xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/config/sparc/sparc.h (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /* Definitions of target machine for GNU compiler, for Sun SPARC.
2    Copyright (C) 1987-2015 Free Software Foundation, Inc.
3    Contributed by Michael Tiemann (tiemann@cygnus.com).
4    64-bit SPARC-V9 support by Michael Tiemann, Jim Wilson, and Doug Evans,
5    at Cygnus Support.
6 
7 This file is part of GCC.
8 
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
12 any later version.
13 
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 GNU General Public License for more details.
18 
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3.  If not see
21 <http://www.gnu.org/licenses/>.  */
22 
23 #include "config/vxworks-dummy.h"
24 
25 /* Note that some other tm.h files include this one and then override
26    whatever definitions are necessary.  */
27 
28 #define TARGET_CPU_CPP_BUILTINS() sparc_target_macros ()
29 
30 /* Specify this in a cover file to provide bi-architecture (32/64) support.  */
31 /* #define SPARC_BI_ARCH */
32 
33 /* Macro used later in this file to determine default architecture.  */
34 #define DEFAULT_ARCH32_P ((TARGET_DEFAULT & MASK_64BIT) == 0)
35 
36 /* TARGET_ARCH{32,64} are the main macros to decide which of the two
37    architectures to compile for.  We allow targets to choose compile time or
38    runtime selection.  */
39 #ifdef IN_LIBGCC2
40 #if defined(__sparcv9) || defined(__arch64__)
41 #define TARGET_ARCH32 0
42 #else
43 #define TARGET_ARCH32 1
44 #endif /* sparc64 */
45 #else
46 #ifdef SPARC_BI_ARCH
47 #define TARGET_ARCH32 (! TARGET_64BIT)
48 #else
49 #define TARGET_ARCH32 (DEFAULT_ARCH32_P)
50 #endif /* SPARC_BI_ARCH */
51 #endif /* IN_LIBGCC2 */
52 #define TARGET_ARCH64 (! TARGET_ARCH32)
53 
54 /* Code model selection in 64-bit environment.
55 
56    The machine mode used for addresses is 32-bit wide:
57 
58    TARGET_CM_32:     32-bit address space.
59                      It is the code model used when generating 32-bit code.
60 
61    The machine mode used for addresses is 64-bit wide:
62 
63    TARGET_CM_MEDLOW: 32-bit address space.
64                      The executable must be in the low 32 bits of memory.
65                      This avoids generating %uhi and %ulo terms.  Programs
66                      can be statically or dynamically linked.
67 
68    TARGET_CM_MEDMID: 44-bit address space.
69                      The executable must be in the low 44 bits of memory,
70                      and the %[hml]44 terms are used.  The text and data
71                      segments have a maximum size of 2GB (31-bit span).
72                      The maximum offset from any instruction to the label
73                      _GLOBAL_OFFSET_TABLE_ is 2GB (31-bit span).
74 
75    TARGET_CM_MEDANY: 64-bit address space.
76                      The text and data segments have a maximum size of 2GB
77                      (31-bit span) and may be located anywhere in memory.
78                      The maximum offset from any instruction to the label
79                      _GLOBAL_OFFSET_TABLE_ is 2GB (31-bit span).
80 
81    TARGET_CM_EMBMEDANY: 64-bit address space.
82                      The text and data segments have a maximum size of 2GB
83                      (31-bit span) and may be located anywhere in memory.
84                      The global register %g4 contains the start address of
85                      the data segment.  Programs are statically linked and
86                      PIC is not supported.
87 
88    Different code models are not supported in 32-bit environment.  */
89 
90 enum cmodel {
91   CM_32,
92   CM_MEDLOW,
93   CM_MEDMID,
94   CM_MEDANY,
95   CM_EMBMEDANY
96 };
97 
98 /* One of CM_FOO.  */
99 extern enum cmodel sparc_cmodel;
100 
101 /* V9 code model selection.  */
102 #define TARGET_CM_MEDLOW    (sparc_cmodel == CM_MEDLOW)
103 #define TARGET_CM_MEDMID    (sparc_cmodel == CM_MEDMID)
104 #define TARGET_CM_MEDANY    (sparc_cmodel == CM_MEDANY)
105 #define TARGET_CM_EMBMEDANY (sparc_cmodel == CM_EMBMEDANY)
106 
107 #define SPARC_DEFAULT_CMODEL CM_32
108 
109 /* The SPARC-V9 architecture defines a relaxed memory ordering model (RMO)
110    which requires the following macro to be true if enabled.  Prior to V9,
111    there are no instructions to even talk about memory synchronization.
112    Note that the UltraSPARC III processors don't implement RMO, unlike the
113    UltraSPARC II processors.  Niagara, Niagara-2, and Niagara-3 do not
114    implement RMO either.
115 
116    Default to false; for example, Solaris never enables RMO, only ever uses
117    total memory ordering (TMO).  */
118 #define SPARC_RELAXED_ORDERING false
119 
120 /* Do not use the .note.GNU-stack convention by default.  */
121 #define NEED_INDICATE_EXEC_STACK 0
122 
123 /* This is call-clobbered in the normal ABI, but is reserved in the
124    home grown (aka upward compatible) embedded ABI.  */
125 #define EMBMEDANY_BASE_REG "%g4"
126 
127 /* Values of TARGET_CPU_DEFAULT, set via -D in the Makefile,
128    and specified by the user via --with-cpu=foo.
129    This specifies the cpu implementation, not the architecture size.  */
130 /* Note that TARGET_CPU_v9 is assumed to start the list of 64-bit
131    capable cpu's.  */
132 #define TARGET_CPU_sparc	0
133 #define TARGET_CPU_v7		0	/* alias */
134 #define TARGET_CPU_cypress	0       /* alias */
135 #define TARGET_CPU_v8		1	/* generic v8 implementation */
136 #define TARGET_CPU_supersparc	2
137 #define TARGET_CPU_hypersparc	3
138 #define TARGET_CPU_leon		4
139 #define TARGET_CPU_leon3	5
140 #define TARGET_CPU_leon3v7	6
141 #define TARGET_CPU_sparclite	7
142 #define TARGET_CPU_f930		7       /* alias */
143 #define TARGET_CPU_f934		7       /* alias */
144 #define TARGET_CPU_sparclite86x	8
145 #define TARGET_CPU_sparclet	9
146 #define TARGET_CPU_tsc701	9       /* alias */
147 #define TARGET_CPU_v9		10	/* generic v9 implementation */
148 #define TARGET_CPU_sparcv9	10	/* alias */
149 #define TARGET_CPU_sparc64	10	/* alias */
150 #define TARGET_CPU_ultrasparc	11
151 #define TARGET_CPU_ultrasparc3	12
152 #define TARGET_CPU_niagara	13
153 #define TARGET_CPU_niagara2	14
154 #define TARGET_CPU_niagara3	15
155 #define TARGET_CPU_niagara4	16
156 
157 #if TARGET_CPU_DEFAULT == TARGET_CPU_v9 \
158  || TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc \
159  || TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc3 \
160  || TARGET_CPU_DEFAULT == TARGET_CPU_niagara \
161  || TARGET_CPU_DEFAULT == TARGET_CPU_niagara2 \
162  || TARGET_CPU_DEFAULT == TARGET_CPU_niagara3 \
163  || TARGET_CPU_DEFAULT == TARGET_CPU_niagara4
164 
165 #define CPP_CPU32_DEFAULT_SPEC ""
166 #define ASM_CPU32_DEFAULT_SPEC ""
167 
168 #if TARGET_CPU_DEFAULT == TARGET_CPU_v9
169 /* ??? What does Sun's CC pass?  */
170 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
171 /* ??? It's not clear how other assemblers will handle this, so by default
172    use GAS.  Sun's Solaris assembler recognizes -xarch=v8plus, but this case
173    is handled in sol2.h.  */
174 #define ASM_CPU64_DEFAULT_SPEC "-Av9"
175 #endif
176 #if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc
177 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
178 #define ASM_CPU64_DEFAULT_SPEC "-Av9a"
179 #endif
180 #if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc3
181 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
182 #define ASM_CPU64_DEFAULT_SPEC "-Av9b"
183 #endif
184 #if TARGET_CPU_DEFAULT == TARGET_CPU_niagara
185 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
186 #define ASM_CPU64_DEFAULT_SPEC "-Av9b"
187 #endif
188 #if TARGET_CPU_DEFAULT == TARGET_CPU_niagara2
189 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
190 #define ASM_CPU64_DEFAULT_SPEC "-Av9b"
191 #endif
192 #if TARGET_CPU_DEFAULT == TARGET_CPU_niagara3
193 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
194 #define ASM_CPU64_DEFAULT_SPEC "-Av9" AS_NIAGARA3_FLAG
195 #endif
196 #if TARGET_CPU_DEFAULT == TARGET_CPU_niagara4
197 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
198 #define ASM_CPU64_DEFAULT_SPEC AS_NIAGARA4_FLAG
199 #endif
200 
201 #else
202 
203 #define CPP_CPU64_DEFAULT_SPEC ""
204 #define ASM_CPU64_DEFAULT_SPEC ""
205 
206 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparc \
207  || TARGET_CPU_DEFAULT == TARGET_CPU_v8
208 #define CPP_CPU32_DEFAULT_SPEC ""
209 #define ASM_CPU32_DEFAULT_SPEC ""
210 #endif
211 
212 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclet
213 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclet__"
214 #define ASM_CPU32_DEFAULT_SPEC "-Asparclet"
215 #endif
216 
217 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite
218 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclite__"
219 #define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
220 #endif
221 
222 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite86x
223 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclite86x__"
224 #define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
225 #endif
226 
227 #if TARGET_CPU_DEFAULT == TARGET_CPU_supersparc
228 #define CPP_CPU32_DEFAULT_SPEC "-D__supersparc__ -D__sparc_v8__"
229 #define ASM_CPU32_DEFAULT_SPEC ""
230 #endif
231 
232 #if TARGET_CPU_DEFAULT == TARGET_CPU_hypersparc
233 #define CPP_CPU32_DEFAULT_SPEC "-D__hypersparc__ -D__sparc_v8__"
234 #define ASM_CPU32_DEFAULT_SPEC ""
235 #endif
236 
237 #if TARGET_CPU_DEFAULT == TARGET_CPU_leon \
238  || TARGET_CPU_DEFAULT == TARGET_CPU_leon3
239 #define CPP_CPU32_DEFAULT_SPEC "-D__leon__ -D__sparc_v8__"
240 #define ASM_CPU32_DEFAULT_SPEC AS_LEON_FLAG
241 #endif
242 
243 #if TARGET_CPU_DEFAULT == TARGET_CPU_leon3v7
244 #define CPP_CPU32_DEFAULT_SPEC "-D__leon__"
245 #define ASM_CPU32_DEFAULT_SPEC AS_LEONV7_FLAG
246 #endif
247 
248 #endif
249 
250 #if !defined(CPP_CPU32_DEFAULT_SPEC) || !defined(CPP_CPU64_DEFAULT_SPEC)
251  #error Unrecognized value in TARGET_CPU_DEFAULT.
252 #endif
253 
254 #ifdef SPARC_BI_ARCH
255 
256 #define CPP_CPU_DEFAULT_SPEC \
257 (DEFAULT_ARCH32_P ? "\
258 %{m64:" CPP_CPU64_DEFAULT_SPEC "} \
259 %{!m64:" CPP_CPU32_DEFAULT_SPEC "} \
260 " : "\
261 %{m32:" CPP_CPU32_DEFAULT_SPEC "} \
262 %{!m32:" CPP_CPU64_DEFAULT_SPEC "} \
263 ")
264 #define ASM_CPU_DEFAULT_SPEC \
265 (DEFAULT_ARCH32_P ? "\
266 %{m64:" ASM_CPU64_DEFAULT_SPEC "} \
267 %{!m64:" ASM_CPU32_DEFAULT_SPEC "} \
268 " : "\
269 %{m32:" ASM_CPU32_DEFAULT_SPEC "} \
270 %{!m32:" ASM_CPU64_DEFAULT_SPEC "} \
271 ")
272 
273 #else /* !SPARC_BI_ARCH */
274 
275 #define CPP_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? CPP_CPU32_DEFAULT_SPEC : CPP_CPU64_DEFAULT_SPEC)
276 #define ASM_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? ASM_CPU32_DEFAULT_SPEC : ASM_CPU64_DEFAULT_SPEC)
277 
278 #endif /* !SPARC_BI_ARCH */
279 
280 /* Define macros to distinguish architectures.  */
281 
282 /* Common CPP definitions used by CPP_SPEC amongst the various targets
283    for handling -mcpu=xxx switches.  */
284 #define CPP_CPU_SPEC "\
285 %{mcpu=sparclet:-D__sparclet__} %{mcpu=tsc701:-D__sparclet__} \
286 %{mcpu=sparclite:-D__sparclite__} \
287 %{mcpu=f930:-D__sparclite__} %{mcpu=f934:-D__sparclite__} \
288 %{mcpu=sparclite86x:-D__sparclite86x__} \
289 %{mcpu=v8:-D__sparc_v8__} \
290 %{mcpu=supersparc:-D__supersparc__ -D__sparc_v8__} \
291 %{mcpu=hypersparc:-D__hypersparc__ -D__sparc_v8__} \
292 %{mcpu=leon:-D__leon__ -D__sparc_v8__} \
293 %{mcpu=leon3:-D__leon__ -D__sparc_v8__} \
294 %{mcpu=leon3v7:-D__leon__} \
295 %{mcpu=v9:-D__sparc_v9__} \
296 %{mcpu=ultrasparc:-D__sparc_v9__} \
297 %{mcpu=ultrasparc3:-D__sparc_v9__} \
298 %{mcpu=niagara:-D__sparc_v9__} \
299 %{mcpu=niagara2:-D__sparc_v9__} \
300 %{mcpu=niagara3:-D__sparc_v9__} \
301 %{mcpu=niagara4:-D__sparc_v9__} \
302 %{!mcpu*:%(cpp_cpu_default)} \
303 "
304 #define CPP_ARCH32_SPEC ""
305 #define CPP_ARCH64_SPEC "-D__arch64__"
306 
307 #define CPP_ARCH_DEFAULT_SPEC \
308 (DEFAULT_ARCH32_P ? CPP_ARCH32_SPEC : CPP_ARCH64_SPEC)
309 
310 #define CPP_ARCH_SPEC "\
311 %{m32:%(cpp_arch32)} \
312 %{m64:%(cpp_arch64)} \
313 %{!m32:%{!m64:%(cpp_arch_default)}} \
314 "
315 
316 /* Macros to distinguish the endianness, window model and FP support.  */
317 #define CPP_OTHER_SPEC "\
318 %{mflat:-D_FLAT} \
319 %{msoft-float:-D_SOFT_FLOAT} \
320 "
321 
322 /* Macros to distinguish the particular subtarget.  */
323 #define CPP_SUBTARGET_SPEC ""
324 
325 #define CPP_SPEC \
326   "%(cpp_cpu) %(cpp_arch) %(cpp_endian) %(cpp_other) %(cpp_subtarget)"
327 
328 /* This used to translate -dalign to -malign, but that is no good
329    because it can't turn off the usual meaning of making debugging dumps.  */
330 
331 #define CC1_SPEC ""
332 
333 /* Override in target specific files.  */
334 #define ASM_CPU_SPEC "\
335 %{mcpu=sparclet:-Asparclet} %{mcpu=tsc701:-Asparclet} \
336 %{mcpu=sparclite:-Asparclite} \
337 %{mcpu=sparclite86x:-Asparclite} \
338 %{mcpu=f930:-Asparclite} %{mcpu=f934:-Asparclite} \
339 %{mcpu=v8:-Av8} \
340 %{mcpu=supersparc:-Av8} \
341 %{mcpu=hypersparc:-Av8} \
342 %{mcpu=leon:" AS_LEON_FLAG "} \
343 %{mcpu=leon3:" AS_LEON_FLAG "} \
344 %{mcpu=leon3v7:" AS_LEONV7_FLAG "} \
345 %{mv8plus:-Av8plus} \
346 %{mcpu=v9:-Av9} \
347 %{mcpu=ultrasparc:%{!mv8plus:-Av9a}} \
348 %{mcpu=ultrasparc3:%{!mv8plus:-Av9b}} \
349 %{mcpu=niagara:%{!mv8plus:-Av9b}} \
350 %{mcpu=niagara2:%{!mv8plus:-Av9b}} \
351 %{mcpu=niagara3:%{!mv8plus:-Av9" AS_NIAGARA3_FLAG "}} \
352 %{mcpu=niagara4:%{!mv8plus:" AS_NIAGARA4_FLAG "}} \
353 %{!mcpu*:%(asm_cpu_default)} \
354 "
355 
356 /* Word size selection, among other things.
357    This is what GAS uses.  Add %(asm_arch) to ASM_SPEC to enable.  */
358 
359 #define ASM_ARCH32_SPEC "-32"
360 #ifdef HAVE_AS_REGISTER_PSEUDO_OP
361 #define ASM_ARCH64_SPEC "-64 -no-undeclared-regs"
362 #else
363 #define ASM_ARCH64_SPEC "-64"
364 #endif
365 #define ASM_ARCH_DEFAULT_SPEC \
366 (DEFAULT_ARCH32_P ? ASM_ARCH32_SPEC : ASM_ARCH64_SPEC)
367 
368 #define ASM_ARCH_SPEC "\
369 %{m32:%(asm_arch32)} \
370 %{m64:%(asm_arch64)} \
371 %{!m32:%{!m64:%(asm_arch_default)}} \
372 "
373 
374 #ifdef HAVE_AS_RELAX_OPTION
375 #define ASM_RELAX_SPEC "%{!mno-relax:-relax}"
376 #else
377 #define ASM_RELAX_SPEC ""
378 #endif
379 
380 /* Special flags to the Sun-4 assembler when using pipe for input.  */
381 
382 #define ASM_SPEC "\
383 %{!pg:%{!p:%{fpic|fPIC|fpie|fPIE:-k}}} %{keep-local-as-symbols:-L} \
384 %(asm_cpu) %(asm_relax)"
385 
386 /* This macro defines names of additional specifications to put in the specs
387    that can be used in various specifications like CC1_SPEC.  Its definition
388    is an initializer with a subgrouping for each command option.
389 
390    Each subgrouping contains a string constant, that defines the
391    specification name, and a string constant that used by the GCC driver
392    program.
393 
394    Do not define this macro if it does not need to do anything.  */
395 
396 #define EXTRA_SPECS \
397   { "cpp_cpu",		CPP_CPU_SPEC },		\
398   { "cpp_cpu_default",	CPP_CPU_DEFAULT_SPEC },	\
399   { "cpp_arch32",	CPP_ARCH32_SPEC },	\
400   { "cpp_arch64",	CPP_ARCH64_SPEC },	\
401   { "cpp_arch_default",	CPP_ARCH_DEFAULT_SPEC },\
402   { "cpp_arch",		CPP_ARCH_SPEC },	\
403   { "cpp_other",	CPP_OTHER_SPEC },	\
404   { "cpp_subtarget",	CPP_SUBTARGET_SPEC },	\
405   { "asm_cpu",		ASM_CPU_SPEC },		\
406   { "asm_cpu_default",	ASM_CPU_DEFAULT_SPEC },	\
407   { "asm_arch32",	ASM_ARCH32_SPEC },	\
408   { "asm_arch64",	ASM_ARCH64_SPEC },	\
409   { "asm_relax",	ASM_RELAX_SPEC },	\
410   { "asm_arch_default",	ASM_ARCH_DEFAULT_SPEC },\
411   { "asm_arch",		ASM_ARCH_SPEC },	\
412   SUBTARGET_EXTRA_SPECS
413 
414 #define SUBTARGET_EXTRA_SPECS
415 
416 /* Because libgcc can generate references back to libc (via .umul etc.) we have
417    to list libc again after the second libgcc.  */
418 #define LINK_GCC_C_SEQUENCE_SPEC "%G %L %G %L"
419 
420 
421 #define PTRDIFF_TYPE (TARGET_ARCH64 ? "long int" : "int")
422 #define SIZE_TYPE (TARGET_ARCH64 ? "long unsigned int" : "unsigned int")
423 
424 /* ??? This should be 32 bits for v9 but what can we do?  */
425 #define WCHAR_TYPE "short unsigned int"
426 #define WCHAR_TYPE_SIZE 16
427 
428 /* Mask of all CPU selection flags.  */
429 #define MASK_ISA					\
430   (MASK_SPARCLITE + MASK_SPARCLET			\
431    + MASK_V8 + MASK_V9 + MASK_DEPRECATED_V8_INSNS)
432 
433 /* TARGET_HARD_MUL: Use 32-bit hardware multiply instructions but not %y.  */
434 #define TARGET_HARD_MUL				\
435   (TARGET_SPARCLITE || TARGET_SPARCLET		\
436    || TARGET_V8 || TARGET_DEPRECATED_V8_INSNS)
437 
438 /* TARGET_HARD_MUL32: Use 32-bit hardware multiply instructions with %y
439    to get high 32 bits.  False in 64-bit or V8+ because multiply stores
440    a 64-bit result in a register.  */
441 #define TARGET_HARD_MUL32 \
442   (TARGET_HARD_MUL && TARGET_ARCH32 && !TARGET_V8PLUS)
443 
444 /* MASK_APP_REGS must always be the default because that's what
445    FIXED_REGISTERS is set to and -ffixed- is processed before
446    TARGET_CONDITIONAL_REGISTER_USAGE is called (where we process
447    -mno-app-regs).  */
448 #define TARGET_DEFAULT (MASK_APP_REGS + MASK_FPU)
449 
450 /* Recast the cpu class to be the cpu attribute.
451    Every file includes us, but not every file includes insn-attr.h.  */
452 #define sparc_cpu_attr ((enum attr_cpu) sparc_cpu)
453 
454 /* Support for a compile-time default CPU, et cetera.  The rules are:
455    --with-cpu is ignored if -mcpu is specified.
456    --with-tune is ignored if -mtune is specified.
457    --with-float is ignored if -mhard-float, -msoft-float, -mfpu, or -mno-fpu
458      are specified.  */
459 #define OPTION_DEFAULT_SPECS \
460   {"cpu", "%{!mcpu=*:-mcpu=%(VALUE)}" }, \
461   {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
462   {"float", "%{!msoft-float:%{!mhard-float:%{!mfpu:%{!mno-fpu:-m%(VALUE)-float}}}}" }
463 
464 /* target machine storage layout */
465 
466 /* Define this if most significant bit is lowest numbered
467    in instructions that operate on numbered bit-fields.  */
468 #define BITS_BIG_ENDIAN 1
469 
470 /* Define this if most significant byte of a word is the lowest numbered.  */
471 #define BYTES_BIG_ENDIAN 1
472 
473 /* Define this if most significant word of a multiword number is the lowest
474    numbered.  */
475 #define WORDS_BIG_ENDIAN 1
476 
477 #define MAX_BITS_PER_WORD	64
478 
479 /* Width of a word, in units (bytes).  */
480 #define UNITS_PER_WORD		(TARGET_ARCH64 ? 8 : 4)
481 #ifdef IN_LIBGCC2
482 #define MIN_UNITS_PER_WORD	UNITS_PER_WORD
483 #else
484 #define MIN_UNITS_PER_WORD	4
485 #endif
486 
487 /* Now define the sizes of the C data types.  */
488 #define SHORT_TYPE_SIZE		16
489 #define INT_TYPE_SIZE		32
490 #define LONG_TYPE_SIZE		(TARGET_ARCH64 ? 64 : 32)
491 #define LONG_LONG_TYPE_SIZE	64
492 #define FLOAT_TYPE_SIZE		32
493 #define DOUBLE_TYPE_SIZE	64
494 
495 /* LONG_DOUBLE_TYPE_SIZE is defined per OS even though the
496    SPARC ABI says that it is 128-bit wide.  */
497 /* #define LONG_DOUBLE_TYPE_SIZE	128 */
498 
499 /* The widest floating-point format really supported by the hardware.  */
500 #define WIDEST_HARDWARE_FP_SIZE 64
501 
502 /* Width in bits of a pointer.  This is the size of ptr_mode.  */
503 #define POINTER_SIZE (TARGET_PTR64 ? 64 : 32)
504 
505 /* This is the machine mode used for addresses.  */
506 #define Pmode (TARGET_ARCH64 ? DImode : SImode)
507 
508 /* If we have to extend pointers (only when TARGET_ARCH64 and not
509    TARGET_PTR64), we want to do it unsigned.   This macro does nothing
510    if ptr_mode and Pmode are the same.  */
511 #define POINTERS_EXTEND_UNSIGNED 1
512 
513 /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
514 #define PARM_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
515 
516 /* Boundary (in *bits*) on which stack pointer should be aligned.  */
517 /* FIXME, this is wrong when TARGET_ARCH64 and TARGET_STACK_BIAS, because
518    then %sp+2047 is 128-bit aligned so %sp is really only byte-aligned.  */
519 #define STACK_BOUNDARY (TARGET_ARCH64 ? 128 : 64)
520 /* Temporary hack until the FIXME above is fixed.  */
521 #define SPARC_STACK_BOUNDARY_HACK (TARGET_ARCH64 && TARGET_STACK_BIAS)
522 
523 /* ALIGN FRAMES on double word boundaries */
524 #define SPARC_STACK_ALIGN(LOC) \
525   (TARGET_ARCH64 ? (((LOC)+15) & ~15) : (((LOC)+7) & ~7))
526 
527 /* Allocation boundary (in *bits*) for the code of a function.  */
528 #define FUNCTION_BOUNDARY 32
529 
530 /* Alignment of field after `int : 0' in a structure.  */
531 #define EMPTY_FIELD_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
532 
533 /* Every structure's size must be a multiple of this.  */
534 #define STRUCTURE_SIZE_BOUNDARY 8
535 
536 /* A bit-field declared as `int' forces `int' alignment for the struct.  */
537 #define PCC_BITFIELD_TYPE_MATTERS 1
538 
539 /* No data type wants to be aligned rounder than this.  */
540 #define BIGGEST_ALIGNMENT (TARGET_ARCH64 ? 128 : 64)
541 
542 /* The best alignment to use in cases where we have a choice.  */
543 #define FASTEST_ALIGNMENT 64
544 
545 /* Define this macro as an expression for the alignment of a structure
546    (given by STRUCT as a tree node) if the alignment computed in the
547    usual way is COMPUTED and the alignment explicitly specified was
548    SPECIFIED.
549 
550    The default is to use SPECIFIED if it is larger; otherwise, use
551    the smaller of COMPUTED and `BIGGEST_ALIGNMENT' */
552 #define ROUND_TYPE_ALIGN(STRUCT, COMPUTED, SPECIFIED)	\
553  (TARGET_FASTER_STRUCTS ?				\
554   ((TREE_CODE (STRUCT) == RECORD_TYPE			\
555     || TREE_CODE (STRUCT) == UNION_TYPE                 \
556     || TREE_CODE (STRUCT) == QUAL_UNION_TYPE)           \
557    && TYPE_FIELDS (STRUCT) != 0                         \
558      ? MAX (MAX ((COMPUTED), (SPECIFIED)), BIGGEST_ALIGNMENT) \
559      : MAX ((COMPUTED), (SPECIFIED)))			\
560    :  MAX ((COMPUTED), (SPECIFIED)))
561 
562 /* An integer expression for the size in bits of the largest integer machine
563    mode that should actually be used.  We allow pairs of registers.  */
564 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_ARCH64 ? TImode : DImode)
565 
566 /* We need 2 words, so we can save the stack pointer and the return register
567    of the function containing a non-local goto target.  */
568 #define STACK_SAVEAREA_MODE(LEVEL) \
569   ((LEVEL) == SAVE_NONLOCAL ? (TARGET_ARCH64 ? TImode : DImode) : Pmode)
570 
571 /* Make strings word-aligned so strcpy from constants will be faster.  */
572 #define CONSTANT_ALIGNMENT(EXP, ALIGN)  \
573   ((TREE_CODE (EXP) == STRING_CST	\
574     && (ALIGN) < FASTEST_ALIGNMENT)	\
575    ? FASTEST_ALIGNMENT : (ALIGN))
576 
577 /* Make arrays of chars word-aligned for the same reasons.  */
578 #define DATA_ALIGNMENT(TYPE, ALIGN)		\
579   (TREE_CODE (TYPE) == ARRAY_TYPE		\
580    && TYPE_MODE (TREE_TYPE (TYPE)) == QImode	\
581    && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
582 
583 /* Make local arrays of chars word-aligned for the same reasons.  */
584 #define LOCAL_ALIGNMENT(TYPE, ALIGN) DATA_ALIGNMENT (TYPE, ALIGN)
585 
586 /* Set this nonzero if move instructions will actually fail to work
587    when given unaligned data.  */
588 #define STRICT_ALIGNMENT 1
589 
590 /* Things that must be doubleword aligned cannot go in the text section,
591    because the linker fails to align the text section enough!
592    Put them in the data section.  This macro is only used in this file.  */
593 #define MAX_TEXT_ALIGN 32
594 
595 /* Standard register usage.  */
596 
597 /* Number of actual hardware registers.
598    The hardware registers are assigned numbers for the compiler
599    from 0 to just below FIRST_PSEUDO_REGISTER.
600    All registers that the compiler knows about must be given numbers,
601    even those that are not normally considered general registers.
602 
603    SPARC has 32 integer registers and 32 floating point registers.
604    64-bit SPARC has 32 additional fp regs, but the odd numbered ones are not
605    accessible.  We still account for them to simplify register computations
606    (e.g.: in CLASS_MAX_NREGS).  There are also 4 fp condition code registers, so
607    32+32+32+4 == 100.
608    Register 100 is used as the integer condition code register.
609    Register 101 is used as the soft frame pointer register.  */
610 
611 #define FIRST_PSEUDO_REGISTER 103
612 
613 #define SPARC_FIRST_INT_REG     0
614 #define SPARC_LAST_INT_REG     31
615 #define SPARC_FIRST_FP_REG     32
616 /* Additional V9 fp regs.  */
617 #define SPARC_FIRST_V9_FP_REG  64
618 #define SPARC_LAST_V9_FP_REG   95
619 /* V9 %fcc[0123].  V8 uses (figuratively) %fcc0.  */
620 #define SPARC_FIRST_V9_FCC_REG 96
621 #define SPARC_LAST_V9_FCC_REG  99
622 /* V8 fcc reg.  */
623 #define SPARC_FCC_REG 96
624 /* Integer CC reg.  We don't distinguish %icc from %xcc.  */
625 #define SPARC_ICC_REG 100
626 #define SPARC_GSR_REG 102
627 
628 /* Nonzero if REGNO is an fp reg.  */
629 #define SPARC_FP_REG_P(REGNO) \
630 ((REGNO) >= SPARC_FIRST_FP_REG && (REGNO) <= SPARC_LAST_V9_FP_REG)
631 
632 /* Nonzero if REGNO is an int reg.  */
633 #define SPARC_INT_REG_P(REGNO) \
634 (((unsigned) (REGNO)) <= SPARC_LAST_INT_REG)
635 
636 /* Argument passing regs.  */
637 #define SPARC_OUTGOING_INT_ARG_FIRST 8
638 #define SPARC_INCOMING_INT_ARG_FIRST (TARGET_FLAT ? 8 : 24)
639 #define SPARC_FP_ARG_FIRST           32
640 
641 /* 1 for registers that have pervasive standard uses
642    and are not available for the register allocator.
643 
644    On non-v9 systems:
645    g1 is free to use as temporary.
646    g2-g4 are reserved for applications.  Gcc normally uses them as
647    temporaries, but this can be disabled via the -mno-app-regs option.
648    g5 through g7 are reserved for the operating system.
649 
650    On v9 systems:
651    g1,g5 are free to use as temporaries, and are free to use between calls
652    if the call is to an external function via the PLT.
653    g4 is free to use as a temporary in the non-embedded case.
654    g4 is reserved in the embedded case.
655    g2-g3 are reserved for applications.  Gcc normally uses them as
656    temporaries, but this can be disabled via the -mno-app-regs option.
657    g6-g7 are reserved for the operating system (or application in
658    embedded case).
659    ??? Register 1 is used as a temporary by the 64 bit sethi pattern, so must
660    currently be a fixed register until this pattern is rewritten.
661    Register 1 is also used when restoring call-preserved registers in large
662    stack frames.
663 
664    Registers fixed in arch32 and not arch64 (or vice-versa) are marked in
665    TARGET_CONDITIONAL_REGISTER_USAGE in order to properly handle -ffixed-.
666 */
667 
668 #define FIXED_REGISTERS  \
669  {1, 0, 2, 2, 2, 2, 1, 1,	\
670   0, 0, 0, 0, 0, 0, 1, 0,	\
671   0, 0, 0, 0, 0, 0, 0, 0,	\
672   0, 0, 0, 0, 0, 0, 0, 1,	\
673 				\
674   0, 0, 0, 0, 0, 0, 0, 0,	\
675   0, 0, 0, 0, 0, 0, 0, 0,	\
676   0, 0, 0, 0, 0, 0, 0, 0,	\
677   0, 0, 0, 0, 0, 0, 0, 0,	\
678 				\
679   0, 0, 0, 0, 0, 0, 0, 0,	\
680   0, 0, 0, 0, 0, 0, 0, 0,	\
681   0, 0, 0, 0, 0, 0, 0, 0,	\
682   0, 0, 0, 0, 0, 0, 0, 0,	\
683 				\
684   0, 0, 0, 0, 0, 1, 1}
685 
686 /* 1 for registers not available across function calls.
687    These must include the FIXED_REGISTERS and also any
688    registers that can be used without being saved.
689    The latter must include the registers where values are returned
690    and the register where structure-value addresses are passed.
691    Aside from that, you can include as many other registers as you like.  */
692 
693 #define CALL_USED_REGISTERS  \
694  {1, 1, 1, 1, 1, 1, 1, 1,	\
695   1, 1, 1, 1, 1, 1, 1, 1,	\
696   0, 0, 0, 0, 0, 0, 0, 0,	\
697   0, 0, 0, 0, 0, 0, 0, 1,	\
698 				\
699   1, 1, 1, 1, 1, 1, 1, 1,	\
700   1, 1, 1, 1, 1, 1, 1, 1,	\
701   1, 1, 1, 1, 1, 1, 1, 1,	\
702   1, 1, 1, 1, 1, 1, 1, 1,	\
703 				\
704   1, 1, 1, 1, 1, 1, 1, 1,	\
705   1, 1, 1, 1, 1, 1, 1, 1,	\
706   1, 1, 1, 1, 1, 1, 1, 1,	\
707   1, 1, 1, 1, 1, 1, 1, 1,	\
708 				\
709   1, 1, 1, 1, 1, 1, 1}
710 
711 /* Return number of consecutive hard regs needed starting at reg REGNO
712    to hold something of mode MODE.
713    This is ordinarily the length in words of a value of mode MODE
714    but can be less for certain modes in special long registers.
715 
716    On SPARC, ordinary registers hold 32 bits worth;
717    this means both integer and floating point registers.
718    On v9, integer regs hold 64 bits worth; floating point regs hold
719    32 bits worth (this includes the new fp regs as even the odd ones are
720    included in the hard register count).  */
721 
722 #define HARD_REGNO_NREGS(REGNO, MODE) \
723   ((REGNO) == SPARC_GSR_REG ? 1 :					\
724    (TARGET_ARCH64							\
725     ? (SPARC_INT_REG_P (REGNO) || (REGNO) == FRAME_POINTER_REGNUM			\
726        ? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD	\
727        : (GET_MODE_SIZE (MODE) + 3) / 4)				\
728     : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
729 
730 /* Due to the ARCH64 discrepancy above we must override this next
731    macro too.  */
732 #define REGMODE_NATURAL_SIZE(MODE) sparc_regmode_natural_size (MODE)
733 
734 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
735    See sparc.c for how we initialize this.  */
736 extern const int *hard_regno_mode_classes;
737 extern int sparc_mode_class[];
738 
739 /* ??? Because of the funny way we pass parameters we should allow certain
740    ??? types of float/complex values to be in integer registers during
741    ??? RTL generation.  This only matters on arch32.  */
742 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
743   ((hard_regno_mode_classes[REGNO] & sparc_mode_class[MODE]) != 0)
744 
745 /* Value is 1 if it is OK to rename a hard register FROM to another hard
746    register TO.  We cannot rename %g1 as it may be used before the save
747    register window instruction in the prologue.  */
748 #define HARD_REGNO_RENAME_OK(FROM, TO) ((FROM) != 1)
749 
750 #define MODES_TIEABLE_P(MODE1, MODE2) sparc_modes_tieable_p (MODE1, MODE2)
751 
752 /* Specify the registers used for certain standard purposes.
753    The values of these macros are register numbers.  */
754 
755 /* Register to use for pushing function arguments.  */
756 #define STACK_POINTER_REGNUM 14
757 
758 /* The stack bias (amount by which the hardware register is offset by).  */
759 #define SPARC_STACK_BIAS ((TARGET_ARCH64 && TARGET_STACK_BIAS) ? 2047 : 0)
760 
761 /* Actual top-of-stack address is 92/176 greater than the contents of the
762    stack pointer register for !v9/v9.  That is:
763    - !v9: 64 bytes for the in and local registers, 4 bytes for structure return
764      address, and 6*4 bytes for the 6 register parameters.
765    - v9: 128 bytes for the in and local registers + 6*8 bytes for the integer
766      parameter regs.  */
767 #define STACK_POINTER_OFFSET (FIRST_PARM_OFFSET(0) + SPARC_STACK_BIAS)
768 
769 /* Base register for access to local variables of the function.  */
770 #define HARD_FRAME_POINTER_REGNUM 30
771 
772 /* The soft frame pointer does not have the stack bias applied.  */
773 #define FRAME_POINTER_REGNUM 101
774 
775 /* Given the stack bias, the stack pointer isn't actually aligned.  */
776 #define INIT_EXPANDERS							 \
777   do {									 \
778     if (crtl->emit.regno_pointer_align && SPARC_STACK_BIAS)	 \
779       {									 \
780 	REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = BITS_PER_UNIT;	 \
781 	REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT; \
782       }									 \
783   } while (0)
784 
785 /* Base register for access to arguments of the function.  */
786 #define ARG_POINTER_REGNUM FRAME_POINTER_REGNUM
787 
788 /* Register in which static-chain is passed to a function.  This must
789    not be a register used by the prologue.  */
790 #define STATIC_CHAIN_REGNUM (TARGET_ARCH64 ? 5 : 2)
791 
792 /* Register which holds the global offset table, if any.  */
793 
794 #define GLOBAL_OFFSET_TABLE_REGNUM 23
795 
796 /* Register which holds offset table for position-independent
797    data references.  */
798 
799 #define PIC_OFFSET_TABLE_REGNUM \
800   (flag_pic ? GLOBAL_OFFSET_TABLE_REGNUM : INVALID_REGNUM)
801 
802 /* Pick a default value we can notice from override_options:
803    !v9: Default is on.
804    v9: Default is off.
805    Originally it was -1, but later on the container of options changed to
806    unsigned byte, so we decided to pick 127 as default value, which does
807    reflect an undefined default value in case of 0/1.  */
808 
809 #define DEFAULT_PCC_STRUCT_RETURN 127
810 
811 /* Functions which return large structures get the address
812    to place the wanted value at offset 64 from the frame.
813    Must reserve 64 bytes for the in and local registers.
814    v9: Functions which return large structures get the address to place the
815    wanted value from an invisible first argument.  */
816 #define STRUCT_VALUE_OFFSET 64
817 
818 /* Define the classes of registers for register constraints in the
819    machine description.  Also define ranges of constants.
820 
821    One of the classes must always be named ALL_REGS and include all hard regs.
822    If there is more than one class, another class must be named NO_REGS
823    and contain no registers.
824 
825    The name GENERAL_REGS must be the name of a class (or an alias for
826    another name such as ALL_REGS).  This is the class of registers
827    that is allowed by "g" or "r" in a register constraint.
828    Also, registers outside this class are allocated only when
829    instructions express preferences for them.
830 
831    The classes must be numbered in nondecreasing order; that is,
832    a larger-numbered class must never be contained completely
833    in a smaller-numbered class.
834 
835    For any two classes, it is very desirable that there be another
836    class that represents their union.  */
837 
838 /* The SPARC has various kinds of registers: general, floating point,
839    and condition codes [well, it has others as well, but none that we
840    care directly about].
841 
842    For v9 we must distinguish between the upper and lower floating point
843    registers because the upper ones can't hold SFmode values.
844    HARD_REGNO_MODE_OK won't help here because reload assumes that register(s)
845    satisfying a group need for a class will also satisfy a single need for
846    that class.  EXTRA_FP_REGS is a bit of a misnomer as it covers all 64 fp
847    regs.
848 
849    It is important that one class contains all the general and all the standard
850    fp regs.  Otherwise find_reg() won't properly allocate int regs for moves,
851    because reg_class_record() will bias the selection in favor of fp regs,
852    because reg_class_subunion[GENERAL_REGS][FP_REGS] will yield FP_REGS,
853    because FP_REGS > GENERAL_REGS.
854 
855    It is also important that one class contain all the general and all
856    the fp regs.  Otherwise when spilling a DFmode reg, it may be from
857    EXTRA_FP_REGS but find_reloads() may use class
858    GENERAL_OR_FP_REGS. This will cause allocate_reload_reg() to die
859    because the compiler thinks it doesn't have a spill reg when in
860    fact it does.
861 
862    v9 also has 4 floating point condition code registers.  Since we don't
863    have a class that is the union of FPCC_REGS with either of the others,
864    it is important that it appear first.  Otherwise the compiler will die
865    trying to compile _fixunsdfsi because fix_truncdfsi2 won't match its
866    constraints.
867 
868    It is important that SPARC_ICC_REG have class NO_REGS.  Otherwise combine
869    may try to use it to hold an SImode value.  See register_operand.
870    ??? Should %fcc[0123] be handled similarly?
871 */
872 
873 enum reg_class { NO_REGS, FPCC_REGS, I64_REGS, GENERAL_REGS, FP_REGS,
874 		 EXTRA_FP_REGS, GENERAL_OR_FP_REGS, GENERAL_OR_EXTRA_FP_REGS,
875 		 ALL_REGS, LIM_REG_CLASSES };
876 
877 #define N_REG_CLASSES (int) LIM_REG_CLASSES
878 
879 /* Give names of register classes as strings for dump file.  */
880 
881 #define REG_CLASS_NAMES \
882   { "NO_REGS", "FPCC_REGS", "I64_REGS", "GENERAL_REGS", "FP_REGS",	\
883      "EXTRA_FP_REGS", "GENERAL_OR_FP_REGS", "GENERAL_OR_EXTRA_FP_REGS",	\
884      "ALL_REGS" }
885 
886 /* Define which registers fit in which classes.
887    This is an initializer for a vector of HARD_REG_SET
888    of length N_REG_CLASSES.  */
889 
890 #define REG_CLASS_CONTENTS				\
891   {{0, 0, 0, 0},	/* NO_REGS */			\
892    {0, 0, 0, 0xf},	/* FPCC_REGS */			\
893    {0xffff, 0, 0, 0},	/* I64_REGS */			\
894    {-1, 0, 0, 0x20},	/* GENERAL_REGS */		\
895    {0, -1, 0, 0},	/* FP_REGS */			\
896    {0, -1, -1, 0},	/* EXTRA_FP_REGS */		\
897    {-1, -1, 0, 0x20},	/* GENERAL_OR_FP_REGS */	\
898    {-1, -1, -1, 0x20},	/* GENERAL_OR_EXTRA_FP_REGS */	\
899    {-1, -1, -1, 0x7f}}	/* ALL_REGS */
900 
901 /* The same information, inverted:
902    Return the class number of the smallest class containing
903    reg number REGNO.  This could be a conditional expression
904    or could index an array.  */
905 
906 extern enum reg_class sparc_regno_reg_class[FIRST_PSEUDO_REGISTER];
907 
908 #define REGNO_REG_CLASS(REGNO) sparc_regno_reg_class[(REGNO)]
909 
910 /* Defines invalid mode changes.  Borrowed from the PA port.
911 
912    SImode loads to floating-point registers are not zero-extended.
913    The definition for LOAD_EXTEND_OP specifies that integer loads
914    narrower than BITS_PER_WORD will be zero-extended.  As a result,
915    we inhibit changes from SImode unless they are to a mode that is
916    identical in size.
917 
918    Likewise for SFmode, since word-mode paradoxical subregs are
919    problematic on big-endian architectures.  */
920 
921 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS)		\
922   (TARGET_ARCH64						\
923    && GET_MODE_SIZE (FROM) == 4					\
924    && GET_MODE_SIZE (TO) != 4					\
925    ? reg_classes_intersect_p (CLASS, FP_REGS) : 0)
926 
927 /* This is the order in which to allocate registers normally.
928 
929    We put %f0-%f7 last among the float registers, so as to make it more
930    likely that a pseudo-register which dies in the float return register
931    area will get allocated to the float return register, thus saving a move
932    instruction at the end of the function.
933 
934    Similarly for integer return value registers.
935 
936    We know in this case that we will not end up with a leaf function.
937 
938    The register allocator is given the global and out registers first
939    because these registers are call clobbered and thus less useful to
940    global register allocation.
941 
942    Next we list the local and in registers.  They are not call clobbered
943    and thus very useful for global register allocation.  We list the input
944    registers before the locals so that it is more likely the incoming
945    arguments received in those registers can just stay there and not be
946    reloaded.  */
947 
948 #define REG_ALLOC_ORDER \
949 { 1, 2, 3, 4, 5, 6, 7,			/* %g1-%g7 */	\
950   13, 12, 11, 10, 9, 8, 		/* %o5-%o0 */	\
951   15,					/* %o7 */	\
952   16, 17, 18, 19, 20, 21, 22, 23,	/* %l0-%l7 */ 	\
953   29, 28, 27, 26, 25, 24, 31,		/* %i5-%i0,%i7 */\
954   40, 41, 42, 43, 44, 45, 46, 47,	/* %f8-%f15 */  \
955   48, 49, 50, 51, 52, 53, 54, 55,	/* %f16-%f23 */ \
956   56, 57, 58, 59, 60, 61, 62, 63,	/* %f24-%f31 */ \
957   64, 65, 66, 67, 68, 69, 70, 71,	/* %f32-%f39 */ \
958   72, 73, 74, 75, 76, 77, 78, 79,	/* %f40-%f47 */ \
959   80, 81, 82, 83, 84, 85, 86, 87,	/* %f48-%f55 */ \
960   88, 89, 90, 91, 92, 93, 94, 95,	/* %f56-%f63 */ \
961   39, 38, 37, 36, 35, 34, 33, 32,	/* %f7-%f0 */   \
962   96, 97, 98, 99,			/* %fcc0-3 */   \
963   100, 0, 14, 30, 101, 102 }		/* %icc, %g0, %o6, %i6, %sfp, %gsr */
964 
965 /* This is the order in which to allocate registers for
966    leaf functions.  If all registers can fit in the global and
967    output registers, then we have the possibility of having a leaf
968    function.
969 
970    The macro actually mentioned the input registers first,
971    because they get renumbered into the output registers once
972    we know really do have a leaf function.
973 
974    To be more precise, this register allocation order is used
975    when %o7 is found to not be clobbered right before register
976    allocation.  Normally, the reason %o7 would be clobbered is
977    due to a call which could not be transformed into a sibling
978    call.
979 
980    As a consequence, it is possible to use the leaf register
981    allocation order and not end up with a leaf function.  We will
982    not get suboptimal register allocation in that case because by
983    definition of being potentially leaf, there were no function
984    calls.  Therefore, allocation order within the local register
985    window is not critical like it is when we do have function calls.  */
986 
987 #define REG_LEAF_ALLOC_ORDER \
988 { 1, 2, 3, 4, 5, 6, 7, 			/* %g1-%g7 */	\
989   29, 28, 27, 26, 25, 24,		/* %i5-%i0 */	\
990   15,					/* %o7 */	\
991   13, 12, 11, 10, 9, 8,			/* %o5-%o0 */	\
992   16, 17, 18, 19, 20, 21, 22, 23,	/* %l0-%l7 */	\
993   40, 41, 42, 43, 44, 45, 46, 47,	/* %f8-%f15 */	\
994   48, 49, 50, 51, 52, 53, 54, 55,	/* %f16-%f23 */	\
995   56, 57, 58, 59, 60, 61, 62, 63,	/* %f24-%f31 */	\
996   64, 65, 66, 67, 68, 69, 70, 71,	/* %f32-%f39 */	\
997   72, 73, 74, 75, 76, 77, 78, 79,	/* %f40-%f47 */	\
998   80, 81, 82, 83, 84, 85, 86, 87,	/* %f48-%f55 */	\
999   88, 89, 90, 91, 92, 93, 94, 95,	/* %f56-%f63 */	\
1000   39, 38, 37, 36, 35, 34, 33, 32,	/* %f7-%f0 */	\
1001   96, 97, 98, 99,			/* %fcc0-3 */	\
1002   100, 0, 14, 30, 31, 101, 102 }	/* %icc, %g0, %o6, %i6, %i7, %sfp, %gsr */
1003 
1004 #define ADJUST_REG_ALLOC_ORDER order_regs_for_local_alloc ()
1005 
1006 extern char sparc_leaf_regs[];
1007 #define LEAF_REGISTERS sparc_leaf_regs
1008 
1009 extern char leaf_reg_remap[];
1010 #define LEAF_REG_REMAP(REGNO) (leaf_reg_remap[REGNO])
1011 
1012 /* The class value for index registers, and the one for base regs.  */
1013 #define INDEX_REG_CLASS GENERAL_REGS
1014 #define BASE_REG_CLASS GENERAL_REGS
1015 
1016 /* Local macro to handle the two v9 classes of FP regs.  */
1017 #define FP_REG_CLASS_P(CLASS) ((CLASS) == FP_REGS || (CLASS) == EXTRA_FP_REGS)
1018 
1019 /* Predicates for 5-bit, 10-bit, 11-bit and 13-bit signed constants.  */
1020 #define SPARC_SIMM5_P(X)  ((unsigned HOST_WIDE_INT) (X) + 0x10 < 0x20)
1021 #define SPARC_SIMM10_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x200 < 0x400)
1022 #define SPARC_SIMM11_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x400 < 0x800)
1023 #define SPARC_SIMM13_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x1000 < 0x2000)
1024 
1025 /* 10- and 11-bit immediates are only used for a few specific insns.
1026    SMALL_INT is used throughout the port so we continue to use it.  */
1027 #define SMALL_INT(X) (SPARC_SIMM13_P (INTVAL (X)))
1028 
1029 /* Predicate for constants that can be loaded with a sethi instruction.
1030    This is the general, 64-bit aware, bitwise version that ensures that
1031    only constants whose representation fits in the mask
1032 
1033      0x00000000fffffc00
1034 
1035    are accepted.  It will reject, for example, negative SImode constants
1036    on 64-bit hosts, so correct handling is to mask the value beforehand
1037    according to the mode of the instruction.  */
1038 #define SPARC_SETHI_P(X) \
1039   (((unsigned HOST_WIDE_INT) (X) \
1040     & ((unsigned HOST_WIDE_INT) 0x3ff - GET_MODE_MASK (SImode) - 1)) == 0)
1041 
1042 /* Version of the above predicate for SImode constants and below.  */
1043 #define SPARC_SETHI32_P(X) \
1044   (SPARC_SETHI_P ((unsigned HOST_WIDE_INT) (X) & GET_MODE_MASK (SImode)))
1045 
1046 /* On SPARC when not VIS3 it is not possible to directly move data
1047    between GENERAL_REGS and FP_REGS.  */
1048 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1049   ((FP_REG_CLASS_P (CLASS1) != FP_REG_CLASS_P (CLASS2)) \
1050    && (! TARGET_VIS3 \
1051        || GET_MODE_SIZE (MODE) > 8 \
1052        || GET_MODE_SIZE (MODE) < 4))
1053 
1054 /* Get_secondary_mem widens its argument to BITS_PER_WORD which loses on v9
1055    because the movsi and movsf patterns don't handle r/f moves.
1056    For v8 we copy the default definition.  */
1057 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1058   (TARGET_ARCH64						\
1059    ? (GET_MODE_BITSIZE (MODE) < 32				\
1060       ? mode_for_size (32, GET_MODE_CLASS (MODE), 0)		\
1061       : MODE)							\
1062    : (GET_MODE_BITSIZE (MODE) < BITS_PER_WORD			\
1063       ? mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0)	\
1064       : MODE))
1065 
1066 /* Return the maximum number of consecutive registers
1067    needed to represent mode MODE in a register of class CLASS.  */
1068 /* On SPARC, this is the size of MODE in words.  */
1069 #define CLASS_MAX_NREGS(CLASS, MODE)	\
1070   (FP_REG_CLASS_P (CLASS) ? (GET_MODE_SIZE (MODE) + 3) / 4 \
1071    : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1072 
1073 /* Stack layout; function entry, exit and calling.  */
1074 
1075 /* Define this if pushing a word on the stack
1076    makes the stack pointer a smaller address.  */
1077 #define STACK_GROWS_DOWNWARD
1078 
1079 /* Define this to nonzero if the nominal address of the stack frame
1080    is at the high-address end of the local variables;
1081    that is, each additional local variable allocated
1082    goes at a more negative offset in the frame.  */
1083 #define FRAME_GROWS_DOWNWARD 1
1084 
1085 /* Offset within stack frame to start allocating local variables at.
1086    If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1087    first local allocated.  Otherwise, it is the offset to the BEGINNING
1088    of the first local allocated.  */
1089 #define STARTING_FRAME_OFFSET 0
1090 
1091 /* Offset of first parameter from the argument pointer register value.
1092    !v9: This is 64 for the ins and locals, plus 4 for the struct-return reg
1093    even if this function isn't going to use it.
1094    v9: This is 128 for the ins and locals.  */
1095 #define FIRST_PARM_OFFSET(FNDECL) \
1096   (TARGET_ARCH64 ? 16 * UNITS_PER_WORD : STRUCT_VALUE_OFFSET + UNITS_PER_WORD)
1097 
1098 /* Offset from the argument pointer register value to the CFA.
1099    This is different from FIRST_PARM_OFFSET because the register window
1100    comes between the CFA and the arguments.  */
1101 #define ARG_POINTER_CFA_OFFSET(FNDECL)  0
1102 
1103 /* When a parameter is passed in a register, stack space is still
1104    allocated for it.
1105    !v9: All 6 possible integer registers have backing store allocated.
1106    v9: Only space for the arguments passed is allocated.  */
1107 /* ??? Ideally, we'd use zero here (as the minimum), but zero has special
1108    meaning to the backend.  Further, we need to be able to detect if a
1109    varargs/unprototyped function is called, as they may want to spill more
1110    registers than we've provided space.  Ugly, ugly.  So for now we retain
1111    all 6 slots even for v9.  */
1112 #define REG_PARM_STACK_SPACE(DECL) (6 * UNITS_PER_WORD)
1113 
1114 /* Definitions for register elimination.  */
1115 
1116 #define ELIMINABLE_REGS \
1117   {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1118    { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM} }
1119 
1120 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) 		\
1121   do								\
1122     {								\
1123       (OFFSET) = sparc_initial_elimination_offset ((TO));	\
1124     }								\
1125   while (0)
1126 
1127 /* Keep the stack pointer constant throughout the function.
1128    This is both an optimization and a necessity: longjmp
1129    doesn't behave itself when the stack pointer moves within
1130    the function!  */
1131 #define ACCUMULATE_OUTGOING_ARGS 1
1132 
1133 /* Define this macro if the target machine has "register windows".  This
1134    C expression returns the register number as seen by the called function
1135    corresponding to register number OUT as seen by the calling function.
1136    Return OUT if register number OUT is not an outbound register.  */
1137 
1138 #define INCOMING_REGNO(OUT) \
1139  ((TARGET_FLAT || (OUT) < 8 || (OUT) > 15) ? (OUT) : (OUT) + 16)
1140 
1141 /* Define this macro if the target machine has "register windows".  This
1142    C expression returns the register number as seen by the calling function
1143    corresponding to register number IN as seen by the called function.
1144    Return IN if register number IN is not an inbound register.  */
1145 
1146 #define OUTGOING_REGNO(IN) \
1147  ((TARGET_FLAT || (IN) < 24 || (IN) > 31) ? (IN) : (IN) - 16)
1148 
1149 /* Define this macro if the target machine has register windows.  This
1150    C expression returns true if the register is call-saved but is in the
1151    register window.  */
1152 
1153 #define LOCAL_REGNO(REGNO) \
1154   (!TARGET_FLAT && (REGNO) >= 16 && (REGNO) <= 31)
1155 
1156 /* Define the size of space to allocate for the return value of an
1157    untyped_call.  */
1158 
1159 #define APPLY_RESULT_SIZE (TARGET_ARCH64 ? 24 : 16)
1160 
1161 /* 1 if N is a possible register number for function argument passing.
1162    On SPARC, these are the "output" registers.  v9 also uses %f0-%f31.  */
1163 
1164 #define FUNCTION_ARG_REGNO_P(N) \
1165 (TARGET_ARCH64 \
1166  ? (((N) >= 8 && (N) <= 13) || ((N) >= 32 && (N) <= 63)) \
1167  : ((N) >= 8 && (N) <= 13))
1168 
1169 /* Define a data type for recording info about an argument list
1170    during the scan of that argument list.  This data type should
1171    hold all necessary information about the function itself
1172    and about the args processed so far, enough to enable macros
1173    such as FUNCTION_ARG to determine where the next arg should go.
1174 
1175    On SPARC (!v9), this is a single integer, which is a number of words
1176    of arguments scanned so far (including the invisible argument,
1177    if any, which holds the structure-value-address).
1178    Thus 7 or more means all following args should go on the stack.
1179 
1180    For v9, we also need to know whether a prototype is present.  */
1181 
1182 struct sparc_args {
1183   int words;       /* number of words passed so far */
1184   int prototype_p; /* nonzero if a prototype is present */
1185   int libcall_p;   /* nonzero if a library call */
1186 };
1187 #define CUMULATIVE_ARGS struct sparc_args
1188 
1189 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1190    for a call to a function whose data type is FNTYPE.
1191    For a library call, FNTYPE is 0.  */
1192 
1193 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1194 init_cumulative_args (& (CUM), (FNTYPE), (LIBNAME), (FNDECL));
1195 
1196 /* If defined, a C expression which determines whether, and in which direction,
1197    to pad out an argument with extra space.  The value should be of type
1198    `enum direction': either `upward' to pad above the argument,
1199    `downward' to pad below, or `none' to inhibit padding.  */
1200 
1201 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
1202 function_arg_padding ((MODE), (TYPE))
1203 
1204 
1205 /* Generate the special assembly code needed to tell the assembler whatever
1206    it might need to know about the return value of a function.
1207 
1208    For SPARC assemblers, we need to output a .proc pseudo-op which conveys
1209    information to the assembler relating to peephole optimization (done in
1210    the assembler).  */
1211 
1212 #define ASM_DECLARE_RESULT(FILE, RESULT) \
1213   fprintf ((FILE), "\t.proc\t0%lo\n", sparc_type_code (TREE_TYPE (RESULT)))
1214 
1215 /* Output the special assembly code needed to tell the assembler some
1216    register is used as global register variable.
1217 
1218    SPARC 64bit psABI declares registers %g2 and %g3 as application
1219    registers and %g6 and %g7 as OS registers.  Any object using them
1220    should declare (for %g2/%g3 has to, for %g6/%g7 can) that it uses them
1221    and how they are used (scratch or some global variable).
1222    Linker will then refuse to link together objects which use those
1223    registers incompatibly.
1224 
1225    Unless the registers are used for scratch, two different global
1226    registers cannot be declared to the same name, so in the unlikely
1227    case of a global register variable occupying more than one register
1228    we prefix the second and following registers with .gnu.part1. etc.  */
1229 
1230 extern GTY(()) char sparc_hard_reg_printed[8];
1231 
1232 #ifdef HAVE_AS_REGISTER_PSEUDO_OP
1233 #define ASM_DECLARE_REGISTER_GLOBAL(FILE, DECL, REGNO, NAME)		\
1234 do {									\
1235   if (TARGET_ARCH64)							\
1236     {									\
1237       int end = HARD_REGNO_NREGS ((REGNO), DECL_MODE (decl)) + (REGNO); \
1238       int reg;								\
1239       for (reg = (REGNO); reg < 8 && reg < end; reg++)			\
1240 	if ((reg & ~1) == 2 || (reg & ~1) == 6)				\
1241 	  {								\
1242 	    if (reg == (REGNO))						\
1243 	      fprintf ((FILE), "\t.register\t%%g%d, %s\n", reg, (NAME)); \
1244 	    else							\
1245 	      fprintf ((FILE), "\t.register\t%%g%d, .gnu.part%d.%s\n",	\
1246 		       reg, reg - (REGNO), (NAME));			\
1247 	    sparc_hard_reg_printed[reg] = 1;				\
1248 	  }								\
1249     }									\
1250 } while (0)
1251 #endif
1252 
1253 
1254 /* Emit rtl for profiling.  */
1255 #define PROFILE_HOOK(LABEL)   sparc_profile_hook (LABEL)
1256 
1257 /* All the work done in PROFILE_HOOK, but still required.  */
1258 #define FUNCTION_PROFILER(FILE, LABELNO) do { } while (0)
1259 
1260 /* Set the name of the mcount function for the system.  */
1261 #define MCOUNT_FUNCTION "*mcount"
1262 
1263 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1264    the stack pointer does not matter.  The value is tested only in
1265    functions that have frame pointers.  */
1266 #define EXIT_IGNORE_STACK 1
1267 
1268 /* Length in units of the trampoline for entering a nested function.  */
1269 #define TRAMPOLINE_SIZE (TARGET_ARCH64 ? 32 : 16)
1270 
1271 /* Alignment required for trampolines, in bits.  */
1272 #define TRAMPOLINE_ALIGNMENT 128
1273 
1274 /* Generate RTL to flush the register windows so as to make arbitrary frames
1275    available.  */
1276 #define SETUP_FRAME_ADDRESSES()			\
1277   do {						\
1278     if (!TARGET_FLAT)				\
1279       emit_insn (gen_flush_register_windows ());\
1280   } while (0)
1281 
1282 /* Given an rtx for the address of a frame,
1283    return an rtx for the address of the word in the frame
1284    that holds the dynamic chain--the previous frame's address.  */
1285 #define DYNAMIC_CHAIN_ADDRESS(frame)	\
1286   plus_constant (Pmode, frame, 14 * UNITS_PER_WORD + SPARC_STACK_BIAS)
1287 
1288 /* Given an rtx for the frame pointer,
1289    return an rtx for the address of the frame.  */
1290 #define FRAME_ADDR_RTX(frame) plus_constant (Pmode, frame, SPARC_STACK_BIAS)
1291 
1292 /* The return address isn't on the stack, it is in a register, so we can't
1293    access it from the current frame pointer.  We can access it from the
1294    previous frame pointer though by reading a value from the register window
1295    save area.  */
1296 #define RETURN_ADDR_IN_PREVIOUS_FRAME 1
1297 
1298 /* This is the offset of the return address to the true next instruction to be
1299    executed for the current function.  */
1300 #define RETURN_ADDR_OFFSET \
1301   (8 + 4 * (! TARGET_ARCH64 && cfun->returns_struct))
1302 
1303 /* The current return address is in %i7.  The return address of anything
1304    farther back is in the register window save area at [%fp+60].  */
1305 /* ??? This ignores the fact that the actual return address is +8 for normal
1306    returns, and +12 for structure returns.  */
1307 #define RETURN_ADDR_REGNUM 31
1308 #define RETURN_ADDR_RTX(count, frame)		\
1309   ((count == -1)				\
1310    ? gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM)			\
1311    : gen_rtx_MEM (Pmode,			\
1312 		  memory_address (Pmode, plus_constant (Pmode, frame, \
1313 							15 * UNITS_PER_WORD \
1314 							+ SPARC_STACK_BIAS))))
1315 
1316 /* Before the prologue, the return address is %o7 + 8.  OK, sometimes it's
1317    +12, but always using +8 is close enough for frame unwind purposes.
1318    Actually, just using %o7 is close enough for unwinding, but %o7+8
1319    is something you can return to.  */
1320 #define INCOMING_RETURN_ADDR_REGNUM 15
1321 #define INCOMING_RETURN_ADDR_RTX \
1322   plus_constant (word_mode, \
1323 		 gen_rtx_REG (word_mode, INCOMING_RETURN_ADDR_REGNUM), 8)
1324 #define DWARF_FRAME_RETURN_COLUMN \
1325   DWARF_FRAME_REGNUM (INCOMING_RETURN_ADDR_REGNUM)
1326 
1327 /* The offset from the incoming value of %sp to the top of the stack frame
1328    for the current function.  On sparc64, we have to account for the stack
1329    bias if present.  */
1330 #define INCOMING_FRAME_SP_OFFSET SPARC_STACK_BIAS
1331 
1332 /* Describe how we implement __builtin_eh_return.  */
1333 #define EH_RETURN_REGNUM 1
1334 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 24 : INVALID_REGNUM)
1335 #define EH_RETURN_STACKADJ_RTX	gen_rtx_REG (Pmode, EH_RETURN_REGNUM)
1336 
1337 /* Define registers used by the epilogue and return instruction.  */
1338 #define EPILOGUE_USES(REGNO)					\
1339   ((REGNO) == RETURN_ADDR_REGNUM				\
1340    || (TARGET_FLAT						\
1341        && epilogue_completed					\
1342        && (REGNO) == INCOMING_RETURN_ADDR_REGNUM)		\
1343    || (crtl->calls_eh_return && (REGNO) == EH_RETURN_REGNUM))
1344 
1345 /* Select a format to encode pointers in exception handling data.  CODE
1346    is 0 for data, 1 for code labels, 2 for function pointers.  GLOBAL is
1347    true if the symbol may be affected by dynamic relocations.
1348 
1349    If assembler and linker properly support .uaword %r_disp32(foo),
1350    then use PC relative 32-bit relocations instead of absolute relocs
1351    for shared libraries.  On sparc64, use pc relative 32-bit relocs even
1352    for binaries, to save memory.
1353 
1354    binutils 2.12 would emit a R_SPARC_DISP32 dynamic relocation if the
1355    symbol %r_disp32() is against was not local, but .hidden.  In that
1356    case, we have to use DW_EH_PE_absptr for pic personality.  */
1357 #ifdef HAVE_AS_SPARC_UA_PCREL
1358 #ifdef HAVE_AS_SPARC_UA_PCREL_HIDDEN
1359 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL)			\
1360   (flag_pic								\
1361    ? (GLOBAL ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\
1362    : ((TARGET_ARCH64 && ! GLOBAL)					\
1363       ? (DW_EH_PE_pcrel | DW_EH_PE_sdata4)				\
1364       : DW_EH_PE_absptr))
1365 #else
1366 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL)			\
1367   (flag_pic								\
1368    ? (GLOBAL ? DW_EH_PE_absptr : (DW_EH_PE_pcrel | DW_EH_PE_sdata4))	\
1369    : ((TARGET_ARCH64 && ! GLOBAL)					\
1370       ? (DW_EH_PE_pcrel | DW_EH_PE_sdata4)				\
1371       : DW_EH_PE_absptr))
1372 #endif
1373 
1374 /* Emit a PC-relative relocation.  */
1375 #define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL)	\
1376   do {							\
1377     fputs (integer_asm_op (SIZE, FALSE), FILE);		\
1378     fprintf (FILE, "%%r_disp%d(", SIZE * 8);		\
1379     assemble_name (FILE, LABEL);			\
1380     fputc (')', FILE);					\
1381   } while (0)
1382 #endif
1383 
1384 /* Addressing modes, and classification of registers for them.  */
1385 
1386 /* Macros to check register numbers against specific register classes.  */
1387 
1388 /* These assume that REGNO is a hard or pseudo reg number.
1389    They give nonzero only if REGNO is a hard reg of the suitable class
1390    or a pseudo reg currently allocated to a suitable hard reg.
1391    Since they use reg_renumber, they are safe only once reg_renumber
1392    has been allocated, which happens in reginfo.c during register
1393    allocation.  */
1394 
1395 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1396 (SPARC_INT_REG_P (REGNO) || SPARC_INT_REG_P (reg_renumber[REGNO]) \
1397  || (REGNO) == FRAME_POINTER_REGNUM				  \
1398  || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)
1399 
1400 #define REGNO_OK_FOR_BASE_P(REGNO)  REGNO_OK_FOR_INDEX_P (REGNO)
1401 
1402 #define REGNO_OK_FOR_FP_P(REGNO) \
1403   (((unsigned) (REGNO) - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)) \
1404    || ((unsigned) reg_renumber[REGNO] - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)))
1405 
1406 #define REGNO_OK_FOR_CCFP_P(REGNO) \
1407  (TARGET_V9 \
1408   && (((unsigned) (REGNO) - 96 < (unsigned)4) \
1409       || ((unsigned) reg_renumber[REGNO] - 96 < (unsigned)4)))
1410 
1411 /* Maximum number of registers that can appear in a valid memory address.  */
1412 
1413 #define MAX_REGS_PER_ADDRESS 2
1414 
1415 /* Recognize any constant value that is a valid address.
1416    When PIC, we do not accept an address that would require a scratch reg
1417    to load into a register.  */
1418 
1419 #define CONSTANT_ADDRESS_P(X) constant_address_p (X)
1420 
1421 /* Define this, so that when PIC, reload won't try to reload invalid
1422    addresses which require two reload registers.  */
1423 
1424 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
1425 
1426 /* Should gcc use [%reg+%lo(xx)+offset] addresses?  */
1427 
1428 #ifdef HAVE_AS_OFFSETABLE_LO10
1429 #define USE_AS_OFFSETABLE_LO10 1
1430 #else
1431 #define USE_AS_OFFSETABLE_LO10 0
1432 #endif
1433 
1434 /* Try a machine-dependent way of reloading an illegitimate address
1435    operand.  If we find one, push the reload and jump to WIN.  This
1436    macro is used in only one place: `find_reloads_address' in reload.c.  */
1437 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN)	   \
1438 do {									   \
1439   int win;								   \
1440   (X) = sparc_legitimize_reload_address ((X), (MODE), (OPNUM),		   \
1441 					 (int)(TYPE), (IND_LEVELS), &win); \
1442   if (win)								   \
1443     goto WIN;								   \
1444 } while (0)
1445 
1446 /* Specify the machine mode that this machine uses
1447    for the index in the tablejump instruction.  */
1448 /* If we ever implement any of the full models (such as CM_FULLANY),
1449    this has to be DImode in that case */
1450 #ifdef HAVE_GAS_SUBSECTION_ORDERING
1451 #define CASE_VECTOR_MODE \
1452 (! TARGET_PTR64 ? SImode : flag_pic ? SImode : TARGET_CM_MEDLOW ? SImode : DImode)
1453 #else
1454 /* If assembler does not have working .subsection -1, we use DImode for pic, as otherwise
1455    we have to sign extend which slows things down.  */
1456 #define CASE_VECTOR_MODE \
1457 (! TARGET_PTR64 ? SImode : flag_pic ? DImode : TARGET_CM_MEDLOW ? SImode : DImode)
1458 #endif
1459 
1460 /* Define this as 1 if `char' should by default be signed; else as 0.  */
1461 #define DEFAULT_SIGNED_CHAR 1
1462 
1463 /* Max number of bytes we can move from memory to memory
1464    in one reasonably fast instruction.  */
1465 #define MOVE_MAX 8
1466 
1467 /* If a memory-to-memory move would take MOVE_RATIO or more simple
1468    move-instruction pairs, we will do a movmem or libcall instead.  */
1469 
1470 #define MOVE_RATIO(speed) ((speed) ? 8 : 3)
1471 
1472 /* Define if operations between registers always perform the operation
1473    on the full register even if a narrower mode is specified.  */
1474 #define WORD_REGISTER_OPERATIONS
1475 
1476 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1477    will either zero-extend or sign-extend.  The value of this macro should
1478    be the code that says which one of the two operations is implicitly
1479    done, UNKNOWN if none.  */
1480 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1481 
1482 /* Nonzero if access to memory by bytes is slow and undesirable.
1483    For RISC chips, it means that access to memory by bytes is no
1484    better than access by words when possible, so grab a whole word
1485    and maybe make use of that.  */
1486 #define SLOW_BYTE_ACCESS 1
1487 
1488 /* Define this to be nonzero if shift instructions ignore all but the low-order
1489    few bits.  */
1490 #define SHIFT_COUNT_TRUNCATED 1
1491 
1492 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1493    is done just by pretending it is already truncated.  */
1494 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1495 
1496 /* For SImode, we make sure the top 32-bits of the register are clear and
1497    then we subtract 32 from the lzd instruction result.  */
1498 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1499   ((VALUE) = ((MODE) == SImode ? 32 : 64), 1)
1500 
1501 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1502    return the mode to be used for the comparison.  For floating-point,
1503    CCFP[E]mode is used.  CC_NOOVmode should be used when the first operand
1504    is a PLUS, MINUS, NEG, or ASHIFT.  CCmode should be used when no special
1505    processing is needed.  */
1506 #define SELECT_CC_MODE(OP,X,Y)  select_cc_mode ((OP), (X), (Y))
1507 
1508 /* Return nonzero if MODE implies a floating point inequality can be
1509    reversed.  For SPARC this is always true because we have a full
1510    compliment of ordered and unordered comparisons, but until generic
1511    code knows how to reverse it correctly we keep the old definition.  */
1512 #define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode && (MODE) != CCFPmode)
1513 
1514 /* A function address in a call instruction for indexing purposes.  */
1515 #define FUNCTION_MODE Pmode
1516 
1517 /* Define this if addresses of constant functions
1518    shouldn't be put through pseudo regs where they can be cse'd.
1519    Desirable on machines where ordinary constants are expensive
1520    but a CALL with constant address is cheap.  */
1521 #define NO_FUNCTION_CSE
1522 
1523 /* The _Q_* comparison libcalls return booleans.  */
1524 #define FLOAT_LIB_COMPARE_RETURNS_BOOL(MODE, COMPARISON) ((MODE) == TFmode)
1525 
1526 /* Assume by default that the _Qp_* 64-bit libcalls are implemented such
1527    that the inputs are fully consumed before the output memory is clobbered.  */
1528 
1529 #define TARGET_BUGGY_QP_LIB	0
1530 
1531 /* Assume by default that we do not have the Solaris-specific conversion
1532    routines nor 64-bit integer multiply and divide routines.  */
1533 
1534 #define SUN_CONVERSION_LIBFUNCS 	0
1535 #define DITF_CONVERSION_LIBFUNCS	0
1536 #define SUN_INTEGER_MULTIPLY_64 	0
1537 
1538 /* Provide the cost of a branch.  For pre-v9 processors we use
1539    a value of 3 to take into account the potential annulling of
1540    the delay slot (which ends up being a bubble in the pipeline slot)
1541    plus a cycle to take into consideration the instruction cache
1542    effects.
1543 
1544    On v9 and later, which have branch prediction facilities, we set
1545    it to the depth of the pipeline as that is the cost of a
1546    mispredicted branch.
1547 
1548    On Niagara, normal branches insert 3 bubbles into the pipe
1549    and annulled branches insert 4 bubbles.
1550 
1551    On Niagara-2 and Niagara-3, a not-taken branch costs 1 cycle whereas
1552    a taken branch costs 6 cycles.  */
1553 
1554 #define BRANCH_COST(speed_p, predictable_p) \
1555 	((sparc_cpu == PROCESSOR_V9 \
1556 	  || sparc_cpu == PROCESSOR_ULTRASPARC) \
1557 	 ? 7 \
1558          : (sparc_cpu == PROCESSOR_ULTRASPARC3 \
1559             ? 9 \
1560 	 : (sparc_cpu == PROCESSOR_NIAGARA \
1561 	    ? 4 \
1562 	 : ((sparc_cpu == PROCESSOR_NIAGARA2 \
1563 	     || sparc_cpu == PROCESSOR_NIAGARA3) \
1564 	    ? 5 \
1565 	 : 3))))
1566 
1567 /* Control the assembler format that we output.  */
1568 
1569 /* A C string constant describing how to begin a comment in the target
1570    assembler language.  The compiler assumes that the comment will end at
1571    the end of the line.  */
1572 
1573 #define ASM_COMMENT_START "!"
1574 
1575 /* Output to assembler file text saying following lines
1576    may contain character constants, extra white space, comments, etc.  */
1577 
1578 #define ASM_APP_ON ""
1579 
1580 /* Output to assembler file text saying following lines
1581    no longer contain unusual constructs.  */
1582 
1583 #define ASM_APP_OFF ""
1584 
1585 /* How to refer to registers in assembler output.
1586    This sequence is indexed by compiler's hard-register-number (see above).  */
1587 
1588 #define REGISTER_NAMES \
1589 {"%g0", "%g1", "%g2", "%g3", "%g4", "%g5", "%g6", "%g7",		\
1590  "%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%sp", "%o7",		\
1591  "%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7",		\
1592  "%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%fp", "%i7",		\
1593  "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7",		\
1594  "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15",		\
1595  "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23",	\
1596  "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31",	\
1597  "%f32", "%f33", "%f34", "%f35", "%f36", "%f37", "%f38", "%f39",	\
1598  "%f40", "%f41", "%f42", "%f43", "%f44", "%f45", "%f46", "%f47",	\
1599  "%f48", "%f49", "%f50", "%f51", "%f52", "%f53", "%f54", "%f55",	\
1600  "%f56", "%f57", "%f58", "%f59", "%f60", "%f61", "%f62", "%f63",	\
1601  "%fcc0", "%fcc1", "%fcc2", "%fcc3", "%icc", "%sfp", "%gsr" }
1602 
1603 /* Define additional names for use in asm clobbers and asm declarations.  */
1604 
1605 #define ADDITIONAL_REGISTER_NAMES \
1606 {{"ccr", SPARC_ICC_REG}, {"cc", SPARC_ICC_REG}}
1607 
1608 /* On Sun 4, this limit is 2048.  We use 1000 to be safe, since the length
1609    can run past this up to a continuation point.  Once we used 1500, but
1610    a single entry in C++ can run more than 500 bytes, due to the length of
1611    mangled symbol names.  dbxout.c should really be fixed to do
1612    continuations when they are actually needed instead of trying to
1613    guess...  */
1614 #define DBX_CONTIN_LENGTH 1000
1615 
1616 /* This is how to output a command to make the user-level label named NAME
1617    defined for reference from other files.  */
1618 
1619 /* Globalizing directive for a label.  */
1620 #define GLOBAL_ASM_OP "\t.global "
1621 
1622 /* The prefix to add to user-visible assembler symbols.  */
1623 
1624 #define USER_LABEL_PREFIX "_"
1625 
1626 /* This is how to store into the string LABEL
1627    the symbol_ref name of an internal numbered label where
1628    PREFIX is the class of label and NUM is the number within the class.
1629    This is suitable for output with `assemble_name'.  */
1630 
1631 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM)	\
1632   sprintf ((LABEL), "*%s%ld", (PREFIX), (long)(NUM))
1633 
1634 /* This is how we hook in and defer the case-vector until the end of
1635    the function.  */
1636 #define ASM_OUTPUT_ADDR_VEC(LAB,VEC) \
1637   sparc_defer_case_vector ((LAB),(VEC), 0)
1638 
1639 #define ASM_OUTPUT_ADDR_DIFF_VEC(LAB,VEC) \
1640   sparc_defer_case_vector ((LAB),(VEC), 1)
1641 
1642 /* This is how to output an element of a case-vector that is absolute.  */
1643 
1644 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)  \
1645 do {									\
1646   char label[30];							\
1647   ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE);			\
1648   if (CASE_VECTOR_MODE == SImode)					\
1649     fprintf (FILE, "\t.word\t");					\
1650   else									\
1651     fprintf (FILE, "\t.xword\t");					\
1652   assemble_name (FILE, label);						\
1653   fputc ('\n', FILE);							\
1654 } while (0)
1655 
1656 /* This is how to output an element of a case-vector that is relative.
1657    (SPARC uses such vectors only when generating PIC.)  */
1658 
1659 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL)		\
1660 do {									\
1661   char label[30];							\
1662   ASM_GENERATE_INTERNAL_LABEL (label, "L", (VALUE));			\
1663   if (CASE_VECTOR_MODE == SImode)					\
1664     fprintf (FILE, "\t.word\t");					\
1665   else									\
1666     fprintf (FILE, "\t.xword\t");					\
1667   assemble_name (FILE, label);						\
1668   ASM_GENERATE_INTERNAL_LABEL (label, "L", (REL));			\
1669   fputc ('-', FILE);							\
1670   assemble_name (FILE, label);						\
1671   fputc ('\n', FILE);							\
1672 } while (0)
1673 
1674 /* This is what to output before and after case-vector (both
1675    relative and absolute).  If .subsection -1 works, we put case-vectors
1676    at the beginning of the current section.  */
1677 
1678 #ifdef HAVE_GAS_SUBSECTION_ORDERING
1679 
1680 #define ASM_OUTPUT_ADDR_VEC_START(FILE)					\
1681   fprintf(FILE, "\t.subsection\t-1\n")
1682 
1683 #define ASM_OUTPUT_ADDR_VEC_END(FILE)					\
1684   fprintf(FILE, "\t.previous\n")
1685 
1686 #endif
1687 
1688 /* This is how to output an assembler line
1689    that says to advance the location counter
1690    to a multiple of 2**LOG bytes.  */
1691 
1692 #define ASM_OUTPUT_ALIGN(FILE,LOG)	\
1693   if ((LOG) != 0)			\
1694     fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
1695 
1696 #define ASM_OUTPUT_SKIP(FILE,SIZE)  \
1697   fprintf (FILE, "\t.skip "HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
1698 
1699 /* This says how to output an assembler line
1700    to define a global common symbol.  */
1701 
1702 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED)  \
1703 ( fputs ("\t.common ", (FILE)),		\
1704   assemble_name ((FILE), (NAME)),		\
1705   fprintf ((FILE), ","HOST_WIDE_INT_PRINT_UNSIGNED",\"bss\"\n", (SIZE)))
1706 
1707 /* This says how to output an assembler line to define a local common
1708    symbol.  */
1709 
1710 #define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGNED)		\
1711 ( fputs ("\t.reserve ", (FILE)),					\
1712   assemble_name ((FILE), (NAME)),					\
1713   fprintf ((FILE), ","HOST_WIDE_INT_PRINT_UNSIGNED",\"bss\",%u\n",	\
1714 	   (SIZE), ((ALIGNED) / BITS_PER_UNIT)))
1715 
1716 /* A C statement (sans semicolon) to output to the stdio stream
1717    FILE the assembler definition of uninitialized global DECL named
1718    NAME whose size is SIZE bytes and alignment is ALIGN bytes.
1719    Try to use asm_output_aligned_bss to implement this macro.  */
1720 
1721 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN)	\
1722   do {								\
1723     ASM_OUTPUT_ALIGNED_LOCAL (FILE, NAME, SIZE, ALIGN);		\
1724   } while (0)
1725 
1726 /* Output #ident as a .ident.  */
1727 
1728 #undef TARGET_ASM_OUTPUT_IDENT
1729 #define TARGET_ASM_OUTPUT_IDENT default_asm_output_ident_directive
1730 
1731 /* Prettify the assembly.  */
1732 
1733 extern int sparc_indent_opcode;
1734 
1735 #define ASM_OUTPUT_OPCODE(FILE, PTR)	\
1736   do {					\
1737     if (sparc_indent_opcode)		\
1738       {					\
1739 	putc (' ', FILE);		\
1740 	sparc_indent_opcode = 0;	\
1741       }					\
1742   } while (0)
1743 
1744 /* TLS support defaulting to original Sun flavor.  GNU extensions
1745    must be activated in separate configuration files.  */
1746 #ifdef HAVE_AS_TLS
1747 #define TARGET_TLS 1
1748 #else
1749 #define TARGET_TLS 0
1750 #endif
1751 
1752 #define TARGET_SUN_TLS TARGET_TLS
1753 #define TARGET_GNU_TLS 0
1754 
1755 #ifdef HAVE_AS_FMAF_HPC_VIS3
1756 #define AS_NIAGARA3_FLAG "d"
1757 #else
1758 #define AS_NIAGARA3_FLAG "b"
1759 #endif
1760 
1761 #ifdef HAVE_AS_SPARC4
1762 #define AS_NIAGARA4_FLAG "-xarch=sparc4"
1763 #else
1764 #define AS_NIAGARA4_FLAG "-Av9" AS_NIAGARA3_FLAG
1765 #endif
1766 
1767 #ifdef HAVE_AS_LEON
1768 #define AS_LEON_FLAG "-Aleon"
1769 #define AS_LEONV7_FLAG "-Aleon"
1770 #else
1771 #define AS_LEON_FLAG "-Av8"
1772 #define AS_LEONV7_FLAG "-Av7"
1773 #endif
1774 
1775 /* We use gcc _mcount for profiling.  */
1776 #define NO_PROFILE_COUNTERS 0
1777 
1778 /* Debug support */
1779 #define MASK_DEBUG_OPTIONS		0x01	/* debug option handling */
1780 #define MASK_DEBUG_ALL			MASK_DEBUG_OPTIONS
1781 
1782 #define TARGET_DEBUG_OPTIONS		(sparc_debug & MASK_DEBUG_OPTIONS)
1783 
1784 /* By default, use the weakest memory model for the cpu.  */
1785 #ifndef SUBTARGET_DEFAULT_MEMORY_MODEL
1786 #define SUBTARGET_DEFAULT_MEMORY_MODEL	SMM_DEFAULT
1787 #endif
1788 
1789 /* Define this to 1 if the FE_EXCEPT values defined in fenv.h start at 1.  */
1790 #define SPARC_LOW_FE_EXCEPT_VALUES 0
1791