xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/config/sparc/sparc.h (revision 8feb0f0b7eaff0608f8350bbfa3098827b4bb91b)
1 /* Definitions of target machine for GNU compiler, for Sun SPARC.
2    Copyright (C) 1987-2020 Free Software Foundation, Inc.
3    Contributed by Michael Tiemann (tiemann@cygnus.com).
4    64-bit SPARC-V9 support by Michael Tiemann, Jim Wilson, and Doug Evans,
5    at Cygnus Support.
6 
7 This file is part of GCC.
8 
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
12 any later version.
13 
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 GNU General Public License for more details.
18 
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3.  If not see
21 <http://www.gnu.org/licenses/>.  */
22 
23 #include "config/vxworks-dummy.h"
24 
25 /* Note that some other tm.h files include this one and then override
26    whatever definitions are necessary.  */
27 
28 #define TARGET_CPU_CPP_BUILTINS() sparc_target_macros ()
29 
30 /* Target CPU versions for D.  */
31 #define TARGET_D_CPU_VERSIONS sparc_d_target_versions
32 
33 /* Specify this in a cover file to provide bi-architecture (32/64) support.  */
34 /* #define SPARC_BI_ARCH */
35 
36 /* Macro used later in this file to determine default architecture.  */
37 #define DEFAULT_ARCH32_P ((TARGET_DEFAULT & MASK_64BIT) == 0)
38 
39 /* TARGET_ARCH{32,64} are the main macros to decide which of the two
40    architectures to compile for.  We allow targets to choose compile time or
41    runtime selection.  */
42 #ifdef IN_LIBGCC2
43 #if defined(__sparcv9) || defined(__arch64__)
44 #define TARGET_ARCH32 0
45 #else
46 #define TARGET_ARCH32 1
47 #endif /* sparc64 */
48 #else
49 #ifdef SPARC_BI_ARCH
50 #define TARGET_ARCH32 (!TARGET_64BIT)
51 #else
52 #define TARGET_ARCH32 (DEFAULT_ARCH32_P)
53 #endif /* SPARC_BI_ARCH */
54 #endif /* IN_LIBGCC2 */
55 #define TARGET_ARCH64 (!TARGET_ARCH32)
56 
57 /* Code model selection in 64-bit environment.
58 
59    The machine mode used for addresses is 32-bit wide:
60 
61    TARGET_CM_32:     32-bit address space.
62                      It is the code model used when generating 32-bit code.
63 
64    The machine mode used for addresses is 64-bit wide:
65 
66    TARGET_CM_MEDLOW: 32-bit address space.
67                      The executable must be in the low 32 bits of memory.
68                      This avoids generating %uhi and %ulo terms.  Programs
69                      can be statically or dynamically linked.
70 
71    TARGET_CM_MEDMID: 44-bit address space.
72                      The executable must be in the low 44 bits of memory,
73                      and the %[hml]44 terms are used.  The text and data
74                      segments have a maximum size of 2GB (31-bit span).
75                      The maximum offset from any instruction to the label
76                      _GLOBAL_OFFSET_TABLE_ is 2GB (31-bit span).
77 
78    TARGET_CM_MEDANY: 64-bit address space.
79                      The text and data segments have a maximum size of 2GB
80                      (31-bit span) and may be located anywhere in memory.
81                      The maximum offset from any instruction to the label
82                      _GLOBAL_OFFSET_TABLE_ is 2GB (31-bit span).
83 
84    TARGET_CM_EMBMEDANY: 64-bit address space.
85                      The text and data segments have a maximum size of 2GB
86                      (31-bit span) and may be located anywhere in memory.
87                      The global register %g4 contains the start address of
88                      the data segment.  Programs are statically linked and
89                      PIC is not supported.
90 
91    Different code models are not supported in 32-bit environment.  */
92 
93 #define TARGET_CM_MEDLOW    (sparc_code_model == CM_MEDLOW)
94 #define TARGET_CM_MEDMID    (sparc_code_model == CM_MEDMID)
95 #define TARGET_CM_MEDANY    (sparc_code_model == CM_MEDANY)
96 #define TARGET_CM_EMBMEDANY (sparc_code_model == CM_EMBMEDANY)
97 
98 /* Default code model to be overridden in 64-bit environment.  */
99 #define SPARC_DEFAULT_CMODEL CM_32
100 
101 /* Do not use the .note.GNU-stack convention by default.  */
102 #define NEED_INDICATE_EXEC_STACK 0
103 
104 /* This is call-clobbered in the normal ABI, but is reserved in the
105    home grown (aka upward compatible) embedded ABI.  */
106 #define EMBMEDANY_BASE_REG "%g4"
107 
108 /* Values of TARGET_CPU_DEFAULT, set via -D in the Makefile,
109    and specified by the user via --with-cpu=foo.
110    This specifies the cpu implementation, not the architecture size.  */
111 /* Note that TARGET_CPU_v9 is assumed to start the list of 64-bit
112    capable cpu's.  */
113 #define TARGET_CPU_sparc	0
114 #define TARGET_CPU_v7		0	/* alias */
115 #define TARGET_CPU_cypress	0       /* alias */
116 #define TARGET_CPU_v8		1	/* generic v8 implementation */
117 #define TARGET_CPU_supersparc	2
118 #define TARGET_CPU_hypersparc	3
119 #define TARGET_CPU_leon		4
120 #define TARGET_CPU_leon3	5
121 #define TARGET_CPU_leon3v7	6
122 #define TARGET_CPU_leon5	7
123 #define TARGET_CPU_sparclite	8
124 #define TARGET_CPU_f930		8       /* alias */
125 #define TARGET_CPU_f934		8       /* alias */
126 #define TARGET_CPU_sparclite86x	9
127 #define TARGET_CPU_sparclet	10
128 #define TARGET_CPU_tsc701	10       /* alias */
129 #define TARGET_CPU_v9		11	/* generic v9 implementation */
130 #define TARGET_CPU_sparcv9	11	/* alias */
131 #define TARGET_CPU_sparc64	11	/* alias */
132 #define TARGET_CPU_ultrasparc	12
133 #define TARGET_CPU_ultrasparc3	13
134 #define TARGET_CPU_niagara	14
135 #define TARGET_CPU_niagara2	15
136 #define TARGET_CPU_niagara3	16
137 #define TARGET_CPU_niagara4	17
138 #define TARGET_CPU_niagara7	19
139 #define TARGET_CPU_m8		20
140 
141 #if TARGET_CPU_DEFAULT == TARGET_CPU_v9 \
142  || TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc \
143  || TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc3 \
144  || TARGET_CPU_DEFAULT == TARGET_CPU_niagara \
145  || TARGET_CPU_DEFAULT == TARGET_CPU_niagara2 \
146  || TARGET_CPU_DEFAULT == TARGET_CPU_niagara3 \
147  || TARGET_CPU_DEFAULT == TARGET_CPU_niagara4 \
148  || TARGET_CPU_DEFAULT == TARGET_CPU_niagara7 \
149  || TARGET_CPU_DEFAULT == TARGET_CPU_m8
150 
151 #define CPP_CPU32_DEFAULT_SPEC ""
152 #define ASM_CPU32_DEFAULT_SPEC ""
153 
154 #if TARGET_CPU_DEFAULT == TARGET_CPU_v9
155 /* ??? What does Sun's CC pass?  */
156 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
157 /* ??? It's not clear how other assemblers will handle this, so by default
158    use GAS.  Sun's Solaris assembler recognizes -xarch=v8plus, but this case
159    is handled in sol2.h.  */
160 #define ASM_CPU64_DEFAULT_SPEC "-Av9"
161 #endif
162 #if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc
163 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
164 #define ASM_CPU64_DEFAULT_SPEC "-Av9a"
165 #endif
166 #if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc3
167 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
168 #define ASM_CPU64_DEFAULT_SPEC "-Av9b"
169 #endif
170 #if TARGET_CPU_DEFAULT == TARGET_CPU_niagara
171 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
172 #define ASM_CPU64_DEFAULT_SPEC "-Av9b"
173 #endif
174 #if TARGET_CPU_DEFAULT == TARGET_CPU_niagara2
175 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
176 #define ASM_CPU64_DEFAULT_SPEC "-Av9b"
177 #endif
178 #if TARGET_CPU_DEFAULT == TARGET_CPU_niagara3
179 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
180 #define ASM_CPU64_DEFAULT_SPEC "-Av9" AS_NIAGARA3_FLAG
181 #endif
182 #if TARGET_CPU_DEFAULT == TARGET_CPU_niagara4
183 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
184 #define ASM_CPU64_DEFAULT_SPEC AS_NIAGARA4_FLAG
185 #endif
186 #if TARGET_CPU_DEFAULT == TARGET_CPU_niagara7
187 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
188 #define ASM_CPU64_DEFAULT_SPEC AS_NIAGARA7_FLAG
189 #endif
190 #if TARGET_CPU_DEFAULT == TARGET_CPU_m8
191 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
192 #define ASM_CPU64_DEFAULT_SPEC AS_M8_FLAG
193 #endif
194 
195 #else
196 
197 #define CPP_CPU64_DEFAULT_SPEC ""
198 #define ASM_CPU64_DEFAULT_SPEC ""
199 
200 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparc \
201  || TARGET_CPU_DEFAULT == TARGET_CPU_v8
202 #define CPP_CPU32_DEFAULT_SPEC ""
203 #define ASM_CPU32_DEFAULT_SPEC ""
204 #endif
205 
206 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclet
207 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclet__"
208 #define ASM_CPU32_DEFAULT_SPEC "-Asparclet"
209 #endif
210 
211 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite
212 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclite__"
213 #define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
214 #endif
215 
216 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite86x
217 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclite86x__"
218 #define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
219 #endif
220 
221 #if TARGET_CPU_DEFAULT == TARGET_CPU_supersparc
222 #define CPP_CPU32_DEFAULT_SPEC "-D__supersparc__ -D__sparc_v8__"
223 #define ASM_CPU32_DEFAULT_SPEC ""
224 #endif
225 
226 #if TARGET_CPU_DEFAULT == TARGET_CPU_hypersparc
227 #define CPP_CPU32_DEFAULT_SPEC "-D__hypersparc__ -D__sparc_v8__"
228 #define ASM_CPU32_DEFAULT_SPEC ""
229 #endif
230 
231 #if TARGET_CPU_DEFAULT == TARGET_CPU_leon \
232  || TARGET_CPU_DEFAULT == TARGET_CPU_leon3 \
233  || TARGET_CPU_DEFAULT == TARGET_CPU_leon5
234 #define CPP_CPU32_DEFAULT_SPEC "-D__leon__ -D__sparc_v8__"
235 #define ASM_CPU32_DEFAULT_SPEC AS_LEON_FLAG
236 #endif
237 
238 #if TARGET_CPU_DEFAULT == TARGET_CPU_leon3v7
239 #define CPP_CPU32_DEFAULT_SPEC "-D__leon__"
240 #define ASM_CPU32_DEFAULT_SPEC AS_LEONV7_FLAG
241 #endif
242 
243 #endif
244 
245 #if !defined(CPP_CPU32_DEFAULT_SPEC) || !defined(CPP_CPU64_DEFAULT_SPEC)
246  #error Unrecognized value in TARGET_CPU_DEFAULT.
247 #endif
248 
249 #ifdef SPARC_BI_ARCH
250 
251 #define CPP_CPU_DEFAULT_SPEC \
252 (DEFAULT_ARCH32_P ? "\
253 %{m64:" CPP_CPU64_DEFAULT_SPEC "} \
254 %{!m64:" CPP_CPU32_DEFAULT_SPEC "} \
255 " : "\
256 %{m32:" CPP_CPU32_DEFAULT_SPEC "} \
257 %{!m32:" CPP_CPU64_DEFAULT_SPEC "} \
258 ")
259 #define ASM_CPU_DEFAULT_SPEC \
260 (DEFAULT_ARCH32_P ? "\
261 %{m64:" ASM_CPU64_DEFAULT_SPEC "} \
262 %{!m64:" ASM_CPU32_DEFAULT_SPEC "} \
263 " : "\
264 %{m32:" ASM_CPU32_DEFAULT_SPEC "} \
265 %{!m32:" ASM_CPU64_DEFAULT_SPEC "} \
266 ")
267 
268 #else /* !SPARC_BI_ARCH */
269 
270 #define CPP_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? CPP_CPU32_DEFAULT_SPEC : CPP_CPU64_DEFAULT_SPEC)
271 #define ASM_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? ASM_CPU32_DEFAULT_SPEC : ASM_CPU64_DEFAULT_SPEC)
272 
273 #endif /* !SPARC_BI_ARCH */
274 
275 /* Define macros to distinguish architectures.  */
276 
277 /* Common CPP definitions used by CPP_SPEC amongst the various targets
278    for handling -mcpu=xxx switches.  */
279 #define CPP_CPU_SPEC "\
280 %{mcpu=sparclet:-D__sparclet__} %{mcpu=tsc701:-D__sparclet__} \
281 %{mcpu=sparclite:-D__sparclite__} \
282 %{mcpu=f930:-D__sparclite__} %{mcpu=f934:-D__sparclite__} \
283 %{mcpu=sparclite86x:-D__sparclite86x__} \
284 %{mcpu=v8:-D__sparc_v8__} \
285 %{mcpu=supersparc:-D__supersparc__ -D__sparc_v8__} \
286 %{mcpu=hypersparc:-D__hypersparc__ -D__sparc_v8__} \
287 %{mcpu=leon:-D__leon__ -D__sparc_v8__} \
288 %{mcpu=leon3:-D__leon__ -D__sparc_v8__} \
289 %{mcpu=leon5:-D__leon__ -D__sparc_v8__} \
290 %{mcpu=leon3v7:-D__leon__} \
291 %{mcpu=v9:-D__sparc_v9__} \
292 %{mcpu=ultrasparc:-D__sparc_v9__} \
293 %{mcpu=ultrasparc3:-D__sparc_v9__} \
294 %{mcpu=niagara:-D__sparc_v9__} \
295 %{mcpu=niagara2:-D__sparc_v9__} \
296 %{mcpu=niagara3:-D__sparc_v9__} \
297 %{mcpu=niagara4:-D__sparc_v9__} \
298 %{mcpu=niagara7:-D__sparc_v9__} \
299 %{mcpu=m8:-D__sparc_v9__} \
300 %{!mcpu*:%(cpp_cpu_default)} \
301 "
302 #define CPP_ARCH32_SPEC ""
303 #define CPP_ARCH64_SPEC "-D__arch64__"
304 
305 #define CPP_ARCH_DEFAULT_SPEC \
306 (DEFAULT_ARCH32_P ? CPP_ARCH32_SPEC : CPP_ARCH64_SPEC)
307 
308 #define CPP_ARCH_SPEC "\
309 %{m32:%(cpp_arch32)} \
310 %{m64:%(cpp_arch64)} \
311 %{!m32:%{!m64:%(cpp_arch_default)}} \
312 "
313 
314 /* Macros to distinguish the endianness, window model and FP support.  */
315 #define CPP_OTHER_SPEC "\
316 %{mflat:-D_FLAT} \
317 %{msoft-float:-D_SOFT_FLOAT} \
318 "
319 
320 /* Macros to distinguish the particular subtarget.  */
321 #define CPP_SUBTARGET_SPEC ""
322 
323 #define CPP_SPEC \
324   "%(cpp_cpu) %(cpp_arch) %(cpp_endian) %(cpp_other) %(cpp_subtarget)"
325 
326 /* This used to translate -dalign to -malign, but that is no good
327    because it can't turn off the usual meaning of making debugging dumps.  */
328 
329 #define CC1_SPEC ""
330 
331 /* Override in target specific files.  */
332 #define ASM_CPU_SPEC "\
333 %{mcpu=sparclet:-Asparclet} %{mcpu=tsc701:-Asparclet} \
334 %{mcpu=sparclite:-Asparclite} \
335 %{mcpu=sparclite86x:-Asparclite} \
336 %{mcpu=f930:-Asparclite} %{mcpu=f934:-Asparclite} \
337 %{mcpu=v8:-Av8} \
338 %{mcpu=supersparc:-Av8} \
339 %{mcpu=hypersparc:-Av8} \
340 %{mcpu=leon:" AS_LEON_FLAG "} \
341 %{mcpu=leon3:" AS_LEON_FLAG "} \
342 %{mcpu=leon5:" AS_LEON_FLAG "} \
343 %{mcpu=leon3v7:" AS_LEONV7_FLAG "} \
344 %{mv8plus:-Av8plus} \
345 %{mcpu=v9:-Av9} \
346 %{mcpu=ultrasparc:%{!mv8plus:-Av9a}} \
347 %{mcpu=ultrasparc3:%{!mv8plus:-Av9b}} \
348 %{mcpu=niagara:%{!mv8plus:-Av9b}} \
349 %{mcpu=niagara2:%{!mv8plus:-Av9b}} \
350 %{mcpu=niagara3:%{!mv8plus:-Av9" AS_NIAGARA3_FLAG "}} \
351 %{mcpu=niagara4:%{!mv8plus:" AS_NIAGARA4_FLAG "}} \
352 %{mcpu=niagara7:%{!mv8plus:" AS_NIAGARA7_FLAG "}} \
353 %{mcpu=m8:%{!mv8plus:" AS_M8_FLAG "}} \
354 %{!mcpu*:%(asm_cpu_default)} \
355 "
356 
357 /* Word size selection, among other things.
358    This is what GAS uses.  Add %(asm_arch) to ASM_SPEC to enable.  */
359 
360 #define ASM_ARCH32_SPEC "-32"
361 #define ASM_ARCH64_SPEC "-64 -no-undeclared-regs"
362 #define ASM_ARCH_DEFAULT_SPEC \
363 (DEFAULT_ARCH32_P ? ASM_ARCH32_SPEC : ASM_ARCH64_SPEC)
364 
365 #define ASM_ARCH_SPEC "\
366 %{m32:%(asm_arch32)} \
367 %{m64:%(asm_arch64)} \
368 %{!m32:%{!m64:%(asm_arch_default)}} \
369 "
370 
371 #ifdef HAVE_AS_RELAX_OPTION
372 #define ASM_RELAX_SPEC "%{!mno-relax:-relax}"
373 #else
374 #define ASM_RELAX_SPEC ""
375 #endif
376 
377 /* Special flags to the Sun-4 assembler when using pipe for input.  */
378 
379 #define ASM_SPEC "\
380 %{!pg:%{!p:%{" FPIE_OR_FPIC_SPEC ":-k}}} %{keep-local-as-symbols:-L} \
381 %(asm_cpu) %(asm_relax)"
382 
383 /* This macro defines names of additional specifications to put in the specs
384    that can be used in various specifications like CC1_SPEC.  Its definition
385    is an initializer with a subgrouping for each command option.
386 
387    Each subgrouping contains a string constant, that defines the
388    specification name, and a string constant that used by the GCC driver
389    program.
390 
391    Do not define this macro if it does not need to do anything.  */
392 
393 #define EXTRA_SPECS \
394   { "cpp_cpu",		CPP_CPU_SPEC },		\
395   { "cpp_cpu_default",	CPP_CPU_DEFAULT_SPEC },	\
396   { "cpp_arch32",	CPP_ARCH32_SPEC },	\
397   { "cpp_arch64",	CPP_ARCH64_SPEC },	\
398   { "cpp_arch_default",	CPP_ARCH_DEFAULT_SPEC },\
399   { "cpp_arch",		CPP_ARCH_SPEC },	\
400   { "cpp_other",	CPP_OTHER_SPEC },	\
401   { "cpp_subtarget",	CPP_SUBTARGET_SPEC },	\
402   { "asm_cpu",		ASM_CPU_SPEC },		\
403   { "asm_cpu_default",	ASM_CPU_DEFAULT_SPEC },	\
404   { "asm_arch32",	ASM_ARCH32_SPEC },	\
405   { "asm_arch64",	ASM_ARCH64_SPEC },	\
406   { "asm_relax",	ASM_RELAX_SPEC },	\
407   { "asm_arch_default",	ASM_ARCH_DEFAULT_SPEC },\
408   { "asm_arch",		ASM_ARCH_SPEC },	\
409   SUBTARGET_EXTRA_SPECS
410 
411 #define SUBTARGET_EXTRA_SPECS
412 
413 /* Because libgcc can generate references back to libc (via .umul etc.) we have
414    to list libc again after the second libgcc.  */
415 #define LINK_GCC_C_SEQUENCE_SPEC "%G %{!nolibc:%L} %G %{!nolibc:%L}"
416 
417 
418 #define PTRDIFF_TYPE (TARGET_ARCH64 ? "long int" : "int")
419 #define SIZE_TYPE (TARGET_ARCH64 ? "long unsigned int" : "unsigned int")
420 
421 /* ??? This should be 32 bits for v9 but what can we do?  */
422 #define WCHAR_TYPE "short unsigned int"
423 #define WCHAR_TYPE_SIZE 16
424 
425 /* Mask of all CPU selection flags.  */
426 #define MASK_ISA						\
427   (MASK_SPARCLITE + MASK_SPARCLET + MASK_LEON + MASK_LEON3	\
428    + MASK_V8 + MASK_V9 + MASK_DEPRECATED_V8_INSNS)
429 
430 /* Mask of all CPU feature flags.  */
431 #define MASK_FEATURES						\
432   (MASK_FPU + MASK_HARD_QUAD + MASK_VIS + MASK_VIS2 + MASK_VIS3	\
433    + MASK_VIS4 + MASK_CBCOND + MASK_FMAF + MASK_FSMULD		\
434    + MASK_POPC + MASK_SUBXC)
435 
436 /* TARGET_HARD_MUL: Use 32-bit hardware multiply instructions but not %y.  */
437 #define TARGET_HARD_MUL				\
438   (TARGET_SPARCLITE || TARGET_SPARCLET		\
439    || TARGET_V8 || TARGET_DEPRECATED_V8_INSNS)
440 
441 /* TARGET_HARD_MUL32: Use 32-bit hardware multiply instructions with %y
442    to get high 32 bits.  False in 64-bit or V8+ because multiply stores
443    a 64-bit result in a register.  */
444 #define TARGET_HARD_MUL32 \
445   (TARGET_HARD_MUL && TARGET_ARCH32 && !TARGET_V8PLUS)
446 
447 /* MASK_APP_REGS must always be the default because that's what
448    FIXED_REGISTERS is set to and -ffixed- is processed before
449    TARGET_CONDITIONAL_REGISTER_USAGE is called (where we process
450    -mno-app-regs).  */
451 #define TARGET_DEFAULT (MASK_APP_REGS + MASK_FPU)
452 
453 /* Recast the cpu class to be the cpu attribute.
454    Every file includes us, but not every file includes insn-attr.h.  */
455 #define sparc_cpu_attr ((enum attr_cpu) sparc_cpu)
456 
457 /* Support for a compile-time default CPU, et cetera.  The rules are:
458    --with-cpu is ignored if -mcpu is specified.
459    --with-tune is ignored if -mtune is specified.
460    --with-float is ignored if -mhard-float, -msoft-float, -mfpu, or -mno-fpu
461      are specified.  */
462 #define OPTION_DEFAULT_SPECS \
463   {"cpu", "%{!mcpu=*:-mcpu=%(VALUE)}" }, \
464   {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
465   {"float", "%{!msoft-float:%{!mhard-float:%{!mfpu:%{!mno-fpu:-m%(VALUE)-float}}}}" }
466 
467 /* target machine storage layout */
468 
469 /* Define this if most significant bit is lowest numbered
470    in instructions that operate on numbered bit-fields.  */
471 #define BITS_BIG_ENDIAN 1
472 
473 /* Define this if most significant byte of a word is the lowest numbered.  */
474 #define BYTES_BIG_ENDIAN 1
475 
476 /* Define this if most significant word of a multiword number is the lowest
477    numbered.  */
478 #define WORDS_BIG_ENDIAN 1
479 
480 #define MAX_BITS_PER_WORD	64
481 
482 /* Width of a word, in units (bytes).  */
483 #define UNITS_PER_WORD		(TARGET_ARCH64 ? 8 : 4)
484 #ifdef IN_LIBGCC2
485 #define MIN_UNITS_PER_WORD	UNITS_PER_WORD
486 #else
487 #define MIN_UNITS_PER_WORD	4
488 #endif
489 
490 /* Now define the sizes of the C data types.  */
491 #define SHORT_TYPE_SIZE		16
492 #define INT_TYPE_SIZE		32
493 #define LONG_TYPE_SIZE		(TARGET_ARCH64 ? 64 : 32)
494 #define LONG_LONG_TYPE_SIZE	64
495 #define FLOAT_TYPE_SIZE		32
496 #define DOUBLE_TYPE_SIZE	64
497 
498 /* LONG_DOUBLE_TYPE_SIZE is defined per OS even though the
499    SPARC ABI says that it is 128-bit wide.  */
500 /* #define LONG_DOUBLE_TYPE_SIZE	128 */
501 
502 /* The widest floating-point format really supported by the hardware.  */
503 #define WIDEST_HARDWARE_FP_SIZE 64
504 
505 /* Width in bits of a pointer.  This is the size of ptr_mode.  */
506 #define POINTER_SIZE (TARGET_PTR64 ? 64 : 32)
507 
508 /* This is the machine mode used for addresses.  */
509 #define Pmode (TARGET_ARCH64 ? DImode : SImode)
510 
511 /* If we have to extend pointers (only when TARGET_ARCH64 and not
512    TARGET_PTR64), we want to do it unsigned.   This macro does nothing
513    if ptr_mode and Pmode are the same.  */
514 #define POINTERS_EXTEND_UNSIGNED 1
515 
516 /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
517 #define PARM_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
518 
519 /* Boundary (in *bits*) on which stack pointer should be aligned.  */
520 /* FIXME, this is wrong when TARGET_ARCH64 and TARGET_STACK_BIAS, because
521    then %sp+2047 is 128-bit aligned so %sp is really only byte-aligned.  */
522 #define STACK_BOUNDARY (TARGET_ARCH64 ? 128 : 64)
523 
524 /* Temporary hack until the FIXME above is fixed.  */
525 #define SPARC_STACK_BOUNDARY_HACK (TARGET_ARCH64 && TARGET_STACK_BIAS)
526 
527 /* ALIGN FRAMES on double word boundaries */
528 #define SPARC_STACK_ALIGN(LOC) ROUND_UP ((LOC), UNITS_PER_WORD * 2)
529 
530 /* Allocation boundary (in *bits*) for the code of a function.  */
531 #define FUNCTION_BOUNDARY 32
532 
533 /* Alignment of field after `int : 0' in a structure.  */
534 #define EMPTY_FIELD_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
535 
536 /* Every structure's size must be a multiple of this.  */
537 #define STRUCTURE_SIZE_BOUNDARY 8
538 
539 /* A bit-field declared as `int' forces `int' alignment for the struct.  */
540 #define PCC_BITFIELD_TYPE_MATTERS 1
541 
542 /* No data type wants to be aligned rounder than this.  */
543 #define BIGGEST_ALIGNMENT (TARGET_ARCH64 ? 128 : 64)
544 
545 /* The best alignment to use in cases where we have a choice.  */
546 #define FASTEST_ALIGNMENT 64
547 
548 /* Define this macro as an expression for the alignment of a structure
549    (given by STRUCT as a tree node) if the alignment computed in the
550    usual way is COMPUTED and the alignment explicitly specified was
551    SPECIFIED.
552 
553    The default is to use SPECIFIED if it is larger; otherwise, use
554    the smaller of COMPUTED and `BIGGEST_ALIGNMENT' */
555 #define ROUND_TYPE_ALIGN(STRUCT, COMPUTED, SPECIFIED)	\
556  (TARGET_FASTER_STRUCTS ?				\
557   ((TREE_CODE (STRUCT) == RECORD_TYPE			\
558     || TREE_CODE (STRUCT) == UNION_TYPE                 \
559     || TREE_CODE (STRUCT) == QUAL_UNION_TYPE)           \
560    && TYPE_FIELDS (STRUCT) != 0                         \
561      ? MAX (MAX ((COMPUTED), (SPECIFIED)), BIGGEST_ALIGNMENT) \
562      : MAX ((COMPUTED), (SPECIFIED)))			\
563    :  MAX ((COMPUTED), (SPECIFIED)))
564 
565 /* An integer expression for the size in bits of the largest integer machine
566    mode that should actually be used.  We allow pairs of registers.  */
567 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_ARCH64 ? TImode : DImode)
568 
569 /* We need 2 words, so we can save the stack pointer and the return register
570    of the function containing a non-local goto target.  */
571 #define STACK_SAVEAREA_MODE(LEVEL) \
572   ((LEVEL) == SAVE_NONLOCAL ? (TARGET_ARCH64 ? TImode : DImode) : Pmode)
573 
574 /* Make arrays of chars word-aligned for the same reasons.  */
575 #define DATA_ALIGNMENT(TYPE, ALIGN)		\
576   (TREE_CODE (TYPE) == ARRAY_TYPE		\
577    && TYPE_MODE (TREE_TYPE (TYPE)) == QImode	\
578    && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
579 
580 /* Make local arrays of chars word-aligned for the same reasons.  */
581 #define LOCAL_ALIGNMENT(TYPE, ALIGN) DATA_ALIGNMENT (TYPE, ALIGN)
582 
583 /* Set this nonzero if move instructions will actually fail to work
584    when given unaligned data.  */
585 #define STRICT_ALIGNMENT 1
586 
587 /* Things that must be doubleword aligned cannot go in the text section,
588    because the linker fails to align the text section enough!
589    Put them in the data section.  This macro is only used in this file.  */
590 #define MAX_TEXT_ALIGN 32
591 
592 /* Standard register usage.  */
593 
594 /* Number of actual hardware registers.
595    The hardware registers are assigned numbers for the compiler
596    from 0 to just below FIRST_PSEUDO_REGISTER.
597    All registers that the compiler knows about must be given numbers,
598    even those that are not normally considered general registers.
599 
600    SPARC has 32 integer registers and 32 floating point registers.
601    64-bit SPARC has 32 additional fp regs, but the odd numbered ones are not
602    accessible.  We still account for them to simplify register computations
603    (e.g.: in CLASS_MAX_NREGS).  There are also 4 fp condition code registers, so
604    32+32+32+4 == 100.
605    Register 100 is used as the integer condition code register.
606    Register 101 is used as the soft frame pointer register.
607    Register 102 is used as the general status register by VIS instructions.  */
608 
609 #define FIRST_PSEUDO_REGISTER 103
610 
611 #define SPARC_FIRST_INT_REG     0
612 #define SPARC_LAST_INT_REG     31
613 #define SPARC_FIRST_FP_REG     32
614 /* Additional V9 fp regs.  */
615 #define SPARC_FIRST_V9_FP_REG  64
616 #define SPARC_LAST_V9_FP_REG   95
617 /* V9 %fcc[0123].  V8 uses (figuratively) %fcc0.  */
618 #define SPARC_FIRST_V9_FCC_REG 96
619 #define SPARC_LAST_V9_FCC_REG  99
620 /* V8 fcc reg.  */
621 #define SPARC_FCC_REG 96
622 /* Integer CC reg.  We don't distinguish %icc from %xcc.  */
623 #define SPARC_ICC_REG 100
624 #define SPARC_GSR_REG 102
625 
626 /* Nonzero if REGNO is an fp reg.  */
627 #define SPARC_FP_REG_P(REGNO) \
628 ((REGNO) >= SPARC_FIRST_FP_REG && (REGNO) <= SPARC_LAST_V9_FP_REG)
629 
630 /* Nonzero if REGNO is an int reg.  */
631 #define SPARC_INT_REG_P(REGNO) \
632 (((unsigned) (REGNO)) <= SPARC_LAST_INT_REG)
633 
634 /* Argument passing regs.  */
635 #define SPARC_OUTGOING_INT_ARG_FIRST 8
636 #define SPARC_INCOMING_INT_ARG_FIRST (TARGET_FLAT ? 8 : 24)
637 #define SPARC_FP_ARG_FIRST           32
638 
639 /* 1 for registers that have pervasive standard uses
640    and are not available for the register allocator.
641 
642    On non-v9 systems:
643    g1 is free to use as temporary.
644    g2-g4 are reserved for applications.  Gcc normally uses them as
645    temporaries, but this can be disabled via the -mno-app-regs option.
646    g5 through g7 are reserved for the operating system.
647 
648    On v9 systems:
649    g1,g5 are free to use as temporaries, and are free to use between calls
650    if the call is to an external function via the PLT.
651    g4 is free to use as a temporary in the non-embedded case.
652    g4 is reserved in the embedded case.
653    g2-g3 are reserved for applications.  Gcc normally uses them as
654    temporaries, but this can be disabled via the -mno-app-regs option.
655    g6-g7 are reserved for the operating system (or application in
656    embedded case).
657    ??? Register 1 is used as a temporary by the 64 bit sethi pattern, so must
658    currently be a fixed register until this pattern is rewritten.
659    Register 1 is also used when restoring call-preserved registers in large
660    stack frames.
661 
662    Registers fixed in arch32 and not arch64 (or vice-versa) are marked in
663    TARGET_CONDITIONAL_REGISTER_USAGE in order to properly handle -ffixed-.
664 */
665 
666 #define FIXED_REGISTERS  \
667  {1, 0, 2, 2, 2, 2, 1, 1,	\
668   0, 0, 0, 0, 0, 0, 1, 0,	\
669   0, 0, 0, 0, 0, 0, 0, 0,	\
670   0, 0, 0, 0, 0, 0, 0, 1,	\
671 				\
672   0, 0, 0, 0, 0, 0, 0, 0,	\
673   0, 0, 0, 0, 0, 0, 0, 0,	\
674   0, 0, 0, 0, 0, 0, 0, 0,	\
675   0, 0, 0, 0, 0, 0, 0, 0,	\
676 				\
677   0, 0, 0, 0, 0, 0, 0, 0,	\
678   0, 0, 0, 0, 0, 0, 0, 0,	\
679   0, 0, 0, 0, 0, 0, 0, 0,	\
680   0, 0, 0, 0, 0, 0, 0, 0,	\
681 				\
682   0, 0, 0, 0, 1, 1, 1}
683 
684 /* 1 for registers not available across function calls.
685    Unlike the above, this need not include the FIXED_REGISTERS, but any
686    registers that can be used without being saved.
687    The latter must include the registers where values are returned
688    and the register where structure-value addresses are passed.
689    Aside from that, you can include as many other registers as you like.  */
690 
691 #define CALL_REALLY_USED_REGISTERS  \
692  {1, 1, 1, 1, 1, 1, 1, 1,	\
693   1, 1, 1, 1, 1, 1, 1, 1,	\
694   0, 0, 0, 0, 0, 0, 0, 0,	\
695   0, 0, 0, 0, 0, 0, 0, 0,	\
696 				\
697   1, 1, 1, 1, 1, 1, 1, 1,	\
698   1, 1, 1, 1, 1, 1, 1, 1,	\
699   1, 1, 1, 1, 1, 1, 1, 1,	\
700   1, 1, 1, 1, 1, 1, 1, 1,	\
701 				\
702   1, 1, 1, 1, 1, 1, 1, 1,	\
703   1, 1, 1, 1, 1, 1, 1, 1,	\
704   1, 1, 1, 1, 1, 1, 1, 1,	\
705   1, 1, 1, 1, 1, 1, 1, 1,	\
706 				\
707   1, 1, 1, 1, 1, 1, 1}
708 
709 /* Due to the ARCH64 discrepancy above we must override this next
710    macro too.  */
711 #define REGMODE_NATURAL_SIZE(MODE) sparc_regmode_natural_size (MODE)
712 
713 /* Value is 1 if it is OK to rename a hard register FROM to another hard
714    register TO.  We cannot rename %g1 as it may be used before the save
715    register window instruction in the prologue.  */
716 #define HARD_REGNO_RENAME_OK(FROM, TO) ((FROM) != 1)
717 
718 /* Select a register mode required for caller save of hard regno REGNO.
719    Contrary to what is documented, the default is not the smallest suitable
720    mode but the largest suitable mode for the given (REGNO, NREGS) pair and
721    it quickly creates paradoxical subregs that can be problematic.  */
722 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
723   ((MODE) == VOIDmode ? choose_hard_reg_mode (REGNO, NREGS, NULL) : (MODE))
724 
725 /* Specify the registers used for certain standard purposes.
726    The values of these macros are register numbers.  */
727 
728 /* Register to use for pushing function arguments.  */
729 #define STACK_POINTER_REGNUM 14
730 
731 /* The stack bias (amount by which the hardware register is offset by).  */
732 #define SPARC_STACK_BIAS ((TARGET_ARCH64 && TARGET_STACK_BIAS) ? 2047 : 0)
733 
734 /* Actual top-of-stack address is 92/176 greater than the contents of the
735    stack pointer register for !v9/v9.  That is:
736    - !v9: 64 bytes for the in and local registers, 4 bytes for structure return
737      address, and 6*4 bytes for the 6 register parameters.
738    - v9: 128 bytes for the in and local registers + 6*8 bytes for the integer
739      parameter regs.  */
740 #define STACK_POINTER_OFFSET (FIRST_PARM_OFFSET(0) + SPARC_STACK_BIAS)
741 
742 /* Base register for access to local variables of the function.  */
743 #define HARD_FRAME_POINTER_REGNUM 30
744 
745 /* The soft frame pointer does not have the stack bias applied.  */
746 #define FRAME_POINTER_REGNUM 101
747 
748 #define INIT_EXPANDERS							 \
749   do {									 \
750     if (crtl->emit.regno_pointer_align)					 \
751       {									 \
752 	/* The biased stack pointer is only aligned on BITS_PER_UNIT.  */\
753 	if (SPARC_STACK_BIAS)						 \
754 	  {								 \
755 	    REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM)			 \
756 	      = BITS_PER_UNIT;	 					 \
757 	    REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM)		 \
758 	      = BITS_PER_UNIT;						 \
759 	  }								 \
760 									 \
761 	/* In 32-bit mode, not everything is double-word aligned.  */	 \
762 	if (TARGET_ARCH32)						 \
763 	  {								 \
764 	    REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM)		 \
765 	      = BITS_PER_WORD;						 \
766 	    REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM)		 \
767 	      = BITS_PER_WORD;						 \
768 	    REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM)		 \
769 	      = BITS_PER_WORD;						 \
770 	  }								 \
771       }									 \
772   } while (0)
773 
774 /* Base register for access to arguments of the function.  */
775 #define ARG_POINTER_REGNUM FRAME_POINTER_REGNUM
776 
777 /* Register in which static-chain is passed to a function.  This must
778    not be a register used by the prologue.  */
779 #define STATIC_CHAIN_REGNUM (TARGET_ARCH64 ? 5 : 2)
780 
781 /* Register which holds the global offset table, if any.  */
782 #define GLOBAL_OFFSET_TABLE_REGNUM 23
783 
784 /* Register which holds offset table for position-independent data references.
785    The original SPARC ABI imposes no requirement on the choice of the register
786    so we use a pseudo-register to make sure it is properly saved and restored
787    around calls to setjmp.  Now the ABI of VxWorks RTP makes it live on entry
788    to PLT entries so we use the canonical GOT register in this case.  */
789 #define PIC_OFFSET_TABLE_REGNUM \
790   (TARGET_VXWORKS_RTP && flag_pic ? GLOBAL_OFFSET_TABLE_REGNUM : INVALID_REGNUM)
791 
792 /* Pick a default value we can notice from override_options:
793    !v9: Default is on.
794    v9: Default is off.
795    Originally it was -1, but later on the container of options changed to
796    unsigned byte, so we decided to pick 127 as default value, which does
797    reflect an undefined default value in case of 0/1.  */
798 #define DEFAULT_PCC_STRUCT_RETURN 127
799 
800 /* Functions which return large structures get the address
801    to place the wanted value at offset 64 from the frame.
802    Must reserve 64 bytes for the in and local registers.
803    v9: Functions which return large structures get the address to place the
804    wanted value from an invisible first argument.  */
805 #define STRUCT_VALUE_OFFSET 64
806 
807 /* Define the classes of registers for register constraints in the
808    machine description.  Also define ranges of constants.
809 
810    One of the classes must always be named ALL_REGS and include all hard regs.
811    If there is more than one class, another class must be named NO_REGS
812    and contain no registers.
813 
814    The name GENERAL_REGS must be the name of a class (or an alias for
815    another name such as ALL_REGS).  This is the class of registers
816    that is allowed by "g" or "r" in a register constraint.
817    Also, registers outside this class are allocated only when
818    instructions express preferences for them.
819 
820    The classes must be numbered in nondecreasing order; that is,
821    a larger-numbered class must never be contained completely
822    in a smaller-numbered class.
823 
824    For any two classes, it is very desirable that there be another
825    class that represents their union.  */
826 
827 /* The SPARC has various kinds of registers: general, floating point,
828    and condition codes [well, it has others as well, but none that we
829    care directly about].
830 
831    For v9 we must distinguish between the upper and lower floating point
832    registers because the upper ones can't hold SFmode values.
833    TARGET_HARD_REGNO_MODE_OK won't help here because reload assumes that
834    register(s) satisfying a group need for a class will also satisfy a
835    single need for that class.  EXTRA_FP_REGS is a bit of a misnomer as
836    it covers all 64 fp regs.
837 
838    It is important that one class contains all the general and all the standard
839    fp regs.  Otherwise find_reg() won't properly allocate int regs for moves,
840    because reg_class_record() will bias the selection in favor of fp regs,
841    because reg_class_subunion[GENERAL_REGS][FP_REGS] will yield FP_REGS,
842    because FP_REGS > GENERAL_REGS.
843 
844    It is also important that one class contain all the general and all
845    the fp regs.  Otherwise when spilling a DFmode reg, it may be from
846    EXTRA_FP_REGS but find_reloads() may use class
847    GENERAL_OR_FP_REGS. This will cause allocate_reload_reg() to die
848    because the compiler thinks it doesn't have a spill reg when in
849    fact it does.
850 
851    v9 also has 4 floating point condition code registers.  Since we don't
852    have a class that is the union of FPCC_REGS with either of the others,
853    it is important that it appear first.  Otherwise the compiler will die
854    trying to compile _fixunsdfsi because fix_truncdfsi2 won't match its
855    constraints.  */
856 
857 enum reg_class { NO_REGS, FPCC_REGS, I64_REGS, GENERAL_REGS, FP_REGS,
858 		 EXTRA_FP_REGS, GENERAL_OR_FP_REGS, GENERAL_OR_EXTRA_FP_REGS,
859 		 ALL_REGS, LIM_REG_CLASSES };
860 
861 #define N_REG_CLASSES (int) LIM_REG_CLASSES
862 
863 /* Give names of register classes as strings for dump file.  */
864 
865 #define REG_CLASS_NAMES \
866   { "NO_REGS", "FPCC_REGS", "I64_REGS", "GENERAL_REGS", "FP_REGS",	\
867      "EXTRA_FP_REGS", "GENERAL_OR_FP_REGS", "GENERAL_OR_EXTRA_FP_REGS",	\
868      "ALL_REGS" }
869 
870 /* Define which registers fit in which classes.
871    This is an initializer for a vector of HARD_REG_SET
872    of length N_REG_CLASSES.  */
873 
874 #define REG_CLASS_CONTENTS				\
875   {{0, 0, 0, 0},	/* NO_REGS */			\
876    {0, 0, 0, 0xf},	/* FPCC_REGS */			\
877    {0xffff, 0, 0, 0},	/* I64_REGS */			\
878    {-1, 0, 0, 0x20},	/* GENERAL_REGS */		\
879    {0, -1, 0, 0},	/* FP_REGS */			\
880    {0, -1, -1, 0},	/* EXTRA_FP_REGS */		\
881    {-1, -1, 0, 0x20},	/* GENERAL_OR_FP_REGS */	\
882    {-1, -1, -1, 0x20},	/* GENERAL_OR_EXTRA_FP_REGS */	\
883    {-1, -1, -1, 0x7f}}	/* ALL_REGS */
884 
885 /* The same information, inverted:
886    Return the class number of the smallest class containing
887    reg number REGNO.  This could be a conditional expression
888    or could index an array.  */
889 
890 extern enum reg_class sparc_regno_reg_class[FIRST_PSEUDO_REGISTER];
891 
892 #define REGNO_REG_CLASS(REGNO) sparc_regno_reg_class[(REGNO)]
893 
894 /* This is the order in which to allocate registers normally.
895 
896    We put %f0-%f7 last among the float registers, so as to make it more
897    likely that a pseudo-register which dies in the float return register
898    area will get allocated to the float return register, thus saving a move
899    instruction at the end of the function.
900 
901    Similarly for integer return value registers.
902 
903    We know in this case that we will not end up with a leaf function.
904 
905    The register allocator is given the global and out registers first
906    because these registers are call clobbered and thus less useful to
907    global register allocation.
908 
909    Next we list the local and in registers.  They are not call clobbered
910    and thus very useful for global register allocation.  We list the input
911    registers before the locals so that it is more likely the incoming
912    arguments received in those registers can just stay there and not be
913    reloaded.  */
914 
915 #define REG_ALLOC_ORDER \
916 { 1, 2, 3, 4, 5, 6, 7,			/* %g1-%g7 */	\
917   13, 12, 11, 10, 9, 8, 		/* %o5-%o0 */	\
918   15,					/* %o7 */	\
919   16, 17, 18, 19, 20, 21, 22, 23,	/* %l0-%l7 */ 	\
920   29, 28, 27, 26, 25, 24, 31,		/* %i5-%i0,%i7 */\
921   40, 41, 42, 43, 44, 45, 46, 47,	/* %f8-%f15 */  \
922   48, 49, 50, 51, 52, 53, 54, 55,	/* %f16-%f23 */ \
923   56, 57, 58, 59, 60, 61, 62, 63,	/* %f24-%f31 */ \
924   64, 65, 66, 67, 68, 69, 70, 71,	/* %f32-%f39 */ \
925   72, 73, 74, 75, 76, 77, 78, 79,	/* %f40-%f47 */ \
926   80, 81, 82, 83, 84, 85, 86, 87,	/* %f48-%f55 */ \
927   88, 89, 90, 91, 92, 93, 94, 95,	/* %f56-%f63 */ \
928   39, 38, 37, 36, 35, 34, 33, 32,	/* %f7-%f0 */   \
929   96, 97, 98, 99,			/* %fcc0-3 */   \
930   100, 0, 14, 30, 101, 102 }		/* %icc, %g0, %o6, %i6, %sfp, %gsr */
931 
932 /* This is the order in which to allocate registers for
933    leaf functions.  If all registers can fit in the global and
934    output registers, then we have the possibility of having a leaf
935    function.
936 
937    The macro actually mentioned the input registers first,
938    because they get renumbered into the output registers once
939    we know really do have a leaf function.
940 
941    To be more precise, this register allocation order is used
942    when %o7 is found to not be clobbered right before register
943    allocation.  Normally, the reason %o7 would be clobbered is
944    due to a call which could not be transformed into a sibling
945    call.
946 
947    As a consequence, it is possible to use the leaf register
948    allocation order and not end up with a leaf function.  We will
949    not get suboptimal register allocation in that case because by
950    definition of being potentially leaf, there were no function
951    calls.  Therefore, allocation order within the local register
952    window is not critical like it is when we do have function calls.  */
953 
954 #define REG_LEAF_ALLOC_ORDER \
955 { 1, 2, 3, 4, 5, 6, 7, 			/* %g1-%g7 */	\
956   29, 28, 27, 26, 25, 24,		/* %i5-%i0 */	\
957   15,					/* %o7 */	\
958   13, 12, 11, 10, 9, 8,			/* %o5-%o0 */	\
959   16, 17, 18, 19, 20, 21, 22, 23,	/* %l0-%l7 */	\
960   40, 41, 42, 43, 44, 45, 46, 47,	/* %f8-%f15 */	\
961   48, 49, 50, 51, 52, 53, 54, 55,	/* %f16-%f23 */	\
962   56, 57, 58, 59, 60, 61, 62, 63,	/* %f24-%f31 */	\
963   64, 65, 66, 67, 68, 69, 70, 71,	/* %f32-%f39 */	\
964   72, 73, 74, 75, 76, 77, 78, 79,	/* %f40-%f47 */	\
965   80, 81, 82, 83, 84, 85, 86, 87,	/* %f48-%f55 */	\
966   88, 89, 90, 91, 92, 93, 94, 95,	/* %f56-%f63 */	\
967   39, 38, 37, 36, 35, 34, 33, 32,	/* %f7-%f0 */	\
968   96, 97, 98, 99,			/* %fcc0-3 */	\
969   100, 0, 14, 30, 31, 101, 102 }	/* %icc, %g0, %o6, %i6, %i7, %sfp, %gsr */
970 
971 #define ADJUST_REG_ALLOC_ORDER order_regs_for_local_alloc ()
972 
973 extern char sparc_leaf_regs[];
974 #define LEAF_REGISTERS sparc_leaf_regs
975 
976 extern char leaf_reg_remap[];
977 #define LEAF_REG_REMAP(REGNO) (leaf_reg_remap[REGNO])
978 
979 /* The class value for index registers, and the one for base regs.  */
980 #define INDEX_REG_CLASS GENERAL_REGS
981 #define BASE_REG_CLASS GENERAL_REGS
982 
983 /* Local macro to handle the two v9 classes of FP regs.  */
984 #define FP_REG_CLASS_P(CLASS) ((CLASS) == FP_REGS || (CLASS) == EXTRA_FP_REGS)
985 
986 /* Predicate for 2-bit and 5-bit unsigned constants.  */
987 #define SPARC_IMM2_P(X) (((unsigned HOST_WIDE_INT) (X) & ~0x3) == 0)
988 #define SPARC_IMM5_P(X) (((unsigned HOST_WIDE_INT) (X) & ~0x1F)	== 0)
989 
990 /* Predicates for 5-bit, 10-bit, 11-bit and 13-bit signed constants.  */
991 #define SPARC_SIMM5_P(X)  ((unsigned HOST_WIDE_INT) (X) + 0x10 < 0x20)
992 #define SPARC_SIMM10_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x200 < 0x400)
993 #define SPARC_SIMM11_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x400 < 0x800)
994 #define SPARC_SIMM13_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x1000 < 0x2000)
995 
996 /* 10- and 11-bit immediates are only used for a few specific insns.
997    SMALL_INT is used throughout the port so we continue to use it.  */
998 #define SMALL_INT(X) (SPARC_SIMM13_P (INTVAL (X)))
999 
1000 /* Predicate for constants that can be loaded with a sethi instruction.
1001    This is the general, 64-bit aware, bitwise version that ensures that
1002    only constants whose representation fits in the mask
1003 
1004      0x00000000fffffc00
1005 
1006    are accepted.  It will reject, for example, negative SImode constants
1007    on 64-bit hosts, so correct handling is to mask the value beforehand
1008    according to the mode of the instruction.  */
1009 #define SPARC_SETHI_P(X) \
1010   (((unsigned HOST_WIDE_INT) (X) \
1011     & ((unsigned HOST_WIDE_INT) 0x3ff - GET_MODE_MASK (SImode) - 1)) == 0)
1012 
1013 /* Version of the above predicate for SImode constants and below.  */
1014 #define SPARC_SETHI32_P(X) \
1015   (SPARC_SETHI_P ((unsigned HOST_WIDE_INT) (X) & GET_MODE_MASK (SImode)))
1016 
1017 /* Return the maximum number of consecutive registers
1018    needed to represent mode MODE in a register of class CLASS.  */
1019 /* On SPARC, this is the size of MODE in words.  */
1020 #define CLASS_MAX_NREGS(CLASS, MODE)	\
1021   (FP_REG_CLASS_P (CLASS) ? (GET_MODE_SIZE (MODE) + 3) / 4 \
1022    : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1023 
1024 /* Stack layout; function entry, exit and calling.  */
1025 
1026 /* Define this if pushing a word on the stack
1027    makes the stack pointer a smaller address.  */
1028 #define STACK_GROWS_DOWNWARD 1
1029 
1030 /* Define this to nonzero if the nominal address of the stack frame
1031    is at the high-address end of the local variables;
1032    that is, each additional local variable allocated
1033    goes at a more negative offset in the frame.  */
1034 #define FRAME_GROWS_DOWNWARD 1
1035 
1036 /* Offset of first parameter from the argument pointer register value.
1037    !v9: This is 64 for the ins and locals, plus 4 for the struct-return reg
1038    even if this function isn't going to use it.
1039    v9: This is 128 for the ins and locals.  */
1040 #define FIRST_PARM_OFFSET(FNDECL) \
1041   (TARGET_ARCH64 ? 16 * UNITS_PER_WORD : STRUCT_VALUE_OFFSET + UNITS_PER_WORD)
1042 
1043 /* Offset from the argument pointer register value to the CFA.
1044    This is different from FIRST_PARM_OFFSET because the register window
1045    comes between the CFA and the arguments.  */
1046 #define ARG_POINTER_CFA_OFFSET(FNDECL)  0
1047 
1048 /* When a parameter is passed in a register, stack space is still
1049    allocated for it.
1050    !v9: All 6 possible integer registers have backing store allocated.
1051    v9: Only space for the arguments passed is allocated.  */
1052 /* ??? Ideally, we'd use zero here (as the minimum), but zero has special
1053    meaning to the backend.  Further, we need to be able to detect if a
1054    varargs/unprototyped function is called, as they may want to spill more
1055    registers than we've provided space.  Ugly, ugly.  So for now we retain
1056    all 6 slots even for v9.  */
1057 #define REG_PARM_STACK_SPACE(DECL) (6 * UNITS_PER_WORD)
1058 
1059 /* Definitions for register elimination.  */
1060 
1061 #define ELIMINABLE_REGS \
1062   {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1063    { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM} }
1064 
1065 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) 		\
1066   do								\
1067     {								\
1068       (OFFSET) = sparc_initial_elimination_offset ((TO));	\
1069     }								\
1070   while (0)
1071 
1072 /* Keep the stack pointer constant throughout the function.
1073    This is both an optimization and a necessity: longjmp
1074    doesn't behave itself when the stack pointer moves within
1075    the function!  */
1076 #define ACCUMULATE_OUTGOING_ARGS 1
1077 
1078 /* Define this macro if the target machine has "register windows".  This
1079    C expression returns the register number as seen by the called function
1080    corresponding to register number OUT as seen by the calling function.
1081    Return OUT if register number OUT is not an outbound register.  */
1082 
1083 #define INCOMING_REGNO(OUT) \
1084  ((TARGET_FLAT || (OUT) < 8 || (OUT) > 15) ? (OUT) : (OUT) + 16)
1085 
1086 /* Define this macro if the target machine has "register windows".  This
1087    C expression returns the register number as seen by the calling function
1088    corresponding to register number IN as seen by the called function.
1089    Return IN if register number IN is not an inbound register.  */
1090 
1091 #define OUTGOING_REGNO(IN) \
1092  ((TARGET_FLAT || (IN) < 24 || (IN) > 31) ? (IN) : (IN) - 16)
1093 
1094 /* Define this macro if the target machine has register windows.  This
1095    C expression returns true if the register is call-saved but is in the
1096    register window.  */
1097 
1098 #define LOCAL_REGNO(REGNO) \
1099   (!TARGET_FLAT && (REGNO) >= 16 && (REGNO) <= 31)
1100 
1101 /* Define the size of space to allocate for the return value of an
1102    untyped_call.  */
1103 
1104 #define APPLY_RESULT_SIZE (TARGET_ARCH64 ? 24 : 16)
1105 
1106 /* 1 if N is a possible register number for function argument passing.
1107    On SPARC, these are the "output" registers.  v9 also uses %f0-%f31.  */
1108 
1109 #define FUNCTION_ARG_REGNO_P(N) \
1110   (((N) >= 8 && (N) <= 13)	\
1111    || (TARGET_ARCH64 && TARGET_FPU && (N) >= 32 && (N) <= 63))
1112 
1113 /* Define a data type for recording info about an argument list
1114    during the scan of that argument list.  This data type should
1115    hold all necessary information about the function itself
1116    and about the args processed so far, enough to enable macros
1117    such as FUNCTION_ARG to determine where the next arg should go.
1118 
1119    On SPARC (!v9), this is a single integer, which is a number of words
1120    of arguments scanned so far (including the invisible argument,
1121    if any, which holds the structure-value-address).
1122    Thus 7 or more means all following args should go on the stack.
1123 
1124    For v9, we also need to know whether a prototype is present.  */
1125 
1126 struct sparc_args {
1127   int words;       /* number of words passed so far */
1128   int prototype_p; /* nonzero if a prototype is present */
1129   int libcall_p;   /* nonzero if a library call */
1130 };
1131 #define CUMULATIVE_ARGS struct sparc_args
1132 
1133 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1134    for a call to a function whose data type is FNTYPE.
1135    For a library call, FNTYPE is 0.  */
1136 
1137 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1138 init_cumulative_args (& (CUM), (FNTYPE), (LIBNAME), (FNDECL));
1139 
1140 
1141 /* Generate the special assembly code needed to tell the assembler whatever
1142    it might need to know about the return value of a function.
1143 
1144    For SPARC assemblers, we need to output a .proc pseudo-op which conveys
1145    information to the assembler relating to peephole optimization (done in
1146    the assembler).  */
1147 
1148 #define ASM_DECLARE_RESULT(FILE, RESULT) \
1149   fprintf ((FILE), "\t.proc\t0%lo\n", sparc_type_code (TREE_TYPE (RESULT)))
1150 
1151 /* Output the special assembly code needed to tell the assembler some
1152    register is used as global register variable.
1153 
1154    SPARC 64bit psABI declares registers %g2 and %g3 as application
1155    registers and %g6 and %g7 as OS registers.  Any object using them
1156    should declare (for %g2/%g3 has to, for %g6/%g7 can) that it uses them
1157    and how they are used (scratch or some global variable).
1158    Linker will then refuse to link together objects which use those
1159    registers incompatibly.
1160 
1161    Unless the registers are used for scratch, two different global
1162    registers cannot be declared to the same name, so in the unlikely
1163    case of a global register variable occupying more than one register
1164    we prefix the second and following registers with .gnu.part1. etc.  */
1165 
1166 extern GTY(()) char sparc_hard_reg_printed[8];
1167 
1168 #define ASM_DECLARE_REGISTER_GLOBAL(FILE, DECL, REGNO, NAME)		\
1169 do {									\
1170   if (TARGET_ARCH64)							\
1171     {									\
1172       int end = end_hard_regno (DECL_MODE (decl), REGNO);		\
1173       int reg;								\
1174       for (reg = (REGNO); reg < 8 && reg < end; reg++)			\
1175 	if ((reg & ~1) == 2 || (reg & ~1) == 6)				\
1176 	  {								\
1177 	    if (reg == (REGNO))						\
1178 	      fprintf ((FILE), "\t.register\t%%g%d, %s\n", reg, (NAME)); \
1179 	    else							\
1180 	      fprintf ((FILE), "\t.register\t%%g%d, .gnu.part%d.%s\n",	\
1181 		       reg, reg - (REGNO), (NAME));			\
1182 	    sparc_hard_reg_printed[reg] = 1;				\
1183 	  }								\
1184     }									\
1185 } while (0)
1186 
1187 /* Emit rtl for profiling.  */
1188 #define PROFILE_HOOK(LABEL)   sparc_profile_hook (LABEL)
1189 
1190 /* All the work done in PROFILE_HOOK, but still required.  */
1191 #define FUNCTION_PROFILER(FILE, LABELNO) do { } while (0)
1192 
1193 /* Set the name of the mcount function for the system.  */
1194 #define MCOUNT_FUNCTION "*mcount"
1195 
1196 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1197    the stack pointer does not matter.  The value is tested only in
1198    functions that have frame pointers.  */
1199 #define EXIT_IGNORE_STACK 1
1200 
1201 /* Length in units of the trampoline for entering a nested function.  */
1202 #define TRAMPOLINE_SIZE (TARGET_ARCH64 ? 32 : 16)
1203 
1204 /* Alignment required for trampolines, in bits.  */
1205 #define TRAMPOLINE_ALIGNMENT 128
1206 
1207 /* Generate RTL to flush the register windows so as to make arbitrary frames
1208    available.  */
1209 #define SETUP_FRAME_ADDRESSES()			\
1210   do {						\
1211     if (!TARGET_FLAT)				\
1212       emit_insn (gen_flush_register_windows ());\
1213   } while (0)
1214 
1215 /* Given an rtx for the address of a frame,
1216    return an rtx for the address of the word in the frame
1217    that holds the dynamic chain--the previous frame's address.  */
1218 #define DYNAMIC_CHAIN_ADDRESS(frame)	\
1219   plus_constant (Pmode, frame, 14 * UNITS_PER_WORD + SPARC_STACK_BIAS)
1220 
1221 /* Given an rtx for the frame pointer,
1222    return an rtx for the address of the frame.  */
1223 #define FRAME_ADDR_RTX(frame) plus_constant (Pmode, frame, SPARC_STACK_BIAS)
1224 
1225 /* The return address isn't on the stack, it is in a register, so we can't
1226    access it from the current frame pointer.  We can access it from the
1227    previous frame pointer though by reading a value from the register window
1228    save area.  */
1229 #define RETURN_ADDR_IN_PREVIOUS_FRAME 1
1230 
1231 /* This is the offset of the return address to the true next instruction to be
1232    executed for the current function.  */
1233 #define RETURN_ADDR_OFFSET \
1234   (8 + 4 * (! TARGET_ARCH64 && cfun->returns_struct))
1235 
1236 /* The current return address is in %i7.  The return address of anything
1237    farther back is in the register window save area at [%fp+60].  */
1238 /* ??? This ignores the fact that the actual return address is +8 for normal
1239    returns, and +12 for structure returns.  */
1240 #define RETURN_ADDR_REGNUM 31
1241 #define RETURN_ADDR_RTX(count, frame)		\
1242   ((count == -1)				\
1243    ? gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM)			\
1244    : gen_rtx_MEM (Pmode,			\
1245 		  memory_address (Pmode, plus_constant (Pmode, frame, \
1246 							15 * UNITS_PER_WORD \
1247 							+ SPARC_STACK_BIAS))))
1248 
1249 /* Before the prologue, the return address is %o7 + 8.  OK, sometimes it's
1250    +12, but always using +8 is close enough for frame unwind purposes.
1251    Actually, just using %o7 is close enough for unwinding, but %o7+8
1252    is something you can return to.  */
1253 #define INCOMING_RETURN_ADDR_REGNUM 15
1254 #define INCOMING_RETURN_ADDR_RTX \
1255   plus_constant (word_mode, \
1256 		 gen_rtx_REG (word_mode, INCOMING_RETURN_ADDR_REGNUM), 8)
1257 #define DWARF_FRAME_RETURN_COLUMN \
1258   DWARF_FRAME_REGNUM (INCOMING_RETURN_ADDR_REGNUM)
1259 
1260 /* The offset from the incoming value of %sp to the top of the stack frame
1261    for the current function.  On sparc64, we have to account for the stack
1262    bias if present.  */
1263 #define INCOMING_FRAME_SP_OFFSET SPARC_STACK_BIAS
1264 
1265 /* Describe how we implement __builtin_eh_return.  */
1266 #define EH_RETURN_REGNUM 1
1267 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 24 : INVALID_REGNUM)
1268 #define EH_RETURN_STACKADJ_RTX	gen_rtx_REG (Pmode, EH_RETURN_REGNUM)
1269 
1270 /* Define registers used by the epilogue and return instruction.  */
1271 #define EPILOGUE_USES(REGNO)					\
1272   ((REGNO) == RETURN_ADDR_REGNUM				\
1273    || (TARGET_FLAT						\
1274        && epilogue_completed					\
1275        && (REGNO) == INCOMING_RETURN_ADDR_REGNUM)		\
1276    || (crtl->calls_eh_return && (REGNO) == EH_RETURN_REGNUM))
1277 
1278 /* Select a format to encode pointers in exception handling data.  CODE
1279    is 0 for data, 1 for code labels, 2 for function pointers.  GLOBAL is
1280    true if the symbol may be affected by dynamic relocations.
1281 
1282    If assembler and linker properly support .uaword %r_disp32(foo),
1283    then use PC relative 32-bit relocations instead of absolute relocs
1284    for shared libraries.  On sparc64, use pc relative 32-bit relocs even
1285    for binaries, to save memory.
1286 
1287    binutils 2.12 would emit a R_SPARC_DISP32 dynamic relocation if the
1288    symbol %r_disp32() is against was not local, but .hidden.  In that
1289    case, we have to use DW_EH_PE_absptr for pic personality.  */
1290 #ifdef HAVE_AS_SPARC_UA_PCREL
1291 #ifdef HAVE_AS_SPARC_UA_PCREL_HIDDEN
1292 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL)			\
1293   (flag_pic								\
1294    ? (GLOBAL ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\
1295    : ((TARGET_ARCH64 && ! GLOBAL)					\
1296       ? (DW_EH_PE_pcrel | DW_EH_PE_sdata4)				\
1297       : DW_EH_PE_absptr))
1298 #else
1299 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL)			\
1300   (flag_pic								\
1301    ? (GLOBAL ? DW_EH_PE_absptr : (DW_EH_PE_pcrel | DW_EH_PE_sdata4))	\
1302    : ((TARGET_ARCH64 && ! GLOBAL)					\
1303       ? (DW_EH_PE_pcrel | DW_EH_PE_sdata4)				\
1304       : DW_EH_PE_absptr))
1305 #endif
1306 
1307 /* Emit a PC-relative relocation.  */
1308 #define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL)	\
1309   do {							\
1310     fputs (integer_asm_op (SIZE, FALSE), FILE);		\
1311     fprintf (FILE, "%%r_disp%d(", SIZE * 8);		\
1312     assemble_name (FILE, LABEL);			\
1313     fputc (')', FILE);					\
1314   } while (0)
1315 #endif
1316 
1317 /* Addressing modes, and classification of registers for them.  */
1318 
1319 /* Macros to check register numbers against specific register classes.  */
1320 
1321 /* These assume that REGNO is a hard or pseudo reg number.
1322    They give nonzero only if REGNO is a hard reg of the suitable class
1323    or a pseudo reg currently allocated to a suitable hard reg.
1324    Since they use reg_renumber, they are safe only once reg_renumber
1325    has been allocated, which happens in reginfo.c during register
1326    allocation.  */
1327 
1328 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1329 (SPARC_INT_REG_P (REGNO) || SPARC_INT_REG_P (reg_renumber[REGNO]) \
1330  || (REGNO) == FRAME_POINTER_REGNUM				  \
1331  || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)
1332 
1333 #define REGNO_OK_FOR_BASE_P(REGNO)  REGNO_OK_FOR_INDEX_P (REGNO)
1334 
1335 #define REGNO_OK_FOR_FP_P(REGNO) \
1336   (((unsigned) (REGNO) - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)) \
1337    || ((unsigned) reg_renumber[REGNO] - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)))
1338 
1339 #define REGNO_OK_FOR_CCFP_P(REGNO) \
1340  (TARGET_V9 \
1341   && (((unsigned) (REGNO) - 96 < (unsigned)4) \
1342       || ((unsigned) reg_renumber[REGNO] - 96 < (unsigned)4)))
1343 
1344 /* Maximum number of registers that can appear in a valid memory address.  */
1345 
1346 #define MAX_REGS_PER_ADDRESS 2
1347 
1348 /* Recognize any constant value that is a valid address.
1349    When PIC, we do not accept an address that would require a scratch reg
1350    to load into a register.  */
1351 
1352 #define CONSTANT_ADDRESS_P(X) constant_address_p (X)
1353 
1354 /* Define this, so that when PIC, reload won't try to reload invalid
1355    addresses which require two reload registers.  */
1356 
1357 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
1358 
1359 /* Should gcc use [%reg+%lo(xx)+offset] addresses?  */
1360 
1361 #ifdef HAVE_AS_OFFSETABLE_LO10
1362 #define USE_AS_OFFSETABLE_LO10 1
1363 #else
1364 #define USE_AS_OFFSETABLE_LO10 0
1365 #endif
1366 
1367 /* Try a machine-dependent way of reloading an illegitimate address
1368    operand.  If we find one, push the reload and jump to WIN.  This
1369    macro is used in only one place: `find_reloads_address' in reload.c.  */
1370 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN)	   \
1371 do {									   \
1372   int win;								   \
1373   (X) = sparc_legitimize_reload_address ((X), (MODE), (OPNUM),		   \
1374 					 (int)(TYPE), (IND_LEVELS), &win); \
1375   if (win)								   \
1376     goto WIN;								   \
1377 } while (0)
1378 
1379 /* Specify the machine mode that this machine uses
1380    for the index in the tablejump instruction.  */
1381 /* If we ever implement any of the full models (such as CM_FULLANY),
1382    this has to be DImode in that case */
1383 #ifdef HAVE_GAS_SUBSECTION_ORDERING
1384 #define CASE_VECTOR_MODE \
1385 (! TARGET_PTR64 ? SImode : flag_pic ? SImode : TARGET_CM_MEDLOW ? SImode : DImode)
1386 #else
1387 /* If assembler does not have working .subsection -1, we use DImode for pic, as otherwise
1388    we have to sign extend which slows things down.  */
1389 #define CASE_VECTOR_MODE \
1390 (! TARGET_PTR64 ? SImode : flag_pic ? DImode : TARGET_CM_MEDLOW ? SImode : DImode)
1391 #endif
1392 
1393 /* Define this as 1 if `char' should by default be signed; else as 0.  */
1394 #define DEFAULT_SIGNED_CHAR 1
1395 
1396 /* Max number of bytes we can move from memory to memory
1397    in one reasonably fast instruction.  */
1398 #define MOVE_MAX 8
1399 
1400 /* If a memory-to-memory move would take MOVE_RATIO or more simple
1401    move-instruction pairs, we will do a cpymem or libcall instead.  */
1402 
1403 #define MOVE_RATIO(speed) ((speed) ? 8 : 3)
1404 
1405 /* Define if operations between registers always perform the operation
1406    on the full register even if a narrower mode is specified.  */
1407 #define WORD_REGISTER_OPERATIONS 1
1408 
1409 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1410    will either zero-extend or sign-extend.  The value of this macro should
1411    be the code that says which one of the two operations is implicitly
1412    done, UNKNOWN if none.  */
1413 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1414 
1415 /* Nonzero if access to memory by bytes is slow and undesirable.
1416    For RISC chips, it means that access to memory by bytes is no
1417    better than access by words when possible, so grab a whole word
1418    and maybe make use of that.  */
1419 #define SLOW_BYTE_ACCESS 1
1420 
1421 /* Define this to be nonzero if shift instructions ignore all but the low-order
1422    few bits.  */
1423 #define SHIFT_COUNT_TRUNCATED 1
1424 
1425 /* For SImode, we make sure the top 32-bits of the register are clear and
1426    then we subtract 32 from the lzd instruction result.  */
1427 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1428   ((VALUE) = ((MODE) == SImode ? 32 : 64), 1)
1429 
1430 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1431    return the mode to be used for the comparison.  For floating-point,
1432    CCFP[E]mode is used.  CCNZmode should be used when the first operand
1433    is a PLUS, MINUS, NEG, or ASHIFT.  CCmode should be used when no special
1434    processing is needed.  */
1435 #define SELECT_CC_MODE(OP,X,Y)  select_cc_mode ((OP), (X), (Y))
1436 
1437 /* Return nonzero if MODE implies a floating point inequality can be
1438    reversed.  For SPARC this is always true because we have a full
1439    compliment of ordered and unordered comparisons, but until generic
1440    code knows how to reverse it correctly we keep the old definition.  */
1441 #define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode && (MODE) != CCFPmode)
1442 
1443 /* A function address in a call instruction for indexing purposes.  */
1444 #define FUNCTION_MODE Pmode
1445 
1446 /* Define this if addresses of constant functions
1447    shouldn't be put through pseudo regs where they can be cse'd.
1448    Desirable on machines where ordinary constants are expensive
1449    but a CALL with constant address is cheap.  */
1450 #define NO_FUNCTION_CSE 1
1451 
1452 /* The _Q_* comparison libcalls return booleans.  */
1453 #define FLOAT_LIB_COMPARE_RETURNS_BOOL(MODE, COMPARISON) ((MODE) == TFmode)
1454 
1455 /* Assume by default that the _Qp_* 64-bit libcalls are implemented such
1456    that the inputs are fully consumed before the output memory is clobbered.  */
1457 
1458 #define TARGET_BUGGY_QP_LIB	0
1459 
1460 /* Assume by default that we do not have the Solaris-specific conversion
1461    routines nor 64-bit integer multiply and divide routines.  */
1462 
1463 #define SUN_CONVERSION_LIBFUNCS 	0
1464 #define DITF_CONVERSION_LIBFUNCS	0
1465 #define SUN_INTEGER_MULTIPLY_64 	0
1466 
1467 /* A C expression for the cost of a branch instruction.  A value of 1
1468    is the default; other values are interpreted relative to that.  */
1469 #define BRANCH_COST(SPEED_P, PREDICTABLE_P) \
1470   (sparc_branch_cost (SPEED_P, PREDICTABLE_P))
1471 
1472 /* Control the assembler format that we output.  */
1473 
1474 /* A C string constant describing how to begin a comment in the target
1475    assembler language.  The compiler assumes that the comment will end at
1476    the end of the line.  */
1477 
1478 #define ASM_COMMENT_START "!"
1479 
1480 /* Output to assembler file text saying following lines
1481    may contain character constants, extra white space, comments, etc.  */
1482 
1483 #define ASM_APP_ON ""
1484 
1485 /* Output to assembler file text saying following lines
1486    no longer contain unusual constructs.  */
1487 
1488 #define ASM_APP_OFF ""
1489 
1490 /* How to refer to registers in assembler output.
1491    This sequence is indexed by compiler's hard-register-number (see above).  */
1492 
1493 #define REGISTER_NAMES \
1494 {"%g0", "%g1", "%g2", "%g3", "%g4", "%g5", "%g6", "%g7",		\
1495  "%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%sp", "%o7",		\
1496  "%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7",		\
1497  "%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%fp", "%i7",		\
1498  "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7",		\
1499  "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15",		\
1500  "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23",	\
1501  "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31",	\
1502  "%f32", "%f33", "%f34", "%f35", "%f36", "%f37", "%f38", "%f39",	\
1503  "%f40", "%f41", "%f42", "%f43", "%f44", "%f45", "%f46", "%f47",	\
1504  "%f48", "%f49", "%f50", "%f51", "%f52", "%f53", "%f54", "%f55",	\
1505  "%f56", "%f57", "%f58", "%f59", "%f60", "%f61", "%f62", "%f63",	\
1506  "%fcc0", "%fcc1", "%fcc2", "%fcc3", "%icc", "%sfp", "%gsr" }
1507 
1508 /* Define additional names for use in asm clobbers and asm declarations.  */
1509 
1510 #define ADDITIONAL_REGISTER_NAMES \
1511 {{"ccr", SPARC_ICC_REG}, {"cc", SPARC_ICC_REG}}
1512 
1513 /* On Sun 4, this limit is 2048.  We use 1000 to be safe, since the length
1514    can run past this up to a continuation point.  Once we used 1500, but
1515    a single entry in C++ can run more than 500 bytes, due to the length of
1516    mangled symbol names.  dbxout.c should really be fixed to do
1517    continuations when they are actually needed instead of trying to
1518    guess...  */
1519 #define DBX_CONTIN_LENGTH 1000
1520 
1521 /* This is how to output a command to make the user-level label named NAME
1522    defined for reference from other files.  */
1523 
1524 /* Globalizing directive for a label.  */
1525 #define GLOBAL_ASM_OP "\t.global "
1526 
1527 /* The prefix to add to user-visible assembler symbols.  */
1528 
1529 #define USER_LABEL_PREFIX "_"
1530 
1531 /* This is how to store into the string LABEL
1532    the symbol_ref name of an internal numbered label where
1533    PREFIX is the class of label and NUM is the number within the class.
1534    This is suitable for output with `assemble_name'.  */
1535 
1536 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM)	\
1537   sprintf ((LABEL), "*%s%ld", (PREFIX), (long)(NUM))
1538 
1539 /* This is how we hook in and defer the case-vector until the end of
1540    the function.  */
1541 #define ASM_OUTPUT_ADDR_VEC(LAB,VEC) \
1542   sparc_defer_case_vector ((LAB),(VEC), 0)
1543 
1544 #define ASM_OUTPUT_ADDR_DIFF_VEC(LAB,VEC) \
1545   sparc_defer_case_vector ((LAB),(VEC), 1)
1546 
1547 /* This is how to output an element of a case-vector that is absolute.  */
1548 
1549 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)  \
1550 do {									\
1551   char label[30];							\
1552   ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE);			\
1553   if (CASE_VECTOR_MODE == SImode)					\
1554     fprintf (FILE, "\t.word\t");					\
1555   else									\
1556     fprintf (FILE, "\t.xword\t");					\
1557   assemble_name (FILE, label);						\
1558   fputc ('\n', FILE);							\
1559 } while (0)
1560 
1561 /* This is how to output an element of a case-vector that is relative.
1562    (SPARC uses such vectors only when generating PIC.)  */
1563 
1564 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL)		\
1565 do {									\
1566   char label[30];							\
1567   ASM_GENERATE_INTERNAL_LABEL (label, "L", (VALUE));			\
1568   if (CASE_VECTOR_MODE == SImode)					\
1569     fprintf (FILE, "\t.word\t");					\
1570   else									\
1571     fprintf (FILE, "\t.xword\t");					\
1572   assemble_name (FILE, label);						\
1573   ASM_GENERATE_INTERNAL_LABEL (label, "L", (REL));			\
1574   fputc ('-', FILE);							\
1575   assemble_name (FILE, label);						\
1576   fputc ('\n', FILE);							\
1577 } while (0)
1578 
1579 /* This is what to output before and after case-vector (both
1580    relative and absolute).  If .subsection -1 works, we put case-vectors
1581    at the beginning of the current section.  */
1582 
1583 #ifdef HAVE_GAS_SUBSECTION_ORDERING
1584 
1585 #define ASM_OUTPUT_ADDR_VEC_START(FILE)					\
1586   fprintf(FILE, "\t.subsection\t-1\n")
1587 
1588 #define ASM_OUTPUT_ADDR_VEC_END(FILE)					\
1589   fprintf(FILE, "\t.previous\n")
1590 
1591 #endif
1592 
1593 /* This is how to output an assembler line
1594    that says to advance the location counter
1595    to a multiple of 2**LOG bytes.  */
1596 
1597 #define ASM_OUTPUT_ALIGN(FILE,LOG)	\
1598   if ((LOG) != 0)			\
1599     fprintf (FILE, "\t.align %d\n", (1 << (LOG)))
1600 
1601 #define ASM_OUTPUT_SKIP(FILE,SIZE)  \
1602   fprintf (FILE, "\t.skip " HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
1603 
1604 /* This says how to output an assembler line
1605    to define a global common symbol.  */
1606 
1607 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED)  \
1608 ( fputs ("\t.common ", (FILE)),		\
1609   assemble_name ((FILE), (NAME)),		\
1610   fprintf ((FILE), "," HOST_WIDE_INT_PRINT_UNSIGNED",\"bss\"\n", (SIZE)))
1611 
1612 /* This says how to output an assembler line to define a local common
1613    symbol.  */
1614 
1615 #define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGNED)		\
1616 ( fputs ("\t.reserve ", (FILE)),					\
1617   assemble_name ((FILE), (NAME)),					\
1618   fprintf ((FILE), "," HOST_WIDE_INT_PRINT_UNSIGNED",\"bss\",%u\n",	\
1619 	   (SIZE), ((ALIGNED) / BITS_PER_UNIT)))
1620 
1621 /* A C statement (sans semicolon) to output to the stdio stream
1622    FILE the assembler definition of uninitialized global DECL named
1623    NAME whose size is SIZE bytes and alignment is ALIGN bytes.
1624    Try to use asm_output_aligned_bss to implement this macro.  */
1625 
1626 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN)	\
1627   do {								\
1628     ASM_OUTPUT_ALIGNED_LOCAL (FILE, NAME, SIZE, ALIGN);		\
1629   } while (0)
1630 
1631 /* Output #ident as a .ident.  */
1632 
1633 #undef TARGET_ASM_OUTPUT_IDENT
1634 #define TARGET_ASM_OUTPUT_IDENT default_asm_output_ident_directive
1635 
1636 /* Prettify the assembly.  */
1637 
1638 extern int sparc_indent_opcode;
1639 
1640 #define ASM_OUTPUT_OPCODE(FILE, PTR)	\
1641   do {					\
1642     if (sparc_indent_opcode)		\
1643       {					\
1644 	putc (' ', FILE);		\
1645 	sparc_indent_opcode = 0;	\
1646       }					\
1647   } while (0)
1648 
1649 /* TLS support defaulting to original Sun flavor.  GNU extensions
1650    must be activated in separate configuration files.  */
1651 #ifdef HAVE_AS_TLS
1652 #define TARGET_TLS 1
1653 #else
1654 #define TARGET_TLS 0
1655 #endif
1656 
1657 #define TARGET_SUN_TLS TARGET_TLS
1658 #define TARGET_GNU_TLS 0
1659 
1660 #ifdef HAVE_AS_FMAF_HPC_VIS3
1661 #define AS_NIAGARA3_FLAG "d"
1662 #else
1663 #define AS_NIAGARA3_FLAG "b"
1664 #endif
1665 
1666 #ifdef HAVE_AS_SPARC4
1667 #define AS_NIAGARA4_FLAG "-xarch=sparc4"
1668 #else
1669 #define AS_NIAGARA4_FLAG "-Av9" AS_NIAGARA3_FLAG
1670 #endif
1671 
1672 #ifdef HAVE_AS_SPARC5_VIS4
1673 #define AS_NIAGARA7_FLAG "-xarch=sparc5"
1674 #else
1675 #define AS_NIAGARA7_FLAG AS_NIAGARA4_FLAG
1676 #endif
1677 
1678 #ifdef HAVE_AS_SPARC6
1679 #define AS_M8_FLAG "-xarch=sparc6"
1680 #else
1681 #define AS_M8_FLAG AS_NIAGARA7_FLAG
1682 #endif
1683 
1684 #ifdef HAVE_AS_LEON
1685 #define AS_LEON_FLAG "-Aleon"
1686 #define AS_LEONV7_FLAG "-Aleon"
1687 #else
1688 #define AS_LEON_FLAG "-Av8"
1689 #define AS_LEONV7_FLAG "-Av7"
1690 #endif
1691 
1692 /* We use gcc _mcount for profiling.  */
1693 #define NO_PROFILE_COUNTERS 0
1694 
1695 /* Debug support */
1696 #define MASK_DEBUG_OPTIONS		0x01	/* debug option handling */
1697 #define MASK_DEBUG_ALL			MASK_DEBUG_OPTIONS
1698 
1699 #define TARGET_DEBUG_OPTIONS		(sparc_debug & MASK_DEBUG_OPTIONS)
1700 
1701 /* By default, use the weakest memory model for the cpu.  */
1702 #ifndef SUBTARGET_DEFAULT_MEMORY_MODEL
1703 #define SUBTARGET_DEFAULT_MEMORY_MODEL	SMM_DEFAULT
1704 #endif
1705 
1706 /* Define this to 1 if the FE_EXCEPT values defined in fenv.h start at 1.  */
1707 #define SPARC_LOW_FE_EXCEPT_VALUES 0
1708 
1709 #define TARGET_SUPPORTS_WIDE_INT 1
1710