitsize))) 10728 { 10729 machine_mode ext_mode = mode; 10730 10731 if (ext_mode == BLKmode 10732 && ! (target != 0 && MEM_P (op0) 10733 && MEM_P (target) 10734 && bitpos % BITS_PER_UNIT == 0)) 10735 ext_mode = mode_for_size (bitsize, MODE_INT, 1); 10736 10737 if (ext_mode == BLKmode) 10738 { 10739 if (target == 0) 10740 target = assign_temp (type, 1, 1); 10741 10742 /* ??? Unlike the similar test a few lines below, this one is 10743 very likely obsolete. */ 10744 if (bitsize == 0) 10745 return target; 10746 10747 /* In this case, BITPOS must start at a byte boundary and 10748 TARGET, if specified, must be a MEM. */ 10749 gcc_assert (MEM_P (op0) 10750 && (!target || MEM_P (target)) 10751 && !(bitpos % BITS_PER_UNIT)); 10752 10753 emit_block_move (target, 10754 adjust_address (op0, VOIDmode, 10755 bitpos / BITS_PER_UNIT), 10756 GEN_INT ((bitsize + BITS_PER_UNIT - 1) 10757 / BITS_PER_UNIT), 10758 (modifier == EXPAND_STACK_PARM 10759 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL)); 10760 10761 return target; 10762 } 10763 10764 /* If we have nothing to extract, the result will be 0 for targets 10765 with SHIFT_COUNT_TRUNCATED == 0 and garbage otherwise. Always 10766 return 0 for the sake of consistency, as reading a zero-sized 10767 bitfield is valid in Ada and the value is fully specified. */ 10768 if (bitsize == 0) 10769 return const0_rtx; 10770 10771 op0 = validize_mem (op0); 10772 10773 if (MEM_P (op0) && REG_P (XEXP (op0, 0))) 10774 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0)); 10775 10776 /* If the result has a record type and the extraction is done in 10777 an integral mode, then the field may be not aligned on a byte 10778 boundary; in this case, if it has reverse storage order, it 10779 needs to be extracted as a scalar field with reverse storage 10780 order and put back into memory order afterwards. */ 10781 if (TREE_CODE (type) == RECORD_TYPE 10782 && GET_MODE_CLASS (ext_mode) == MODE_INT) 10783 reversep = TYPE_REVERSE_STORAGE_ORDER (type); 10784 10785 op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp, 10786 (modifier == EXPAND_STACK_PARM 10787 ? NULL_RTX : target), 10788 ext_mode, ext_mode, reversep); 10789 10790 /* If the result has a record type and the mode of OP0 is an 10791 integral mode then, if BITSIZE is narrower than this mode 10792 and this is for big-endian data, we must put the field 10793 into the high-order bits. And we must also put it back 10794 into memory order if it has been previously reversed. */ 10795 if (TREE_CODE (type) == RECORD_TYPE 10796 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT) 10797 { 10798 HOST_WIDE_INT size = GET_MODE_BITSIZE (GET_MODE (op0)); 10799 10800 if (bitsize < size 10801 && reversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN) 10802 op0 = expand_shift (LSHIFT_EXPR, GET_MODE (op0), op0, 10803 size - bitsize, op0, 1); 10804 10805 if (reversep) 10806 op0 = flip_storage_order (GET_MODE (op0), op0); 10807 } 10808 10809 /* If the result type is BLKmode, store the data into a temporary 10810 of the appropriate type, but with the mode corresponding to the 10811 mode for the data we have (op0's mode). */ 10812 if (mode == BLKmode) 10813 { 10814 rtx new_rtx 10815 = assign_stack_temp_for_type (ext_mode, 10816 GET_MODE_BITSIZE (ext_mode), 10817 type); 10818 emit_move_insn (new_rtx, op0); 10819 op0 = copy_rtx (new_rtx); 10820 PUT_MODE (op0, BLKmode); 10821 } 10822 10823 return op0; 10824 } 10825 10826 /* If the result is BLKmode, use that to access the object 10827 now as well. */ 10828 if (mode == BLKmode) 10829 mode1 = BLKmode; 10830 10831 /* Get a reference to just this component. */ 10832 if (modifier == EXPAND_CONST_ADDRESS 10833 || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER) 10834 op0 = adjust_address_nv (op0, mode1, bitpos / BITS_PER_UNIT); 10835 else 10836 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT); 10837 10838 if (op0 == orig_op0) 10839 op0 = copy_rtx (op0); 10840 10841 /* Don't set memory attributes if the base expression is 10842 SSA_NAME that got expanded as a MEM. In that case, we should 10843 just honor its original memory attributes. */ 10844 if (TREE_CODE (tem) != SSA_NAME || !MEM_P (orig_op0)) 10845 set_mem_attributes (op0, exp, 0); 10846 10847 if (REG_P (XEXP (op0, 0))) 10848 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0)); 10849 10850 /* If op0 is a temporary because the original expressions was forced 10851 to memory, clear MEM_EXPR so that the original expression cannot 10852 be marked as addressable through MEM_EXPR of the temporary. */ 10853 if (clear_mem_expr) 10854 set_mem_expr (op0, NULL_TREE); 10855 10856 MEM_VOLATILE_P (op0) |= volatilep; 10857 10858 if (reversep 10859 && modifier != EXPAND_MEMORY 10860 && modifier != EXPAND_WRITE) 10861 op0 = flip_storage_order (mode1, op0); 10862 10863 if (mode == mode1 || mode1 == BLKmode || mode1 == tmode 10864 || modifier == EXPAND_CONST_ADDRESS 10865 || modifier == EXPAND_INITIALIZER) 10866 return op0; 10867 10868 if (target == 0) 10869 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode); 10870 10871 convert_move (target, op0, unsignedp); 10872 return target; 10873 } 10874 10875 case OBJ_TYPE_REF: 10876 return expand_expr (OBJ_TYPE_REF_EXPR (exp), target, tmode, modifier); 10877 10878 case CALL_EXPR: 10879 /* All valid uses of __builtin_va_arg_pack () are removed during 10880 inlining. */ 10881 if (CALL_EXPR_VA_ARG_PACK (exp)) 10882 error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp); 10883 { 10884 tree fndecl = get_callee_fndecl (exp), attr; 10885 10886 if (fndecl 10887 /* Don't diagnose the error attribute in thunks, those are 10888 artificially created. */ 10889 && !CALL_FROM_THUNK_P (exp) 10890 && (attr = lookup_attribute ("error", 10891 DECL_ATTRIBUTES (fndecl))) != NULL) 10892 { 10893 const char *ident = lang_hooks.decl_printable_name (fndecl, 1); 10894 error ("%Kcall to %qs declared with attribute error: %s", exp, 10895 identifier_to_locale (ident), 10896 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr)))); 10897 } 10898 if (fndecl 10899 /* Don't diagnose the warning attribute in thunks, those are 10900 artificially created. */ 10901 && !CALL_FROM_THUNK_P (exp) 10902 && (attr = lookup_attribute ("warning", 10903 DECL_ATTRIBUTES (fndecl))) != NULL) 10904 { 10905 const char *ident = lang_hooks.decl_printable_name (fndecl, 1); 10906 warning_at (tree_nonartificial_location (exp), 0, 10907 "%Kcall to %qs declared with attribute warning: %s", 10908 exp, identifier_to_locale (ident), 10909 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr)))); 10910 } 10911 10912 /* Check for a built-in function. */ 10913 if (fndecl && DECL_BUILT_IN (fndecl)) 10914 { 10915 gcc_assert (DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_FRONTEND); 10916 if (CALL_WITH_BOUNDS_P (exp)) 10917 return expand_builtin_with_bounds (exp, target, subtarget, 10918 tmode, ignore); 10919 else 10920 return expand_builtin (exp, target, subtarget, tmode, ignore); 10921 } 10922 } 10923 return expand_call (exp, target, ignore); 10924 10925 case VIEW_CONVERT_EXPR: 10926 op0 = NULL_RTX; 10927 10928 /* If we are converting to BLKmode, try to avoid an intermediate 10929 temporary by fetching an inner memory reference. */ 10930 if (mode == BLKmode 10931 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST 10932 && TYPE_MODE (TREE_TYPE (treeop0)) != BLKmode 10933 && handled_component_p (treeop0)) 10934 { 10935 machine_mode mode1; 10936 HOST_WIDE_INT bitsize, bitpos; 10937 tree offset; 10938 int unsignedp, reversep, volatilep = 0; 10939 tree tem 10940 = get_inner_reference (treeop0, &bitsize, &bitpos, &offset, &mode1, 10941 &unsignedp, &reversep, &volatilep); 10942 rtx orig_op0; 10943 10944 /* ??? We should work harder and deal with non-zero offsets. */ 10945 if (!offset 10946 && (bitpos % BITS_PER_UNIT) == 0 10947 && !reversep 10948 && bitsize >= 0 10949 && compare_tree_int (TYPE_SIZE (type), bitsize) == 0) 10950 { 10951 /* See the normal_inner_ref case for the rationale. */ 10952 orig_op0 10953 = expand_expr_real (tem, 10954 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE 10955 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem))) 10956 != INTEGER_CST) 10957 && modifier != EXPAND_STACK_PARM 10958 ? target : NULL_RTX), 10959 VOIDmode, 10960 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier, 10961 NULL, true); 10962 10963 if (MEM_P (orig_op0)) 10964 { 10965 op0 = orig_op0; 10966 10967 /* Get a reference to just this component. */ 10968 if (modifier == EXPAND_CONST_ADDRESS 10969 || modifier == EXPAND_SUM 10970 || modifier == EXPAND_INITIALIZER) 10971 op0 = adjust_address_nv (op0, mode, bitpos / BITS_PER_UNIT); 10972 else 10973 op0 = adjust_address (op0, mode, bitpos / BITS_PER_UNIT); 10974 10975 if (op0 == orig_op0) 10976 op0 = copy_rtx (op0); 10977 10978 set_mem_attributes (op0, treeop0, 0); 10979 if (REG_P (XEXP (op0, 0))) 10980 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0)); 10981 10982 MEM_VOLATILE_P (op0) |= volatilep; 10983 } 10984 } 10985 } 10986 10987 if (!op0) 10988 op0 = expand_expr_real (treeop0, NULL_RTX, VOIDmode, modifier, 10989 NULL, inner_reference_p); 10990 10991 /* If the input and output modes are both the same, we are done. */ 10992 if (mode == GET_MODE (op0)) 10993 ; 10994 /* If neither mode is BLKmode, and both modes are the same size 10995 then we can use gen_lowpart. */ 10996 else if (mode != BLKmode && GET_MODE (op0) != BLKmode 10997 && (GET_MODE_PRECISION (mode) 10998 == GET_MODE_PRECISION (GET_MODE (op0))) 10999 && !COMPLEX_MODE_P (GET_MODE (op0))) 11000 { 11001 if (GET_CODE (op0) == SUBREG) 11002 op0 = force_reg (GET_MODE (op0), op0); 11003 temp = gen_lowpart_common (mode, op0); 11004 if (temp) 11005 op0 = temp; 11006 else 11007 { 11008 if (!REG_P (op0) && !MEM_P (op0)) 11009 op0 = force_reg (GET_MODE (op0), op0); 11010 op0 = gen_lowpart (mode, op0); 11011 } 11012 } 11013 /* If both types are integral, convert from one mode to the other. */ 11014 else if (INTEGRAL_TYPE_P (type) && INTEGRAL_TYPE_P (TREE_TYPE (treeop0))) 11015 op0 = convert_modes (mode, GET_MODE (op0), op0, 11016 TYPE_UNSIGNED (TREE_TYPE (treeop0))); 11017 /* If the output type is a bit-field type, do an extraction. */ 11018 else if (reduce_bit_field) 11019 return extract_bit_field (op0, TYPE_PRECISION (type), 0, 11020 TYPE_UNSIGNED (type), NULL_RTX, 11021 mode, mode, false); 11022 /* As a last resort, spill op0 to memory, and reload it in a 11023 different mode. */ 11024 else if (!MEM_P (op0)) 11025 { 11026 /* If the operand is not a MEM, force it into memory. Since we 11027 are going to be changing the mode of the MEM, don't call 11028 force_const_mem for constants because we don't allow pool 11029 constants to change mode. */ 11030 tree inner_type = TREE_TYPE (treeop0); 11031 11032 gcc_assert (!TREE_ADDRESSABLE (exp)); 11033 11034 if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type)) 11035 target 11036 = assign_stack_temp_for_type 11037 (TYPE_MODE (inner_type), 11038 GET_MODE_SIZE (TYPE_MODE (inner_type)), inner_type); 11039 11040 emit_move_insn (target, op0); 11041 op0 = target; 11042 } 11043 11044 /* If OP0 is (now) a MEM, we need to deal with alignment issues. If the 11045 output type is such that the operand is known to be aligned, indicate 11046 that it is. Otherwise, we need only be concerned about alignment for 11047 non-BLKmode results. */ 11048 if (MEM_P (op0)) 11049 { 11050 enum insn_code icode; 11051 11052 if (modifier != EXPAND_WRITE 11053 && modifier != EXPAND_MEMORY 11054 && !inner_reference_p 11055 && mode != BLKmode 11056 && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode)) 11057 { 11058 /* If the target does have special handling for unaligned 11059 loads of mode then use them. */ 11060 if ((icode = optab_handler (movmisalign_optab, mode)) 11061 != CODE_FOR_nothing) 11062 { 11063 rtx reg; 11064 11065 op0 = adjust_address (op0, mode, 0); 11066 /* We've already validated the memory, and we're creating a 11067 new pseudo destination. The predicates really can't 11068 fail. */ 11069 reg = gen_reg_rtx (mode); 11070 11071 /* Nor can the insn generator. */ 11072 rtx_insn *insn = GEN_FCN (icode) (reg, op0); 11073 emit_insn (insn); 11074 return reg; 11075 } 11076 else if (STRICT_ALIGNMENT) 11077 { 11078 tree inner_type = TREE_TYPE (treeop0); 11079 HOST_WIDE_INT temp_size 11080 = MAX (int_size_in_bytes (inner_type), 11081 (HOST_WIDE_INT) GET_MODE_SIZE (mode)); 11082 rtx new_rtx 11083 = assign_stack_temp_for_type (mode, temp_size, type); 11084 rtx new_with_op0_mode 11085 = adjust_address (new_rtx, GET_MODE (op0), 0); 11086 11087 gcc_assert (!TREE_ADDRESSABLE (exp)); 11088 11089 if (GET_MODE (op0) == BLKmode) 11090 emit_block_move (new_with_op0_mode, op0, 11091 GEN_INT (GET_MODE_SIZE (mode)), 11092 (modifier == EXPAND_STACK_PARM 11093 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL)); 11094 else 11095 emit_move_insn (new_with_op0_mode, op0); 11096 11097 op0 = new_rtx; 11098 } 11099 } 11100 11101 op0 = adjust_address (op0, mode, 0); 11102 } 11103 11104 return op0; 11105 11106 case MODIFY_EXPR: 11107 { 11108 tree lhs = treeop0; 11109 tree rhs = treeop1; 11110 gcc_assert (ignore); 11111 11112 /* Check for |= or &= of a bitfield of size one into another bitfield 11113 of size 1. In this case, (unless we need the result of the 11114 assignment) we can do this more efficiently with a 11115 test followed by an assignment, if necessary. 11116 11117 ??? At this point, we can't get a BIT_FIELD_REF here. But if 11118 things change so we do, this code should be enhanced to 11119 support it. */ 11120 if (TREE_CODE (lhs) == COMPONENT_REF 11121 && (TREE_CODE (rhs) == BIT_IOR_EXPR 11122 || TREE_CODE (rhs) == BIT_AND_EXPR) 11123 && TREE_OPERAND (rhs, 0) == lhs 11124 && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF 11125 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1))) 11126 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1)))) 11127 { 11128 rtx_code_label *label = gen_label_rtx (); 11129 int value = TREE_CODE (rhs) == BIT_IOR_EXPR; 11130 do_jump (TREE_OPERAND (rhs, 1), 11131 value ? label : 0, 11132 value ? 0 : label, -1); 11133 expand_assignment (lhs, build_int_cst (TREE_TYPE (rhs), value), 11134 false); 11135 do_pending_stack_adjust (); 11136 emit_label (label); 11137 return const0_rtx; 11138 } 11139 11140 expand_assignment (lhs, rhs, false); 11141 return const0_rtx; 11142 } 11143 11144 case ADDR_EXPR: 11145 return expand_expr_addr_expr (exp, target, tmode, modifier); 11146 11147 case REALPART_EXPR: 11148 op0 = expand_normal (treeop0); 11149 return read_complex_part (op0, false); 11150 11151 case IMAGPART_EXPR: 11152 op0 = expand_normal (treeop0); 11153 return read_complex_part (op0, true); 11154 11155 case RETURN_EXPR: 11156 case LABEL_EXPR: 11157 case GOTO_EXPR: 11158 case SWITCH_EXPR: 11159 case ASM_EXPR: 11160 /* Expanded in cfgexpand.c. */ 11161 gcc_unreachable (); 11162 11163 case TRY_CATCH_EXPR: 11164 case CATCH_EXPR: 11165 case EH_FILTER_EXPR: 11166 case TRY_FINALLY_EXPR: 11167 /* Lowered by tree-eh.c. */ 11168 gcc_unreachable (); 11169 11170 case WITH_CLEANUP_EXPR: 11171 case CLEANUP_POINT_EXPR: 11172 case TARGET_EXPR: 11173 case CASE_LABEL_EXPR: 11174 case VA_ARG_EXPR: 11175 case BIND_EXPR: 11176 case INIT_EXPR: 11177 case CONJ_EXPR: 11178 case COMPOUND_EXPR: 11179 case PREINCREMENT_EXPR: 11180 case PREDECREMENT_EXPR: 11181 case POSTINCREMENT_EXPR: 11182 case POSTDECREMENT_EXPR: 11183 case LOOP_EXPR: 11184 case EXIT_EXPR: 11185 case COMPOUND_LITERAL_EXPR: 11186 /* Lowered by gimplify.c. */ 11187 gcc_unreachable (); 11188 11189 case FDESC_EXPR: 11190 /* Function descriptors are not valid except for as 11191 initialization constants, and should not be expanded. */ 11192 gcc_unreachable (); 11193 11194 case WITH_SIZE_EXPR: 11195 /* WITH_SIZE_EXPR expands to its first argument. The caller should 11196 have pulled out the size to use in whatever context it needed. */ 11197 return expand_expr_real (treeop0, original_target, tmode, 11198 modifier, alt_rtl, inner_reference_p); 11199 11200 default: 11201 return expand_expr_real_2 (&ops, target, tmode, modifier); 11202 } 11203 } 11204 11205 /* Subroutine of above: reduce EXP to the precision of TYPE (in the 11206 signedness of TYPE), possibly returning the result in TARGET. */ 11207 static rtx 11208 reduce_to_bit_field_precision (rtx exp, rtx target, tree type) 11209 { 11210 HOST_WIDE_INT prec = TYPE_PRECISION (type); 11211 if (target && GET_MODE (target) != GET_MODE (exp)) 11212 target = 0; 11213 /* For constant values, reduce using build_int_cst_type. */ 11214 if (CONST_INT_P (exp)) 11215 { 11216 HOST_WIDE_INT value = INTVAL (exp); 11217 tree t = build_int_cst_type (type, value); 11218 return expand_expr (t, target, VOIDmode, EXPAND_NORMAL); 11219 } 11220 else if (TYPE_UNSIGNED (type)) 11221 { 11222 machine_mode mode = GET_MODE (exp); 11223 rtx mask = immed_wide_int_const 11224 (wi::mask (prec, false, GET_MODE_PRECISION (mode)), mode); 11225 return expand_and (mode, exp, mask, target); 11226 } 11227 else 11228 { 11229 int count = GET_MODE_PRECISION (GET_MODE (exp)) - prec; 11230 exp = expand_shift (LSHIFT_EXPR, GET_MODE (exp), 11231 exp, count, target, 0); 11232 return expand_shift (RSHIFT_EXPR, GET_MODE (exp), 11233 exp, count, target, 0); 11234 } 11235 } 11236 11237 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that 11238 when applied to the address of EXP produces an address known to be 11239 aligned more than BIGGEST_ALIGNMENT. */ 11240 11241 static int 11242 is_aligning_offset (const_tree offset, const_tree exp) 11243 { 11244 /* Strip off any conversions. */ 11245 while (CONVERT_EXPR_P (offset)) 11246 offset = TREE_OPERAND (offset, 0); 11247 11248 /* We must now have a BIT_AND_EXPR with a constant that is one less than 11249 power of 2 and which is larger than BIGGEST_ALIGNMENT. */ 11250 if (TREE_CODE (offset) != BIT_AND_EXPR 11251 || !tree_fits_uhwi_p (TREE_OPERAND (offset, 1)) 11252 || compare_tree_int (TREE_OPERAND (offset, 1), 11253 BIGGEST_ALIGNMENT / BITS_PER_UNIT) <= 0 11254 || !pow2p_hwi (tree_to_uhwi (TREE_OPERAND (offset, 1)) + 1)) 11255 return 0; 11256 11257 /* Look at the first operand of BIT_AND_EXPR and strip any conversion. 11258 It must be NEGATE_EXPR. Then strip any more conversions. */ 11259 offset = TREE_OPERAND (offset, 0); 11260 while (CONVERT_EXPR_P (offset)) 11261 offset = TREE_OPERAND (offset, 0); 11262 11263 if (TREE_CODE (offset) != NEGATE_EXPR) 11264 return 0; 11265 11266 offset = TREE_OPERAND (offset, 0); 11267 while (CONVERT_EXPR_P (offset)) 11268 offset = TREE_OPERAND (offset, 0); 11269 11270 /* This must now be the address of EXP. */ 11271 return TREE_CODE (offset) == ADDR_EXPR && TREE_OPERAND (offset, 0) == exp; 11272 } 11273 11274 /* Return the tree node if an ARG corresponds to a string constant or zero 11275 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset 11276 in bytes within the string that ARG is accessing. The type of the 11277 offset will be `sizetype'. */ 11278 11279 tree 11280 string_constant (tree arg, tree *ptr_offset) 11281 { 11282 tree array, offset, lower_bound; 11283 STRIP_NOPS (arg); 11284 11285 if (TREE_CODE (arg) == ADDR_EXPR) 11286 { 11287 if (TREE_CODE (TREE_OPERAND (arg, 0)) == STRING_CST) 11288 { 11289 *ptr_offset = size_zero_node; 11290 return TREE_OPERAND (arg, 0); 11291 } 11292 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == VAR_DECL) 11293 { 11294 array = TREE_OPERAND (arg, 0); 11295 offset = size_zero_node; 11296 } 11297 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == ARRAY_REF) 11298 { 11299 array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0); 11300 offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1); 11301 if (TREE_CODE (array) != STRING_CST && !VAR_P (array)) 11302 return 0; 11303 11304 /* Check if the array has a nonzero lower bound. */ 11305 lower_bound = array_ref_low_bound (TREE_OPERAND (arg, 0)); 11306 if (!integer_zerop (lower_bound)) 11307 { 11308 /* If the offset and base aren't both constants, return 0. */ 11309 if (TREE_CODE (lower_bound) != INTEGER_CST) 11310 return 0; 11311 if (TREE_CODE (offset) != INTEGER_CST) 11312 return 0; 11313 /* Adjust offset by the lower bound. */ 11314 offset = size_diffop (fold_convert (sizetype, offset), 11315 fold_convert (sizetype, lower_bound)); 11316 } 11317 } 11318 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == MEM_REF) 11319 { 11320 array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0); 11321 offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1); 11322 if (TREE_CODE (array) != ADDR_EXPR) 11323 return 0; 11324 array = TREE_OPERAND (array, 0); 11325 if (TREE_CODE (array) != STRING_CST && !VAR_P (array)) 11326 return 0; 11327 } 11328 else 11329 return 0; 11330 } 11331 else if (TREE_CODE (arg) == PLUS_EXPR || TREE_CODE (arg) == POINTER_PLUS_EXPR) 11332 { 11333 tree arg0 = TREE_OPERAND (arg, 0); 11334 tree arg1 = TREE_OPERAND (arg, 1); 11335 11336 STRIP_NOPS (arg0); 11337 STRIP_NOPS (arg1); 11338 11339 if (TREE_CODE (arg0) == ADDR_EXPR 11340 && (TREE_CODE (TREE_OPERAND (arg0, 0)) == STRING_CST 11341 || TREE_CODE (TREE_OPERAND (arg0, 0)) == VAR_DECL)) 11342 { 11343 array = TREE_OPERAND (arg0, 0); 11344 offset = arg1; 11345 } 11346 else if (TREE_CODE (arg1) == ADDR_EXPR 11347 && (TREE_CODE (TREE_OPERAND (arg1, 0)) == STRING_CST 11348 || TREE_CODE (TREE_OPERAND (arg1, 0)) == VAR_DECL)) 11349 { 11350 array = TREE_OPERAND (arg1, 0); 11351 offset = arg0; 11352 } 11353 else 11354 return 0; 11355 } 11356 else 11357 return 0; 11358 11359 if (TREE_CODE (array) == STRING_CST) 11360 { 11361 *ptr_offset = fold_convert (sizetype, offset); 11362 return array; 11363 } 11364 else if (VAR_P (array) || TREE_CODE (array) == CONST_DECL) 11365 { 11366 int length; 11367 tree init = ctor_for_folding (array); 11368 11369 /* Variables initialized to string literals can be handled too. */ 11370 if (init == error_mark_node 11371 || !init 11372 || TREE_CODE (init) != STRING_CST) 11373 return 0; 11374 11375 /* Avoid const char foo[4] = "abcde"; */ 11376 if (DECL_SIZE_UNIT (array) == NULL_TREE 11377 || TREE_CODE (DECL_SIZE_UNIT (array)) != INTEGER_CST 11378 || (length = TREE_STRING_LENGTH (init)) <= 0 11379 || compare_tree_int (DECL_SIZE_UNIT (array), length) < 0) 11380 return 0; 11381 11382 /* If variable is bigger than the string literal, OFFSET must be constant 11383 and inside of the bounds of the string literal. */ 11384 offset = fold_convert (sizetype, offset); 11385 if (compare_tree_int (DECL_SIZE_UNIT (array), length) > 0 11386 && (! tree_fits_uhwi_p (offset) 11387 || compare_tree_int (offset, length) >= 0)) 11388 return 0; 11389 11390 *ptr_offset = offset; 11391 return init; 11392 } 11393 11394 return 0; 11395 } 11396 11397 /* Generate code to calculate OPS, and exploded expression 11398 using a store-flag instruction and return an rtx for the result. 11399 OPS reflects a comparison. 11400 11401 If TARGET is nonzero, store the result there if convenient. 11402 11403 Return zero if there is no suitable set-flag instruction 11404 available on this machine. 11405 11406 Once expand_expr has been called on the arguments of the comparison, 11407 we are committed to doing the store flag, since it is not safe to 11408 re-evaluate the expression. We emit the store-flag insn by calling 11409 emit_store_flag, but only expand the arguments if we have a reason 11410 to believe that emit_store_flag will be successful. If we think that 11411 it will, but it isn't, we have to simulate the store-flag with a 11412 set/jump/set sequence. */ 11413 11414 static rtx 11415 do_store_flag (sepops ops, rtx target, machine_mode mode) 11416 { 11417 enum rtx_code code; 11418 tree arg0, arg1, type; 11419 machine_mode operand_mode; 11420 int unsignedp; 11421 rtx op0, op1; 11422 rtx subtarget = target; 11423 location_t loc = ops->location; 11424 11425 arg0 = ops->op0; 11426 arg1 = ops->op1; 11427 11428 /* Don't crash if the comparison was erroneous. */ 11429 if (arg0 == error_mark_node || arg1 == error_mark_node) 11430 return const0_rtx; 11431 11432 type = TREE_TYPE (arg0); 11433 operand_mode = TYPE_MODE (type); 11434 unsignedp = TYPE_UNSIGNED (type); 11435 11436 /* We won't bother with BLKmode store-flag operations because it would mean 11437 passing a lot of information to emit_store_flag. */ 11438 if (operand_mode == BLKmode) 11439 return 0; 11440 11441 /* We won't bother with store-flag operations involving function pointers 11442 when function pointers must be canonicalized before comparisons. */ 11443 if (targetm.have_canonicalize_funcptr_for_compare () 11444 && ((TREE_CODE (TREE_TYPE (arg0)) == POINTER_TYPE 11445 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg0))) 11446 == FUNCTION_TYPE)) 11447 || (TREE_CODE (TREE_TYPE (arg1)) == POINTER_TYPE 11448 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg1))) 11449 == FUNCTION_TYPE)))) 11450 return 0; 11451 11452 STRIP_NOPS (arg0); 11453 STRIP_NOPS (arg1); 11454 11455 /* For vector typed comparisons emit code to generate the desired 11456 all-ones or all-zeros mask. Conveniently use the VEC_COND_EXPR 11457 expander for this. */ 11458 if (TREE_CODE (ops->type) == VECTOR_TYPE) 11459 { 11460 tree ifexp = build2 (ops->code, ops->type, arg0, arg1); 11461 if (VECTOR_BOOLEAN_TYPE_P (ops->type) 11462 && expand_vec_cmp_expr_p (TREE_TYPE (arg0), ops->type, ops->code)) 11463 return expand_vec_cmp_expr (ops->type, ifexp, target); 11464 else 11465 { 11466 tree if_true = constant_boolean_node (true, ops->type); 11467 tree if_false = constant_boolean_node (false, ops->type); 11468 return expand_vec_cond_expr (ops->type, ifexp, if_true, 11469 if_false, target); 11470 } 11471 } 11472 11473 /* Get the rtx comparison code to use. We know that EXP is a comparison 11474 operation of some type. Some comparisons against 1 and -1 can be 11475 converted to comparisons with zero. Do so here so that the tests 11476 below will be aware that we have a comparison with zero. These 11477 tests will not catch constants in the first operand, but constants 11478 are rarely passed as the first operand. */ 11479 11480 switch (ops->code) 11481 { 11482 case EQ_EXPR: 11483 code = EQ; 11484 break; 11485 case NE_EXPR: 11486 code = NE; 11487 break; 11488 case LT_EXPR: 11489 if (integer_onep (arg1)) 11490 arg1 = integer_zero_node, code = unsignedp ? LEU : LE; 11491 else 11492 code = unsignedp ? LTU : LT; 11493 break; 11494 case LE_EXPR: 11495 if (! unsignedp && integer_all_onesp (arg1)) 11496 arg1 = integer_zero_node, code = LT; 11497 else 11498 code = unsignedp ? LEU : LE; 11499 break; 11500 case GT_EXPR: 11501 if (! unsignedp && integer_all_onesp (arg1)) 11502 arg1 = integer_zero_node, code = GE; 11503 else 11504 code = unsignedp ? GTU : GT; 11505 break; 11506 case GE_EXPR: 11507 if (integer_onep (arg1)) 11508 arg1 = integer_zero_node, code = unsignedp ? GTU : GT; 11509 else 11510 code = unsignedp ? GEU : GE; 11511 break; 11512 11513 case UNORDERED_EXPR: 11514 code = UNORDERED; 11515 break; 11516 case ORDERED_EXPR: 11517 code = ORDERED; 11518 break; 11519 case UNLT_EXPR: 11520 code = UNLT; 11521 break; 11522 case UNLE_EXPR: 11523 code = UNLE; 11524 break; 11525 case UNGT_EXPR: 11526 code = UNGT; 11527 break; 11528 case UNGE_EXPR: 11529 code = UNGE; 11530 break; 11531 case UNEQ_EXPR: 11532 code = UNEQ; 11533 break; 11534 case LTGT_EXPR: 11535 code = LTGT; 11536 break; 11537 11538 default: 11539 gcc_unreachable (); 11540 } 11541 11542 /* Put a constant second. */ 11543 if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST 11544 || TREE_CODE (arg0) == FIXED_CST) 11545 { 11546 std::swap (arg0, arg1); 11547 code = swap_condition (code); 11548 } 11549 11550 /* If this is an equality or inequality test of a single bit, we can 11551 do this by shifting the bit being tested to the low-order bit and 11552 masking the result with the constant 1. If the condition was EQ, 11553 we xor it with 1. This does not require an scc insn and is faster 11554 than an scc insn even if we have it. 11555 11556 The code to make this transformation was moved into fold_single_bit_test, 11557 so we just call into the folder and expand its result. */ 11558 11559 if ((code == NE || code == EQ) 11560 && integer_zerop (arg1) 11561 && (TYPE_PRECISION (ops->type) != 1 || TYPE_UNSIGNED (ops->type))) 11562 { 11563 gimple *srcstmt = get_def_for_expr (arg0, BIT_AND_EXPR); 11564 if (srcstmt 11565 && integer_pow2p (gimple_assign_rhs2 (srcstmt))) 11566 { 11567 enum tree_code tcode = code == NE ? NE_EXPR : EQ_EXPR; 11568 tree type = lang_hooks.types.type_for_mode (mode, unsignedp); 11569 tree temp = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg1), 11570 gimple_assign_rhs1 (srcstmt), 11571 gimple_assign_rhs2 (srcstmt)); 11572 temp = fold_single_bit_test (loc, tcode, temp, arg1, type); 11573 if (temp) 11574 return expand_expr (temp, target, VOIDmode, EXPAND_NORMAL); 11575 } 11576 } 11577 11578 if (! get_subtarget (target) 11579 || GET_MODE (subtarget) != operand_mode) 11580 subtarget = 0; 11581 11582 expand_operands (arg0, arg1, subtarget, &op0, &op1, EXPAND_NORMAL); 11583 11584 if (target == 0) 11585 target = gen_reg_rtx (mode); 11586 11587 /* Try a cstore if possible. */ 11588 return emit_store_flag_force (target, code, op0, op1, 11589 operand_mode, unsignedp, 11590 (TYPE_PRECISION (ops->type) == 1 11591 && !TYPE_UNSIGNED (ops->type)) ? -1 : 1); 11592 } 11593 11594 /* Attempt to generate a casesi instruction. Returns 1 if successful, 11595 0 otherwise (i.e. if there is no casesi instruction). 11596 11597 DEFAULT_PROBABILITY is the probability of jumping to the default 11598 label. */ 11599 int 11600 try_casesi (tree index_type, tree index_expr, tree minval, tree range, 11601 rtx table_label, rtx default_label, rtx fallback_label, 11602 int default_probability) 11603 { 11604 struct expand_operand ops[5]; 11605 machine_mode index_mode = SImode; 11606 rtx op1, op2, index; 11607 11608 if (! targetm.have_casesi ()) 11609 return 0; 11610 11611 /* Convert the index to SImode. */ 11612 if (GET_MODE_BITSIZE (TYPE_MODE (index_type)) > GET_MODE_BITSIZE (index_mode)) 11613 { 11614 machine_mode omode = TYPE_MODE (index_type); 11615 rtx rangertx = expand_normal (range); 11616 11617 /* We must handle the endpoints in the original mode. */ 11618 index_expr = build2 (MINUS_EXPR, index_type, 11619 index_expr, minval); 11620 minval = integer_zero_node; 11621 index = expand_normal (index_expr); 11622 if (default_label) 11623 emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX, 11624 omode, 1, default_label, 11625 default_probability); 11626 /* Now we can safely truncate. */ 11627 index = convert_to_mode (index_mode, index, 0); 11628 } 11629 else 11630 { 11631 if (TYPE_MODE (index_type) != index_mode) 11632 { 11633 index_type = lang_hooks.types.type_for_mode (index_mode, 0); 11634 index_expr = fold_convert (index_type, index_expr); 11635 } 11636 11637 index = expand_normal (index_expr); 11638 } 11639 11640 do_pending_stack_adjust (); 11641 11642 op1 = expand_normal (minval); 11643 op2 = expand_normal (range); 11644 11645 create_input_operand (&ops[0], index, index_mode); 11646 create_convert_operand_from_type (&ops[1], op1, TREE_TYPE (minval)); 11647 create_convert_operand_from_type (&ops[2], op2, TREE_TYPE (range)); 11648 create_fixed_operand (&ops[3], table_label); 11649 create_fixed_operand (&ops[4], (default_label 11650 ? default_label 11651 : fallback_label)); 11652 expand_jump_insn (targetm.code_for_casesi, 5, ops); 11653 return 1; 11654 } 11655 11656 /* Attempt to generate a tablejump instruction; same concept. */ 11657 /* Subroutine of the next function. 11658 11659 INDEX is the value being switched on, with the lowest value 11660 in the table already subtracted. 11661 MODE is its expected mode (needed if INDEX is constant). 11662 RANGE is the length of the jump table. 11663 TABLE_LABEL is a CODE_LABEL rtx for the table itself. 11664 11665 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the 11666 index value is out of range. 11667 DEFAULT_PROBABILITY is the probability of jumping to 11668 the default label. */ 11669 11670 static void 11671 do_tablejump (rtx index, machine_mode mode, rtx range, rtx table_label, 11672 rtx default_label, int default_probability) 11673 { 11674 rtx temp, vector; 11675 11676 if (INTVAL (range) > cfun->cfg->max_jumptable_ents) 11677 cfun->cfg->max_jumptable_ents = INTVAL (range); 11678 11679 /* Do an unsigned comparison (in the proper mode) between the index 11680 expression and the value which represents the length of the range. 11681 Since we just finished subtracting the lower bound of the range 11682 from the index expression, this comparison allows us to simultaneously 11683 check that the original index expression value is both greater than 11684 or equal to the minimum value of the range and less than or equal to 11685 the maximum value of the range. */ 11686 11687 if (default_label) 11688 emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1, 11689 default_label, default_probability); 11690 11691 11692 /* If index is in range, it must fit in Pmode. 11693 Convert to Pmode so we can index with it. */ 11694 if (mode != Pmode) 11695 index = convert_to_mode (Pmode, index, 1); 11696 11697 /* Don't let a MEM slip through, because then INDEX that comes 11698 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address, 11699 and break_out_memory_refs will go to work on it and mess it up. */ 11700 #ifdef PIC_CASE_VECTOR_ADDRESS 11701 if (flag_pic && !REG_P (index)) 11702 index = copy_to_mode_reg (Pmode, index); 11703 #endif 11704 11705 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the 11706 GET_MODE_SIZE, because this indicates how large insns are. The other 11707 uses should all be Pmode, because they are addresses. This code 11708 could fail if addresses and insns are not the same size. */ 11709 index = simplify_gen_binary (MULT, Pmode, index, 11710 gen_int_mode (GET_MODE_SIZE (CASE_VECTOR_MODE), 11711 Pmode)); 11712 index = simplify_gen_binary (PLUS, Pmode, index, 11713 gen_rtx_LABEL_REF (Pmode, table_label)); 11714 11715 #ifdef PIC_CASE_VECTOR_ADDRESS 11716 if (flag_pic) 11717 index = PIC_CASE_VECTOR_ADDRESS (index); 11718 else 11719 #endif 11720 index = memory_address (CASE_VECTOR_MODE, index); 11721 temp = gen_reg_rtx (CASE_VECTOR_MODE); 11722 vector = gen_const_mem (CASE_VECTOR_MODE, index); 11723 convert_move (temp, vector, 0); 11724 11725 emit_jump_insn (targetm.gen_tablejump (temp, table_label)); 11726 11727 /* If we are generating PIC code or if the table is PC-relative, the 11728 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */ 11729 if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic) 11730 emit_barrier (); 11731 } 11732 11733 int 11734 try_tablejump (tree index_type, tree index_expr, tree minval, tree range, 11735 rtx table_label, rtx default_label, int default_probability) 11736 { 11737 rtx index; 11738 11739 if (! targetm.have_tablejump ()) 11740 return 0; 11741 11742 index_expr = fold_build2 (MINUS_EXPR, index_type, 11743 fold_convert (index_type, index_expr), 11744 fold_convert (index_type, minval)); 11745 index = expand_normal (index_expr); 11746 do_pending_stack_adjust (); 11747 11748 do_tablejump (index, TYPE_MODE (index_type), 11749 convert_modes (TYPE_MODE (index_type), 11750 TYPE_MODE (TREE_TYPE (range)), 11751 expand_normal (range), 11752 TYPE_UNSIGNED (TREE_TYPE (range))), 11753 table_label, default_label, default_probability); 11754 return 1; 11755 } 11756 11757 /* Return a CONST_VECTOR rtx representing vector mask for 11758 a VECTOR_CST of booleans. */ 11759 static rtx 11760 const_vector_mask_from_tree (tree exp) 11761 { 11762 rtvec v; 11763 unsigned i; 11764 int units; 11765 tree elt; 11766 machine_mode inner, mode; 11767 11768 mode = TYPE_MODE (TREE_TYPE (exp)); 11769 units = GET_MODE_NUNITS (mode); 11770 inner = GET_MODE_INNER (mode); 11771 11772 v = rtvec_alloc (units); 11773 11774 for (i = 0; i < VECTOR_CST_NELTS (exp); ++i) 11775 { 11776 elt = VECTOR_CST_ELT (exp, i); 11777 11778 gcc_assert (TREE_CODE (elt) == INTEGER_CST); 11779 if (integer_zerop (elt)) 11780 RTVEC_ELT (v, i) = CONST0_RTX (inner); 11781 else if (integer_onep (elt) 11782 || integer_minus_onep (elt)) 11783 RTVEC_ELT (v, i) = CONSTM1_RTX (inner); 11784 else 11785 gcc_unreachable (); 11786 } 11787 11788 return gen_rtx_CONST_VECTOR (mode, v); 11789 } 11790 11791 /* Return a CONST_INT rtx representing vector mask for 11792 a VECTOR_CST of booleans. */ 11793 static rtx 11794 const_scalar_mask_from_tree (tree exp) 11795 { 11796 machine_mode mode = TYPE_MODE (TREE_TYPE (exp)); 11797 wide_int res = wi::zero (GET_MODE_PRECISION (mode)); 11798 tree elt; 11799 unsigned i; 11800 11801 for (i = 0; i < VECTOR_CST_NELTS (exp); ++i) 11802 { 11803 elt = VECTOR_CST_ELT (exp, i); 11804 gcc_assert (TREE_CODE (elt) == INTEGER_CST); 11805 if (integer_all_onesp (elt)) 11806 res = wi::set_bit (res, i); 11807 else 11808 gcc_assert (integer_zerop (elt)); 11809 } 11810 11811 return immed_wide_int_const (res, mode); 11812 } 11813 11814 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */ 11815 static rtx 11816 const_vector_from_tree (tree exp) 11817 { 11818 rtvec v; 11819 unsigned i; 11820 int units; 11821 tree elt; 11822 machine_mode inner, mode; 11823 11824 mode = TYPE_MODE (TREE_TYPE (exp)); 11825 11826 if (initializer_zerop (exp)) 11827 return CONST0_RTX (mode); 11828 11829 if (VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (exp))) 11830 return const_vector_mask_from_tree (exp); 11831 11832 units = GET_MODE_NUNITS (mode); 11833 inner = GET_MODE_INNER (mode); 11834 11835 v = rtvec_alloc (units); 11836 11837 for (i = 0; i < VECTOR_CST_NELTS (exp); ++i) 11838 { 11839 elt = VECTOR_CST_ELT (exp, i); 11840 11841 if (TREE_CODE (elt) == REAL_CST) 11842 RTVEC_ELT (v, i) = const_double_from_real_value (TREE_REAL_CST (elt), 11843 inner); 11844 else if (TREE_CODE (elt) == FIXED_CST) 11845 RTVEC_ELT (v, i) = CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt), 11846 inner); 11847 else 11848 RTVEC_ELT (v, i) = immed_wide_int_const (elt, inner); 11849 } 11850 11851 return gen_rtx_CONST_VECTOR (mode, v); 11852 } 11853 11854 /* Build a decl for a personality function given a language prefix. */ 11855 11856 tree 11857 build_personality_function (const char *lang) 11858 { 11859 const char *unwind_and_version; 11860 tree decl, type; 11861 char *name; 11862 11863 switch (targetm_common.except_unwind_info (&global_options)) 11864 { 11865 case UI_NONE: 11866 return NULL; 11867 case UI_SJLJ: 11868 unwind_and_version = "_sj0"; 11869 break; 11870 case UI_DWARF2: 11871 case UI_TARGET: 11872 unwind_and_version = "_v0"; 11873 break; 11874 case UI_SEH: 11875 unwind_and_version = "_seh0"; 11876 break; 11877 default: 11878 gcc_unreachable (); 11879 } 11880 11881 name = ACONCAT (("__", lang, "_personality", unwind_and_version, NULL)); 11882 11883 type = build_function_type_list (integer_type_node, integer_type_node, 11884 long_long_unsigned_type_node, 11885 ptr_type_node, ptr_type_node, NULL_TREE); 11886 decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, 11887 get_identifier (name), type); 11888 DECL_ARTIFICIAL (decl) = 1; 11889 DECL_EXTERNAL (decl) = 1; 11890 TREE_PUBLIC (decl) = 1; 11891 11892 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with 11893 are the flags assigned by targetm.encode_section_info. */ 11894 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL); 11895 11896 return decl; 11897 } 11898 11899 /* Extracts the personality function of DECL and returns the corresponding 11900 libfunc. */ 11901 11902 rtx 11903 get_personality_function (tree decl) 11904 { 11905 tree personality = DECL_FUNCTION_PERSONALITY (decl); 11906 enum eh_personality_kind pk; 11907 11908 pk = function_needs_eh_personality (DECL_STRUCT_FUNCTION (decl)); 11909 if (pk == eh_personality_none) 11910 return NULL; 11911 11912 if (!personality 11913 && pk == eh_personality_any) 11914 personality = lang_hooks.eh_personality (); 11915 11916 if (pk == eh_personality_lang) 11917 gcc_assert (personality != NULL_TREE); 11918 11919 return XEXP (DECL_RTL (personality), 0); 11920 } 11921 11922 /* Returns a tree for the size of EXP in bytes. */ 11923 11924 static tree 11925 tree_expr_size (const_tree exp) 11926 { 11927 if (DECL_P (exp) 11928 && DECL_SIZE_UNIT (exp) != 0) 11929 return DECL_SIZE_UNIT (exp); 11930 else 11931 return size_in_bytes (TREE_TYPE (exp)); 11932 } 11933 11934 /* Return an rtx for the size in bytes of the value of EXP. */ 11935 11936 rtx 11937 expr_size (tree exp) 11938 { 11939 tree size; 11940 11941 if (TREE_CODE (exp) == WITH_SIZE_EXPR) 11942 size = TREE_OPERAND (exp, 1); 11943 else 11944 { 11945 size = tree_expr_size (exp); 11946 gcc_assert (size); 11947 gcc_assert (size == SUBSTITUTE_PLACEHOLDER_IN_EXPR (size, exp)); 11948 } 11949 11950 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), EXPAND_NORMAL); 11951 } 11952 11953 /* Return a wide integer for the size in bytes of the value of EXP, or -1 11954 if the size can vary or is larger than an integer. */ 11955 11956 static HOST_WIDE_INT 11957 int_expr_size (tree exp) 11958 { 11959 tree size; 11960 11961 if (TREE_CODE (exp) == WITH_SIZE_EXPR) 11962 size = TREE_OPERAND (exp, 1); 11963 else 11964 { 11965 size = tree_expr_size (exp); 11966 gcc_assert (size); 11967 } 11968 11969 if (size == 0 || !tree_fits_shwi_p (size)) 11970 return -1; 11971 11972 return tree_to_shwi (size); 11973 } 11974