xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/config/pa/pa32-regs.h (revision b7b7574d3bf8eeb51a1fa3977b59142ec6434a55)
1 /* Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
2    2008 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 Under Section 7 of GPL version 3, you are granted additional
17 permissions described in the GCC Runtime Library Exception, version
18 3.1, as published by the Free Software Foundation.
19 
20 You should have received a copy of the GNU General Public License and
21 a copy of the GCC Runtime Library Exception along with this program;
22 see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23 <http://www.gnu.org/licenses/>.  */
24 
25 /* Standard register usage.  */
26 
27 /* Number of actual hardware registers.
28    The hardware registers are assigned numbers for the compiler
29    from 0 to just below FIRST_PSEUDO_REGISTER.
30    All registers that the compiler knows about must be given numbers,
31    even those that are not normally considered general registers.
32 
33    HP-PA 1.0 has 32 fullword registers and 16 floating point
34    registers. The floating point registers hold either word or double
35    word values.
36 
37    16 additional registers are reserved.
38 
39    HP-PA 1.1 has 32 fullword registers and 32 floating point
40    registers. However, the floating point registers behave
41    differently: the left and right halves of registers are addressable
42    as 32-bit registers. So, we will set things up like the 68k which
43    has different fp units: define separate register sets for the 1.0
44    and 1.1 fp units.  */
45 
46 #define FIRST_PSEUDO_REGISTER 89  /* 32 general regs + 56 fp regs +
47 				     + 1 shift reg */
48 
49 /* 1 for registers that have pervasive standard uses
50    and are not available for the register allocator.
51 
52    On the HP-PA, these are:
53    Reg 0	= 0 (hardware). However, 0 is used for condition code,
54                   so is not fixed.
55    Reg 1	= ADDIL target/Temporary (hardware).
56    Reg 2	= Return Pointer
57    Reg 3	= Frame Pointer
58    Reg 4	= Frame Pointer (>8k varying frame with HP compilers only)
59    Reg 4-18	= Preserved Registers
60    Reg 19	= Linkage Table Register in HPUX 8.0 shared library scheme.
61    Reg 20-22	= Temporary Registers
62    Reg 23-26	= Temporary/Parameter Registers
63    Reg 27	= Global Data Pointer (hp)
64    Reg 28	= Temporary/Return Value register
65    Reg 29	= Temporary/Static Chain/Return Value register #2
66    Reg 30	= stack pointer
67    Reg 31	= Temporary/Millicode Return Pointer (hp)
68 
69    Freg 0-3	= Status Registers	 -- Not known to the compiler.
70    Freg 4-7	= Arguments/Return Value
71    Freg 8-11	= Temporary Registers
72    Freg 12-15	= Preserved Registers
73 
74    Freg 16-31	= Reserved
75 
76    On the Snake, fp regs are
77 
78    Freg 0-3	= Status Registers	-- Not known to the compiler.
79    Freg 4L-7R	= Arguments/Return Value
80    Freg 8L-11R	= Temporary Registers
81    Freg 12L-21R	= Preserved Registers
82    Freg 22L-31R = Temporary Registers
83 
84 */
85 
86 #define FIXED_REGISTERS  \
87  {0, 0, 0, 0, 0, 0, 0, 0, \
88   0, 0, 0, 0, 0, 0, 0, 0, \
89   0, 0, 0, 0, 0, 0, 0, 0, \
90   0, 0, 0, 1, 0, 0, 1, 0, \
91   /* fp registers */	  \
92   0, 0, 0, 0, 0, 0, 0, 0, \
93   0, 0, 0, 0, 0, 0, 0, 0, \
94   0, 0, 0, 0, 0, 0, 0, 0, \
95   0, 0, 0, 0, 0, 0, 0, 0, \
96   0, 0, 0, 0, 0, 0, 0, 0, \
97   0, 0, 0, 0, 0, 0, 0, 0, \
98   0, 0, 0, 0, 0, 0, 0, 0, \
99   0}
100 
101 /* 1 for registers not available across function calls.
102    These must include the FIXED_REGISTERS and also any
103    registers that can be used without being saved.
104    The latter must include the registers where values are returned
105    and the register where structure-value addresses are passed.
106    Aside from that, you can include as many other registers as you like.  */
107 #define CALL_USED_REGISTERS  \
108  {1, 1, 1, 0, 0, 0, 0, 0, \
109   0, 0, 0, 0, 0, 0, 0, 0, \
110   0, 0, 0, 1, 1, 1, 1, 1, \
111   1, 1, 1, 1, 1, 1, 1, 1, \
112   /* fp registers */	  \
113   1, 1, 1, 1, 1, 1, 1, 1, \
114   1, 1, 1, 1, 1, 1, 1, 1, \
115   0, 0, 0, 0, 0, 0, 0, 0, \
116   0, 0, 0, 0, 0, 0, 0, 0, \
117   0, 0, 0, 0, 1, 1, 1, 1, \
118   1, 1, 1, 1, 1, 1, 1, 1, \
119   1, 1, 1, 1, 1, 1, 1, 1, \
120   1}
121 
122 #define CONDITIONAL_REGISTER_USAGE \
123 {						\
124   int i;					\
125   if (!TARGET_PA_11)				\
126     {						\
127       for (i = 56; i < 88; i++) 		\
128 	fixed_regs[i] = call_used_regs[i] = 1; 	\
129       for (i = 33; i < 88; i += 2) 		\
130 	fixed_regs[i] = call_used_regs[i] = 1; 	\
131     }						\
132   if (TARGET_DISABLE_FPREGS || TARGET_SOFT_FLOAT)\
133     {						\
134       for (i = 32; i < 88; i++) 		\
135 	fixed_regs[i] = call_used_regs[i] = 1; 	\
136     }						\
137   if (flag_pic)					\
138     fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1;	\
139 }
140 
141 /* Allocate the call used registers first.  This should minimize
142    the number of registers that need to be saved (as call used
143    registers will generally not be allocated across a call).
144 
145    Experimentation has shown slightly better results by allocating
146    FP registers first.  We allocate the caller-saved registers more
147    or less in reverse order to their allocation as arguments.
148 
149    FP registers are ordered so that all L registers are selected before
150    R registers.  This works around a false dependency interlock on the
151    PA8000 when accessing the high and low parts of an FP register
152    independently.  */
153 
154 #define REG_ALLOC_ORDER \
155  {					\
156   /* caller-saved fp regs.  */		\
157   68, 70, 72, 74, 76, 78, 80, 82,	\
158   84, 86, 40, 42, 44, 46, 38, 36,	\
159   34, 32,				\
160   69, 71, 73, 75, 77, 79, 81, 83,	\
161   85, 87, 41, 43, 45, 47, 39, 37,	\
162   35, 33,				\
163   /* caller-saved general regs.  */	\
164   28, 19, 20, 21, 22, 31, 27, 29,	\
165   23, 24, 25, 26,  2,			\
166   /* callee-saved fp regs.  */		\
167   48, 50, 52, 54, 56, 58, 60, 62,	\
168   64, 66,				\
169   49, 51, 53, 55, 57, 59, 61, 63,	\
170   65, 67,				\
171   /* callee-saved general regs.  */	\
172    3,  4,  5,  6,  7,  8,  9, 10, 	\
173   11, 12, 13, 14, 15, 16, 17, 18,	\
174   /* special registers.  */		\
175    1, 30,  0, 88}
176 
177 
178 /* Return number of consecutive hard regs needed starting at reg REGNO
179    to hold something of mode MODE.
180    This is ordinarily the length in words of a value of mode MODE
181    but can be less for certain modes in special long registers.
182 
183    On the HP-PA, general registers are 32 bits wide.  The floating
184    point registers are 64 bits wide.  Snake fp regs are treated as
185    32 bits wide since the left and right parts are independently
186    accessible.  */
187 #define HARD_REGNO_NREGS(REGNO, MODE)					\
188   (FP_REGNO_P (REGNO)							\
189    ? (!TARGET_PA_11							\
190       ? COMPLEX_MODE_P (MODE) ? 2 : 1					\
191       : (GET_MODE_SIZE (MODE) + 4 - 1) / 4) 	                        \
192    : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
193 
194 /* There are no instructions that use DImode in PA 1.0, so we only
195    allow it in PA 1.1 and later.  */
196 #define VALID_FP_MODE_P(MODE)						\
197   ((MODE) == SFmode || (MODE) == DFmode					\
198    || (MODE) == SCmode || (MODE) == DCmode				\
199    || (MODE) == SImode || (TARGET_PA_11 && (MODE) == DImode))
200 
201 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
202 
203    On the HP-PA, the cpu registers can hold any mode that fits in 32 bits.
204    For the 64-bit modes, we choose a set of non-overlapping general registers
205    that includes the incoming arguments and the return value.  We specify a
206    set with no overlaps so that we don't have to specify that the destination
207    register is an early clobber in patterns using this mode.  Except for the
208    return value, the starting registers are odd.  For 128 and 256 bit modes,
209    we similarly specify non-overlapping sets of cpu registers.  However,
210    there aren't any patterns defined for modes larger than 64 bits at the
211    moment.
212 
213    We limit the modes allowed in the floating point registers to the
214    set of modes used in the machine definition.  In addition, we allow
215    the complex modes SCmode and DCmode.  The real and imaginary parts
216    of complex modes are allocated to separate registers.  This might
217    allow patterns to be defined in the future to operate on these values.
218 
219    The PA 2.0 architecture specifies that quad-precision floating-point
220    values should start on an even floating point register.  Thus, we
221    choose non-overlapping sets of registers starting on even register
222    boundaries for large modes.  However, there is currently no support
223    in the machine definition for modes larger than 64 bits.  TFmode is
224    supported under HP-UX using libcalls.  Since TFmode values are passed
225    by reference, they never need to be loaded into the floating-point
226    registers.  */
227 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
228   ((REGNO) == 0 ? (MODE) == CCmode || (MODE) == CCFPmode		\
229    : (REGNO) == 88 ? SCALAR_INT_MODE_P (MODE)				\
230    : !TARGET_PA_11 && FP_REGNO_P (REGNO)				\
231      ? (VALID_FP_MODE_P (MODE)						\
232 	&& (GET_MODE_SIZE (MODE) <= 8					\
233 	    || (GET_MODE_SIZE (MODE) == 16 && ((REGNO) & 3) == 0)))	\
234    : FP_REGNO_P (REGNO)							\
235      ? (VALID_FP_MODE_P (MODE)						\
236 	&& (GET_MODE_SIZE (MODE) <= 4					\
237 	    || (GET_MODE_SIZE (MODE) == 8 && ((REGNO) & 1) == 0)	\
238 	    || (GET_MODE_SIZE (MODE) == 16 && ((REGNO) & 3) == 0)	\
239 	    || (GET_MODE_SIZE (MODE) == 32 && ((REGNO) & 7) == 0)))	\
240    : (GET_MODE_SIZE (MODE) <= UNITS_PER_WORD				\
241       || (GET_MODE_SIZE (MODE) == 2 * UNITS_PER_WORD			\
242 	  && ((((REGNO) & 1) == 1 && (REGNO) <= 25) || (REGNO) == 28))	\
243       || (GET_MODE_SIZE (MODE) == 4 * UNITS_PER_WORD			\
244 	  && ((REGNO) & 3) == 3 && (REGNO) <= 23)			\
245       || (GET_MODE_SIZE (MODE) == 8 * UNITS_PER_WORD			\
246 	  && ((REGNO) & 7) == 3 && (REGNO) <= 19)))
247 
248 /* How to renumber registers for dbx and gdb.
249 
250    Registers 0  - 31 remain unchanged.
251 
252    Registers 32 - 87 are mapped to 72 - 127
253 
254    Register 88 is mapped to 32.  */
255 
256 #define DBX_REGISTER_NUMBER(REGNO) \
257   ((REGNO) <= 31 ? (REGNO) :						\
258    ((REGNO) <= 87 ? (REGNO) + 40 : 32))
259 
260 /* We must not use the DBX register numbers for the DWARF 2 CFA column
261    numbers because that maps to numbers beyond FIRST_PSEUDO_REGISTER.
262    Instead use the identity mapping.  */
263 #define DWARF_FRAME_REGNUM(REG) REG
264 
265 /* Define the classes of registers for register constraints in the
266    machine description.  Also define ranges of constants.
267 
268    One of the classes must always be named ALL_REGS and include all hard regs.
269    If there is more than one class, another class must be named NO_REGS
270    and contain no registers.
271 
272    The name GENERAL_REGS must be the name of a class (or an alias for
273    another name such as ALL_REGS).  This is the class of registers
274    that is allowed by "g" or "r" in a register constraint.
275    Also, registers outside this class are allocated only when
276    instructions express preferences for them.
277 
278    The classes must be numbered in nondecreasing order; that is,
279    a larger-numbered class must never be contained completely
280    in a smaller-numbered class.
281 
282    For any two classes, it is very desirable that there be another
283    class that represents their union.  */
284 
285   /* The HP-PA has four kinds of registers: general regs, 1.0 fp regs,
286      1.1 fp regs, and the high 1.1 fp regs, to which the operands of
287      fmpyadd and fmpysub are restricted.  */
288 
289 enum reg_class { NO_REGS, R1_REGS, GENERAL_REGS, FPUPPER_REGS, FP_REGS,
290 		 GENERAL_OR_FP_REGS, SHIFT_REGS, ALL_REGS, LIM_REG_CLASSES};
291 
292 #define N_REG_CLASSES (int) LIM_REG_CLASSES
293 
294 /* Give names of register classes as strings for dump file.  */
295 
296 #define REG_CLASS_NAMES \
297   {"NO_REGS", "R1_REGS", "GENERAL_REGS", "FPUPPER_REGS", "FP_REGS", \
298    "GENERAL_OR_FP_REGS", "SHIFT_REGS", "ALL_REGS"}
299 
300 /* Define which registers fit in which classes.
301    This is an initializer for a vector of HARD_REG_SET
302    of length N_REG_CLASSES. Register 0, the "condition code" register,
303    is in no class.  */
304 
305 #define REG_CLASS_CONTENTS	\
306  {{0x00000000, 0x00000000, 0x00000000},	/* NO_REGS */			\
307   {0x00000002, 0x00000000, 0x00000000},	/* R1_REGS */			\
308   {0xfffffffe, 0x00000000, 0x00000000},	/* GENERAL_REGS */		\
309   {0x00000000, 0xff000000, 0x00ffffff},	/* FPUPPER_REGS */		\
310   {0x00000000, 0xffffffff, 0x00ffffff},	/* FP_REGS */			\
311   {0xfffffffe, 0xffffffff, 0x00ffffff},	/* GENERAL_OR_FP_REGS */	\
312   {0x00000000, 0x00000000, 0x01000000},	/* SHIFT_REGS */		\
313   {0xfffffffe, 0xffffffff, 0x01ffffff}}	/* ALL_REGS */
314 
315 /* The following macro defines cover classes for Integrated Register
316    Allocator.  Cover classes is a set of non-intersected register
317    classes covering all hard registers used for register allocation
318    purpose.  Any move between two registers of a cover class should be
319    cheaper than load or store of the registers.  The macro value is
320    array of register classes with LIM_REG_CLASSES used as the end
321    marker.  */
322 
323 #define IRA_COVER_CLASSES						\
324 {									\
325   GENERAL_REGS, FP_REGS, SHIFT_REGS, LIM_REG_CLASSES			\
326 }
327 
328 /* Defines invalid mode changes.  */
329 
330 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
331   pa_cannot_change_mode_class (FROM, TO, CLASS)
332 
333 /* Return the class number of the smallest class containing
334    reg number REGNO.  This could be a conditional expression
335    or could index an array.  */
336 
337 #define REGNO_REG_CLASS(REGNO)						\
338   ((REGNO) == 0 ? NO_REGS 						\
339    : (REGNO) == 1 ? R1_REGS						\
340    : (REGNO) < 32 ? GENERAL_REGS					\
341    : (REGNO) < 56 ? FP_REGS						\
342    : (REGNO) < 88 ? FPUPPER_REGS					\
343    : SHIFT_REGS)
344 
345 /* Return the maximum number of consecutive registers
346    needed to represent mode MODE in a register of class CLASS.  */
347 #define CLASS_MAX_NREGS(CLASS, MODE)					\
348   ((CLASS) == FP_REGS || (CLASS) == FPUPPER_REGS			\
349    ? (!TARGET_PA_11							\
350       ? COMPLEX_MODE_P (MODE) ? 2 : 1					\
351       : (GET_MODE_SIZE (MODE) + 4 - 1) / 4)				\
352    : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
353 
354 /* 1 if N is a possible register number for function argument passing.  */
355 
356 #define FUNCTION_ARG_REGNO_P(N) \
357   (((N) >= 23 && (N) <= 26) || (! TARGET_SOFT_FLOAT && (N) >= 32 && (N) <= 39))
358 
359 /* How to refer to registers in assembler output.
360    This sequence is indexed by compiler's hard-register-number (see above).  */
361 
362 #define REGISTER_NAMES \
363 {"%r0",   "%r1",    "%r2",   "%r3",    "%r4",   "%r5",    "%r6",   "%r7",    \
364  "%r8",   "%r9",    "%r10",  "%r11",   "%r12",  "%r13",   "%r14",  "%r15",   \
365  "%r16",  "%r17",   "%r18",  "%r19",   "%r20",  "%r21",   "%r22",  "%r23",   \
366  "%r24",  "%r25",   "%r26",  "%r27",   "%r28",  "%r29",   "%r30",  "%r31",   \
367  "%fr4",  "%fr4R",  "%fr5",  "%fr5R",  "%fr6",  "%fr6R",  "%fr7",  "%fr7R",  \
368  "%fr8",  "%fr8R",  "%fr9",  "%fr9R",  "%fr10", "%fr10R", "%fr11", "%fr11R", \
369  "%fr12", "%fr12R", "%fr13", "%fr13R", "%fr14", "%fr14R", "%fr15", "%fr15R", \
370  "%fr16", "%fr16R", "%fr17", "%fr17R", "%fr18", "%fr18R", "%fr19", "%fr19R", \
371  "%fr20", "%fr20R", "%fr21", "%fr21R", "%fr22", "%fr22R", "%fr23", "%fr23R", \
372  "%fr24", "%fr24R", "%fr25", "%fr25R", "%fr26", "%fr26R", "%fr27", "%fr27R", \
373  "%fr28", "%fr28R", "%fr29", "%fr29R", "%fr30", "%fr30R", "%fr31", "%fr31R", \
374  "SAR"}
375 
376 #define ADDITIONAL_REGISTER_NAMES \
377 {{"%fr4L",32}, {"%fr5L",34}, {"%fr6L",36}, {"%fr7L",38},		\
378  {"%fr8L",40}, {"%fr9L",42}, {"%fr10L",44}, {"%fr11L",46},		\
379  {"%fr12L",48}, {"%fr13L",50}, {"%fr14L",52}, {"%fr15L",54},		\
380  {"%fr16L",56}, {"%fr17L",58}, {"%fr18L",60}, {"%fr19L",62},		\
381  {"%fr20L",64}, {"%fr21L",66}, {"%fr22L",68}, {"%fr23L",70},		\
382  {"%fr24L",72}, {"%fr25L",74}, {"%fr26L",76}, {"%fr27L",78},		\
383  {"%fr28L",80}, {"%fr29L",82}, {"%fr30L",84}, {"%fr31R",86},		\
384  {"%cr11",88}}
385 
386 #define FP_SAVED_REG_LAST 66
387 #define FP_SAVED_REG_FIRST 48
388 #define FP_REG_STEP 2
389 #define FP_REG_FIRST 32
390 #define FP_REG_LAST 87
391