1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988-2020 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "predict.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "ssa.h"
32 #include "expmed.h"
33 #include "optabs.h"
34 #include "regs.h"
35 #include "emit-rtl.h"
36 #include "recog.h"
37 #include "cgraph.h"
38 #include "diagnostic.h"
39 #include "alias.h"
40 #include "fold-const.h"
41 #include "stor-layout.h"
42 #include "attribs.h"
43 #include "varasm.h"
44 #include "except.h"
45 #include "insn-attr.h"
46 #include "dojump.h"
47 #include "explow.h"
48 #include "calls.h"
49 #include "stmt.h"
50 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
51 #include "expr.h"
52 #include "optabs-tree.h"
53 #include "libfuncs.h"
54 #include "reload.h"
55 #include "langhooks.h"
56 #include "common/common-target.h"
57 #include "tree-dfa.h"
58 #include "tree-ssa-live.h"
59 #include "tree-outof-ssa.h"
60 #include "tree-ssa-address.h"
61 #include "builtins.h"
62 #include "ccmp.h"
63 #include "gimple-fold.h"
64 #include "rtx-vector-builder.h"
65
66
67 /* If this is nonzero, we do not bother generating VOLATILE
68 around volatile memory references, and we are willing to
69 output indirect addresses. If cse is to follow, we reject
70 indirect addresses so a useful potential cse is generated;
71 if it is used only once, instruction combination will produce
72 the same indirect address eventually. */
73 int cse_not_expected;
74
75 static bool block_move_libcall_safe_for_call_parm (void);
76 static bool emit_block_move_via_pattern (rtx, rtx, rtx, unsigned, unsigned,
77 HOST_WIDE_INT, unsigned HOST_WIDE_INT,
78 unsigned HOST_WIDE_INT,
79 unsigned HOST_WIDE_INT, bool);
80 static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned);
81 static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int);
82 static rtx_insn *compress_float_constant (rtx, rtx);
83 static rtx get_subtarget (rtx);
84 static void store_constructor (tree, rtx, int, poly_int64, bool);
85 static rtx store_field (rtx, poly_int64, poly_int64, poly_uint64, poly_uint64,
86 machine_mode, tree, alias_set_type, bool, bool);
87
88 static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (const_tree, const_tree);
89
90 static int is_aligning_offset (const_tree, const_tree);
91 static rtx reduce_to_bit_field_precision (rtx, rtx, tree);
92 static rtx do_store_flag (sepops, rtx, machine_mode);
93 #ifdef PUSH_ROUNDING
94 static void emit_single_push_insn (machine_mode, rtx, tree);
95 #endif
96 static void do_tablejump (rtx, machine_mode, rtx, rtx, rtx,
97 profile_probability);
98 static rtx const_vector_from_tree (tree);
99 static rtx const_scalar_mask_from_tree (scalar_int_mode, tree);
100 static tree tree_expr_size (const_tree);
101 static HOST_WIDE_INT int_expr_size (tree);
102 static void convert_mode_scalar (rtx, rtx, int);
103
104
105 /* This is run to set up which modes can be used
106 directly in memory and to initialize the block move optab. It is run
107 at the beginning of compilation and when the target is reinitialized. */
108
109 void
init_expr_target(void)110 init_expr_target (void)
111 {
112 rtx pat;
113 int num_clobbers;
114 rtx mem, mem1;
115 rtx reg;
116
117 /* Try indexing by frame ptr and try by stack ptr.
118 It is known that on the Convex the stack ptr isn't a valid index.
119 With luck, one or the other is valid on any machine. */
120 mem = gen_rtx_MEM (word_mode, stack_pointer_rtx);
121 mem1 = gen_rtx_MEM (word_mode, frame_pointer_rtx);
122
123 /* A scratch register we can modify in-place below to avoid
124 useless RTL allocations. */
125 reg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
126
127 rtx_insn *insn = as_a<rtx_insn *> (rtx_alloc (INSN));
128 pat = gen_rtx_SET (NULL_RTX, NULL_RTX);
129 PATTERN (insn) = pat;
130
131 for (machine_mode mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
132 mode = (machine_mode) ((int) mode + 1))
133 {
134 int regno;
135
136 direct_load[(int) mode] = direct_store[(int) mode] = 0;
137 PUT_MODE (mem, mode);
138 PUT_MODE (mem1, mode);
139
140 /* See if there is some register that can be used in this mode and
141 directly loaded or stored from memory. */
142
143 if (mode != VOIDmode && mode != BLKmode)
144 for (regno = 0; regno < FIRST_PSEUDO_REGISTER
145 && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
146 regno++)
147 {
148 if (!targetm.hard_regno_mode_ok (regno, mode))
149 continue;
150
151 set_mode_and_regno (reg, mode, regno);
152
153 SET_SRC (pat) = mem;
154 SET_DEST (pat) = reg;
155 if (recog (pat, insn, &num_clobbers) >= 0)
156 direct_load[(int) mode] = 1;
157
158 SET_SRC (pat) = mem1;
159 SET_DEST (pat) = reg;
160 if (recog (pat, insn, &num_clobbers) >= 0)
161 direct_load[(int) mode] = 1;
162
163 SET_SRC (pat) = reg;
164 SET_DEST (pat) = mem;
165 if (recog (pat, insn, &num_clobbers) >= 0)
166 direct_store[(int) mode] = 1;
167
168 SET_SRC (pat) = reg;
169 SET_DEST (pat) = mem1;
170 if (recog (pat, insn, &num_clobbers) >= 0)
171 direct_store[(int) mode] = 1;
172 }
173 }
174
175 mem = gen_rtx_MEM (VOIDmode, gen_raw_REG (Pmode, LAST_VIRTUAL_REGISTER + 1));
176
177 opt_scalar_float_mode mode_iter;
178 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_FLOAT)
179 {
180 scalar_float_mode mode = mode_iter.require ();
181 scalar_float_mode srcmode;
182 FOR_EACH_MODE_UNTIL (srcmode, mode)
183 {
184 enum insn_code ic;
185
186 ic = can_extend_p (mode, srcmode, 0);
187 if (ic == CODE_FOR_nothing)
188 continue;
189
190 PUT_MODE (mem, srcmode);
191
192 if (insn_operand_matches (ic, 1, mem))
193 float_extend_from_mem[mode][srcmode] = true;
194 }
195 }
196 }
197
198 /* This is run at the start of compiling a function. */
199
200 void
init_expr(void)201 init_expr (void)
202 {
203 memset (&crtl->expr, 0, sizeof (crtl->expr));
204 }
205
206 /* Copy data from FROM to TO, where the machine modes are not the same.
207 Both modes may be integer, or both may be floating, or both may be
208 fixed-point.
209 UNSIGNEDP should be nonzero if FROM is an unsigned type.
210 This causes zero-extension instead of sign-extension. */
211
212 void
convert_move(rtx to,rtx from,int unsignedp)213 convert_move (rtx to, rtx from, int unsignedp)
214 {
215 machine_mode to_mode = GET_MODE (to);
216 machine_mode from_mode = GET_MODE (from);
217
218 gcc_assert (to_mode != BLKmode);
219 gcc_assert (from_mode != BLKmode);
220
221 /* If the source and destination are already the same, then there's
222 nothing to do. */
223 if (to == from)
224 return;
225
226 /* If FROM is a SUBREG that indicates that we have already done at least
227 the required extension, strip it. We don't handle such SUBREGs as
228 TO here. */
229
230 scalar_int_mode to_int_mode;
231 if (GET_CODE (from) == SUBREG
232 && SUBREG_PROMOTED_VAR_P (from)
233 && is_a <scalar_int_mode> (to_mode, &to_int_mode)
234 && (GET_MODE_PRECISION (subreg_promoted_mode (from))
235 >= GET_MODE_PRECISION (to_int_mode))
236 && SUBREG_CHECK_PROMOTED_SIGN (from, unsignedp))
237 {
238 from = gen_lowpart (to_int_mode, SUBREG_REG (from));
239 from_mode = to_int_mode;
240 }
241
242 gcc_assert (GET_CODE (to) != SUBREG || !SUBREG_PROMOTED_VAR_P (to));
243
244 if (to_mode == from_mode
245 || (from_mode == VOIDmode && CONSTANT_P (from)))
246 {
247 emit_move_insn (to, from);
248 return;
249 }
250
251 if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode))
252 {
253 if (GET_MODE_UNIT_PRECISION (to_mode)
254 > GET_MODE_UNIT_PRECISION (from_mode))
255 {
256 optab op = unsignedp ? zext_optab : sext_optab;
257 insn_code icode = convert_optab_handler (op, to_mode, from_mode);
258 if (icode != CODE_FOR_nothing)
259 {
260 emit_unop_insn (icode, to, from,
261 unsignedp ? ZERO_EXTEND : SIGN_EXTEND);
262 return;
263 }
264 }
265
266 if (GET_MODE_UNIT_PRECISION (to_mode)
267 < GET_MODE_UNIT_PRECISION (from_mode))
268 {
269 insn_code icode = convert_optab_handler (trunc_optab,
270 to_mode, from_mode);
271 if (icode != CODE_FOR_nothing)
272 {
273 emit_unop_insn (icode, to, from, TRUNCATE);
274 return;
275 }
276 }
277
278 gcc_assert (known_eq (GET_MODE_BITSIZE (from_mode),
279 GET_MODE_BITSIZE (to_mode)));
280
281 if (VECTOR_MODE_P (to_mode))
282 from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0);
283 else
284 to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0);
285
286 emit_move_insn (to, from);
287 return;
288 }
289
290 if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT)
291 {
292 convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp);
293 convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp);
294 return;
295 }
296
297 convert_mode_scalar (to, from, unsignedp);
298 }
299
300 /* Like convert_move, but deals only with scalar modes. */
301
302 static void
convert_mode_scalar(rtx to,rtx from,int unsignedp)303 convert_mode_scalar (rtx to, rtx from, int unsignedp)
304 {
305 /* Both modes should be scalar types. */
306 scalar_mode from_mode = as_a <scalar_mode> (GET_MODE (from));
307 scalar_mode to_mode = as_a <scalar_mode> (GET_MODE (to));
308 bool to_real = SCALAR_FLOAT_MODE_P (to_mode);
309 bool from_real = SCALAR_FLOAT_MODE_P (from_mode);
310 enum insn_code code;
311 rtx libcall;
312
313 gcc_assert (to_real == from_real);
314
315 /* rtx code for making an equivalent value. */
316 enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN
317 : (unsignedp ? ZERO_EXTEND : SIGN_EXTEND));
318
319 if (to_real)
320 {
321 rtx value;
322 rtx_insn *insns;
323 convert_optab tab;
324
325 gcc_assert ((GET_MODE_PRECISION (from_mode)
326 != GET_MODE_PRECISION (to_mode))
327 || (DECIMAL_FLOAT_MODE_P (from_mode)
328 != DECIMAL_FLOAT_MODE_P (to_mode)));
329
330 if (GET_MODE_PRECISION (from_mode) == GET_MODE_PRECISION (to_mode))
331 /* Conversion between decimal float and binary float, same size. */
332 tab = DECIMAL_FLOAT_MODE_P (from_mode) ? trunc_optab : sext_optab;
333 else if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode))
334 tab = sext_optab;
335 else
336 tab = trunc_optab;
337
338 /* Try converting directly if the insn is supported. */
339
340 code = convert_optab_handler (tab, to_mode, from_mode);
341 if (code != CODE_FOR_nothing)
342 {
343 emit_unop_insn (code, to, from,
344 tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE);
345 return;
346 }
347
348 /* Otherwise use a libcall. */
349 libcall = convert_optab_libfunc (tab, to_mode, from_mode);
350
351 /* Is this conversion implemented yet? */
352 gcc_assert (libcall);
353
354 start_sequence ();
355 value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode,
356 from, from_mode);
357 insns = get_insns ();
358 end_sequence ();
359 emit_libcall_block (insns, to, value,
360 tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode,
361 from)
362 : gen_rtx_FLOAT_EXTEND (to_mode, from));
363 return;
364 }
365
366 /* Handle pointer conversion. */ /* SPEE 900220. */
367 /* If the target has a converter from FROM_MODE to TO_MODE, use it. */
368 {
369 convert_optab ctab;
370
371 if (GET_MODE_PRECISION (from_mode) > GET_MODE_PRECISION (to_mode))
372 ctab = trunc_optab;
373 else if (unsignedp)
374 ctab = zext_optab;
375 else
376 ctab = sext_optab;
377
378 if (convert_optab_handler (ctab, to_mode, from_mode)
379 != CODE_FOR_nothing)
380 {
381 emit_unop_insn (convert_optab_handler (ctab, to_mode, from_mode),
382 to, from, UNKNOWN);
383 return;
384 }
385 }
386
387 /* Targets are expected to provide conversion insns between PxImode and
388 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
389 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT)
390 {
391 scalar_int_mode full_mode
392 = smallest_int_mode_for_size (GET_MODE_BITSIZE (to_mode));
393
394 gcc_assert (convert_optab_handler (trunc_optab, to_mode, full_mode)
395 != CODE_FOR_nothing);
396
397 if (full_mode != from_mode)
398 from = convert_to_mode (full_mode, from, unsignedp);
399 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, full_mode),
400 to, from, UNKNOWN);
401 return;
402 }
403 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT)
404 {
405 rtx new_from;
406 scalar_int_mode full_mode
407 = smallest_int_mode_for_size (GET_MODE_BITSIZE (from_mode));
408 convert_optab ctab = unsignedp ? zext_optab : sext_optab;
409 enum insn_code icode;
410
411 icode = convert_optab_handler (ctab, full_mode, from_mode);
412 gcc_assert (icode != CODE_FOR_nothing);
413
414 if (to_mode == full_mode)
415 {
416 emit_unop_insn (icode, to, from, UNKNOWN);
417 return;
418 }
419
420 new_from = gen_reg_rtx (full_mode);
421 emit_unop_insn (icode, new_from, from, UNKNOWN);
422
423 /* else proceed to integer conversions below. */
424 from_mode = full_mode;
425 from = new_from;
426 }
427
428 /* Make sure both are fixed-point modes or both are not. */
429 gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode) ==
430 ALL_SCALAR_FIXED_POINT_MODE_P (to_mode));
431 if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode))
432 {
433 /* If we widen from_mode to to_mode and they are in the same class,
434 we won't saturate the result.
435 Otherwise, always saturate the result to play safe. */
436 if (GET_MODE_CLASS (from_mode) == GET_MODE_CLASS (to_mode)
437 && GET_MODE_SIZE (from_mode) < GET_MODE_SIZE (to_mode))
438 expand_fixed_convert (to, from, 0, 0);
439 else
440 expand_fixed_convert (to, from, 0, 1);
441 return;
442 }
443
444 /* Now both modes are integers. */
445
446 /* Handle expanding beyond a word. */
447 if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode)
448 && GET_MODE_PRECISION (to_mode) > BITS_PER_WORD)
449 {
450 rtx_insn *insns;
451 rtx lowpart;
452 rtx fill_value;
453 rtx lowfrom;
454 int i;
455 scalar_mode lowpart_mode;
456 int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
457
458 /* Try converting directly if the insn is supported. */
459 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
460 != CODE_FOR_nothing)
461 {
462 /* If FROM is a SUBREG, put it into a register. Do this
463 so that we always generate the same set of insns for
464 better cse'ing; if an intermediate assignment occurred,
465 we won't be doing the operation directly on the SUBREG. */
466 if (optimize > 0 && GET_CODE (from) == SUBREG)
467 from = force_reg (from_mode, from);
468 emit_unop_insn (code, to, from, equiv_code);
469 return;
470 }
471 /* Next, try converting via full word. */
472 else if (GET_MODE_PRECISION (from_mode) < BITS_PER_WORD
473 && ((code = can_extend_p (to_mode, word_mode, unsignedp))
474 != CODE_FOR_nothing))
475 {
476 rtx word_to = gen_reg_rtx (word_mode);
477 if (REG_P (to))
478 {
479 if (reg_overlap_mentioned_p (to, from))
480 from = force_reg (from_mode, from);
481 emit_clobber (to);
482 }
483 convert_move (word_to, from, unsignedp);
484 emit_unop_insn (code, to, word_to, equiv_code);
485 return;
486 }
487
488 /* No special multiword conversion insn; do it by hand. */
489 start_sequence ();
490
491 /* Since we will turn this into a no conflict block, we must ensure
492 the source does not overlap the target so force it into an isolated
493 register when maybe so. Likewise for any MEM input, since the
494 conversion sequence might require several references to it and we
495 must ensure we're getting the same value every time. */
496
497 if (MEM_P (from) || reg_overlap_mentioned_p (to, from))
498 from = force_reg (from_mode, from);
499
500 /* Get a copy of FROM widened to a word, if necessary. */
501 if (GET_MODE_PRECISION (from_mode) < BITS_PER_WORD)
502 lowpart_mode = word_mode;
503 else
504 lowpart_mode = from_mode;
505
506 lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
507
508 lowpart = gen_lowpart (lowpart_mode, to);
509 emit_move_insn (lowpart, lowfrom);
510
511 /* Compute the value to put in each remaining word. */
512 if (unsignedp)
513 fill_value = const0_rtx;
514 else
515 fill_value = emit_store_flag_force (gen_reg_rtx (word_mode),
516 LT, lowfrom, const0_rtx,
517 lowpart_mode, 0, -1);
518
519 /* Fill the remaining words. */
520 for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
521 {
522 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
523 rtx subword = operand_subword (to, index, 1, to_mode);
524
525 gcc_assert (subword);
526
527 if (fill_value != subword)
528 emit_move_insn (subword, fill_value);
529 }
530
531 insns = get_insns ();
532 end_sequence ();
533
534 emit_insn (insns);
535 return;
536 }
537
538 /* Truncating multi-word to a word or less. */
539 if (GET_MODE_PRECISION (from_mode) > BITS_PER_WORD
540 && GET_MODE_PRECISION (to_mode) <= BITS_PER_WORD)
541 {
542 if (!((MEM_P (from)
543 && ! MEM_VOLATILE_P (from)
544 && direct_load[(int) to_mode]
545 && ! mode_dependent_address_p (XEXP (from, 0),
546 MEM_ADDR_SPACE (from)))
547 || REG_P (from)
548 || GET_CODE (from) == SUBREG))
549 from = force_reg (from_mode, from);
550 convert_move (to, gen_lowpart (word_mode, from), 0);
551 return;
552 }
553
554 /* Now follow all the conversions between integers
555 no more than a word long. */
556
557 /* For truncation, usually we can just refer to FROM in a narrower mode. */
558 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
559 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode, from_mode))
560 {
561 if (!((MEM_P (from)
562 && ! MEM_VOLATILE_P (from)
563 && direct_load[(int) to_mode]
564 && ! mode_dependent_address_p (XEXP (from, 0),
565 MEM_ADDR_SPACE (from)))
566 || REG_P (from)
567 || GET_CODE (from) == SUBREG))
568 from = force_reg (from_mode, from);
569 if (REG_P (from) && REGNO (from) < FIRST_PSEUDO_REGISTER
570 && !targetm.hard_regno_mode_ok (REGNO (from), to_mode))
571 from = copy_to_reg (from);
572 emit_move_insn (to, gen_lowpart (to_mode, from));
573 return;
574 }
575
576 /* Handle extension. */
577 if (GET_MODE_PRECISION (to_mode) > GET_MODE_PRECISION (from_mode))
578 {
579 /* Convert directly if that works. */
580 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
581 != CODE_FOR_nothing)
582 {
583 emit_unop_insn (code, to, from, equiv_code);
584 return;
585 }
586 else
587 {
588 rtx tmp;
589 int shift_amount;
590
591 /* Search for a mode to convert via. */
592 opt_scalar_mode intermediate_iter;
593 FOR_EACH_MODE_FROM (intermediate_iter, from_mode)
594 {
595 scalar_mode intermediate = intermediate_iter.require ();
596 if (((can_extend_p (to_mode, intermediate, unsignedp)
597 != CODE_FOR_nothing)
598 || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
599 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode,
600 intermediate)))
601 && (can_extend_p (intermediate, from_mode, unsignedp)
602 != CODE_FOR_nothing))
603 {
604 convert_move (to, convert_to_mode (intermediate, from,
605 unsignedp), unsignedp);
606 return;
607 }
608 }
609
610 /* No suitable intermediate mode.
611 Generate what we need with shifts. */
612 shift_amount = (GET_MODE_PRECISION (to_mode)
613 - GET_MODE_PRECISION (from_mode));
614 from = gen_lowpart (to_mode, force_reg (from_mode, from));
615 tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
616 to, unsignedp);
617 tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
618 to, unsignedp);
619 if (tmp != to)
620 emit_move_insn (to, tmp);
621 return;
622 }
623 }
624
625 /* Support special truncate insns for certain modes. */
626 if (convert_optab_handler (trunc_optab, to_mode,
627 from_mode) != CODE_FOR_nothing)
628 {
629 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, from_mode),
630 to, from, UNKNOWN);
631 return;
632 }
633
634 /* Handle truncation of volatile memrefs, and so on;
635 the things that couldn't be truncated directly,
636 and for which there was no special instruction.
637
638 ??? Code above formerly short-circuited this, for most integer
639 mode pairs, with a force_reg in from_mode followed by a recursive
640 call to this routine. Appears always to have been wrong. */
641 if (GET_MODE_PRECISION (to_mode) < GET_MODE_PRECISION (from_mode))
642 {
643 rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
644 emit_move_insn (to, temp);
645 return;
646 }
647
648 /* Mode combination is not recognized. */
649 gcc_unreachable ();
650 }
651
652 /* Return an rtx for a value that would result
653 from converting X to mode MODE.
654 Both X and MODE may be floating, or both integer.
655 UNSIGNEDP is nonzero if X is an unsigned value.
656 This can be done by referring to a part of X in place
657 or by copying to a new temporary with conversion. */
658
659 rtx
convert_to_mode(machine_mode mode,rtx x,int unsignedp)660 convert_to_mode (machine_mode mode, rtx x, int unsignedp)
661 {
662 return convert_modes (mode, VOIDmode, x, unsignedp);
663 }
664
665 /* Return an rtx for a value that would result
666 from converting X from mode OLDMODE to mode MODE.
667 Both modes may be floating, or both integer.
668 UNSIGNEDP is nonzero if X is an unsigned value.
669
670 This can be done by referring to a part of X in place
671 or by copying to a new temporary with conversion.
672
673 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
674
675 rtx
convert_modes(machine_mode mode,machine_mode oldmode,rtx x,int unsignedp)676 convert_modes (machine_mode mode, machine_mode oldmode, rtx x, int unsignedp)
677 {
678 rtx temp;
679 scalar_int_mode int_mode;
680
681 /* If FROM is a SUBREG that indicates that we have already done at least
682 the required extension, strip it. */
683
684 if (GET_CODE (x) == SUBREG
685 && SUBREG_PROMOTED_VAR_P (x)
686 && is_a <scalar_int_mode> (mode, &int_mode)
687 && (GET_MODE_PRECISION (subreg_promoted_mode (x))
688 >= GET_MODE_PRECISION (int_mode))
689 && SUBREG_CHECK_PROMOTED_SIGN (x, unsignedp))
690 x = gen_lowpart (int_mode, SUBREG_REG (x));
691
692 if (GET_MODE (x) != VOIDmode)
693 oldmode = GET_MODE (x);
694
695 if (mode == oldmode)
696 return x;
697
698 if (CONST_SCALAR_INT_P (x)
699 && is_int_mode (mode, &int_mode))
700 {
701 /* If the caller did not tell us the old mode, then there is not
702 much to do with respect to canonicalization. We have to
703 assume that all the bits are significant. */
704 if (GET_MODE_CLASS (oldmode) != MODE_INT)
705 oldmode = MAX_MODE_INT;
706 wide_int w = wide_int::from (rtx_mode_t (x, oldmode),
707 GET_MODE_PRECISION (int_mode),
708 unsignedp ? UNSIGNED : SIGNED);
709 return immed_wide_int_const (w, int_mode);
710 }
711
712 /* We can do this with a gen_lowpart if both desired and current modes
713 are integer, and this is either a constant integer, a register, or a
714 non-volatile MEM. */
715 scalar_int_mode int_oldmode;
716 if (is_int_mode (mode, &int_mode)
717 && is_int_mode (oldmode, &int_oldmode)
718 && GET_MODE_PRECISION (int_mode) <= GET_MODE_PRECISION (int_oldmode)
719 && ((MEM_P (x) && !MEM_VOLATILE_P (x) && direct_load[(int) int_mode])
720 || CONST_POLY_INT_P (x)
721 || (REG_P (x)
722 && (!HARD_REGISTER_P (x)
723 || targetm.hard_regno_mode_ok (REGNO (x), int_mode))
724 && TRULY_NOOP_TRUNCATION_MODES_P (int_mode, GET_MODE (x)))))
725 return gen_lowpart (int_mode, x);
726
727 /* Converting from integer constant into mode is always equivalent to an
728 subreg operation. */
729 if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
730 {
731 gcc_assert (known_eq (GET_MODE_BITSIZE (mode),
732 GET_MODE_BITSIZE (oldmode)));
733 return simplify_gen_subreg (mode, x, oldmode, 0);
734 }
735
736 temp = gen_reg_rtx (mode);
737 convert_move (temp, x, unsignedp);
738 return temp;
739 }
740
741 /* Return the largest alignment we can use for doing a move (or store)
742 of MAX_PIECES. ALIGN is the largest alignment we could use. */
743
744 static unsigned int
alignment_for_piecewise_move(unsigned int max_pieces,unsigned int align)745 alignment_for_piecewise_move (unsigned int max_pieces, unsigned int align)
746 {
747 scalar_int_mode tmode
748 = int_mode_for_size (max_pieces * BITS_PER_UNIT, 1).require ();
749
750 if (align >= GET_MODE_ALIGNMENT (tmode))
751 align = GET_MODE_ALIGNMENT (tmode);
752 else
753 {
754 scalar_int_mode xmode = NARROWEST_INT_MODE;
755 opt_scalar_int_mode mode_iter;
756 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
757 {
758 tmode = mode_iter.require ();
759 if (GET_MODE_SIZE (tmode) > max_pieces
760 || targetm.slow_unaligned_access (tmode, align))
761 break;
762 xmode = tmode;
763 }
764
765 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
766 }
767
768 return align;
769 }
770
771 /* Return the widest integer mode that is narrower than SIZE bytes. */
772
773 static scalar_int_mode
widest_int_mode_for_size(unsigned int size)774 widest_int_mode_for_size (unsigned int size)
775 {
776 scalar_int_mode result = NARROWEST_INT_MODE;
777
778 gcc_checking_assert (size > 1);
779
780 opt_scalar_int_mode tmode;
781 FOR_EACH_MODE_IN_CLASS (tmode, MODE_INT)
782 if (GET_MODE_SIZE (tmode.require ()) < size)
783 result = tmode.require ();
784
785 return result;
786 }
787
788 /* Determine whether an operation OP on LEN bytes with alignment ALIGN can
789 and should be performed piecewise. */
790
791 static bool
can_do_by_pieces(unsigned HOST_WIDE_INT len,unsigned int align,enum by_pieces_operation op)792 can_do_by_pieces (unsigned HOST_WIDE_INT len, unsigned int align,
793 enum by_pieces_operation op)
794 {
795 return targetm.use_by_pieces_infrastructure_p (len, align, op,
796 optimize_insn_for_speed_p ());
797 }
798
799 /* Determine whether the LEN bytes can be moved by using several move
800 instructions. Return nonzero if a call to move_by_pieces should
801 succeed. */
802
803 bool
can_move_by_pieces(unsigned HOST_WIDE_INT len,unsigned int align)804 can_move_by_pieces (unsigned HOST_WIDE_INT len, unsigned int align)
805 {
806 return can_do_by_pieces (len, align, MOVE_BY_PIECES);
807 }
808
809 /* Return number of insns required to perform operation OP by pieces
810 for L bytes. ALIGN (in bits) is maximum alignment we can assume. */
811
812 unsigned HOST_WIDE_INT
by_pieces_ninsns(unsigned HOST_WIDE_INT l,unsigned int align,unsigned int max_size,by_pieces_operation op)813 by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align,
814 unsigned int max_size, by_pieces_operation op)
815 {
816 unsigned HOST_WIDE_INT n_insns = 0;
817
818 align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
819
820 while (max_size > 1 && l > 0)
821 {
822 scalar_int_mode mode = widest_int_mode_for_size (max_size);
823 enum insn_code icode;
824
825 unsigned int modesize = GET_MODE_SIZE (mode);
826
827 icode = optab_handler (mov_optab, mode);
828 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
829 {
830 unsigned HOST_WIDE_INT n_pieces = l / modesize;
831 l %= modesize;
832 switch (op)
833 {
834 default:
835 n_insns += n_pieces;
836 break;
837
838 case COMPARE_BY_PIECES:
839 int batch = targetm.compare_by_pieces_branch_ratio (mode);
840 int batch_ops = 4 * batch - 1;
841 unsigned HOST_WIDE_INT full = n_pieces / batch;
842 n_insns += full * batch_ops;
843 if (n_pieces % batch != 0)
844 n_insns++;
845 break;
846
847 }
848 }
849 max_size = modesize;
850 }
851
852 gcc_assert (!l);
853 return n_insns;
854 }
855
856 /* Used when performing piecewise block operations, holds information
857 about one of the memory objects involved. The member functions
858 can be used to generate code for loading from the object and
859 updating the address when iterating. */
860
861 class pieces_addr
862 {
863 /* The object being referenced, a MEM. Can be NULL_RTX to indicate
864 stack pushes. */
865 rtx m_obj;
866 /* The address of the object. Can differ from that seen in the
867 MEM rtx if we copied the address to a register. */
868 rtx m_addr;
869 /* Nonzero if the address on the object has an autoincrement already,
870 signifies whether that was an increment or decrement. */
871 signed char m_addr_inc;
872 /* Nonzero if we intend to use autoinc without the address already
873 having autoinc form. We will insert add insns around each memory
874 reference, expecting later passes to form autoinc addressing modes.
875 The only supported options are predecrement and postincrement. */
876 signed char m_explicit_inc;
877 /* True if we have either of the two possible cases of using
878 autoincrement. */
879 bool m_auto;
880 /* True if this is an address to be used for load operations rather
881 than stores. */
882 bool m_is_load;
883
884 /* Optionally, a function to obtain constants for any given offset into
885 the objects, and data associated with it. */
886 by_pieces_constfn m_constfn;
887 void *m_cfndata;
888 public:
889 pieces_addr (rtx, bool, by_pieces_constfn, void *);
890 rtx adjust (scalar_int_mode, HOST_WIDE_INT);
891 void increment_address (HOST_WIDE_INT);
892 void maybe_predec (HOST_WIDE_INT);
893 void maybe_postinc (HOST_WIDE_INT);
894 void decide_autoinc (machine_mode, bool, HOST_WIDE_INT);
get_addr_inc()895 int get_addr_inc ()
896 {
897 return m_addr_inc;
898 }
899 };
900
901 /* Initialize a pieces_addr structure from an object OBJ. IS_LOAD is
902 true if the operation to be performed on this object is a load
903 rather than a store. For stores, OBJ can be NULL, in which case we
904 assume the operation is a stack push. For loads, the optional
905 CONSTFN and its associated CFNDATA can be used in place of the
906 memory load. */
907
pieces_addr(rtx obj,bool is_load,by_pieces_constfn constfn,void * cfndata)908 pieces_addr::pieces_addr (rtx obj, bool is_load, by_pieces_constfn constfn,
909 void *cfndata)
910 : m_obj (obj), m_is_load (is_load), m_constfn (constfn), m_cfndata (cfndata)
911 {
912 m_addr_inc = 0;
913 m_auto = false;
914 if (obj)
915 {
916 rtx addr = XEXP (obj, 0);
917 rtx_code code = GET_CODE (addr);
918 m_addr = addr;
919 bool dec = code == PRE_DEC || code == POST_DEC;
920 bool inc = code == PRE_INC || code == POST_INC;
921 m_auto = inc || dec;
922 if (m_auto)
923 m_addr_inc = dec ? -1 : 1;
924
925 /* While we have always looked for these codes here, the code
926 implementing the memory operation has never handled them.
927 Support could be added later if necessary or beneficial. */
928 gcc_assert (code != PRE_INC && code != POST_DEC);
929 }
930 else
931 {
932 m_addr = NULL_RTX;
933 if (!is_load)
934 {
935 m_auto = true;
936 if (STACK_GROWS_DOWNWARD)
937 m_addr_inc = -1;
938 else
939 m_addr_inc = 1;
940 }
941 else
942 gcc_assert (constfn != NULL);
943 }
944 m_explicit_inc = 0;
945 if (constfn)
946 gcc_assert (is_load);
947 }
948
949 /* Decide whether to use autoinc for an address involved in a memory op.
950 MODE is the mode of the accesses, REVERSE is true if we've decided to
951 perform the operation starting from the end, and LEN is the length of
952 the operation. Don't override an earlier decision to set m_auto. */
953
954 void
decide_autoinc(machine_mode ARG_UNUSED (mode),bool reverse,HOST_WIDE_INT len)955 pieces_addr::decide_autoinc (machine_mode ARG_UNUSED (mode), bool reverse,
956 HOST_WIDE_INT len)
957 {
958 if (m_auto || m_obj == NULL_RTX)
959 return;
960
961 bool use_predec = (m_is_load
962 ? USE_LOAD_PRE_DECREMENT (mode)
963 : USE_STORE_PRE_DECREMENT (mode));
964 bool use_postinc = (m_is_load
965 ? USE_LOAD_POST_INCREMENT (mode)
966 : USE_STORE_POST_INCREMENT (mode));
967 machine_mode addr_mode = get_address_mode (m_obj);
968
969 if (use_predec && reverse)
970 {
971 m_addr = copy_to_mode_reg (addr_mode,
972 plus_constant (addr_mode,
973 m_addr, len));
974 m_auto = true;
975 m_explicit_inc = -1;
976 }
977 else if (use_postinc && !reverse)
978 {
979 m_addr = copy_to_mode_reg (addr_mode, m_addr);
980 m_auto = true;
981 m_explicit_inc = 1;
982 }
983 else if (CONSTANT_P (m_addr))
984 m_addr = copy_to_mode_reg (addr_mode, m_addr);
985 }
986
987 /* Adjust the address to refer to the data at OFFSET in MODE. If we
988 are using autoincrement for this address, we don't add the offset,
989 but we still modify the MEM's properties. */
990
991 rtx
adjust(scalar_int_mode mode,HOST_WIDE_INT offset)992 pieces_addr::adjust (scalar_int_mode mode, HOST_WIDE_INT offset)
993 {
994 if (m_constfn)
995 return m_constfn (m_cfndata, offset, mode);
996 if (m_obj == NULL_RTX)
997 return NULL_RTX;
998 if (m_auto)
999 return adjust_automodify_address (m_obj, mode, m_addr, offset);
1000 else
1001 return adjust_address (m_obj, mode, offset);
1002 }
1003
1004 /* Emit an add instruction to increment the address by SIZE. */
1005
1006 void
increment_address(HOST_WIDE_INT size)1007 pieces_addr::increment_address (HOST_WIDE_INT size)
1008 {
1009 rtx amount = gen_int_mode (size, GET_MODE (m_addr));
1010 emit_insn (gen_add2_insn (m_addr, amount));
1011 }
1012
1013 /* If we are supposed to decrement the address after each access, emit code
1014 to do so now. Increment by SIZE (which has should have the correct sign
1015 already). */
1016
1017 void
maybe_predec(HOST_WIDE_INT size)1018 pieces_addr::maybe_predec (HOST_WIDE_INT size)
1019 {
1020 if (m_explicit_inc >= 0)
1021 return;
1022 gcc_assert (HAVE_PRE_DECREMENT);
1023 increment_address (size);
1024 }
1025
1026 /* If we are supposed to decrement the address after each access, emit code
1027 to do so now. Increment by SIZE. */
1028
1029 void
maybe_postinc(HOST_WIDE_INT size)1030 pieces_addr::maybe_postinc (HOST_WIDE_INT size)
1031 {
1032 if (m_explicit_inc <= 0)
1033 return;
1034 gcc_assert (HAVE_POST_INCREMENT);
1035 increment_address (size);
1036 }
1037
1038 /* This structure is used by do_op_by_pieces to describe the operation
1039 to be performed. */
1040
1041 class op_by_pieces_d
1042 {
1043 protected:
1044 pieces_addr m_to, m_from;
1045 unsigned HOST_WIDE_INT m_len;
1046 HOST_WIDE_INT m_offset;
1047 unsigned int m_align;
1048 unsigned int m_max_size;
1049 bool m_reverse;
1050
1051 /* Virtual functions, overriden by derived classes for the specific
1052 operation. */
1053 virtual void generate (rtx, rtx, machine_mode) = 0;
1054 virtual bool prepare_mode (machine_mode, unsigned int) = 0;
finish_mode(machine_mode)1055 virtual void finish_mode (machine_mode)
1056 {
1057 }
1058
1059 public:
1060 op_by_pieces_d (rtx, bool, rtx, bool, by_pieces_constfn, void *,
1061 unsigned HOST_WIDE_INT, unsigned int);
1062 void run ();
1063 };
1064
1065 /* The constructor for an op_by_pieces_d structure. We require two
1066 objects named TO and FROM, which are identified as loads or stores
1067 by TO_LOAD and FROM_LOAD. If FROM is a load, the optional FROM_CFN
1068 and its associated FROM_CFN_DATA can be used to replace loads with
1069 constant values. LEN describes the length of the operation. */
1070
op_by_pieces_d(rtx to,bool to_load,rtx from,bool from_load,by_pieces_constfn from_cfn,void * from_cfn_data,unsigned HOST_WIDE_INT len,unsigned int align)1071 op_by_pieces_d::op_by_pieces_d (rtx to, bool to_load,
1072 rtx from, bool from_load,
1073 by_pieces_constfn from_cfn,
1074 void *from_cfn_data,
1075 unsigned HOST_WIDE_INT len,
1076 unsigned int align)
1077 : m_to (to, to_load, NULL, NULL),
1078 m_from (from, from_load, from_cfn, from_cfn_data),
1079 m_len (len), m_max_size (MOVE_MAX_PIECES + 1)
1080 {
1081 int toi = m_to.get_addr_inc ();
1082 int fromi = m_from.get_addr_inc ();
1083 if (toi >= 0 && fromi >= 0)
1084 m_reverse = false;
1085 else if (toi <= 0 && fromi <= 0)
1086 m_reverse = true;
1087 else
1088 gcc_unreachable ();
1089
1090 m_offset = m_reverse ? len : 0;
1091 align = MIN (to ? MEM_ALIGN (to) : align,
1092 from ? MEM_ALIGN (from) : align);
1093
1094 /* If copying requires more than two move insns,
1095 copy addresses to registers (to make displacements shorter)
1096 and use post-increment if available. */
1097 if (by_pieces_ninsns (len, align, m_max_size, MOVE_BY_PIECES) > 2)
1098 {
1099 /* Find the mode of the largest comparison. */
1100 scalar_int_mode mode = widest_int_mode_for_size (m_max_size);
1101
1102 m_from.decide_autoinc (mode, m_reverse, len);
1103 m_to.decide_autoinc (mode, m_reverse, len);
1104 }
1105
1106 align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
1107 m_align = align;
1108 }
1109
1110 /* This function contains the main loop used for expanding a block
1111 operation. First move what we can in the largest integer mode,
1112 then go to successively smaller modes. For every access, call
1113 GENFUN with the two operands and the EXTRA_DATA. */
1114
1115 void
run()1116 op_by_pieces_d::run ()
1117 {
1118 while (m_max_size > 1 && m_len > 0)
1119 {
1120 scalar_int_mode mode = widest_int_mode_for_size (m_max_size);
1121
1122 if (prepare_mode (mode, m_align))
1123 {
1124 unsigned int size = GET_MODE_SIZE (mode);
1125 rtx to1 = NULL_RTX, from1;
1126
1127 while (m_len >= size)
1128 {
1129 if (m_reverse)
1130 m_offset -= size;
1131
1132 to1 = m_to.adjust (mode, m_offset);
1133 from1 = m_from.adjust (mode, m_offset);
1134
1135 m_to.maybe_predec (-(HOST_WIDE_INT)size);
1136 m_from.maybe_predec (-(HOST_WIDE_INT)size);
1137
1138 generate (to1, from1, mode);
1139
1140 m_to.maybe_postinc (size);
1141 m_from.maybe_postinc (size);
1142
1143 if (!m_reverse)
1144 m_offset += size;
1145
1146 m_len -= size;
1147 }
1148
1149 finish_mode (mode);
1150 }
1151
1152 m_max_size = GET_MODE_SIZE (mode);
1153 }
1154
1155 /* The code above should have handled everything. */
1156 gcc_assert (!m_len);
1157 }
1158
1159 /* Derived class from op_by_pieces_d, providing support for block move
1160 operations. */
1161
1162 class move_by_pieces_d : public op_by_pieces_d
1163 {
1164 insn_gen_fn m_gen_fun;
1165 void generate (rtx, rtx, machine_mode);
1166 bool prepare_mode (machine_mode, unsigned int);
1167
1168 public:
move_by_pieces_d(rtx to,rtx from,unsigned HOST_WIDE_INT len,unsigned int align)1169 move_by_pieces_d (rtx to, rtx from, unsigned HOST_WIDE_INT len,
1170 unsigned int align)
1171 : op_by_pieces_d (to, false, from, true, NULL, NULL, len, align)
1172 {
1173 }
1174 rtx finish_retmode (memop_ret);
1175 };
1176
1177 /* Return true if MODE can be used for a set of copies, given an
1178 alignment ALIGN. Prepare whatever data is necessary for later
1179 calls to generate. */
1180
1181 bool
prepare_mode(machine_mode mode,unsigned int align)1182 move_by_pieces_d::prepare_mode (machine_mode mode, unsigned int align)
1183 {
1184 insn_code icode = optab_handler (mov_optab, mode);
1185 m_gen_fun = GEN_FCN (icode);
1186 return icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode);
1187 }
1188
1189 /* A callback used when iterating for a compare_by_pieces_operation.
1190 OP0 and OP1 are the values that have been loaded and should be
1191 compared in MODE. If OP0 is NULL, this means we should generate a
1192 push; otherwise EXTRA_DATA holds a pointer to a pointer to the insn
1193 gen function that should be used to generate the mode. */
1194
1195 void
generate(rtx op0,rtx op1,machine_mode mode ATTRIBUTE_UNUSED)1196 move_by_pieces_d::generate (rtx op0, rtx op1,
1197 machine_mode mode ATTRIBUTE_UNUSED)
1198 {
1199 #ifdef PUSH_ROUNDING
1200 if (op0 == NULL_RTX)
1201 {
1202 emit_single_push_insn (mode, op1, NULL);
1203 return;
1204 }
1205 #endif
1206 emit_insn (m_gen_fun (op0, op1));
1207 }
1208
1209 /* Perform the final adjustment at the end of a string to obtain the
1210 correct return value for the block operation.
1211 Return value is based on RETMODE argument. */
1212
1213 rtx
finish_retmode(memop_ret retmode)1214 move_by_pieces_d::finish_retmode (memop_ret retmode)
1215 {
1216 gcc_assert (!m_reverse);
1217 if (retmode == RETURN_END_MINUS_ONE)
1218 {
1219 m_to.maybe_postinc (-1);
1220 --m_offset;
1221 }
1222 return m_to.adjust (QImode, m_offset);
1223 }
1224
1225 /* Generate several move instructions to copy LEN bytes from block FROM to
1226 block TO. (These are MEM rtx's with BLKmode).
1227
1228 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
1229 used to push FROM to the stack.
1230
1231 ALIGN is maximum stack alignment we can assume.
1232
1233 Return value is based on RETMODE argument. */
1234
1235 rtx
move_by_pieces(rtx to,rtx from,unsigned HOST_WIDE_INT len,unsigned int align,memop_ret retmode)1236 move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len,
1237 unsigned int align, memop_ret retmode)
1238 {
1239 #ifndef PUSH_ROUNDING
1240 if (to == NULL)
1241 gcc_unreachable ();
1242 #endif
1243
1244 move_by_pieces_d data (to, from, len, align);
1245
1246 data.run ();
1247
1248 if (retmode != RETURN_BEGIN)
1249 return data.finish_retmode (retmode);
1250 else
1251 return to;
1252 }
1253
1254 /* Derived class from op_by_pieces_d, providing support for block move
1255 operations. */
1256
1257 class store_by_pieces_d : public op_by_pieces_d
1258 {
1259 insn_gen_fn m_gen_fun;
1260 void generate (rtx, rtx, machine_mode);
1261 bool prepare_mode (machine_mode, unsigned int);
1262
1263 public:
store_by_pieces_d(rtx to,by_pieces_constfn cfn,void * cfn_data,unsigned HOST_WIDE_INT len,unsigned int align)1264 store_by_pieces_d (rtx to, by_pieces_constfn cfn, void *cfn_data,
1265 unsigned HOST_WIDE_INT len, unsigned int align)
1266 : op_by_pieces_d (to, false, NULL_RTX, true, cfn, cfn_data, len, align)
1267 {
1268 }
1269 rtx finish_retmode (memop_ret);
1270 };
1271
1272 /* Return true if MODE can be used for a set of stores, given an
1273 alignment ALIGN. Prepare whatever data is necessary for later
1274 calls to generate. */
1275
1276 bool
prepare_mode(machine_mode mode,unsigned int align)1277 store_by_pieces_d::prepare_mode (machine_mode mode, unsigned int align)
1278 {
1279 insn_code icode = optab_handler (mov_optab, mode);
1280 m_gen_fun = GEN_FCN (icode);
1281 return icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode);
1282 }
1283
1284 /* A callback used when iterating for a store_by_pieces_operation.
1285 OP0 and OP1 are the values that have been loaded and should be
1286 compared in MODE. If OP0 is NULL, this means we should generate a
1287 push; otherwise EXTRA_DATA holds a pointer to a pointer to the insn
1288 gen function that should be used to generate the mode. */
1289
1290 void
generate(rtx op0,rtx op1,machine_mode)1291 store_by_pieces_d::generate (rtx op0, rtx op1, machine_mode)
1292 {
1293 emit_insn (m_gen_fun (op0, op1));
1294 }
1295
1296 /* Perform the final adjustment at the end of a string to obtain the
1297 correct return value for the block operation.
1298 Return value is based on RETMODE argument. */
1299
1300 rtx
finish_retmode(memop_ret retmode)1301 store_by_pieces_d::finish_retmode (memop_ret retmode)
1302 {
1303 gcc_assert (!m_reverse);
1304 if (retmode == RETURN_END_MINUS_ONE)
1305 {
1306 m_to.maybe_postinc (-1);
1307 --m_offset;
1308 }
1309 return m_to.adjust (QImode, m_offset);
1310 }
1311
1312 /* Determine whether the LEN bytes generated by CONSTFUN can be
1313 stored to memory using several move instructions. CONSTFUNDATA is
1314 a pointer which will be passed as argument in every CONSTFUN call.
1315 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
1316 a memset operation and false if it's a copy of a constant string.
1317 Return nonzero if a call to store_by_pieces should succeed. */
1318
1319 int
can_store_by_pieces(unsigned HOST_WIDE_INT len,rtx (* constfun)(void *,HOST_WIDE_INT,scalar_int_mode),void * constfundata,unsigned int align,bool memsetp)1320 can_store_by_pieces (unsigned HOST_WIDE_INT len,
1321 rtx (*constfun) (void *, HOST_WIDE_INT, scalar_int_mode),
1322 void *constfundata, unsigned int align, bool memsetp)
1323 {
1324 unsigned HOST_WIDE_INT l;
1325 unsigned int max_size;
1326 HOST_WIDE_INT offset = 0;
1327 enum insn_code icode;
1328 int reverse;
1329 /* cst is set but not used if LEGITIMATE_CONSTANT doesn't use it. */
1330 rtx cst ATTRIBUTE_UNUSED;
1331
1332 if (len == 0)
1333 return 1;
1334
1335 if (!targetm.use_by_pieces_infrastructure_p (len, align,
1336 memsetp
1337 ? SET_BY_PIECES
1338 : STORE_BY_PIECES,
1339 optimize_insn_for_speed_p ()))
1340 return 0;
1341
1342 align = alignment_for_piecewise_move (STORE_MAX_PIECES, align);
1343
1344 /* We would first store what we can in the largest integer mode, then go to
1345 successively smaller modes. */
1346
1347 for (reverse = 0;
1348 reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT);
1349 reverse++)
1350 {
1351 l = len;
1352 max_size = STORE_MAX_PIECES + 1;
1353 while (max_size > 1 && l > 0)
1354 {
1355 scalar_int_mode mode = widest_int_mode_for_size (max_size);
1356
1357 icode = optab_handler (mov_optab, mode);
1358 if (icode != CODE_FOR_nothing
1359 && align >= GET_MODE_ALIGNMENT (mode))
1360 {
1361 unsigned int size = GET_MODE_SIZE (mode);
1362
1363 while (l >= size)
1364 {
1365 if (reverse)
1366 offset -= size;
1367
1368 cst = (*constfun) (constfundata, offset, mode);
1369 if (!targetm.legitimate_constant_p (mode, cst))
1370 return 0;
1371
1372 if (!reverse)
1373 offset += size;
1374
1375 l -= size;
1376 }
1377 }
1378
1379 max_size = GET_MODE_SIZE (mode);
1380 }
1381
1382 /* The code above should have handled everything. */
1383 gcc_assert (!l);
1384 }
1385
1386 return 1;
1387 }
1388
1389 /* Generate several move instructions to store LEN bytes generated by
1390 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
1391 pointer which will be passed as argument in every CONSTFUN call.
1392 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
1393 a memset operation and false if it's a copy of a constant string.
1394 Return value is based on RETMODE argument. */
1395
1396 rtx
store_by_pieces(rtx to,unsigned HOST_WIDE_INT len,rtx (* constfun)(void *,HOST_WIDE_INT,scalar_int_mode),void * constfundata,unsigned int align,bool memsetp,memop_ret retmode)1397 store_by_pieces (rtx to, unsigned HOST_WIDE_INT len,
1398 rtx (*constfun) (void *, HOST_WIDE_INT, scalar_int_mode),
1399 void *constfundata, unsigned int align, bool memsetp,
1400 memop_ret retmode)
1401 {
1402 if (len == 0)
1403 {
1404 gcc_assert (retmode != RETURN_END_MINUS_ONE);
1405 return to;
1406 }
1407
1408 gcc_assert (targetm.use_by_pieces_infrastructure_p
1409 (len, align,
1410 memsetp ? SET_BY_PIECES : STORE_BY_PIECES,
1411 optimize_insn_for_speed_p ()));
1412
1413 store_by_pieces_d data (to, constfun, constfundata, len, align);
1414 data.run ();
1415
1416 if (retmode != RETURN_BEGIN)
1417 return data.finish_retmode (retmode);
1418 else
1419 return to;
1420 }
1421
1422 /* Callback routine for clear_by_pieces.
1423 Return const0_rtx unconditionally. */
1424
1425 static rtx
clear_by_pieces_1(void *,HOST_WIDE_INT,scalar_int_mode)1426 clear_by_pieces_1 (void *, HOST_WIDE_INT, scalar_int_mode)
1427 {
1428 return const0_rtx;
1429 }
1430
1431 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
1432 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
1433
1434 static void
clear_by_pieces(rtx to,unsigned HOST_WIDE_INT len,unsigned int align)1435 clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align)
1436 {
1437 if (len == 0)
1438 return;
1439
1440 store_by_pieces_d data (to, clear_by_pieces_1, NULL, len, align);
1441 data.run ();
1442 }
1443
1444 /* Context used by compare_by_pieces_genfn. It stores the fail label
1445 to jump to in case of miscomparison, and for branch ratios greater than 1,
1446 it stores an accumulator and the current and maximum counts before
1447 emitting another branch. */
1448
1449 class compare_by_pieces_d : public op_by_pieces_d
1450 {
1451 rtx_code_label *m_fail_label;
1452 rtx m_accumulator;
1453 int m_count, m_batch;
1454
1455 void generate (rtx, rtx, machine_mode);
1456 bool prepare_mode (machine_mode, unsigned int);
1457 void finish_mode (machine_mode);
1458 public:
compare_by_pieces_d(rtx op0,rtx op1,by_pieces_constfn op1_cfn,void * op1_cfn_data,HOST_WIDE_INT len,int align,rtx_code_label * fail_label)1459 compare_by_pieces_d (rtx op0, rtx op1, by_pieces_constfn op1_cfn,
1460 void *op1_cfn_data, HOST_WIDE_INT len, int align,
1461 rtx_code_label *fail_label)
1462 : op_by_pieces_d (op0, true, op1, true, op1_cfn, op1_cfn_data, len, align)
1463 {
1464 m_fail_label = fail_label;
1465 }
1466 };
1467
1468 /* A callback used when iterating for a compare_by_pieces_operation.
1469 OP0 and OP1 are the values that have been loaded and should be
1470 compared in MODE. DATA holds a pointer to the compare_by_pieces_data
1471 context structure. */
1472
1473 void
generate(rtx op0,rtx op1,machine_mode mode)1474 compare_by_pieces_d::generate (rtx op0, rtx op1, machine_mode mode)
1475 {
1476 if (m_batch > 1)
1477 {
1478 rtx temp = expand_binop (mode, sub_optab, op0, op1, NULL_RTX,
1479 true, OPTAB_LIB_WIDEN);
1480 if (m_count != 0)
1481 temp = expand_binop (mode, ior_optab, m_accumulator, temp, temp,
1482 true, OPTAB_LIB_WIDEN);
1483 m_accumulator = temp;
1484
1485 if (++m_count < m_batch)
1486 return;
1487
1488 m_count = 0;
1489 op0 = m_accumulator;
1490 op1 = const0_rtx;
1491 m_accumulator = NULL_RTX;
1492 }
1493 do_compare_rtx_and_jump (op0, op1, NE, true, mode, NULL_RTX, NULL,
1494 m_fail_label, profile_probability::uninitialized ());
1495 }
1496
1497 /* Return true if MODE can be used for a set of moves and comparisons,
1498 given an alignment ALIGN. Prepare whatever data is necessary for
1499 later calls to generate. */
1500
1501 bool
prepare_mode(machine_mode mode,unsigned int align)1502 compare_by_pieces_d::prepare_mode (machine_mode mode, unsigned int align)
1503 {
1504 insn_code icode = optab_handler (mov_optab, mode);
1505 if (icode == CODE_FOR_nothing
1506 || align < GET_MODE_ALIGNMENT (mode)
1507 || !can_compare_p (EQ, mode, ccp_jump))
1508 return false;
1509 m_batch = targetm.compare_by_pieces_branch_ratio (mode);
1510 if (m_batch < 0)
1511 return false;
1512 m_accumulator = NULL_RTX;
1513 m_count = 0;
1514 return true;
1515 }
1516
1517 /* Called after expanding a series of comparisons in MODE. If we have
1518 accumulated results for which we haven't emitted a branch yet, do
1519 so now. */
1520
1521 void
finish_mode(machine_mode mode)1522 compare_by_pieces_d::finish_mode (machine_mode mode)
1523 {
1524 if (m_accumulator != NULL_RTX)
1525 do_compare_rtx_and_jump (m_accumulator, const0_rtx, NE, true, mode,
1526 NULL_RTX, NULL, m_fail_label,
1527 profile_probability::uninitialized ());
1528 }
1529
1530 /* Generate several move instructions to compare LEN bytes from blocks
1531 ARG0 and ARG1. (These are MEM rtx's with BLKmode).
1532
1533 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
1534 used to push FROM to the stack.
1535
1536 ALIGN is maximum stack alignment we can assume.
1537
1538 Optionally, the caller can pass a constfn and associated data in A1_CFN
1539 and A1_CFN_DATA. describing that the second operand being compared is a
1540 known constant and how to obtain its data. */
1541
1542 static rtx
compare_by_pieces(rtx arg0,rtx arg1,unsigned HOST_WIDE_INT len,rtx target,unsigned int align,by_pieces_constfn a1_cfn,void * a1_cfn_data)1543 compare_by_pieces (rtx arg0, rtx arg1, unsigned HOST_WIDE_INT len,
1544 rtx target, unsigned int align,
1545 by_pieces_constfn a1_cfn, void *a1_cfn_data)
1546 {
1547 rtx_code_label *fail_label = gen_label_rtx ();
1548 rtx_code_label *end_label = gen_label_rtx ();
1549
1550 if (target == NULL_RTX
1551 || !REG_P (target) || REGNO (target) < FIRST_PSEUDO_REGISTER)
1552 target = gen_reg_rtx (TYPE_MODE (integer_type_node));
1553
1554 compare_by_pieces_d data (arg0, arg1, a1_cfn, a1_cfn_data, len, align,
1555 fail_label);
1556
1557 data.run ();
1558
1559 emit_move_insn (target, const0_rtx);
1560 emit_jump (end_label);
1561 emit_barrier ();
1562 emit_label (fail_label);
1563 emit_move_insn (target, const1_rtx);
1564 emit_label (end_label);
1565
1566 return target;
1567 }
1568
1569 /* Emit code to move a block Y to a block X. This may be done with
1570 string-move instructions, with multiple scalar move instructions,
1571 or with a library call.
1572
1573 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1574 SIZE is an rtx that says how long they are.
1575 ALIGN is the maximum alignment we can assume they have.
1576 METHOD describes what kind of copy this is, and what mechanisms may be used.
1577 MIN_SIZE is the minimal size of block to move
1578 MAX_SIZE is the maximal size of block to move, if it cannot be represented
1579 in unsigned HOST_WIDE_INT, than it is mask of all ones.
1580
1581 Return the address of the new block, if memcpy is called and returns it,
1582 0 otherwise. */
1583
1584 rtx
emit_block_move_hints(rtx x,rtx y,rtx size,enum block_op_methods method,unsigned int expected_align,HOST_WIDE_INT expected_size,unsigned HOST_WIDE_INT min_size,unsigned HOST_WIDE_INT max_size,unsigned HOST_WIDE_INT probable_max_size,bool bail_out_libcall,bool * is_move_done,bool might_overlap)1585 emit_block_move_hints (rtx x, rtx y, rtx size, enum block_op_methods method,
1586 unsigned int expected_align, HOST_WIDE_INT expected_size,
1587 unsigned HOST_WIDE_INT min_size,
1588 unsigned HOST_WIDE_INT max_size,
1589 unsigned HOST_WIDE_INT probable_max_size,
1590 bool bail_out_libcall, bool *is_move_done,
1591 bool might_overlap)
1592 {
1593 int may_use_call;
1594 rtx retval = 0;
1595 unsigned int align;
1596
1597 if (is_move_done)
1598 *is_move_done = true;
1599
1600 gcc_assert (size);
1601 if (CONST_INT_P (size) && INTVAL (size) == 0)
1602 return 0;
1603
1604 switch (method)
1605 {
1606 case BLOCK_OP_NORMAL:
1607 case BLOCK_OP_TAILCALL:
1608 may_use_call = 1;
1609 break;
1610
1611 case BLOCK_OP_CALL_PARM:
1612 may_use_call = block_move_libcall_safe_for_call_parm ();
1613
1614 /* Make inhibit_defer_pop nonzero around the library call
1615 to force it to pop the arguments right away. */
1616 NO_DEFER_POP;
1617 break;
1618
1619 case BLOCK_OP_NO_LIBCALL:
1620 may_use_call = 0;
1621 break;
1622
1623 case BLOCK_OP_NO_LIBCALL_RET:
1624 may_use_call = -1;
1625 break;
1626
1627 default:
1628 gcc_unreachable ();
1629 }
1630
1631 gcc_assert (MEM_P (x) && MEM_P (y));
1632 align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
1633 gcc_assert (align >= BITS_PER_UNIT);
1634
1635 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1636 block copy is more efficient for other large modes, e.g. DCmode. */
1637 x = adjust_address (x, BLKmode, 0);
1638 y = adjust_address (y, BLKmode, 0);
1639
1640 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1641 can be incorrect is coming from __builtin_memcpy. */
1642 poly_int64 const_size;
1643 if (poly_int_rtx_p (size, &const_size))
1644 {
1645 x = shallow_copy_rtx (x);
1646 y = shallow_copy_rtx (y);
1647 set_mem_size (x, const_size);
1648 set_mem_size (y, const_size);
1649 }
1650
1651 bool pieces_ok = CONST_INT_P (size)
1652 && can_move_by_pieces (INTVAL (size), align);
1653 bool pattern_ok = false;
1654
1655 if (!pieces_ok || might_overlap)
1656 {
1657 pattern_ok
1658 = emit_block_move_via_pattern (x, y, size, align,
1659 expected_align, expected_size,
1660 min_size, max_size, probable_max_size,
1661 might_overlap);
1662 if (!pattern_ok && might_overlap)
1663 {
1664 /* Do not try any of the other methods below as they are not safe
1665 for overlapping moves. */
1666 *is_move_done = false;
1667 return retval;
1668 }
1669 }
1670
1671 if (pattern_ok)
1672 ;
1673 else if (pieces_ok)
1674 move_by_pieces (x, y, INTVAL (size), align, RETURN_BEGIN);
1675 else if (may_use_call && !might_overlap
1676 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (x))
1677 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (y)))
1678 {
1679 if (bail_out_libcall)
1680 {
1681 if (is_move_done)
1682 *is_move_done = false;
1683 return retval;
1684 }
1685
1686 if (may_use_call < 0)
1687 return pc_rtx;
1688
1689 retval = emit_block_copy_via_libcall (x, y, size,
1690 method == BLOCK_OP_TAILCALL);
1691 }
1692 else if (might_overlap)
1693 *is_move_done = false;
1694 else
1695 emit_block_move_via_loop (x, y, size, align);
1696
1697 if (method == BLOCK_OP_CALL_PARM)
1698 OK_DEFER_POP;
1699
1700 return retval;
1701 }
1702
1703 rtx
emit_block_move(rtx x,rtx y,rtx size,enum block_op_methods method)1704 emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method)
1705 {
1706 unsigned HOST_WIDE_INT max, min = 0;
1707 if (GET_CODE (size) == CONST_INT)
1708 min = max = UINTVAL (size);
1709 else
1710 max = GET_MODE_MASK (GET_MODE (size));
1711 return emit_block_move_hints (x, y, size, method, 0, -1,
1712 min, max, max);
1713 }
1714
1715 /* A subroutine of emit_block_move. Returns true if calling the
1716 block move libcall will not clobber any parameters which may have
1717 already been placed on the stack. */
1718
1719 static bool
block_move_libcall_safe_for_call_parm(void)1720 block_move_libcall_safe_for_call_parm (void)
1721 {
1722 tree fn;
1723
1724 /* If arguments are pushed on the stack, then they're safe. */
1725 if (PUSH_ARGS)
1726 return true;
1727
1728 /* If registers go on the stack anyway, any argument is sure to clobber
1729 an outgoing argument. */
1730 #if defined (REG_PARM_STACK_SPACE)
1731 fn = builtin_decl_implicit (BUILT_IN_MEMCPY);
1732 /* Avoid set but not used warning if *REG_PARM_STACK_SPACE doesn't
1733 depend on its argument. */
1734 (void) fn;
1735 if (OUTGOING_REG_PARM_STACK_SPACE ((!fn ? NULL_TREE : TREE_TYPE (fn)))
1736 && REG_PARM_STACK_SPACE (fn) != 0)
1737 return false;
1738 #endif
1739
1740 /* If any argument goes in memory, then it might clobber an outgoing
1741 argument. */
1742 {
1743 CUMULATIVE_ARGS args_so_far_v;
1744 cumulative_args_t args_so_far;
1745 tree arg;
1746
1747 fn = builtin_decl_implicit (BUILT_IN_MEMCPY);
1748 INIT_CUMULATIVE_ARGS (args_so_far_v, TREE_TYPE (fn), NULL_RTX, 0, 3);
1749 args_so_far = pack_cumulative_args (&args_so_far_v);
1750
1751 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
1752 for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg))
1753 {
1754 machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
1755 function_arg_info arg_info (mode, /*named=*/true);
1756 rtx tmp = targetm.calls.function_arg (args_so_far, arg_info);
1757 if (!tmp || !REG_P (tmp))
1758 return false;
1759 if (targetm.calls.arg_partial_bytes (args_so_far, arg_info))
1760 return false;
1761 targetm.calls.function_arg_advance (args_so_far, arg_info);
1762 }
1763 }
1764 return true;
1765 }
1766
1767 /* A subroutine of emit_block_move. Expand a cpymem or movmem pattern;
1768 return true if successful.
1769
1770 X is the destination of the copy or move.
1771 Y is the source of the copy or move.
1772 SIZE is the size of the block to be moved.
1773
1774 MIGHT_OVERLAP indicates this originated with expansion of a
1775 builtin_memmove() and the source and destination blocks may
1776 overlap.
1777 */
1778
1779 static bool
emit_block_move_via_pattern(rtx x,rtx y,rtx size,unsigned int align,unsigned int expected_align,HOST_WIDE_INT expected_size,unsigned HOST_WIDE_INT min_size,unsigned HOST_WIDE_INT max_size,unsigned HOST_WIDE_INT probable_max_size,bool might_overlap)1780 emit_block_move_via_pattern (rtx x, rtx y, rtx size, unsigned int align,
1781 unsigned int expected_align,
1782 HOST_WIDE_INT expected_size,
1783 unsigned HOST_WIDE_INT min_size,
1784 unsigned HOST_WIDE_INT max_size,
1785 unsigned HOST_WIDE_INT probable_max_size,
1786 bool might_overlap)
1787 {
1788 if (expected_align < align)
1789 expected_align = align;
1790 if (expected_size != -1)
1791 {
1792 if ((unsigned HOST_WIDE_INT)expected_size > probable_max_size)
1793 expected_size = probable_max_size;
1794 if ((unsigned HOST_WIDE_INT)expected_size < min_size)
1795 expected_size = min_size;
1796 }
1797
1798 /* Since this is a move insn, we don't care about volatility. */
1799 temporary_volatile_ok v (true);
1800
1801 /* Try the most limited insn first, because there's no point
1802 including more than one in the machine description unless
1803 the more limited one has some advantage. */
1804
1805 opt_scalar_int_mode mode_iter;
1806 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
1807 {
1808 scalar_int_mode mode = mode_iter.require ();
1809 enum insn_code code;
1810 if (might_overlap)
1811 code = direct_optab_handler (movmem_optab, mode);
1812 else
1813 code = direct_optab_handler (cpymem_optab, mode);
1814
1815 if (code != CODE_FOR_nothing
1816 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1817 here because if SIZE is less than the mode mask, as it is
1818 returned by the macro, it will definitely be less than the
1819 actual mode mask. Since SIZE is within the Pmode address
1820 space, we limit MODE to Pmode. */
1821 && ((CONST_INT_P (size)
1822 && ((unsigned HOST_WIDE_INT) INTVAL (size)
1823 <= (GET_MODE_MASK (mode) >> 1)))
1824 || max_size <= (GET_MODE_MASK (mode) >> 1)
1825 || GET_MODE_BITSIZE (mode) >= GET_MODE_BITSIZE (Pmode)))
1826 {
1827 class expand_operand ops[9];
1828 unsigned int nops;
1829
1830 /* ??? When called via emit_block_move_for_call, it'd be
1831 nice if there were some way to inform the backend, so
1832 that it doesn't fail the expansion because it thinks
1833 emitting the libcall would be more efficient. */
1834 nops = insn_data[(int) code].n_generator_args;
1835 gcc_assert (nops == 4 || nops == 6 || nops == 8 || nops == 9);
1836
1837 create_fixed_operand (&ops[0], x);
1838 create_fixed_operand (&ops[1], y);
1839 /* The check above guarantees that this size conversion is valid. */
1840 create_convert_operand_to (&ops[2], size, mode, true);
1841 create_integer_operand (&ops[3], align / BITS_PER_UNIT);
1842 if (nops >= 6)
1843 {
1844 create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT);
1845 create_integer_operand (&ops[5], expected_size);
1846 }
1847 if (nops >= 8)
1848 {
1849 create_integer_operand (&ops[6], min_size);
1850 /* If we cannot represent the maximal size,
1851 make parameter NULL. */
1852 if ((HOST_WIDE_INT) max_size != -1)
1853 create_integer_operand (&ops[7], max_size);
1854 else
1855 create_fixed_operand (&ops[7], NULL);
1856 }
1857 if (nops == 9)
1858 {
1859 /* If we cannot represent the maximal size,
1860 make parameter NULL. */
1861 if ((HOST_WIDE_INT) probable_max_size != -1)
1862 create_integer_operand (&ops[8], probable_max_size);
1863 else
1864 create_fixed_operand (&ops[8], NULL);
1865 }
1866 if (maybe_expand_insn (code, nops, ops))
1867 return true;
1868 }
1869 }
1870
1871 return false;
1872 }
1873
1874 /* A subroutine of emit_block_move. Copy the data via an explicit
1875 loop. This is used only when libcalls are forbidden. */
1876 /* ??? It'd be nice to copy in hunks larger than QImode. */
1877
1878 static void
emit_block_move_via_loop(rtx x,rtx y,rtx size,unsigned int align ATTRIBUTE_UNUSED)1879 emit_block_move_via_loop (rtx x, rtx y, rtx size,
1880 unsigned int align ATTRIBUTE_UNUSED)
1881 {
1882 rtx_code_label *cmp_label, *top_label;
1883 rtx iter, x_addr, y_addr, tmp;
1884 machine_mode x_addr_mode = get_address_mode (x);
1885 machine_mode y_addr_mode = get_address_mode (y);
1886 machine_mode iter_mode;
1887
1888 iter_mode = GET_MODE (size);
1889 if (iter_mode == VOIDmode)
1890 iter_mode = word_mode;
1891
1892 top_label = gen_label_rtx ();
1893 cmp_label = gen_label_rtx ();
1894 iter = gen_reg_rtx (iter_mode);
1895
1896 emit_move_insn (iter, const0_rtx);
1897
1898 x_addr = force_operand (XEXP (x, 0), NULL_RTX);
1899 y_addr = force_operand (XEXP (y, 0), NULL_RTX);
1900 do_pending_stack_adjust ();
1901
1902 emit_jump (cmp_label);
1903 emit_label (top_label);
1904
1905 tmp = convert_modes (x_addr_mode, iter_mode, iter, true);
1906 x_addr = simplify_gen_binary (PLUS, x_addr_mode, x_addr, tmp);
1907
1908 if (x_addr_mode != y_addr_mode)
1909 tmp = convert_modes (y_addr_mode, iter_mode, iter, true);
1910 y_addr = simplify_gen_binary (PLUS, y_addr_mode, y_addr, tmp);
1911
1912 x = change_address (x, QImode, x_addr);
1913 y = change_address (y, QImode, y_addr);
1914
1915 emit_move_insn (x, y);
1916
1917 tmp = expand_simple_binop (iter_mode, PLUS, iter, const1_rtx, iter,
1918 true, OPTAB_LIB_WIDEN);
1919 if (tmp != iter)
1920 emit_move_insn (iter, tmp);
1921
1922 emit_label (cmp_label);
1923
1924 emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode,
1925 true, top_label,
1926 profile_probability::guessed_always ()
1927 .apply_scale (9, 10));
1928 }
1929
1930 /* Expand a call to memcpy or memmove or memcmp, and return the result.
1931 TAILCALL is true if this is a tail call. */
1932
1933 rtx
emit_block_op_via_libcall(enum built_in_function fncode,rtx dst,rtx src,rtx size,bool tailcall)1934 emit_block_op_via_libcall (enum built_in_function fncode, rtx dst, rtx src,
1935 rtx size, bool tailcall)
1936 {
1937 rtx dst_addr, src_addr;
1938 tree call_expr, dst_tree, src_tree, size_tree;
1939 machine_mode size_mode;
1940
1941 /* Since dst and src are passed to a libcall, mark the corresponding
1942 tree EXPR as addressable. */
1943 tree dst_expr = MEM_EXPR (dst);
1944 tree src_expr = MEM_EXPR (src);
1945 if (dst_expr)
1946 mark_addressable (dst_expr);
1947 if (src_expr)
1948 mark_addressable (src_expr);
1949
1950 dst_addr = copy_addr_to_reg (XEXP (dst, 0));
1951 dst_addr = convert_memory_address (ptr_mode, dst_addr);
1952 dst_tree = make_tree (ptr_type_node, dst_addr);
1953
1954 src_addr = copy_addr_to_reg (XEXP (src, 0));
1955 src_addr = convert_memory_address (ptr_mode, src_addr);
1956 src_tree = make_tree (ptr_type_node, src_addr);
1957
1958 size_mode = TYPE_MODE (sizetype);
1959 size = convert_to_mode (size_mode, size, 1);
1960 size = copy_to_mode_reg (size_mode, size);
1961 size_tree = make_tree (sizetype, size);
1962
1963 /* It is incorrect to use the libcall calling conventions for calls to
1964 memcpy/memmove/memcmp because they can be provided by the user. */
1965 tree fn = builtin_decl_implicit (fncode);
1966 call_expr = build_call_expr (fn, 3, dst_tree, src_tree, size_tree);
1967 CALL_EXPR_TAILCALL (call_expr) = tailcall;
1968
1969 return expand_call (call_expr, NULL_RTX, false);
1970 }
1971
1972 /* Try to expand cmpstrn or cmpmem operation ICODE with the given operands.
1973 ARG3_TYPE is the type of ARG3_RTX. Return the result rtx on success,
1974 otherwise return null. */
1975
1976 rtx
expand_cmpstrn_or_cmpmem(insn_code icode,rtx target,rtx arg1_rtx,rtx arg2_rtx,tree arg3_type,rtx arg3_rtx,HOST_WIDE_INT align)1977 expand_cmpstrn_or_cmpmem (insn_code icode, rtx target, rtx arg1_rtx,
1978 rtx arg2_rtx, tree arg3_type, rtx arg3_rtx,
1979 HOST_WIDE_INT align)
1980 {
1981 machine_mode insn_mode = insn_data[icode].operand[0].mode;
1982
1983 if (target && (!REG_P (target) || HARD_REGISTER_P (target)))
1984 target = NULL_RTX;
1985
1986 class expand_operand ops[5];
1987 create_output_operand (&ops[0], target, insn_mode);
1988 create_fixed_operand (&ops[1], arg1_rtx);
1989 create_fixed_operand (&ops[2], arg2_rtx);
1990 create_convert_operand_from (&ops[3], arg3_rtx, TYPE_MODE (arg3_type),
1991 TYPE_UNSIGNED (arg3_type));
1992 create_integer_operand (&ops[4], align);
1993 if (maybe_expand_insn (icode, 5, ops))
1994 return ops[0].value;
1995 return NULL_RTX;
1996 }
1997
1998 /* Expand a block compare between X and Y with length LEN using the
1999 cmpmem optab, placing the result in TARGET. LEN_TYPE is the type
2000 of the expression that was used to calculate the length. ALIGN
2001 gives the known minimum common alignment. */
2002
2003 static rtx
emit_block_cmp_via_cmpmem(rtx x,rtx y,rtx len,tree len_type,rtx target,unsigned align)2004 emit_block_cmp_via_cmpmem (rtx x, rtx y, rtx len, tree len_type, rtx target,
2005 unsigned align)
2006 {
2007 /* Note: The cmpstrnsi pattern, if it exists, is not suitable for
2008 implementing memcmp because it will stop if it encounters two
2009 zero bytes. */
2010 insn_code icode = direct_optab_handler (cmpmem_optab, SImode);
2011
2012 if (icode == CODE_FOR_nothing)
2013 return NULL_RTX;
2014
2015 return expand_cmpstrn_or_cmpmem (icode, target, x, y, len_type, len, align);
2016 }
2017
2018 /* Emit code to compare a block Y to a block X. This may be done with
2019 string-compare instructions, with multiple scalar instructions,
2020 or with a library call.
2021
2022 Both X and Y must be MEM rtx's. LEN is an rtx that says how long
2023 they are. LEN_TYPE is the type of the expression that was used to
2024 calculate it.
2025
2026 If EQUALITY_ONLY is true, it means we don't have to return the tri-state
2027 value of a normal memcmp call, instead we can just compare for equality.
2028 If FORCE_LIBCALL is true, we should emit a call to memcmp rather than
2029 returning NULL_RTX.
2030
2031 Optionally, the caller can pass a constfn and associated data in Y_CFN
2032 and Y_CFN_DATA. describing that the second operand being compared is a
2033 known constant and how to obtain its data.
2034 Return the result of the comparison, or NULL_RTX if we failed to
2035 perform the operation. */
2036
2037 rtx
emit_block_cmp_hints(rtx x,rtx y,rtx len,tree len_type,rtx target,bool equality_only,by_pieces_constfn y_cfn,void * y_cfndata)2038 emit_block_cmp_hints (rtx x, rtx y, rtx len, tree len_type, rtx target,
2039 bool equality_only, by_pieces_constfn y_cfn,
2040 void *y_cfndata)
2041 {
2042 rtx result = 0;
2043
2044 if (CONST_INT_P (len) && INTVAL (len) == 0)
2045 return const0_rtx;
2046
2047 gcc_assert (MEM_P (x) && MEM_P (y));
2048 unsigned int align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
2049 gcc_assert (align >= BITS_PER_UNIT);
2050
2051 x = adjust_address (x, BLKmode, 0);
2052 y = adjust_address (y, BLKmode, 0);
2053
2054 if (equality_only
2055 && CONST_INT_P (len)
2056 && can_do_by_pieces (INTVAL (len), align, COMPARE_BY_PIECES))
2057 result = compare_by_pieces (x, y, INTVAL (len), target, align,
2058 y_cfn, y_cfndata);
2059 else
2060 result = emit_block_cmp_via_cmpmem (x, y, len, len_type, target, align);
2061
2062 return result;
2063 }
2064
2065 /* Copy all or part of a value X into registers starting at REGNO.
2066 The number of registers to be filled is NREGS. */
2067
2068 void
move_block_to_reg(int regno,rtx x,int nregs,machine_mode mode)2069 move_block_to_reg (int regno, rtx x, int nregs, machine_mode mode)
2070 {
2071 if (nregs == 0)
2072 return;
2073
2074 if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x))
2075 x = validize_mem (force_const_mem (mode, x));
2076
2077 /* See if the machine can do this with a load multiple insn. */
2078 if (targetm.have_load_multiple ())
2079 {
2080 rtx_insn *last = get_last_insn ();
2081 rtx first = gen_rtx_REG (word_mode, regno);
2082 if (rtx_insn *pat = targetm.gen_load_multiple (first, x,
2083 GEN_INT (nregs)))
2084 {
2085 emit_insn (pat);
2086 return;
2087 }
2088 else
2089 delete_insns_since (last);
2090 }
2091
2092 for (int i = 0; i < nregs; i++)
2093 emit_move_insn (gen_rtx_REG (word_mode, regno + i),
2094 operand_subword_force (x, i, mode));
2095 }
2096
2097 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
2098 The number of registers to be filled is NREGS. */
2099
2100 void
move_block_from_reg(int regno,rtx x,int nregs)2101 move_block_from_reg (int regno, rtx x, int nregs)
2102 {
2103 if (nregs == 0)
2104 return;
2105
2106 /* See if the machine can do this with a store multiple insn. */
2107 if (targetm.have_store_multiple ())
2108 {
2109 rtx_insn *last = get_last_insn ();
2110 rtx first = gen_rtx_REG (word_mode, regno);
2111 if (rtx_insn *pat = targetm.gen_store_multiple (x, first,
2112 GEN_INT (nregs)))
2113 {
2114 emit_insn (pat);
2115 return;
2116 }
2117 else
2118 delete_insns_since (last);
2119 }
2120
2121 for (int i = 0; i < nregs; i++)
2122 {
2123 rtx tem = operand_subword (x, i, 1, BLKmode);
2124
2125 gcc_assert (tem);
2126
2127 emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
2128 }
2129 }
2130
2131 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
2132 ORIG, where ORIG is a non-consecutive group of registers represented by
2133 a PARALLEL. The clone is identical to the original except in that the
2134 original set of registers is replaced by a new set of pseudo registers.
2135 The new set has the same modes as the original set. */
2136
2137 rtx
gen_group_rtx(rtx orig)2138 gen_group_rtx (rtx orig)
2139 {
2140 int i, length;
2141 rtx *tmps;
2142
2143 gcc_assert (GET_CODE (orig) == PARALLEL);
2144
2145 length = XVECLEN (orig, 0);
2146 tmps = XALLOCAVEC (rtx, length);
2147
2148 /* Skip a NULL entry in first slot. */
2149 i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1;
2150
2151 if (i)
2152 tmps[0] = 0;
2153
2154 for (; i < length; i++)
2155 {
2156 machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0));
2157 rtx offset = XEXP (XVECEXP (orig, 0, i), 1);
2158
2159 tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset);
2160 }
2161
2162 return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps));
2163 }
2164
2165 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
2166 except that values are placed in TMPS[i], and must later be moved
2167 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
2168
2169 static void
emit_group_load_1(rtx * tmps,rtx dst,rtx orig_src,tree type,poly_int64 ssize)2170 emit_group_load_1 (rtx *tmps, rtx dst, rtx orig_src, tree type,
2171 poly_int64 ssize)
2172 {
2173 rtx src;
2174 int start, i;
2175 machine_mode m = GET_MODE (orig_src);
2176
2177 gcc_assert (GET_CODE (dst) == PARALLEL);
2178
2179 if (m != VOIDmode
2180 && !SCALAR_INT_MODE_P (m)
2181 && !MEM_P (orig_src)
2182 && GET_CODE (orig_src) != CONCAT)
2183 {
2184 scalar_int_mode imode;
2185 if (int_mode_for_mode (GET_MODE (orig_src)).exists (&imode))
2186 {
2187 src = gen_reg_rtx (imode);
2188 emit_move_insn (gen_lowpart (GET_MODE (orig_src), src), orig_src);
2189 }
2190 else
2191 {
2192 src = assign_stack_temp (GET_MODE (orig_src), ssize);
2193 emit_move_insn (src, orig_src);
2194 }
2195 emit_group_load_1 (tmps, dst, src, type, ssize);
2196 return;
2197 }
2198
2199 /* Check for a NULL entry, used to indicate that the parameter goes
2200 both on the stack and in registers. */
2201 if (XEXP (XVECEXP (dst, 0, 0), 0))
2202 start = 0;
2203 else
2204 start = 1;
2205
2206 /* Process the pieces. */
2207 for (i = start; i < XVECLEN (dst, 0); i++)
2208 {
2209 machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
2210 poly_int64 bytepos = rtx_to_poly_int64 (XEXP (XVECEXP (dst, 0, i), 1));
2211 poly_int64 bytelen = GET_MODE_SIZE (mode);
2212 poly_int64 shift = 0;
2213
2214 /* Handle trailing fragments that run over the size of the struct.
2215 It's the target's responsibility to make sure that the fragment
2216 cannot be strictly smaller in some cases and strictly larger
2217 in others. */
2218 gcc_checking_assert (ordered_p (bytepos + bytelen, ssize));
2219 if (known_size_p (ssize) && maybe_gt (bytepos + bytelen, ssize))
2220 {
2221 /* Arrange to shift the fragment to where it belongs.
2222 extract_bit_field loads to the lsb of the reg. */
2223 if (
2224 #ifdef BLOCK_REG_PADDING
2225 BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start)
2226 == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)
2227 #else
2228 BYTES_BIG_ENDIAN
2229 #endif
2230 )
2231 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
2232 bytelen = ssize - bytepos;
2233 gcc_assert (maybe_gt (bytelen, 0));
2234 }
2235
2236 /* If we won't be loading directly from memory, protect the real source
2237 from strange tricks we might play; but make sure that the source can
2238 be loaded directly into the destination. */
2239 src = orig_src;
2240 if (!MEM_P (orig_src)
2241 && (!CONSTANT_P (orig_src)
2242 || (GET_MODE (orig_src) != mode
2243 && GET_MODE (orig_src) != VOIDmode)))
2244 {
2245 if (GET_MODE (orig_src) == VOIDmode)
2246 src = gen_reg_rtx (mode);
2247 else
2248 src = gen_reg_rtx (GET_MODE (orig_src));
2249
2250 emit_move_insn (src, orig_src);
2251 }
2252
2253 /* Optimize the access just a bit. */
2254 if (MEM_P (src)
2255 && (! targetm.slow_unaligned_access (mode, MEM_ALIGN (src))
2256 || MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode))
2257 && multiple_p (bytepos * BITS_PER_UNIT, GET_MODE_ALIGNMENT (mode))
2258 && known_eq (bytelen, GET_MODE_SIZE (mode)))
2259 {
2260 tmps[i] = gen_reg_rtx (mode);
2261 emit_move_insn (tmps[i], adjust_address (src, mode, bytepos));
2262 }
2263 else if (COMPLEX_MODE_P (mode)
2264 && GET_MODE (src) == mode
2265 && known_eq (bytelen, GET_MODE_SIZE (mode)))
2266 /* Let emit_move_complex do the bulk of the work. */
2267 tmps[i] = src;
2268 else if (GET_CODE (src) == CONCAT)
2269 {
2270 poly_int64 slen = GET_MODE_SIZE (GET_MODE (src));
2271 poly_int64 slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0)));
2272 unsigned int elt;
2273 poly_int64 subpos;
2274
2275 if (can_div_trunc_p (bytepos, slen0, &elt, &subpos)
2276 && known_le (subpos + bytelen, slen0))
2277 {
2278 /* The following assumes that the concatenated objects all
2279 have the same size. In this case, a simple calculation
2280 can be used to determine the object and the bit field
2281 to be extracted. */
2282 tmps[i] = XEXP (src, elt);
2283 if (maybe_ne (subpos, 0)
2284 || maybe_ne (subpos + bytelen, slen0)
2285 || (!CONSTANT_P (tmps[i])
2286 && (!REG_P (tmps[i]) || GET_MODE (tmps[i]) != mode)))
2287 tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT,
2288 subpos * BITS_PER_UNIT,
2289 1, NULL_RTX, mode, mode, false,
2290 NULL);
2291 }
2292 else
2293 {
2294 rtx mem;
2295
2296 gcc_assert (known_eq (bytepos, 0));
2297 mem = assign_stack_temp (GET_MODE (src), slen);
2298 emit_move_insn (mem, src);
2299 tmps[i] = extract_bit_field (mem, bytelen * BITS_PER_UNIT,
2300 0, 1, NULL_RTX, mode, mode, false,
2301 NULL);
2302 }
2303 }
2304 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
2305 SIMD register, which is currently broken. While we get GCC
2306 to emit proper RTL for these cases, let's dump to memory. */
2307 else if (VECTOR_MODE_P (GET_MODE (dst))
2308 && REG_P (src))
2309 {
2310 poly_uint64 slen = GET_MODE_SIZE (GET_MODE (src));
2311 rtx mem;
2312
2313 mem = assign_stack_temp (GET_MODE (src), slen);
2314 emit_move_insn (mem, src);
2315 tmps[i] = adjust_address (mem, mode, bytepos);
2316 }
2317 else if (CONSTANT_P (src) && GET_MODE (dst) != BLKmode
2318 && XVECLEN (dst, 0) > 1)
2319 tmps[i] = simplify_gen_subreg (mode, src, GET_MODE (dst), bytepos);
2320 else if (CONSTANT_P (src))
2321 {
2322 if (known_eq (bytelen, ssize))
2323 tmps[i] = src;
2324 else
2325 {
2326 rtx first, second;
2327
2328 /* TODO: const_wide_int can have sizes other than this... */
2329 gcc_assert (known_eq (2 * bytelen, ssize));
2330 split_double (src, &first, &second);
2331 if (i)
2332 tmps[i] = second;
2333 else
2334 tmps[i] = first;
2335 }
2336 }
2337 else if (REG_P (src) && GET_MODE (src) == mode)
2338 tmps[i] = src;
2339 else
2340 tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT,
2341 bytepos * BITS_PER_UNIT, 1, NULL_RTX,
2342 mode, mode, false, NULL);
2343
2344 if (maybe_ne (shift, 0))
2345 tmps[i] = expand_shift (LSHIFT_EXPR, mode, tmps[i],
2346 shift, tmps[i], 0);
2347 }
2348 }
2349
2350 /* Emit code to move a block SRC of type TYPE to a block DST,
2351 where DST is non-consecutive registers represented by a PARALLEL.
2352 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
2353 if not known. */
2354
2355 void
emit_group_load(rtx dst,rtx src,tree type,poly_int64 ssize)2356 emit_group_load (rtx dst, rtx src, tree type, poly_int64 ssize)
2357 {
2358 rtx *tmps;
2359 int i;
2360
2361 tmps = XALLOCAVEC (rtx, XVECLEN (dst, 0));
2362 emit_group_load_1 (tmps, dst, src, type, ssize);
2363
2364 /* Copy the extracted pieces into the proper (probable) hard regs. */
2365 for (i = 0; i < XVECLEN (dst, 0); i++)
2366 {
2367 rtx d = XEXP (XVECEXP (dst, 0, i), 0);
2368 if (d == NULL)
2369 continue;
2370 emit_move_insn (d, tmps[i]);
2371 }
2372 }
2373
2374 /* Similar, but load SRC into new pseudos in a format that looks like
2375 PARALLEL. This can later be fed to emit_group_move to get things
2376 in the right place. */
2377
2378 rtx
emit_group_load_into_temps(rtx parallel,rtx src,tree type,poly_int64 ssize)2379 emit_group_load_into_temps (rtx parallel, rtx src, tree type, poly_int64 ssize)
2380 {
2381 rtvec vec;
2382 int i;
2383
2384 vec = rtvec_alloc (XVECLEN (parallel, 0));
2385 emit_group_load_1 (&RTVEC_ELT (vec, 0), parallel, src, type, ssize);
2386
2387 /* Convert the vector to look just like the original PARALLEL, except
2388 with the computed values. */
2389 for (i = 0; i < XVECLEN (parallel, 0); i++)
2390 {
2391 rtx e = XVECEXP (parallel, 0, i);
2392 rtx d = XEXP (e, 0);
2393
2394 if (d)
2395 {
2396 d = force_reg (GET_MODE (d), RTVEC_ELT (vec, i));
2397 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), d, XEXP (e, 1));
2398 }
2399 RTVEC_ELT (vec, i) = e;
2400 }
2401
2402 return gen_rtx_PARALLEL (GET_MODE (parallel), vec);
2403 }
2404
2405 /* Emit code to move a block SRC to block DST, where SRC and DST are
2406 non-consecutive groups of registers, each represented by a PARALLEL. */
2407
2408 void
emit_group_move(rtx dst,rtx src)2409 emit_group_move (rtx dst, rtx src)
2410 {
2411 int i;
2412
2413 gcc_assert (GET_CODE (src) == PARALLEL
2414 && GET_CODE (dst) == PARALLEL
2415 && XVECLEN (src, 0) == XVECLEN (dst, 0));
2416
2417 /* Skip first entry if NULL. */
2418 for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++)
2419 emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0),
2420 XEXP (XVECEXP (src, 0, i), 0));
2421 }
2422
2423 /* Move a group of registers represented by a PARALLEL into pseudos. */
2424
2425 rtx
emit_group_move_into_temps(rtx src)2426 emit_group_move_into_temps (rtx src)
2427 {
2428 rtvec vec = rtvec_alloc (XVECLEN (src, 0));
2429 int i;
2430
2431 for (i = 0; i < XVECLEN (src, 0); i++)
2432 {
2433 rtx e = XVECEXP (src, 0, i);
2434 rtx d = XEXP (e, 0);
2435
2436 if (d)
2437 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), copy_to_reg (d), XEXP (e, 1));
2438 RTVEC_ELT (vec, i) = e;
2439 }
2440
2441 return gen_rtx_PARALLEL (GET_MODE (src), vec);
2442 }
2443
2444 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
2445 where SRC is non-consecutive registers represented by a PARALLEL.
2446 SSIZE represents the total size of block ORIG_DST, or -1 if not
2447 known. */
2448
2449 void
emit_group_store(rtx orig_dst,rtx src,tree type ATTRIBUTE_UNUSED,poly_int64 ssize)2450 emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED,
2451 poly_int64 ssize)
2452 {
2453 rtx *tmps, dst;
2454 int start, finish, i;
2455 machine_mode m = GET_MODE (orig_dst);
2456
2457 gcc_assert (GET_CODE (src) == PARALLEL);
2458
2459 if (!SCALAR_INT_MODE_P (m)
2460 && !MEM_P (orig_dst) && GET_CODE (orig_dst) != CONCAT)
2461 {
2462 scalar_int_mode imode;
2463 if (int_mode_for_mode (GET_MODE (orig_dst)).exists (&imode))
2464 {
2465 dst = gen_reg_rtx (imode);
2466 emit_group_store (dst, src, type, ssize);
2467 dst = gen_lowpart (GET_MODE (orig_dst), dst);
2468 }
2469 else
2470 {
2471 dst = assign_stack_temp (GET_MODE (orig_dst), ssize);
2472 emit_group_store (dst, src, type, ssize);
2473 }
2474 emit_move_insn (orig_dst, dst);
2475 return;
2476 }
2477
2478 /* Check for a NULL entry, used to indicate that the parameter goes
2479 both on the stack and in registers. */
2480 if (XEXP (XVECEXP (src, 0, 0), 0))
2481 start = 0;
2482 else
2483 start = 1;
2484 finish = XVECLEN (src, 0);
2485
2486 tmps = XALLOCAVEC (rtx, finish);
2487
2488 /* Copy the (probable) hard regs into pseudos. */
2489 for (i = start; i < finish; i++)
2490 {
2491 rtx reg = XEXP (XVECEXP (src, 0, i), 0);
2492 if (!REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
2493 {
2494 tmps[i] = gen_reg_rtx (GET_MODE (reg));
2495 emit_move_insn (tmps[i], reg);
2496 }
2497 else
2498 tmps[i] = reg;
2499 }
2500
2501 /* If we won't be storing directly into memory, protect the real destination
2502 from strange tricks we might play. */
2503 dst = orig_dst;
2504 if (GET_CODE (dst) == PARALLEL)
2505 {
2506 rtx temp;
2507
2508 /* We can get a PARALLEL dst if there is a conditional expression in
2509 a return statement. In that case, the dst and src are the same,
2510 so no action is necessary. */
2511 if (rtx_equal_p (dst, src))
2512 return;
2513
2514 /* It is unclear if we can ever reach here, but we may as well handle
2515 it. Allocate a temporary, and split this into a store/load to/from
2516 the temporary. */
2517 temp = assign_stack_temp (GET_MODE (dst), ssize);
2518 emit_group_store (temp, src, type, ssize);
2519 emit_group_load (dst, temp, type, ssize);
2520 return;
2521 }
2522 else if (!MEM_P (dst) && GET_CODE (dst) != CONCAT)
2523 {
2524 machine_mode outer = GET_MODE (dst);
2525 machine_mode inner;
2526 poly_int64 bytepos;
2527 bool done = false;
2528 rtx temp;
2529
2530 if (!REG_P (dst) || REGNO (dst) < FIRST_PSEUDO_REGISTER)
2531 dst = gen_reg_rtx (outer);
2532
2533 /* Make life a bit easier for combine. */
2534 /* If the first element of the vector is the low part
2535 of the destination mode, use a paradoxical subreg to
2536 initialize the destination. */
2537 if (start < finish)
2538 {
2539 inner = GET_MODE (tmps[start]);
2540 bytepos = subreg_lowpart_offset (inner, outer);
2541 if (known_eq (rtx_to_poly_int64 (XEXP (XVECEXP (src, 0, start), 1)),
2542 bytepos))
2543 {
2544 temp = simplify_gen_subreg (outer, tmps[start],
2545 inner, 0);
2546 if (temp)
2547 {
2548 emit_move_insn (dst, temp);
2549 done = true;
2550 start++;
2551 }
2552 }
2553 }
2554
2555 /* If the first element wasn't the low part, try the last. */
2556 if (!done
2557 && start < finish - 1)
2558 {
2559 inner = GET_MODE (tmps[finish - 1]);
2560 bytepos = subreg_lowpart_offset (inner, outer);
2561 if (known_eq (rtx_to_poly_int64 (XEXP (XVECEXP (src, 0,
2562 finish - 1), 1)),
2563 bytepos))
2564 {
2565 temp = simplify_gen_subreg (outer, tmps[finish - 1],
2566 inner, 0);
2567 if (temp)
2568 {
2569 emit_move_insn (dst, temp);
2570 done = true;
2571 finish--;
2572 }
2573 }
2574 }
2575
2576 /* Otherwise, simply initialize the result to zero. */
2577 if (!done)
2578 emit_move_insn (dst, CONST0_RTX (outer));
2579 }
2580
2581 /* Process the pieces. */
2582 for (i = start; i < finish; i++)
2583 {
2584 poly_int64 bytepos = rtx_to_poly_int64 (XEXP (XVECEXP (src, 0, i), 1));
2585 machine_mode mode = GET_MODE (tmps[i]);
2586 poly_int64 bytelen = GET_MODE_SIZE (mode);
2587 poly_uint64 adj_bytelen;
2588 rtx dest = dst;
2589
2590 /* Handle trailing fragments that run over the size of the struct.
2591 It's the target's responsibility to make sure that the fragment
2592 cannot be strictly smaller in some cases and strictly larger
2593 in others. */
2594 gcc_checking_assert (ordered_p (bytepos + bytelen, ssize));
2595 if (known_size_p (ssize) && maybe_gt (bytepos + bytelen, ssize))
2596 adj_bytelen = ssize - bytepos;
2597 else
2598 adj_bytelen = bytelen;
2599
2600 if (GET_CODE (dst) == CONCAT)
2601 {
2602 if (known_le (bytepos + adj_bytelen,
2603 GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)))))
2604 dest = XEXP (dst, 0);
2605 else if (known_ge (bytepos, GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)))))
2606 {
2607 bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)));
2608 dest = XEXP (dst, 1);
2609 }
2610 else
2611 {
2612 machine_mode dest_mode = GET_MODE (dest);
2613 machine_mode tmp_mode = GET_MODE (tmps[i]);
2614
2615 gcc_assert (known_eq (bytepos, 0) && XVECLEN (src, 0));
2616
2617 if (GET_MODE_ALIGNMENT (dest_mode)
2618 >= GET_MODE_ALIGNMENT (tmp_mode))
2619 {
2620 dest = assign_stack_temp (dest_mode,
2621 GET_MODE_SIZE (dest_mode));
2622 emit_move_insn (adjust_address (dest,
2623 tmp_mode,
2624 bytepos),
2625 tmps[i]);
2626 dst = dest;
2627 }
2628 else
2629 {
2630 dest = assign_stack_temp (tmp_mode,
2631 GET_MODE_SIZE (tmp_mode));
2632 emit_move_insn (dest, tmps[i]);
2633 dst = adjust_address (dest, dest_mode, bytepos);
2634 }
2635 break;
2636 }
2637 }
2638
2639 /* Handle trailing fragments that run over the size of the struct. */
2640 if (known_size_p (ssize) && maybe_gt (bytepos + bytelen, ssize))
2641 {
2642 /* store_bit_field always takes its value from the lsb.
2643 Move the fragment to the lsb if it's not already there. */
2644 if (
2645 #ifdef BLOCK_REG_PADDING
2646 BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start)
2647 == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)
2648 #else
2649 BYTES_BIG_ENDIAN
2650 #endif
2651 )
2652 {
2653 poly_int64 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
2654 tmps[i] = expand_shift (RSHIFT_EXPR, mode, tmps[i],
2655 shift, tmps[i], 0);
2656 }
2657
2658 /* Make sure not to write past the end of the struct. */
2659 store_bit_field (dest,
2660 adj_bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
2661 bytepos * BITS_PER_UNIT, ssize * BITS_PER_UNIT - 1,
2662 VOIDmode, tmps[i], false);
2663 }
2664
2665 /* Optimize the access just a bit. */
2666 else if (MEM_P (dest)
2667 && (!targetm.slow_unaligned_access (mode, MEM_ALIGN (dest))
2668 || MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode))
2669 && multiple_p (bytepos * BITS_PER_UNIT,
2670 GET_MODE_ALIGNMENT (mode))
2671 && known_eq (bytelen, GET_MODE_SIZE (mode)))
2672 emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]);
2673
2674 else
2675 store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
2676 0, 0, mode, tmps[i], false);
2677 }
2678
2679 /* Copy from the pseudo into the (probable) hard reg. */
2680 if (orig_dst != dst)
2681 emit_move_insn (orig_dst, dst);
2682 }
2683
2684 /* Return a form of X that does not use a PARALLEL. TYPE is the type
2685 of the value stored in X. */
2686
2687 rtx
maybe_emit_group_store(rtx x,tree type)2688 maybe_emit_group_store (rtx x, tree type)
2689 {
2690 machine_mode mode = TYPE_MODE (type);
2691 gcc_checking_assert (GET_MODE (x) == VOIDmode || GET_MODE (x) == mode);
2692 if (GET_CODE (x) == PARALLEL)
2693 {
2694 rtx result = gen_reg_rtx (mode);
2695 emit_group_store (result, x, type, int_size_in_bytes (type));
2696 return result;
2697 }
2698 return x;
2699 }
2700
2701 /* Copy a BLKmode object of TYPE out of a register SRCREG into TARGET.
2702
2703 This is used on targets that return BLKmode values in registers. */
2704
2705 static void
copy_blkmode_from_reg(rtx target,rtx srcreg,tree type)2706 copy_blkmode_from_reg (rtx target, rtx srcreg, tree type)
2707 {
2708 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type);
2709 rtx src = NULL, dst = NULL;
2710 unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
2711 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0;
2712 /* No current ABI uses variable-sized modes to pass a BLKmnode type. */
2713 fixed_size_mode mode = as_a <fixed_size_mode> (GET_MODE (srcreg));
2714 fixed_size_mode tmode = as_a <fixed_size_mode> (GET_MODE (target));
2715 fixed_size_mode copy_mode;
2716
2717 /* BLKmode registers created in the back-end shouldn't have survived. */
2718 gcc_assert (mode != BLKmode);
2719
2720 /* If the structure doesn't take up a whole number of words, see whether
2721 SRCREG is padded on the left or on the right. If it's on the left,
2722 set PADDING_CORRECTION to the number of bits to skip.
2723
2724 In most ABIs, the structure will be returned at the least end of
2725 the register, which translates to right padding on little-endian
2726 targets and left padding on big-endian targets. The opposite
2727 holds if the structure is returned at the most significant
2728 end of the register. */
2729 if (bytes % UNITS_PER_WORD != 0
2730 && (targetm.calls.return_in_msb (type)
2731 ? !BYTES_BIG_ENDIAN
2732 : BYTES_BIG_ENDIAN))
2733 padding_correction
2734 = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT));
2735
2736 /* We can use a single move if we have an exact mode for the size. */
2737 else if (MEM_P (target)
2738 && (!targetm.slow_unaligned_access (mode, MEM_ALIGN (target))
2739 || MEM_ALIGN (target) >= GET_MODE_ALIGNMENT (mode))
2740 && bytes == GET_MODE_SIZE (mode))
2741 {
2742 emit_move_insn (adjust_address (target, mode, 0), srcreg);
2743 return;
2744 }
2745
2746 /* And if we additionally have the same mode for a register. */
2747 else if (REG_P (target)
2748 && GET_MODE (target) == mode
2749 && bytes == GET_MODE_SIZE (mode))
2750 {
2751 emit_move_insn (target, srcreg);
2752 return;
2753 }
2754
2755 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2756 into a new pseudo which is a full word. */
2757 if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
2758 {
2759 srcreg = convert_to_mode (word_mode, srcreg, TYPE_UNSIGNED (type));
2760 mode = word_mode;
2761 }
2762
2763 /* Copy the structure BITSIZE bits at a time. If the target lives in
2764 memory, take care of not reading/writing past its end by selecting
2765 a copy mode suited to BITSIZE. This should always be possible given
2766 how it is computed.
2767
2768 If the target lives in register, make sure not to select a copy mode
2769 larger than the mode of the register.
2770
2771 We could probably emit more efficient code for machines which do not use
2772 strict alignment, but it doesn't seem worth the effort at the current
2773 time. */
2774
2775 copy_mode = word_mode;
2776 if (MEM_P (target))
2777 {
2778 opt_scalar_int_mode mem_mode = int_mode_for_size (bitsize, 1);
2779 if (mem_mode.exists ())
2780 copy_mode = mem_mode.require ();
2781 }
2782 else if (REG_P (target) && GET_MODE_BITSIZE (tmode) < BITS_PER_WORD)
2783 copy_mode = tmode;
2784
2785 for (bitpos = 0, xbitpos = padding_correction;
2786 bitpos < bytes * BITS_PER_UNIT;
2787 bitpos += bitsize, xbitpos += bitsize)
2788 {
2789 /* We need a new source operand each time xbitpos is on a
2790 word boundary and when xbitpos == padding_correction
2791 (the first time through). */
2792 if (xbitpos % BITS_PER_WORD == 0 || xbitpos == padding_correction)
2793 src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD, mode);
2794
2795 /* We need a new destination operand each time bitpos is on
2796 a word boundary. */
2797 if (REG_P (target) && GET_MODE_BITSIZE (tmode) < BITS_PER_WORD)
2798 dst = target;
2799 else if (bitpos % BITS_PER_WORD == 0)
2800 dst = operand_subword (target, bitpos / BITS_PER_WORD, 1, tmode);
2801
2802 /* Use xbitpos for the source extraction (right justified) and
2803 bitpos for the destination store (left justified). */
2804 store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, 0, 0, copy_mode,
2805 extract_bit_field (src, bitsize,
2806 xbitpos % BITS_PER_WORD, 1,
2807 NULL_RTX, copy_mode, copy_mode,
2808 false, NULL),
2809 false);
2810 }
2811 }
2812
2813 /* Copy BLKmode value SRC into a register of mode MODE_IN. Return the
2814 register if it contains any data, otherwise return null.
2815
2816 This is used on targets that return BLKmode values in registers. */
2817
2818 rtx
copy_blkmode_to_reg(machine_mode mode_in,tree src)2819 copy_blkmode_to_reg (machine_mode mode_in, tree src)
2820 {
2821 int i, n_regs;
2822 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0, bytes;
2823 unsigned int bitsize;
2824 rtx *dst_words, dst, x, src_word = NULL_RTX, dst_word = NULL_RTX;
2825 /* No current ABI uses variable-sized modes to pass a BLKmnode type. */
2826 fixed_size_mode mode = as_a <fixed_size_mode> (mode_in);
2827 fixed_size_mode dst_mode;
2828 scalar_int_mode min_mode;
2829
2830 gcc_assert (TYPE_MODE (TREE_TYPE (src)) == BLKmode);
2831
2832 x = expand_normal (src);
2833
2834 bytes = arg_int_size_in_bytes (TREE_TYPE (src));
2835 if (bytes == 0)
2836 return NULL_RTX;
2837
2838 /* If the structure doesn't take up a whole number of words, see
2839 whether the register value should be padded on the left or on
2840 the right. Set PADDING_CORRECTION to the number of padding
2841 bits needed on the left side.
2842
2843 In most ABIs, the structure will be returned at the least end of
2844 the register, which translates to right padding on little-endian
2845 targets and left padding on big-endian targets. The opposite
2846 holds if the structure is returned at the most significant
2847 end of the register. */
2848 if (bytes % UNITS_PER_WORD != 0
2849 && (targetm.calls.return_in_msb (TREE_TYPE (src))
2850 ? !BYTES_BIG_ENDIAN
2851 : BYTES_BIG_ENDIAN))
2852 padding_correction = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD)
2853 * BITS_PER_UNIT));
2854
2855 n_regs = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
2856 dst_words = XALLOCAVEC (rtx, n_regs);
2857 bitsize = MIN (TYPE_ALIGN (TREE_TYPE (src)), BITS_PER_WORD);
2858 min_mode = smallest_int_mode_for_size (bitsize);
2859
2860 /* Copy the structure BITSIZE bits at a time. */
2861 for (bitpos = 0, xbitpos = padding_correction;
2862 bitpos < bytes * BITS_PER_UNIT;
2863 bitpos += bitsize, xbitpos += bitsize)
2864 {
2865 /* We need a new destination pseudo each time xbitpos is
2866 on a word boundary and when xbitpos == padding_correction
2867 (the first time through). */
2868 if (xbitpos % BITS_PER_WORD == 0
2869 || xbitpos == padding_correction)
2870 {
2871 /* Generate an appropriate register. */
2872 dst_word = gen_reg_rtx (word_mode);
2873 dst_words[xbitpos / BITS_PER_WORD] = dst_word;
2874
2875 /* Clear the destination before we move anything into it. */
2876 emit_move_insn (dst_word, CONST0_RTX (word_mode));
2877 }
2878
2879 /* Find the largest integer mode that can be used to copy all or as
2880 many bits as possible of the structure if the target supports larger
2881 copies. There are too many corner cases here w.r.t to alignments on
2882 the read/writes. So if there is any padding just use single byte
2883 operations. */
2884 opt_scalar_int_mode mode_iter;
2885 if (padding_correction == 0 && !STRICT_ALIGNMENT)
2886 {
2887 FOR_EACH_MODE_FROM (mode_iter, min_mode)
2888 {
2889 unsigned int msize = GET_MODE_BITSIZE (mode_iter.require ());
2890 if (msize <= ((bytes * BITS_PER_UNIT) - bitpos)
2891 && msize <= BITS_PER_WORD)
2892 bitsize = msize;
2893 else
2894 break;
2895 }
2896 }
2897
2898 /* We need a new source operand each time bitpos is on a word
2899 boundary. */
2900 if (bitpos % BITS_PER_WORD == 0)
2901 src_word = operand_subword_force (x, bitpos / BITS_PER_WORD, BLKmode);
2902
2903 /* Use bitpos for the source extraction (left justified) and
2904 xbitpos for the destination store (right justified). */
2905 store_bit_field (dst_word, bitsize, xbitpos % BITS_PER_WORD,
2906 0, 0, word_mode,
2907 extract_bit_field (src_word, bitsize,
2908 bitpos % BITS_PER_WORD, 1,
2909 NULL_RTX, word_mode, word_mode,
2910 false, NULL),
2911 false);
2912 }
2913
2914 if (mode == BLKmode)
2915 {
2916 /* Find the smallest integer mode large enough to hold the
2917 entire structure. */
2918 opt_scalar_int_mode mode_iter;
2919 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
2920 if (GET_MODE_SIZE (mode_iter.require ()) >= bytes)
2921 break;
2922
2923 /* A suitable mode should have been found. */
2924 mode = mode_iter.require ();
2925 }
2926
2927 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (word_mode))
2928 dst_mode = word_mode;
2929 else
2930 dst_mode = mode;
2931 dst = gen_reg_rtx (dst_mode);
2932
2933 for (i = 0; i < n_regs; i++)
2934 emit_move_insn (operand_subword (dst, i, 0, dst_mode), dst_words[i]);
2935
2936 if (mode != dst_mode)
2937 dst = gen_lowpart (mode, dst);
2938
2939 return dst;
2940 }
2941
2942 /* Add a USE expression for REG to the (possibly empty) list pointed
2943 to by CALL_FUSAGE. REG must denote a hard register. */
2944
2945 void
use_reg_mode(rtx * call_fusage,rtx reg,machine_mode mode)2946 use_reg_mode (rtx *call_fusage, rtx reg, machine_mode mode)
2947 {
2948 gcc_assert (REG_P (reg));
2949
2950 if (!HARD_REGISTER_P (reg))
2951 return;
2952
2953 *call_fusage
2954 = gen_rtx_EXPR_LIST (mode, gen_rtx_USE (VOIDmode, reg), *call_fusage);
2955 }
2956
2957 /* Add a CLOBBER expression for REG to the (possibly empty) list pointed
2958 to by CALL_FUSAGE. REG must denote a hard register. */
2959
2960 void
clobber_reg_mode(rtx * call_fusage,rtx reg,machine_mode mode)2961 clobber_reg_mode (rtx *call_fusage, rtx reg, machine_mode mode)
2962 {
2963 gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
2964
2965 *call_fusage
2966 = gen_rtx_EXPR_LIST (mode, gen_rtx_CLOBBER (VOIDmode, reg), *call_fusage);
2967 }
2968
2969 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2970 starting at REGNO. All of these registers must be hard registers. */
2971
2972 void
use_regs(rtx * call_fusage,int regno,int nregs)2973 use_regs (rtx *call_fusage, int regno, int nregs)
2974 {
2975 int i;
2976
2977 gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
2978
2979 for (i = 0; i < nregs; i++)
2980 use_reg (call_fusage, regno_reg_rtx[regno + i]);
2981 }
2982
2983 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2984 PARALLEL REGS. This is for calls that pass values in multiple
2985 non-contiguous locations. The Irix 6 ABI has examples of this. */
2986
2987 void
use_group_regs(rtx * call_fusage,rtx regs)2988 use_group_regs (rtx *call_fusage, rtx regs)
2989 {
2990 int i;
2991
2992 for (i = 0; i < XVECLEN (regs, 0); i++)
2993 {
2994 rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
2995
2996 /* A NULL entry means the parameter goes both on the stack and in
2997 registers. This can also be a MEM for targets that pass values
2998 partially on the stack and partially in registers. */
2999 if (reg != 0 && REG_P (reg))
3000 use_reg (call_fusage, reg);
3001 }
3002 }
3003
3004 /* Return the defining gimple statement for SSA_NAME NAME if it is an
3005 assigment and the code of the expresion on the RHS is CODE. Return
3006 NULL otherwise. */
3007
3008 static gimple *
get_def_for_expr(tree name,enum tree_code code)3009 get_def_for_expr (tree name, enum tree_code code)
3010 {
3011 gimple *def_stmt;
3012
3013 if (TREE_CODE (name) != SSA_NAME)
3014 return NULL;
3015
3016 def_stmt = get_gimple_for_ssa_name (name);
3017 if (!def_stmt
3018 || gimple_assign_rhs_code (def_stmt) != code)
3019 return NULL;
3020
3021 return def_stmt;
3022 }
3023
3024 /* Return the defining gimple statement for SSA_NAME NAME if it is an
3025 assigment and the class of the expresion on the RHS is CLASS. Return
3026 NULL otherwise. */
3027
3028 static gimple *
get_def_for_expr_class(tree name,enum tree_code_class tclass)3029 get_def_for_expr_class (tree name, enum tree_code_class tclass)
3030 {
3031 gimple *def_stmt;
3032
3033 if (TREE_CODE (name) != SSA_NAME)
3034 return NULL;
3035
3036 def_stmt = get_gimple_for_ssa_name (name);
3037 if (!def_stmt
3038 || TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt)) != tclass)
3039 return NULL;
3040
3041 return def_stmt;
3042 }
3043
3044 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
3045 its length in bytes. */
3046
3047 rtx
clear_storage_hints(rtx object,rtx size,enum block_op_methods method,unsigned int expected_align,HOST_WIDE_INT expected_size,unsigned HOST_WIDE_INT min_size,unsigned HOST_WIDE_INT max_size,unsigned HOST_WIDE_INT probable_max_size)3048 clear_storage_hints (rtx object, rtx size, enum block_op_methods method,
3049 unsigned int expected_align, HOST_WIDE_INT expected_size,
3050 unsigned HOST_WIDE_INT min_size,
3051 unsigned HOST_WIDE_INT max_size,
3052 unsigned HOST_WIDE_INT probable_max_size)
3053 {
3054 machine_mode mode = GET_MODE (object);
3055 unsigned int align;
3056
3057 gcc_assert (method == BLOCK_OP_NORMAL || method == BLOCK_OP_TAILCALL);
3058
3059 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
3060 just move a zero. Otherwise, do this a piece at a time. */
3061 poly_int64 size_val;
3062 if (mode != BLKmode
3063 && poly_int_rtx_p (size, &size_val)
3064 && known_eq (size_val, GET_MODE_SIZE (mode)))
3065 {
3066 rtx zero = CONST0_RTX (mode);
3067 if (zero != NULL)
3068 {
3069 emit_move_insn (object, zero);
3070 return NULL;
3071 }
3072
3073 if (COMPLEX_MODE_P (mode))
3074 {
3075 zero = CONST0_RTX (GET_MODE_INNER (mode));
3076 if (zero != NULL)
3077 {
3078 write_complex_part (object, zero, 0);
3079 write_complex_part (object, zero, 1);
3080 return NULL;
3081 }
3082 }
3083 }
3084
3085 if (size == const0_rtx)
3086 return NULL;
3087
3088 align = MEM_ALIGN (object);
3089
3090 if (CONST_INT_P (size)
3091 && targetm.use_by_pieces_infrastructure_p (INTVAL (size), align,
3092 CLEAR_BY_PIECES,
3093 optimize_insn_for_speed_p ()))
3094 clear_by_pieces (object, INTVAL (size), align);
3095 else if (set_storage_via_setmem (object, size, const0_rtx, align,
3096 expected_align, expected_size,
3097 min_size, max_size, probable_max_size))
3098 ;
3099 else if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (object)))
3100 return set_storage_via_libcall (object, size, const0_rtx,
3101 method == BLOCK_OP_TAILCALL);
3102 else
3103 gcc_unreachable ();
3104
3105 return NULL;
3106 }
3107
3108 rtx
clear_storage(rtx object,rtx size,enum block_op_methods method)3109 clear_storage (rtx object, rtx size, enum block_op_methods method)
3110 {
3111 unsigned HOST_WIDE_INT max, min = 0;
3112 if (GET_CODE (size) == CONST_INT)
3113 min = max = UINTVAL (size);
3114 else
3115 max = GET_MODE_MASK (GET_MODE (size));
3116 return clear_storage_hints (object, size, method, 0, -1, min, max, max);
3117 }
3118
3119
3120 /* A subroutine of clear_storage. Expand a call to memset.
3121 Return the return value of memset, 0 otherwise. */
3122
3123 rtx
set_storage_via_libcall(rtx object,rtx size,rtx val,bool tailcall)3124 set_storage_via_libcall (rtx object, rtx size, rtx val, bool tailcall)
3125 {
3126 tree call_expr, fn, object_tree, size_tree, val_tree;
3127 machine_mode size_mode;
3128
3129 object = copy_addr_to_reg (XEXP (object, 0));
3130 object_tree = make_tree (ptr_type_node, object);
3131
3132 if (!CONST_INT_P (val))
3133 val = convert_to_mode (TYPE_MODE (integer_type_node), val, 1);
3134 val_tree = make_tree (integer_type_node, val);
3135
3136 size_mode = TYPE_MODE (sizetype);
3137 size = convert_to_mode (size_mode, size, 1);
3138 size = copy_to_mode_reg (size_mode, size);
3139 size_tree = make_tree (sizetype, size);
3140
3141 /* It is incorrect to use the libcall calling conventions for calls to
3142 memset because it can be provided by the user. */
3143 fn = builtin_decl_implicit (BUILT_IN_MEMSET);
3144 call_expr = build_call_expr (fn, 3, object_tree, val_tree, size_tree);
3145 CALL_EXPR_TAILCALL (call_expr) = tailcall;
3146
3147 return expand_call (call_expr, NULL_RTX, false);
3148 }
3149
3150 /* Expand a setmem pattern; return true if successful. */
3151
3152 bool
set_storage_via_setmem(rtx object,rtx size,rtx val,unsigned int align,unsigned int expected_align,HOST_WIDE_INT expected_size,unsigned HOST_WIDE_INT min_size,unsigned HOST_WIDE_INT max_size,unsigned HOST_WIDE_INT probable_max_size)3153 set_storage_via_setmem (rtx object, rtx size, rtx val, unsigned int align,
3154 unsigned int expected_align, HOST_WIDE_INT expected_size,
3155 unsigned HOST_WIDE_INT min_size,
3156 unsigned HOST_WIDE_INT max_size,
3157 unsigned HOST_WIDE_INT probable_max_size)
3158 {
3159 /* Try the most limited insn first, because there's no point
3160 including more than one in the machine description unless
3161 the more limited one has some advantage. */
3162
3163 if (expected_align < align)
3164 expected_align = align;
3165 if (expected_size != -1)
3166 {
3167 if ((unsigned HOST_WIDE_INT)expected_size > max_size)
3168 expected_size = max_size;
3169 if ((unsigned HOST_WIDE_INT)expected_size < min_size)
3170 expected_size = min_size;
3171 }
3172
3173 opt_scalar_int_mode mode_iter;
3174 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
3175 {
3176 scalar_int_mode mode = mode_iter.require ();
3177 enum insn_code code = direct_optab_handler (setmem_optab, mode);
3178
3179 if (code != CODE_FOR_nothing
3180 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
3181 here because if SIZE is less than the mode mask, as it is
3182 returned by the macro, it will definitely be less than the
3183 actual mode mask. Since SIZE is within the Pmode address
3184 space, we limit MODE to Pmode. */
3185 && ((CONST_INT_P (size)
3186 && ((unsigned HOST_WIDE_INT) INTVAL (size)
3187 <= (GET_MODE_MASK (mode) >> 1)))
3188 || max_size <= (GET_MODE_MASK (mode) >> 1)
3189 || GET_MODE_BITSIZE (mode) >= GET_MODE_BITSIZE (Pmode)))
3190 {
3191 class expand_operand ops[9];
3192 unsigned int nops;
3193
3194 nops = insn_data[(int) code].n_generator_args;
3195 gcc_assert (nops == 4 || nops == 6 || nops == 8 || nops == 9);
3196
3197 create_fixed_operand (&ops[0], object);
3198 /* The check above guarantees that this size conversion is valid. */
3199 create_convert_operand_to (&ops[1], size, mode, true);
3200 create_convert_operand_from (&ops[2], val, byte_mode, true);
3201 create_integer_operand (&ops[3], align / BITS_PER_UNIT);
3202 if (nops >= 6)
3203 {
3204 create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT);
3205 create_integer_operand (&ops[5], expected_size);
3206 }
3207 if (nops >= 8)
3208 {
3209 create_integer_operand (&ops[6], min_size);
3210 /* If we cannot represent the maximal size,
3211 make parameter NULL. */
3212 if ((HOST_WIDE_INT) max_size != -1)
3213 create_integer_operand (&ops[7], max_size);
3214 else
3215 create_fixed_operand (&ops[7], NULL);
3216 }
3217 if (nops == 9)
3218 {
3219 /* If we cannot represent the maximal size,
3220 make parameter NULL. */
3221 if ((HOST_WIDE_INT) probable_max_size != -1)
3222 create_integer_operand (&ops[8], probable_max_size);
3223 else
3224 create_fixed_operand (&ops[8], NULL);
3225 }
3226 if (maybe_expand_insn (code, nops, ops))
3227 return true;
3228 }
3229 }
3230
3231 return false;
3232 }
3233
3234
3235 /* Write to one of the components of the complex value CPLX. Write VAL to
3236 the real part if IMAG_P is false, and the imaginary part if its true. */
3237
3238 void
write_complex_part(rtx cplx,rtx val,bool imag_p)3239 write_complex_part (rtx cplx, rtx val, bool imag_p)
3240 {
3241 machine_mode cmode;
3242 scalar_mode imode;
3243 unsigned ibitsize;
3244
3245 if (GET_CODE (cplx) == CONCAT)
3246 {
3247 emit_move_insn (XEXP (cplx, imag_p), val);
3248 return;
3249 }
3250
3251 cmode = GET_MODE (cplx);
3252 imode = GET_MODE_INNER (cmode);
3253 ibitsize = GET_MODE_BITSIZE (imode);
3254
3255 /* For MEMs simplify_gen_subreg may generate an invalid new address
3256 because, e.g., the original address is considered mode-dependent
3257 by the target, which restricts simplify_subreg from invoking
3258 adjust_address_nv. Instead of preparing fallback support for an
3259 invalid address, we call adjust_address_nv directly. */
3260 if (MEM_P (cplx))
3261 {
3262 emit_move_insn (adjust_address_nv (cplx, imode,
3263 imag_p ? GET_MODE_SIZE (imode) : 0),
3264 val);
3265 return;
3266 }
3267
3268 /* If the sub-object is at least word sized, then we know that subregging
3269 will work. This special case is important, since store_bit_field
3270 wants to operate on integer modes, and there's rarely an OImode to
3271 correspond to TCmode. */
3272 if (ibitsize >= BITS_PER_WORD
3273 /* For hard regs we have exact predicates. Assume we can split
3274 the original object if it spans an even number of hard regs.
3275 This special case is important for SCmode on 64-bit platforms
3276 where the natural size of floating-point regs is 32-bit. */
3277 || (REG_P (cplx)
3278 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
3279 && REG_NREGS (cplx) % 2 == 0))
3280 {
3281 rtx part = simplify_gen_subreg (imode, cplx, cmode,
3282 imag_p ? GET_MODE_SIZE (imode) : 0);
3283 if (part)
3284 {
3285 emit_move_insn (part, val);
3286 return;
3287 }
3288 else
3289 /* simplify_gen_subreg may fail for sub-word MEMs. */
3290 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
3291 }
3292
3293 store_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, 0, 0, imode, val,
3294 false);
3295 }
3296
3297 /* Extract one of the components of the complex value CPLX. Extract the
3298 real part if IMAG_P is false, and the imaginary part if it's true. */
3299
3300 rtx
read_complex_part(rtx cplx,bool imag_p)3301 read_complex_part (rtx cplx, bool imag_p)
3302 {
3303 machine_mode cmode;
3304 scalar_mode imode;
3305 unsigned ibitsize;
3306
3307 if (GET_CODE (cplx) == CONCAT)
3308 return XEXP (cplx, imag_p);
3309
3310 cmode = GET_MODE (cplx);
3311 imode = GET_MODE_INNER (cmode);
3312 ibitsize = GET_MODE_BITSIZE (imode);
3313
3314 /* Special case reads from complex constants that got spilled to memory. */
3315 if (MEM_P (cplx) && GET_CODE (XEXP (cplx, 0)) == SYMBOL_REF)
3316 {
3317 tree decl = SYMBOL_REF_DECL (XEXP (cplx, 0));
3318 if (decl && TREE_CODE (decl) == COMPLEX_CST)
3319 {
3320 tree part = imag_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
3321 if (CONSTANT_CLASS_P (part))
3322 return expand_expr (part, NULL_RTX, imode, EXPAND_NORMAL);
3323 }
3324 }
3325
3326 /* For MEMs simplify_gen_subreg may generate an invalid new address
3327 because, e.g., the original address is considered mode-dependent
3328 by the target, which restricts simplify_subreg from invoking
3329 adjust_address_nv. Instead of preparing fallback support for an
3330 invalid address, we call adjust_address_nv directly. */
3331 if (MEM_P (cplx))
3332 return adjust_address_nv (cplx, imode,
3333 imag_p ? GET_MODE_SIZE (imode) : 0);
3334
3335 /* If the sub-object is at least word sized, then we know that subregging
3336 will work. This special case is important, since extract_bit_field
3337 wants to operate on integer modes, and there's rarely an OImode to
3338 correspond to TCmode. */
3339 if (ibitsize >= BITS_PER_WORD
3340 /* For hard regs we have exact predicates. Assume we can split
3341 the original object if it spans an even number of hard regs.
3342 This special case is important for SCmode on 64-bit platforms
3343 where the natural size of floating-point regs is 32-bit. */
3344 || (REG_P (cplx)
3345 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
3346 && REG_NREGS (cplx) % 2 == 0))
3347 {
3348 rtx ret = simplify_gen_subreg (imode, cplx, cmode,
3349 imag_p ? GET_MODE_SIZE (imode) : 0);
3350 if (ret)
3351 return ret;
3352 else
3353 /* simplify_gen_subreg may fail for sub-word MEMs. */
3354 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
3355 }
3356
3357 return extract_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0,
3358 true, NULL_RTX, imode, imode, false, NULL);
3359 }
3360
3361 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
3362 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
3363 represented in NEW_MODE. If FORCE is true, this will never happen, as
3364 we'll force-create a SUBREG if needed. */
3365
3366 static rtx
emit_move_change_mode(machine_mode new_mode,machine_mode old_mode,rtx x,bool force)3367 emit_move_change_mode (machine_mode new_mode,
3368 machine_mode old_mode, rtx x, bool force)
3369 {
3370 rtx ret;
3371
3372 if (push_operand (x, GET_MODE (x)))
3373 {
3374 ret = gen_rtx_MEM (new_mode, XEXP (x, 0));
3375 MEM_COPY_ATTRIBUTES (ret, x);
3376 }
3377 else if (MEM_P (x))
3378 {
3379 /* We don't have to worry about changing the address since the
3380 size in bytes is supposed to be the same. */
3381 if (reload_in_progress)
3382 {
3383 /* Copy the MEM to change the mode and move any
3384 substitutions from the old MEM to the new one. */
3385 ret = adjust_address_nv (x, new_mode, 0);
3386 copy_replacements (x, ret);
3387 }
3388 else
3389 ret = adjust_address (x, new_mode, 0);
3390 }
3391 else
3392 {
3393 /* Note that we do want simplify_subreg's behavior of validating
3394 that the new mode is ok for a hard register. If we were to use
3395 simplify_gen_subreg, we would create the subreg, but would
3396 probably run into the target not being able to implement it. */
3397 /* Except, of course, when FORCE is true, when this is exactly what
3398 we want. Which is needed for CCmodes on some targets. */
3399 if (force)
3400 ret = simplify_gen_subreg (new_mode, x, old_mode, 0);
3401 else
3402 ret = simplify_subreg (new_mode, x, old_mode, 0);
3403 }
3404
3405 return ret;
3406 }
3407
3408 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
3409 an integer mode of the same size as MODE. Returns the instruction
3410 emitted, or NULL if such a move could not be generated. */
3411
3412 static rtx_insn *
emit_move_via_integer(machine_mode mode,rtx x,rtx y,bool force)3413 emit_move_via_integer (machine_mode mode, rtx x, rtx y, bool force)
3414 {
3415 scalar_int_mode imode;
3416 enum insn_code code;
3417
3418 /* There must exist a mode of the exact size we require. */
3419 if (!int_mode_for_mode (mode).exists (&imode))
3420 return NULL;
3421
3422 /* The target must support moves in this mode. */
3423 code = optab_handler (mov_optab, imode);
3424 if (code == CODE_FOR_nothing)
3425 return NULL;
3426
3427 x = emit_move_change_mode (imode, mode, x, force);
3428 if (x == NULL_RTX)
3429 return NULL;
3430 y = emit_move_change_mode (imode, mode, y, force);
3431 if (y == NULL_RTX)
3432 return NULL;
3433 return emit_insn (GEN_FCN (code) (x, y));
3434 }
3435
3436 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
3437 Return an equivalent MEM that does not use an auto-increment. */
3438
3439 rtx
emit_move_resolve_push(machine_mode mode,rtx x)3440 emit_move_resolve_push (machine_mode mode, rtx x)
3441 {
3442 enum rtx_code code = GET_CODE (XEXP (x, 0));
3443 rtx temp;
3444
3445 poly_int64 adjust = GET_MODE_SIZE (mode);
3446 #ifdef PUSH_ROUNDING
3447 adjust = PUSH_ROUNDING (adjust);
3448 #endif
3449 if (code == PRE_DEC || code == POST_DEC)
3450 adjust = -adjust;
3451 else if (code == PRE_MODIFY || code == POST_MODIFY)
3452 {
3453 rtx expr = XEXP (XEXP (x, 0), 1);
3454
3455 gcc_assert (GET_CODE (expr) == PLUS || GET_CODE (expr) == MINUS);
3456 poly_int64 val = rtx_to_poly_int64 (XEXP (expr, 1));
3457 if (GET_CODE (expr) == MINUS)
3458 val = -val;
3459 gcc_assert (known_eq (adjust, val) || known_eq (adjust, -val));
3460 adjust = val;
3461 }
3462
3463 /* Do not use anti_adjust_stack, since we don't want to update
3464 stack_pointer_delta. */
3465 temp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
3466 gen_int_mode (adjust, Pmode), stack_pointer_rtx,
3467 0, OPTAB_LIB_WIDEN);
3468 if (temp != stack_pointer_rtx)
3469 emit_move_insn (stack_pointer_rtx, temp);
3470
3471 switch (code)
3472 {
3473 case PRE_INC:
3474 case PRE_DEC:
3475 case PRE_MODIFY:
3476 temp = stack_pointer_rtx;
3477 break;
3478 case POST_INC:
3479 case POST_DEC:
3480 case POST_MODIFY:
3481 temp = plus_constant (Pmode, stack_pointer_rtx, -adjust);
3482 break;
3483 default:
3484 gcc_unreachable ();
3485 }
3486
3487 return replace_equiv_address (x, temp);
3488 }
3489
3490 /* A subroutine of emit_move_complex. Generate a move from Y into X.
3491 X is known to satisfy push_operand, and MODE is known to be complex.
3492 Returns the last instruction emitted. */
3493
3494 rtx_insn *
emit_move_complex_push(machine_mode mode,rtx x,rtx y)3495 emit_move_complex_push (machine_mode mode, rtx x, rtx y)
3496 {
3497 scalar_mode submode = GET_MODE_INNER (mode);
3498 bool imag_first;
3499
3500 #ifdef PUSH_ROUNDING
3501 poly_int64 submodesize = GET_MODE_SIZE (submode);
3502
3503 /* In case we output to the stack, but the size is smaller than the
3504 machine can push exactly, we need to use move instructions. */
3505 if (maybe_ne (PUSH_ROUNDING (submodesize), submodesize))
3506 {
3507 x = emit_move_resolve_push (mode, x);
3508 return emit_move_insn (x, y);
3509 }
3510 #endif
3511
3512 /* Note that the real part always precedes the imag part in memory
3513 regardless of machine's endianness. */
3514 switch (GET_CODE (XEXP (x, 0)))
3515 {
3516 case PRE_DEC:
3517 case POST_DEC:
3518 imag_first = true;
3519 break;
3520 case PRE_INC:
3521 case POST_INC:
3522 imag_first = false;
3523 break;
3524 default:
3525 gcc_unreachable ();
3526 }
3527
3528 emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3529 read_complex_part (y, imag_first));
3530 return emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3531 read_complex_part (y, !imag_first));
3532 }
3533
3534 /* A subroutine of emit_move_complex. Perform the move from Y to X
3535 via two moves of the parts. Returns the last instruction emitted. */
3536
3537 rtx_insn *
emit_move_complex_parts(rtx x,rtx y)3538 emit_move_complex_parts (rtx x, rtx y)
3539 {
3540 /* Show the output dies here. This is necessary for SUBREGs
3541 of pseudos since we cannot track their lifetimes correctly;
3542 hard regs shouldn't appear here except as return values. */
3543 if (!reload_completed && !reload_in_progress
3544 && REG_P (x) && !reg_overlap_mentioned_p (x, y))
3545 emit_clobber (x);
3546
3547 write_complex_part (x, read_complex_part (y, false), false);
3548 write_complex_part (x, read_complex_part (y, true), true);
3549
3550 return get_last_insn ();
3551 }
3552
3553 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3554 MODE is known to be complex. Returns the last instruction emitted. */
3555
3556 static rtx_insn *
emit_move_complex(machine_mode mode,rtx x,rtx y)3557 emit_move_complex (machine_mode mode, rtx x, rtx y)
3558 {
3559 bool try_int;
3560
3561 /* Need to take special care for pushes, to maintain proper ordering
3562 of the data, and possibly extra padding. */
3563 if (push_operand (x, mode))
3564 return emit_move_complex_push (mode, x, y);
3565
3566 /* See if we can coerce the target into moving both values at once, except
3567 for floating point where we favor moving as parts if this is easy. */
3568 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
3569 && optab_handler (mov_optab, GET_MODE_INNER (mode)) != CODE_FOR_nothing
3570 && !(REG_P (x)
3571 && HARD_REGISTER_P (x)
3572 && REG_NREGS (x) == 1)
3573 && !(REG_P (y)
3574 && HARD_REGISTER_P (y)
3575 && REG_NREGS (y) == 1))
3576 try_int = false;
3577 /* Not possible if the values are inherently not adjacent. */
3578 else if (GET_CODE (x) == CONCAT || GET_CODE (y) == CONCAT)
3579 try_int = false;
3580 /* Is possible if both are registers (or subregs of registers). */
3581 else if (register_operand (x, mode) && register_operand (y, mode))
3582 try_int = true;
3583 /* If one of the operands is a memory, and alignment constraints
3584 are friendly enough, we may be able to do combined memory operations.
3585 We do not attempt this if Y is a constant because that combination is
3586 usually better with the by-parts thing below. */
3587 else if ((MEM_P (x) ? !CONSTANT_P (y) : MEM_P (y))
3588 && (!STRICT_ALIGNMENT
3589 || get_mode_alignment (mode) == BIGGEST_ALIGNMENT))
3590 try_int = true;
3591 else
3592 try_int = false;
3593
3594 if (try_int)
3595 {
3596 rtx_insn *ret;
3597
3598 /* For memory to memory moves, optimal behavior can be had with the
3599 existing block move logic. But use normal expansion if optimizing
3600 for size. */
3601 if (MEM_P (x) && MEM_P (y))
3602 {
3603 emit_block_move (x, y, gen_int_mode (GET_MODE_SIZE (mode), Pmode),
3604 (optimize_insn_for_speed_p()
3605 ? BLOCK_OP_NO_LIBCALL : BLOCK_OP_NORMAL));
3606 return get_last_insn ();
3607 }
3608
3609 ret = emit_move_via_integer (mode, x, y, true);
3610 if (ret)
3611 return ret;
3612 }
3613
3614 return emit_move_complex_parts (x, y);
3615 }
3616
3617 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3618 MODE is known to be MODE_CC. Returns the last instruction emitted. */
3619
3620 static rtx_insn *
emit_move_ccmode(machine_mode mode,rtx x,rtx y)3621 emit_move_ccmode (machine_mode mode, rtx x, rtx y)
3622 {
3623 rtx_insn *ret;
3624
3625 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3626 if (mode != CCmode)
3627 {
3628 enum insn_code code = optab_handler (mov_optab, CCmode);
3629 if (code != CODE_FOR_nothing)
3630 {
3631 x = emit_move_change_mode (CCmode, mode, x, true);
3632 y = emit_move_change_mode (CCmode, mode, y, true);
3633 return emit_insn (GEN_FCN (code) (x, y));
3634 }
3635 }
3636
3637 /* Otherwise, find the MODE_INT mode of the same width. */
3638 ret = emit_move_via_integer (mode, x, y, false);
3639 gcc_assert (ret != NULL);
3640 return ret;
3641 }
3642
3643 /* Return true if word I of OP lies entirely in the
3644 undefined bits of a paradoxical subreg. */
3645
3646 static bool
undefined_operand_subword_p(const_rtx op,int i)3647 undefined_operand_subword_p (const_rtx op, int i)
3648 {
3649 if (GET_CODE (op) != SUBREG)
3650 return false;
3651 machine_mode innermostmode = GET_MODE (SUBREG_REG (op));
3652 poly_int64 offset = i * UNITS_PER_WORD + subreg_memory_offset (op);
3653 return (known_ge (offset, GET_MODE_SIZE (innermostmode))
3654 || known_le (offset, -UNITS_PER_WORD));
3655 }
3656
3657 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3658 MODE is any multi-word or full-word mode that lacks a move_insn
3659 pattern. Note that you will get better code if you define such
3660 patterns, even if they must turn into multiple assembler instructions. */
3661
3662 static rtx_insn *
emit_move_multi_word(machine_mode mode,rtx x,rtx y)3663 emit_move_multi_word (machine_mode mode, rtx x, rtx y)
3664 {
3665 rtx_insn *last_insn = 0;
3666 rtx_insn *seq;
3667 rtx inner;
3668 bool need_clobber;
3669 int i, mode_size;
3670
3671 /* This function can only handle cases where the number of words is
3672 known at compile time. */
3673 mode_size = GET_MODE_SIZE (mode).to_constant ();
3674 gcc_assert (mode_size >= UNITS_PER_WORD);
3675
3676 /* If X is a push on the stack, do the push now and replace
3677 X with a reference to the stack pointer. */
3678 if (push_operand (x, mode))
3679 x = emit_move_resolve_push (mode, x);
3680
3681 /* If we are in reload, see if either operand is a MEM whose address
3682 is scheduled for replacement. */
3683 if (reload_in_progress && MEM_P (x)
3684 && (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0))
3685 x = replace_equiv_address_nv (x, inner);
3686 if (reload_in_progress && MEM_P (y)
3687 && (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0))
3688 y = replace_equiv_address_nv (y, inner);
3689
3690 start_sequence ();
3691
3692 need_clobber = false;
3693 for (i = 0; i < CEIL (mode_size, UNITS_PER_WORD); i++)
3694 {
3695 /* Do not generate code for a move if it would go entirely
3696 to the non-existing bits of a paradoxical subreg. */
3697 if (undefined_operand_subword_p (x, i))
3698 continue;
3699
3700 rtx xpart = operand_subword (x, i, 1, mode);
3701 rtx ypart;
3702
3703 /* Do not generate code for a move if it would come entirely
3704 from the undefined bits of a paradoxical subreg. */
3705 if (undefined_operand_subword_p (y, i))
3706 continue;
3707
3708 ypart = operand_subword (y, i, 1, mode);
3709
3710 /* If we can't get a part of Y, put Y into memory if it is a
3711 constant. Otherwise, force it into a register. Then we must
3712 be able to get a part of Y. */
3713 if (ypart == 0 && CONSTANT_P (y))
3714 {
3715 y = use_anchored_address (force_const_mem (mode, y));
3716 ypart = operand_subword (y, i, 1, mode);
3717 }
3718 else if (ypart == 0)
3719 ypart = operand_subword_force (y, i, mode);
3720
3721 gcc_assert (xpart && ypart);
3722
3723 need_clobber |= (GET_CODE (xpart) == SUBREG);
3724
3725 last_insn = emit_move_insn (xpart, ypart);
3726 }
3727
3728 seq = get_insns ();
3729 end_sequence ();
3730
3731 /* Show the output dies here. This is necessary for SUBREGs
3732 of pseudos since we cannot track their lifetimes correctly;
3733 hard regs shouldn't appear here except as return values.
3734 We never want to emit such a clobber after reload. */
3735 if (x != y
3736 && ! (reload_in_progress || reload_completed)
3737 && need_clobber != 0)
3738 emit_clobber (x);
3739
3740 emit_insn (seq);
3741
3742 return last_insn;
3743 }
3744
3745 /* Low level part of emit_move_insn.
3746 Called just like emit_move_insn, but assumes X and Y
3747 are basically valid. */
3748
3749 rtx_insn *
emit_move_insn_1(rtx x,rtx y)3750 emit_move_insn_1 (rtx x, rtx y)
3751 {
3752 machine_mode mode = GET_MODE (x);
3753 enum insn_code code;
3754
3755 gcc_assert ((unsigned int) mode < (unsigned int) MAX_MACHINE_MODE);
3756
3757 code = optab_handler (mov_optab, mode);
3758 if (code != CODE_FOR_nothing)
3759 return emit_insn (GEN_FCN (code) (x, y));
3760
3761 /* Expand complex moves by moving real part and imag part. */
3762 if (COMPLEX_MODE_P (mode))
3763 return emit_move_complex (mode, x, y);
3764
3765 if (GET_MODE_CLASS (mode) == MODE_DECIMAL_FLOAT
3766 || ALL_FIXED_POINT_MODE_P (mode))
3767 {
3768 rtx_insn *result = emit_move_via_integer (mode, x, y, true);
3769
3770 /* If we can't find an integer mode, use multi words. */
3771 if (result)
3772 return result;
3773 else
3774 return emit_move_multi_word (mode, x, y);
3775 }
3776
3777 if (GET_MODE_CLASS (mode) == MODE_CC)
3778 return emit_move_ccmode (mode, x, y);
3779
3780 /* Try using a move pattern for the corresponding integer mode. This is
3781 only safe when simplify_subreg can convert MODE constants into integer
3782 constants. At present, it can only do this reliably if the value
3783 fits within a HOST_WIDE_INT. */
3784 if (!CONSTANT_P (y)
3785 || known_le (GET_MODE_BITSIZE (mode), HOST_BITS_PER_WIDE_INT))
3786 {
3787 rtx_insn *ret = emit_move_via_integer (mode, x, y, lra_in_progress);
3788
3789 if (ret)
3790 {
3791 if (! lra_in_progress || recog (PATTERN (ret), ret, 0) >= 0)
3792 return ret;
3793 }
3794 }
3795
3796 return emit_move_multi_word (mode, x, y);
3797 }
3798
3799 /* Generate code to copy Y into X.
3800 Both Y and X must have the same mode, except that
3801 Y can be a constant with VOIDmode.
3802 This mode cannot be BLKmode; use emit_block_move for that.
3803
3804 Return the last instruction emitted. */
3805
3806 rtx_insn *
emit_move_insn(rtx x,rtx y)3807 emit_move_insn (rtx x, rtx y)
3808 {
3809 machine_mode mode = GET_MODE (x);
3810 rtx y_cst = NULL_RTX;
3811 rtx_insn *last_insn;
3812 rtx set;
3813
3814 gcc_assert (mode != BLKmode
3815 && (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode));
3816
3817 if (CONSTANT_P (y))
3818 {
3819 if (optimize
3820 && SCALAR_FLOAT_MODE_P (GET_MODE (x))
3821 && (last_insn = compress_float_constant (x, y)))
3822 return last_insn;
3823
3824 y_cst = y;
3825
3826 if (!targetm.legitimate_constant_p (mode, y))
3827 {
3828 y = force_const_mem (mode, y);
3829
3830 /* If the target's cannot_force_const_mem prevented the spill,
3831 assume that the target's move expanders will also take care
3832 of the non-legitimate constant. */
3833 if (!y)
3834 y = y_cst;
3835 else
3836 y = use_anchored_address (y);
3837 }
3838 }
3839
3840 /* If X or Y are memory references, verify that their addresses are valid
3841 for the machine. */
3842 if (MEM_P (x)
3843 && (! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
3844 MEM_ADDR_SPACE (x))
3845 && ! push_operand (x, GET_MODE (x))))
3846 x = validize_mem (x);
3847
3848 if (MEM_P (y)
3849 && ! memory_address_addr_space_p (GET_MODE (y), XEXP (y, 0),
3850 MEM_ADDR_SPACE (y)))
3851 y = validize_mem (y);
3852
3853 gcc_assert (mode != BLKmode);
3854
3855 last_insn = emit_move_insn_1 (x, y);
3856
3857 if (y_cst && REG_P (x)
3858 && (set = single_set (last_insn)) != NULL_RTX
3859 && SET_DEST (set) == x
3860 && ! rtx_equal_p (y_cst, SET_SRC (set)))
3861 set_unique_reg_note (last_insn, REG_EQUAL, copy_rtx (y_cst));
3862
3863 return last_insn;
3864 }
3865
3866 /* Generate the body of an instruction to copy Y into X.
3867 It may be a list of insns, if one insn isn't enough. */
3868
3869 rtx_insn *
gen_move_insn(rtx x,rtx y)3870 gen_move_insn (rtx x, rtx y)
3871 {
3872 rtx_insn *seq;
3873
3874 start_sequence ();
3875 emit_move_insn_1 (x, y);
3876 seq = get_insns ();
3877 end_sequence ();
3878 return seq;
3879 }
3880
3881 /* If Y is representable exactly in a narrower mode, and the target can
3882 perform the extension directly from constant or memory, then emit the
3883 move as an extension. */
3884
3885 static rtx_insn *
compress_float_constant(rtx x,rtx y)3886 compress_float_constant (rtx x, rtx y)
3887 {
3888 machine_mode dstmode = GET_MODE (x);
3889 machine_mode orig_srcmode = GET_MODE (y);
3890 machine_mode srcmode;
3891 const REAL_VALUE_TYPE *r;
3892 int oldcost, newcost;
3893 bool speed = optimize_insn_for_speed_p ();
3894
3895 r = CONST_DOUBLE_REAL_VALUE (y);
3896
3897 if (targetm.legitimate_constant_p (dstmode, y))
3898 oldcost = set_src_cost (y, orig_srcmode, speed);
3899 else
3900 oldcost = set_src_cost (force_const_mem (dstmode, y), dstmode, speed);
3901
3902 FOR_EACH_MODE_UNTIL (srcmode, orig_srcmode)
3903 {
3904 enum insn_code ic;
3905 rtx trunc_y;
3906 rtx_insn *last_insn;
3907
3908 /* Skip if the target can't extend this way. */
3909 ic = can_extend_p (dstmode, srcmode, 0);
3910 if (ic == CODE_FOR_nothing)
3911 continue;
3912
3913 /* Skip if the narrowed value isn't exact. */
3914 if (! exact_real_truncate (srcmode, r))
3915 continue;
3916
3917 trunc_y = const_double_from_real_value (*r, srcmode);
3918
3919 if (targetm.legitimate_constant_p (srcmode, trunc_y))
3920 {
3921 /* Skip if the target needs extra instructions to perform
3922 the extension. */
3923 if (!insn_operand_matches (ic, 1, trunc_y))
3924 continue;
3925 /* This is valid, but may not be cheaper than the original. */
3926 newcost = set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y),
3927 dstmode, speed);
3928 if (oldcost < newcost)
3929 continue;
3930 }
3931 else if (float_extend_from_mem[dstmode][srcmode])
3932 {
3933 trunc_y = force_const_mem (srcmode, trunc_y);
3934 /* This is valid, but may not be cheaper than the original. */
3935 newcost = set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y),
3936 dstmode, speed);
3937 if (oldcost < newcost)
3938 continue;
3939 trunc_y = validize_mem (trunc_y);
3940 }
3941 else
3942 continue;
3943
3944 /* For CSE's benefit, force the compressed constant pool entry
3945 into a new pseudo. This constant may be used in different modes,
3946 and if not, combine will put things back together for us. */
3947 trunc_y = force_reg (srcmode, trunc_y);
3948
3949 /* If x is a hard register, perform the extension into a pseudo,
3950 so that e.g. stack realignment code is aware of it. */
3951 rtx target = x;
3952 if (REG_P (x) && HARD_REGISTER_P (x))
3953 target = gen_reg_rtx (dstmode);
3954
3955 emit_unop_insn (ic, target, trunc_y, UNKNOWN);
3956 last_insn = get_last_insn ();
3957
3958 if (REG_P (target))
3959 set_unique_reg_note (last_insn, REG_EQUAL, y);
3960
3961 if (target != x)
3962 return emit_move_insn (x, target);
3963 return last_insn;
3964 }
3965
3966 return NULL;
3967 }
3968
3969 /* Pushing data onto the stack. */
3970
3971 /* Push a block of length SIZE (perhaps variable)
3972 and return an rtx to address the beginning of the block.
3973 The value may be virtual_outgoing_args_rtx.
3974
3975 EXTRA is the number of bytes of padding to push in addition to SIZE.
3976 BELOW nonzero means this padding comes at low addresses;
3977 otherwise, the padding comes at high addresses. */
3978
3979 rtx
push_block(rtx size,poly_int64 extra,int below)3980 push_block (rtx size, poly_int64 extra, int below)
3981 {
3982 rtx temp;
3983
3984 size = convert_modes (Pmode, ptr_mode, size, 1);
3985 if (CONSTANT_P (size))
3986 anti_adjust_stack (plus_constant (Pmode, size, extra));
3987 else if (REG_P (size) && known_eq (extra, 0))
3988 anti_adjust_stack (size);
3989 else
3990 {
3991 temp = copy_to_mode_reg (Pmode, size);
3992 if (maybe_ne (extra, 0))
3993 temp = expand_binop (Pmode, add_optab, temp,
3994 gen_int_mode (extra, Pmode),
3995 temp, 0, OPTAB_LIB_WIDEN);
3996 anti_adjust_stack (temp);
3997 }
3998
3999 if (STACK_GROWS_DOWNWARD)
4000 {
4001 temp = virtual_outgoing_args_rtx;
4002 if (maybe_ne (extra, 0) && below)
4003 temp = plus_constant (Pmode, temp, extra);
4004 }
4005 else
4006 {
4007 poly_int64 csize;
4008 if (poly_int_rtx_p (size, &csize))
4009 temp = plus_constant (Pmode, virtual_outgoing_args_rtx,
4010 -csize - (below ? 0 : extra));
4011 else if (maybe_ne (extra, 0) && !below)
4012 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
4013 negate_rtx (Pmode, plus_constant (Pmode, size,
4014 extra)));
4015 else
4016 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
4017 negate_rtx (Pmode, size));
4018 }
4019
4020 return memory_address (NARROWEST_INT_MODE, temp);
4021 }
4022
4023 /* A utility routine that returns the base of an auto-inc memory, or NULL. */
4024
4025 static rtx
mem_autoinc_base(rtx mem)4026 mem_autoinc_base (rtx mem)
4027 {
4028 if (MEM_P (mem))
4029 {
4030 rtx addr = XEXP (mem, 0);
4031 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC)
4032 return XEXP (addr, 0);
4033 }
4034 return NULL;
4035 }
4036
4037 /* A utility routine used here, in reload, and in try_split. The insns
4038 after PREV up to and including LAST are known to adjust the stack,
4039 with a final value of END_ARGS_SIZE. Iterate backward from LAST
4040 placing notes as appropriate. PREV may be NULL, indicating the
4041 entire insn sequence prior to LAST should be scanned.
4042
4043 The set of allowed stack pointer modifications is small:
4044 (1) One or more auto-inc style memory references (aka pushes),
4045 (2) One or more addition/subtraction with the SP as destination,
4046 (3) A single move insn with the SP as destination,
4047 (4) A call_pop insn,
4048 (5) Noreturn call insns if !ACCUMULATE_OUTGOING_ARGS.
4049
4050 Insns in the sequence that do not modify the SP are ignored,
4051 except for noreturn calls.
4052
4053 The return value is the amount of adjustment that can be trivially
4054 verified, via immediate operand or auto-inc. If the adjustment
4055 cannot be trivially extracted, the return value is HOST_WIDE_INT_MIN. */
4056
4057 poly_int64
find_args_size_adjust(rtx_insn * insn)4058 find_args_size_adjust (rtx_insn *insn)
4059 {
4060 rtx dest, set, pat;
4061 int i;
4062
4063 pat = PATTERN (insn);
4064 set = NULL;
4065
4066 /* Look for a call_pop pattern. */
4067 if (CALL_P (insn))
4068 {
4069 /* We have to allow non-call_pop patterns for the case
4070 of emit_single_push_insn of a TLS address. */
4071 if (GET_CODE (pat) != PARALLEL)
4072 return 0;
4073
4074 /* All call_pop have a stack pointer adjust in the parallel.
4075 The call itself is always first, and the stack adjust is
4076 usually last, so search from the end. */
4077 for (i = XVECLEN (pat, 0) - 1; i > 0; --i)
4078 {
4079 set = XVECEXP (pat, 0, i);
4080 if (GET_CODE (set) != SET)
4081 continue;
4082 dest = SET_DEST (set);
4083 if (dest == stack_pointer_rtx)
4084 break;
4085 }
4086 /* We'd better have found the stack pointer adjust. */
4087 if (i == 0)
4088 return 0;
4089 /* Fall through to process the extracted SET and DEST
4090 as if it was a standalone insn. */
4091 }
4092 else if (GET_CODE (pat) == SET)
4093 set = pat;
4094 else if ((set = single_set (insn)) != NULL)
4095 ;
4096 else if (GET_CODE (pat) == PARALLEL)
4097 {
4098 /* ??? Some older ports use a parallel with a stack adjust
4099 and a store for a PUSH_ROUNDING pattern, rather than a
4100 PRE/POST_MODIFY rtx. Don't force them to update yet... */
4101 /* ??? See h8300 and m68k, pushqi1. */
4102 for (i = XVECLEN (pat, 0) - 1; i >= 0; --i)
4103 {
4104 set = XVECEXP (pat, 0, i);
4105 if (GET_CODE (set) != SET)
4106 continue;
4107 dest = SET_DEST (set);
4108 if (dest == stack_pointer_rtx)
4109 break;
4110
4111 /* We do not expect an auto-inc of the sp in the parallel. */
4112 gcc_checking_assert (mem_autoinc_base (dest) != stack_pointer_rtx);
4113 gcc_checking_assert (mem_autoinc_base (SET_SRC (set))
4114 != stack_pointer_rtx);
4115 }
4116 if (i < 0)
4117 return 0;
4118 }
4119 else
4120 return 0;
4121
4122 dest = SET_DEST (set);
4123
4124 /* Look for direct modifications of the stack pointer. */
4125 if (REG_P (dest) && REGNO (dest) == STACK_POINTER_REGNUM)
4126 {
4127 /* Look for a trivial adjustment, otherwise assume nothing. */
4128 /* Note that the SPU restore_stack_block pattern refers to
4129 the stack pointer in V4SImode. Consider that non-trivial. */
4130 poly_int64 offset;
4131 if (SCALAR_INT_MODE_P (GET_MODE (dest))
4132 && strip_offset (SET_SRC (set), &offset) == stack_pointer_rtx)
4133 return offset;
4134 /* ??? Reload can generate no-op moves, which will be cleaned
4135 up later. Recognize it and continue searching. */
4136 else if (rtx_equal_p (dest, SET_SRC (set)))
4137 return 0;
4138 else
4139 return HOST_WIDE_INT_MIN;
4140 }
4141 else
4142 {
4143 rtx mem, addr;
4144
4145 /* Otherwise only think about autoinc patterns. */
4146 if (mem_autoinc_base (dest) == stack_pointer_rtx)
4147 {
4148 mem = dest;
4149 gcc_checking_assert (mem_autoinc_base (SET_SRC (set))
4150 != stack_pointer_rtx);
4151 }
4152 else if (mem_autoinc_base (SET_SRC (set)) == stack_pointer_rtx)
4153 mem = SET_SRC (set);
4154 else
4155 return 0;
4156
4157 addr = XEXP (mem, 0);
4158 switch (GET_CODE (addr))
4159 {
4160 case PRE_INC:
4161 case POST_INC:
4162 return GET_MODE_SIZE (GET_MODE (mem));
4163 case PRE_DEC:
4164 case POST_DEC:
4165 return -GET_MODE_SIZE (GET_MODE (mem));
4166 case PRE_MODIFY:
4167 case POST_MODIFY:
4168 addr = XEXP (addr, 1);
4169 gcc_assert (GET_CODE (addr) == PLUS);
4170 gcc_assert (XEXP (addr, 0) == stack_pointer_rtx);
4171 return rtx_to_poly_int64 (XEXP (addr, 1));
4172 default:
4173 gcc_unreachable ();
4174 }
4175 }
4176 }
4177
4178 poly_int64
fixup_args_size_notes(rtx_insn * prev,rtx_insn * last,poly_int64 end_args_size)4179 fixup_args_size_notes (rtx_insn *prev, rtx_insn *last,
4180 poly_int64 end_args_size)
4181 {
4182 poly_int64 args_size = end_args_size;
4183 bool saw_unknown = false;
4184 rtx_insn *insn;
4185
4186 for (insn = last; insn != prev; insn = PREV_INSN (insn))
4187 {
4188 if (!NONDEBUG_INSN_P (insn))
4189 continue;
4190
4191 /* We might have existing REG_ARGS_SIZE notes, e.g. when pushing
4192 a call argument containing a TLS address that itself requires
4193 a call to __tls_get_addr. The handling of stack_pointer_delta
4194 in emit_single_push_insn is supposed to ensure that any such
4195 notes are already correct. */
4196 rtx note = find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX);
4197 gcc_assert (!note || known_eq (args_size, get_args_size (note)));
4198
4199 poly_int64 this_delta = find_args_size_adjust (insn);
4200 if (known_eq (this_delta, 0))
4201 {
4202 if (!CALL_P (insn)
4203 || ACCUMULATE_OUTGOING_ARGS
4204 || find_reg_note (insn, REG_NORETURN, NULL_RTX) == NULL_RTX)
4205 continue;
4206 }
4207
4208 gcc_assert (!saw_unknown);
4209 if (known_eq (this_delta, HOST_WIDE_INT_MIN))
4210 saw_unknown = true;
4211
4212 if (!note)
4213 add_args_size_note (insn, args_size);
4214 if (STACK_GROWS_DOWNWARD)
4215 this_delta = -poly_uint64 (this_delta);
4216
4217 if (saw_unknown)
4218 args_size = HOST_WIDE_INT_MIN;
4219 else
4220 args_size -= this_delta;
4221 }
4222
4223 return args_size;
4224 }
4225
4226 #ifdef PUSH_ROUNDING
4227 /* Emit single push insn. */
4228
4229 static void
emit_single_push_insn_1(machine_mode mode,rtx x,tree type)4230 emit_single_push_insn_1 (machine_mode mode, rtx x, tree type)
4231 {
4232 rtx dest_addr;
4233 poly_int64 rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode));
4234 rtx dest;
4235 enum insn_code icode;
4236
4237 /* If there is push pattern, use it. Otherwise try old way of throwing
4238 MEM representing push operation to move expander. */
4239 icode = optab_handler (push_optab, mode);
4240 if (icode != CODE_FOR_nothing)
4241 {
4242 class expand_operand ops[1];
4243
4244 create_input_operand (&ops[0], x, mode);
4245 if (maybe_expand_insn (icode, 1, ops))
4246 return;
4247 }
4248 if (known_eq (GET_MODE_SIZE (mode), rounded_size))
4249 dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
4250 /* If we are to pad downward, adjust the stack pointer first and
4251 then store X into the stack location using an offset. This is
4252 because emit_move_insn does not know how to pad; it does not have
4253 access to type. */
4254 else if (targetm.calls.function_arg_padding (mode, type) == PAD_DOWNWARD)
4255 {
4256 emit_move_insn (stack_pointer_rtx,
4257 expand_binop (Pmode,
4258 STACK_GROWS_DOWNWARD ? sub_optab
4259 : add_optab,
4260 stack_pointer_rtx,
4261 gen_int_mode (rounded_size, Pmode),
4262 NULL_RTX, 0, OPTAB_LIB_WIDEN));
4263
4264 poly_int64 offset = rounded_size - GET_MODE_SIZE (mode);
4265 if (STACK_GROWS_DOWNWARD && STACK_PUSH_CODE == POST_DEC)
4266 /* We have already decremented the stack pointer, so get the
4267 previous value. */
4268 offset += rounded_size;
4269
4270 if (!STACK_GROWS_DOWNWARD && STACK_PUSH_CODE == POST_INC)
4271 /* We have already incremented the stack pointer, so get the
4272 previous value. */
4273 offset -= rounded_size;
4274
4275 dest_addr = plus_constant (Pmode, stack_pointer_rtx, offset);
4276 }
4277 else
4278 {
4279 if (STACK_GROWS_DOWNWARD)
4280 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
4281 dest_addr = plus_constant (Pmode, stack_pointer_rtx, -rounded_size);
4282 else
4283 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
4284 dest_addr = plus_constant (Pmode, stack_pointer_rtx, rounded_size);
4285
4286 dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
4287 }
4288
4289 dest = gen_rtx_MEM (mode, dest_addr);
4290
4291 if (type != 0)
4292 {
4293 set_mem_attributes (dest, type, 1);
4294
4295 if (cfun->tail_call_marked)
4296 /* Function incoming arguments may overlap with sibling call
4297 outgoing arguments and we cannot allow reordering of reads
4298 from function arguments with stores to outgoing arguments
4299 of sibling calls. */
4300 set_mem_alias_set (dest, 0);
4301 }
4302 emit_move_insn (dest, x);
4303 }
4304
4305 /* Emit and annotate a single push insn. */
4306
4307 static void
emit_single_push_insn(machine_mode mode,rtx x,tree type)4308 emit_single_push_insn (machine_mode mode, rtx x, tree type)
4309 {
4310 poly_int64 delta, old_delta = stack_pointer_delta;
4311 rtx_insn *prev = get_last_insn ();
4312 rtx_insn *last;
4313
4314 emit_single_push_insn_1 (mode, x, type);
4315
4316 /* Adjust stack_pointer_delta to describe the situation after the push
4317 we just performed. Note that we must do this after the push rather
4318 than before the push in case calculating X needs pushes and pops of
4319 its own (e.g. if calling __tls_get_addr). The REG_ARGS_SIZE notes
4320 for such pushes and pops must not include the effect of the future
4321 push of X. */
4322 stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode));
4323
4324 last = get_last_insn ();
4325
4326 /* Notice the common case where we emitted exactly one insn. */
4327 if (PREV_INSN (last) == prev)
4328 {
4329 add_args_size_note (last, stack_pointer_delta);
4330 return;
4331 }
4332
4333 delta = fixup_args_size_notes (prev, last, stack_pointer_delta);
4334 gcc_assert (known_eq (delta, HOST_WIDE_INT_MIN)
4335 || known_eq (delta, old_delta));
4336 }
4337 #endif
4338
4339 /* If reading SIZE bytes from X will end up reading from
4340 Y return the number of bytes that overlap. Return -1
4341 if there is no overlap or -2 if we can't determine
4342 (for example when X and Y have different base registers). */
4343
4344 static int
memory_load_overlap(rtx x,rtx y,HOST_WIDE_INT size)4345 memory_load_overlap (rtx x, rtx y, HOST_WIDE_INT size)
4346 {
4347 rtx tmp = plus_constant (Pmode, x, size);
4348 rtx sub = simplify_gen_binary (MINUS, Pmode, tmp, y);
4349
4350 if (!CONST_INT_P (sub))
4351 return -2;
4352
4353 HOST_WIDE_INT val = INTVAL (sub);
4354
4355 return IN_RANGE (val, 1, size) ? val : -1;
4356 }
4357
4358 /* Generate code to push X onto the stack, assuming it has mode MODE and
4359 type TYPE.
4360 MODE is redundant except when X is a CONST_INT (since they don't
4361 carry mode info).
4362 SIZE is an rtx for the size of data to be copied (in bytes),
4363 needed only if X is BLKmode.
4364 Return true if successful. May return false if asked to push a
4365 partial argument during a sibcall optimization (as specified by
4366 SIBCALL_P) and the incoming and outgoing pointers cannot be shown
4367 to not overlap.
4368
4369 ALIGN (in bits) is maximum alignment we can assume.
4370
4371 If PARTIAL and REG are both nonzero, then copy that many of the first
4372 bytes of X into registers starting with REG, and push the rest of X.
4373 The amount of space pushed is decreased by PARTIAL bytes.
4374 REG must be a hard register in this case.
4375 If REG is zero but PARTIAL is not, take any all others actions for an
4376 argument partially in registers, but do not actually load any
4377 registers.
4378
4379 EXTRA is the amount in bytes of extra space to leave next to this arg.
4380 This is ignored if an argument block has already been allocated.
4381
4382 On a machine that lacks real push insns, ARGS_ADDR is the address of
4383 the bottom of the argument block for this call. We use indexing off there
4384 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
4385 argument block has not been preallocated.
4386
4387 ARGS_SO_FAR is the size of args previously pushed for this call.
4388
4389 REG_PARM_STACK_SPACE is nonzero if functions require stack space
4390 for arguments passed in registers. If nonzero, it will be the number
4391 of bytes required. */
4392
4393 bool
emit_push_insn(rtx x,machine_mode mode,tree type,rtx size,unsigned int align,int partial,rtx reg,poly_int64 extra,rtx args_addr,rtx args_so_far,int reg_parm_stack_space,rtx alignment_pad,bool sibcall_p)4394 emit_push_insn (rtx x, machine_mode mode, tree type, rtx size,
4395 unsigned int align, int partial, rtx reg, poly_int64 extra,
4396 rtx args_addr, rtx args_so_far, int reg_parm_stack_space,
4397 rtx alignment_pad, bool sibcall_p)
4398 {
4399 rtx xinner;
4400 pad_direction stack_direction
4401 = STACK_GROWS_DOWNWARD ? PAD_DOWNWARD : PAD_UPWARD;
4402
4403 /* Decide where to pad the argument: PAD_DOWNWARD for below,
4404 PAD_UPWARD for above, or PAD_NONE for don't pad it.
4405 Default is below for small data on big-endian machines; else above. */
4406 pad_direction where_pad = targetm.calls.function_arg_padding (mode, type);
4407
4408 /* Invert direction if stack is post-decrement.
4409 FIXME: why? */
4410 if (STACK_PUSH_CODE == POST_DEC)
4411 if (where_pad != PAD_NONE)
4412 where_pad = (where_pad == PAD_DOWNWARD ? PAD_UPWARD : PAD_DOWNWARD);
4413
4414 xinner = x;
4415
4416 int nregs = partial / UNITS_PER_WORD;
4417 rtx *tmp_regs = NULL;
4418 int overlapping = 0;
4419
4420 if (mode == BLKmode
4421 || (STRICT_ALIGNMENT && align < GET_MODE_ALIGNMENT (mode)
4422 && type != NULL_TREE))
4423 {
4424 /* Copy a block into the stack, entirely or partially. */
4425
4426 rtx temp;
4427 int used;
4428 int offset;
4429 int skip;
4430
4431 offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
4432 used = partial - offset;
4433
4434 if (mode != BLKmode)
4435 {
4436 /* A value is to be stored in an insufficiently aligned
4437 stack slot; copy via a suitably aligned slot if
4438 necessary. */
4439 size = gen_int_mode (GET_MODE_SIZE (mode), Pmode);
4440 if (!MEM_P (xinner))
4441 {
4442 temp = assign_temp (type, 1, 1);
4443 emit_move_insn (temp, xinner);
4444 xinner = temp;
4445 }
4446 }
4447
4448 gcc_assert (size);
4449
4450 /* USED is now the # of bytes we need not copy to the stack
4451 because registers will take care of them. */
4452
4453 if (partial != 0)
4454 xinner = adjust_address (xinner, BLKmode, used);
4455
4456 /* If the partial register-part of the arg counts in its stack size,
4457 skip the part of stack space corresponding to the registers.
4458 Otherwise, start copying to the beginning of the stack space,
4459 by setting SKIP to 0. */
4460 skip = (reg_parm_stack_space == 0) ? 0 : used;
4461
4462 #ifdef PUSH_ROUNDING
4463 /* Do it with several push insns if that doesn't take lots of insns
4464 and if there is no difficulty with push insns that skip bytes
4465 on the stack for alignment purposes. */
4466 if (args_addr == 0
4467 && PUSH_ARGS
4468 && CONST_INT_P (size)
4469 && skip == 0
4470 && MEM_ALIGN (xinner) >= align
4471 && can_move_by_pieces ((unsigned) INTVAL (size) - used, align)
4472 /* Here we avoid the case of a structure whose weak alignment
4473 forces many pushes of a small amount of data,
4474 and such small pushes do rounding that causes trouble. */
4475 && ((!targetm.slow_unaligned_access (word_mode, align))
4476 || align >= BIGGEST_ALIGNMENT
4477 || known_eq (PUSH_ROUNDING (align / BITS_PER_UNIT),
4478 align / BITS_PER_UNIT))
4479 && known_eq (PUSH_ROUNDING (INTVAL (size)), INTVAL (size)))
4480 {
4481 /* Push padding now if padding above and stack grows down,
4482 or if padding below and stack grows up.
4483 But if space already allocated, this has already been done. */
4484 if (maybe_ne (extra, 0)
4485 && args_addr == 0
4486 && where_pad != PAD_NONE
4487 && where_pad != stack_direction)
4488 anti_adjust_stack (gen_int_mode (extra, Pmode));
4489
4490 move_by_pieces (NULL, xinner, INTVAL (size) - used, align,
4491 RETURN_BEGIN);
4492 }
4493 else
4494 #endif /* PUSH_ROUNDING */
4495 {
4496 rtx target;
4497
4498 /* Otherwise make space on the stack and copy the data
4499 to the address of that space. */
4500
4501 /* Deduct words put into registers from the size we must copy. */
4502 if (partial != 0)
4503 {
4504 if (CONST_INT_P (size))
4505 size = GEN_INT (INTVAL (size) - used);
4506 else
4507 size = expand_binop (GET_MODE (size), sub_optab, size,
4508 gen_int_mode (used, GET_MODE (size)),
4509 NULL_RTX, 0, OPTAB_LIB_WIDEN);
4510 }
4511
4512 /* Get the address of the stack space.
4513 In this case, we do not deal with EXTRA separately.
4514 A single stack adjust will do. */
4515 poly_int64 const_args_so_far;
4516 if (! args_addr)
4517 {
4518 temp = push_block (size, extra, where_pad == PAD_DOWNWARD);
4519 extra = 0;
4520 }
4521 else if (poly_int_rtx_p (args_so_far, &const_args_so_far))
4522 temp = memory_address (BLKmode,
4523 plus_constant (Pmode, args_addr,
4524 skip + const_args_so_far));
4525 else
4526 temp = memory_address (BLKmode,
4527 plus_constant (Pmode,
4528 gen_rtx_PLUS (Pmode,
4529 args_addr,
4530 args_so_far),
4531 skip));
4532
4533 if (!ACCUMULATE_OUTGOING_ARGS)
4534 {
4535 /* If the source is referenced relative to the stack pointer,
4536 copy it to another register to stabilize it. We do not need
4537 to do this if we know that we won't be changing sp. */
4538
4539 if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
4540 || reg_mentioned_p (virtual_outgoing_args_rtx, temp))
4541 temp = copy_to_reg (temp);
4542 }
4543
4544 target = gen_rtx_MEM (BLKmode, temp);
4545
4546 /* We do *not* set_mem_attributes here, because incoming arguments
4547 may overlap with sibling call outgoing arguments and we cannot
4548 allow reordering of reads from function arguments with stores
4549 to outgoing arguments of sibling calls. We do, however, want
4550 to record the alignment of the stack slot. */
4551 /* ALIGN may well be better aligned than TYPE, e.g. due to
4552 PARM_BOUNDARY. Assume the caller isn't lying. */
4553 set_mem_align (target, align);
4554
4555 /* If part should go in registers and pushing to that part would
4556 overwrite some of the values that need to go into regs, load the
4557 overlapping values into temporary pseudos to be moved into the hard
4558 regs at the end after the stack pushing has completed.
4559 We cannot load them directly into the hard regs here because
4560 they can be clobbered by the block move expansions.
4561 See PR 65358. */
4562
4563 if (partial > 0 && reg != 0 && mode == BLKmode
4564 && GET_CODE (reg) != PARALLEL)
4565 {
4566 overlapping = memory_load_overlap (XEXP (x, 0), temp, partial);
4567 if (overlapping > 0)
4568 {
4569 gcc_assert (overlapping % UNITS_PER_WORD == 0);
4570 overlapping /= UNITS_PER_WORD;
4571
4572 tmp_regs = XALLOCAVEC (rtx, overlapping);
4573
4574 for (int i = 0; i < overlapping; i++)
4575 tmp_regs[i] = gen_reg_rtx (word_mode);
4576
4577 for (int i = 0; i < overlapping; i++)
4578 emit_move_insn (tmp_regs[i],
4579 operand_subword_force (target, i, mode));
4580 }
4581 else if (overlapping == -1)
4582 overlapping = 0;
4583 /* Could not determine whether there is overlap.
4584 Fail the sibcall. */
4585 else
4586 {
4587 overlapping = 0;
4588 if (sibcall_p)
4589 return false;
4590 }
4591 }
4592 emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM);
4593 }
4594 }
4595 else if (partial > 0)
4596 {
4597 /* Scalar partly in registers. This case is only supported
4598 for fixed-wdth modes. */
4599 int num_words = GET_MODE_SIZE (mode).to_constant ();
4600 num_words /= UNITS_PER_WORD;
4601 int i;
4602 int not_stack;
4603 /* # bytes of start of argument
4604 that we must make space for but need not store. */
4605 int offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
4606 int args_offset = INTVAL (args_so_far);
4607 int skip;
4608
4609 /* Push padding now if padding above and stack grows down,
4610 or if padding below and stack grows up.
4611 But if space already allocated, this has already been done. */
4612 if (maybe_ne (extra, 0)
4613 && args_addr == 0
4614 && where_pad != PAD_NONE
4615 && where_pad != stack_direction)
4616 anti_adjust_stack (gen_int_mode (extra, Pmode));
4617
4618 /* If we make space by pushing it, we might as well push
4619 the real data. Otherwise, we can leave OFFSET nonzero
4620 and leave the space uninitialized. */
4621 if (args_addr == 0)
4622 offset = 0;
4623
4624 /* Now NOT_STACK gets the number of words that we don't need to
4625 allocate on the stack. Convert OFFSET to words too. */
4626 not_stack = (partial - offset) / UNITS_PER_WORD;
4627 offset /= UNITS_PER_WORD;
4628
4629 /* If the partial register-part of the arg counts in its stack size,
4630 skip the part of stack space corresponding to the registers.
4631 Otherwise, start copying to the beginning of the stack space,
4632 by setting SKIP to 0. */
4633 skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
4634
4635 if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x))
4636 x = validize_mem (force_const_mem (mode, x));
4637
4638 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
4639 SUBREGs of such registers are not allowed. */
4640 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
4641 && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
4642 x = copy_to_reg (x);
4643
4644 /* Loop over all the words allocated on the stack for this arg. */
4645 /* We can do it by words, because any scalar bigger than a word
4646 has a size a multiple of a word. */
4647 for (i = num_words - 1; i >= not_stack; i--)
4648 if (i >= not_stack + offset)
4649 if (!emit_push_insn (operand_subword_force (x, i, mode),
4650 word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
4651 0, args_addr,
4652 GEN_INT (args_offset + ((i - not_stack + skip)
4653 * UNITS_PER_WORD)),
4654 reg_parm_stack_space, alignment_pad, sibcall_p))
4655 return false;
4656 }
4657 else
4658 {
4659 rtx addr;
4660 rtx dest;
4661
4662 /* Push padding now if padding above and stack grows down,
4663 or if padding below and stack grows up.
4664 But if space already allocated, this has already been done. */
4665 if (maybe_ne (extra, 0)
4666 && args_addr == 0
4667 && where_pad != PAD_NONE
4668 && where_pad != stack_direction)
4669 anti_adjust_stack (gen_int_mode (extra, Pmode));
4670
4671 #ifdef PUSH_ROUNDING
4672 if (args_addr == 0 && PUSH_ARGS)
4673 emit_single_push_insn (mode, x, type);
4674 else
4675 #endif
4676 {
4677 addr = simplify_gen_binary (PLUS, Pmode, args_addr, args_so_far);
4678 dest = gen_rtx_MEM (mode, memory_address (mode, addr));
4679
4680 /* We do *not* set_mem_attributes here, because incoming arguments
4681 may overlap with sibling call outgoing arguments and we cannot
4682 allow reordering of reads from function arguments with stores
4683 to outgoing arguments of sibling calls. We do, however, want
4684 to record the alignment of the stack slot. */
4685 /* ALIGN may well be better aligned than TYPE, e.g. due to
4686 PARM_BOUNDARY. Assume the caller isn't lying. */
4687 set_mem_align (dest, align);
4688
4689 emit_move_insn (dest, x);
4690 }
4691 }
4692
4693 /* Move the partial arguments into the registers and any overlapping
4694 values that we moved into the pseudos in tmp_regs. */
4695 if (partial > 0 && reg != 0)
4696 {
4697 /* Handle calls that pass values in multiple non-contiguous locations.
4698 The Irix 6 ABI has examples of this. */
4699 if (GET_CODE (reg) == PARALLEL)
4700 emit_group_load (reg, x, type, -1);
4701 else
4702 {
4703 gcc_assert (partial % UNITS_PER_WORD == 0);
4704 move_block_to_reg (REGNO (reg), x, nregs - overlapping, mode);
4705
4706 for (int i = 0; i < overlapping; i++)
4707 emit_move_insn (gen_rtx_REG (word_mode, REGNO (reg)
4708 + nregs - overlapping + i),
4709 tmp_regs[i]);
4710
4711 }
4712 }
4713
4714 if (maybe_ne (extra, 0) && args_addr == 0 && where_pad == stack_direction)
4715 anti_adjust_stack (gen_int_mode (extra, Pmode));
4716
4717 if (alignment_pad && args_addr == 0)
4718 anti_adjust_stack (alignment_pad);
4719
4720 return true;
4721 }
4722
4723 /* Return X if X can be used as a subtarget in a sequence of arithmetic
4724 operations. */
4725
4726 static rtx
get_subtarget(rtx x)4727 get_subtarget (rtx x)
4728 {
4729 return (optimize
4730 || x == 0
4731 /* Only registers can be subtargets. */
4732 || !REG_P (x)
4733 /* Don't use hard regs to avoid extending their life. */
4734 || REGNO (x) < FIRST_PSEUDO_REGISTER
4735 ? 0 : x);
4736 }
4737
4738 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
4739 FIELD is a bitfield. Returns true if the optimization was successful,
4740 and there's nothing else to do. */
4741
4742 static bool
optimize_bitfield_assignment_op(poly_uint64 pbitsize,poly_uint64 pbitpos,poly_uint64 pbitregion_start,poly_uint64 pbitregion_end,machine_mode mode1,rtx str_rtx,tree to,tree src,bool reverse)4743 optimize_bitfield_assignment_op (poly_uint64 pbitsize,
4744 poly_uint64 pbitpos,
4745 poly_uint64 pbitregion_start,
4746 poly_uint64 pbitregion_end,
4747 machine_mode mode1, rtx str_rtx,
4748 tree to, tree src, bool reverse)
4749 {
4750 /* str_mode is not guaranteed to be a scalar type. */
4751 machine_mode str_mode = GET_MODE (str_rtx);
4752 unsigned int str_bitsize;
4753 tree op0, op1;
4754 rtx value, result;
4755 optab binop;
4756 gimple *srcstmt;
4757 enum tree_code code;
4758
4759 unsigned HOST_WIDE_INT bitsize, bitpos, bitregion_start, bitregion_end;
4760 if (mode1 != VOIDmode
4761 || !pbitsize.is_constant (&bitsize)
4762 || !pbitpos.is_constant (&bitpos)
4763 || !pbitregion_start.is_constant (&bitregion_start)
4764 || !pbitregion_end.is_constant (&bitregion_end)
4765 || bitsize >= BITS_PER_WORD
4766 || !GET_MODE_BITSIZE (str_mode).is_constant (&str_bitsize)
4767 || str_bitsize > BITS_PER_WORD
4768 || TREE_SIDE_EFFECTS (to)
4769 || TREE_THIS_VOLATILE (to))
4770 return false;
4771
4772 STRIP_NOPS (src);
4773 if (TREE_CODE (src) != SSA_NAME)
4774 return false;
4775 if (TREE_CODE (TREE_TYPE (src)) != INTEGER_TYPE)
4776 return false;
4777
4778 srcstmt = get_gimple_for_ssa_name (src);
4779 if (!srcstmt
4780 || TREE_CODE_CLASS (gimple_assign_rhs_code (srcstmt)) != tcc_binary)
4781 return false;
4782
4783 code = gimple_assign_rhs_code (srcstmt);
4784
4785 op0 = gimple_assign_rhs1 (srcstmt);
4786
4787 /* If OP0 is an SSA_NAME, then we want to walk the use-def chain
4788 to find its initialization. Hopefully the initialization will
4789 be from a bitfield load. */
4790 if (TREE_CODE (op0) == SSA_NAME)
4791 {
4792 gimple *op0stmt = get_gimple_for_ssa_name (op0);
4793
4794 /* We want to eventually have OP0 be the same as TO, which
4795 should be a bitfield. */
4796 if (!op0stmt
4797 || !is_gimple_assign (op0stmt)
4798 || gimple_assign_rhs_code (op0stmt) != TREE_CODE (to))
4799 return false;
4800 op0 = gimple_assign_rhs1 (op0stmt);
4801 }
4802
4803 op1 = gimple_assign_rhs2 (srcstmt);
4804
4805 if (!operand_equal_p (to, op0, 0))
4806 return false;
4807
4808 if (MEM_P (str_rtx))
4809 {
4810 unsigned HOST_WIDE_INT offset1;
4811
4812 if (str_bitsize == 0 || str_bitsize > BITS_PER_WORD)
4813 str_bitsize = BITS_PER_WORD;
4814
4815 scalar_int_mode best_mode;
4816 if (!get_best_mode (bitsize, bitpos, bitregion_start, bitregion_end,
4817 MEM_ALIGN (str_rtx), str_bitsize, false, &best_mode))
4818 return false;
4819 str_mode = best_mode;
4820 str_bitsize = GET_MODE_BITSIZE (best_mode);
4821
4822 offset1 = bitpos;
4823 bitpos %= str_bitsize;
4824 offset1 = (offset1 - bitpos) / BITS_PER_UNIT;
4825 str_rtx = adjust_address (str_rtx, str_mode, offset1);
4826 }
4827 else if (!REG_P (str_rtx) && GET_CODE (str_rtx) != SUBREG)
4828 return false;
4829
4830 /* If the bit field covers the whole REG/MEM, store_field
4831 will likely generate better code. */
4832 if (bitsize >= str_bitsize)
4833 return false;
4834
4835 /* We can't handle fields split across multiple entities. */
4836 if (bitpos + bitsize > str_bitsize)
4837 return false;
4838
4839 if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
4840 bitpos = str_bitsize - bitpos - bitsize;
4841
4842 switch (code)
4843 {
4844 case PLUS_EXPR:
4845 case MINUS_EXPR:
4846 /* For now, just optimize the case of the topmost bitfield
4847 where we don't need to do any masking and also
4848 1 bit bitfields where xor can be used.
4849 We might win by one instruction for the other bitfields
4850 too if insv/extv instructions aren't used, so that
4851 can be added later. */
4852 if ((reverse || bitpos + bitsize != str_bitsize)
4853 && (bitsize != 1 || TREE_CODE (op1) != INTEGER_CST))
4854 break;
4855
4856 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
4857 value = convert_modes (str_mode,
4858 TYPE_MODE (TREE_TYPE (op1)), value,
4859 TYPE_UNSIGNED (TREE_TYPE (op1)));
4860
4861 /* We may be accessing data outside the field, which means
4862 we can alias adjacent data. */
4863 if (MEM_P (str_rtx))
4864 {
4865 str_rtx = shallow_copy_rtx (str_rtx);
4866 set_mem_alias_set (str_rtx, 0);
4867 set_mem_expr (str_rtx, 0);
4868 }
4869
4870 if (bitsize == 1 && (reverse || bitpos + bitsize != str_bitsize))
4871 {
4872 value = expand_and (str_mode, value, const1_rtx, NULL);
4873 binop = xor_optab;
4874 }
4875 else
4876 binop = code == PLUS_EXPR ? add_optab : sub_optab;
4877
4878 value = expand_shift (LSHIFT_EXPR, str_mode, value, bitpos, NULL_RTX, 1);
4879 if (reverse)
4880 value = flip_storage_order (str_mode, value);
4881 result = expand_binop (str_mode, binop, str_rtx,
4882 value, str_rtx, 1, OPTAB_WIDEN);
4883 if (result != str_rtx)
4884 emit_move_insn (str_rtx, result);
4885 return true;
4886
4887 case BIT_IOR_EXPR:
4888 case BIT_XOR_EXPR:
4889 if (TREE_CODE (op1) != INTEGER_CST)
4890 break;
4891 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
4892 value = convert_modes (str_mode,
4893 TYPE_MODE (TREE_TYPE (op1)), value,
4894 TYPE_UNSIGNED (TREE_TYPE (op1)));
4895
4896 /* We may be accessing data outside the field, which means
4897 we can alias adjacent data. */
4898 if (MEM_P (str_rtx))
4899 {
4900 str_rtx = shallow_copy_rtx (str_rtx);
4901 set_mem_alias_set (str_rtx, 0);
4902 set_mem_expr (str_rtx, 0);
4903 }
4904
4905 binop = code == BIT_IOR_EXPR ? ior_optab : xor_optab;
4906 if (bitpos + bitsize != str_bitsize)
4907 {
4908 rtx mask = gen_int_mode ((HOST_WIDE_INT_1U << bitsize) - 1,
4909 str_mode);
4910 value = expand_and (str_mode, value, mask, NULL_RTX);
4911 }
4912 value = expand_shift (LSHIFT_EXPR, str_mode, value, bitpos, NULL_RTX, 1);
4913 if (reverse)
4914 value = flip_storage_order (str_mode, value);
4915 result = expand_binop (str_mode, binop, str_rtx,
4916 value, str_rtx, 1, OPTAB_WIDEN);
4917 if (result != str_rtx)
4918 emit_move_insn (str_rtx, result);
4919 return true;
4920
4921 default:
4922 break;
4923 }
4924
4925 return false;
4926 }
4927
4928 /* In the C++ memory model, consecutive bit fields in a structure are
4929 considered one memory location.
4930
4931 Given a COMPONENT_REF EXP at position (BITPOS, OFFSET), this function
4932 returns the bit range of consecutive bits in which this COMPONENT_REF
4933 belongs. The values are returned in *BITSTART and *BITEND. *BITPOS
4934 and *OFFSET may be adjusted in the process.
4935
4936 If the access does not need to be restricted, 0 is returned in both
4937 *BITSTART and *BITEND. */
4938
4939 void
get_bit_range(poly_uint64_pod * bitstart,poly_uint64_pod * bitend,tree exp,poly_int64_pod * bitpos,tree * offset)4940 get_bit_range (poly_uint64_pod *bitstart, poly_uint64_pod *bitend, tree exp,
4941 poly_int64_pod *bitpos, tree *offset)
4942 {
4943 poly_int64 bitoffset;
4944 tree field, repr;
4945
4946 gcc_assert (TREE_CODE (exp) == COMPONENT_REF);
4947
4948 field = TREE_OPERAND (exp, 1);
4949 repr = DECL_BIT_FIELD_REPRESENTATIVE (field);
4950 /* If we do not have a DECL_BIT_FIELD_REPRESENTATIVE there is no
4951 need to limit the range we can access. */
4952 if (!repr)
4953 {
4954 *bitstart = *bitend = 0;
4955 return;
4956 }
4957
4958 /* If we have a DECL_BIT_FIELD_REPRESENTATIVE but the enclosing record is
4959 part of a larger bit field, then the representative does not serve any
4960 useful purpose. This can occur in Ada. */
4961 if (handled_component_p (TREE_OPERAND (exp, 0)))
4962 {
4963 machine_mode rmode;
4964 poly_int64 rbitsize, rbitpos;
4965 tree roffset;
4966 int unsignedp, reversep, volatilep = 0;
4967 get_inner_reference (TREE_OPERAND (exp, 0), &rbitsize, &rbitpos,
4968 &roffset, &rmode, &unsignedp, &reversep,
4969 &volatilep);
4970 if (!multiple_p (rbitpos, BITS_PER_UNIT))
4971 {
4972 *bitstart = *bitend = 0;
4973 return;
4974 }
4975 }
4976
4977 /* Compute the adjustment to bitpos from the offset of the field
4978 relative to the representative. DECL_FIELD_OFFSET of field and
4979 repr are the same by construction if they are not constants,
4980 see finish_bitfield_layout. */
4981 poly_uint64 field_offset, repr_offset;
4982 if (poly_int_tree_p (DECL_FIELD_OFFSET (field), &field_offset)
4983 && poly_int_tree_p (DECL_FIELD_OFFSET (repr), &repr_offset))
4984 bitoffset = (field_offset - repr_offset) * BITS_PER_UNIT;
4985 else
4986 bitoffset = 0;
4987 bitoffset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
4988 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
4989
4990 /* If the adjustment is larger than bitpos, we would have a negative bit
4991 position for the lower bound and this may wreak havoc later. Adjust
4992 offset and bitpos to make the lower bound non-negative in that case. */
4993 if (maybe_gt (bitoffset, *bitpos))
4994 {
4995 poly_int64 adjust_bits = upper_bound (bitoffset, *bitpos) - *bitpos;
4996 poly_int64 adjust_bytes = exact_div (adjust_bits, BITS_PER_UNIT);
4997
4998 *bitpos += adjust_bits;
4999 if (*offset == NULL_TREE)
5000 *offset = size_int (-adjust_bytes);
5001 else
5002 *offset = size_binop (MINUS_EXPR, *offset, size_int (adjust_bytes));
5003 *bitstart = 0;
5004 }
5005 else
5006 *bitstart = *bitpos - bitoffset;
5007
5008 *bitend = *bitstart + tree_to_poly_uint64 (DECL_SIZE (repr)) - 1;
5009 }
5010
5011 /* Returns true if BASE is a DECL that does not reside in memory and
5012 has non-BLKmode. DECL_RTL must not be a MEM; if
5013 DECL_RTL was not set yet, return false. */
5014
5015 static inline bool
non_mem_decl_p(tree base)5016 non_mem_decl_p (tree base)
5017 {
5018 if (!DECL_P (base)
5019 || TREE_ADDRESSABLE (base)
5020 || DECL_MODE (base) == BLKmode)
5021 return false;
5022
5023 if (!DECL_RTL_SET_P (base))
5024 return false;
5025
5026 return (!MEM_P (DECL_RTL (base)));
5027 }
5028
5029 /* Returns true if REF refers to an object that does not
5030 reside in memory and has non-BLKmode. */
5031
5032 static inline bool
mem_ref_refers_to_non_mem_p(tree ref)5033 mem_ref_refers_to_non_mem_p (tree ref)
5034 {
5035 tree base;
5036
5037 if (TREE_CODE (ref) == MEM_REF
5038 || TREE_CODE (ref) == TARGET_MEM_REF)
5039 {
5040 tree addr = TREE_OPERAND (ref, 0);
5041
5042 if (TREE_CODE (addr) != ADDR_EXPR)
5043 return false;
5044
5045 base = TREE_OPERAND (addr, 0);
5046 }
5047 else
5048 base = ref;
5049
5050 return non_mem_decl_p (base);
5051 }
5052
5053 /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
5054 is true, try generating a nontemporal store. */
5055
5056 void
expand_assignment(tree to,tree from,bool nontemporal)5057 expand_assignment (tree to, tree from, bool nontemporal)
5058 {
5059 rtx to_rtx = 0;
5060 rtx result;
5061 machine_mode mode;
5062 unsigned int align;
5063 enum insn_code icode;
5064
5065 /* Don't crash if the lhs of the assignment was erroneous. */
5066 if (TREE_CODE (to) == ERROR_MARK)
5067 {
5068 expand_normal (from);
5069 return;
5070 }
5071
5072 /* Optimize away no-op moves without side-effects. */
5073 if (operand_equal_p (to, from, 0))
5074 return;
5075
5076 /* Handle misaligned stores. */
5077 mode = TYPE_MODE (TREE_TYPE (to));
5078 if ((TREE_CODE (to) == MEM_REF
5079 || TREE_CODE (to) == TARGET_MEM_REF
5080 || DECL_P (to))
5081 && mode != BLKmode
5082 && !mem_ref_refers_to_non_mem_p (to)
5083 && ((align = get_object_alignment (to))
5084 < GET_MODE_ALIGNMENT (mode))
5085 && (((icode = optab_handler (movmisalign_optab, mode))
5086 != CODE_FOR_nothing)
5087 || targetm.slow_unaligned_access (mode, align)))
5088 {
5089 rtx reg, mem;
5090
5091 reg = expand_expr (from, NULL_RTX, VOIDmode, EXPAND_NORMAL);
5092 /* Handle PARALLEL. */
5093 reg = maybe_emit_group_store (reg, TREE_TYPE (from));
5094 reg = force_not_mem (reg);
5095 mem = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
5096 if (TREE_CODE (to) == MEM_REF && REF_REVERSE_STORAGE_ORDER (to))
5097 reg = flip_storage_order (mode, reg);
5098
5099 if (icode != CODE_FOR_nothing)
5100 {
5101 class expand_operand ops[2];
5102
5103 create_fixed_operand (&ops[0], mem);
5104 create_input_operand (&ops[1], reg, mode);
5105 /* The movmisalign<mode> pattern cannot fail, else the assignment
5106 would silently be omitted. */
5107 expand_insn (icode, 2, ops);
5108 }
5109 else
5110 store_bit_field (mem, GET_MODE_BITSIZE (mode), 0, 0, 0, mode, reg,
5111 false);
5112 return;
5113 }
5114
5115 /* Assignment of a structure component needs special treatment
5116 if the structure component's rtx is not simply a MEM.
5117 Assignment of an array element at a constant index, and assignment of
5118 an array element in an unaligned packed structure field, has the same
5119 problem. Same for (partially) storing into a non-memory object. */
5120 if (handled_component_p (to)
5121 || (TREE_CODE (to) == MEM_REF
5122 && (REF_REVERSE_STORAGE_ORDER (to)
5123 || mem_ref_refers_to_non_mem_p (to)))
5124 || TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE)
5125 {
5126 machine_mode mode1;
5127 poly_int64 bitsize, bitpos;
5128 poly_uint64 bitregion_start = 0;
5129 poly_uint64 bitregion_end = 0;
5130 tree offset;
5131 int unsignedp, reversep, volatilep = 0;
5132 tree tem;
5133
5134 push_temp_slots ();
5135 tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
5136 &unsignedp, &reversep, &volatilep);
5137
5138 /* Make sure bitpos is not negative, it can wreak havoc later. */
5139 if (maybe_lt (bitpos, 0))
5140 {
5141 gcc_assert (offset == NULL_TREE);
5142 offset = size_int (bits_to_bytes_round_down (bitpos));
5143 bitpos = num_trailing_bits (bitpos);
5144 }
5145
5146 if (TREE_CODE (to) == COMPONENT_REF
5147 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (to, 1)))
5148 get_bit_range (&bitregion_start, &bitregion_end, to, &bitpos, &offset);
5149 /* The C++ memory model naturally applies to byte-aligned fields.
5150 However, if we do not have a DECL_BIT_FIELD_TYPE but BITPOS or
5151 BITSIZE are not byte-aligned, there is no need to limit the range
5152 we can access. This can occur with packed structures in Ada. */
5153 else if (maybe_gt (bitsize, 0)
5154 && multiple_p (bitsize, BITS_PER_UNIT)
5155 && multiple_p (bitpos, BITS_PER_UNIT))
5156 {
5157 bitregion_start = bitpos;
5158 bitregion_end = bitpos + bitsize - 1;
5159 }
5160
5161 to_rtx = expand_expr (tem, NULL_RTX, VOIDmode, EXPAND_WRITE);
5162
5163 /* If the field has a mode, we want to access it in the
5164 field's mode, not the computed mode.
5165 If a MEM has VOIDmode (external with incomplete type),
5166 use BLKmode for it instead. */
5167 if (MEM_P (to_rtx))
5168 {
5169 if (mode1 != VOIDmode)
5170 to_rtx = adjust_address (to_rtx, mode1, 0);
5171 else if (GET_MODE (to_rtx) == VOIDmode)
5172 to_rtx = adjust_address (to_rtx, BLKmode, 0);
5173 }
5174
5175 if (offset != 0)
5176 {
5177 machine_mode address_mode;
5178 rtx offset_rtx;
5179
5180 if (!MEM_P (to_rtx))
5181 {
5182 /* We can get constant negative offsets into arrays with broken
5183 user code. Translate this to a trap instead of ICEing. */
5184 gcc_assert (TREE_CODE (offset) == INTEGER_CST);
5185 expand_builtin_trap ();
5186 to_rtx = gen_rtx_MEM (BLKmode, const0_rtx);
5187 }
5188
5189 offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM);
5190 address_mode = get_address_mode (to_rtx);
5191 if (GET_MODE (offset_rtx) != address_mode)
5192 {
5193 /* We cannot be sure that the RTL in offset_rtx is valid outside
5194 of a memory address context, so force it into a register
5195 before attempting to convert it to the desired mode. */
5196 offset_rtx = force_operand (offset_rtx, NULL_RTX);
5197 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
5198 }
5199
5200 /* If we have an expression in OFFSET_RTX and a non-zero
5201 byte offset in BITPOS, adding the byte offset before the
5202 OFFSET_RTX results in better intermediate code, which makes
5203 later rtl optimization passes perform better.
5204
5205 We prefer intermediate code like this:
5206
5207 r124:DI=r123:DI+0x18
5208 [r124:DI]=r121:DI
5209
5210 ... instead of ...
5211
5212 r124:DI=r123:DI+0x10
5213 [r124:DI+0x8]=r121:DI
5214
5215 This is only done for aligned data values, as these can
5216 be expected to result in single move instructions. */
5217 poly_int64 bytepos;
5218 if (mode1 != VOIDmode
5219 && maybe_ne (bitpos, 0)
5220 && maybe_gt (bitsize, 0)
5221 && multiple_p (bitpos, BITS_PER_UNIT, &bytepos)
5222 && multiple_p (bitpos, bitsize)
5223 && multiple_p (bitsize, GET_MODE_ALIGNMENT (mode1))
5224 && MEM_ALIGN (to_rtx) >= GET_MODE_ALIGNMENT (mode1))
5225 {
5226 to_rtx = adjust_address (to_rtx, mode1, bytepos);
5227 bitregion_start = 0;
5228 if (known_ge (bitregion_end, poly_uint64 (bitpos)))
5229 bitregion_end -= bitpos;
5230 bitpos = 0;
5231 }
5232
5233 to_rtx = offset_address (to_rtx, offset_rtx,
5234 highest_pow2_factor_for_target (to,
5235 offset));
5236 }
5237
5238 /* No action is needed if the target is not a memory and the field
5239 lies completely outside that target. This can occur if the source
5240 code contains an out-of-bounds access to a small array. */
5241 if (!MEM_P (to_rtx)
5242 && GET_MODE (to_rtx) != BLKmode
5243 && known_ge (bitpos, GET_MODE_PRECISION (GET_MODE (to_rtx))))
5244 {
5245 expand_normal (from);
5246 result = NULL;
5247 }
5248 /* Handle expand_expr of a complex value returning a CONCAT. */
5249 else if (GET_CODE (to_rtx) == CONCAT)
5250 {
5251 machine_mode to_mode = GET_MODE (to_rtx);
5252 gcc_checking_assert (COMPLEX_MODE_P (to_mode));
5253 poly_int64 mode_bitsize = GET_MODE_BITSIZE (to_mode);
5254 unsigned short inner_bitsize = GET_MODE_UNIT_BITSIZE (to_mode);
5255 if (TYPE_MODE (TREE_TYPE (from)) == to_mode
5256 && known_eq (bitpos, 0)
5257 && known_eq (bitsize, mode_bitsize))
5258 result = store_expr (from, to_rtx, false, nontemporal, reversep);
5259 else if (TYPE_MODE (TREE_TYPE (from)) == GET_MODE_INNER (to_mode)
5260 && known_eq (bitsize, inner_bitsize)
5261 && (known_eq (bitpos, 0)
5262 || known_eq (bitpos, inner_bitsize)))
5263 result = store_expr (from, XEXP (to_rtx, maybe_ne (bitpos, 0)),
5264 false, nontemporal, reversep);
5265 else if (known_le (bitpos + bitsize, inner_bitsize))
5266 result = store_field (XEXP (to_rtx, 0), bitsize, bitpos,
5267 bitregion_start, bitregion_end,
5268 mode1, from, get_alias_set (to),
5269 nontemporal, reversep);
5270 else if (known_ge (bitpos, inner_bitsize))
5271 result = store_field (XEXP (to_rtx, 1), bitsize,
5272 bitpos - inner_bitsize,
5273 bitregion_start, bitregion_end,
5274 mode1, from, get_alias_set (to),
5275 nontemporal, reversep);
5276 else if (known_eq (bitpos, 0) && known_eq (bitsize, mode_bitsize))
5277 {
5278 result = expand_normal (from);
5279 if (GET_CODE (result) == CONCAT)
5280 {
5281 to_mode = GET_MODE_INNER (to_mode);
5282 machine_mode from_mode = GET_MODE_INNER (GET_MODE (result));
5283 rtx from_real
5284 = simplify_gen_subreg (to_mode, XEXP (result, 0),
5285 from_mode, 0);
5286 rtx from_imag
5287 = simplify_gen_subreg (to_mode, XEXP (result, 1),
5288 from_mode, 0);
5289 if (!from_real || !from_imag)
5290 goto concat_store_slow;
5291 emit_move_insn (XEXP (to_rtx, 0), from_real);
5292 emit_move_insn (XEXP (to_rtx, 1), from_imag);
5293 }
5294 else
5295 {
5296 machine_mode from_mode
5297 = GET_MODE (result) == VOIDmode
5298 ? TYPE_MODE (TREE_TYPE (from))
5299 : GET_MODE (result);
5300 rtx from_rtx;
5301 if (MEM_P (result))
5302 from_rtx = change_address (result, to_mode, NULL_RTX);
5303 else
5304 from_rtx
5305 = simplify_gen_subreg (to_mode, result, from_mode, 0);
5306 if (from_rtx)
5307 {
5308 emit_move_insn (XEXP (to_rtx, 0),
5309 read_complex_part (from_rtx, false));
5310 emit_move_insn (XEXP (to_rtx, 1),
5311 read_complex_part (from_rtx, true));
5312 }
5313 else
5314 {
5315 to_mode = GET_MODE_INNER (to_mode);
5316 rtx from_real
5317 = simplify_gen_subreg (to_mode, result, from_mode, 0);
5318 rtx from_imag
5319 = simplify_gen_subreg (to_mode, result, from_mode,
5320 GET_MODE_SIZE (to_mode));
5321 if (!from_real || !from_imag)
5322 goto concat_store_slow;
5323 emit_move_insn (XEXP (to_rtx, 0), from_real);
5324 emit_move_insn (XEXP (to_rtx, 1), from_imag);
5325 }
5326 }
5327 }
5328 else
5329 {
5330 concat_store_slow:;
5331 rtx temp = assign_stack_temp (GET_MODE (to_rtx),
5332 GET_MODE_SIZE (GET_MODE (to_rtx)));
5333 write_complex_part (temp, XEXP (to_rtx, 0), false);
5334 write_complex_part (temp, XEXP (to_rtx, 1), true);
5335 result = store_field (temp, bitsize, bitpos,
5336 bitregion_start, bitregion_end,
5337 mode1, from, get_alias_set (to),
5338 nontemporal, reversep);
5339 emit_move_insn (XEXP (to_rtx, 0), read_complex_part (temp, false));
5340 emit_move_insn (XEXP (to_rtx, 1), read_complex_part (temp, true));
5341 }
5342 }
5343 /* For calls to functions returning variable length structures, if TO_RTX
5344 is not a MEM, go through a MEM because we must not create temporaries
5345 of the VLA type. */
5346 else if (!MEM_P (to_rtx)
5347 && TREE_CODE (from) == CALL_EXPR
5348 && COMPLETE_TYPE_P (TREE_TYPE (from))
5349 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) != INTEGER_CST)
5350 {
5351 rtx temp = assign_stack_temp (GET_MODE (to_rtx),
5352 GET_MODE_SIZE (GET_MODE (to_rtx)));
5353 result = store_field (temp, bitsize, bitpos, bitregion_start,
5354 bitregion_end, mode1, from, get_alias_set (to),
5355 nontemporal, reversep);
5356 emit_move_insn (to_rtx, temp);
5357 }
5358 else
5359 {
5360 if (MEM_P (to_rtx))
5361 {
5362 /* If the field is at offset zero, we could have been given the
5363 DECL_RTX of the parent struct. Don't munge it. */
5364 to_rtx = shallow_copy_rtx (to_rtx);
5365 set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos);
5366 if (volatilep)
5367 MEM_VOLATILE_P (to_rtx) = 1;
5368 }
5369
5370 gcc_checking_assert (known_ge (bitpos, 0));
5371 if (optimize_bitfield_assignment_op (bitsize, bitpos,
5372 bitregion_start, bitregion_end,
5373 mode1, to_rtx, to, from,
5374 reversep))
5375 result = NULL;
5376 else
5377 result = store_field (to_rtx, bitsize, bitpos,
5378 bitregion_start, bitregion_end,
5379 mode1, from, get_alias_set (to),
5380 nontemporal, reversep);
5381 }
5382
5383 if (result)
5384 preserve_temp_slots (result);
5385 pop_temp_slots ();
5386 return;
5387 }
5388
5389 /* If the rhs is a function call and its value is not an aggregate,
5390 call the function before we start to compute the lhs.
5391 This is needed for correct code for cases such as
5392 val = setjmp (buf) on machines where reference to val
5393 requires loading up part of an address in a separate insn.
5394
5395 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
5396 since it might be a promoted variable where the zero- or sign- extension
5397 needs to be done. Handling this in the normal way is safe because no
5398 computation is done before the call. The same is true for SSA names. */
5399 if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from)
5400 && COMPLETE_TYPE_P (TREE_TYPE (from))
5401 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
5402 && ! (((VAR_P (to)
5403 || TREE_CODE (to) == PARM_DECL
5404 || TREE_CODE (to) == RESULT_DECL)
5405 && REG_P (DECL_RTL (to)))
5406 || TREE_CODE (to) == SSA_NAME))
5407 {
5408 rtx value;
5409
5410 push_temp_slots ();
5411 value = expand_normal (from);
5412
5413 if (to_rtx == 0)
5414 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
5415
5416 /* Handle calls that return values in multiple non-contiguous locations.
5417 The Irix 6 ABI has examples of this. */
5418 if (GET_CODE (to_rtx) == PARALLEL)
5419 {
5420 if (GET_CODE (value) == PARALLEL)
5421 emit_group_move (to_rtx, value);
5422 else
5423 emit_group_load (to_rtx, value, TREE_TYPE (from),
5424 int_size_in_bytes (TREE_TYPE (from)));
5425 }
5426 else if (GET_CODE (value) == PARALLEL)
5427 emit_group_store (to_rtx, value, TREE_TYPE (from),
5428 int_size_in_bytes (TREE_TYPE (from)));
5429 else if (GET_MODE (to_rtx) == BLKmode)
5430 {
5431 /* Handle calls that return BLKmode values in registers. */
5432 if (REG_P (value))
5433 copy_blkmode_from_reg (to_rtx, value, TREE_TYPE (from));
5434 else
5435 emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL);
5436 }
5437 else
5438 {
5439 if (POINTER_TYPE_P (TREE_TYPE (to)))
5440 value = convert_memory_address_addr_space
5441 (as_a <scalar_int_mode> (GET_MODE (to_rtx)), value,
5442 TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (to))));
5443
5444 emit_move_insn (to_rtx, value);
5445 }
5446
5447 preserve_temp_slots (to_rtx);
5448 pop_temp_slots ();
5449 return;
5450 }
5451
5452 /* Ordinary treatment. Expand TO to get a REG or MEM rtx. */
5453 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
5454
5455 /* Don't move directly into a return register. */
5456 if (TREE_CODE (to) == RESULT_DECL
5457 && (REG_P (to_rtx) || GET_CODE (to_rtx) == PARALLEL))
5458 {
5459 rtx temp;
5460
5461 push_temp_slots ();
5462
5463 /* If the source is itself a return value, it still is in a pseudo at
5464 this point so we can move it back to the return register directly. */
5465 if (REG_P (to_rtx)
5466 && TYPE_MODE (TREE_TYPE (from)) == BLKmode
5467 && TREE_CODE (from) != CALL_EXPR)
5468 temp = copy_blkmode_to_reg (GET_MODE (to_rtx), from);
5469 else
5470 temp = expand_expr (from, NULL_RTX, GET_MODE (to_rtx), EXPAND_NORMAL);
5471
5472 /* Handle calls that return values in multiple non-contiguous locations.
5473 The Irix 6 ABI has examples of this. */
5474 if (GET_CODE (to_rtx) == PARALLEL)
5475 {
5476 if (GET_CODE (temp) == PARALLEL)
5477 emit_group_move (to_rtx, temp);
5478 else
5479 emit_group_load (to_rtx, temp, TREE_TYPE (from),
5480 int_size_in_bytes (TREE_TYPE (from)));
5481 }
5482 else if (temp)
5483 emit_move_insn (to_rtx, temp);
5484
5485 preserve_temp_slots (to_rtx);
5486 pop_temp_slots ();
5487 return;
5488 }
5489
5490 /* In case we are returning the contents of an object which overlaps
5491 the place the value is being stored, use a safe function when copying
5492 a value through a pointer into a structure value return block. */
5493 if (TREE_CODE (to) == RESULT_DECL
5494 && TREE_CODE (from) == INDIRECT_REF
5495 && ADDR_SPACE_GENERIC_P
5496 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (from, 0)))))
5497 && refs_may_alias_p (to, from)
5498 && cfun->returns_struct
5499 && !cfun->returns_pcc_struct)
5500 {
5501 rtx from_rtx, size;
5502
5503 push_temp_slots ();
5504 size = expr_size (from);
5505 from_rtx = expand_normal (from);
5506
5507 emit_block_move_via_libcall (XEXP (to_rtx, 0), XEXP (from_rtx, 0), size);
5508
5509 preserve_temp_slots (to_rtx);
5510 pop_temp_slots ();
5511 return;
5512 }
5513
5514 /* Compute FROM and store the value in the rtx we got. */
5515
5516 push_temp_slots ();
5517 result = store_expr (from, to_rtx, 0, nontemporal, false);
5518 preserve_temp_slots (result);
5519 pop_temp_slots ();
5520 return;
5521 }
5522
5523 /* Emits nontemporal store insn that moves FROM to TO. Returns true if this
5524 succeeded, false otherwise. */
5525
5526 bool
emit_storent_insn(rtx to,rtx from)5527 emit_storent_insn (rtx to, rtx from)
5528 {
5529 class expand_operand ops[2];
5530 machine_mode mode = GET_MODE (to);
5531 enum insn_code code = optab_handler (storent_optab, mode);
5532
5533 if (code == CODE_FOR_nothing)
5534 return false;
5535
5536 create_fixed_operand (&ops[0], to);
5537 create_input_operand (&ops[1], from, mode);
5538 return maybe_expand_insn (code, 2, ops);
5539 }
5540
5541 /* Helper function for store_expr storing of STRING_CST. */
5542
5543 static rtx
string_cst_read_str(void * data,HOST_WIDE_INT offset,scalar_int_mode mode)5544 string_cst_read_str (void *data, HOST_WIDE_INT offset, scalar_int_mode mode)
5545 {
5546 tree str = (tree) data;
5547
5548 gcc_assert (offset >= 0);
5549 if (offset >= TREE_STRING_LENGTH (str))
5550 return const0_rtx;
5551
5552 if ((unsigned HOST_WIDE_INT) offset + GET_MODE_SIZE (mode)
5553 > (unsigned HOST_WIDE_INT) TREE_STRING_LENGTH (str))
5554 {
5555 char *p = XALLOCAVEC (char, GET_MODE_SIZE (mode));
5556 size_t l = TREE_STRING_LENGTH (str) - offset;
5557 memcpy (p, TREE_STRING_POINTER (str) + offset, l);
5558 memset (p + l, '\0', GET_MODE_SIZE (mode) - l);
5559 return c_readstr (p, mode, false);
5560 }
5561
5562 return c_readstr (TREE_STRING_POINTER (str) + offset, mode, false);
5563 }
5564
5565 /* Generate code for computing expression EXP,
5566 and storing the value into TARGET.
5567
5568 If the mode is BLKmode then we may return TARGET itself.
5569 It turns out that in BLKmode it doesn't cause a problem.
5570 because C has no operators that could combine two different
5571 assignments into the same BLKmode object with different values
5572 with no sequence point. Will other languages need this to
5573 be more thorough?
5574
5575 If CALL_PARAM_P is nonzero, this is a store into a call param on the
5576 stack, and block moves may need to be treated specially.
5577
5578 If NONTEMPORAL is true, try using a nontemporal store instruction.
5579
5580 If REVERSE is true, the store is to be done in reverse order. */
5581
5582 rtx
store_expr(tree exp,rtx target,int call_param_p,bool nontemporal,bool reverse)5583 store_expr (tree exp, rtx target, int call_param_p,
5584 bool nontemporal, bool reverse)
5585 {
5586 rtx temp;
5587 rtx alt_rtl = NULL_RTX;
5588 location_t loc = curr_insn_location ();
5589
5590 if (VOID_TYPE_P (TREE_TYPE (exp)))
5591 {
5592 /* C++ can generate ?: expressions with a throw expression in one
5593 branch and an rvalue in the other. Here, we resolve attempts to
5594 store the throw expression's nonexistent result. */
5595 gcc_assert (!call_param_p);
5596 expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
5597 return NULL_RTX;
5598 }
5599 if (TREE_CODE (exp) == COMPOUND_EXPR)
5600 {
5601 /* Perform first part of compound expression, then assign from second
5602 part. */
5603 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
5604 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
5605 return store_expr (TREE_OPERAND (exp, 1), target,
5606 call_param_p, nontemporal, reverse);
5607 }
5608 else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
5609 {
5610 /* For conditional expression, get safe form of the target. Then
5611 test the condition, doing the appropriate assignment on either
5612 side. This avoids the creation of unnecessary temporaries.
5613 For non-BLKmode, it is more efficient not to do this. */
5614
5615 rtx_code_label *lab1 = gen_label_rtx (), *lab2 = gen_label_rtx ();
5616
5617 do_pending_stack_adjust ();
5618 NO_DEFER_POP;
5619 jumpifnot (TREE_OPERAND (exp, 0), lab1,
5620 profile_probability::uninitialized ());
5621 store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
5622 nontemporal, reverse);
5623 emit_jump_insn (targetm.gen_jump (lab2));
5624 emit_barrier ();
5625 emit_label (lab1);
5626 store_expr (TREE_OPERAND (exp, 2), target, call_param_p,
5627 nontemporal, reverse);
5628 emit_label (lab2);
5629 OK_DEFER_POP;
5630
5631 return NULL_RTX;
5632 }
5633 else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
5634 /* If this is a scalar in a register that is stored in a wider mode
5635 than the declared mode, compute the result into its declared mode
5636 and then convert to the wider mode. Our value is the computed
5637 expression. */
5638 {
5639 rtx inner_target = 0;
5640 scalar_int_mode outer_mode = subreg_unpromoted_mode (target);
5641 scalar_int_mode inner_mode = subreg_promoted_mode (target);
5642
5643 /* We can do the conversion inside EXP, which will often result
5644 in some optimizations. Do the conversion in two steps: first
5645 change the signedness, if needed, then the extend. But don't
5646 do this if the type of EXP is a subtype of something else
5647 since then the conversion might involve more than just
5648 converting modes. */
5649 if (INTEGRAL_TYPE_P (TREE_TYPE (exp))
5650 && TREE_TYPE (TREE_TYPE (exp)) == 0
5651 && GET_MODE_PRECISION (outer_mode)
5652 == TYPE_PRECISION (TREE_TYPE (exp)))
5653 {
5654 if (!SUBREG_CHECK_PROMOTED_SIGN (target,
5655 TYPE_UNSIGNED (TREE_TYPE (exp))))
5656 {
5657 /* Some types, e.g. Fortran's logical*4, won't have a signed
5658 version, so use the mode instead. */
5659 tree ntype
5660 = (signed_or_unsigned_type_for
5661 (SUBREG_PROMOTED_SIGN (target), TREE_TYPE (exp)));
5662 if (ntype == NULL)
5663 ntype = lang_hooks.types.type_for_mode
5664 (TYPE_MODE (TREE_TYPE (exp)),
5665 SUBREG_PROMOTED_SIGN (target));
5666
5667 exp = fold_convert_loc (loc, ntype, exp);
5668 }
5669
5670 exp = fold_convert_loc (loc, lang_hooks.types.type_for_mode
5671 (inner_mode, SUBREG_PROMOTED_SIGN (target)),
5672 exp);
5673
5674 inner_target = SUBREG_REG (target);
5675 }
5676
5677 temp = expand_expr (exp, inner_target, VOIDmode,
5678 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
5679
5680
5681 /* If TEMP is a VOIDmode constant, use convert_modes to make
5682 sure that we properly convert it. */
5683 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
5684 {
5685 temp = convert_modes (outer_mode, TYPE_MODE (TREE_TYPE (exp)),
5686 temp, SUBREG_PROMOTED_SIGN (target));
5687 temp = convert_modes (inner_mode, outer_mode, temp,
5688 SUBREG_PROMOTED_SIGN (target));
5689 }
5690
5691 convert_move (SUBREG_REG (target), temp,
5692 SUBREG_PROMOTED_SIGN (target));
5693
5694 return NULL_RTX;
5695 }
5696 else if ((TREE_CODE (exp) == STRING_CST
5697 || (TREE_CODE (exp) == MEM_REF
5698 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
5699 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
5700 == STRING_CST
5701 && integer_zerop (TREE_OPERAND (exp, 1))))
5702 && !nontemporal && !call_param_p
5703 && MEM_P (target))
5704 {
5705 /* Optimize initialization of an array with a STRING_CST. */
5706 HOST_WIDE_INT exp_len, str_copy_len;
5707 rtx dest_mem;
5708 tree str = TREE_CODE (exp) == STRING_CST
5709 ? exp : TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
5710
5711 exp_len = int_expr_size (exp);
5712 if (exp_len <= 0)
5713 goto normal_expr;
5714
5715 if (TREE_STRING_LENGTH (str) <= 0)
5716 goto normal_expr;
5717
5718 if (can_store_by_pieces (exp_len, string_cst_read_str, (void *) str,
5719 MEM_ALIGN (target), false))
5720 {
5721 store_by_pieces (target, exp_len, string_cst_read_str, (void *) str,
5722 MEM_ALIGN (target), false, RETURN_BEGIN);
5723 return NULL_RTX;
5724 }
5725
5726 str_copy_len = TREE_STRING_LENGTH (str);
5727 if ((STORE_MAX_PIECES & (STORE_MAX_PIECES - 1)) == 0)
5728 {
5729 str_copy_len += STORE_MAX_PIECES - 1;
5730 str_copy_len &= ~(STORE_MAX_PIECES - 1);
5731 }
5732 if (str_copy_len >= exp_len)
5733 goto normal_expr;
5734
5735 if (!can_store_by_pieces (str_copy_len, string_cst_read_str,
5736 (void *) str, MEM_ALIGN (target), false))
5737 goto normal_expr;
5738
5739 dest_mem = store_by_pieces (target, str_copy_len, string_cst_read_str,
5740 (void *) str, MEM_ALIGN (target), false,
5741 RETURN_END);
5742 clear_storage (adjust_address_1 (dest_mem, BLKmode, 0, 1, 1, 0,
5743 exp_len - str_copy_len),
5744 GEN_INT (exp_len - str_copy_len), BLOCK_OP_NORMAL);
5745 return NULL_RTX;
5746 }
5747 else
5748 {
5749 rtx tmp_target;
5750
5751 normal_expr:
5752 /* If we want to use a nontemporal or a reverse order store, force the
5753 value into a register first. */
5754 tmp_target = nontemporal || reverse ? NULL_RTX : target;
5755 temp = expand_expr_real (exp, tmp_target, GET_MODE (target),
5756 (call_param_p
5757 ? EXPAND_STACK_PARM : EXPAND_NORMAL),
5758 &alt_rtl, false);
5759 }
5760
5761 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
5762 the same as that of TARGET, adjust the constant. This is needed, for
5763 example, in case it is a CONST_DOUBLE or CONST_WIDE_INT and we want
5764 only a word-sized value. */
5765 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
5766 && TREE_CODE (exp) != ERROR_MARK
5767 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
5768 {
5769 if (GET_MODE_CLASS (GET_MODE (target))
5770 != GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (exp)))
5771 && known_eq (GET_MODE_BITSIZE (GET_MODE (target)),
5772 GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp)))))
5773 {
5774 rtx t = simplify_gen_subreg (GET_MODE (target), temp,
5775 TYPE_MODE (TREE_TYPE (exp)), 0);
5776 if (t)
5777 temp = t;
5778 }
5779 if (GET_MODE (temp) == VOIDmode)
5780 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
5781 temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
5782 }
5783
5784 /* If value was not generated in the target, store it there.
5785 Convert the value to TARGET's type first if necessary and emit the
5786 pending incrementations that have been queued when expanding EXP.
5787 Note that we cannot emit the whole queue blindly because this will
5788 effectively disable the POST_INC optimization later.
5789
5790 If TEMP and TARGET compare equal according to rtx_equal_p, but
5791 one or both of them are volatile memory refs, we have to distinguish
5792 two cases:
5793 - expand_expr has used TARGET. In this case, we must not generate
5794 another copy. This can be detected by TARGET being equal according
5795 to == .
5796 - expand_expr has not used TARGET - that means that the source just
5797 happens to have the same RTX form. Since temp will have been created
5798 by expand_expr, it will compare unequal according to == .
5799 We must generate a copy in this case, to reach the correct number
5800 of volatile memory references. */
5801
5802 if ((! rtx_equal_p (temp, target)
5803 || (temp != target && (side_effects_p (temp)
5804 || side_effects_p (target))))
5805 && TREE_CODE (exp) != ERROR_MARK
5806 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
5807 but TARGET is not valid memory reference, TEMP will differ
5808 from TARGET although it is really the same location. */
5809 && !(alt_rtl
5810 && rtx_equal_p (alt_rtl, target)
5811 && !side_effects_p (alt_rtl)
5812 && !side_effects_p (target))
5813 /* If there's nothing to copy, don't bother. Don't call
5814 expr_size unless necessary, because some front-ends (C++)
5815 expr_size-hook must not be given objects that are not
5816 supposed to be bit-copied or bit-initialized. */
5817 && expr_size (exp) != const0_rtx)
5818 {
5819 if (GET_MODE (temp) != GET_MODE (target) && GET_MODE (temp) != VOIDmode)
5820 {
5821 if (GET_MODE (target) == BLKmode)
5822 {
5823 /* Handle calls that return BLKmode values in registers. */
5824 if (REG_P (temp) && TREE_CODE (exp) == CALL_EXPR)
5825 copy_blkmode_from_reg (target, temp, TREE_TYPE (exp));
5826 else
5827 store_bit_field (target,
5828 rtx_to_poly_int64 (expr_size (exp))
5829 * BITS_PER_UNIT,
5830 0, 0, 0, GET_MODE (temp), temp, reverse);
5831 }
5832 else
5833 convert_move (target, temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
5834 }
5835
5836 else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
5837 {
5838 /* Handle copying a string constant into an array. The string
5839 constant may be shorter than the array. So copy just the string's
5840 actual length, and clear the rest. First get the size of the data
5841 type of the string, which is actually the size of the target. */
5842 rtx size = expr_size (exp);
5843
5844 if (CONST_INT_P (size)
5845 && INTVAL (size) < TREE_STRING_LENGTH (exp))
5846 emit_block_move (target, temp, size,
5847 (call_param_p
5848 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
5849 else
5850 {
5851 machine_mode pointer_mode
5852 = targetm.addr_space.pointer_mode (MEM_ADDR_SPACE (target));
5853 machine_mode address_mode = get_address_mode (target);
5854
5855 /* Compute the size of the data to copy from the string. */
5856 tree copy_size
5857 = size_binop_loc (loc, MIN_EXPR,
5858 make_tree (sizetype, size),
5859 size_int (TREE_STRING_LENGTH (exp)));
5860 rtx copy_size_rtx
5861 = expand_expr (copy_size, NULL_RTX, VOIDmode,
5862 (call_param_p
5863 ? EXPAND_STACK_PARM : EXPAND_NORMAL));
5864 rtx_code_label *label = 0;
5865
5866 /* Copy that much. */
5867 copy_size_rtx = convert_to_mode (pointer_mode, copy_size_rtx,
5868 TYPE_UNSIGNED (sizetype));
5869 emit_block_move (target, temp, copy_size_rtx,
5870 (call_param_p
5871 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
5872
5873 /* Figure out how much is left in TARGET that we have to clear.
5874 Do all calculations in pointer_mode. */
5875 poly_int64 const_copy_size;
5876 if (poly_int_rtx_p (copy_size_rtx, &const_copy_size))
5877 {
5878 size = plus_constant (address_mode, size, -const_copy_size);
5879 target = adjust_address (target, BLKmode, const_copy_size);
5880 }
5881 else
5882 {
5883 size = expand_binop (TYPE_MODE (sizetype), sub_optab, size,
5884 copy_size_rtx, NULL_RTX, 0,
5885 OPTAB_LIB_WIDEN);
5886
5887 if (GET_MODE (copy_size_rtx) != address_mode)
5888 copy_size_rtx = convert_to_mode (address_mode,
5889 copy_size_rtx,
5890 TYPE_UNSIGNED (sizetype));
5891
5892 target = offset_address (target, copy_size_rtx,
5893 highest_pow2_factor (copy_size));
5894 label = gen_label_rtx ();
5895 emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
5896 GET_MODE (size), 0, label);
5897 }
5898
5899 if (size != const0_rtx)
5900 clear_storage (target, size, BLOCK_OP_NORMAL);
5901
5902 if (label)
5903 emit_label (label);
5904 }
5905 }
5906 /* Handle calls that return values in multiple non-contiguous locations.
5907 The Irix 6 ABI has examples of this. */
5908 else if (GET_CODE (target) == PARALLEL)
5909 {
5910 if (GET_CODE (temp) == PARALLEL)
5911 emit_group_move (target, temp);
5912 else
5913 emit_group_load (target, temp, TREE_TYPE (exp),
5914 int_size_in_bytes (TREE_TYPE (exp)));
5915 }
5916 else if (GET_CODE (temp) == PARALLEL)
5917 emit_group_store (target, temp, TREE_TYPE (exp),
5918 int_size_in_bytes (TREE_TYPE (exp)));
5919 else if (GET_MODE (temp) == BLKmode)
5920 emit_block_move (target, temp, expr_size (exp),
5921 (call_param_p
5922 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
5923 /* If we emit a nontemporal store, there is nothing else to do. */
5924 else if (nontemporal && emit_storent_insn (target, temp))
5925 ;
5926 else
5927 {
5928 if (reverse)
5929 temp = flip_storage_order (GET_MODE (target), temp);
5930 temp = force_operand (temp, target);
5931 if (temp != target)
5932 emit_move_insn (target, temp);
5933 }
5934 }
5935
5936 return NULL_RTX;
5937 }
5938
5939 /* Return true if field F of structure TYPE is a flexible array. */
5940
5941 static bool
flexible_array_member_p(const_tree f,const_tree type)5942 flexible_array_member_p (const_tree f, const_tree type)
5943 {
5944 const_tree tf;
5945
5946 tf = TREE_TYPE (f);
5947 return (DECL_CHAIN (f) == NULL
5948 && TREE_CODE (tf) == ARRAY_TYPE
5949 && TYPE_DOMAIN (tf)
5950 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf))
5951 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf)))
5952 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf))
5953 && int_size_in_bytes (type) >= 0);
5954 }
5955
5956 /* If FOR_CTOR_P, return the number of top-level elements that a constructor
5957 must have in order for it to completely initialize a value of type TYPE.
5958 Return -1 if the number isn't known.
5959
5960 If !FOR_CTOR_P, return an estimate of the number of scalars in TYPE. */
5961
5962 static HOST_WIDE_INT
count_type_elements(const_tree type,bool for_ctor_p)5963 count_type_elements (const_tree type, bool for_ctor_p)
5964 {
5965 switch (TREE_CODE (type))
5966 {
5967 case ARRAY_TYPE:
5968 {
5969 tree nelts;
5970
5971 nelts = array_type_nelts (type);
5972 if (nelts && tree_fits_uhwi_p (nelts))
5973 {
5974 unsigned HOST_WIDE_INT n;
5975
5976 n = tree_to_uhwi (nelts) + 1;
5977 if (n == 0 || for_ctor_p)
5978 return n;
5979 else
5980 return n * count_type_elements (TREE_TYPE (type), false);
5981 }
5982 return for_ctor_p ? -1 : 1;
5983 }
5984
5985 case RECORD_TYPE:
5986 {
5987 unsigned HOST_WIDE_INT n;
5988 tree f;
5989
5990 n = 0;
5991 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
5992 if (TREE_CODE (f) == FIELD_DECL)
5993 {
5994 if (!for_ctor_p)
5995 n += count_type_elements (TREE_TYPE (f), false);
5996 else if (!flexible_array_member_p (f, type))
5997 /* Don't count flexible arrays, which are not supposed
5998 to be initialized. */
5999 n += 1;
6000 }
6001
6002 return n;
6003 }
6004
6005 case UNION_TYPE:
6006 case QUAL_UNION_TYPE:
6007 {
6008 tree f;
6009 HOST_WIDE_INT n, m;
6010
6011 gcc_assert (!for_ctor_p);
6012 /* Estimate the number of scalars in each field and pick the
6013 maximum. Other estimates would do instead; the idea is simply
6014 to make sure that the estimate is not sensitive to the ordering
6015 of the fields. */
6016 n = 1;
6017 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
6018 if (TREE_CODE (f) == FIELD_DECL)
6019 {
6020 m = count_type_elements (TREE_TYPE (f), false);
6021 /* If the field doesn't span the whole union, add an extra
6022 scalar for the rest. */
6023 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (f)),
6024 TYPE_SIZE (type)) != 1)
6025 m++;
6026 if (n < m)
6027 n = m;
6028 }
6029 return n;
6030 }
6031
6032 case COMPLEX_TYPE:
6033 return 2;
6034
6035 case VECTOR_TYPE:
6036 {
6037 unsigned HOST_WIDE_INT nelts;
6038 if (TYPE_VECTOR_SUBPARTS (type).is_constant (&nelts))
6039 return nelts;
6040 else
6041 return -1;
6042 }
6043
6044 case INTEGER_TYPE:
6045 case REAL_TYPE:
6046 case FIXED_POINT_TYPE:
6047 case ENUMERAL_TYPE:
6048 case BOOLEAN_TYPE:
6049 case POINTER_TYPE:
6050 case OFFSET_TYPE:
6051 case REFERENCE_TYPE:
6052 case NULLPTR_TYPE:
6053 return 1;
6054
6055 case ERROR_MARK:
6056 return 0;
6057
6058 case VOID_TYPE:
6059 case METHOD_TYPE:
6060 case FUNCTION_TYPE:
6061 case LANG_TYPE:
6062 default:
6063 gcc_unreachable ();
6064 }
6065 }
6066
6067 /* Helper for categorize_ctor_elements. Identical interface. */
6068
6069 static bool
categorize_ctor_elements_1(const_tree ctor,HOST_WIDE_INT * p_nz_elts,HOST_WIDE_INT * p_unique_nz_elts,HOST_WIDE_INT * p_init_elts,bool * p_complete)6070 categorize_ctor_elements_1 (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
6071 HOST_WIDE_INT *p_unique_nz_elts,
6072 HOST_WIDE_INT *p_init_elts, bool *p_complete)
6073 {
6074 unsigned HOST_WIDE_INT idx;
6075 HOST_WIDE_INT nz_elts, unique_nz_elts, init_elts, num_fields;
6076 tree value, purpose, elt_type;
6077
6078 /* Whether CTOR is a valid constant initializer, in accordance with what
6079 initializer_constant_valid_p does. If inferred from the constructor
6080 elements, true until proven otherwise. */
6081 bool const_from_elts_p = constructor_static_from_elts_p (ctor);
6082 bool const_p = const_from_elts_p ? true : TREE_STATIC (ctor);
6083
6084 nz_elts = 0;
6085 unique_nz_elts = 0;
6086 init_elts = 0;
6087 num_fields = 0;
6088 elt_type = NULL_TREE;
6089
6090 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, purpose, value)
6091 {
6092 HOST_WIDE_INT mult = 1;
6093
6094 if (purpose && TREE_CODE (purpose) == RANGE_EXPR)
6095 {
6096 tree lo_index = TREE_OPERAND (purpose, 0);
6097 tree hi_index = TREE_OPERAND (purpose, 1);
6098
6099 if (tree_fits_uhwi_p (lo_index) && tree_fits_uhwi_p (hi_index))
6100 mult = (tree_to_uhwi (hi_index)
6101 - tree_to_uhwi (lo_index) + 1);
6102 }
6103 num_fields += mult;
6104 elt_type = TREE_TYPE (value);
6105
6106 switch (TREE_CODE (value))
6107 {
6108 case CONSTRUCTOR:
6109 {
6110 HOST_WIDE_INT nz = 0, unz = 0, ic = 0;
6111
6112 bool const_elt_p = categorize_ctor_elements_1 (value, &nz, &unz,
6113 &ic, p_complete);
6114
6115 nz_elts += mult * nz;
6116 unique_nz_elts += unz;
6117 init_elts += mult * ic;
6118
6119 if (const_from_elts_p && const_p)
6120 const_p = const_elt_p;
6121 }
6122 break;
6123
6124 case INTEGER_CST:
6125 case REAL_CST:
6126 case FIXED_CST:
6127 if (!initializer_zerop (value))
6128 {
6129 nz_elts += mult;
6130 unique_nz_elts++;
6131 }
6132 init_elts += mult;
6133 break;
6134
6135 case STRING_CST:
6136 nz_elts += mult * TREE_STRING_LENGTH (value);
6137 unique_nz_elts += TREE_STRING_LENGTH (value);
6138 init_elts += mult * TREE_STRING_LENGTH (value);
6139 break;
6140
6141 case COMPLEX_CST:
6142 if (!initializer_zerop (TREE_REALPART (value)))
6143 {
6144 nz_elts += mult;
6145 unique_nz_elts++;
6146 }
6147 if (!initializer_zerop (TREE_IMAGPART (value)))
6148 {
6149 nz_elts += mult;
6150 unique_nz_elts++;
6151 }
6152 init_elts += 2 * mult;
6153 break;
6154
6155 case VECTOR_CST:
6156 {
6157 /* We can only construct constant-length vectors using
6158 CONSTRUCTOR. */
6159 unsigned int nunits = VECTOR_CST_NELTS (value).to_constant ();
6160 for (unsigned int i = 0; i < nunits; ++i)
6161 {
6162 tree v = VECTOR_CST_ELT (value, i);
6163 if (!initializer_zerop (v))
6164 {
6165 nz_elts += mult;
6166 unique_nz_elts++;
6167 }
6168 init_elts += mult;
6169 }
6170 }
6171 break;
6172
6173 default:
6174 {
6175 HOST_WIDE_INT tc = count_type_elements (elt_type, false);
6176 nz_elts += mult * tc;
6177 unique_nz_elts += tc;
6178 init_elts += mult * tc;
6179
6180 if (const_from_elts_p && const_p)
6181 const_p
6182 = initializer_constant_valid_p (value,
6183 elt_type,
6184 TYPE_REVERSE_STORAGE_ORDER
6185 (TREE_TYPE (ctor)))
6186 != NULL_TREE;
6187 }
6188 break;
6189 }
6190 }
6191
6192 if (*p_complete && !complete_ctor_at_level_p (TREE_TYPE (ctor),
6193 num_fields, elt_type))
6194 *p_complete = false;
6195
6196 *p_nz_elts += nz_elts;
6197 *p_unique_nz_elts += unique_nz_elts;
6198 *p_init_elts += init_elts;
6199
6200 return const_p;
6201 }
6202
6203 /* Examine CTOR to discover:
6204 * how many scalar fields are set to nonzero values,
6205 and place it in *P_NZ_ELTS;
6206 * the same, but counting RANGE_EXPRs as multiplier of 1 instead of
6207 high - low + 1 (this can be useful for callers to determine ctors
6208 that could be cheaply initialized with - perhaps nested - loops
6209 compared to copied from huge read-only data),
6210 and place it in *P_UNIQUE_NZ_ELTS;
6211 * how many scalar fields in total are in CTOR,
6212 and place it in *P_ELT_COUNT.
6213 * whether the constructor is complete -- in the sense that every
6214 meaningful byte is explicitly given a value --
6215 and place it in *P_COMPLETE.
6216
6217 Return whether or not CTOR is a valid static constant initializer, the same
6218 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
6219
6220 bool
categorize_ctor_elements(const_tree ctor,HOST_WIDE_INT * p_nz_elts,HOST_WIDE_INT * p_unique_nz_elts,HOST_WIDE_INT * p_init_elts,bool * p_complete)6221 categorize_ctor_elements (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
6222 HOST_WIDE_INT *p_unique_nz_elts,
6223 HOST_WIDE_INT *p_init_elts, bool *p_complete)
6224 {
6225 *p_nz_elts = 0;
6226 *p_unique_nz_elts = 0;
6227 *p_init_elts = 0;
6228 *p_complete = true;
6229
6230 return categorize_ctor_elements_1 (ctor, p_nz_elts, p_unique_nz_elts,
6231 p_init_elts, p_complete);
6232 }
6233
6234 /* TYPE is initialized by a constructor with NUM_ELTS elements, the last
6235 of which had type LAST_TYPE. Each element was itself a complete
6236 initializer, in the sense that every meaningful byte was explicitly
6237 given a value. Return true if the same is true for the constructor
6238 as a whole. */
6239
6240 bool
complete_ctor_at_level_p(const_tree type,HOST_WIDE_INT num_elts,const_tree last_type)6241 complete_ctor_at_level_p (const_tree type, HOST_WIDE_INT num_elts,
6242 const_tree last_type)
6243 {
6244 if (TREE_CODE (type) == UNION_TYPE
6245 || TREE_CODE (type) == QUAL_UNION_TYPE)
6246 {
6247 if (num_elts == 0)
6248 return false;
6249
6250 gcc_assert (num_elts == 1 && last_type);
6251
6252 /* ??? We could look at each element of the union, and find the
6253 largest element. Which would avoid comparing the size of the
6254 initialized element against any tail padding in the union.
6255 Doesn't seem worth the effort... */
6256 return simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (last_type)) == 1;
6257 }
6258
6259 return count_type_elements (type, true) == num_elts;
6260 }
6261
6262 /* Return 1 if EXP contains mostly (3/4) zeros. */
6263
6264 static int
mostly_zeros_p(const_tree exp)6265 mostly_zeros_p (const_tree exp)
6266 {
6267 if (TREE_CODE (exp) == CONSTRUCTOR)
6268 {
6269 HOST_WIDE_INT nz_elts, unz_elts, init_elts;
6270 bool complete_p;
6271
6272 categorize_ctor_elements (exp, &nz_elts, &unz_elts, &init_elts,
6273 &complete_p);
6274 return !complete_p || nz_elts < init_elts / 4;
6275 }
6276
6277 return initializer_zerop (exp);
6278 }
6279
6280 /* Return 1 if EXP contains all zeros. */
6281
6282 static int
all_zeros_p(const_tree exp)6283 all_zeros_p (const_tree exp)
6284 {
6285 if (TREE_CODE (exp) == CONSTRUCTOR)
6286 {
6287 HOST_WIDE_INT nz_elts, unz_elts, init_elts;
6288 bool complete_p;
6289
6290 categorize_ctor_elements (exp, &nz_elts, &unz_elts, &init_elts,
6291 &complete_p);
6292 return nz_elts == 0;
6293 }
6294
6295 return initializer_zerop (exp);
6296 }
6297
6298 /* Helper function for store_constructor.
6299 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
6300 CLEARED is as for store_constructor.
6301 ALIAS_SET is the alias set to use for any stores.
6302 If REVERSE is true, the store is to be done in reverse order.
6303
6304 This provides a recursive shortcut back to store_constructor when it isn't
6305 necessary to go through store_field. This is so that we can pass through
6306 the cleared field to let store_constructor know that we may not have to
6307 clear a substructure if the outer structure has already been cleared. */
6308
6309 static void
store_constructor_field(rtx target,poly_uint64 bitsize,poly_int64 bitpos,poly_uint64 bitregion_start,poly_uint64 bitregion_end,machine_mode mode,tree exp,int cleared,alias_set_type alias_set,bool reverse)6310 store_constructor_field (rtx target, poly_uint64 bitsize, poly_int64 bitpos,
6311 poly_uint64 bitregion_start,
6312 poly_uint64 bitregion_end,
6313 machine_mode mode,
6314 tree exp, int cleared,
6315 alias_set_type alias_set, bool reverse)
6316 {
6317 poly_int64 bytepos;
6318 poly_uint64 bytesize;
6319 if (TREE_CODE (exp) == CONSTRUCTOR
6320 /* We can only call store_constructor recursively if the size and
6321 bit position are on a byte boundary. */
6322 && multiple_p (bitpos, BITS_PER_UNIT, &bytepos)
6323 && maybe_ne (bitsize, 0U)
6324 && multiple_p (bitsize, BITS_PER_UNIT, &bytesize)
6325 /* If we have a nonzero bitpos for a register target, then we just
6326 let store_field do the bitfield handling. This is unlikely to
6327 generate unnecessary clear instructions anyways. */
6328 && (known_eq (bitpos, 0) || MEM_P (target)))
6329 {
6330 if (MEM_P (target))
6331 {
6332 machine_mode target_mode = GET_MODE (target);
6333 if (target_mode != BLKmode
6334 && !multiple_p (bitpos, GET_MODE_ALIGNMENT (target_mode)))
6335 target_mode = BLKmode;
6336 target = adjust_address (target, target_mode, bytepos);
6337 }
6338
6339
6340 /* Update the alias set, if required. */
6341 if (MEM_P (target) && ! MEM_KEEP_ALIAS_SET_P (target)
6342 && MEM_ALIAS_SET (target) != 0)
6343 {
6344 target = copy_rtx (target);
6345 set_mem_alias_set (target, alias_set);
6346 }
6347
6348 store_constructor (exp, target, cleared, bytesize, reverse);
6349 }
6350 else
6351 store_field (target, bitsize, bitpos, bitregion_start, bitregion_end, mode,
6352 exp, alias_set, false, reverse);
6353 }
6354
6355
6356 /* Returns the number of FIELD_DECLs in TYPE. */
6357
6358 static int
fields_length(const_tree type)6359 fields_length (const_tree type)
6360 {
6361 tree t = TYPE_FIELDS (type);
6362 int count = 0;
6363
6364 for (; t; t = DECL_CHAIN (t))
6365 if (TREE_CODE (t) == FIELD_DECL)
6366 ++count;
6367
6368 return count;
6369 }
6370
6371
6372 /* Store the value of constructor EXP into the rtx TARGET.
6373 TARGET is either a REG or a MEM; we know it cannot conflict, since
6374 safe_from_p has been called.
6375 CLEARED is true if TARGET is known to have been zero'd.
6376 SIZE is the number of bytes of TARGET we are allowed to modify: this
6377 may not be the same as the size of EXP if we are assigning to a field
6378 which has been packed to exclude padding bits.
6379 If REVERSE is true, the store is to be done in reverse order. */
6380
6381 static void
store_constructor(tree exp,rtx target,int cleared,poly_int64 size,bool reverse)6382 store_constructor (tree exp, rtx target, int cleared, poly_int64 size,
6383 bool reverse)
6384 {
6385 tree type = TREE_TYPE (exp);
6386 HOST_WIDE_INT exp_size = int_size_in_bytes (type);
6387 poly_int64 bitregion_end = known_gt (size, 0) ? size * BITS_PER_UNIT - 1 : 0;
6388
6389 switch (TREE_CODE (type))
6390 {
6391 case RECORD_TYPE:
6392 case UNION_TYPE:
6393 case QUAL_UNION_TYPE:
6394 {
6395 unsigned HOST_WIDE_INT idx;
6396 tree field, value;
6397
6398 /* The storage order is specified for every aggregate type. */
6399 reverse = TYPE_REVERSE_STORAGE_ORDER (type);
6400
6401 /* If size is zero or the target is already cleared, do nothing. */
6402 if (known_eq (size, 0) || cleared)
6403 cleared = 1;
6404 /* We either clear the aggregate or indicate the value is dead. */
6405 else if ((TREE_CODE (type) == UNION_TYPE
6406 || TREE_CODE (type) == QUAL_UNION_TYPE)
6407 && ! CONSTRUCTOR_ELTS (exp))
6408 /* If the constructor is empty, clear the union. */
6409 {
6410 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
6411 cleared = 1;
6412 }
6413
6414 /* If we are building a static constructor into a register,
6415 set the initial value as zero so we can fold the value into
6416 a constant. But if more than one register is involved,
6417 this probably loses. */
6418 else if (REG_P (target) && TREE_STATIC (exp)
6419 && known_le (GET_MODE_SIZE (GET_MODE (target)),
6420 REGMODE_NATURAL_SIZE (GET_MODE (target))))
6421 {
6422 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
6423 cleared = 1;
6424 }
6425
6426 /* If the constructor has fewer fields than the structure or
6427 if we are initializing the structure to mostly zeros, clear
6428 the whole structure first. Don't do this if TARGET is a
6429 register whose mode size isn't equal to SIZE since
6430 clear_storage can't handle this case. */
6431 else if (known_size_p (size)
6432 && (((int) CONSTRUCTOR_NELTS (exp) != fields_length (type))
6433 || mostly_zeros_p (exp))
6434 && (!REG_P (target)
6435 || known_eq (GET_MODE_SIZE (GET_MODE (target)), size)))
6436 {
6437 clear_storage (target, gen_int_mode (size, Pmode),
6438 BLOCK_OP_NORMAL);
6439 cleared = 1;
6440 }
6441
6442 if (REG_P (target) && !cleared)
6443 emit_clobber (target);
6444
6445 /* Store each element of the constructor into the
6446 corresponding field of TARGET. */
6447 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, field, value)
6448 {
6449 machine_mode mode;
6450 HOST_WIDE_INT bitsize;
6451 HOST_WIDE_INT bitpos = 0;
6452 tree offset;
6453 rtx to_rtx = target;
6454
6455 /* Just ignore missing fields. We cleared the whole
6456 structure, above, if any fields are missing. */
6457 if (field == 0)
6458 continue;
6459
6460 if (cleared && initializer_zerop (value))
6461 continue;
6462
6463 if (tree_fits_uhwi_p (DECL_SIZE (field)))
6464 bitsize = tree_to_uhwi (DECL_SIZE (field));
6465 else
6466 gcc_unreachable ();
6467
6468 mode = DECL_MODE (field);
6469 if (DECL_BIT_FIELD (field))
6470 mode = VOIDmode;
6471
6472 offset = DECL_FIELD_OFFSET (field);
6473 if (tree_fits_shwi_p (offset)
6474 && tree_fits_shwi_p (bit_position (field)))
6475 {
6476 bitpos = int_bit_position (field);
6477 offset = NULL_TREE;
6478 }
6479 else
6480 gcc_unreachable ();
6481
6482 /* If this initializes a field that is smaller than a
6483 word, at the start of a word, try to widen it to a full
6484 word. This special case allows us to output C++ member
6485 function initializations in a form that the optimizers
6486 can understand. */
6487 if (WORD_REGISTER_OPERATIONS
6488 && REG_P (target)
6489 && bitsize < BITS_PER_WORD
6490 && bitpos % BITS_PER_WORD == 0
6491 && GET_MODE_CLASS (mode) == MODE_INT
6492 && TREE_CODE (value) == INTEGER_CST
6493 && exp_size >= 0
6494 && bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT)
6495 {
6496 type = TREE_TYPE (value);
6497
6498 if (TYPE_PRECISION (type) < BITS_PER_WORD)
6499 {
6500 type = lang_hooks.types.type_for_mode
6501 (word_mode, TYPE_UNSIGNED (type));
6502 value = fold_convert (type, value);
6503 /* Make sure the bits beyond the original bitsize are zero
6504 so that we can correctly avoid extra zeroing stores in
6505 later constructor elements. */
6506 tree bitsize_mask
6507 = wide_int_to_tree (type, wi::mask (bitsize, false,
6508 BITS_PER_WORD));
6509 value = fold_build2 (BIT_AND_EXPR, type, value, bitsize_mask);
6510 }
6511
6512 if (BYTES_BIG_ENDIAN)
6513 value
6514 = fold_build2 (LSHIFT_EXPR, type, value,
6515 build_int_cst (type,
6516 BITS_PER_WORD - bitsize));
6517 bitsize = BITS_PER_WORD;
6518 mode = word_mode;
6519 }
6520
6521 if (MEM_P (to_rtx) && !MEM_KEEP_ALIAS_SET_P (to_rtx)
6522 && DECL_NONADDRESSABLE_P (field))
6523 {
6524 to_rtx = copy_rtx (to_rtx);
6525 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
6526 }
6527
6528 store_constructor_field (to_rtx, bitsize, bitpos,
6529 0, bitregion_end, mode,
6530 value, cleared,
6531 get_alias_set (TREE_TYPE (field)),
6532 reverse);
6533 }
6534 break;
6535 }
6536 case ARRAY_TYPE:
6537 {
6538 tree value, index;
6539 unsigned HOST_WIDE_INT i;
6540 int need_to_clear;
6541 tree domain;
6542 tree elttype = TREE_TYPE (type);
6543 int const_bounds_p;
6544 HOST_WIDE_INT minelt = 0;
6545 HOST_WIDE_INT maxelt = 0;
6546
6547 /* The storage order is specified for every aggregate type. */
6548 reverse = TYPE_REVERSE_STORAGE_ORDER (type);
6549
6550 domain = TYPE_DOMAIN (type);
6551 const_bounds_p = (TYPE_MIN_VALUE (domain)
6552 && TYPE_MAX_VALUE (domain)
6553 && tree_fits_shwi_p (TYPE_MIN_VALUE (domain))
6554 && tree_fits_shwi_p (TYPE_MAX_VALUE (domain)));
6555
6556 /* If we have constant bounds for the range of the type, get them. */
6557 if (const_bounds_p)
6558 {
6559 minelt = tree_to_shwi (TYPE_MIN_VALUE (domain));
6560 maxelt = tree_to_shwi (TYPE_MAX_VALUE (domain));
6561 }
6562
6563 /* If the constructor has fewer elements than the array, clear
6564 the whole array first. Similarly if this is static
6565 constructor of a non-BLKmode object. */
6566 if (cleared)
6567 need_to_clear = 0;
6568 else if (REG_P (target) && TREE_STATIC (exp))
6569 need_to_clear = 1;
6570 else
6571 {
6572 unsigned HOST_WIDE_INT idx;
6573 HOST_WIDE_INT count = 0, zero_count = 0;
6574 need_to_clear = ! const_bounds_p;
6575
6576 /* This loop is a more accurate version of the loop in
6577 mostly_zeros_p (it handles RANGE_EXPR in an index). It
6578 is also needed to check for missing elements. */
6579 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, index, value)
6580 {
6581 HOST_WIDE_INT this_node_count;
6582
6583 if (need_to_clear)
6584 break;
6585
6586 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
6587 {
6588 tree lo_index = TREE_OPERAND (index, 0);
6589 tree hi_index = TREE_OPERAND (index, 1);
6590
6591 if (! tree_fits_uhwi_p (lo_index)
6592 || ! tree_fits_uhwi_p (hi_index))
6593 {
6594 need_to_clear = 1;
6595 break;
6596 }
6597
6598 this_node_count = (tree_to_uhwi (hi_index)
6599 - tree_to_uhwi (lo_index) + 1);
6600 }
6601 else
6602 this_node_count = 1;
6603
6604 count += this_node_count;
6605 if (mostly_zeros_p (value))
6606 zero_count += this_node_count;
6607 }
6608
6609 /* Clear the entire array first if there are any missing
6610 elements, or if the incidence of zero elements is >=
6611 75%. */
6612 if (! need_to_clear
6613 && (count < maxelt - minelt + 1
6614 || 4 * zero_count >= 3 * count))
6615 need_to_clear = 1;
6616 }
6617
6618 if (need_to_clear && maybe_gt (size, 0))
6619 {
6620 if (REG_P (target))
6621 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
6622 else
6623 clear_storage (target, gen_int_mode (size, Pmode),
6624 BLOCK_OP_NORMAL);
6625 cleared = 1;
6626 }
6627
6628 if (!cleared && REG_P (target))
6629 /* Inform later passes that the old value is dead. */
6630 emit_clobber (target);
6631
6632 /* Store each element of the constructor into the
6633 corresponding element of TARGET, determined by counting the
6634 elements. */
6635 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), i, index, value)
6636 {
6637 machine_mode mode;
6638 poly_int64 bitsize;
6639 HOST_WIDE_INT bitpos;
6640 rtx xtarget = target;
6641
6642 if (cleared && initializer_zerop (value))
6643 continue;
6644
6645 mode = TYPE_MODE (elttype);
6646 if (mode != BLKmode)
6647 bitsize = GET_MODE_BITSIZE (mode);
6648 else if (!poly_int_tree_p (TYPE_SIZE (elttype), &bitsize))
6649 bitsize = -1;
6650
6651 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
6652 {
6653 tree lo_index = TREE_OPERAND (index, 0);
6654 tree hi_index = TREE_OPERAND (index, 1);
6655 rtx index_r, pos_rtx;
6656 HOST_WIDE_INT lo, hi, count;
6657 tree position;
6658
6659 /* If the range is constant and "small", unroll the loop. */
6660 if (const_bounds_p
6661 && tree_fits_shwi_p (lo_index)
6662 && tree_fits_shwi_p (hi_index)
6663 && (lo = tree_to_shwi (lo_index),
6664 hi = tree_to_shwi (hi_index),
6665 count = hi - lo + 1,
6666 (!MEM_P (target)
6667 || count <= 2
6668 || (tree_fits_uhwi_p (TYPE_SIZE (elttype))
6669 && (tree_to_uhwi (TYPE_SIZE (elttype)) * count
6670 <= 40 * 8)))))
6671 {
6672 lo -= minelt; hi -= minelt;
6673 for (; lo <= hi; lo++)
6674 {
6675 bitpos = lo * tree_to_shwi (TYPE_SIZE (elttype));
6676
6677 if (MEM_P (target)
6678 && !MEM_KEEP_ALIAS_SET_P (target)
6679 && TREE_CODE (type) == ARRAY_TYPE
6680 && TYPE_NONALIASED_COMPONENT (type))
6681 {
6682 target = copy_rtx (target);
6683 MEM_KEEP_ALIAS_SET_P (target) = 1;
6684 }
6685
6686 store_constructor_field
6687 (target, bitsize, bitpos, 0, bitregion_end,
6688 mode, value, cleared,
6689 get_alias_set (elttype), reverse);
6690 }
6691 }
6692 else
6693 {
6694 rtx_code_label *loop_start = gen_label_rtx ();
6695 rtx_code_label *loop_end = gen_label_rtx ();
6696 tree exit_cond;
6697
6698 expand_normal (hi_index);
6699
6700 index = build_decl (EXPR_LOCATION (exp),
6701 VAR_DECL, NULL_TREE, domain);
6702 index_r = gen_reg_rtx (promote_decl_mode (index, NULL));
6703 SET_DECL_RTL (index, index_r);
6704 store_expr (lo_index, index_r, 0, false, reverse);
6705
6706 /* Build the head of the loop. */
6707 do_pending_stack_adjust ();
6708 emit_label (loop_start);
6709
6710 /* Assign value to element index. */
6711 position =
6712 fold_convert (ssizetype,
6713 fold_build2 (MINUS_EXPR,
6714 TREE_TYPE (index),
6715 index,
6716 TYPE_MIN_VALUE (domain)));
6717
6718 position =
6719 size_binop (MULT_EXPR, position,
6720 fold_convert (ssizetype,
6721 TYPE_SIZE_UNIT (elttype)));
6722
6723 pos_rtx = expand_normal (position);
6724 xtarget = offset_address (target, pos_rtx,
6725 highest_pow2_factor (position));
6726 xtarget = adjust_address (xtarget, mode, 0);
6727 if (TREE_CODE (value) == CONSTRUCTOR)
6728 store_constructor (value, xtarget, cleared,
6729 exact_div (bitsize, BITS_PER_UNIT),
6730 reverse);
6731 else
6732 store_expr (value, xtarget, 0, false, reverse);
6733
6734 /* Generate a conditional jump to exit the loop. */
6735 exit_cond = build2 (LT_EXPR, integer_type_node,
6736 index, hi_index);
6737 jumpif (exit_cond, loop_end,
6738 profile_probability::uninitialized ());
6739
6740 /* Update the loop counter, and jump to the head of
6741 the loop. */
6742 expand_assignment (index,
6743 build2 (PLUS_EXPR, TREE_TYPE (index),
6744 index, integer_one_node),
6745 false);
6746
6747 emit_jump (loop_start);
6748
6749 /* Build the end of the loop. */
6750 emit_label (loop_end);
6751 }
6752 }
6753 else if ((index != 0 && ! tree_fits_shwi_p (index))
6754 || ! tree_fits_uhwi_p (TYPE_SIZE (elttype)))
6755 {
6756 tree position;
6757
6758 if (index == 0)
6759 index = ssize_int (1);
6760
6761 if (minelt)
6762 index = fold_convert (ssizetype,
6763 fold_build2 (MINUS_EXPR,
6764 TREE_TYPE (index),
6765 index,
6766 TYPE_MIN_VALUE (domain)));
6767
6768 position =
6769 size_binop (MULT_EXPR, index,
6770 fold_convert (ssizetype,
6771 TYPE_SIZE_UNIT (elttype)));
6772 xtarget = offset_address (target,
6773 expand_normal (position),
6774 highest_pow2_factor (position));
6775 xtarget = adjust_address (xtarget, mode, 0);
6776 store_expr (value, xtarget, 0, false, reverse);
6777 }
6778 else
6779 {
6780 if (index != 0)
6781 bitpos = ((tree_to_shwi (index) - minelt)
6782 * tree_to_uhwi (TYPE_SIZE (elttype)));
6783 else
6784 bitpos = (i * tree_to_uhwi (TYPE_SIZE (elttype)));
6785
6786 if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target)
6787 && TREE_CODE (type) == ARRAY_TYPE
6788 && TYPE_NONALIASED_COMPONENT (type))
6789 {
6790 target = copy_rtx (target);
6791 MEM_KEEP_ALIAS_SET_P (target) = 1;
6792 }
6793 store_constructor_field (target, bitsize, bitpos, 0,
6794 bitregion_end, mode, value,
6795 cleared, get_alias_set (elttype),
6796 reverse);
6797 }
6798 }
6799 break;
6800 }
6801
6802 case VECTOR_TYPE:
6803 {
6804 unsigned HOST_WIDE_INT idx;
6805 constructor_elt *ce;
6806 int i;
6807 int need_to_clear;
6808 insn_code icode = CODE_FOR_nothing;
6809 tree elt;
6810 tree elttype = TREE_TYPE (type);
6811 int elt_size = tree_to_uhwi (TYPE_SIZE (elttype));
6812 machine_mode eltmode = TYPE_MODE (elttype);
6813 HOST_WIDE_INT bitsize;
6814 HOST_WIDE_INT bitpos;
6815 rtvec vector = NULL;
6816 poly_uint64 n_elts;
6817 unsigned HOST_WIDE_INT const_n_elts;
6818 alias_set_type alias;
6819 bool vec_vec_init_p = false;
6820 machine_mode mode = GET_MODE (target);
6821
6822 gcc_assert (eltmode != BLKmode);
6823
6824 /* Try using vec_duplicate_optab for uniform vectors. */
6825 if (!TREE_SIDE_EFFECTS (exp)
6826 && VECTOR_MODE_P (mode)
6827 && eltmode == GET_MODE_INNER (mode)
6828 && ((icode = optab_handler (vec_duplicate_optab, mode))
6829 != CODE_FOR_nothing)
6830 && (elt = uniform_vector_p (exp)))
6831 {
6832 class expand_operand ops[2];
6833 create_output_operand (&ops[0], target, mode);
6834 create_input_operand (&ops[1], expand_normal (elt), eltmode);
6835 expand_insn (icode, 2, ops);
6836 if (!rtx_equal_p (target, ops[0].value))
6837 emit_move_insn (target, ops[0].value);
6838 break;
6839 }
6840
6841 n_elts = TYPE_VECTOR_SUBPARTS (type);
6842 if (REG_P (target)
6843 && VECTOR_MODE_P (mode)
6844 && n_elts.is_constant (&const_n_elts))
6845 {
6846 machine_mode emode = eltmode;
6847 bool vector_typed_elts_p = false;
6848
6849 if (CONSTRUCTOR_NELTS (exp)
6850 && (TREE_CODE (TREE_TYPE (CONSTRUCTOR_ELT (exp, 0)->value))
6851 == VECTOR_TYPE))
6852 {
6853 tree etype = TREE_TYPE (CONSTRUCTOR_ELT (exp, 0)->value);
6854 gcc_assert (known_eq (CONSTRUCTOR_NELTS (exp)
6855 * TYPE_VECTOR_SUBPARTS (etype),
6856 n_elts));
6857 emode = TYPE_MODE (etype);
6858 vector_typed_elts_p = true;
6859 }
6860 icode = convert_optab_handler (vec_init_optab, mode, emode);
6861 if (icode != CODE_FOR_nothing)
6862 {
6863 unsigned int n = const_n_elts;
6864
6865 if (vector_typed_elts_p)
6866 {
6867 n = CONSTRUCTOR_NELTS (exp);
6868 vec_vec_init_p = true;
6869 }
6870 vector = rtvec_alloc (n);
6871 for (unsigned int k = 0; k < n; k++)
6872 RTVEC_ELT (vector, k) = CONST0_RTX (emode);
6873 }
6874 }
6875
6876 /* If the constructor has fewer elements than the vector,
6877 clear the whole array first. Similarly if this is static
6878 constructor of a non-BLKmode object. */
6879 if (cleared)
6880 need_to_clear = 0;
6881 else if (REG_P (target) && TREE_STATIC (exp))
6882 need_to_clear = 1;
6883 else
6884 {
6885 unsigned HOST_WIDE_INT count = 0, zero_count = 0;
6886 tree value;
6887
6888 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
6889 {
6890 tree sz = TYPE_SIZE (TREE_TYPE (value));
6891 int n_elts_here
6892 = tree_to_uhwi (int_const_binop (TRUNC_DIV_EXPR, sz,
6893 TYPE_SIZE (elttype)));
6894
6895 count += n_elts_here;
6896 if (mostly_zeros_p (value))
6897 zero_count += n_elts_here;
6898 }
6899
6900 /* Clear the entire vector first if there are any missing elements,
6901 or if the incidence of zero elements is >= 75%. */
6902 need_to_clear = (maybe_lt (count, n_elts)
6903 || 4 * zero_count >= 3 * count);
6904 }
6905
6906 if (need_to_clear && maybe_gt (size, 0) && !vector)
6907 {
6908 if (REG_P (target))
6909 emit_move_insn (target, CONST0_RTX (mode));
6910 else
6911 clear_storage (target, gen_int_mode (size, Pmode),
6912 BLOCK_OP_NORMAL);
6913 cleared = 1;
6914 }
6915
6916 /* Inform later passes that the old value is dead. */
6917 if (!cleared && !vector && REG_P (target))
6918 emit_move_insn (target, CONST0_RTX (mode));
6919
6920 if (MEM_P (target))
6921 alias = MEM_ALIAS_SET (target);
6922 else
6923 alias = get_alias_set (elttype);
6924
6925 /* Store each element of the constructor into the corresponding
6926 element of TARGET, determined by counting the elements. */
6927 for (idx = 0, i = 0;
6928 vec_safe_iterate (CONSTRUCTOR_ELTS (exp), idx, &ce);
6929 idx++, i += bitsize / elt_size)
6930 {
6931 HOST_WIDE_INT eltpos;
6932 tree value = ce->value;
6933
6934 bitsize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (value)));
6935 if (cleared && initializer_zerop (value))
6936 continue;
6937
6938 if (ce->index)
6939 eltpos = tree_to_uhwi (ce->index);
6940 else
6941 eltpos = i;
6942
6943 if (vector)
6944 {
6945 if (vec_vec_init_p)
6946 {
6947 gcc_assert (ce->index == NULL_TREE);
6948 gcc_assert (TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE);
6949 eltpos = idx;
6950 }
6951 else
6952 gcc_assert (TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE);
6953 RTVEC_ELT (vector, eltpos) = expand_normal (value);
6954 }
6955 else
6956 {
6957 machine_mode value_mode
6958 = (TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE
6959 ? TYPE_MODE (TREE_TYPE (value)) : eltmode);
6960 bitpos = eltpos * elt_size;
6961 store_constructor_field (target, bitsize, bitpos, 0,
6962 bitregion_end, value_mode,
6963 value, cleared, alias, reverse);
6964 }
6965 }
6966
6967 if (vector)
6968 emit_insn (GEN_FCN (icode) (target,
6969 gen_rtx_PARALLEL (mode, vector)));
6970 break;
6971 }
6972
6973 default:
6974 gcc_unreachable ();
6975 }
6976 }
6977
6978 /* Store the value of EXP (an expression tree)
6979 into a subfield of TARGET which has mode MODE and occupies
6980 BITSIZE bits, starting BITPOS bits from the start of TARGET.
6981 If MODE is VOIDmode, it means that we are storing into a bit-field.
6982
6983 BITREGION_START is bitpos of the first bitfield in this region.
6984 BITREGION_END is the bitpos of the ending bitfield in this region.
6985 These two fields are 0, if the C++ memory model does not apply,
6986 or we are not interested in keeping track of bitfield regions.
6987
6988 Always return const0_rtx unless we have something particular to
6989 return.
6990
6991 ALIAS_SET is the alias set for the destination. This value will
6992 (in general) be different from that for TARGET, since TARGET is a
6993 reference to the containing structure.
6994
6995 If NONTEMPORAL is true, try generating a nontemporal store.
6996
6997 If REVERSE is true, the store is to be done in reverse order. */
6998
6999 static rtx
store_field(rtx target,poly_int64 bitsize,poly_int64 bitpos,poly_uint64 bitregion_start,poly_uint64 bitregion_end,machine_mode mode,tree exp,alias_set_type alias_set,bool nontemporal,bool reverse)7000 store_field (rtx target, poly_int64 bitsize, poly_int64 bitpos,
7001 poly_uint64 bitregion_start, poly_uint64 bitregion_end,
7002 machine_mode mode, tree exp,
7003 alias_set_type alias_set, bool nontemporal, bool reverse)
7004 {
7005 if (TREE_CODE (exp) == ERROR_MARK)
7006 return const0_rtx;
7007
7008 /* If we have nothing to store, do nothing unless the expression has
7009 side-effects. Don't do that for zero sized addressable lhs of
7010 calls. */
7011 if (known_eq (bitsize, 0)
7012 && (!TREE_ADDRESSABLE (TREE_TYPE (exp))
7013 || TREE_CODE (exp) != CALL_EXPR))
7014 return expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
7015
7016 if (GET_CODE (target) == CONCAT)
7017 {
7018 /* We're storing into a struct containing a single __complex. */
7019
7020 gcc_assert (known_eq (bitpos, 0));
7021 return store_expr (exp, target, 0, nontemporal, reverse);
7022 }
7023
7024 /* If the structure is in a register or if the component
7025 is a bit field, we cannot use addressing to access it.
7026 Use bit-field techniques or SUBREG to store in it. */
7027
7028 poly_int64 decl_bitsize;
7029 if (mode == VOIDmode
7030 || (mode != BLKmode && ! direct_store[(int) mode]
7031 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
7032 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
7033 || REG_P (target)
7034 || GET_CODE (target) == SUBREG
7035 /* If the field isn't aligned enough to store as an ordinary memref,
7036 store it as a bit field. */
7037 || (mode != BLKmode
7038 && ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode))
7039 || !multiple_p (bitpos, GET_MODE_ALIGNMENT (mode)))
7040 && targetm.slow_unaligned_access (mode, MEM_ALIGN (target)))
7041 || !multiple_p (bitpos, BITS_PER_UNIT)))
7042 || (known_size_p (bitsize)
7043 && mode != BLKmode
7044 && maybe_gt (GET_MODE_BITSIZE (mode), bitsize))
7045 /* If the RHS and field are a constant size and the size of the
7046 RHS isn't the same size as the bitfield, we must use bitfield
7047 operations. */
7048 || (known_size_p (bitsize)
7049 && poly_int_tree_p (TYPE_SIZE (TREE_TYPE (exp)))
7050 && maybe_ne (wi::to_poly_offset (TYPE_SIZE (TREE_TYPE (exp))),
7051 bitsize)
7052 /* Except for initialization of full bytes from a CONSTRUCTOR, which
7053 we will handle specially below. */
7054 && !(TREE_CODE (exp) == CONSTRUCTOR
7055 && multiple_p (bitsize, BITS_PER_UNIT))
7056 /* And except for bitwise copying of TREE_ADDRESSABLE types,
7057 where the FIELD_DECL has the right bitsize, but TREE_TYPE (exp)
7058 includes some extra padding. store_expr / expand_expr will in
7059 that case call get_inner_reference that will have the bitsize
7060 we check here and thus the block move will not clobber the
7061 padding that shouldn't be clobbered. In the future we could
7062 replace the TREE_ADDRESSABLE check with a check that
7063 get_base_address needs to live in memory. */
7064 && (!TREE_ADDRESSABLE (TREE_TYPE (exp))
7065 || TREE_CODE (exp) != COMPONENT_REF
7066 || !multiple_p (bitsize, BITS_PER_UNIT)
7067 || !multiple_p (bitpos, BITS_PER_UNIT)
7068 || !poly_int_tree_p (DECL_SIZE (TREE_OPERAND (exp, 1)),
7069 &decl_bitsize)
7070 || maybe_ne (decl_bitsize, bitsize)))
7071 /* If we are expanding a MEM_REF of a non-BLKmode non-addressable
7072 decl we must use bitfield operations. */
7073 || (known_size_p (bitsize)
7074 && TREE_CODE (exp) == MEM_REF
7075 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
7076 && DECL_P (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
7077 && !TREE_ADDRESSABLE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
7078 && DECL_MODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)) != BLKmode))
7079 {
7080 rtx temp;
7081 gimple *nop_def;
7082
7083 /* If EXP is a NOP_EXPR of precision less than its mode, then that
7084 implies a mask operation. If the precision is the same size as
7085 the field we're storing into, that mask is redundant. This is
7086 particularly common with bit field assignments generated by the
7087 C front end. */
7088 nop_def = get_def_for_expr (exp, NOP_EXPR);
7089 if (nop_def)
7090 {
7091 tree type = TREE_TYPE (exp);
7092 if (INTEGRAL_TYPE_P (type)
7093 && maybe_ne (TYPE_PRECISION (type),
7094 GET_MODE_BITSIZE (TYPE_MODE (type)))
7095 && known_eq (bitsize, TYPE_PRECISION (type)))
7096 {
7097 tree op = gimple_assign_rhs1 (nop_def);
7098 type = TREE_TYPE (op);
7099 if (INTEGRAL_TYPE_P (type)
7100 && known_ge (TYPE_PRECISION (type), bitsize))
7101 exp = op;
7102 }
7103 }
7104
7105 temp = expand_normal (exp);
7106
7107 /* We don't support variable-sized BLKmode bitfields, since our
7108 handling of BLKmode is bound up with the ability to break
7109 things into words. */
7110 gcc_assert (mode != BLKmode || bitsize.is_constant ());
7111
7112 /* Handle calls that return values in multiple non-contiguous locations.
7113 The Irix 6 ABI has examples of this. */
7114 if (GET_CODE (temp) == PARALLEL)
7115 {
7116 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (exp));
7117 machine_mode temp_mode = GET_MODE (temp);
7118 if (temp_mode == BLKmode || temp_mode == VOIDmode)
7119 temp_mode = smallest_int_mode_for_size (size * BITS_PER_UNIT);
7120 rtx temp_target = gen_reg_rtx (temp_mode);
7121 emit_group_store (temp_target, temp, TREE_TYPE (exp), size);
7122 temp = temp_target;
7123 }
7124
7125 /* Handle calls that return BLKmode values in registers. */
7126 else if (mode == BLKmode && REG_P (temp) && TREE_CODE (exp) == CALL_EXPR)
7127 {
7128 rtx temp_target = gen_reg_rtx (GET_MODE (temp));
7129 copy_blkmode_from_reg (temp_target, temp, TREE_TYPE (exp));
7130 temp = temp_target;
7131 }
7132
7133 /* If the value has aggregate type and an integral mode then, if BITSIZE
7134 is narrower than this mode and this is for big-endian data, we first
7135 need to put the value into the low-order bits for store_bit_field,
7136 except when MODE is BLKmode and BITSIZE larger than the word size
7137 (see the handling of fields larger than a word in store_bit_field).
7138 Moreover, the field may be not aligned on a byte boundary; in this
7139 case, if it has reverse storage order, it needs to be accessed as a
7140 scalar field with reverse storage order and we must first put the
7141 value into target order. */
7142 scalar_int_mode temp_mode;
7143 if (AGGREGATE_TYPE_P (TREE_TYPE (exp))
7144 && is_int_mode (GET_MODE (temp), &temp_mode))
7145 {
7146 HOST_WIDE_INT size = GET_MODE_BITSIZE (temp_mode);
7147
7148 reverse = TYPE_REVERSE_STORAGE_ORDER (TREE_TYPE (exp));
7149
7150 if (reverse)
7151 temp = flip_storage_order (temp_mode, temp);
7152
7153 gcc_checking_assert (known_le (bitsize, size));
7154 if (maybe_lt (bitsize, size)
7155 && reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN
7156 /* Use of to_constant for BLKmode was checked above. */
7157 && !(mode == BLKmode && bitsize.to_constant () > BITS_PER_WORD))
7158 temp = expand_shift (RSHIFT_EXPR, temp_mode, temp,
7159 size - bitsize, NULL_RTX, 1);
7160 }
7161
7162 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to MODE. */
7163 if (mode != VOIDmode && mode != BLKmode
7164 && mode != TYPE_MODE (TREE_TYPE (exp)))
7165 temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
7166
7167 /* If the mode of TEMP and TARGET is BLKmode, both must be in memory
7168 and BITPOS must be aligned on a byte boundary. If so, we simply do
7169 a block copy. Likewise for a BLKmode-like TARGET. */
7170 if (GET_MODE (temp) == BLKmode
7171 && (GET_MODE (target) == BLKmode
7172 || (MEM_P (target)
7173 && GET_MODE_CLASS (GET_MODE (target)) == MODE_INT
7174 && multiple_p (bitpos, BITS_PER_UNIT)
7175 && multiple_p (bitsize, BITS_PER_UNIT))))
7176 {
7177 gcc_assert (MEM_P (target) && MEM_P (temp));
7178 poly_int64 bytepos = exact_div (bitpos, BITS_PER_UNIT);
7179 poly_int64 bytesize = bits_to_bytes_round_up (bitsize);
7180
7181 target = adjust_address (target, VOIDmode, bytepos);
7182 emit_block_move (target, temp,
7183 gen_int_mode (bytesize, Pmode),
7184 BLOCK_OP_NORMAL);
7185
7186 return const0_rtx;
7187 }
7188
7189 /* If the mode of TEMP is still BLKmode and BITSIZE not larger than the
7190 word size, we need to load the value (see again store_bit_field). */
7191 if (GET_MODE (temp) == BLKmode && known_le (bitsize, BITS_PER_WORD))
7192 {
7193 temp_mode = smallest_int_mode_for_size (bitsize);
7194 temp = extract_bit_field (temp, bitsize, 0, 1, NULL_RTX, temp_mode,
7195 temp_mode, false, NULL);
7196 }
7197
7198 /* Store the value in the bitfield. */
7199 gcc_checking_assert (known_ge (bitpos, 0));
7200 store_bit_field (target, bitsize, bitpos,
7201 bitregion_start, bitregion_end,
7202 mode, temp, reverse);
7203
7204 return const0_rtx;
7205 }
7206 else
7207 {
7208 /* Now build a reference to just the desired component. */
7209 rtx to_rtx = adjust_address (target, mode,
7210 exact_div (bitpos, BITS_PER_UNIT));
7211
7212 if (to_rtx == target)
7213 to_rtx = copy_rtx (to_rtx);
7214
7215 if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0)
7216 set_mem_alias_set (to_rtx, alias_set);
7217
7218 /* Above we avoided using bitfield operations for storing a CONSTRUCTOR
7219 into a target smaller than its type; handle that case now. */
7220 if (TREE_CODE (exp) == CONSTRUCTOR && known_size_p (bitsize))
7221 {
7222 poly_int64 bytesize = exact_div (bitsize, BITS_PER_UNIT);
7223 store_constructor (exp, to_rtx, 0, bytesize, reverse);
7224 return to_rtx;
7225 }
7226
7227 return store_expr (exp, to_rtx, 0, nontemporal, reverse);
7228 }
7229 }
7230
7231 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
7232 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
7233 codes and find the ultimate containing object, which we return.
7234
7235 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
7236 bit position, *PUNSIGNEDP to the signedness and *PREVERSEP to the
7237 storage order of the field.
7238 If the position of the field is variable, we store a tree
7239 giving the variable offset (in units) in *POFFSET.
7240 This offset is in addition to the bit position.
7241 If the position is not variable, we store 0 in *POFFSET.
7242
7243 If any of the extraction expressions is volatile,
7244 we store 1 in *PVOLATILEP. Otherwise we don't change that.
7245
7246 If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
7247 Otherwise, it is a mode that can be used to access the field.
7248
7249 If the field describes a variable-sized object, *PMODE is set to
7250 BLKmode and *PBITSIZE is set to -1. An access cannot be made in
7251 this case, but the address of the object can be found. */
7252
7253 tree
get_inner_reference(tree exp,poly_int64_pod * pbitsize,poly_int64_pod * pbitpos,tree * poffset,machine_mode * pmode,int * punsignedp,int * preversep,int * pvolatilep)7254 get_inner_reference (tree exp, poly_int64_pod *pbitsize,
7255 poly_int64_pod *pbitpos, tree *poffset,
7256 machine_mode *pmode, int *punsignedp,
7257 int *preversep, int *pvolatilep)
7258 {
7259 tree size_tree = 0;
7260 machine_mode mode = VOIDmode;
7261 bool blkmode_bitfield = false;
7262 tree offset = size_zero_node;
7263 poly_offset_int bit_offset = 0;
7264
7265 /* First get the mode, signedness, storage order and size. We do this from
7266 just the outermost expression. */
7267 *pbitsize = -1;
7268 if (TREE_CODE (exp) == COMPONENT_REF)
7269 {
7270 tree field = TREE_OPERAND (exp, 1);
7271 size_tree = DECL_SIZE (field);
7272 if (flag_strict_volatile_bitfields > 0
7273 && TREE_THIS_VOLATILE (exp)
7274 && DECL_BIT_FIELD_TYPE (field)
7275 && DECL_MODE (field) != BLKmode)
7276 /* Volatile bitfields should be accessed in the mode of the
7277 field's type, not the mode computed based on the bit
7278 size. */
7279 mode = TYPE_MODE (DECL_BIT_FIELD_TYPE (field));
7280 else if (!DECL_BIT_FIELD (field))
7281 {
7282 mode = DECL_MODE (field);
7283 /* For vector fields re-check the target flags, as DECL_MODE
7284 could have been set with different target flags than
7285 the current function has. */
7286 if (VECTOR_TYPE_P (TREE_TYPE (field))
7287 && VECTOR_MODE_P (TYPE_MODE_RAW (TREE_TYPE (field))))
7288 mode = TYPE_MODE (TREE_TYPE (field));
7289 }
7290 else if (DECL_MODE (field) == BLKmode)
7291 blkmode_bitfield = true;
7292
7293 *punsignedp = DECL_UNSIGNED (field);
7294 }
7295 else if (TREE_CODE (exp) == BIT_FIELD_REF)
7296 {
7297 size_tree = TREE_OPERAND (exp, 1);
7298 *punsignedp = (! INTEGRAL_TYPE_P (TREE_TYPE (exp))
7299 || TYPE_UNSIGNED (TREE_TYPE (exp)));
7300
7301 /* For vector element types with the correct size of access or for
7302 vector typed accesses use the mode of the access type. */
7303 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == VECTOR_TYPE
7304 && TREE_TYPE (exp) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)))
7305 && tree_int_cst_equal (size_tree, TYPE_SIZE (TREE_TYPE (exp))))
7306 || VECTOR_TYPE_P (TREE_TYPE (exp)))
7307 mode = TYPE_MODE (TREE_TYPE (exp));
7308 }
7309 else
7310 {
7311 mode = TYPE_MODE (TREE_TYPE (exp));
7312 *punsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
7313
7314 if (mode == BLKmode)
7315 size_tree = TYPE_SIZE (TREE_TYPE (exp));
7316 else
7317 *pbitsize = GET_MODE_BITSIZE (mode);
7318 }
7319
7320 if (size_tree != 0)
7321 {
7322 if (! tree_fits_uhwi_p (size_tree))
7323 mode = BLKmode, *pbitsize = -1;
7324 else
7325 *pbitsize = tree_to_uhwi (size_tree);
7326 }
7327
7328 *preversep = reverse_storage_order_for_component_p (exp);
7329
7330 /* Compute cumulative bit-offset for nested component-refs and array-refs,
7331 and find the ultimate containing object. */
7332 while (1)
7333 {
7334 switch (TREE_CODE (exp))
7335 {
7336 case BIT_FIELD_REF:
7337 bit_offset += wi::to_poly_offset (TREE_OPERAND (exp, 2));
7338 break;
7339
7340 case COMPONENT_REF:
7341 {
7342 tree field = TREE_OPERAND (exp, 1);
7343 tree this_offset = component_ref_field_offset (exp);
7344
7345 /* If this field hasn't been filled in yet, don't go past it.
7346 This should only happen when folding expressions made during
7347 type construction. */
7348 if (this_offset == 0)
7349 break;
7350
7351 offset = size_binop (PLUS_EXPR, offset, this_offset);
7352 bit_offset += wi::to_poly_offset (DECL_FIELD_BIT_OFFSET (field));
7353
7354 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
7355 }
7356 break;
7357
7358 case ARRAY_REF:
7359 case ARRAY_RANGE_REF:
7360 {
7361 tree index = TREE_OPERAND (exp, 1);
7362 tree low_bound = array_ref_low_bound (exp);
7363 tree unit_size = array_ref_element_size (exp);
7364
7365 /* We assume all arrays have sizes that are a multiple of a byte.
7366 First subtract the lower bound, if any, in the type of the
7367 index, then convert to sizetype and multiply by the size of
7368 the array element. */
7369 if (! integer_zerop (low_bound))
7370 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
7371 index, low_bound);
7372
7373 offset = size_binop (PLUS_EXPR, offset,
7374 size_binop (MULT_EXPR,
7375 fold_convert (sizetype, index),
7376 unit_size));
7377 }
7378 break;
7379
7380 case REALPART_EXPR:
7381 break;
7382
7383 case IMAGPART_EXPR:
7384 bit_offset += *pbitsize;
7385 break;
7386
7387 case VIEW_CONVERT_EXPR:
7388 break;
7389
7390 case MEM_REF:
7391 /* Hand back the decl for MEM[&decl, off]. */
7392 if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR)
7393 {
7394 tree off = TREE_OPERAND (exp, 1);
7395 if (!integer_zerop (off))
7396 {
7397 poly_offset_int boff = mem_ref_offset (exp);
7398 boff <<= LOG2_BITS_PER_UNIT;
7399 bit_offset += boff;
7400 }
7401 exp = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
7402 }
7403 goto done;
7404
7405 default:
7406 goto done;
7407 }
7408
7409 /* If any reference in the chain is volatile, the effect is volatile. */
7410 if (TREE_THIS_VOLATILE (exp))
7411 *pvolatilep = 1;
7412
7413 exp = TREE_OPERAND (exp, 0);
7414 }
7415 done:
7416
7417 /* If OFFSET is constant, see if we can return the whole thing as a
7418 constant bit position. Make sure to handle overflow during
7419 this conversion. */
7420 if (poly_int_tree_p (offset))
7421 {
7422 poly_offset_int tem = wi::sext (wi::to_poly_offset (offset),
7423 TYPE_PRECISION (sizetype));
7424 tem <<= LOG2_BITS_PER_UNIT;
7425 tem += bit_offset;
7426 if (tem.to_shwi (pbitpos))
7427 *poffset = offset = NULL_TREE;
7428 }
7429
7430 /* Otherwise, split it up. */
7431 if (offset)
7432 {
7433 /* Avoid returning a negative bitpos as this may wreak havoc later. */
7434 if (!bit_offset.to_shwi (pbitpos) || maybe_lt (*pbitpos, 0))
7435 {
7436 *pbitpos = num_trailing_bits (bit_offset.force_shwi ());
7437 poly_offset_int bytes = bits_to_bytes_round_down (bit_offset);
7438 offset = size_binop (PLUS_EXPR, offset,
7439 build_int_cst (sizetype, bytes.force_shwi ()));
7440 }
7441
7442 *poffset = offset;
7443 }
7444
7445 /* We can use BLKmode for a byte-aligned BLKmode bitfield. */
7446 if (mode == VOIDmode
7447 && blkmode_bitfield
7448 && multiple_p (*pbitpos, BITS_PER_UNIT)
7449 && multiple_p (*pbitsize, BITS_PER_UNIT))
7450 *pmode = BLKmode;
7451 else
7452 *pmode = mode;
7453
7454 return exp;
7455 }
7456
7457 /* Alignment in bits the TARGET of an assignment may be assumed to have. */
7458
7459 static unsigned HOST_WIDE_INT
target_align(const_tree target)7460 target_align (const_tree target)
7461 {
7462 /* We might have a chain of nested references with intermediate misaligning
7463 bitfields components, so need to recurse to find out. */
7464
7465 unsigned HOST_WIDE_INT this_align, outer_align;
7466
7467 switch (TREE_CODE (target))
7468 {
7469 case BIT_FIELD_REF:
7470 return 1;
7471
7472 case COMPONENT_REF:
7473 this_align = DECL_ALIGN (TREE_OPERAND (target, 1));
7474 outer_align = target_align (TREE_OPERAND (target, 0));
7475 return MIN (this_align, outer_align);
7476
7477 case ARRAY_REF:
7478 case ARRAY_RANGE_REF:
7479 this_align = TYPE_ALIGN (TREE_TYPE (target));
7480 outer_align = target_align (TREE_OPERAND (target, 0));
7481 return MIN (this_align, outer_align);
7482
7483 CASE_CONVERT:
7484 case NON_LVALUE_EXPR:
7485 case VIEW_CONVERT_EXPR:
7486 this_align = TYPE_ALIGN (TREE_TYPE (target));
7487 outer_align = target_align (TREE_OPERAND (target, 0));
7488 return MAX (this_align, outer_align);
7489
7490 default:
7491 return TYPE_ALIGN (TREE_TYPE (target));
7492 }
7493 }
7494
7495
7496 /* Given an rtx VALUE that may contain additions and multiplications, return
7497 an equivalent value that just refers to a register, memory, or constant.
7498 This is done by generating instructions to perform the arithmetic and
7499 returning a pseudo-register containing the value.
7500
7501 The returned value may be a REG, SUBREG, MEM or constant. */
7502
7503 rtx
force_operand(rtx value,rtx target)7504 force_operand (rtx value, rtx target)
7505 {
7506 rtx op1, op2;
7507 /* Use subtarget as the target for operand 0 of a binary operation. */
7508 rtx subtarget = get_subtarget (target);
7509 enum rtx_code code = GET_CODE (value);
7510
7511 /* Check for subreg applied to an expression produced by loop optimizer. */
7512 if (code == SUBREG
7513 && !REG_P (SUBREG_REG (value))
7514 && !MEM_P (SUBREG_REG (value)))
7515 {
7516 value
7517 = simplify_gen_subreg (GET_MODE (value),
7518 force_reg (GET_MODE (SUBREG_REG (value)),
7519 force_operand (SUBREG_REG (value),
7520 NULL_RTX)),
7521 GET_MODE (SUBREG_REG (value)),
7522 SUBREG_BYTE (value));
7523 code = GET_CODE (value);
7524 }
7525
7526 /* Check for a PIC address load. */
7527 if ((code == PLUS || code == MINUS)
7528 && XEXP (value, 0) == pic_offset_table_rtx
7529 && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
7530 || GET_CODE (XEXP (value, 1)) == LABEL_REF
7531 || GET_CODE (XEXP (value, 1)) == CONST))
7532 {
7533 if (!subtarget)
7534 subtarget = gen_reg_rtx (GET_MODE (value));
7535 emit_move_insn (subtarget, value);
7536 return subtarget;
7537 }
7538
7539 if (ARITHMETIC_P (value))
7540 {
7541 op2 = XEXP (value, 1);
7542 if (!CONSTANT_P (op2) && !(REG_P (op2) && op2 != subtarget))
7543 subtarget = 0;
7544 if (code == MINUS && CONST_INT_P (op2))
7545 {
7546 code = PLUS;
7547 op2 = negate_rtx (GET_MODE (value), op2);
7548 }
7549
7550 /* Check for an addition with OP2 a constant integer and our first
7551 operand a PLUS of a virtual register and something else. In that
7552 case, we want to emit the sum of the virtual register and the
7553 constant first and then add the other value. This allows virtual
7554 register instantiation to simply modify the constant rather than
7555 creating another one around this addition. */
7556 if (code == PLUS && CONST_INT_P (op2)
7557 && GET_CODE (XEXP (value, 0)) == PLUS
7558 && REG_P (XEXP (XEXP (value, 0), 0))
7559 && REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER
7560 && REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER)
7561 {
7562 rtx temp = expand_simple_binop (GET_MODE (value), code,
7563 XEXP (XEXP (value, 0), 0), op2,
7564 subtarget, 0, OPTAB_LIB_WIDEN);
7565 return expand_simple_binop (GET_MODE (value), code, temp,
7566 force_operand (XEXP (XEXP (value,
7567 0), 1), 0),
7568 target, 0, OPTAB_LIB_WIDEN);
7569 }
7570
7571 op1 = force_operand (XEXP (value, 0), subtarget);
7572 op2 = force_operand (op2, NULL_RTX);
7573 switch (code)
7574 {
7575 case MULT:
7576 return expand_mult (GET_MODE (value), op1, op2, target, 1);
7577 case DIV:
7578 if (!INTEGRAL_MODE_P (GET_MODE (value)))
7579 return expand_simple_binop (GET_MODE (value), code, op1, op2,
7580 target, 1, OPTAB_LIB_WIDEN);
7581 else
7582 return expand_divmod (0,
7583 FLOAT_MODE_P (GET_MODE (value))
7584 ? RDIV_EXPR : TRUNC_DIV_EXPR,
7585 GET_MODE (value), op1, op2, target, 0);
7586 case MOD:
7587 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
7588 target, 0);
7589 case UDIV:
7590 return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), op1, op2,
7591 target, 1);
7592 case UMOD:
7593 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
7594 target, 1);
7595 case ASHIFTRT:
7596 return expand_simple_binop (GET_MODE (value), code, op1, op2,
7597 target, 0, OPTAB_LIB_WIDEN);
7598 default:
7599 return expand_simple_binop (GET_MODE (value), code, op1, op2,
7600 target, 1, OPTAB_LIB_WIDEN);
7601 }
7602 }
7603 if (UNARY_P (value))
7604 {
7605 if (!target)
7606 target = gen_reg_rtx (GET_MODE (value));
7607 op1 = force_operand (XEXP (value, 0), NULL_RTX);
7608 switch (code)
7609 {
7610 case ZERO_EXTEND:
7611 case SIGN_EXTEND:
7612 case TRUNCATE:
7613 case FLOAT_EXTEND:
7614 case FLOAT_TRUNCATE:
7615 convert_move (target, op1, code == ZERO_EXTEND);
7616 return target;
7617
7618 case FIX:
7619 case UNSIGNED_FIX:
7620 expand_fix (target, op1, code == UNSIGNED_FIX);
7621 return target;
7622
7623 case FLOAT:
7624 case UNSIGNED_FLOAT:
7625 expand_float (target, op1, code == UNSIGNED_FLOAT);
7626 return target;
7627
7628 default:
7629 return expand_simple_unop (GET_MODE (value), code, op1, target, 0);
7630 }
7631 }
7632
7633 #ifdef INSN_SCHEDULING
7634 /* On machines that have insn scheduling, we want all memory reference to be
7635 explicit, so we need to deal with such paradoxical SUBREGs. */
7636 if (paradoxical_subreg_p (value) && MEM_P (SUBREG_REG (value)))
7637 value
7638 = simplify_gen_subreg (GET_MODE (value),
7639 force_reg (GET_MODE (SUBREG_REG (value)),
7640 force_operand (SUBREG_REG (value),
7641 NULL_RTX)),
7642 GET_MODE (SUBREG_REG (value)),
7643 SUBREG_BYTE (value));
7644 #endif
7645
7646 return value;
7647 }
7648
7649 /* Subroutine of expand_expr: return nonzero iff there is no way that
7650 EXP can reference X, which is being modified. TOP_P is nonzero if this
7651 call is going to be used to determine whether we need a temporary
7652 for EXP, as opposed to a recursive call to this function.
7653
7654 It is always safe for this routine to return zero since it merely
7655 searches for optimization opportunities. */
7656
7657 int
safe_from_p(const_rtx x,tree exp,int top_p)7658 safe_from_p (const_rtx x, tree exp, int top_p)
7659 {
7660 rtx exp_rtl = 0;
7661 int i, nops;
7662
7663 if (x == 0
7664 /* If EXP has varying size, we MUST use a target since we currently
7665 have no way of allocating temporaries of variable size
7666 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
7667 So we assume here that something at a higher level has prevented a
7668 clash. This is somewhat bogus, but the best we can do. Only
7669 do this when X is BLKmode and when we are at the top level. */
7670 || (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
7671 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
7672 && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
7673 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
7674 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
7675 != INTEGER_CST)
7676 && GET_MODE (x) == BLKmode)
7677 /* If X is in the outgoing argument area, it is always safe. */
7678 || (MEM_P (x)
7679 && (XEXP (x, 0) == virtual_outgoing_args_rtx
7680 || (GET_CODE (XEXP (x, 0)) == PLUS
7681 && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx))))
7682 return 1;
7683
7684 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
7685 find the underlying pseudo. */
7686 if (GET_CODE (x) == SUBREG)
7687 {
7688 x = SUBREG_REG (x);
7689 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
7690 return 0;
7691 }
7692
7693 /* Now look at our tree code and possibly recurse. */
7694 switch (TREE_CODE_CLASS (TREE_CODE (exp)))
7695 {
7696 case tcc_declaration:
7697 exp_rtl = DECL_RTL_IF_SET (exp);
7698 break;
7699
7700 case tcc_constant:
7701 return 1;
7702
7703 case tcc_exceptional:
7704 if (TREE_CODE (exp) == TREE_LIST)
7705 {
7706 while (1)
7707 {
7708 if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0))
7709 return 0;
7710 exp = TREE_CHAIN (exp);
7711 if (!exp)
7712 return 1;
7713 if (TREE_CODE (exp) != TREE_LIST)
7714 return safe_from_p (x, exp, 0);
7715 }
7716 }
7717 else if (TREE_CODE (exp) == CONSTRUCTOR)
7718 {
7719 constructor_elt *ce;
7720 unsigned HOST_WIDE_INT idx;
7721
7722 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (exp), idx, ce)
7723 if ((ce->index != NULL_TREE && !safe_from_p (x, ce->index, 0))
7724 || !safe_from_p (x, ce->value, 0))
7725 return 0;
7726 return 1;
7727 }
7728 else if (TREE_CODE (exp) == ERROR_MARK)
7729 return 1; /* An already-visited SAVE_EXPR? */
7730 else
7731 return 0;
7732
7733 case tcc_statement:
7734 /* The only case we look at here is the DECL_INITIAL inside a
7735 DECL_EXPR. */
7736 return (TREE_CODE (exp) != DECL_EXPR
7737 || TREE_CODE (DECL_EXPR_DECL (exp)) != VAR_DECL
7738 || !DECL_INITIAL (DECL_EXPR_DECL (exp))
7739 || safe_from_p (x, DECL_INITIAL (DECL_EXPR_DECL (exp)), 0));
7740
7741 case tcc_binary:
7742 case tcc_comparison:
7743 if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0))
7744 return 0;
7745 /* Fall through. */
7746
7747 case tcc_unary:
7748 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
7749
7750 case tcc_expression:
7751 case tcc_reference:
7752 case tcc_vl_exp:
7753 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
7754 the expression. If it is set, we conflict iff we are that rtx or
7755 both are in memory. Otherwise, we check all operands of the
7756 expression recursively. */
7757
7758 switch (TREE_CODE (exp))
7759 {
7760 case ADDR_EXPR:
7761 /* If the operand is static or we are static, we can't conflict.
7762 Likewise if we don't conflict with the operand at all. */
7763 if (staticp (TREE_OPERAND (exp, 0))
7764 || TREE_STATIC (exp)
7765 || safe_from_p (x, TREE_OPERAND (exp, 0), 0))
7766 return 1;
7767
7768 /* Otherwise, the only way this can conflict is if we are taking
7769 the address of a DECL a that address if part of X, which is
7770 very rare. */
7771 exp = TREE_OPERAND (exp, 0);
7772 if (DECL_P (exp))
7773 {
7774 if (!DECL_RTL_SET_P (exp)
7775 || !MEM_P (DECL_RTL (exp)))
7776 return 0;
7777 else
7778 exp_rtl = XEXP (DECL_RTL (exp), 0);
7779 }
7780 break;
7781
7782 case MEM_REF:
7783 if (MEM_P (x)
7784 && alias_sets_conflict_p (MEM_ALIAS_SET (x),
7785 get_alias_set (exp)))
7786 return 0;
7787 break;
7788
7789 case CALL_EXPR:
7790 /* Assume that the call will clobber all hard registers and
7791 all of memory. */
7792 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
7793 || MEM_P (x))
7794 return 0;
7795 break;
7796
7797 case WITH_CLEANUP_EXPR:
7798 case CLEANUP_POINT_EXPR:
7799 /* Lowered by gimplify.c. */
7800 gcc_unreachable ();
7801
7802 case SAVE_EXPR:
7803 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
7804
7805 default:
7806 break;
7807 }
7808
7809 /* If we have an rtx, we do not need to scan our operands. */
7810 if (exp_rtl)
7811 break;
7812
7813 nops = TREE_OPERAND_LENGTH (exp);
7814 for (i = 0; i < nops; i++)
7815 if (TREE_OPERAND (exp, i) != 0
7816 && ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
7817 return 0;
7818
7819 break;
7820
7821 case tcc_type:
7822 /* Should never get a type here. */
7823 gcc_unreachable ();
7824 }
7825
7826 /* If we have an rtl, find any enclosed object. Then see if we conflict
7827 with it. */
7828 if (exp_rtl)
7829 {
7830 if (GET_CODE (exp_rtl) == SUBREG)
7831 {
7832 exp_rtl = SUBREG_REG (exp_rtl);
7833 if (REG_P (exp_rtl)
7834 && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
7835 return 0;
7836 }
7837
7838 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
7839 are memory and they conflict. */
7840 return ! (rtx_equal_p (x, exp_rtl)
7841 || (MEM_P (x) && MEM_P (exp_rtl)
7842 && true_dependence (exp_rtl, VOIDmode, x)));
7843 }
7844
7845 /* If we reach here, it is safe. */
7846 return 1;
7847 }
7848
7849
7850 /* Return the highest power of two that EXP is known to be a multiple of.
7851 This is used in updating alignment of MEMs in array references. */
7852
7853 unsigned HOST_WIDE_INT
highest_pow2_factor(const_tree exp)7854 highest_pow2_factor (const_tree exp)
7855 {
7856 unsigned HOST_WIDE_INT ret;
7857 int trailing_zeros = tree_ctz (exp);
7858 if (trailing_zeros >= HOST_BITS_PER_WIDE_INT)
7859 return BIGGEST_ALIGNMENT;
7860 ret = HOST_WIDE_INT_1U << trailing_zeros;
7861 if (ret > BIGGEST_ALIGNMENT)
7862 return BIGGEST_ALIGNMENT;
7863 return ret;
7864 }
7865
7866 /* Similar, except that the alignment requirements of TARGET are
7867 taken into account. Assume it is at least as aligned as its
7868 type, unless it is a COMPONENT_REF in which case the layout of
7869 the structure gives the alignment. */
7870
7871 static unsigned HOST_WIDE_INT
highest_pow2_factor_for_target(const_tree target,const_tree exp)7872 highest_pow2_factor_for_target (const_tree target, const_tree exp)
7873 {
7874 unsigned HOST_WIDE_INT talign = target_align (target) / BITS_PER_UNIT;
7875 unsigned HOST_WIDE_INT factor = highest_pow2_factor (exp);
7876
7877 return MAX (factor, talign);
7878 }
7879
7880 /* Convert the tree comparison code TCODE to the rtl one where the
7881 signedness is UNSIGNEDP. */
7882
7883 static enum rtx_code
convert_tree_comp_to_rtx(enum tree_code tcode,int unsignedp)7884 convert_tree_comp_to_rtx (enum tree_code tcode, int unsignedp)
7885 {
7886 enum rtx_code code;
7887 switch (tcode)
7888 {
7889 case EQ_EXPR:
7890 code = EQ;
7891 break;
7892 case NE_EXPR:
7893 code = NE;
7894 break;
7895 case LT_EXPR:
7896 code = unsignedp ? LTU : LT;
7897 break;
7898 case LE_EXPR:
7899 code = unsignedp ? LEU : LE;
7900 break;
7901 case GT_EXPR:
7902 code = unsignedp ? GTU : GT;
7903 break;
7904 case GE_EXPR:
7905 code = unsignedp ? GEU : GE;
7906 break;
7907 case UNORDERED_EXPR:
7908 code = UNORDERED;
7909 break;
7910 case ORDERED_EXPR:
7911 code = ORDERED;
7912 break;
7913 case UNLT_EXPR:
7914 code = UNLT;
7915 break;
7916 case UNLE_EXPR:
7917 code = UNLE;
7918 break;
7919 case UNGT_EXPR:
7920 code = UNGT;
7921 break;
7922 case UNGE_EXPR:
7923 code = UNGE;
7924 break;
7925 case UNEQ_EXPR:
7926 code = UNEQ;
7927 break;
7928 case LTGT_EXPR:
7929 code = LTGT;
7930 break;
7931
7932 default:
7933 gcc_unreachable ();
7934 }
7935 return code;
7936 }
7937
7938 /* Subroutine of expand_expr. Expand the two operands of a binary
7939 expression EXP0 and EXP1 placing the results in OP0 and OP1.
7940 The value may be stored in TARGET if TARGET is nonzero. The
7941 MODIFIER argument is as documented by expand_expr. */
7942
7943 void
expand_operands(tree exp0,tree exp1,rtx target,rtx * op0,rtx * op1,enum expand_modifier modifier)7944 expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1,
7945 enum expand_modifier modifier)
7946 {
7947 if (! safe_from_p (target, exp1, 1))
7948 target = 0;
7949 if (operand_equal_p (exp0, exp1, 0))
7950 {
7951 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
7952 *op1 = copy_rtx (*op0);
7953 }
7954 else
7955 {
7956 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
7957 *op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier);
7958 }
7959 }
7960
7961
7962 /* Return a MEM that contains constant EXP. DEFER is as for
7963 output_constant_def and MODIFIER is as for expand_expr. */
7964
7965 static rtx
expand_expr_constant(tree exp,int defer,enum expand_modifier modifier)7966 expand_expr_constant (tree exp, int defer, enum expand_modifier modifier)
7967 {
7968 rtx mem;
7969
7970 mem = output_constant_def (exp, defer);
7971 if (modifier != EXPAND_INITIALIZER)
7972 mem = use_anchored_address (mem);
7973 return mem;
7974 }
7975
7976 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
7977 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7978
7979 static rtx
expand_expr_addr_expr_1(tree exp,rtx target,scalar_int_mode tmode,enum expand_modifier modifier,addr_space_t as)7980 expand_expr_addr_expr_1 (tree exp, rtx target, scalar_int_mode tmode,
7981 enum expand_modifier modifier, addr_space_t as)
7982 {
7983 rtx result, subtarget;
7984 tree inner, offset;
7985 poly_int64 bitsize, bitpos;
7986 int unsignedp, reversep, volatilep = 0;
7987 machine_mode mode1;
7988
7989 /* If we are taking the address of a constant and are at the top level,
7990 we have to use output_constant_def since we can't call force_const_mem
7991 at top level. */
7992 /* ??? This should be considered a front-end bug. We should not be
7993 generating ADDR_EXPR of something that isn't an LVALUE. The only
7994 exception here is STRING_CST. */
7995 if (CONSTANT_CLASS_P (exp))
7996 {
7997 result = XEXP (expand_expr_constant (exp, 0, modifier), 0);
7998 if (modifier < EXPAND_SUM)
7999 result = force_operand (result, target);
8000 return result;
8001 }
8002
8003 /* Everything must be something allowed by is_gimple_addressable. */
8004 switch (TREE_CODE (exp))
8005 {
8006 case INDIRECT_REF:
8007 /* This case will happen via recursion for &a->b. */
8008 return expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);
8009
8010 case MEM_REF:
8011 {
8012 tree tem = TREE_OPERAND (exp, 0);
8013 if (!integer_zerop (TREE_OPERAND (exp, 1)))
8014 tem = fold_build_pointer_plus (tem, TREE_OPERAND (exp, 1));
8015 return expand_expr (tem, target, tmode, modifier);
8016 }
8017
8018 case TARGET_MEM_REF:
8019 return addr_for_mem_ref (exp, as, true);
8020
8021 case CONST_DECL:
8022 /* Expand the initializer like constants above. */
8023 result = XEXP (expand_expr_constant (DECL_INITIAL (exp),
8024 0, modifier), 0);
8025 if (modifier < EXPAND_SUM)
8026 result = force_operand (result, target);
8027 return result;
8028
8029 case REALPART_EXPR:
8030 /* The real part of the complex number is always first, therefore
8031 the address is the same as the address of the parent object. */
8032 offset = 0;
8033 bitpos = 0;
8034 inner = TREE_OPERAND (exp, 0);
8035 break;
8036
8037 case IMAGPART_EXPR:
8038 /* The imaginary part of the complex number is always second.
8039 The expression is therefore always offset by the size of the
8040 scalar type. */
8041 offset = 0;
8042 bitpos = GET_MODE_BITSIZE (SCALAR_TYPE_MODE (TREE_TYPE (exp)));
8043 inner = TREE_OPERAND (exp, 0);
8044 break;
8045
8046 case COMPOUND_LITERAL_EXPR:
8047 /* Allow COMPOUND_LITERAL_EXPR in initializers or coming from
8048 initializers, if e.g. rtl_for_decl_init is called on DECL_INITIAL
8049 with COMPOUND_LITERAL_EXPRs in it, or ARRAY_REF on a const static
8050 array with address of COMPOUND_LITERAL_EXPR in DECL_INITIAL;
8051 the initializers aren't gimplified. */
8052 if (COMPOUND_LITERAL_EXPR_DECL (exp)
8053 && is_global_var (COMPOUND_LITERAL_EXPR_DECL (exp)))
8054 return expand_expr_addr_expr_1 (COMPOUND_LITERAL_EXPR_DECL (exp),
8055 target, tmode, modifier, as);
8056 /* FALLTHRU */
8057 default:
8058 /* If the object is a DECL, then expand it for its rtl. Don't bypass
8059 expand_expr, as that can have various side effects; LABEL_DECLs for
8060 example, may not have their DECL_RTL set yet. Expand the rtl of
8061 CONSTRUCTORs too, which should yield a memory reference for the
8062 constructor's contents. Assume language specific tree nodes can
8063 be expanded in some interesting way. */
8064 gcc_assert (TREE_CODE (exp) < LAST_AND_UNUSED_TREE_CODE);
8065 if (DECL_P (exp)
8066 || TREE_CODE (exp) == CONSTRUCTOR
8067 || TREE_CODE (exp) == COMPOUND_LITERAL_EXPR)
8068 {
8069 result = expand_expr (exp, target, tmode,
8070 modifier == EXPAND_INITIALIZER
8071 ? EXPAND_INITIALIZER : EXPAND_CONST_ADDRESS);
8072
8073 /* If the DECL isn't in memory, then the DECL wasn't properly
8074 marked TREE_ADDRESSABLE, which will be either a front-end
8075 or a tree optimizer bug. */
8076
8077 gcc_assert (MEM_P (result));
8078 result = XEXP (result, 0);
8079
8080 /* ??? Is this needed anymore? */
8081 if (DECL_P (exp))
8082 TREE_USED (exp) = 1;
8083
8084 if (modifier != EXPAND_INITIALIZER
8085 && modifier != EXPAND_CONST_ADDRESS
8086 && modifier != EXPAND_SUM)
8087 result = force_operand (result, target);
8088 return result;
8089 }
8090
8091 /* Pass FALSE as the last argument to get_inner_reference although
8092 we are expanding to RTL. The rationale is that we know how to
8093 handle "aligning nodes" here: we can just bypass them because
8094 they won't change the final object whose address will be returned
8095 (they actually exist only for that purpose). */
8096 inner = get_inner_reference (exp, &bitsize, &bitpos, &offset, &mode1,
8097 &unsignedp, &reversep, &volatilep);
8098 break;
8099 }
8100
8101 /* We must have made progress. */
8102 gcc_assert (inner != exp);
8103
8104 subtarget = offset || maybe_ne (bitpos, 0) ? NULL_RTX : target;
8105 /* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than
8106 inner alignment, force the inner to be sufficiently aligned. */
8107 if (CONSTANT_CLASS_P (inner)
8108 && TYPE_ALIGN (TREE_TYPE (inner)) < TYPE_ALIGN (TREE_TYPE (exp)))
8109 {
8110 inner = copy_node (inner);
8111 TREE_TYPE (inner) = copy_node (TREE_TYPE (inner));
8112 SET_TYPE_ALIGN (TREE_TYPE (inner), TYPE_ALIGN (TREE_TYPE (exp)));
8113 TYPE_USER_ALIGN (TREE_TYPE (inner)) = 1;
8114 }
8115 result = expand_expr_addr_expr_1 (inner, subtarget, tmode, modifier, as);
8116
8117 if (offset)
8118 {
8119 rtx tmp;
8120
8121 if (modifier != EXPAND_NORMAL)
8122 result = force_operand (result, NULL);
8123 tmp = expand_expr (offset, NULL_RTX, tmode,
8124 modifier == EXPAND_INITIALIZER
8125 ? EXPAND_INITIALIZER : EXPAND_NORMAL);
8126
8127 /* expand_expr is allowed to return an object in a mode other
8128 than TMODE. If it did, we need to convert. */
8129 if (GET_MODE (tmp) != VOIDmode && tmode != GET_MODE (tmp))
8130 tmp = convert_modes (tmode, GET_MODE (tmp),
8131 tmp, TYPE_UNSIGNED (TREE_TYPE (offset)));
8132 result = convert_memory_address_addr_space (tmode, result, as);
8133 tmp = convert_memory_address_addr_space (tmode, tmp, as);
8134
8135 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
8136 result = simplify_gen_binary (PLUS, tmode, result, tmp);
8137 else
8138 {
8139 subtarget = maybe_ne (bitpos, 0) ? NULL_RTX : target;
8140 result = expand_simple_binop (tmode, PLUS, result, tmp, subtarget,
8141 1, OPTAB_LIB_WIDEN);
8142 }
8143 }
8144
8145 if (maybe_ne (bitpos, 0))
8146 {
8147 /* Someone beforehand should have rejected taking the address
8148 of an object that isn't byte-aligned. */
8149 poly_int64 bytepos = exact_div (bitpos, BITS_PER_UNIT);
8150 result = convert_memory_address_addr_space (tmode, result, as);
8151 result = plus_constant (tmode, result, bytepos);
8152 if (modifier < EXPAND_SUM)
8153 result = force_operand (result, target);
8154 }
8155
8156 return result;
8157 }
8158
8159 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
8160 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
8161
8162 static rtx
expand_expr_addr_expr(tree exp,rtx target,machine_mode tmode,enum expand_modifier modifier)8163 expand_expr_addr_expr (tree exp, rtx target, machine_mode tmode,
8164 enum expand_modifier modifier)
8165 {
8166 addr_space_t as = ADDR_SPACE_GENERIC;
8167 scalar_int_mode address_mode = Pmode;
8168 scalar_int_mode pointer_mode = ptr_mode;
8169 machine_mode rmode;
8170 rtx result;
8171
8172 /* Target mode of VOIDmode says "whatever's natural". */
8173 if (tmode == VOIDmode)
8174 tmode = TYPE_MODE (TREE_TYPE (exp));
8175
8176 if (POINTER_TYPE_P (TREE_TYPE (exp)))
8177 {
8178 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp)));
8179 address_mode = targetm.addr_space.address_mode (as);
8180 pointer_mode = targetm.addr_space.pointer_mode (as);
8181 }
8182
8183 /* We can get called with some Weird Things if the user does silliness
8184 like "(short) &a". In that case, convert_memory_address won't do
8185 the right thing, so ignore the given target mode. */
8186 scalar_int_mode new_tmode = (tmode == pointer_mode
8187 ? pointer_mode
8188 : address_mode);
8189
8190 result = expand_expr_addr_expr_1 (TREE_OPERAND (exp, 0), target,
8191 new_tmode, modifier, as);
8192
8193 /* Despite expand_expr claims concerning ignoring TMODE when not
8194 strictly convenient, stuff breaks if we don't honor it. Note
8195 that combined with the above, we only do this for pointer modes. */
8196 rmode = GET_MODE (result);
8197 if (rmode == VOIDmode)
8198 rmode = new_tmode;
8199 if (rmode != new_tmode)
8200 result = convert_memory_address_addr_space (new_tmode, result, as);
8201
8202 return result;
8203 }
8204
8205 /* Generate code for computing CONSTRUCTOR EXP.
8206 An rtx for the computed value is returned. If AVOID_TEMP_MEM
8207 is TRUE, instead of creating a temporary variable in memory
8208 NULL is returned and the caller needs to handle it differently. */
8209
8210 static rtx
expand_constructor(tree exp,rtx target,enum expand_modifier modifier,bool avoid_temp_mem)8211 expand_constructor (tree exp, rtx target, enum expand_modifier modifier,
8212 bool avoid_temp_mem)
8213 {
8214 tree type = TREE_TYPE (exp);
8215 machine_mode mode = TYPE_MODE (type);
8216
8217 /* Try to avoid creating a temporary at all. This is possible
8218 if all of the initializer is zero.
8219 FIXME: try to handle all [0..255] initializers we can handle
8220 with memset. */
8221 if (TREE_STATIC (exp)
8222 && !TREE_ADDRESSABLE (exp)
8223 && target != 0 && mode == BLKmode
8224 && all_zeros_p (exp))
8225 {
8226 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
8227 return target;
8228 }
8229
8230 /* All elts simple constants => refer to a constant in memory. But
8231 if this is a non-BLKmode mode, let it store a field at a time
8232 since that should make a CONST_INT, CONST_WIDE_INT or
8233 CONST_DOUBLE when we fold. Likewise, if we have a target we can
8234 use, it is best to store directly into the target unless the type
8235 is large enough that memcpy will be used. If we are making an
8236 initializer and all operands are constant, put it in memory as
8237 well.
8238
8239 FIXME: Avoid trying to fill vector constructors piece-meal.
8240 Output them with output_constant_def below unless we're sure
8241 they're zeros. This should go away when vector initializers
8242 are treated like VECTOR_CST instead of arrays. */
8243 if ((TREE_STATIC (exp)
8244 && ((mode == BLKmode
8245 && ! (target != 0 && safe_from_p (target, exp, 1)))
8246 || TREE_ADDRESSABLE (exp)
8247 || (tree_fits_uhwi_p (TYPE_SIZE_UNIT (type))
8248 && (! can_move_by_pieces
8249 (tree_to_uhwi (TYPE_SIZE_UNIT (type)),
8250 TYPE_ALIGN (type)))
8251 && ! mostly_zeros_p (exp))))
8252 || ((modifier == EXPAND_INITIALIZER || modifier == EXPAND_CONST_ADDRESS)
8253 && TREE_CONSTANT (exp)))
8254 {
8255 rtx constructor;
8256
8257 if (avoid_temp_mem)
8258 return NULL_RTX;
8259
8260 constructor = expand_expr_constant (exp, 1, modifier);
8261
8262 if (modifier != EXPAND_CONST_ADDRESS
8263 && modifier != EXPAND_INITIALIZER
8264 && modifier != EXPAND_SUM)
8265 constructor = validize_mem (constructor);
8266
8267 return constructor;
8268 }
8269
8270 /* Handle calls that pass values in multiple non-contiguous
8271 locations. The Irix 6 ABI has examples of this. */
8272 if (target == 0 || ! safe_from_p (target, exp, 1)
8273 || GET_CODE (target) == PARALLEL || modifier == EXPAND_STACK_PARM
8274 /* Also make a temporary if the store is to volatile memory, to
8275 avoid individual accesses to aggregate members. */
8276 || (GET_CODE (target) == MEM
8277 && MEM_VOLATILE_P (target)
8278 && !TREE_ADDRESSABLE (TREE_TYPE (exp))))
8279 {
8280 if (avoid_temp_mem)
8281 return NULL_RTX;
8282
8283 target = assign_temp (type, TREE_ADDRESSABLE (exp), 1);
8284 }
8285
8286 store_constructor (exp, target, 0, int_expr_size (exp), false);
8287 return target;
8288 }
8289
8290
8291 /* expand_expr: generate code for computing expression EXP.
8292 An rtx for the computed value is returned. The value is never null.
8293 In the case of a void EXP, const0_rtx is returned.
8294
8295 The value may be stored in TARGET if TARGET is nonzero.
8296 TARGET is just a suggestion; callers must assume that
8297 the rtx returned may not be the same as TARGET.
8298
8299 If TARGET is CONST0_RTX, it means that the value will be ignored.
8300
8301 If TMODE is not VOIDmode, it suggests generating the
8302 result in mode TMODE. But this is done only when convenient.
8303 Otherwise, TMODE is ignored and the value generated in its natural mode.
8304 TMODE is just a suggestion; callers must assume that
8305 the rtx returned may not have mode TMODE.
8306
8307 Note that TARGET may have neither TMODE nor MODE. In that case, it
8308 probably will not be used.
8309
8310 If MODIFIER is EXPAND_SUM then when EXP is an addition
8311 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
8312 or a nest of (PLUS ...) and (MINUS ...) where the terms are
8313 products as above, or REG or MEM, or constant.
8314 Ordinarily in such cases we would output mul or add instructions
8315 and then return a pseudo reg containing the sum.
8316
8317 EXPAND_INITIALIZER is much like EXPAND_SUM except that
8318 it also marks a label as absolutely required (it can't be dead).
8319 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
8320 This is used for outputting expressions used in initializers.
8321
8322 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
8323 with a constant address even if that address is not normally legitimate.
8324 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
8325
8326 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
8327 a call parameter. Such targets require special care as we haven't yet
8328 marked TARGET so that it's safe from being trashed by libcalls. We
8329 don't want to use TARGET for anything but the final result;
8330 Intermediate values must go elsewhere. Additionally, calls to
8331 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
8332
8333 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
8334 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
8335 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
8336 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
8337 recursively.
8338 If the result can be stored at TARGET, and ALT_RTL is non-NULL,
8339 then *ALT_RTL is set to TARGET (before legitimziation).
8340
8341 If INNER_REFERENCE_P is true, we are expanding an inner reference.
8342 In this case, we don't adjust a returned MEM rtx that wouldn't be
8343 sufficiently aligned for its mode; instead, it's up to the caller
8344 to deal with it afterwards. This is used to make sure that unaligned
8345 base objects for which out-of-bounds accesses are supported, for
8346 example record types with trailing arrays, aren't realigned behind
8347 the back of the caller.
8348 The normal operating mode is to pass FALSE for this parameter. */
8349
8350 rtx
expand_expr_real(tree exp,rtx target,machine_mode tmode,enum expand_modifier modifier,rtx * alt_rtl,bool inner_reference_p)8351 expand_expr_real (tree exp, rtx target, machine_mode tmode,
8352 enum expand_modifier modifier, rtx *alt_rtl,
8353 bool inner_reference_p)
8354 {
8355 rtx ret;
8356
8357 /* Handle ERROR_MARK before anybody tries to access its type. */
8358 if (TREE_CODE (exp) == ERROR_MARK
8359 || (TREE_CODE (TREE_TYPE (exp)) == ERROR_MARK))
8360 {
8361 ret = CONST0_RTX (tmode);
8362 return ret ? ret : const0_rtx;
8363 }
8364
8365 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl,
8366 inner_reference_p);
8367 return ret;
8368 }
8369
8370 /* Try to expand the conditional expression which is represented by
8371 TREEOP0 ? TREEOP1 : TREEOP2 using conditonal moves. If it succeeds
8372 return the rtl reg which represents the result. Otherwise return
8373 NULL_RTX. */
8374
8375 static rtx
expand_cond_expr_using_cmove(tree treeop0 ATTRIBUTE_UNUSED,tree treeop1 ATTRIBUTE_UNUSED,tree treeop2 ATTRIBUTE_UNUSED)8376 expand_cond_expr_using_cmove (tree treeop0 ATTRIBUTE_UNUSED,
8377 tree treeop1 ATTRIBUTE_UNUSED,
8378 tree treeop2 ATTRIBUTE_UNUSED)
8379 {
8380 rtx insn;
8381 rtx op00, op01, op1, op2;
8382 enum rtx_code comparison_code;
8383 machine_mode comparison_mode;
8384 gimple *srcstmt;
8385 rtx temp;
8386 tree type = TREE_TYPE (treeop1);
8387 int unsignedp = TYPE_UNSIGNED (type);
8388 machine_mode mode = TYPE_MODE (type);
8389 machine_mode orig_mode = mode;
8390 static bool expanding_cond_expr_using_cmove = false;
8391
8392 /* Conditional move expansion can end up TERing two operands which,
8393 when recursively hitting conditional expressions can result in
8394 exponential behavior if the cmove expansion ultimatively fails.
8395 It's hardly profitable to TER a cmove into a cmove so avoid doing
8396 that by failing early if we end up recursing. */
8397 if (expanding_cond_expr_using_cmove)
8398 return NULL_RTX;
8399
8400 /* If we cannot do a conditional move on the mode, try doing it
8401 with the promoted mode. */
8402 if (!can_conditionally_move_p (mode))
8403 {
8404 mode = promote_mode (type, mode, &unsignedp);
8405 if (!can_conditionally_move_p (mode))
8406 return NULL_RTX;
8407 temp = assign_temp (type, 0, 0); /* Use promoted mode for temp. */
8408 }
8409 else
8410 temp = assign_temp (type, 0, 1);
8411
8412 expanding_cond_expr_using_cmove = true;
8413 start_sequence ();
8414 expand_operands (treeop1, treeop2,
8415 mode == orig_mode ? temp : NULL_RTX, &op1, &op2,
8416 EXPAND_NORMAL);
8417
8418 if (TREE_CODE (treeop0) == SSA_NAME
8419 && (srcstmt = get_def_for_expr_class (treeop0, tcc_comparison)))
8420 {
8421 type = TREE_TYPE (gimple_assign_rhs1 (srcstmt));
8422 enum tree_code cmpcode = gimple_assign_rhs_code (srcstmt);
8423 op00 = expand_normal (gimple_assign_rhs1 (srcstmt));
8424 op01 = expand_normal (gimple_assign_rhs2 (srcstmt));
8425 comparison_mode = TYPE_MODE (type);
8426 unsignedp = TYPE_UNSIGNED (type);
8427 comparison_code = convert_tree_comp_to_rtx (cmpcode, unsignedp);
8428 }
8429 else if (COMPARISON_CLASS_P (treeop0))
8430 {
8431 type = TREE_TYPE (TREE_OPERAND (treeop0, 0));
8432 enum tree_code cmpcode = TREE_CODE (treeop0);
8433 op00 = expand_normal (TREE_OPERAND (treeop0, 0));
8434 op01 = expand_normal (TREE_OPERAND (treeop0, 1));
8435 unsignedp = TYPE_UNSIGNED (type);
8436 comparison_mode = TYPE_MODE (type);
8437 comparison_code = convert_tree_comp_to_rtx (cmpcode, unsignedp);
8438 }
8439 else
8440 {
8441 op00 = expand_normal (treeop0);
8442 op01 = const0_rtx;
8443 comparison_code = NE;
8444 comparison_mode = GET_MODE (op00);
8445 if (comparison_mode == VOIDmode)
8446 comparison_mode = TYPE_MODE (TREE_TYPE (treeop0));
8447 }
8448 expanding_cond_expr_using_cmove = false;
8449
8450 if (GET_MODE (op1) != mode)
8451 op1 = gen_lowpart (mode, op1);
8452
8453 if (GET_MODE (op2) != mode)
8454 op2 = gen_lowpart (mode, op2);
8455
8456 /* Try to emit the conditional move. */
8457 insn = emit_conditional_move (temp, comparison_code,
8458 op00, op01, comparison_mode,
8459 op1, op2, mode,
8460 unsignedp);
8461
8462 /* If we could do the conditional move, emit the sequence,
8463 and return. */
8464 if (insn)
8465 {
8466 rtx_insn *seq = get_insns ();
8467 end_sequence ();
8468 emit_insn (seq);
8469 return convert_modes (orig_mode, mode, temp, 0);
8470 }
8471
8472 /* Otherwise discard the sequence and fall back to code with
8473 branches. */
8474 end_sequence ();
8475 return NULL_RTX;
8476 }
8477
8478 /* A helper function for expand_expr_real_2 to be used with a
8479 misaligned mem_ref TEMP. Assume an unsigned type if UNSIGNEDP
8480 is nonzero, with alignment ALIGN in bits.
8481 Store the value at TARGET if possible (if TARGET is nonzero).
8482 Regardless of TARGET, we return the rtx for where the value is placed.
8483 If the result can be stored at TARGET, and ALT_RTL is non-NULL,
8484 then *ALT_RTL is set to TARGET (before legitimziation). */
8485
8486 static rtx
expand_misaligned_mem_ref(rtx temp,machine_mode mode,int unsignedp,unsigned int align,rtx target,rtx * alt_rtl)8487 expand_misaligned_mem_ref (rtx temp, machine_mode mode, int unsignedp,
8488 unsigned int align, rtx target, rtx *alt_rtl)
8489 {
8490 enum insn_code icode;
8491
8492 if ((icode = optab_handler (movmisalign_optab, mode))
8493 != CODE_FOR_nothing)
8494 {
8495 class expand_operand ops[2];
8496
8497 /* We've already validated the memory, and we're creating a
8498 new pseudo destination. The predicates really can't fail,
8499 nor can the generator. */
8500 create_output_operand (&ops[0], NULL_RTX, mode);
8501 create_fixed_operand (&ops[1], temp);
8502 expand_insn (icode, 2, ops);
8503 temp = ops[0].value;
8504 }
8505 else if (targetm.slow_unaligned_access (mode, align))
8506 temp = extract_bit_field (temp, GET_MODE_BITSIZE (mode),
8507 0, unsignedp, target,
8508 mode, mode, false, alt_rtl);
8509 return temp;
8510 }
8511
8512 rtx
expand_expr_real_2(sepops ops,rtx target,machine_mode tmode,enum expand_modifier modifier)8513 expand_expr_real_2 (sepops ops, rtx target, machine_mode tmode,
8514 enum expand_modifier modifier)
8515 {
8516 rtx op0, op1, op2, temp;
8517 rtx_code_label *lab;
8518 tree type;
8519 int unsignedp;
8520 machine_mode mode;
8521 scalar_int_mode int_mode;
8522 enum tree_code code = ops->code;
8523 optab this_optab;
8524 rtx subtarget, original_target;
8525 int ignore;
8526 bool reduce_bit_field;
8527 location_t loc = ops->location;
8528 tree treeop0, treeop1, treeop2;
8529 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field \
8530 ? reduce_to_bit_field_precision ((expr), \
8531 target, \
8532 type) \
8533 : (expr))
8534
8535 type = ops->type;
8536 mode = TYPE_MODE (type);
8537 unsignedp = TYPE_UNSIGNED (type);
8538
8539 treeop0 = ops->op0;
8540 treeop1 = ops->op1;
8541 treeop2 = ops->op2;
8542
8543 /* We should be called only on simple (binary or unary) expressions,
8544 exactly those that are valid in gimple expressions that aren't
8545 GIMPLE_SINGLE_RHS (or invalid). */
8546 gcc_assert (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS
8547 || get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS
8548 || get_gimple_rhs_class (code) == GIMPLE_TERNARY_RHS);
8549
8550 ignore = (target == const0_rtx
8551 || ((CONVERT_EXPR_CODE_P (code)
8552 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
8553 && TREE_CODE (type) == VOID_TYPE));
8554
8555 /* We should be called only if we need the result. */
8556 gcc_assert (!ignore);
8557
8558 /* An operation in what may be a bit-field type needs the
8559 result to be reduced to the precision of the bit-field type,
8560 which is narrower than that of the type's mode. */
8561 reduce_bit_field = (INTEGRAL_TYPE_P (type)
8562 && !type_has_mode_precision_p (type));
8563
8564 if (reduce_bit_field
8565 && (modifier == EXPAND_STACK_PARM
8566 || (target && GET_MODE (target) != mode)))
8567 target = 0;
8568
8569 /* Use subtarget as the target for operand 0 of a binary operation. */
8570 subtarget = get_subtarget (target);
8571 original_target = target;
8572
8573 switch (code)
8574 {
8575 case NON_LVALUE_EXPR:
8576 case PAREN_EXPR:
8577 CASE_CONVERT:
8578 if (treeop0 == error_mark_node)
8579 return const0_rtx;
8580
8581 if (TREE_CODE (type) == UNION_TYPE)
8582 {
8583 tree valtype = TREE_TYPE (treeop0);
8584
8585 /* If both input and output are BLKmode, this conversion isn't doing
8586 anything except possibly changing memory attribute. */
8587 if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode)
8588 {
8589 rtx result = expand_expr (treeop0, target, tmode,
8590 modifier);
8591
8592 result = copy_rtx (result);
8593 set_mem_attributes (result, type, 0);
8594 return result;
8595 }
8596
8597 if (target == 0)
8598 {
8599 if (TYPE_MODE (type) != BLKmode)
8600 target = gen_reg_rtx (TYPE_MODE (type));
8601 else
8602 target = assign_temp (type, 1, 1);
8603 }
8604
8605 if (MEM_P (target))
8606 /* Store data into beginning of memory target. */
8607 store_expr (treeop0,
8608 adjust_address (target, TYPE_MODE (valtype), 0),
8609 modifier == EXPAND_STACK_PARM,
8610 false, TYPE_REVERSE_STORAGE_ORDER (type));
8611
8612 else
8613 {
8614 gcc_assert (REG_P (target)
8615 && !TYPE_REVERSE_STORAGE_ORDER (type));
8616
8617 /* Store this field into a union of the proper type. */
8618 poly_uint64 op0_size
8619 = tree_to_poly_uint64 (TYPE_SIZE (TREE_TYPE (treeop0)));
8620 poly_uint64 union_size = GET_MODE_BITSIZE (mode);
8621 store_field (target,
8622 /* The conversion must be constructed so that
8623 we know at compile time how many bits
8624 to preserve. */
8625 ordered_min (op0_size, union_size),
8626 0, 0, 0, TYPE_MODE (valtype), treeop0, 0,
8627 false, false);
8628 }
8629
8630 /* Return the entire union. */
8631 return target;
8632 }
8633
8634 if (mode == TYPE_MODE (TREE_TYPE (treeop0)))
8635 {
8636 op0 = expand_expr (treeop0, target, VOIDmode,
8637 modifier);
8638
8639 /* If the signedness of the conversion differs and OP0 is
8640 a promoted SUBREG, clear that indication since we now
8641 have to do the proper extension. */
8642 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)) != unsignedp
8643 && GET_CODE (op0) == SUBREG)
8644 SUBREG_PROMOTED_VAR_P (op0) = 0;
8645
8646 return REDUCE_BIT_FIELD (op0);
8647 }
8648
8649 op0 = expand_expr (treeop0, NULL_RTX, mode,
8650 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier);
8651 if (GET_MODE (op0) == mode)
8652 ;
8653
8654 /* If OP0 is a constant, just convert it into the proper mode. */
8655 else if (CONSTANT_P (op0))
8656 {
8657 tree inner_type = TREE_TYPE (treeop0);
8658 machine_mode inner_mode = GET_MODE (op0);
8659
8660 if (inner_mode == VOIDmode)
8661 inner_mode = TYPE_MODE (inner_type);
8662
8663 if (modifier == EXPAND_INITIALIZER)
8664 op0 = lowpart_subreg (mode, op0, inner_mode);
8665 else
8666 op0= convert_modes (mode, inner_mode, op0,
8667 TYPE_UNSIGNED (inner_type));
8668 }
8669
8670 else if (modifier == EXPAND_INITIALIZER)
8671 op0 = gen_rtx_fmt_e (TYPE_UNSIGNED (TREE_TYPE (treeop0))
8672 ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
8673
8674 else if (target == 0)
8675 op0 = convert_to_mode (mode, op0,
8676 TYPE_UNSIGNED (TREE_TYPE
8677 (treeop0)));
8678 else
8679 {
8680 convert_move (target, op0,
8681 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
8682 op0 = target;
8683 }
8684
8685 return REDUCE_BIT_FIELD (op0);
8686
8687 case ADDR_SPACE_CONVERT_EXPR:
8688 {
8689 tree treeop0_type = TREE_TYPE (treeop0);
8690
8691 gcc_assert (POINTER_TYPE_P (type));
8692 gcc_assert (POINTER_TYPE_P (treeop0_type));
8693
8694 addr_space_t as_to = TYPE_ADDR_SPACE (TREE_TYPE (type));
8695 addr_space_t as_from = TYPE_ADDR_SPACE (TREE_TYPE (treeop0_type));
8696
8697 /* Conversions between pointers to the same address space should
8698 have been implemented via CONVERT_EXPR / NOP_EXPR. */
8699 gcc_assert (as_to != as_from);
8700
8701 op0 = expand_expr (treeop0, NULL_RTX, VOIDmode, modifier);
8702
8703 /* Ask target code to handle conversion between pointers
8704 to overlapping address spaces. */
8705 if (targetm.addr_space.subset_p (as_to, as_from)
8706 || targetm.addr_space.subset_p (as_from, as_to))
8707 {
8708 op0 = targetm.addr_space.convert (op0, treeop0_type, type);
8709 }
8710 else
8711 {
8712 /* For disjoint address spaces, converting anything but a null
8713 pointer invokes undefined behavior. We truncate or extend the
8714 value as if we'd converted via integers, which handles 0 as
8715 required, and all others as the programmer likely expects. */
8716 #ifndef POINTERS_EXTEND_UNSIGNED
8717 const int POINTERS_EXTEND_UNSIGNED = 1;
8718 #endif
8719 op0 = convert_modes (mode, TYPE_MODE (treeop0_type),
8720 op0, POINTERS_EXTEND_UNSIGNED);
8721 }
8722 gcc_assert (op0);
8723 return op0;
8724 }
8725
8726 case POINTER_PLUS_EXPR:
8727 /* Even though the sizetype mode and the pointer's mode can be different
8728 expand is able to handle this correctly and get the correct result out
8729 of the PLUS_EXPR code. */
8730 /* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR
8731 if sizetype precision is smaller than pointer precision. */
8732 if (TYPE_PRECISION (sizetype) < TYPE_PRECISION (type))
8733 treeop1 = fold_convert_loc (loc, type,
8734 fold_convert_loc (loc, ssizetype,
8735 treeop1));
8736 /* If sizetype precision is larger than pointer precision, truncate the
8737 offset to have matching modes. */
8738 else if (TYPE_PRECISION (sizetype) > TYPE_PRECISION (type))
8739 treeop1 = fold_convert_loc (loc, type, treeop1);
8740 /* FALLTHRU */
8741
8742 case PLUS_EXPR:
8743 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
8744 something else, make sure we add the register to the constant and
8745 then to the other thing. This case can occur during strength
8746 reduction and doing it this way will produce better code if the
8747 frame pointer or argument pointer is eliminated.
8748
8749 fold-const.c will ensure that the constant is always in the inner
8750 PLUS_EXPR, so the only case we need to do anything about is if
8751 sp, ap, or fp is our second argument, in which case we must swap
8752 the innermost first argument and our second argument. */
8753
8754 if (TREE_CODE (treeop0) == PLUS_EXPR
8755 && TREE_CODE (TREE_OPERAND (treeop0, 1)) == INTEGER_CST
8756 && VAR_P (treeop1)
8757 && (DECL_RTL (treeop1) == frame_pointer_rtx
8758 || DECL_RTL (treeop1) == stack_pointer_rtx
8759 || DECL_RTL (treeop1) == arg_pointer_rtx))
8760 {
8761 gcc_unreachable ();
8762 }
8763
8764 /* If the result is to be ptr_mode and we are adding an integer to
8765 something, we might be forming a constant. So try to use
8766 plus_constant. If it produces a sum and we can't accept it,
8767 use force_operand. This allows P = &ARR[const] to generate
8768 efficient code on machines where a SYMBOL_REF is not a valid
8769 address.
8770
8771 If this is an EXPAND_SUM call, always return the sum. */
8772 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
8773 || (mode == ptr_mode && (unsignedp || ! flag_trapv)))
8774 {
8775 if (modifier == EXPAND_STACK_PARM)
8776 target = 0;
8777 if (TREE_CODE (treeop0) == INTEGER_CST
8778 && HWI_COMPUTABLE_MODE_P (mode)
8779 && TREE_CONSTANT (treeop1))
8780 {
8781 rtx constant_part;
8782 HOST_WIDE_INT wc;
8783 machine_mode wmode = TYPE_MODE (TREE_TYPE (treeop1));
8784
8785 op1 = expand_expr (treeop1, subtarget, VOIDmode,
8786 EXPAND_SUM);
8787 /* Use wi::shwi to ensure that the constant is
8788 truncated according to the mode of OP1, then sign extended
8789 to a HOST_WIDE_INT. Using the constant directly can result
8790 in non-canonical RTL in a 64x32 cross compile. */
8791 wc = TREE_INT_CST_LOW (treeop0);
8792 constant_part =
8793 immed_wide_int_const (wi::shwi (wc, wmode), wmode);
8794 op1 = plus_constant (mode, op1, INTVAL (constant_part));
8795 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8796 op1 = force_operand (op1, target);
8797 return REDUCE_BIT_FIELD (op1);
8798 }
8799
8800 else if (TREE_CODE (treeop1) == INTEGER_CST
8801 && HWI_COMPUTABLE_MODE_P (mode)
8802 && TREE_CONSTANT (treeop0))
8803 {
8804 rtx constant_part;
8805 HOST_WIDE_INT wc;
8806 machine_mode wmode = TYPE_MODE (TREE_TYPE (treeop0));
8807
8808 op0 = expand_expr (treeop0, subtarget, VOIDmode,
8809 (modifier == EXPAND_INITIALIZER
8810 ? EXPAND_INITIALIZER : EXPAND_SUM));
8811 if (! CONSTANT_P (op0))
8812 {
8813 op1 = expand_expr (treeop1, NULL_RTX,
8814 VOIDmode, modifier);
8815 /* Return a PLUS if modifier says it's OK. */
8816 if (modifier == EXPAND_SUM
8817 || modifier == EXPAND_INITIALIZER)
8818 return simplify_gen_binary (PLUS, mode, op0, op1);
8819 goto binop2;
8820 }
8821 /* Use wi::shwi to ensure that the constant is
8822 truncated according to the mode of OP1, then sign extended
8823 to a HOST_WIDE_INT. Using the constant directly can result
8824 in non-canonical RTL in a 64x32 cross compile. */
8825 wc = TREE_INT_CST_LOW (treeop1);
8826 constant_part
8827 = immed_wide_int_const (wi::shwi (wc, wmode), wmode);
8828 op0 = plus_constant (mode, op0, INTVAL (constant_part));
8829 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8830 op0 = force_operand (op0, target);
8831 return REDUCE_BIT_FIELD (op0);
8832 }
8833 }
8834
8835 /* Use TER to expand pointer addition of a negated value
8836 as pointer subtraction. */
8837 if ((POINTER_TYPE_P (TREE_TYPE (treeop0))
8838 || (TREE_CODE (TREE_TYPE (treeop0)) == VECTOR_TYPE
8839 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (treeop0)))))
8840 && TREE_CODE (treeop1) == SSA_NAME
8841 && TYPE_MODE (TREE_TYPE (treeop0))
8842 == TYPE_MODE (TREE_TYPE (treeop1)))
8843 {
8844 gimple *def = get_def_for_expr (treeop1, NEGATE_EXPR);
8845 if (def)
8846 {
8847 treeop1 = gimple_assign_rhs1 (def);
8848 code = MINUS_EXPR;
8849 goto do_minus;
8850 }
8851 }
8852
8853 /* No sense saving up arithmetic to be done
8854 if it's all in the wrong mode to form part of an address.
8855 And force_operand won't know whether to sign-extend or
8856 zero-extend. */
8857 if (modifier != EXPAND_INITIALIZER
8858 && (modifier != EXPAND_SUM || mode != ptr_mode))
8859 {
8860 expand_operands (treeop0, treeop1,
8861 subtarget, &op0, &op1, modifier);
8862 if (op0 == const0_rtx)
8863 return op1;
8864 if (op1 == const0_rtx)
8865 return op0;
8866 goto binop2;
8867 }
8868
8869 expand_operands (treeop0, treeop1,
8870 subtarget, &op0, &op1, modifier);
8871 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
8872
8873 case MINUS_EXPR:
8874 case POINTER_DIFF_EXPR:
8875 do_minus:
8876 /* For initializers, we are allowed to return a MINUS of two
8877 symbolic constants. Here we handle all cases when both operands
8878 are constant. */
8879 /* Handle difference of two symbolic constants,
8880 for the sake of an initializer. */
8881 if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
8882 && really_constant_p (treeop0)
8883 && really_constant_p (treeop1))
8884 {
8885 expand_operands (treeop0, treeop1,
8886 NULL_RTX, &op0, &op1, modifier);
8887 return simplify_gen_binary (MINUS, mode, op0, op1);
8888 }
8889
8890 /* No sense saving up arithmetic to be done
8891 if it's all in the wrong mode to form part of an address.
8892 And force_operand won't know whether to sign-extend or
8893 zero-extend. */
8894 if (modifier != EXPAND_INITIALIZER
8895 && (modifier != EXPAND_SUM || mode != ptr_mode))
8896 goto binop;
8897
8898 expand_operands (treeop0, treeop1,
8899 subtarget, &op0, &op1, modifier);
8900
8901 /* Convert A - const to A + (-const). */
8902 if (CONST_INT_P (op1))
8903 {
8904 op1 = negate_rtx (mode, op1);
8905 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
8906 }
8907
8908 goto binop2;
8909
8910 case WIDEN_MULT_PLUS_EXPR:
8911 case WIDEN_MULT_MINUS_EXPR:
8912 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8913 op2 = expand_normal (treeop2);
8914 target = expand_widen_pattern_expr (ops, op0, op1, op2,
8915 target, unsignedp);
8916 return target;
8917
8918 case WIDEN_MULT_EXPR:
8919 /* If first operand is constant, swap them.
8920 Thus the following special case checks need only
8921 check the second operand. */
8922 if (TREE_CODE (treeop0) == INTEGER_CST)
8923 std::swap (treeop0, treeop1);
8924
8925 /* First, check if we have a multiplication of one signed and one
8926 unsigned operand. */
8927 if (TREE_CODE (treeop1) != INTEGER_CST
8928 && (TYPE_UNSIGNED (TREE_TYPE (treeop0))
8929 != TYPE_UNSIGNED (TREE_TYPE (treeop1))))
8930 {
8931 machine_mode innermode = TYPE_MODE (TREE_TYPE (treeop0));
8932 this_optab = usmul_widen_optab;
8933 if (find_widening_optab_handler (this_optab, mode, innermode)
8934 != CODE_FOR_nothing)
8935 {
8936 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)))
8937 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
8938 EXPAND_NORMAL);
8939 else
8940 expand_operands (treeop0, treeop1, NULL_RTX, &op1, &op0,
8941 EXPAND_NORMAL);
8942 /* op0 and op1 might still be constant, despite the above
8943 != INTEGER_CST check. Handle it. */
8944 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
8945 {
8946 op0 = convert_modes (mode, innermode, op0, true);
8947 op1 = convert_modes (mode, innermode, op1, false);
8948 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1,
8949 target, unsignedp));
8950 }
8951 goto binop3;
8952 }
8953 }
8954 /* Check for a multiplication with matching signedness. */
8955 else if ((TREE_CODE (treeop1) == INTEGER_CST
8956 && int_fits_type_p (treeop1, TREE_TYPE (treeop0)))
8957 || (TYPE_UNSIGNED (TREE_TYPE (treeop1))
8958 == TYPE_UNSIGNED (TREE_TYPE (treeop0))))
8959 {
8960 tree op0type = TREE_TYPE (treeop0);
8961 machine_mode innermode = TYPE_MODE (op0type);
8962 bool zextend_p = TYPE_UNSIGNED (op0type);
8963 optab other_optab = zextend_p ? smul_widen_optab : umul_widen_optab;
8964 this_optab = zextend_p ? umul_widen_optab : smul_widen_optab;
8965
8966 if (TREE_CODE (treeop0) != INTEGER_CST)
8967 {
8968 if (find_widening_optab_handler (this_optab, mode, innermode)
8969 != CODE_FOR_nothing)
8970 {
8971 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
8972 EXPAND_NORMAL);
8973 /* op0 and op1 might still be constant, despite the above
8974 != INTEGER_CST check. Handle it. */
8975 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
8976 {
8977 widen_mult_const:
8978 op0 = convert_modes (mode, innermode, op0, zextend_p);
8979 op1
8980 = convert_modes (mode, innermode, op1,
8981 TYPE_UNSIGNED (TREE_TYPE (treeop1)));
8982 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1,
8983 target,
8984 unsignedp));
8985 }
8986 temp = expand_widening_mult (mode, op0, op1, target,
8987 unsignedp, this_optab);
8988 return REDUCE_BIT_FIELD (temp);
8989 }
8990 if (find_widening_optab_handler (other_optab, mode, innermode)
8991 != CODE_FOR_nothing
8992 && innermode == word_mode)
8993 {
8994 rtx htem, hipart;
8995 op0 = expand_normal (treeop0);
8996 op1 = expand_normal (treeop1);
8997 /* op0 and op1 might be constants, despite the above
8998 != INTEGER_CST check. Handle it. */
8999 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
9000 goto widen_mult_const;
9001 temp = expand_binop (mode, other_optab, op0, op1, target,
9002 unsignedp, OPTAB_LIB_WIDEN);
9003 hipart = gen_highpart (word_mode, temp);
9004 htem = expand_mult_highpart_adjust (word_mode, hipart,
9005 op0, op1, hipart,
9006 zextend_p);
9007 if (htem != hipart)
9008 emit_move_insn (hipart, htem);
9009 return REDUCE_BIT_FIELD (temp);
9010 }
9011 }
9012 }
9013 treeop0 = fold_build1 (CONVERT_EXPR, type, treeop0);
9014 treeop1 = fold_build1 (CONVERT_EXPR, type, treeop1);
9015 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
9016 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
9017
9018 case MULT_EXPR:
9019 /* If this is a fixed-point operation, then we cannot use the code
9020 below because "expand_mult" doesn't support sat/no-sat fixed-point
9021 multiplications. */
9022 if (ALL_FIXED_POINT_MODE_P (mode))
9023 goto binop;
9024
9025 /* If first operand is constant, swap them.
9026 Thus the following special case checks need only
9027 check the second operand. */
9028 if (TREE_CODE (treeop0) == INTEGER_CST)
9029 std::swap (treeop0, treeop1);
9030
9031 /* Attempt to return something suitable for generating an
9032 indexed address, for machines that support that. */
9033
9034 if (modifier == EXPAND_SUM && mode == ptr_mode
9035 && tree_fits_shwi_p (treeop1))
9036 {
9037 tree exp1 = treeop1;
9038
9039 op0 = expand_expr (treeop0, subtarget, VOIDmode,
9040 EXPAND_SUM);
9041
9042 if (!REG_P (op0))
9043 op0 = force_operand (op0, NULL_RTX);
9044 if (!REG_P (op0))
9045 op0 = copy_to_mode_reg (mode, op0);
9046
9047 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode, op0,
9048 gen_int_mode (tree_to_shwi (exp1),
9049 TYPE_MODE (TREE_TYPE (exp1)))));
9050 }
9051
9052 if (modifier == EXPAND_STACK_PARM)
9053 target = 0;
9054
9055 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
9056 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
9057
9058 case TRUNC_MOD_EXPR:
9059 case FLOOR_MOD_EXPR:
9060 case CEIL_MOD_EXPR:
9061 case ROUND_MOD_EXPR:
9062
9063 case TRUNC_DIV_EXPR:
9064 case FLOOR_DIV_EXPR:
9065 case CEIL_DIV_EXPR:
9066 case ROUND_DIV_EXPR:
9067 case EXACT_DIV_EXPR:
9068 {
9069 /* If this is a fixed-point operation, then we cannot use the code
9070 below because "expand_divmod" doesn't support sat/no-sat fixed-point
9071 divisions. */
9072 if (ALL_FIXED_POINT_MODE_P (mode))
9073 goto binop;
9074
9075 if (modifier == EXPAND_STACK_PARM)
9076 target = 0;
9077 /* Possible optimization: compute the dividend with EXPAND_SUM
9078 then if the divisor is constant can optimize the case
9079 where some terms of the dividend have coeffs divisible by it. */
9080 expand_operands (treeop0, treeop1,
9081 subtarget, &op0, &op1, EXPAND_NORMAL);
9082 bool mod_p = code == TRUNC_MOD_EXPR || code == FLOOR_MOD_EXPR
9083 || code == CEIL_MOD_EXPR || code == ROUND_MOD_EXPR;
9084 if (SCALAR_INT_MODE_P (mode)
9085 && optimize >= 2
9086 && get_range_pos_neg (treeop0) == 1
9087 && get_range_pos_neg (treeop1) == 1)
9088 {
9089 /* If both arguments are known to be positive when interpreted
9090 as signed, we can expand it as both signed and unsigned
9091 division or modulo. Choose the cheaper sequence in that case. */
9092 bool speed_p = optimize_insn_for_speed_p ();
9093 do_pending_stack_adjust ();
9094 start_sequence ();
9095 rtx uns_ret = expand_divmod (mod_p, code, mode, op0, op1, target, 1);
9096 rtx_insn *uns_insns = get_insns ();
9097 end_sequence ();
9098 start_sequence ();
9099 rtx sgn_ret = expand_divmod (mod_p, code, mode, op0, op1, target, 0);
9100 rtx_insn *sgn_insns = get_insns ();
9101 end_sequence ();
9102 unsigned uns_cost = seq_cost (uns_insns, speed_p);
9103 unsigned sgn_cost = seq_cost (sgn_insns, speed_p);
9104
9105 /* If costs are the same then use as tie breaker the other
9106 other factor. */
9107 if (uns_cost == sgn_cost)
9108 {
9109 uns_cost = seq_cost (uns_insns, !speed_p);
9110 sgn_cost = seq_cost (sgn_insns, !speed_p);
9111 }
9112
9113 if (uns_cost < sgn_cost || (uns_cost == sgn_cost && unsignedp))
9114 {
9115 emit_insn (uns_insns);
9116 return uns_ret;
9117 }
9118 emit_insn (sgn_insns);
9119 return sgn_ret;
9120 }
9121 return expand_divmod (mod_p, code, mode, op0, op1, target, unsignedp);
9122 }
9123 case RDIV_EXPR:
9124 goto binop;
9125
9126 case MULT_HIGHPART_EXPR:
9127 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
9128 temp = expand_mult_highpart (mode, op0, op1, target, unsignedp);
9129 gcc_assert (temp);
9130 return temp;
9131
9132 case FIXED_CONVERT_EXPR:
9133 op0 = expand_normal (treeop0);
9134 if (target == 0 || modifier == EXPAND_STACK_PARM)
9135 target = gen_reg_rtx (mode);
9136
9137 if ((TREE_CODE (TREE_TYPE (treeop0)) == INTEGER_TYPE
9138 && TYPE_UNSIGNED (TREE_TYPE (treeop0)))
9139 || (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type)))
9140 expand_fixed_convert (target, op0, 1, TYPE_SATURATING (type));
9141 else
9142 expand_fixed_convert (target, op0, 0, TYPE_SATURATING (type));
9143 return target;
9144
9145 case FIX_TRUNC_EXPR:
9146 op0 = expand_normal (treeop0);
9147 if (target == 0 || modifier == EXPAND_STACK_PARM)
9148 target = gen_reg_rtx (mode);
9149 expand_fix (target, op0, unsignedp);
9150 return target;
9151
9152 case FLOAT_EXPR:
9153 op0 = expand_normal (treeop0);
9154 if (target == 0 || modifier == EXPAND_STACK_PARM)
9155 target = gen_reg_rtx (mode);
9156 /* expand_float can't figure out what to do if FROM has VOIDmode.
9157 So give it the correct mode. With -O, cse will optimize this. */
9158 if (GET_MODE (op0) == VOIDmode)
9159 op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (treeop0)),
9160 op0);
9161 expand_float (target, op0,
9162 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
9163 return target;
9164
9165 case NEGATE_EXPR:
9166 op0 = expand_expr (treeop0, subtarget,
9167 VOIDmode, EXPAND_NORMAL);
9168 if (modifier == EXPAND_STACK_PARM)
9169 target = 0;
9170 temp = expand_unop (mode,
9171 optab_for_tree_code (NEGATE_EXPR, type,
9172 optab_default),
9173 op0, target, 0);
9174 gcc_assert (temp);
9175 return REDUCE_BIT_FIELD (temp);
9176
9177 case ABS_EXPR:
9178 case ABSU_EXPR:
9179 op0 = expand_expr (treeop0, subtarget,
9180 VOIDmode, EXPAND_NORMAL);
9181 if (modifier == EXPAND_STACK_PARM)
9182 target = 0;
9183
9184 /* ABS_EXPR is not valid for complex arguments. */
9185 gcc_assert (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
9186 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT);
9187
9188 /* Unsigned abs is simply the operand. Testing here means we don't
9189 risk generating incorrect code below. */
9190 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)))
9191 return op0;
9192
9193 return expand_abs (mode, op0, target, unsignedp,
9194 safe_from_p (target, treeop0, 1));
9195
9196 case MAX_EXPR:
9197 case MIN_EXPR:
9198 target = original_target;
9199 if (target == 0
9200 || modifier == EXPAND_STACK_PARM
9201 || (MEM_P (target) && MEM_VOLATILE_P (target))
9202 || GET_MODE (target) != mode
9203 || (REG_P (target)
9204 && REGNO (target) < FIRST_PSEUDO_REGISTER))
9205 target = gen_reg_rtx (mode);
9206 expand_operands (treeop0, treeop1,
9207 target, &op0, &op1, EXPAND_NORMAL);
9208
9209 /* First try to do it with a special MIN or MAX instruction.
9210 If that does not win, use a conditional jump to select the proper
9211 value. */
9212 this_optab = optab_for_tree_code (code, type, optab_default);
9213 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
9214 OPTAB_WIDEN);
9215 if (temp != 0)
9216 return temp;
9217
9218 /* For vector MIN <x, y>, expand it a VEC_COND_EXPR <x <= y, x, y>
9219 and similarly for MAX <x, y>. */
9220 if (VECTOR_TYPE_P (type))
9221 {
9222 tree t0 = make_tree (type, op0);
9223 tree t1 = make_tree (type, op1);
9224 tree comparison = build2 (code == MIN_EXPR ? LE_EXPR : GE_EXPR,
9225 type, t0, t1);
9226 return expand_vec_cond_expr (type, comparison, t0, t1,
9227 original_target);
9228 }
9229
9230 /* At this point, a MEM target is no longer useful; we will get better
9231 code without it. */
9232
9233 if (! REG_P (target))
9234 target = gen_reg_rtx (mode);
9235
9236 /* If op1 was placed in target, swap op0 and op1. */
9237 if (target != op0 && target == op1)
9238 std::swap (op0, op1);
9239
9240 /* We generate better code and avoid problems with op1 mentioning
9241 target by forcing op1 into a pseudo if it isn't a constant. */
9242 if (! CONSTANT_P (op1))
9243 op1 = force_reg (mode, op1);
9244
9245 {
9246 enum rtx_code comparison_code;
9247 rtx cmpop1 = op1;
9248
9249 if (code == MAX_EXPR)
9250 comparison_code = unsignedp ? GEU : GE;
9251 else
9252 comparison_code = unsignedp ? LEU : LE;
9253
9254 /* Canonicalize to comparisons against 0. */
9255 if (op1 == const1_rtx)
9256 {
9257 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
9258 or (a != 0 ? a : 1) for unsigned.
9259 For MIN we are safe converting (a <= 1 ? a : 1)
9260 into (a <= 0 ? a : 1) */
9261 cmpop1 = const0_rtx;
9262 if (code == MAX_EXPR)
9263 comparison_code = unsignedp ? NE : GT;
9264 }
9265 if (op1 == constm1_rtx && !unsignedp)
9266 {
9267 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
9268 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
9269 cmpop1 = const0_rtx;
9270 if (code == MIN_EXPR)
9271 comparison_code = LT;
9272 }
9273
9274 /* Use a conditional move if possible. */
9275 if (can_conditionally_move_p (mode))
9276 {
9277 rtx insn;
9278
9279 start_sequence ();
9280
9281 /* Try to emit the conditional move. */
9282 insn = emit_conditional_move (target, comparison_code,
9283 op0, cmpop1, mode,
9284 op0, op1, mode,
9285 unsignedp);
9286
9287 /* If we could do the conditional move, emit the sequence,
9288 and return. */
9289 if (insn)
9290 {
9291 rtx_insn *seq = get_insns ();
9292 end_sequence ();
9293 emit_insn (seq);
9294 return target;
9295 }
9296
9297 /* Otherwise discard the sequence and fall back to code with
9298 branches. */
9299 end_sequence ();
9300 }
9301
9302 if (target != op0)
9303 emit_move_insn (target, op0);
9304
9305 lab = gen_label_rtx ();
9306 do_compare_rtx_and_jump (target, cmpop1, comparison_code,
9307 unsignedp, mode, NULL_RTX, NULL, lab,
9308 profile_probability::uninitialized ());
9309 }
9310 emit_move_insn (target, op1);
9311 emit_label (lab);
9312 return target;
9313
9314 case BIT_NOT_EXPR:
9315 op0 = expand_expr (treeop0, subtarget,
9316 VOIDmode, EXPAND_NORMAL);
9317 if (modifier == EXPAND_STACK_PARM)
9318 target = 0;
9319 /* In case we have to reduce the result to bitfield precision
9320 for unsigned bitfield expand this as XOR with a proper constant
9321 instead. */
9322 if (reduce_bit_field && TYPE_UNSIGNED (type))
9323 {
9324 int_mode = SCALAR_INT_TYPE_MODE (type);
9325 wide_int mask = wi::mask (TYPE_PRECISION (type),
9326 false, GET_MODE_PRECISION (int_mode));
9327
9328 temp = expand_binop (int_mode, xor_optab, op0,
9329 immed_wide_int_const (mask, int_mode),
9330 target, 1, OPTAB_LIB_WIDEN);
9331 }
9332 else
9333 temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
9334 gcc_assert (temp);
9335 return temp;
9336
9337 /* ??? Can optimize bitwise operations with one arg constant.
9338 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
9339 and (a bitwise1 b) bitwise2 b (etc)
9340 but that is probably not worth while. */
9341
9342 case BIT_AND_EXPR:
9343 case BIT_IOR_EXPR:
9344 case BIT_XOR_EXPR:
9345 goto binop;
9346
9347 case LROTATE_EXPR:
9348 case RROTATE_EXPR:
9349 gcc_assert (VECTOR_MODE_P (TYPE_MODE (type))
9350 || type_has_mode_precision_p (type));
9351 /* fall through */
9352
9353 case LSHIFT_EXPR:
9354 case RSHIFT_EXPR:
9355 {
9356 /* If this is a fixed-point operation, then we cannot use the code
9357 below because "expand_shift" doesn't support sat/no-sat fixed-point
9358 shifts. */
9359 if (ALL_FIXED_POINT_MODE_P (mode))
9360 goto binop;
9361
9362 if (! safe_from_p (subtarget, treeop1, 1))
9363 subtarget = 0;
9364 if (modifier == EXPAND_STACK_PARM)
9365 target = 0;
9366 op0 = expand_expr (treeop0, subtarget,
9367 VOIDmode, EXPAND_NORMAL);
9368
9369 /* Left shift optimization when shifting across word_size boundary.
9370
9371 If mode == GET_MODE_WIDER_MODE (word_mode), then normally
9372 there isn't native instruction to support this wide mode
9373 left shift. Given below scenario:
9374
9375 Type A = (Type) B << C
9376
9377 |< T >|
9378 | dest_high | dest_low |
9379
9380 | word_size |
9381
9382 If the shift amount C caused we shift B to across the word
9383 size boundary, i.e part of B shifted into high half of
9384 destination register, and part of B remains in the low
9385 half, then GCC will use the following left shift expand
9386 logic:
9387
9388 1. Initialize dest_low to B.
9389 2. Initialize every bit of dest_high to the sign bit of B.
9390 3. Logic left shift dest_low by C bit to finalize dest_low.
9391 The value of dest_low before this shift is kept in a temp D.
9392 4. Logic left shift dest_high by C.
9393 5. Logic right shift D by (word_size - C).
9394 6. Or the result of 4 and 5 to finalize dest_high.
9395
9396 While, by checking gimple statements, if operand B is
9397 coming from signed extension, then we can simplify above
9398 expand logic into:
9399
9400 1. dest_high = src_low >> (word_size - C).
9401 2. dest_low = src_low << C.
9402
9403 We can use one arithmetic right shift to finish all the
9404 purpose of steps 2, 4, 5, 6, thus we reduce the steps
9405 needed from 6 into 2.
9406
9407 The case is similar for zero extension, except that we
9408 initialize dest_high to zero rather than copies of the sign
9409 bit from B. Furthermore, we need to use a logical right shift
9410 in this case.
9411
9412 The choice of sign-extension versus zero-extension is
9413 determined entirely by whether or not B is signed and is
9414 independent of the current setting of unsignedp. */
9415
9416 temp = NULL_RTX;
9417 if (code == LSHIFT_EXPR
9418 && target
9419 && REG_P (target)
9420 && GET_MODE_2XWIDER_MODE (word_mode).exists (&int_mode)
9421 && mode == int_mode
9422 && TREE_CONSTANT (treeop1)
9423 && TREE_CODE (treeop0) == SSA_NAME)
9424 {
9425 gimple *def = SSA_NAME_DEF_STMT (treeop0);
9426 if (is_gimple_assign (def)
9427 && gimple_assign_rhs_code (def) == NOP_EXPR)
9428 {
9429 scalar_int_mode rmode = SCALAR_INT_TYPE_MODE
9430 (TREE_TYPE (gimple_assign_rhs1 (def)));
9431
9432 if (GET_MODE_SIZE (rmode) < GET_MODE_SIZE (int_mode)
9433 && TREE_INT_CST_LOW (treeop1) < GET_MODE_BITSIZE (word_mode)
9434 && ((TREE_INT_CST_LOW (treeop1) + GET_MODE_BITSIZE (rmode))
9435 >= GET_MODE_BITSIZE (word_mode)))
9436 {
9437 rtx_insn *seq, *seq_old;
9438 poly_uint64 high_off = subreg_highpart_offset (word_mode,
9439 int_mode);
9440 bool extend_unsigned
9441 = TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def)));
9442 rtx low = lowpart_subreg (word_mode, op0, int_mode);
9443 rtx dest_low = lowpart_subreg (word_mode, target, int_mode);
9444 rtx dest_high = simplify_gen_subreg (word_mode, target,
9445 int_mode, high_off);
9446 HOST_WIDE_INT ramount = (BITS_PER_WORD
9447 - TREE_INT_CST_LOW (treeop1));
9448 tree rshift = build_int_cst (TREE_TYPE (treeop1), ramount);
9449
9450 start_sequence ();
9451 /* dest_high = src_low >> (word_size - C). */
9452 temp = expand_variable_shift (RSHIFT_EXPR, word_mode, low,
9453 rshift, dest_high,
9454 extend_unsigned);
9455 if (temp != dest_high)
9456 emit_move_insn (dest_high, temp);
9457
9458 /* dest_low = src_low << C. */
9459 temp = expand_variable_shift (LSHIFT_EXPR, word_mode, low,
9460 treeop1, dest_low, unsignedp);
9461 if (temp != dest_low)
9462 emit_move_insn (dest_low, temp);
9463
9464 seq = get_insns ();
9465 end_sequence ();
9466 temp = target ;
9467
9468 if (have_insn_for (ASHIFT, int_mode))
9469 {
9470 bool speed_p = optimize_insn_for_speed_p ();
9471 start_sequence ();
9472 rtx ret_old = expand_variable_shift (code, int_mode,
9473 op0, treeop1,
9474 target,
9475 unsignedp);
9476
9477 seq_old = get_insns ();
9478 end_sequence ();
9479 if (seq_cost (seq, speed_p)
9480 >= seq_cost (seq_old, speed_p))
9481 {
9482 seq = seq_old;
9483 temp = ret_old;
9484 }
9485 }
9486 emit_insn (seq);
9487 }
9488 }
9489 }
9490
9491 if (temp == NULL_RTX)
9492 temp = expand_variable_shift (code, mode, op0, treeop1, target,
9493 unsignedp);
9494 if (code == LSHIFT_EXPR)
9495 temp = REDUCE_BIT_FIELD (temp);
9496 return temp;
9497 }
9498
9499 /* Could determine the answer when only additive constants differ. Also,
9500 the addition of one can be handled by changing the condition. */
9501 case LT_EXPR:
9502 case LE_EXPR:
9503 case GT_EXPR:
9504 case GE_EXPR:
9505 case EQ_EXPR:
9506 case NE_EXPR:
9507 case UNORDERED_EXPR:
9508 case ORDERED_EXPR:
9509 case UNLT_EXPR:
9510 case UNLE_EXPR:
9511 case UNGT_EXPR:
9512 case UNGE_EXPR:
9513 case UNEQ_EXPR:
9514 case LTGT_EXPR:
9515 {
9516 temp = do_store_flag (ops,
9517 modifier != EXPAND_STACK_PARM ? target : NULL_RTX,
9518 tmode != VOIDmode ? tmode : mode);
9519 if (temp)
9520 return temp;
9521
9522 /* Use a compare and a jump for BLKmode comparisons, or for function
9523 type comparisons is have_canonicalize_funcptr_for_compare. */
9524
9525 if ((target == 0
9526 || modifier == EXPAND_STACK_PARM
9527 || ! safe_from_p (target, treeop0, 1)
9528 || ! safe_from_p (target, treeop1, 1)
9529 /* Make sure we don't have a hard reg (such as function's return
9530 value) live across basic blocks, if not optimizing. */
9531 || (!optimize && REG_P (target)
9532 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
9533 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
9534
9535 emit_move_insn (target, const0_rtx);
9536
9537 rtx_code_label *lab1 = gen_label_rtx ();
9538 jumpifnot_1 (code, treeop0, treeop1, lab1,
9539 profile_probability::uninitialized ());
9540
9541 if (TYPE_PRECISION (type) == 1 && !TYPE_UNSIGNED (type))
9542 emit_move_insn (target, constm1_rtx);
9543 else
9544 emit_move_insn (target, const1_rtx);
9545
9546 emit_label (lab1);
9547 return target;
9548 }
9549 case COMPLEX_EXPR:
9550 /* Get the rtx code of the operands. */
9551 op0 = expand_normal (treeop0);
9552 op1 = expand_normal (treeop1);
9553
9554 if (!target)
9555 target = gen_reg_rtx (TYPE_MODE (type));
9556 else
9557 /* If target overlaps with op1, then either we need to force
9558 op1 into a pseudo (if target also overlaps with op0),
9559 or write the complex parts in reverse order. */
9560 switch (GET_CODE (target))
9561 {
9562 case CONCAT:
9563 if (reg_overlap_mentioned_p (XEXP (target, 0), op1))
9564 {
9565 if (reg_overlap_mentioned_p (XEXP (target, 1), op0))
9566 {
9567 complex_expr_force_op1:
9568 temp = gen_reg_rtx (GET_MODE_INNER (GET_MODE (target)));
9569 emit_move_insn (temp, op1);
9570 op1 = temp;
9571 break;
9572 }
9573 complex_expr_swap_order:
9574 /* Move the imaginary (op1) and real (op0) parts to their
9575 location. */
9576 write_complex_part (target, op1, true);
9577 write_complex_part (target, op0, false);
9578
9579 return target;
9580 }
9581 break;
9582 case MEM:
9583 temp = adjust_address_nv (target,
9584 GET_MODE_INNER (GET_MODE (target)), 0);
9585 if (reg_overlap_mentioned_p (temp, op1))
9586 {
9587 scalar_mode imode = GET_MODE_INNER (GET_MODE (target));
9588 temp = adjust_address_nv (target, imode,
9589 GET_MODE_SIZE (imode));
9590 if (reg_overlap_mentioned_p (temp, op0))
9591 goto complex_expr_force_op1;
9592 goto complex_expr_swap_order;
9593 }
9594 break;
9595 default:
9596 if (reg_overlap_mentioned_p (target, op1))
9597 {
9598 if (reg_overlap_mentioned_p (target, op0))
9599 goto complex_expr_force_op1;
9600 goto complex_expr_swap_order;
9601 }
9602 break;
9603 }
9604
9605 /* Move the real (op0) and imaginary (op1) parts to their location. */
9606 write_complex_part (target, op0, false);
9607 write_complex_part (target, op1, true);
9608
9609 return target;
9610
9611 case WIDEN_SUM_EXPR:
9612 {
9613 tree oprnd0 = treeop0;
9614 tree oprnd1 = treeop1;
9615
9616 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9617 target = expand_widen_pattern_expr (ops, op0, NULL_RTX, op1,
9618 target, unsignedp);
9619 return target;
9620 }
9621
9622 case VEC_UNPACK_HI_EXPR:
9623 case VEC_UNPACK_LO_EXPR:
9624 case VEC_UNPACK_FIX_TRUNC_HI_EXPR:
9625 case VEC_UNPACK_FIX_TRUNC_LO_EXPR:
9626 {
9627 op0 = expand_normal (treeop0);
9628 temp = expand_widen_pattern_expr (ops, op0, NULL_RTX, NULL_RTX,
9629 target, unsignedp);
9630 gcc_assert (temp);
9631 return temp;
9632 }
9633
9634 case VEC_UNPACK_FLOAT_HI_EXPR:
9635 case VEC_UNPACK_FLOAT_LO_EXPR:
9636 {
9637 op0 = expand_normal (treeop0);
9638 /* The signedness is determined from input operand. */
9639 temp = expand_widen_pattern_expr
9640 (ops, op0, NULL_RTX, NULL_RTX,
9641 target, TYPE_UNSIGNED (TREE_TYPE (treeop0)));
9642
9643 gcc_assert (temp);
9644 return temp;
9645 }
9646
9647 case VEC_WIDEN_MULT_HI_EXPR:
9648 case VEC_WIDEN_MULT_LO_EXPR:
9649 case VEC_WIDEN_MULT_EVEN_EXPR:
9650 case VEC_WIDEN_MULT_ODD_EXPR:
9651 case VEC_WIDEN_LSHIFT_HI_EXPR:
9652 case VEC_WIDEN_LSHIFT_LO_EXPR:
9653 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9654 target = expand_widen_pattern_expr (ops, op0, op1, NULL_RTX,
9655 target, unsignedp);
9656 gcc_assert (target);
9657 return target;
9658
9659 case VEC_PACK_SAT_EXPR:
9660 case VEC_PACK_FIX_TRUNC_EXPR:
9661 mode = TYPE_MODE (TREE_TYPE (treeop0));
9662 subtarget = NULL_RTX;
9663 goto binop;
9664
9665 case VEC_PACK_TRUNC_EXPR:
9666 if (VECTOR_BOOLEAN_TYPE_P (type)
9667 && VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (treeop0))
9668 && mode == TYPE_MODE (TREE_TYPE (treeop0))
9669 && SCALAR_INT_MODE_P (mode))
9670 {
9671 class expand_operand eops[4];
9672 machine_mode imode = TYPE_MODE (TREE_TYPE (treeop0));
9673 expand_operands (treeop0, treeop1,
9674 subtarget, &op0, &op1, EXPAND_NORMAL);
9675 this_optab = vec_pack_sbool_trunc_optab;
9676 enum insn_code icode = optab_handler (this_optab, imode);
9677 create_output_operand (&eops[0], target, mode);
9678 create_convert_operand_from (&eops[1], op0, imode, false);
9679 create_convert_operand_from (&eops[2], op1, imode, false);
9680 temp = GEN_INT (TYPE_VECTOR_SUBPARTS (type).to_constant ());
9681 create_input_operand (&eops[3], temp, imode);
9682 expand_insn (icode, 4, eops);
9683 return eops[0].value;
9684 }
9685 mode = TYPE_MODE (TREE_TYPE (treeop0));
9686 subtarget = NULL_RTX;
9687 goto binop;
9688
9689 case VEC_PACK_FLOAT_EXPR:
9690 mode = TYPE_MODE (TREE_TYPE (treeop0));
9691 expand_operands (treeop0, treeop1,
9692 subtarget, &op0, &op1, EXPAND_NORMAL);
9693 this_optab = optab_for_tree_code (code, TREE_TYPE (treeop0),
9694 optab_default);
9695 target = expand_binop (mode, this_optab, op0, op1, target,
9696 TYPE_UNSIGNED (TREE_TYPE (treeop0)),
9697 OPTAB_LIB_WIDEN);
9698 gcc_assert (target);
9699 return target;
9700
9701 case VEC_PERM_EXPR:
9702 {
9703 expand_operands (treeop0, treeop1, target, &op0, &op1, EXPAND_NORMAL);
9704 vec_perm_builder sel;
9705 if (TREE_CODE (treeop2) == VECTOR_CST
9706 && tree_to_vec_perm_builder (&sel, treeop2))
9707 {
9708 machine_mode sel_mode = TYPE_MODE (TREE_TYPE (treeop2));
9709 temp = expand_vec_perm_const (mode, op0, op1, sel,
9710 sel_mode, target);
9711 }
9712 else
9713 {
9714 op2 = expand_normal (treeop2);
9715 temp = expand_vec_perm_var (mode, op0, op1, op2, target);
9716 }
9717 gcc_assert (temp);
9718 return temp;
9719 }
9720
9721 case DOT_PROD_EXPR:
9722 {
9723 tree oprnd0 = treeop0;
9724 tree oprnd1 = treeop1;
9725 tree oprnd2 = treeop2;
9726
9727 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9728 op2 = expand_normal (oprnd2);
9729 target = expand_widen_pattern_expr (ops, op0, op1, op2,
9730 target, unsignedp);
9731 return target;
9732 }
9733
9734 case SAD_EXPR:
9735 {
9736 tree oprnd0 = treeop0;
9737 tree oprnd1 = treeop1;
9738 tree oprnd2 = treeop2;
9739
9740 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9741 op2 = expand_normal (oprnd2);
9742 target = expand_widen_pattern_expr (ops, op0, op1, op2,
9743 target, unsignedp);
9744 return target;
9745 }
9746
9747 case REALIGN_LOAD_EXPR:
9748 {
9749 tree oprnd0 = treeop0;
9750 tree oprnd1 = treeop1;
9751 tree oprnd2 = treeop2;
9752
9753 this_optab = optab_for_tree_code (code, type, optab_default);
9754 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9755 op2 = expand_normal (oprnd2);
9756 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
9757 target, unsignedp);
9758 gcc_assert (temp);
9759 return temp;
9760 }
9761
9762 case COND_EXPR:
9763 {
9764 /* A COND_EXPR with its type being VOID_TYPE represents a
9765 conditional jump and is handled in
9766 expand_gimple_cond_expr. */
9767 gcc_assert (!VOID_TYPE_P (type));
9768
9769 /* Note that COND_EXPRs whose type is a structure or union
9770 are required to be constructed to contain assignments of
9771 a temporary variable, so that we can evaluate them here
9772 for side effect only. If type is void, we must do likewise. */
9773
9774 gcc_assert (!TREE_ADDRESSABLE (type)
9775 && !ignore
9776 && TREE_TYPE (treeop1) != void_type_node
9777 && TREE_TYPE (treeop2) != void_type_node);
9778
9779 temp = expand_cond_expr_using_cmove (treeop0, treeop1, treeop2);
9780 if (temp)
9781 return temp;
9782
9783 /* If we are not to produce a result, we have no target. Otherwise,
9784 if a target was specified use it; it will not be used as an
9785 intermediate target unless it is safe. If no target, use a
9786 temporary. */
9787
9788 if (modifier != EXPAND_STACK_PARM
9789 && original_target
9790 && safe_from_p (original_target, treeop0, 1)
9791 && GET_MODE (original_target) == mode
9792 && !MEM_P (original_target))
9793 temp = original_target;
9794 else
9795 temp = assign_temp (type, 0, 1);
9796
9797 do_pending_stack_adjust ();
9798 NO_DEFER_POP;
9799 rtx_code_label *lab0 = gen_label_rtx ();
9800 rtx_code_label *lab1 = gen_label_rtx ();
9801 jumpifnot (treeop0, lab0,
9802 profile_probability::uninitialized ());
9803 store_expr (treeop1, temp,
9804 modifier == EXPAND_STACK_PARM,
9805 false, false);
9806
9807 emit_jump_insn (targetm.gen_jump (lab1));
9808 emit_barrier ();
9809 emit_label (lab0);
9810 store_expr (treeop2, temp,
9811 modifier == EXPAND_STACK_PARM,
9812 false, false);
9813
9814 emit_label (lab1);
9815 OK_DEFER_POP;
9816 return temp;
9817 }
9818
9819 case VEC_COND_EXPR:
9820 target = expand_vec_cond_expr (type, treeop0, treeop1, treeop2, target);
9821 return target;
9822
9823 case VEC_DUPLICATE_EXPR:
9824 op0 = expand_expr (treeop0, NULL_RTX, VOIDmode, modifier);
9825 target = expand_vector_broadcast (mode, op0);
9826 gcc_assert (target);
9827 return target;
9828
9829 case VEC_SERIES_EXPR:
9830 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, modifier);
9831 return expand_vec_series_expr (mode, op0, op1, target);
9832
9833 case BIT_INSERT_EXPR:
9834 {
9835 unsigned bitpos = tree_to_uhwi (treeop2);
9836 unsigned bitsize;
9837 if (INTEGRAL_TYPE_P (TREE_TYPE (treeop1)))
9838 bitsize = TYPE_PRECISION (TREE_TYPE (treeop1));
9839 else
9840 bitsize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (treeop1)));
9841 op0 = expand_normal (treeop0);
9842 op1 = expand_normal (treeop1);
9843 rtx dst = gen_reg_rtx (mode);
9844 emit_move_insn (dst, op0);
9845 store_bit_field (dst, bitsize, bitpos, 0, 0,
9846 TYPE_MODE (TREE_TYPE (treeop1)), op1, false);
9847 return dst;
9848 }
9849
9850 default:
9851 gcc_unreachable ();
9852 }
9853
9854 /* Here to do an ordinary binary operator. */
9855 binop:
9856 expand_operands (treeop0, treeop1,
9857 subtarget, &op0, &op1, EXPAND_NORMAL);
9858 binop2:
9859 this_optab = optab_for_tree_code (code, type, optab_default);
9860 binop3:
9861 if (modifier == EXPAND_STACK_PARM)
9862 target = 0;
9863 temp = expand_binop (mode, this_optab, op0, op1, target,
9864 unsignedp, OPTAB_LIB_WIDEN);
9865 gcc_assert (temp);
9866 /* Bitwise operations do not need bitfield reduction as we expect their
9867 operands being properly truncated. */
9868 if (code == BIT_XOR_EXPR
9869 || code == BIT_AND_EXPR
9870 || code == BIT_IOR_EXPR)
9871 return temp;
9872 return REDUCE_BIT_FIELD (temp);
9873 }
9874 #undef REDUCE_BIT_FIELD
9875
9876
9877 /* Return TRUE if expression STMT is suitable for replacement.
9878 Never consider memory loads as replaceable, because those don't ever lead
9879 into constant expressions. */
9880
9881 static bool
stmt_is_replaceable_p(gimple * stmt)9882 stmt_is_replaceable_p (gimple *stmt)
9883 {
9884 if (ssa_is_replaceable_p (stmt))
9885 {
9886 /* Don't move around loads. */
9887 if (!gimple_assign_single_p (stmt)
9888 || is_gimple_val (gimple_assign_rhs1 (stmt)))
9889 return true;
9890 }
9891 return false;
9892 }
9893
9894 rtx
expand_expr_real_1(tree exp,rtx target,machine_mode tmode,enum expand_modifier modifier,rtx * alt_rtl,bool inner_reference_p)9895 expand_expr_real_1 (tree exp, rtx target, machine_mode tmode,
9896 enum expand_modifier modifier, rtx *alt_rtl,
9897 bool inner_reference_p)
9898 {
9899 rtx op0, op1, temp, decl_rtl;
9900 tree type;
9901 int unsignedp;
9902 machine_mode mode, dmode;
9903 enum tree_code code = TREE_CODE (exp);
9904 rtx subtarget, original_target;
9905 int ignore;
9906 tree context;
9907 bool reduce_bit_field;
9908 location_t loc = EXPR_LOCATION (exp);
9909 struct separate_ops ops;
9910 tree treeop0, treeop1, treeop2;
9911 tree ssa_name = NULL_TREE;
9912 gimple *g;
9913
9914 type = TREE_TYPE (exp);
9915 mode = TYPE_MODE (type);
9916 unsignedp = TYPE_UNSIGNED (type);
9917
9918 treeop0 = treeop1 = treeop2 = NULL_TREE;
9919 if (!VL_EXP_CLASS_P (exp))
9920 switch (TREE_CODE_LENGTH (code))
9921 {
9922 default:
9923 case 3: treeop2 = TREE_OPERAND (exp, 2); /* FALLTHRU */
9924 case 2: treeop1 = TREE_OPERAND (exp, 1); /* FALLTHRU */
9925 case 1: treeop0 = TREE_OPERAND (exp, 0); /* FALLTHRU */
9926 case 0: break;
9927 }
9928 ops.code = code;
9929 ops.type = type;
9930 ops.op0 = treeop0;
9931 ops.op1 = treeop1;
9932 ops.op2 = treeop2;
9933 ops.location = loc;
9934
9935 ignore = (target == const0_rtx
9936 || ((CONVERT_EXPR_CODE_P (code)
9937 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
9938 && TREE_CODE (type) == VOID_TYPE));
9939
9940 /* An operation in what may be a bit-field type needs the
9941 result to be reduced to the precision of the bit-field type,
9942 which is narrower than that of the type's mode. */
9943 reduce_bit_field = (!ignore
9944 && INTEGRAL_TYPE_P (type)
9945 && !type_has_mode_precision_p (type));
9946
9947 /* If we are going to ignore this result, we need only do something
9948 if there is a side-effect somewhere in the expression. If there
9949 is, short-circuit the most common cases here. Note that we must
9950 not call expand_expr with anything but const0_rtx in case this
9951 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
9952
9953 if (ignore)
9954 {
9955 if (! TREE_SIDE_EFFECTS (exp))
9956 return const0_rtx;
9957
9958 /* Ensure we reference a volatile object even if value is ignored, but
9959 don't do this if all we are doing is taking its address. */
9960 if (TREE_THIS_VOLATILE (exp)
9961 && TREE_CODE (exp) != FUNCTION_DECL
9962 && mode != VOIDmode && mode != BLKmode
9963 && modifier != EXPAND_CONST_ADDRESS)
9964 {
9965 temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier);
9966 if (MEM_P (temp))
9967 copy_to_reg (temp);
9968 return const0_rtx;
9969 }
9970
9971 if (TREE_CODE_CLASS (code) == tcc_unary
9972 || code == BIT_FIELD_REF
9973 || code == COMPONENT_REF
9974 || code == INDIRECT_REF)
9975 return expand_expr (treeop0, const0_rtx, VOIDmode,
9976 modifier);
9977
9978 else if (TREE_CODE_CLASS (code) == tcc_binary
9979 || TREE_CODE_CLASS (code) == tcc_comparison
9980 || code == ARRAY_REF || code == ARRAY_RANGE_REF)
9981 {
9982 expand_expr (treeop0, const0_rtx, VOIDmode, modifier);
9983 expand_expr (treeop1, const0_rtx, VOIDmode, modifier);
9984 return const0_rtx;
9985 }
9986
9987 target = 0;
9988 }
9989
9990 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
9991 target = 0;
9992
9993 /* Use subtarget as the target for operand 0 of a binary operation. */
9994 subtarget = get_subtarget (target);
9995 original_target = target;
9996
9997 switch (code)
9998 {
9999 case LABEL_DECL:
10000 {
10001 tree function = decl_function_context (exp);
10002
10003 temp = label_rtx (exp);
10004 temp = gen_rtx_LABEL_REF (Pmode, temp);
10005
10006 if (function != current_function_decl
10007 && function != 0)
10008 LABEL_REF_NONLOCAL_P (temp) = 1;
10009
10010 temp = gen_rtx_MEM (FUNCTION_MODE, temp);
10011 return temp;
10012 }
10013
10014 case SSA_NAME:
10015 /* ??? ivopts calls expander, without any preparation from
10016 out-of-ssa. So fake instructions as if this was an access to the
10017 base variable. This unnecessarily allocates a pseudo, see how we can
10018 reuse it, if partition base vars have it set already. */
10019 if (!currently_expanding_to_rtl)
10020 {
10021 tree var = SSA_NAME_VAR (exp);
10022 if (var && DECL_RTL_SET_P (var))
10023 return DECL_RTL (var);
10024 return gen_raw_REG (TYPE_MODE (TREE_TYPE (exp)),
10025 LAST_VIRTUAL_REGISTER + 1);
10026 }
10027
10028 g = get_gimple_for_ssa_name (exp);
10029 /* For EXPAND_INITIALIZER try harder to get something simpler. */
10030 if (g == NULL
10031 && modifier == EXPAND_INITIALIZER
10032 && !SSA_NAME_IS_DEFAULT_DEF (exp)
10033 && (optimize || !SSA_NAME_VAR (exp)
10034 || DECL_IGNORED_P (SSA_NAME_VAR (exp)))
10035 && stmt_is_replaceable_p (SSA_NAME_DEF_STMT (exp)))
10036 g = SSA_NAME_DEF_STMT (exp);
10037 if (g)
10038 {
10039 rtx r;
10040 location_t saved_loc = curr_insn_location ();
10041 loc = gimple_location (g);
10042 if (loc != UNKNOWN_LOCATION)
10043 set_curr_insn_location (loc);
10044 ops.code = gimple_assign_rhs_code (g);
10045 switch (get_gimple_rhs_class (ops.code))
10046 {
10047 case GIMPLE_TERNARY_RHS:
10048 ops.op2 = gimple_assign_rhs3 (g);
10049 /* Fallthru */
10050 case GIMPLE_BINARY_RHS:
10051 ops.op1 = gimple_assign_rhs2 (g);
10052
10053 /* Try to expand conditonal compare. */
10054 if (targetm.gen_ccmp_first)
10055 {
10056 gcc_checking_assert (targetm.gen_ccmp_next != NULL);
10057 r = expand_ccmp_expr (g, mode);
10058 if (r)
10059 break;
10060 }
10061 /* Fallthru */
10062 case GIMPLE_UNARY_RHS:
10063 ops.op0 = gimple_assign_rhs1 (g);
10064 ops.type = TREE_TYPE (gimple_assign_lhs (g));
10065 ops.location = loc;
10066 r = expand_expr_real_2 (&ops, target, tmode, modifier);
10067 break;
10068 case GIMPLE_SINGLE_RHS:
10069 {
10070 r = expand_expr_real (gimple_assign_rhs1 (g), target,
10071 tmode, modifier, alt_rtl,
10072 inner_reference_p);
10073 break;
10074 }
10075 default:
10076 gcc_unreachable ();
10077 }
10078 set_curr_insn_location (saved_loc);
10079 if (REG_P (r) && !REG_EXPR (r))
10080 set_reg_attrs_for_decl_rtl (SSA_NAME_VAR (exp), r);
10081 return r;
10082 }
10083
10084 ssa_name = exp;
10085 decl_rtl = get_rtx_for_ssa_name (ssa_name);
10086 exp = SSA_NAME_VAR (ssa_name);
10087 goto expand_decl_rtl;
10088
10089 case PARM_DECL:
10090 case VAR_DECL:
10091 /* If a static var's type was incomplete when the decl was written,
10092 but the type is complete now, lay out the decl now. */
10093 if (DECL_SIZE (exp) == 0
10094 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp))
10095 && (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
10096 layout_decl (exp, 0);
10097
10098 /* fall through */
10099
10100 case FUNCTION_DECL:
10101 case RESULT_DECL:
10102 decl_rtl = DECL_RTL (exp);
10103 expand_decl_rtl:
10104 gcc_assert (decl_rtl);
10105
10106 /* DECL_MODE might change when TYPE_MODE depends on attribute target
10107 settings for VECTOR_TYPE_P that might switch for the function. */
10108 if (currently_expanding_to_rtl
10109 && code == VAR_DECL && MEM_P (decl_rtl)
10110 && VECTOR_TYPE_P (type) && exp && DECL_MODE (exp) != mode)
10111 decl_rtl = change_address (decl_rtl, TYPE_MODE (type), 0);
10112 else
10113 decl_rtl = copy_rtx (decl_rtl);
10114
10115 /* Record writes to register variables. */
10116 if (modifier == EXPAND_WRITE
10117 && REG_P (decl_rtl)
10118 && HARD_REGISTER_P (decl_rtl))
10119 add_to_hard_reg_set (&crtl->asm_clobbers,
10120 GET_MODE (decl_rtl), REGNO (decl_rtl));
10121
10122 /* Ensure variable marked as used even if it doesn't go through
10123 a parser. If it hasn't be used yet, write out an external
10124 definition. */
10125 if (exp)
10126 TREE_USED (exp) = 1;
10127
10128 /* Show we haven't gotten RTL for this yet. */
10129 temp = 0;
10130
10131 /* Variables inherited from containing functions should have
10132 been lowered by this point. */
10133 if (exp)
10134 context = decl_function_context (exp);
10135 gcc_assert (!exp
10136 || SCOPE_FILE_SCOPE_P (context)
10137 || context == current_function_decl
10138 || TREE_STATIC (exp)
10139 || DECL_EXTERNAL (exp)
10140 /* ??? C++ creates functions that are not TREE_STATIC. */
10141 || TREE_CODE (exp) == FUNCTION_DECL);
10142
10143 /* This is the case of an array whose size is to be determined
10144 from its initializer, while the initializer is still being parsed.
10145 ??? We aren't parsing while expanding anymore. */
10146
10147 if (MEM_P (decl_rtl) && REG_P (XEXP (decl_rtl, 0)))
10148 temp = validize_mem (decl_rtl);
10149
10150 /* If DECL_RTL is memory, we are in the normal case and the
10151 address is not valid, get the address into a register. */
10152
10153 else if (MEM_P (decl_rtl) && modifier != EXPAND_INITIALIZER)
10154 {
10155 if (alt_rtl)
10156 *alt_rtl = decl_rtl;
10157 decl_rtl = use_anchored_address (decl_rtl);
10158 if (modifier != EXPAND_CONST_ADDRESS
10159 && modifier != EXPAND_SUM
10160 && !memory_address_addr_space_p (exp ? DECL_MODE (exp)
10161 : GET_MODE (decl_rtl),
10162 XEXP (decl_rtl, 0),
10163 MEM_ADDR_SPACE (decl_rtl)))
10164 temp = replace_equiv_address (decl_rtl,
10165 copy_rtx (XEXP (decl_rtl, 0)));
10166 }
10167
10168 /* If we got something, return it. But first, set the alignment
10169 if the address is a register. */
10170 if (temp != 0)
10171 {
10172 if (exp && MEM_P (temp) && REG_P (XEXP (temp, 0)))
10173 mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp));
10174 }
10175 else if (MEM_P (decl_rtl))
10176 temp = decl_rtl;
10177
10178 if (temp != 0)
10179 {
10180 if (MEM_P (temp)
10181 && modifier != EXPAND_WRITE
10182 && modifier != EXPAND_MEMORY
10183 && modifier != EXPAND_INITIALIZER
10184 && modifier != EXPAND_CONST_ADDRESS
10185 && modifier != EXPAND_SUM
10186 && !inner_reference_p
10187 && mode != BLKmode
10188 && MEM_ALIGN (temp) < GET_MODE_ALIGNMENT (mode))
10189 temp = expand_misaligned_mem_ref (temp, mode, unsignedp,
10190 MEM_ALIGN (temp), NULL_RTX, NULL);
10191
10192 return temp;
10193 }
10194
10195 if (exp)
10196 dmode = DECL_MODE (exp);
10197 else
10198 dmode = TYPE_MODE (TREE_TYPE (ssa_name));
10199
10200 /* If the mode of DECL_RTL does not match that of the decl,
10201 there are two cases: we are dealing with a BLKmode value
10202 that is returned in a register, or we are dealing with
10203 a promoted value. In the latter case, return a SUBREG
10204 of the wanted mode, but mark it so that we know that it
10205 was already extended. */
10206 if (REG_P (decl_rtl)
10207 && dmode != BLKmode
10208 && GET_MODE (decl_rtl) != dmode)
10209 {
10210 machine_mode pmode;
10211
10212 /* Get the signedness to be used for this variable. Ensure we get
10213 the same mode we got when the variable was declared. */
10214 if (code != SSA_NAME)
10215 pmode = promote_decl_mode (exp, &unsignedp);
10216 else if ((g = SSA_NAME_DEF_STMT (ssa_name))
10217 && gimple_code (g) == GIMPLE_CALL
10218 && !gimple_call_internal_p (g))
10219 pmode = promote_function_mode (type, mode, &unsignedp,
10220 gimple_call_fntype (g),
10221 2);
10222 else
10223 pmode = promote_ssa_mode (ssa_name, &unsignedp);
10224 gcc_assert (GET_MODE (decl_rtl) == pmode);
10225
10226 temp = gen_lowpart_SUBREG (mode, decl_rtl);
10227 SUBREG_PROMOTED_VAR_P (temp) = 1;
10228 SUBREG_PROMOTED_SET (temp, unsignedp);
10229 return temp;
10230 }
10231
10232 return decl_rtl;
10233
10234 case INTEGER_CST:
10235 {
10236 /* Given that TYPE_PRECISION (type) is not always equal to
10237 GET_MODE_PRECISION (TYPE_MODE (type)), we need to extend from
10238 the former to the latter according to the signedness of the
10239 type. */
10240 scalar_int_mode int_mode = SCALAR_INT_TYPE_MODE (type);
10241 temp = immed_wide_int_const
10242 (wi::to_wide (exp, GET_MODE_PRECISION (int_mode)), int_mode);
10243 return temp;
10244 }
10245
10246 case VECTOR_CST:
10247 {
10248 tree tmp = NULL_TREE;
10249 if (VECTOR_MODE_P (mode))
10250 return const_vector_from_tree (exp);
10251 scalar_int_mode int_mode;
10252 if (is_int_mode (mode, &int_mode))
10253 {
10254 if (VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (exp)))
10255 return const_scalar_mask_from_tree (int_mode, exp);
10256 else
10257 {
10258 tree type_for_mode
10259 = lang_hooks.types.type_for_mode (int_mode, 1);
10260 if (type_for_mode)
10261 tmp = fold_unary_loc (loc, VIEW_CONVERT_EXPR,
10262 type_for_mode, exp);
10263 }
10264 }
10265 if (!tmp)
10266 {
10267 vec<constructor_elt, va_gc> *v;
10268 /* Constructors need to be fixed-length. FIXME. */
10269 unsigned int nunits = VECTOR_CST_NELTS (exp).to_constant ();
10270 vec_alloc (v, nunits);
10271 for (unsigned int i = 0; i < nunits; ++i)
10272 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, VECTOR_CST_ELT (exp, i));
10273 tmp = build_constructor (type, v);
10274 }
10275 return expand_expr (tmp, ignore ? const0_rtx : target,
10276 tmode, modifier);
10277 }
10278
10279 case CONST_DECL:
10280 if (modifier == EXPAND_WRITE)
10281 {
10282 /* Writing into CONST_DECL is always invalid, but handle it
10283 gracefully. */
10284 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (exp));
10285 scalar_int_mode address_mode = targetm.addr_space.address_mode (as);
10286 op0 = expand_expr_addr_expr_1 (exp, NULL_RTX, address_mode,
10287 EXPAND_NORMAL, as);
10288 op0 = memory_address_addr_space (mode, op0, as);
10289 temp = gen_rtx_MEM (mode, op0);
10290 set_mem_addr_space (temp, as);
10291 return temp;
10292 }
10293 return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier);
10294
10295 case REAL_CST:
10296 /* If optimized, generate immediate CONST_DOUBLE
10297 which will be turned into memory by reload if necessary.
10298
10299 We used to force a register so that loop.c could see it. But
10300 this does not allow gen_* patterns to perform optimizations with
10301 the constants. It also produces two insns in cases like "x = 1.0;".
10302 On most machines, floating-point constants are not permitted in
10303 many insns, so we'd end up copying it to a register in any case.
10304
10305 Now, we do the copying in expand_binop, if appropriate. */
10306 return const_double_from_real_value (TREE_REAL_CST (exp),
10307 TYPE_MODE (TREE_TYPE (exp)));
10308
10309 case FIXED_CST:
10310 return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp),
10311 TYPE_MODE (TREE_TYPE (exp)));
10312
10313 case COMPLEX_CST:
10314 /* Handle evaluating a complex constant in a CONCAT target. */
10315 if (original_target && GET_CODE (original_target) == CONCAT)
10316 {
10317 rtx rtarg, itarg;
10318
10319 mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
10320 rtarg = XEXP (original_target, 0);
10321 itarg = XEXP (original_target, 1);
10322
10323 /* Move the real and imaginary parts separately. */
10324 op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, EXPAND_NORMAL);
10325 op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, EXPAND_NORMAL);
10326
10327 if (op0 != rtarg)
10328 emit_move_insn (rtarg, op0);
10329 if (op1 != itarg)
10330 emit_move_insn (itarg, op1);
10331
10332 return original_target;
10333 }
10334
10335 /* fall through */
10336
10337 case STRING_CST:
10338 temp = expand_expr_constant (exp, 1, modifier);
10339
10340 /* temp contains a constant address.
10341 On RISC machines where a constant address isn't valid,
10342 make some insns to get that address into a register. */
10343 if (modifier != EXPAND_CONST_ADDRESS
10344 && modifier != EXPAND_INITIALIZER
10345 && modifier != EXPAND_SUM
10346 && ! memory_address_addr_space_p (mode, XEXP (temp, 0),
10347 MEM_ADDR_SPACE (temp)))
10348 return replace_equiv_address (temp,
10349 copy_rtx (XEXP (temp, 0)));
10350 return temp;
10351
10352 case POLY_INT_CST:
10353 return immed_wide_int_const (poly_int_cst_value (exp), mode);
10354
10355 case SAVE_EXPR:
10356 {
10357 tree val = treeop0;
10358 rtx ret = expand_expr_real_1 (val, target, tmode, modifier, alt_rtl,
10359 inner_reference_p);
10360
10361 if (!SAVE_EXPR_RESOLVED_P (exp))
10362 {
10363 /* We can indeed still hit this case, typically via builtin
10364 expanders calling save_expr immediately before expanding
10365 something. Assume this means that we only have to deal
10366 with non-BLKmode values. */
10367 gcc_assert (GET_MODE (ret) != BLKmode);
10368
10369 val = build_decl (curr_insn_location (),
10370 VAR_DECL, NULL, TREE_TYPE (exp));
10371 DECL_ARTIFICIAL (val) = 1;
10372 DECL_IGNORED_P (val) = 1;
10373 treeop0 = val;
10374 TREE_OPERAND (exp, 0) = treeop0;
10375 SAVE_EXPR_RESOLVED_P (exp) = 1;
10376
10377 if (!CONSTANT_P (ret))
10378 ret = copy_to_reg (ret);
10379 SET_DECL_RTL (val, ret);
10380 }
10381
10382 return ret;
10383 }
10384
10385
10386 case CONSTRUCTOR:
10387 /* If we don't need the result, just ensure we evaluate any
10388 subexpressions. */
10389 if (ignore)
10390 {
10391 unsigned HOST_WIDE_INT idx;
10392 tree value;
10393
10394 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
10395 expand_expr (value, const0_rtx, VOIDmode, EXPAND_NORMAL);
10396
10397 return const0_rtx;
10398 }
10399
10400 return expand_constructor (exp, target, modifier, false);
10401
10402 case TARGET_MEM_REF:
10403 {
10404 addr_space_t as
10405 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))));
10406 unsigned int align;
10407
10408 op0 = addr_for_mem_ref (exp, as, true);
10409 op0 = memory_address_addr_space (mode, op0, as);
10410 temp = gen_rtx_MEM (mode, op0);
10411 set_mem_attributes (temp, exp, 0);
10412 set_mem_addr_space (temp, as);
10413 align = get_object_alignment (exp);
10414 if (modifier != EXPAND_WRITE
10415 && modifier != EXPAND_MEMORY
10416 && mode != BLKmode
10417 && align < GET_MODE_ALIGNMENT (mode))
10418 temp = expand_misaligned_mem_ref (temp, mode, unsignedp,
10419 align, NULL_RTX, NULL);
10420 return temp;
10421 }
10422
10423 case MEM_REF:
10424 {
10425 const bool reverse = REF_REVERSE_STORAGE_ORDER (exp);
10426 addr_space_t as
10427 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))));
10428 machine_mode address_mode;
10429 tree base = TREE_OPERAND (exp, 0);
10430 gimple *def_stmt;
10431 unsigned align;
10432 /* Handle expansion of non-aliased memory with non-BLKmode. That
10433 might end up in a register. */
10434 if (mem_ref_refers_to_non_mem_p (exp))
10435 {
10436 poly_int64 offset = mem_ref_offset (exp).force_shwi ();
10437 base = TREE_OPERAND (base, 0);
10438 poly_uint64 type_size;
10439 if (known_eq (offset, 0)
10440 && !reverse
10441 && poly_int_tree_p (TYPE_SIZE (type), &type_size)
10442 && known_eq (GET_MODE_BITSIZE (DECL_MODE (base)), type_size))
10443 return expand_expr (build1 (VIEW_CONVERT_EXPR, type, base),
10444 target, tmode, modifier);
10445 if (TYPE_MODE (type) == BLKmode)
10446 {
10447 temp = assign_stack_temp (DECL_MODE (base),
10448 GET_MODE_SIZE (DECL_MODE (base)));
10449 store_expr (base, temp, 0, false, false);
10450 temp = adjust_address (temp, BLKmode, offset);
10451 set_mem_size (temp, int_size_in_bytes (type));
10452 return temp;
10453 }
10454 exp = build3 (BIT_FIELD_REF, type, base, TYPE_SIZE (type),
10455 bitsize_int (offset * BITS_PER_UNIT));
10456 REF_REVERSE_STORAGE_ORDER (exp) = reverse;
10457 return expand_expr (exp, target, tmode, modifier);
10458 }
10459 address_mode = targetm.addr_space.address_mode (as);
10460 if ((def_stmt = get_def_for_expr (base, BIT_AND_EXPR)))
10461 {
10462 tree mask = gimple_assign_rhs2 (def_stmt);
10463 base = build2 (BIT_AND_EXPR, TREE_TYPE (base),
10464 gimple_assign_rhs1 (def_stmt), mask);
10465 TREE_OPERAND (exp, 0) = base;
10466 }
10467 align = get_object_alignment (exp);
10468 op0 = expand_expr (base, NULL_RTX, VOIDmode, EXPAND_SUM);
10469 op0 = memory_address_addr_space (mode, op0, as);
10470 if (!integer_zerop (TREE_OPERAND (exp, 1)))
10471 {
10472 rtx off = immed_wide_int_const (mem_ref_offset (exp), address_mode);
10473 op0 = simplify_gen_binary (PLUS, address_mode, op0, off);
10474 op0 = memory_address_addr_space (mode, op0, as);
10475 }
10476 temp = gen_rtx_MEM (mode, op0);
10477 set_mem_attributes (temp, exp, 0);
10478 set_mem_addr_space (temp, as);
10479 if (TREE_THIS_VOLATILE (exp))
10480 MEM_VOLATILE_P (temp) = 1;
10481 if (modifier != EXPAND_WRITE
10482 && modifier != EXPAND_MEMORY
10483 && !inner_reference_p
10484 && mode != BLKmode
10485 && align < GET_MODE_ALIGNMENT (mode))
10486 temp = expand_misaligned_mem_ref (temp, mode, unsignedp, align,
10487 modifier == EXPAND_STACK_PARM
10488 ? NULL_RTX : target, alt_rtl);
10489 if (reverse
10490 && modifier != EXPAND_MEMORY
10491 && modifier != EXPAND_WRITE)
10492 temp = flip_storage_order (mode, temp);
10493 return temp;
10494 }
10495
10496 case ARRAY_REF:
10497
10498 {
10499 tree array = treeop0;
10500 tree index = treeop1;
10501 tree init;
10502
10503 /* Fold an expression like: "foo"[2].
10504 This is not done in fold so it won't happen inside &.
10505 Don't fold if this is for wide characters since it's too
10506 difficult to do correctly and this is a very rare case. */
10507
10508 if (modifier != EXPAND_CONST_ADDRESS
10509 && modifier != EXPAND_INITIALIZER
10510 && modifier != EXPAND_MEMORY)
10511 {
10512 tree t = fold_read_from_constant_string (exp);
10513
10514 if (t)
10515 return expand_expr (t, target, tmode, modifier);
10516 }
10517
10518 /* If this is a constant index into a constant array,
10519 just get the value from the array. Handle both the cases when
10520 we have an explicit constructor and when our operand is a variable
10521 that was declared const. */
10522
10523 if (modifier != EXPAND_CONST_ADDRESS
10524 && modifier != EXPAND_INITIALIZER
10525 && modifier != EXPAND_MEMORY
10526 && TREE_CODE (array) == CONSTRUCTOR
10527 && ! TREE_SIDE_EFFECTS (array)
10528 && TREE_CODE (index) == INTEGER_CST)
10529 {
10530 unsigned HOST_WIDE_INT ix;
10531 tree field, value;
10532
10533 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array), ix,
10534 field, value)
10535 if (tree_int_cst_equal (field, index))
10536 {
10537 if (!TREE_SIDE_EFFECTS (value))
10538 return expand_expr (fold (value), target, tmode, modifier);
10539 break;
10540 }
10541 }
10542
10543 else if (optimize >= 1
10544 && modifier != EXPAND_CONST_ADDRESS
10545 && modifier != EXPAND_INITIALIZER
10546 && modifier != EXPAND_MEMORY
10547 && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
10548 && TREE_CODE (index) == INTEGER_CST
10549 && (VAR_P (array) || TREE_CODE (array) == CONST_DECL)
10550 && (init = ctor_for_folding (array)) != error_mark_node)
10551 {
10552 if (init == NULL_TREE)
10553 {
10554 tree value = build_zero_cst (type);
10555 if (TREE_CODE (value) == CONSTRUCTOR)
10556 {
10557 /* If VALUE is a CONSTRUCTOR, this optimization is only
10558 useful if this doesn't store the CONSTRUCTOR into
10559 memory. If it does, it is more efficient to just
10560 load the data from the array directly. */
10561 rtx ret = expand_constructor (value, target,
10562 modifier, true);
10563 if (ret == NULL_RTX)
10564 value = NULL_TREE;
10565 }
10566
10567 if (value)
10568 return expand_expr (value, target, tmode, modifier);
10569 }
10570 else if (TREE_CODE (init) == CONSTRUCTOR)
10571 {
10572 unsigned HOST_WIDE_INT ix;
10573 tree field, value;
10574
10575 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), ix,
10576 field, value)
10577 if (tree_int_cst_equal (field, index))
10578 {
10579 if (TREE_SIDE_EFFECTS (value))
10580 break;
10581
10582 if (TREE_CODE (value) == CONSTRUCTOR)
10583 {
10584 /* If VALUE is a CONSTRUCTOR, this
10585 optimization is only useful if
10586 this doesn't store the CONSTRUCTOR
10587 into memory. If it does, it is more
10588 efficient to just load the data from
10589 the array directly. */
10590 rtx ret = expand_constructor (value, target,
10591 modifier, true);
10592 if (ret == NULL_RTX)
10593 break;
10594 }
10595
10596 return
10597 expand_expr (fold (value), target, tmode, modifier);
10598 }
10599 }
10600 else if (TREE_CODE (init) == STRING_CST)
10601 {
10602 tree low_bound = array_ref_low_bound (exp);
10603 tree index1 = fold_convert_loc (loc, sizetype, treeop1);
10604
10605 /* Optimize the special case of a zero lower bound.
10606
10607 We convert the lower bound to sizetype to avoid problems
10608 with constant folding. E.g. suppose the lower bound is
10609 1 and its mode is QI. Without the conversion
10610 (ARRAY + (INDEX - (unsigned char)1))
10611 becomes
10612 (ARRAY + (-(unsigned char)1) + INDEX)
10613 which becomes
10614 (ARRAY + 255 + INDEX). Oops! */
10615 if (!integer_zerop (low_bound))
10616 index1 = size_diffop_loc (loc, index1,
10617 fold_convert_loc (loc, sizetype,
10618 low_bound));
10619
10620 if (tree_fits_uhwi_p (index1)
10621 && compare_tree_int (index1, TREE_STRING_LENGTH (init)) < 0)
10622 {
10623 tree char_type = TREE_TYPE (TREE_TYPE (init));
10624 scalar_int_mode char_mode;
10625
10626 if (is_int_mode (TYPE_MODE (char_type), &char_mode)
10627 && GET_MODE_SIZE (char_mode) == 1)
10628 return gen_int_mode (TREE_STRING_POINTER (init)
10629 [TREE_INT_CST_LOW (index1)],
10630 char_mode);
10631 }
10632 }
10633 }
10634 }
10635 goto normal_inner_ref;
10636
10637 case COMPONENT_REF:
10638 /* If the operand is a CONSTRUCTOR, we can just extract the
10639 appropriate field if it is present. */
10640 if (TREE_CODE (treeop0) == CONSTRUCTOR)
10641 {
10642 unsigned HOST_WIDE_INT idx;
10643 tree field, value;
10644 scalar_int_mode field_mode;
10645
10646 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (treeop0),
10647 idx, field, value)
10648 if (field == treeop1
10649 /* We can normally use the value of the field in the
10650 CONSTRUCTOR. However, if this is a bitfield in
10651 an integral mode that we can fit in a HOST_WIDE_INT,
10652 we must mask only the number of bits in the bitfield,
10653 since this is done implicitly by the constructor. If
10654 the bitfield does not meet either of those conditions,
10655 we can't do this optimization. */
10656 && (! DECL_BIT_FIELD (field)
10657 || (is_int_mode (DECL_MODE (field), &field_mode)
10658 && (GET_MODE_PRECISION (field_mode)
10659 <= HOST_BITS_PER_WIDE_INT))))
10660 {
10661 if (DECL_BIT_FIELD (field)
10662 && modifier == EXPAND_STACK_PARM)
10663 target = 0;
10664 op0 = expand_expr (value, target, tmode, modifier);
10665 if (DECL_BIT_FIELD (field))
10666 {
10667 HOST_WIDE_INT bitsize = TREE_INT_CST_LOW (DECL_SIZE (field));
10668 scalar_int_mode imode
10669 = SCALAR_INT_TYPE_MODE (TREE_TYPE (field));
10670
10671 if (TYPE_UNSIGNED (TREE_TYPE (field)))
10672 {
10673 op1 = gen_int_mode ((HOST_WIDE_INT_1 << bitsize) - 1,
10674 imode);
10675 op0 = expand_and (imode, op0, op1, target);
10676 }
10677 else
10678 {
10679 int count = GET_MODE_PRECISION (imode) - bitsize;
10680
10681 op0 = expand_shift (LSHIFT_EXPR, imode, op0, count,
10682 target, 0);
10683 op0 = expand_shift (RSHIFT_EXPR, imode, op0, count,
10684 target, 0);
10685 }
10686 }
10687
10688 return op0;
10689 }
10690 }
10691 goto normal_inner_ref;
10692
10693 case BIT_FIELD_REF:
10694 case ARRAY_RANGE_REF:
10695 normal_inner_ref:
10696 {
10697 machine_mode mode1, mode2;
10698 poly_int64 bitsize, bitpos, bytepos;
10699 tree offset;
10700 int reversep, volatilep = 0, must_force_mem;
10701 tree tem
10702 = get_inner_reference (exp, &bitsize, &bitpos, &offset, &mode1,
10703 &unsignedp, &reversep, &volatilep);
10704 rtx orig_op0, memloc;
10705 bool clear_mem_expr = false;
10706
10707 /* If we got back the original object, something is wrong. Perhaps
10708 we are evaluating an expression too early. In any event, don't
10709 infinitely recurse. */
10710 gcc_assert (tem != exp);
10711
10712 /* If TEM's type is a union of variable size, pass TARGET to the inner
10713 computation, since it will need a temporary and TARGET is known
10714 to have to do. This occurs in unchecked conversion in Ada. */
10715 orig_op0 = op0
10716 = expand_expr_real (tem,
10717 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
10718 && COMPLETE_TYPE_P (TREE_TYPE (tem))
10719 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
10720 != INTEGER_CST)
10721 && modifier != EXPAND_STACK_PARM
10722 ? target : NULL_RTX),
10723 VOIDmode,
10724 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier,
10725 NULL, true);
10726
10727 /* If the field has a mode, we want to access it in the
10728 field's mode, not the computed mode.
10729 If a MEM has VOIDmode (external with incomplete type),
10730 use BLKmode for it instead. */
10731 if (MEM_P (op0))
10732 {
10733 if (mode1 != VOIDmode)
10734 op0 = adjust_address (op0, mode1, 0);
10735 else if (GET_MODE (op0) == VOIDmode)
10736 op0 = adjust_address (op0, BLKmode, 0);
10737 }
10738
10739 mode2
10740 = CONSTANT_P (op0) ? TYPE_MODE (TREE_TYPE (tem)) : GET_MODE (op0);
10741
10742 /* Make sure bitpos is not negative, it can wreak havoc later. */
10743 if (maybe_lt (bitpos, 0))
10744 {
10745 gcc_checking_assert (offset == NULL_TREE);
10746 offset = size_int (bits_to_bytes_round_down (bitpos));
10747 bitpos = num_trailing_bits (bitpos);
10748 }
10749
10750 /* If we have either an offset, a BLKmode result, or a reference
10751 outside the underlying object, we must force it to memory.
10752 Such a case can occur in Ada if we have unchecked conversion
10753 of an expression from a scalar type to an aggregate type or
10754 for an ARRAY_RANGE_REF whose type is BLKmode, or if we were
10755 passed a partially uninitialized object or a view-conversion
10756 to a larger size. */
10757 must_force_mem = (offset
10758 || mode1 == BLKmode
10759 || (mode == BLKmode
10760 && !int_mode_for_size (bitsize, 1).exists ())
10761 || maybe_gt (bitpos + bitsize,
10762 GET_MODE_BITSIZE (mode2)));
10763
10764 /* Handle CONCAT first. */
10765 if (GET_CODE (op0) == CONCAT && !must_force_mem)
10766 {
10767 if (known_eq (bitpos, 0)
10768 && known_eq (bitsize, GET_MODE_BITSIZE (GET_MODE (op0)))
10769 && COMPLEX_MODE_P (mode1)
10770 && COMPLEX_MODE_P (GET_MODE (op0))
10771 && (GET_MODE_PRECISION (GET_MODE_INNER (mode1))
10772 == GET_MODE_PRECISION (GET_MODE_INNER (GET_MODE (op0)))))
10773 {
10774 if (reversep)
10775 op0 = flip_storage_order (GET_MODE (op0), op0);
10776 if (mode1 != GET_MODE (op0))
10777 {
10778 rtx parts[2];
10779 for (int i = 0; i < 2; i++)
10780 {
10781 rtx op = read_complex_part (op0, i != 0);
10782 if (GET_CODE (op) == SUBREG)
10783 op = force_reg (GET_MODE (op), op);
10784 temp = gen_lowpart_common (GET_MODE_INNER (mode1), op);
10785 if (temp)
10786 op = temp;
10787 else
10788 {
10789 if (!REG_P (op) && !MEM_P (op))
10790 op = force_reg (GET_MODE (op), op);
10791 op = gen_lowpart (GET_MODE_INNER (mode1), op);
10792 }
10793 parts[i] = op;
10794 }
10795 op0 = gen_rtx_CONCAT (mode1, parts[0], parts[1]);
10796 }
10797 return op0;
10798 }
10799 if (known_eq (bitpos, 0)
10800 && known_eq (bitsize,
10801 GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))))
10802 && maybe_ne (bitsize, 0))
10803 {
10804 op0 = XEXP (op0, 0);
10805 mode2 = GET_MODE (op0);
10806 }
10807 else if (known_eq (bitpos,
10808 GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))))
10809 && known_eq (bitsize,
10810 GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 1))))
10811 && maybe_ne (bitpos, 0)
10812 && maybe_ne (bitsize, 0))
10813 {
10814 op0 = XEXP (op0, 1);
10815 bitpos = 0;
10816 mode2 = GET_MODE (op0);
10817 }
10818 else
10819 /* Otherwise force into memory. */
10820 must_force_mem = 1;
10821 }
10822
10823 /* If this is a constant, put it in a register if it is a legitimate
10824 constant and we don't need a memory reference. */
10825 if (CONSTANT_P (op0)
10826 && mode2 != BLKmode
10827 && targetm.legitimate_constant_p (mode2, op0)
10828 && !must_force_mem)
10829 op0 = force_reg (mode2, op0);
10830
10831 /* Otherwise, if this is a constant, try to force it to the constant
10832 pool. Note that back-ends, e.g. MIPS, may refuse to do so if it
10833 is a legitimate constant. */
10834 else if (CONSTANT_P (op0) && (memloc = force_const_mem (mode2, op0)))
10835 op0 = validize_mem (memloc);
10836
10837 /* Otherwise, if this is a constant or the object is not in memory
10838 and need be, put it there. */
10839 else if (CONSTANT_P (op0) || (!MEM_P (op0) && must_force_mem))
10840 {
10841 memloc = assign_temp (TREE_TYPE (tem), 1, 1);
10842 emit_move_insn (memloc, op0);
10843 op0 = memloc;
10844 clear_mem_expr = true;
10845 }
10846
10847 if (offset)
10848 {
10849 machine_mode address_mode;
10850 rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode,
10851 EXPAND_SUM);
10852
10853 gcc_assert (MEM_P (op0));
10854
10855 address_mode = get_address_mode (op0);
10856 if (GET_MODE (offset_rtx) != address_mode)
10857 {
10858 /* We cannot be sure that the RTL in offset_rtx is valid outside
10859 of a memory address context, so force it into a register
10860 before attempting to convert it to the desired mode. */
10861 offset_rtx = force_operand (offset_rtx, NULL_RTX);
10862 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
10863 }
10864
10865 /* See the comment in expand_assignment for the rationale. */
10866 if (mode1 != VOIDmode
10867 && maybe_ne (bitpos, 0)
10868 && maybe_gt (bitsize, 0)
10869 && multiple_p (bitpos, BITS_PER_UNIT, &bytepos)
10870 && multiple_p (bitpos, bitsize)
10871 && multiple_p (bitsize, GET_MODE_ALIGNMENT (mode1))
10872 && MEM_ALIGN (op0) >= GET_MODE_ALIGNMENT (mode1))
10873 {
10874 op0 = adjust_address (op0, mode1, bytepos);
10875 bitpos = 0;
10876 }
10877
10878 op0 = offset_address (op0, offset_rtx,
10879 highest_pow2_factor (offset));
10880 }
10881
10882 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
10883 record its alignment as BIGGEST_ALIGNMENT. */
10884 if (MEM_P (op0)
10885 && known_eq (bitpos, 0)
10886 && offset != 0
10887 && is_aligning_offset (offset, tem))
10888 set_mem_align (op0, BIGGEST_ALIGNMENT);
10889
10890 /* Don't forget about volatility even if this is a bitfield. */
10891 if (MEM_P (op0) && volatilep && ! MEM_VOLATILE_P (op0))
10892 {
10893 if (op0 == orig_op0)
10894 op0 = copy_rtx (op0);
10895
10896 MEM_VOLATILE_P (op0) = 1;
10897 }
10898
10899 if (MEM_P (op0) && TREE_CODE (tem) == FUNCTION_DECL)
10900 {
10901 if (op0 == orig_op0)
10902 op0 = copy_rtx (op0);
10903
10904 set_mem_align (op0, BITS_PER_UNIT);
10905 }
10906
10907 /* In cases where an aligned union has an unaligned object
10908 as a field, we might be extracting a BLKmode value from
10909 an integer-mode (e.g., SImode) object. Handle this case
10910 by doing the extract into an object as wide as the field
10911 (which we know to be the width of a basic mode), then
10912 storing into memory, and changing the mode to BLKmode. */
10913 if (mode1 == VOIDmode
10914 || REG_P (op0) || GET_CODE (op0) == SUBREG
10915 || (mode1 != BLKmode && ! direct_load[(int) mode1]
10916 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
10917 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT
10918 && modifier != EXPAND_CONST_ADDRESS
10919 && modifier != EXPAND_INITIALIZER
10920 && modifier != EXPAND_MEMORY)
10921 /* If the bitfield is volatile and the bitsize
10922 is narrower than the access size of the bitfield,
10923 we need to extract bitfields from the access. */
10924 || (volatilep && TREE_CODE (exp) == COMPONENT_REF
10925 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (exp, 1))
10926 && mode1 != BLKmode
10927 && maybe_lt (bitsize, GET_MODE_SIZE (mode1) * BITS_PER_UNIT))
10928 /* If the field isn't aligned enough to fetch as a memref,
10929 fetch it as a bit field. */
10930 || (mode1 != BLKmode
10931 && (((MEM_P (op0)
10932 ? MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1)
10933 || !multiple_p (bitpos, GET_MODE_ALIGNMENT (mode1))
10934 : TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode)
10935 || !multiple_p (bitpos, GET_MODE_ALIGNMENT (mode)))
10936 && modifier != EXPAND_MEMORY
10937 && ((modifier == EXPAND_CONST_ADDRESS
10938 || modifier == EXPAND_INITIALIZER)
10939 ? STRICT_ALIGNMENT
10940 : targetm.slow_unaligned_access (mode1,
10941 MEM_ALIGN (op0))))
10942 || !multiple_p (bitpos, BITS_PER_UNIT)))
10943 /* If the type and the field are a constant size and the
10944 size of the type isn't the same size as the bitfield,
10945 we must use bitfield operations. */
10946 || (known_size_p (bitsize)
10947 && TYPE_SIZE (TREE_TYPE (exp))
10948 && poly_int_tree_p (TYPE_SIZE (TREE_TYPE (exp)))
10949 && maybe_ne (wi::to_poly_offset (TYPE_SIZE (TREE_TYPE (exp))),
10950 bitsize)))
10951 {
10952 machine_mode ext_mode = mode;
10953
10954 if (ext_mode == BLKmode
10955 && ! (target != 0 && MEM_P (op0)
10956 && MEM_P (target)
10957 && multiple_p (bitpos, BITS_PER_UNIT)))
10958 ext_mode = int_mode_for_size (bitsize, 1).else_blk ();
10959
10960 if (ext_mode == BLKmode)
10961 {
10962 if (target == 0)
10963 target = assign_temp (type, 1, 1);
10964
10965 /* ??? Unlike the similar test a few lines below, this one is
10966 very likely obsolete. */
10967 if (known_eq (bitsize, 0))
10968 return target;
10969
10970 /* In this case, BITPOS must start at a byte boundary and
10971 TARGET, if specified, must be a MEM. */
10972 gcc_assert (MEM_P (op0)
10973 && (!target || MEM_P (target)));
10974
10975 bytepos = exact_div (bitpos, BITS_PER_UNIT);
10976 poly_int64 bytesize = bits_to_bytes_round_up (bitsize);
10977 emit_block_move (target,
10978 adjust_address (op0, VOIDmode, bytepos),
10979 gen_int_mode (bytesize, Pmode),
10980 (modifier == EXPAND_STACK_PARM
10981 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
10982
10983 return target;
10984 }
10985
10986 /* If we have nothing to extract, the result will be 0 for targets
10987 with SHIFT_COUNT_TRUNCATED == 0 and garbage otherwise. Always
10988 return 0 for the sake of consistency, as reading a zero-sized
10989 bitfield is valid in Ada and the value is fully specified. */
10990 if (known_eq (bitsize, 0))
10991 return const0_rtx;
10992
10993 op0 = validize_mem (op0);
10994
10995 if (MEM_P (op0) && REG_P (XEXP (op0, 0)))
10996 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
10997
10998 /* If the result has aggregate type and the extraction is done in
10999 an integral mode, then the field may be not aligned on a byte
11000 boundary; in this case, if it has reverse storage order, it
11001 needs to be extracted as a scalar field with reverse storage
11002 order and put back into memory order afterwards. */
11003 if (AGGREGATE_TYPE_P (type)
11004 && GET_MODE_CLASS (ext_mode) == MODE_INT)
11005 reversep = TYPE_REVERSE_STORAGE_ORDER (type);
11006
11007 gcc_checking_assert (known_ge (bitpos, 0));
11008 op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp,
11009 (modifier == EXPAND_STACK_PARM
11010 ? NULL_RTX : target),
11011 ext_mode, ext_mode, reversep, alt_rtl);
11012
11013 /* If the result has aggregate type and the mode of OP0 is an
11014 integral mode then, if BITSIZE is narrower than this mode
11015 and this is for big-endian data, we must put the field
11016 into the high-order bits. And we must also put it back
11017 into memory order if it has been previously reversed. */
11018 scalar_int_mode op0_mode;
11019 if (AGGREGATE_TYPE_P (type)
11020 && is_int_mode (GET_MODE (op0), &op0_mode))
11021 {
11022 HOST_WIDE_INT size = GET_MODE_BITSIZE (op0_mode);
11023
11024 gcc_checking_assert (known_le (bitsize, size));
11025 if (maybe_lt (bitsize, size)
11026 && reversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
11027 op0 = expand_shift (LSHIFT_EXPR, op0_mode, op0,
11028 size - bitsize, op0, 1);
11029
11030 if (reversep)
11031 op0 = flip_storage_order (op0_mode, op0);
11032 }
11033
11034 /* If the result type is BLKmode, store the data into a temporary
11035 of the appropriate type, but with the mode corresponding to the
11036 mode for the data we have (op0's mode). */
11037 if (mode == BLKmode)
11038 {
11039 rtx new_rtx
11040 = assign_stack_temp_for_type (ext_mode,
11041 GET_MODE_BITSIZE (ext_mode),
11042 type);
11043 emit_move_insn (new_rtx, op0);
11044 op0 = copy_rtx (new_rtx);
11045 PUT_MODE (op0, BLKmode);
11046 }
11047
11048 return op0;
11049 }
11050
11051 /* If the result is BLKmode, use that to access the object
11052 now as well. */
11053 if (mode == BLKmode)
11054 mode1 = BLKmode;
11055
11056 /* Get a reference to just this component. */
11057 bytepos = bits_to_bytes_round_down (bitpos);
11058 if (modifier == EXPAND_CONST_ADDRESS
11059 || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
11060 op0 = adjust_address_nv (op0, mode1, bytepos);
11061 else
11062 op0 = adjust_address (op0, mode1, bytepos);
11063
11064 if (op0 == orig_op0)
11065 op0 = copy_rtx (op0);
11066
11067 /* Don't set memory attributes if the base expression is
11068 SSA_NAME that got expanded as a MEM or a CONSTANT. In that case,
11069 we should just honor its original memory attributes. */
11070 if (!(TREE_CODE (tem) == SSA_NAME
11071 && (MEM_P (orig_op0) || CONSTANT_P (orig_op0))))
11072 set_mem_attributes (op0, exp, 0);
11073
11074 if (REG_P (XEXP (op0, 0)))
11075 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
11076
11077 /* If op0 is a temporary because the original expressions was forced
11078 to memory, clear MEM_EXPR so that the original expression cannot
11079 be marked as addressable through MEM_EXPR of the temporary. */
11080 if (clear_mem_expr)
11081 set_mem_expr (op0, NULL_TREE);
11082
11083 MEM_VOLATILE_P (op0) |= volatilep;
11084
11085 if (reversep
11086 && modifier != EXPAND_MEMORY
11087 && modifier != EXPAND_WRITE)
11088 op0 = flip_storage_order (mode1, op0);
11089
11090 if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
11091 || modifier == EXPAND_CONST_ADDRESS
11092 || modifier == EXPAND_INITIALIZER)
11093 return op0;
11094
11095 if (target == 0)
11096 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
11097
11098 convert_move (target, op0, unsignedp);
11099 return target;
11100 }
11101
11102 case OBJ_TYPE_REF:
11103 return expand_expr (OBJ_TYPE_REF_EXPR (exp), target, tmode, modifier);
11104
11105 case CALL_EXPR:
11106 /* All valid uses of __builtin_va_arg_pack () are removed during
11107 inlining. */
11108 if (CALL_EXPR_VA_ARG_PACK (exp))
11109 error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp);
11110 {
11111 tree fndecl = get_callee_fndecl (exp), attr;
11112
11113 if (fndecl
11114 /* Don't diagnose the error attribute in thunks, those are
11115 artificially created. */
11116 && !CALL_FROM_THUNK_P (exp)
11117 && (attr = lookup_attribute ("error",
11118 DECL_ATTRIBUTES (fndecl))) != NULL)
11119 {
11120 const char *ident = lang_hooks.decl_printable_name (fndecl, 1);
11121 error ("%Kcall to %qs declared with attribute error: %s", exp,
11122 identifier_to_locale (ident),
11123 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
11124 }
11125 if (fndecl
11126 /* Don't diagnose the warning attribute in thunks, those are
11127 artificially created. */
11128 && !CALL_FROM_THUNK_P (exp)
11129 && (attr = lookup_attribute ("warning",
11130 DECL_ATTRIBUTES (fndecl))) != NULL)
11131 {
11132 const char *ident = lang_hooks.decl_printable_name (fndecl, 1);
11133 warning_at (tree_nonartificial_location (exp),
11134 OPT_Wattribute_warning,
11135 "%Kcall to %qs declared with attribute warning: %s",
11136 exp, identifier_to_locale (ident),
11137 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
11138 }
11139
11140 /* Check for a built-in function. */
11141 if (fndecl && fndecl_built_in_p (fndecl))
11142 {
11143 gcc_assert (DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_FRONTEND);
11144 return expand_builtin (exp, target, subtarget, tmode, ignore);
11145 }
11146 }
11147 return expand_call (exp, target, ignore);
11148
11149 case VIEW_CONVERT_EXPR:
11150 op0 = NULL_RTX;
11151
11152 /* If we are converting to BLKmode, try to avoid an intermediate
11153 temporary by fetching an inner memory reference. */
11154 if (mode == BLKmode
11155 && poly_int_tree_p (TYPE_SIZE (type))
11156 && TYPE_MODE (TREE_TYPE (treeop0)) != BLKmode
11157 && handled_component_p (treeop0))
11158 {
11159 machine_mode mode1;
11160 poly_int64 bitsize, bitpos, bytepos;
11161 tree offset;
11162 int reversep, volatilep = 0;
11163 tree tem
11164 = get_inner_reference (treeop0, &bitsize, &bitpos, &offset, &mode1,
11165 &unsignedp, &reversep, &volatilep);
11166
11167 /* ??? We should work harder and deal with non-zero offsets. */
11168 if (!offset
11169 && multiple_p (bitpos, BITS_PER_UNIT, &bytepos)
11170 && !reversep
11171 && known_size_p (bitsize)
11172 && known_eq (wi::to_poly_offset (TYPE_SIZE (type)), bitsize))
11173 {
11174 /* See the normal_inner_ref case for the rationale. */
11175 rtx orig_op0
11176 = expand_expr_real (tem,
11177 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
11178 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
11179 != INTEGER_CST)
11180 && modifier != EXPAND_STACK_PARM
11181 ? target : NULL_RTX),
11182 VOIDmode,
11183 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier,
11184 NULL, true);
11185
11186 if (MEM_P (orig_op0))
11187 {
11188 op0 = orig_op0;
11189
11190 /* Get a reference to just this component. */
11191 if (modifier == EXPAND_CONST_ADDRESS
11192 || modifier == EXPAND_SUM
11193 || modifier == EXPAND_INITIALIZER)
11194 op0 = adjust_address_nv (op0, mode, bytepos);
11195 else
11196 op0 = adjust_address (op0, mode, bytepos);
11197
11198 if (op0 == orig_op0)
11199 op0 = copy_rtx (op0);
11200
11201 set_mem_attributes (op0, treeop0, 0);
11202 if (REG_P (XEXP (op0, 0)))
11203 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
11204
11205 MEM_VOLATILE_P (op0) |= volatilep;
11206 }
11207 }
11208 }
11209
11210 if (!op0)
11211 op0 = expand_expr_real (treeop0, NULL_RTX, VOIDmode, modifier,
11212 NULL, inner_reference_p);
11213
11214 /* If the input and output modes are both the same, we are done. */
11215 if (mode == GET_MODE (op0))
11216 ;
11217 /* If neither mode is BLKmode, and both modes are the same size
11218 then we can use gen_lowpart. */
11219 else if (mode != BLKmode
11220 && GET_MODE (op0) != BLKmode
11221 && known_eq (GET_MODE_PRECISION (mode),
11222 GET_MODE_PRECISION (GET_MODE (op0)))
11223 && !COMPLEX_MODE_P (GET_MODE (op0)))
11224 {
11225 if (GET_CODE (op0) == SUBREG)
11226 op0 = force_reg (GET_MODE (op0), op0);
11227 temp = gen_lowpart_common (mode, op0);
11228 if (temp)
11229 op0 = temp;
11230 else
11231 {
11232 if (!REG_P (op0) && !MEM_P (op0))
11233 op0 = force_reg (GET_MODE (op0), op0);
11234 op0 = gen_lowpart (mode, op0);
11235 }
11236 }
11237 /* If both types are integral, convert from one mode to the other. */
11238 else if (INTEGRAL_TYPE_P (type) && INTEGRAL_TYPE_P (TREE_TYPE (treeop0)))
11239 op0 = convert_modes (mode, GET_MODE (op0), op0,
11240 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
11241 /* If the output type is a bit-field type, do an extraction. */
11242 else if (reduce_bit_field)
11243 return extract_bit_field (op0, TYPE_PRECISION (type), 0,
11244 TYPE_UNSIGNED (type), NULL_RTX,
11245 mode, mode, false, NULL);
11246 /* As a last resort, spill op0 to memory, and reload it in a
11247 different mode. */
11248 else if (!MEM_P (op0))
11249 {
11250 /* If the operand is not a MEM, force it into memory. Since we
11251 are going to be changing the mode of the MEM, don't call
11252 force_const_mem for constants because we don't allow pool
11253 constants to change mode. */
11254 tree inner_type = TREE_TYPE (treeop0);
11255
11256 gcc_assert (!TREE_ADDRESSABLE (exp));
11257
11258 if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type))
11259 target
11260 = assign_stack_temp_for_type
11261 (TYPE_MODE (inner_type),
11262 GET_MODE_SIZE (TYPE_MODE (inner_type)), inner_type);
11263
11264 emit_move_insn (target, op0);
11265 op0 = target;
11266 }
11267
11268 /* If OP0 is (now) a MEM, we need to deal with alignment issues. If the
11269 output type is such that the operand is known to be aligned, indicate
11270 that it is. Otherwise, we need only be concerned about alignment for
11271 non-BLKmode results. */
11272 if (MEM_P (op0))
11273 {
11274 enum insn_code icode;
11275
11276 if (modifier != EXPAND_WRITE
11277 && modifier != EXPAND_MEMORY
11278 && !inner_reference_p
11279 && mode != BLKmode
11280 && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode))
11281 {
11282 /* If the target does have special handling for unaligned
11283 loads of mode then use them. */
11284 if ((icode = optab_handler (movmisalign_optab, mode))
11285 != CODE_FOR_nothing)
11286 {
11287 rtx reg;
11288
11289 op0 = adjust_address (op0, mode, 0);
11290 /* We've already validated the memory, and we're creating a
11291 new pseudo destination. The predicates really can't
11292 fail. */
11293 reg = gen_reg_rtx (mode);
11294
11295 /* Nor can the insn generator. */
11296 rtx_insn *insn = GEN_FCN (icode) (reg, op0);
11297 emit_insn (insn);
11298 return reg;
11299 }
11300 else if (STRICT_ALIGNMENT)
11301 {
11302 poly_uint64 mode_size = GET_MODE_SIZE (mode);
11303 poly_uint64 temp_size = mode_size;
11304 if (GET_MODE (op0) != BLKmode)
11305 temp_size = upper_bound (temp_size,
11306 GET_MODE_SIZE (GET_MODE (op0)));
11307 rtx new_rtx
11308 = assign_stack_temp_for_type (mode, temp_size, type);
11309 rtx new_with_op0_mode
11310 = adjust_address (new_rtx, GET_MODE (op0), 0);
11311
11312 gcc_assert (!TREE_ADDRESSABLE (exp));
11313
11314 if (GET_MODE (op0) == BLKmode)
11315 {
11316 rtx size_rtx = gen_int_mode (mode_size, Pmode);
11317 emit_block_move (new_with_op0_mode, op0, size_rtx,
11318 (modifier == EXPAND_STACK_PARM
11319 ? BLOCK_OP_CALL_PARM
11320 : BLOCK_OP_NORMAL));
11321 }
11322 else
11323 emit_move_insn (new_with_op0_mode, op0);
11324
11325 op0 = new_rtx;
11326 }
11327 }
11328
11329 op0 = adjust_address (op0, mode, 0);
11330 }
11331
11332 return op0;
11333
11334 case MODIFY_EXPR:
11335 {
11336 tree lhs = treeop0;
11337 tree rhs = treeop1;
11338 gcc_assert (ignore);
11339
11340 /* Check for |= or &= of a bitfield of size one into another bitfield
11341 of size 1. In this case, (unless we need the result of the
11342 assignment) we can do this more efficiently with a
11343 test followed by an assignment, if necessary.
11344
11345 ??? At this point, we can't get a BIT_FIELD_REF here. But if
11346 things change so we do, this code should be enhanced to
11347 support it. */
11348 if (TREE_CODE (lhs) == COMPONENT_REF
11349 && (TREE_CODE (rhs) == BIT_IOR_EXPR
11350 || TREE_CODE (rhs) == BIT_AND_EXPR)
11351 && TREE_OPERAND (rhs, 0) == lhs
11352 && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
11353 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
11354 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
11355 {
11356 rtx_code_label *label = gen_label_rtx ();
11357 int value = TREE_CODE (rhs) == BIT_IOR_EXPR;
11358 profile_probability prob = profile_probability::uninitialized ();
11359 if (value)
11360 jumpifnot (TREE_OPERAND (rhs, 1), label, prob);
11361 else
11362 jumpif (TREE_OPERAND (rhs, 1), label, prob);
11363 expand_assignment (lhs, build_int_cst (TREE_TYPE (rhs), value),
11364 false);
11365 do_pending_stack_adjust ();
11366 emit_label (label);
11367 return const0_rtx;
11368 }
11369
11370 expand_assignment (lhs, rhs, false);
11371 return const0_rtx;
11372 }
11373
11374 case ADDR_EXPR:
11375 return expand_expr_addr_expr (exp, target, tmode, modifier);
11376
11377 case REALPART_EXPR:
11378 op0 = expand_normal (treeop0);
11379 return read_complex_part (op0, false);
11380
11381 case IMAGPART_EXPR:
11382 op0 = expand_normal (treeop0);
11383 return read_complex_part (op0, true);
11384
11385 case RETURN_EXPR:
11386 case LABEL_EXPR:
11387 case GOTO_EXPR:
11388 case SWITCH_EXPR:
11389 case ASM_EXPR:
11390 /* Expanded in cfgexpand.c. */
11391 gcc_unreachable ();
11392
11393 case TRY_CATCH_EXPR:
11394 case CATCH_EXPR:
11395 case EH_FILTER_EXPR:
11396 case TRY_FINALLY_EXPR:
11397 case EH_ELSE_EXPR:
11398 /* Lowered by tree-eh.c. */
11399 gcc_unreachable ();
11400
11401 case WITH_CLEANUP_EXPR:
11402 case CLEANUP_POINT_EXPR:
11403 case TARGET_EXPR:
11404 case CASE_LABEL_EXPR:
11405 case VA_ARG_EXPR:
11406 case BIND_EXPR:
11407 case INIT_EXPR:
11408 case CONJ_EXPR:
11409 case COMPOUND_EXPR:
11410 case PREINCREMENT_EXPR:
11411 case PREDECREMENT_EXPR:
11412 case POSTINCREMENT_EXPR:
11413 case POSTDECREMENT_EXPR:
11414 case LOOP_EXPR:
11415 case EXIT_EXPR:
11416 case COMPOUND_LITERAL_EXPR:
11417 /* Lowered by gimplify.c. */
11418 gcc_unreachable ();
11419
11420 case FDESC_EXPR:
11421 /* Function descriptors are not valid except for as
11422 initialization constants, and should not be expanded. */
11423 gcc_unreachable ();
11424
11425 case WITH_SIZE_EXPR:
11426 /* WITH_SIZE_EXPR expands to its first argument. The caller should
11427 have pulled out the size to use in whatever context it needed. */
11428 return expand_expr_real (treeop0, original_target, tmode,
11429 modifier, alt_rtl, inner_reference_p);
11430
11431 default:
11432 return expand_expr_real_2 (&ops, target, tmode, modifier);
11433 }
11434 }
11435
11436 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
11437 signedness of TYPE), possibly returning the result in TARGET.
11438 TYPE is known to be a partial integer type. */
11439 static rtx
reduce_to_bit_field_precision(rtx exp,rtx target,tree type)11440 reduce_to_bit_field_precision (rtx exp, rtx target, tree type)
11441 {
11442 scalar_int_mode mode = SCALAR_INT_TYPE_MODE (type);
11443 HOST_WIDE_INT prec = TYPE_PRECISION (type);
11444 gcc_assert ((GET_MODE (exp) == VOIDmode || GET_MODE (exp) == mode)
11445 && (!target || GET_MODE (target) == mode));
11446
11447 /* For constant values, reduce using wide_int_to_tree. */
11448 if (poly_int_rtx_p (exp))
11449 {
11450 tree t = wide_int_to_tree (type, wi::to_poly_wide (exp, mode));
11451 return expand_expr (t, target, VOIDmode, EXPAND_NORMAL);
11452 }
11453 else if (TYPE_UNSIGNED (type))
11454 {
11455 rtx mask = immed_wide_int_const
11456 (wi::mask (prec, false, GET_MODE_PRECISION (mode)), mode);
11457 return expand_and (mode, exp, mask, target);
11458 }
11459 else
11460 {
11461 int count = GET_MODE_PRECISION (mode) - prec;
11462 exp = expand_shift (LSHIFT_EXPR, mode, exp, count, target, 0);
11463 return expand_shift (RSHIFT_EXPR, mode, exp, count, target, 0);
11464 }
11465 }
11466
11467 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
11468 when applied to the address of EXP produces an address known to be
11469 aligned more than BIGGEST_ALIGNMENT. */
11470
11471 static int
is_aligning_offset(const_tree offset,const_tree exp)11472 is_aligning_offset (const_tree offset, const_tree exp)
11473 {
11474 /* Strip off any conversions. */
11475 while (CONVERT_EXPR_P (offset))
11476 offset = TREE_OPERAND (offset, 0);
11477
11478 /* We must now have a BIT_AND_EXPR with a constant that is one less than
11479 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
11480 if (TREE_CODE (offset) != BIT_AND_EXPR
11481 || !tree_fits_uhwi_p (TREE_OPERAND (offset, 1))
11482 || compare_tree_int (TREE_OPERAND (offset, 1),
11483 BIGGEST_ALIGNMENT / BITS_PER_UNIT) <= 0
11484 || !pow2p_hwi (tree_to_uhwi (TREE_OPERAND (offset, 1)) + 1))
11485 return 0;
11486
11487 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
11488 It must be NEGATE_EXPR. Then strip any more conversions. */
11489 offset = TREE_OPERAND (offset, 0);
11490 while (CONVERT_EXPR_P (offset))
11491 offset = TREE_OPERAND (offset, 0);
11492
11493 if (TREE_CODE (offset) != NEGATE_EXPR)
11494 return 0;
11495
11496 offset = TREE_OPERAND (offset, 0);
11497 while (CONVERT_EXPR_P (offset))
11498 offset = TREE_OPERAND (offset, 0);
11499
11500 /* This must now be the address of EXP. */
11501 return TREE_CODE (offset) == ADDR_EXPR && TREE_OPERAND (offset, 0) == exp;
11502 }
11503
11504 /* Return the tree node if an ARG corresponds to a string constant or zero
11505 if it doesn't. If we return nonzero, set *PTR_OFFSET to the (possibly
11506 non-constant) offset in bytes within the string that ARG is accessing.
11507 If MEM_SIZE is non-zero the storage size of the memory is returned.
11508 If DECL is non-zero the constant declaration is returned if available. */
11509
11510 tree
string_constant(tree arg,tree * ptr_offset,tree * mem_size,tree * decl)11511 string_constant (tree arg, tree *ptr_offset, tree *mem_size, tree *decl)
11512 {
11513 tree dummy = NULL_TREE;;
11514 if (!mem_size)
11515 mem_size = &dummy;
11516
11517 /* Store the type of the original expression before conversions
11518 via NOP_EXPR or POINTER_PLUS_EXPR to other types have been
11519 removed. */
11520 tree argtype = TREE_TYPE (arg);
11521
11522 tree array;
11523 STRIP_NOPS (arg);
11524
11525 /* Non-constant index into the character array in an ARRAY_REF
11526 expression or null. */
11527 tree varidx = NULL_TREE;
11528
11529 poly_int64 base_off = 0;
11530
11531 if (TREE_CODE (arg) == ADDR_EXPR)
11532 {
11533 arg = TREE_OPERAND (arg, 0);
11534 tree ref = arg;
11535 if (TREE_CODE (arg) == ARRAY_REF)
11536 {
11537 tree idx = TREE_OPERAND (arg, 1);
11538 if (TREE_CODE (idx) != INTEGER_CST)
11539 {
11540 /* From a pointer (but not array) argument extract the variable
11541 index to prevent get_addr_base_and_unit_offset() from failing
11542 due to it. Use it later to compute the non-constant offset
11543 into the string and return it to the caller. */
11544 varidx = idx;
11545 ref = TREE_OPERAND (arg, 0);
11546
11547 if (TREE_CODE (TREE_TYPE (arg)) == ARRAY_TYPE)
11548 return NULL_TREE;
11549
11550 if (!integer_zerop (array_ref_low_bound (arg)))
11551 return NULL_TREE;
11552
11553 if (!integer_onep (array_ref_element_size (arg)))
11554 return NULL_TREE;
11555 }
11556 }
11557 array = get_addr_base_and_unit_offset (ref, &base_off);
11558 if (!array
11559 || (TREE_CODE (array) != VAR_DECL
11560 && TREE_CODE (array) != CONST_DECL
11561 && TREE_CODE (array) != STRING_CST))
11562 return NULL_TREE;
11563 }
11564 else if (TREE_CODE (arg) == PLUS_EXPR || TREE_CODE (arg) == POINTER_PLUS_EXPR)
11565 {
11566 tree arg0 = TREE_OPERAND (arg, 0);
11567 tree arg1 = TREE_OPERAND (arg, 1);
11568
11569 tree offset;
11570 tree str = string_constant (arg0, &offset, mem_size, decl);
11571 if (!str)
11572 {
11573 str = string_constant (arg1, &offset, mem_size, decl);
11574 arg1 = arg0;
11575 }
11576
11577 if (str)
11578 {
11579 /* Avoid pointers to arrays (see bug 86622). */
11580 if (POINTER_TYPE_P (TREE_TYPE (arg))
11581 && TREE_CODE (TREE_TYPE (TREE_TYPE (arg))) == ARRAY_TYPE
11582 && !(decl && !*decl)
11583 && !(decl && tree_fits_uhwi_p (DECL_SIZE_UNIT (*decl))
11584 && tree_fits_uhwi_p (*mem_size)
11585 && tree_int_cst_equal (*mem_size, DECL_SIZE_UNIT (*decl))))
11586 return NULL_TREE;
11587
11588 tree type = TREE_TYPE (offset);
11589 arg1 = fold_convert (type, arg1);
11590 *ptr_offset = fold_build2 (PLUS_EXPR, type, offset, arg1);
11591 return str;
11592 }
11593 return NULL_TREE;
11594 }
11595 else if (TREE_CODE (arg) == SSA_NAME)
11596 {
11597 gimple *stmt = SSA_NAME_DEF_STMT (arg);
11598 if (!is_gimple_assign (stmt))
11599 return NULL_TREE;
11600
11601 tree rhs1 = gimple_assign_rhs1 (stmt);
11602 tree_code code = gimple_assign_rhs_code (stmt);
11603 if (code == ADDR_EXPR)
11604 return string_constant (rhs1, ptr_offset, mem_size, decl);
11605 else if (code != POINTER_PLUS_EXPR)
11606 return NULL_TREE;
11607
11608 tree offset;
11609 if (tree str = string_constant (rhs1, &offset, mem_size, decl))
11610 {
11611 /* Avoid pointers to arrays (see bug 86622). */
11612 if (POINTER_TYPE_P (TREE_TYPE (rhs1))
11613 && TREE_CODE (TREE_TYPE (TREE_TYPE (rhs1))) == ARRAY_TYPE
11614 && !(decl && !*decl)
11615 && !(decl && tree_fits_uhwi_p (DECL_SIZE_UNIT (*decl))
11616 && tree_fits_uhwi_p (*mem_size)
11617 && tree_int_cst_equal (*mem_size, DECL_SIZE_UNIT (*decl))))
11618 return NULL_TREE;
11619
11620 tree rhs2 = gimple_assign_rhs2 (stmt);
11621 tree type = TREE_TYPE (offset);
11622 rhs2 = fold_convert (type, rhs2);
11623 *ptr_offset = fold_build2 (PLUS_EXPR, type, offset, rhs2);
11624 return str;
11625 }
11626 return NULL_TREE;
11627 }
11628 else if (DECL_P (arg))
11629 array = arg;
11630 else
11631 return NULL_TREE;
11632
11633 tree offset = wide_int_to_tree (sizetype, base_off);
11634 if (varidx)
11635 {
11636 if (TREE_CODE (TREE_TYPE (array)) != ARRAY_TYPE)
11637 return NULL_TREE;
11638
11639 gcc_assert (TREE_CODE (arg) == ARRAY_REF);
11640 tree chartype = TREE_TYPE (TREE_TYPE (TREE_OPERAND (arg, 0)));
11641 if (TREE_CODE (chartype) != INTEGER_TYPE)
11642 return NULL;
11643
11644 offset = fold_convert (sizetype, varidx);
11645 }
11646
11647 if (TREE_CODE (array) == STRING_CST)
11648 {
11649 *ptr_offset = fold_convert (sizetype, offset);
11650 *mem_size = TYPE_SIZE_UNIT (TREE_TYPE (array));
11651 if (decl)
11652 *decl = NULL_TREE;
11653 gcc_checking_assert (tree_to_shwi (TYPE_SIZE_UNIT (TREE_TYPE (array)))
11654 >= TREE_STRING_LENGTH (array));
11655 return array;
11656 }
11657
11658 if (!VAR_P (array) && TREE_CODE (array) != CONST_DECL)
11659 return NULL_TREE;
11660
11661 tree init = ctor_for_folding (array);
11662
11663 /* Handle variables initialized with string literals. */
11664 if (!init || init == error_mark_node)
11665 return NULL_TREE;
11666 if (TREE_CODE (init) == CONSTRUCTOR)
11667 {
11668 /* Convert the 64-bit constant offset to a wider type to avoid
11669 overflow. */
11670 offset_int wioff;
11671 if (!base_off.is_constant (&wioff))
11672 return NULL_TREE;
11673
11674 wioff *= BITS_PER_UNIT;
11675 if (!wi::fits_uhwi_p (wioff))
11676 return NULL_TREE;
11677
11678 base_off = wioff.to_uhwi ();
11679 unsigned HOST_WIDE_INT fieldoff = 0;
11680 init = fold_ctor_reference (TREE_TYPE (arg), init, base_off, 0, array,
11681 &fieldoff);
11682 HOST_WIDE_INT cstoff;
11683 if (!base_off.is_constant (&cstoff))
11684 return NULL_TREE;
11685
11686 cstoff = (cstoff - fieldoff) / BITS_PER_UNIT;
11687 tree off = build_int_cst (sizetype, cstoff);
11688 if (varidx)
11689 offset = fold_build2 (PLUS_EXPR, TREE_TYPE (offset), offset, off);
11690 else
11691 offset = off;
11692 }
11693
11694 if (!init)
11695 return NULL_TREE;
11696
11697 *ptr_offset = offset;
11698
11699 tree inittype = TREE_TYPE (init);
11700
11701 if (TREE_CODE (init) == INTEGER_CST
11702 && (TREE_CODE (TREE_TYPE (array)) == INTEGER_TYPE
11703 || TYPE_MAIN_VARIANT (inittype) == char_type_node))
11704 {
11705 /* For a reference to (address of) a single constant character,
11706 store the native representation of the character in CHARBUF.
11707 If the reference is to an element of an array or a member
11708 of a struct, only consider narrow characters until ctors
11709 for wide character arrays are transformed to STRING_CSTs
11710 like those for narrow arrays. */
11711 unsigned char charbuf[MAX_BITSIZE_MODE_ANY_MODE / BITS_PER_UNIT];
11712 int len = native_encode_expr (init, charbuf, sizeof charbuf, 0);
11713 if (len > 0)
11714 {
11715 /* Construct a string literal with elements of INITTYPE and
11716 the representation above. Then strip
11717 the ADDR_EXPR (ARRAY_REF (...)) around the STRING_CST. */
11718 init = build_string_literal (len, (char *)charbuf, inittype);
11719 init = TREE_OPERAND (TREE_OPERAND (init, 0), 0);
11720 }
11721 }
11722
11723 tree initsize = TYPE_SIZE_UNIT (inittype);
11724
11725 if (TREE_CODE (init) == CONSTRUCTOR && initializer_zerop (init))
11726 {
11727 /* Fold an empty/zero constructor for an implicitly initialized
11728 object or subobject into the empty string. */
11729
11730 /* Determine the character type from that of the original
11731 expression. */
11732 tree chartype = argtype;
11733 if (POINTER_TYPE_P (chartype))
11734 chartype = TREE_TYPE (chartype);
11735 while (TREE_CODE (chartype) == ARRAY_TYPE)
11736 chartype = TREE_TYPE (chartype);
11737 /* Convert a char array to an empty STRING_CST having an array
11738 of the expected type and size. */
11739 if (INTEGRAL_TYPE_P (chartype)
11740 && TYPE_PRECISION (chartype) == TYPE_PRECISION (char_type_node))
11741 {
11742 if (!initsize)
11743 initsize = integer_zero_node;
11744
11745 unsigned HOST_WIDE_INT size = tree_to_uhwi (initsize);
11746 init = build_string_literal (size, NULL, chartype, size);
11747 init = TREE_OPERAND (init, 0);
11748 init = TREE_OPERAND (init, 0);
11749
11750 *ptr_offset = integer_zero_node;
11751 }
11752 }
11753
11754 if (decl)
11755 *decl = array;
11756
11757 if (TREE_CODE (init) != STRING_CST)
11758 return NULL_TREE;
11759
11760 *mem_size = initsize;
11761
11762 gcc_checking_assert (tree_to_shwi (initsize) >= TREE_STRING_LENGTH (init));
11763
11764 return init;
11765 }
11766
11767 /* Compute the modular multiplicative inverse of A modulo M
11768 using extended Euclid's algorithm. Assumes A and M are coprime. */
11769 static wide_int
mod_inv(const wide_int & a,const wide_int & b)11770 mod_inv (const wide_int &a, const wide_int &b)
11771 {
11772 /* Verify the assumption. */
11773 gcc_checking_assert (wi::eq_p (wi::gcd (a, b), 1));
11774
11775 unsigned int p = a.get_precision () + 1;
11776 gcc_checking_assert (b.get_precision () + 1 == p);
11777 wide_int c = wide_int::from (a, p, UNSIGNED);
11778 wide_int d = wide_int::from (b, p, UNSIGNED);
11779 wide_int x0 = wide_int::from (0, p, UNSIGNED);
11780 wide_int x1 = wide_int::from (1, p, UNSIGNED);
11781
11782 if (wi::eq_p (b, 1))
11783 return wide_int::from (1, p, UNSIGNED);
11784
11785 while (wi::gt_p (c, 1, UNSIGNED))
11786 {
11787 wide_int t = d;
11788 wide_int q = wi::divmod_trunc (c, d, UNSIGNED, &d);
11789 c = t;
11790 wide_int s = x0;
11791 x0 = wi::sub (x1, wi::mul (q, x0));
11792 x1 = s;
11793 }
11794 if (wi::lt_p (x1, 0, SIGNED))
11795 x1 += d;
11796 return x1;
11797 }
11798
11799 /* Optimize x % C1 == C2 for signed modulo if C1 is a power of two and C2
11800 is non-zero and C3 ((1<<(prec-1)) | (C1 - 1)):
11801 for C2 > 0 to x & C3 == C2
11802 for C2 < 0 to x & C3 == (C2 & C3). */
11803 enum tree_code
maybe_optimize_pow2p_mod_cmp(enum tree_code code,tree * arg0,tree * arg1)11804 maybe_optimize_pow2p_mod_cmp (enum tree_code code, tree *arg0, tree *arg1)
11805 {
11806 gimple *stmt = get_def_for_expr (*arg0, TRUNC_MOD_EXPR);
11807 tree treeop0 = gimple_assign_rhs1 (stmt);
11808 tree treeop1 = gimple_assign_rhs2 (stmt);
11809 tree type = TREE_TYPE (*arg0);
11810 scalar_int_mode mode;
11811 if (!is_a <scalar_int_mode> (TYPE_MODE (type), &mode))
11812 return code;
11813 if (GET_MODE_BITSIZE (mode) != TYPE_PRECISION (type)
11814 || TYPE_PRECISION (type) <= 1
11815 || TYPE_UNSIGNED (type)
11816 /* Signed x % c == 0 should have been optimized into unsigned modulo
11817 earlier. */
11818 || integer_zerop (*arg1)
11819 /* If c is known to be non-negative, modulo will be expanded as unsigned
11820 modulo. */
11821 || get_range_pos_neg (treeop0) == 1)
11822 return code;
11823
11824 /* x % c == d where d < 0 && d <= -c should be always false. */
11825 if (tree_int_cst_sgn (*arg1) == -1
11826 && -wi::to_widest (treeop1) >= wi::to_widest (*arg1))
11827 return code;
11828
11829 int prec = TYPE_PRECISION (type);
11830 wide_int w = wi::to_wide (treeop1) - 1;
11831 w |= wi::shifted_mask (0, prec - 1, true, prec);
11832 tree c3 = wide_int_to_tree (type, w);
11833 tree c4 = *arg1;
11834 if (tree_int_cst_sgn (*arg1) == -1)
11835 c4 = wide_int_to_tree (type, w & wi::to_wide (*arg1));
11836
11837 rtx op0 = expand_normal (treeop0);
11838 treeop0 = make_tree (TREE_TYPE (treeop0), op0);
11839
11840 bool speed_p = optimize_insn_for_speed_p ();
11841
11842 do_pending_stack_adjust ();
11843
11844 location_t loc = gimple_location (stmt);
11845 struct separate_ops ops;
11846 ops.code = TRUNC_MOD_EXPR;
11847 ops.location = loc;
11848 ops.type = TREE_TYPE (treeop0);
11849 ops.op0 = treeop0;
11850 ops.op1 = treeop1;
11851 ops.op2 = NULL_TREE;
11852 start_sequence ();
11853 rtx mor = expand_expr_real_2 (&ops, NULL_RTX, TYPE_MODE (ops.type),
11854 EXPAND_NORMAL);
11855 rtx_insn *moinsns = get_insns ();
11856 end_sequence ();
11857
11858 unsigned mocost = seq_cost (moinsns, speed_p);
11859 mocost += rtx_cost (mor, mode, EQ, 0, speed_p);
11860 mocost += rtx_cost (expand_normal (*arg1), mode, EQ, 1, speed_p);
11861
11862 ops.code = BIT_AND_EXPR;
11863 ops.location = loc;
11864 ops.type = TREE_TYPE (treeop0);
11865 ops.op0 = treeop0;
11866 ops.op1 = c3;
11867 ops.op2 = NULL_TREE;
11868 start_sequence ();
11869 rtx mur = expand_expr_real_2 (&ops, NULL_RTX, TYPE_MODE (ops.type),
11870 EXPAND_NORMAL);
11871 rtx_insn *muinsns = get_insns ();
11872 end_sequence ();
11873
11874 unsigned mucost = seq_cost (muinsns, speed_p);
11875 mucost += rtx_cost (mur, mode, EQ, 0, speed_p);
11876 mucost += rtx_cost (expand_normal (c4), mode, EQ, 1, speed_p);
11877
11878 if (mocost <= mucost)
11879 {
11880 emit_insn (moinsns);
11881 *arg0 = make_tree (TREE_TYPE (*arg0), mor);
11882 return code;
11883 }
11884
11885 emit_insn (muinsns);
11886 *arg0 = make_tree (TREE_TYPE (*arg0), mur);
11887 *arg1 = c4;
11888 return code;
11889 }
11890
11891 /* Attempt to optimize unsigned (X % C1) == C2 (or (X % C1) != C2).
11892 If C1 is odd to:
11893 (X - C2) * C3 <= C4 (or >), where
11894 C3 is modular multiplicative inverse of C1 and 1<<prec and
11895 C4 is ((1<<prec) - 1) / C1 or ((1<<prec) - 1) / C1 - 1 (the latter
11896 if C2 > ((1<<prec) - 1) % C1).
11897 If C1 is even, S = ctz (C1) and C2 is 0, use
11898 ((X * C3) r>> S) <= C4, where C3 is modular multiplicative
11899 inverse of C1>>S and 1<<prec and C4 is (((1<<prec) - 1) / (C1>>S)) >> S.
11900
11901 For signed (X % C1) == 0 if C1 is odd to (all operations in it
11902 unsigned):
11903 (X * C3) + C4 <= 2 * C4, where
11904 C3 is modular multiplicative inverse of (unsigned) C1 and 1<<prec and
11905 C4 is ((1<<(prec - 1) - 1) / C1).
11906 If C1 is even, S = ctz(C1), use
11907 ((X * C3) + C4) r>> S <= (C4 >> (S - 1))
11908 where C3 is modular multiplicative inverse of (unsigned)(C1>>S) and 1<<prec
11909 and C4 is ((1<<(prec - 1) - 1) / (C1>>S)) & (-1<<S).
11910
11911 See the Hacker's Delight book, section 10-17. */
11912 enum tree_code
maybe_optimize_mod_cmp(enum tree_code code,tree * arg0,tree * arg1)11913 maybe_optimize_mod_cmp (enum tree_code code, tree *arg0, tree *arg1)
11914 {
11915 gcc_checking_assert (code == EQ_EXPR || code == NE_EXPR);
11916 gcc_checking_assert (TREE_CODE (*arg1) == INTEGER_CST);
11917
11918 if (optimize < 2)
11919 return code;
11920
11921 gimple *stmt = get_def_for_expr (*arg0, TRUNC_MOD_EXPR);
11922 if (stmt == NULL)
11923 return code;
11924
11925 tree treeop0 = gimple_assign_rhs1 (stmt);
11926 tree treeop1 = gimple_assign_rhs2 (stmt);
11927 if (TREE_CODE (treeop0) != SSA_NAME
11928 || TREE_CODE (treeop1) != INTEGER_CST
11929 /* Don't optimize the undefined behavior case x % 0;
11930 x % 1 should have been optimized into zero, punt if
11931 it makes it here for whatever reason;
11932 x % -c should have been optimized into x % c. */
11933 || compare_tree_int (treeop1, 2) <= 0
11934 /* Likewise x % c == d where d >= c should be always false. */
11935 || tree_int_cst_le (treeop1, *arg1))
11936 return code;
11937
11938 /* Unsigned x % pow2 is handled right already, for signed
11939 modulo handle it in maybe_optimize_pow2p_mod_cmp. */
11940 if (integer_pow2p (treeop1))
11941 return maybe_optimize_pow2p_mod_cmp (code, arg0, arg1);
11942
11943 tree type = TREE_TYPE (*arg0);
11944 scalar_int_mode mode;
11945 if (!is_a <scalar_int_mode> (TYPE_MODE (type), &mode))
11946 return code;
11947 if (GET_MODE_BITSIZE (mode) != TYPE_PRECISION (type)
11948 || TYPE_PRECISION (type) <= 1)
11949 return code;
11950
11951 signop sgn = UNSIGNED;
11952 /* If both operands are known to have the sign bit clear, handle
11953 even the signed modulo case as unsigned. treeop1 is always
11954 positive >= 2, checked above. */
11955 if (!TYPE_UNSIGNED (type) && get_range_pos_neg (treeop0) != 1)
11956 sgn = SIGNED;
11957
11958 if (!TYPE_UNSIGNED (type))
11959 {
11960 if (tree_int_cst_sgn (*arg1) == -1)
11961 return code;
11962 type = unsigned_type_for (type);
11963 if (!type || TYPE_MODE (type) != TYPE_MODE (TREE_TYPE (*arg0)))
11964 return code;
11965 }
11966
11967 int prec = TYPE_PRECISION (type);
11968 wide_int w = wi::to_wide (treeop1);
11969 int shift = wi::ctz (w);
11970 /* Unsigned (X % C1) == C2 is equivalent to (X - C2) % C1 == 0 if
11971 C2 <= -1U % C1, because for any Z >= 0U - C2 in that case (Z % C1) != 0.
11972 If C1 is odd, we can handle all cases by subtracting
11973 C4 below. We could handle even the even C1 and C2 > -1U % C1 cases
11974 e.g. by testing for overflow on the subtraction, punt on that for now
11975 though. */
11976 if ((sgn == SIGNED || shift) && !integer_zerop (*arg1))
11977 {
11978 if (sgn == SIGNED)
11979 return code;
11980 wide_int x = wi::umod_trunc (wi::mask (prec, false, prec), w);
11981 if (wi::gtu_p (wi::to_wide (*arg1), x))
11982 return code;
11983 }
11984
11985 imm_use_iterator imm_iter;
11986 use_operand_p use_p;
11987 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, treeop0)
11988 {
11989 gimple *use_stmt = USE_STMT (use_p);
11990 /* Punt if treeop0 is used in the same bb in a division
11991 or another modulo with the same divisor. We should expect
11992 the division and modulo combined together. */
11993 if (use_stmt == stmt
11994 || gimple_bb (use_stmt) != gimple_bb (stmt))
11995 continue;
11996 if (!is_gimple_assign (use_stmt)
11997 || (gimple_assign_rhs_code (use_stmt) != TRUNC_DIV_EXPR
11998 && gimple_assign_rhs_code (use_stmt) != TRUNC_MOD_EXPR))
11999 continue;
12000 if (gimple_assign_rhs1 (use_stmt) != treeop0
12001 || !operand_equal_p (gimple_assign_rhs2 (use_stmt), treeop1, 0))
12002 continue;
12003 return code;
12004 }
12005
12006 w = wi::lrshift (w, shift);
12007 wide_int a = wide_int::from (w, prec + 1, UNSIGNED);
12008 wide_int b = wi::shifted_mask (prec, 1, false, prec + 1);
12009 wide_int m = wide_int::from (mod_inv (a, b), prec, UNSIGNED);
12010 tree c3 = wide_int_to_tree (type, m);
12011 tree c5 = NULL_TREE;
12012 wide_int d, e;
12013 if (sgn == UNSIGNED)
12014 {
12015 d = wi::divmod_trunc (wi::mask (prec, false, prec), w, UNSIGNED, &e);
12016 /* Use <= floor ((1<<prec) - 1) / C1 only if C2 <= ((1<<prec) - 1) % C1,
12017 otherwise use < or subtract one from C4. E.g. for
12018 x % 3U == 0 we transform this into x * 0xaaaaaaab <= 0x55555555, but
12019 x % 3U == 1 already needs to be
12020 (x - 1) * 0xaaaaaaabU <= 0x55555554. */
12021 if (!shift && wi::gtu_p (wi::to_wide (*arg1), e))
12022 d -= 1;
12023 if (shift)
12024 d = wi::lrshift (d, shift);
12025 }
12026 else
12027 {
12028 e = wi::udiv_trunc (wi::mask (prec - 1, false, prec), w);
12029 if (!shift)
12030 d = wi::lshift (e, 1);
12031 else
12032 {
12033 e = wi::bit_and (e, wi::mask (shift, true, prec));
12034 d = wi::lrshift (e, shift - 1);
12035 }
12036 c5 = wide_int_to_tree (type, e);
12037 }
12038 tree c4 = wide_int_to_tree (type, d);
12039
12040 rtx op0 = expand_normal (treeop0);
12041 treeop0 = make_tree (TREE_TYPE (treeop0), op0);
12042
12043 bool speed_p = optimize_insn_for_speed_p ();
12044
12045 do_pending_stack_adjust ();
12046
12047 location_t loc = gimple_location (stmt);
12048 struct separate_ops ops;
12049 ops.code = TRUNC_MOD_EXPR;
12050 ops.location = loc;
12051 ops.type = TREE_TYPE (treeop0);
12052 ops.op0 = treeop0;
12053 ops.op1 = treeop1;
12054 ops.op2 = NULL_TREE;
12055 start_sequence ();
12056 rtx mor = expand_expr_real_2 (&ops, NULL_RTX, TYPE_MODE (ops.type),
12057 EXPAND_NORMAL);
12058 rtx_insn *moinsns = get_insns ();
12059 end_sequence ();
12060
12061 unsigned mocost = seq_cost (moinsns, speed_p);
12062 mocost += rtx_cost (mor, mode, EQ, 0, speed_p);
12063 mocost += rtx_cost (expand_normal (*arg1), mode, EQ, 1, speed_p);
12064
12065 tree t = fold_convert_loc (loc, type, treeop0);
12066 if (!integer_zerop (*arg1))
12067 t = fold_build2_loc (loc, MINUS_EXPR, type, t, fold_convert (type, *arg1));
12068 t = fold_build2_loc (loc, MULT_EXPR, type, t, c3);
12069 if (sgn == SIGNED)
12070 t = fold_build2_loc (loc, PLUS_EXPR, type, t, c5);
12071 if (shift)
12072 {
12073 tree s = build_int_cst (NULL_TREE, shift);
12074 t = fold_build2_loc (loc, RROTATE_EXPR, type, t, s);
12075 }
12076
12077 start_sequence ();
12078 rtx mur = expand_normal (t);
12079 rtx_insn *muinsns = get_insns ();
12080 end_sequence ();
12081
12082 unsigned mucost = seq_cost (muinsns, speed_p);
12083 mucost += rtx_cost (mur, mode, LE, 0, speed_p);
12084 mucost += rtx_cost (expand_normal (c4), mode, LE, 1, speed_p);
12085
12086 if (mocost <= mucost)
12087 {
12088 emit_insn (moinsns);
12089 *arg0 = make_tree (TREE_TYPE (*arg0), mor);
12090 return code;
12091 }
12092
12093 emit_insn (muinsns);
12094 *arg0 = make_tree (type, mur);
12095 *arg1 = c4;
12096 return code == EQ_EXPR ? LE_EXPR : GT_EXPR;
12097 }
12098
12099 /* Generate code to calculate OPS, and exploded expression
12100 using a store-flag instruction and return an rtx for the result.
12101 OPS reflects a comparison.
12102
12103 If TARGET is nonzero, store the result there if convenient.
12104
12105 Return zero if there is no suitable set-flag instruction
12106 available on this machine.
12107
12108 Once expand_expr has been called on the arguments of the comparison,
12109 we are committed to doing the store flag, since it is not safe to
12110 re-evaluate the expression. We emit the store-flag insn by calling
12111 emit_store_flag, but only expand the arguments if we have a reason
12112 to believe that emit_store_flag will be successful. If we think that
12113 it will, but it isn't, we have to simulate the store-flag with a
12114 set/jump/set sequence. */
12115
12116 static rtx
do_store_flag(sepops ops,rtx target,machine_mode mode)12117 do_store_flag (sepops ops, rtx target, machine_mode mode)
12118 {
12119 enum rtx_code code;
12120 tree arg0, arg1, type;
12121 machine_mode operand_mode;
12122 int unsignedp;
12123 rtx op0, op1;
12124 rtx subtarget = target;
12125 location_t loc = ops->location;
12126
12127 arg0 = ops->op0;
12128 arg1 = ops->op1;
12129
12130 /* Don't crash if the comparison was erroneous. */
12131 if (arg0 == error_mark_node || arg1 == error_mark_node)
12132 return const0_rtx;
12133
12134 type = TREE_TYPE (arg0);
12135 operand_mode = TYPE_MODE (type);
12136 unsignedp = TYPE_UNSIGNED (type);
12137
12138 /* We won't bother with BLKmode store-flag operations because it would mean
12139 passing a lot of information to emit_store_flag. */
12140 if (operand_mode == BLKmode)
12141 return 0;
12142
12143 /* We won't bother with store-flag operations involving function pointers
12144 when function pointers must be canonicalized before comparisons. */
12145 if (targetm.have_canonicalize_funcptr_for_compare ()
12146 && ((POINTER_TYPE_P (TREE_TYPE (arg0))
12147 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (arg0))))
12148 || (POINTER_TYPE_P (TREE_TYPE (arg1))
12149 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (arg1))))))
12150 return 0;
12151
12152 STRIP_NOPS (arg0);
12153 STRIP_NOPS (arg1);
12154
12155 /* For vector typed comparisons emit code to generate the desired
12156 all-ones or all-zeros mask. Conveniently use the VEC_COND_EXPR
12157 expander for this. */
12158 if (TREE_CODE (ops->type) == VECTOR_TYPE)
12159 {
12160 tree ifexp = build2 (ops->code, ops->type, arg0, arg1);
12161 if (VECTOR_BOOLEAN_TYPE_P (ops->type)
12162 && expand_vec_cmp_expr_p (TREE_TYPE (arg0), ops->type, ops->code))
12163 return expand_vec_cmp_expr (ops->type, ifexp, target);
12164 else
12165 {
12166 tree if_true = constant_boolean_node (true, ops->type);
12167 tree if_false = constant_boolean_node (false, ops->type);
12168 return expand_vec_cond_expr (ops->type, ifexp, if_true,
12169 if_false, target);
12170 }
12171 }
12172
12173 /* Optimize (x % C1) == C2 or (x % C1) != C2 if it is beneficial
12174 into (x - C2) * C3 < C4. */
12175 if ((ops->code == EQ_EXPR || ops->code == NE_EXPR)
12176 && TREE_CODE (arg0) == SSA_NAME
12177 && TREE_CODE (arg1) == INTEGER_CST)
12178 {
12179 enum tree_code new_code = maybe_optimize_mod_cmp (ops->code,
12180 &arg0, &arg1);
12181 if (new_code != ops->code)
12182 {
12183 struct separate_ops nops = *ops;
12184 nops.code = ops->code = new_code;
12185 nops.op0 = arg0;
12186 nops.op1 = arg1;
12187 nops.type = TREE_TYPE (arg0);
12188 return do_store_flag (&nops, target, mode);
12189 }
12190 }
12191
12192 /* Get the rtx comparison code to use. We know that EXP is a comparison
12193 operation of some type. Some comparisons against 1 and -1 can be
12194 converted to comparisons with zero. Do so here so that the tests
12195 below will be aware that we have a comparison with zero. These
12196 tests will not catch constants in the first operand, but constants
12197 are rarely passed as the first operand. */
12198
12199 switch (ops->code)
12200 {
12201 case EQ_EXPR:
12202 code = EQ;
12203 break;
12204 case NE_EXPR:
12205 code = NE;
12206 break;
12207 case LT_EXPR:
12208 if (integer_onep (arg1))
12209 arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
12210 else
12211 code = unsignedp ? LTU : LT;
12212 break;
12213 case LE_EXPR:
12214 if (! unsignedp && integer_all_onesp (arg1))
12215 arg1 = integer_zero_node, code = LT;
12216 else
12217 code = unsignedp ? LEU : LE;
12218 break;
12219 case GT_EXPR:
12220 if (! unsignedp && integer_all_onesp (arg1))
12221 arg1 = integer_zero_node, code = GE;
12222 else
12223 code = unsignedp ? GTU : GT;
12224 break;
12225 case GE_EXPR:
12226 if (integer_onep (arg1))
12227 arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
12228 else
12229 code = unsignedp ? GEU : GE;
12230 break;
12231
12232 case UNORDERED_EXPR:
12233 code = UNORDERED;
12234 break;
12235 case ORDERED_EXPR:
12236 code = ORDERED;
12237 break;
12238 case UNLT_EXPR:
12239 code = UNLT;
12240 break;
12241 case UNLE_EXPR:
12242 code = UNLE;
12243 break;
12244 case UNGT_EXPR:
12245 code = UNGT;
12246 break;
12247 case UNGE_EXPR:
12248 code = UNGE;
12249 break;
12250 case UNEQ_EXPR:
12251 code = UNEQ;
12252 break;
12253 case LTGT_EXPR:
12254 code = LTGT;
12255 break;
12256
12257 default:
12258 gcc_unreachable ();
12259 }
12260
12261 /* Put a constant second. */
12262 if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST
12263 || TREE_CODE (arg0) == FIXED_CST)
12264 {
12265 std::swap (arg0, arg1);
12266 code = swap_condition (code);
12267 }
12268
12269 /* If this is an equality or inequality test of a single bit, we can
12270 do this by shifting the bit being tested to the low-order bit and
12271 masking the result with the constant 1. If the condition was EQ,
12272 we xor it with 1. This does not require an scc insn and is faster
12273 than an scc insn even if we have it.
12274
12275 The code to make this transformation was moved into fold_single_bit_test,
12276 so we just call into the folder and expand its result. */
12277
12278 if ((code == NE || code == EQ)
12279 && integer_zerop (arg1)
12280 && (TYPE_PRECISION (ops->type) != 1 || TYPE_UNSIGNED (ops->type)))
12281 {
12282 gimple *srcstmt = get_def_for_expr (arg0, BIT_AND_EXPR);
12283 if (srcstmt
12284 && integer_pow2p (gimple_assign_rhs2 (srcstmt)))
12285 {
12286 enum tree_code tcode = code == NE ? NE_EXPR : EQ_EXPR;
12287 type = lang_hooks.types.type_for_mode (mode, unsignedp);
12288 tree temp = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg1),
12289 gimple_assign_rhs1 (srcstmt),
12290 gimple_assign_rhs2 (srcstmt));
12291 temp = fold_single_bit_test (loc, tcode, temp, arg1, type);
12292 if (temp)
12293 return expand_expr (temp, target, VOIDmode, EXPAND_NORMAL);
12294 }
12295 }
12296
12297 if (! get_subtarget (target)
12298 || GET_MODE (subtarget) != operand_mode)
12299 subtarget = 0;
12300
12301 expand_operands (arg0, arg1, subtarget, &op0, &op1, EXPAND_NORMAL);
12302
12303 if (target == 0)
12304 target = gen_reg_rtx (mode);
12305
12306 /* Try a cstore if possible. */
12307 return emit_store_flag_force (target, code, op0, op1,
12308 operand_mode, unsignedp,
12309 (TYPE_PRECISION (ops->type) == 1
12310 && !TYPE_UNSIGNED (ops->type)) ? -1 : 1);
12311 }
12312
12313 /* Attempt to generate a casesi instruction. Returns 1 if successful,
12314 0 otherwise (i.e. if there is no casesi instruction).
12315
12316 DEFAULT_PROBABILITY is the probability of jumping to the default
12317 label. */
12318 int
try_casesi(tree index_type,tree index_expr,tree minval,tree range,rtx table_label,rtx default_label,rtx fallback_label,profile_probability default_probability)12319 try_casesi (tree index_type, tree index_expr, tree minval, tree range,
12320 rtx table_label, rtx default_label, rtx fallback_label,
12321 profile_probability default_probability)
12322 {
12323 class expand_operand ops[5];
12324 scalar_int_mode index_mode = SImode;
12325 rtx op1, op2, index;
12326
12327 if (! targetm.have_casesi ())
12328 return 0;
12329
12330 /* The index must be some form of integer. Convert it to SImode. */
12331 scalar_int_mode omode = SCALAR_INT_TYPE_MODE (index_type);
12332 if (GET_MODE_BITSIZE (omode) > GET_MODE_BITSIZE (index_mode))
12333 {
12334 rtx rangertx = expand_normal (range);
12335
12336 /* We must handle the endpoints in the original mode. */
12337 index_expr = build2 (MINUS_EXPR, index_type,
12338 index_expr, minval);
12339 minval = integer_zero_node;
12340 index = expand_normal (index_expr);
12341 if (default_label)
12342 emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
12343 omode, 1, default_label,
12344 default_probability);
12345 /* Now we can safely truncate. */
12346 index = convert_to_mode (index_mode, index, 0);
12347 }
12348 else
12349 {
12350 if (omode != index_mode)
12351 {
12352 index_type = lang_hooks.types.type_for_mode (index_mode, 0);
12353 index_expr = fold_convert (index_type, index_expr);
12354 }
12355
12356 index = expand_normal (index_expr);
12357 }
12358
12359 do_pending_stack_adjust ();
12360
12361 op1 = expand_normal (minval);
12362 op2 = expand_normal (range);
12363
12364 create_input_operand (&ops[0], index, index_mode);
12365 create_convert_operand_from_type (&ops[1], op1, TREE_TYPE (minval));
12366 create_convert_operand_from_type (&ops[2], op2, TREE_TYPE (range));
12367 create_fixed_operand (&ops[3], table_label);
12368 create_fixed_operand (&ops[4], (default_label
12369 ? default_label
12370 : fallback_label));
12371 expand_jump_insn (targetm.code_for_casesi, 5, ops);
12372 return 1;
12373 }
12374
12375 /* Attempt to generate a tablejump instruction; same concept. */
12376 /* Subroutine of the next function.
12377
12378 INDEX is the value being switched on, with the lowest value
12379 in the table already subtracted.
12380 MODE is its expected mode (needed if INDEX is constant).
12381 RANGE is the length of the jump table.
12382 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
12383
12384 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
12385 index value is out of range.
12386 DEFAULT_PROBABILITY is the probability of jumping to
12387 the default label. */
12388
12389 static void
do_tablejump(rtx index,machine_mode mode,rtx range,rtx table_label,rtx default_label,profile_probability default_probability)12390 do_tablejump (rtx index, machine_mode mode, rtx range, rtx table_label,
12391 rtx default_label, profile_probability default_probability)
12392 {
12393 rtx temp, vector;
12394
12395 if (INTVAL (range) > cfun->cfg->max_jumptable_ents)
12396 cfun->cfg->max_jumptable_ents = INTVAL (range);
12397
12398 /* Do an unsigned comparison (in the proper mode) between the index
12399 expression and the value which represents the length of the range.
12400 Since we just finished subtracting the lower bound of the range
12401 from the index expression, this comparison allows us to simultaneously
12402 check that the original index expression value is both greater than
12403 or equal to the minimum value of the range and less than or equal to
12404 the maximum value of the range. */
12405
12406 if (default_label)
12407 emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
12408 default_label, default_probability);
12409
12410 /* If index is in range, it must fit in Pmode.
12411 Convert to Pmode so we can index with it. */
12412 if (mode != Pmode)
12413 {
12414 unsigned int width;
12415
12416 /* We know the value of INDEX is between 0 and RANGE. If we have a
12417 sign-extended subreg, and RANGE does not have the sign bit set, then
12418 we have a value that is valid for both sign and zero extension. In
12419 this case, we get better code if we sign extend. */
12420 if (GET_CODE (index) == SUBREG
12421 && SUBREG_PROMOTED_VAR_P (index)
12422 && SUBREG_PROMOTED_SIGNED_P (index)
12423 && ((width = GET_MODE_PRECISION (as_a <scalar_int_mode> (mode)))
12424 <= HOST_BITS_PER_WIDE_INT)
12425 && ! (UINTVAL (range) & (HOST_WIDE_INT_1U << (width - 1))))
12426 index = convert_to_mode (Pmode, index, 0);
12427 else
12428 index = convert_to_mode (Pmode, index, 1);
12429 }
12430
12431 /* Don't let a MEM slip through, because then INDEX that comes
12432 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
12433 and break_out_memory_refs will go to work on it and mess it up. */
12434 #ifdef PIC_CASE_VECTOR_ADDRESS
12435 if (flag_pic && !REG_P (index))
12436 index = copy_to_mode_reg (Pmode, index);
12437 #endif
12438
12439 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
12440 GET_MODE_SIZE, because this indicates how large insns are. The other
12441 uses should all be Pmode, because they are addresses. This code
12442 could fail if addresses and insns are not the same size. */
12443 index = simplify_gen_binary (MULT, Pmode, index,
12444 gen_int_mode (GET_MODE_SIZE (CASE_VECTOR_MODE),
12445 Pmode));
12446 index = simplify_gen_binary (PLUS, Pmode, index,
12447 gen_rtx_LABEL_REF (Pmode, table_label));
12448
12449 #ifdef PIC_CASE_VECTOR_ADDRESS
12450 if (flag_pic)
12451 index = PIC_CASE_VECTOR_ADDRESS (index);
12452 else
12453 #endif
12454 index = memory_address (CASE_VECTOR_MODE, index);
12455 temp = gen_reg_rtx (CASE_VECTOR_MODE);
12456 vector = gen_const_mem (CASE_VECTOR_MODE, index);
12457 convert_move (temp, vector, 0);
12458
12459 emit_jump_insn (targetm.gen_tablejump (temp, table_label));
12460
12461 /* If we are generating PIC code or if the table is PC-relative, the
12462 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
12463 if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
12464 emit_barrier ();
12465 }
12466
12467 int
try_tablejump(tree index_type,tree index_expr,tree minval,tree range,rtx table_label,rtx default_label,profile_probability default_probability)12468 try_tablejump (tree index_type, tree index_expr, tree minval, tree range,
12469 rtx table_label, rtx default_label,
12470 profile_probability default_probability)
12471 {
12472 rtx index;
12473
12474 if (! targetm.have_tablejump ())
12475 return 0;
12476
12477 index_expr = fold_build2 (MINUS_EXPR, index_type,
12478 fold_convert (index_type, index_expr),
12479 fold_convert (index_type, minval));
12480 index = expand_normal (index_expr);
12481 do_pending_stack_adjust ();
12482
12483 do_tablejump (index, TYPE_MODE (index_type),
12484 convert_modes (TYPE_MODE (index_type),
12485 TYPE_MODE (TREE_TYPE (range)),
12486 expand_normal (range),
12487 TYPE_UNSIGNED (TREE_TYPE (range))),
12488 table_label, default_label, default_probability);
12489 return 1;
12490 }
12491
12492 /* Return a CONST_VECTOR rtx representing vector mask for
12493 a VECTOR_CST of booleans. */
12494 static rtx
const_vector_mask_from_tree(tree exp)12495 const_vector_mask_from_tree (tree exp)
12496 {
12497 machine_mode mode = TYPE_MODE (TREE_TYPE (exp));
12498 machine_mode inner = GET_MODE_INNER (mode);
12499
12500 rtx_vector_builder builder (mode, VECTOR_CST_NPATTERNS (exp),
12501 VECTOR_CST_NELTS_PER_PATTERN (exp));
12502 unsigned int count = builder.encoded_nelts ();
12503 for (unsigned int i = 0; i < count; ++i)
12504 {
12505 tree elt = VECTOR_CST_ELT (exp, i);
12506 gcc_assert (TREE_CODE (elt) == INTEGER_CST);
12507 if (integer_zerop (elt))
12508 builder.quick_push (CONST0_RTX (inner));
12509 else if (integer_onep (elt)
12510 || integer_minus_onep (elt))
12511 builder.quick_push (CONSTM1_RTX (inner));
12512 else
12513 gcc_unreachable ();
12514 }
12515 return builder.build ();
12516 }
12517
12518 /* EXP is a VECTOR_CST in which each element is either all-zeros or all-ones.
12519 Return a constant scalar rtx of mode MODE in which bit X is set if element
12520 X of EXP is nonzero. */
12521 static rtx
const_scalar_mask_from_tree(scalar_int_mode mode,tree exp)12522 const_scalar_mask_from_tree (scalar_int_mode mode, tree exp)
12523 {
12524 wide_int res = wi::zero (GET_MODE_PRECISION (mode));
12525 tree elt;
12526
12527 /* The result has a fixed number of bits so the input must too. */
12528 unsigned int nunits = VECTOR_CST_NELTS (exp).to_constant ();
12529 for (unsigned int i = 0; i < nunits; ++i)
12530 {
12531 elt = VECTOR_CST_ELT (exp, i);
12532 gcc_assert (TREE_CODE (elt) == INTEGER_CST);
12533 if (integer_all_onesp (elt))
12534 res = wi::set_bit (res, i);
12535 else
12536 gcc_assert (integer_zerop (elt));
12537 }
12538
12539 return immed_wide_int_const (res, mode);
12540 }
12541
12542 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
12543 static rtx
const_vector_from_tree(tree exp)12544 const_vector_from_tree (tree exp)
12545 {
12546 machine_mode mode = TYPE_MODE (TREE_TYPE (exp));
12547
12548 if (initializer_zerop (exp))
12549 return CONST0_RTX (mode);
12550
12551 if (VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (exp)))
12552 return const_vector_mask_from_tree (exp);
12553
12554 machine_mode inner = GET_MODE_INNER (mode);
12555
12556 rtx_vector_builder builder (mode, VECTOR_CST_NPATTERNS (exp),
12557 VECTOR_CST_NELTS_PER_PATTERN (exp));
12558 unsigned int count = builder.encoded_nelts ();
12559 for (unsigned int i = 0; i < count; ++i)
12560 {
12561 tree elt = VECTOR_CST_ELT (exp, i);
12562 if (TREE_CODE (elt) == REAL_CST)
12563 builder.quick_push (const_double_from_real_value (TREE_REAL_CST (elt),
12564 inner));
12565 else if (TREE_CODE (elt) == FIXED_CST)
12566 builder.quick_push (CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt),
12567 inner));
12568 else
12569 builder.quick_push (immed_wide_int_const (wi::to_poly_wide (elt),
12570 inner));
12571 }
12572 return builder.build ();
12573 }
12574
12575 /* Build a decl for a personality function given a language prefix. */
12576
12577 tree
build_personality_function(const char * lang)12578 build_personality_function (const char *lang)
12579 {
12580 const char *unwind_and_version;
12581 tree decl, type;
12582 char *name;
12583
12584 switch (targetm_common.except_unwind_info (&global_options))
12585 {
12586 case UI_NONE:
12587 return NULL;
12588 case UI_SJLJ:
12589 unwind_and_version = "_sj0";
12590 break;
12591 case UI_DWARF2:
12592 case UI_TARGET:
12593 unwind_and_version = "_v0";
12594 break;
12595 case UI_SEH:
12596 unwind_and_version = "_seh0";
12597 break;
12598 default:
12599 gcc_unreachable ();
12600 }
12601
12602 name = ACONCAT (("__", lang, "_personality", unwind_and_version, NULL));
12603
12604 type = build_function_type_list (unsigned_type_node,
12605 integer_type_node, integer_type_node,
12606 long_long_unsigned_type_node,
12607 ptr_type_node, ptr_type_node, NULL_TREE);
12608 decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL,
12609 get_identifier (name), type);
12610 DECL_ARTIFICIAL (decl) = 1;
12611 DECL_EXTERNAL (decl) = 1;
12612 TREE_PUBLIC (decl) = 1;
12613
12614 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
12615 are the flags assigned by targetm.encode_section_info. */
12616 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL);
12617
12618 return decl;
12619 }
12620
12621 /* Extracts the personality function of DECL and returns the corresponding
12622 libfunc. */
12623
12624 rtx
get_personality_function(tree decl)12625 get_personality_function (tree decl)
12626 {
12627 tree personality = DECL_FUNCTION_PERSONALITY (decl);
12628 enum eh_personality_kind pk;
12629
12630 pk = function_needs_eh_personality (DECL_STRUCT_FUNCTION (decl));
12631 if (pk == eh_personality_none)
12632 return NULL;
12633
12634 if (!personality
12635 && pk == eh_personality_any)
12636 personality = lang_hooks.eh_personality ();
12637
12638 if (pk == eh_personality_lang)
12639 gcc_assert (personality != NULL_TREE);
12640
12641 return XEXP (DECL_RTL (personality), 0);
12642 }
12643
12644 /* Returns a tree for the size of EXP in bytes. */
12645
12646 static tree
tree_expr_size(const_tree exp)12647 tree_expr_size (const_tree exp)
12648 {
12649 if (DECL_P (exp)
12650 && DECL_SIZE_UNIT (exp) != 0)
12651 return DECL_SIZE_UNIT (exp);
12652 else
12653 return size_in_bytes (TREE_TYPE (exp));
12654 }
12655
12656 /* Return an rtx for the size in bytes of the value of EXP. */
12657
12658 rtx
expr_size(tree exp)12659 expr_size (tree exp)
12660 {
12661 tree size;
12662
12663 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
12664 size = TREE_OPERAND (exp, 1);
12665 else
12666 {
12667 size = tree_expr_size (exp);
12668 gcc_assert (size);
12669 gcc_assert (size == SUBSTITUTE_PLACEHOLDER_IN_EXPR (size, exp));
12670 }
12671
12672 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), EXPAND_NORMAL);
12673 }
12674
12675 /* Return a wide integer for the size in bytes of the value of EXP, or -1
12676 if the size can vary or is larger than an integer. */
12677
12678 static HOST_WIDE_INT
int_expr_size(tree exp)12679 int_expr_size (tree exp)
12680 {
12681 tree size;
12682
12683 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
12684 size = TREE_OPERAND (exp, 1);
12685 else
12686 {
12687 size = tree_expr_size (exp);
12688 gcc_assert (size);
12689 }
12690
12691 if (size == 0 || !tree_fits_shwi_p (size))
12692 return -1;
12693
12694 return tree_to_shwi (size);
12695 }
12696