xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/config/pa/pa32-regs.h (revision 8feb0f0b7eaff0608f8350bbfa3098827b4bb91b)
1 /* Copyright (C) 2000-2020 Free Software Foundation, Inc.
2 
3 This file is part of GCC.
4 
5 GCC is free software; you can redistribute it and/or modify it under
6 the terms of the GNU General Public License as published by the Free
7 Software Foundation; either version 3, or (at your option) any later
8 version.
9 
10 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
11 WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13 for more details.
14 
15 Under Section 7 of GPL version 3, you are granted additional
16 permissions described in the GCC Runtime Library Exception, version
17 3.1, as published by the Free Software Foundation.
18 
19 You should have received a copy of the GNU General Public License and
20 a copy of the GCC Runtime Library Exception along with this program;
21 see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
22 <http://www.gnu.org/licenses/>.  */
23 
24 /* Standard register usage.  */
25 
26 /* Number of actual hardware registers.
27    The hardware registers are assigned numbers for the compiler
28    from 0 to just below FIRST_PSEUDO_REGISTER.
29    All registers that the compiler knows about must be given numbers,
30    even those that are not normally considered general registers.
31 
32    HP-PA 1.0 has 32 fullword registers and 16 floating point
33    registers. The floating point registers hold either word or double
34    word values.
35 
36    16 additional registers are reserved.
37 
38    HP-PA 1.1 has 32 fullword registers and 32 floating point
39    registers. However, the floating point registers behave
40    differently: the left and right halves of registers are addressable
41    as 32-bit registers. So, we will set things up like the 68k which
42    has different fp units: define separate register sets for the 1.0
43    and 1.1 fp units.  */
44 
45 #define FIRST_PSEUDO_REGISTER 90  /* 32 general regs + 56 fp regs +
46 				     + 1 shift reg + frame pointer */
47 
48 /* 1 for registers that have pervasive standard uses
49    and are not available for the register allocator.
50 
51    On the HP-PA, these are:
52    Reg 0	= 0 (hardware). However, 0 is used for condition code,
53                   so is not fixed.
54    Reg 1	= ADDIL target/Temporary (hardware).
55    Reg 2	= Return Pointer
56    Reg 3	= Frame Pointer
57    Reg 4	= Frame Pointer (>8k varying frame with HP compilers only)
58    Reg 4-18	= Preserved Registers
59    Reg 19	= Linkage Table Register in HPUX 8.0 shared library scheme.
60    Reg 20-22	= Temporary Registers
61    Reg 23-26	= Temporary/Parameter Registers
62    Reg 27	= Global Data Pointer (hp)
63    Reg 28	= Temporary/Return Value register
64    Reg 29	= Temporary/Static Chain/Return Value register #2
65    Reg 30	= stack pointer
66    Reg 31	= Temporary/Millicode Return Pointer (hp)
67 
68    Freg 0-3	= Status Registers	 -- Not known to the compiler.
69    Freg 4-7	= Arguments/Return Value
70    Freg 8-11	= Temporary Registers
71    Freg 12-15	= Preserved Registers
72 
73    Freg 16-31	= Reserved
74 
75    On the Snake, fp regs are
76 
77    Freg 0-3	= Status Registers	-- Not known to the compiler.
78    Freg 4L-7R	= Arguments/Return Value
79    Freg 8L-11R	= Temporary Registers
80    Freg 12L-21R	= Preserved Registers
81    Freg 22L-31R = Temporary Registers
82 
83 */
84 
85 #define FIXED_REGISTERS  \
86  {0, 0, 0, 0, 0, 0, 0, 0, \
87   0, 0, 0, 0, 0, 0, 0, 0, \
88   0, 0, 0, 0, 0, 0, 0, 0, \
89   0, 0, 0, 1, 0, 0, 1, 0, \
90   /* fp registers */	  \
91   0, 0, 0, 0, 0, 0, 0, 0, \
92   0, 0, 0, 0, 0, 0, 0, 0, \
93   0, 0, 0, 0, 0, 0, 0, 0, \
94   0, 0, 0, 0, 0, 0, 0, 0, \
95   0, 0, 0, 0, 0, 0, 0, 0, \
96   0, 0, 0, 0, 0, 0, 0, 0, \
97   0, 0, 0, 0, 0, 0, 0, 0, \
98   /* shift register and soft frame pointer */ \
99   0, 1}
100 
101 /* 1 for registers not available across function calls.
102    These must include the FIXED_REGISTERS and also any
103    registers that can be used without being saved.
104    The latter must include the registers where values are returned
105    and the register where structure-value addresses are passed.
106    Aside from that, you can include as many other registers as you like.  */
107 #define CALL_USED_REGISTERS  \
108  {1, 1, 1, 0, 0, 0, 0, 0, \
109   0, 0, 0, 0, 0, 0, 0, 0, \
110   0, 0, 0, 1, 1, 1, 1, 1, \
111   1, 1, 1, 1, 1, 1, 1, 1, \
112   /* fp registers */	  \
113   1, 1, 1, 1, 1, 1, 1, 1, \
114   1, 1, 1, 1, 1, 1, 1, 1, \
115   0, 0, 0, 0, 0, 0, 0, 0, \
116   0, 0, 0, 0, 0, 0, 0, 0, \
117   0, 0, 0, 0, 1, 1, 1, 1, \
118   1, 1, 1, 1, 1, 1, 1, 1, \
119   1, 1, 1, 1, 1, 1, 1, 1, \
120   /* shift register and soft frame pointer */ \
121   1, 1}
122 
123 /* Allocate the call used registers first.  This should minimize
124    the number of registers that need to be saved (as call used
125    registers will generally not be allocated across a call).
126 
127    Experimentation has shown slightly better results by allocating
128    FP registers first.  We allocate the caller-saved registers more
129    or less in reverse order to their allocation as arguments.
130 
131    FP registers are ordered so that all L registers are selected before
132    R registers.  This works around a false dependency interlock on the
133    PA8000 when accessing the high and low parts of an FP register
134    independently.  */
135 
136 #define REG_ALLOC_ORDER \
137  {					\
138   /* caller-saved fp regs.  */		\
139   68, 70, 72, 74, 76, 78, 80, 82,	\
140   84, 86, 40, 42, 44, 46, 38, 36,	\
141   34, 32,				\
142   69, 71, 73, 75, 77, 79, 81, 83,	\
143   85, 87, 41, 43, 45, 47, 39, 37,	\
144   35, 33,				\
145   /* caller-saved general regs.  */	\
146   28, 19, 20, 21, 22, 31, 27, 29,	\
147   23, 24, 25, 26,  2,			\
148   /* callee-saved fp regs.  */		\
149   48, 50, 52, 54, 56, 58, 60, 62,	\
150   64, 66,				\
151   49, 51, 53, 55, 57, 59, 61, 63,	\
152   65, 67,				\
153   /* callee-saved general regs.  */	\
154    3,  4,  5,  6,  7,  8,  9, 10, 	\
155   11, 12, 13, 14, 15, 16, 17, 18,	\
156   /* special registers.  */		\
157    1, 30,  0, 88, 89}
158 
159 
160 /* Return number of consecutive hard regs needed starting at reg REGNO
161    to hold something of mode MODE.
162    This is ordinarily the length in words of a value of mode MODE
163    but can be less for certain modes in special long registers.
164 
165    On the HP-PA, general registers are 32 bits wide.  The floating
166    point registers are 64 bits wide.  Snake fp regs are treated as
167    32 bits wide since the left and right parts are independently
168    accessible.  */
169 #define PA_HARD_REGNO_NREGS(REGNO, MODE)				\
170   (FP_REGNO_P (REGNO)							\
171    ? (!TARGET_PA_11							\
172       ? COMPLEX_MODE_P (MODE) ? 2 : 1					\
173       : (GET_MODE_SIZE (MODE) + 4 - 1) / 4) 	                        \
174    : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
175 
176 /* There are no instructions that use DImode in PA 1.0, so we only
177    allow it in PA 1.1 and later.  */
178 #define VALID_FP_MODE_P(MODE)						\
179   ((MODE) == SFmode || (MODE) == DFmode					\
180    || (MODE) == SCmode || (MODE) == DCmode				\
181    || (MODE) == SImode || (TARGET_PA_11 && (MODE) == DImode))
182 
183 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
184 
185    On the HP-PA, the cpu registers can hold any mode that fits in 32 bits.
186    For the 64-bit modes, we choose a set of non-overlapping general registers
187    that includes the incoming arguments and the return value.  We specify a
188    set with no overlaps so that we don't have to specify that the destination
189    register is an early clobber in patterns using this mode.  Except for the
190    return value, the starting registers are odd.  For 128 and 256 bit modes,
191    we similarly specify non-overlapping sets of cpu registers.  However,
192    there aren't any patterns defined for modes larger than 64 bits at the
193    moment.
194 
195    We limit the modes allowed in the floating point registers to the
196    set of modes used in the machine definition.  In addition, we allow
197    the complex modes SCmode and DCmode.  The real and imaginary parts
198    of complex modes are allocated to separate registers.  This might
199    allow patterns to be defined in the future to operate on these values.
200 
201    The PA 2.0 architecture specifies that quad-precision floating-point
202    values should start on an even floating point register.  Thus, we
203    choose non-overlapping sets of registers starting on even register
204    boundaries for large modes.  However, there is currently no support
205    in the machine definition for modes larger than 64 bits.  TFmode is
206    supported under HP-UX using libcalls.  Since TFmode values are passed
207    by reference, they never need to be loaded into the floating-point
208    registers.  */
209 #define PA_HARD_REGNO_MODE_OK(REGNO, MODE) \
210   ((REGNO) == 0 ? (MODE) == CCmode || (MODE) == CCFPmode		\
211    : (REGNO) == 88 ? SCALAR_INT_MODE_P (MODE)				\
212    : !TARGET_PA_11 && FP_REGNO_P (REGNO)				\
213      ? (VALID_FP_MODE_P (MODE)						\
214 	&& (GET_MODE_SIZE (MODE) <= 8					\
215 	    || (GET_MODE_SIZE (MODE) == 16 && ((REGNO) & 3) == 0)))	\
216    : FP_REGNO_P (REGNO)							\
217      ? (VALID_FP_MODE_P (MODE)						\
218 	&& (GET_MODE_SIZE (MODE) <= 4					\
219 	    || (GET_MODE_SIZE (MODE) == 8 && ((REGNO) & 1) == 0)	\
220 	    || (GET_MODE_SIZE (MODE) == 16 && ((REGNO) & 3) == 0)	\
221 	    || (GET_MODE_SIZE (MODE) == 32 && ((REGNO) & 7) == 0)))	\
222    : (GET_MODE_SIZE (MODE) <= UNITS_PER_WORD				\
223       || (GET_MODE_SIZE (MODE) == 2 * UNITS_PER_WORD			\
224 	  && ((((REGNO) & 1) == 1 && (REGNO) <= 25) || (REGNO) == 28))	\
225       || (GET_MODE_SIZE (MODE) == 4 * UNITS_PER_WORD			\
226 	  && ((REGNO) & 3) == 3 && (REGNO) <= 23)			\
227       || (GET_MODE_SIZE (MODE) == 8 * UNITS_PER_WORD			\
228 	  && ((REGNO) & 7) == 3 && (REGNO) <= 19)))
229 
230 /* How to renumber registers for dbx and gdb.
231 
232    Registers 0  - 31 remain unchanged.
233 
234    Registers 32 - 87 are mapped to 72 - 127
235 
236    Register 88 is mapped to 32.  */
237 
238 #define DBX_REGISTER_NUMBER(REGNO) \
239   ((REGNO) <= 31 ? (REGNO) :						\
240    ((REGNO) <= 87 ? (REGNO) + 40 : 32))
241 
242 /* We must not use the DBX register numbers for the DWARF 2 CFA column
243    numbers because that maps to numbers beyond FIRST_PSEUDO_REGISTER.
244    Instead use the identity mapping.  */
245 #define DWARF_FRAME_REGNUM(REG) REG
246 
247 /* Define the classes of registers for register constraints in the
248    machine description.  Also define ranges of constants.
249 
250    One of the classes must always be named ALL_REGS and include all hard regs.
251    If there is more than one class, another class must be named NO_REGS
252    and contain no registers.
253 
254    The name GENERAL_REGS must be the name of a class (or an alias for
255    another name such as ALL_REGS).  This is the class of registers
256    that is allowed by "g" or "r" in a register constraint.
257    Also, registers outside this class are allocated only when
258    instructions express preferences for them.
259 
260    The classes must be numbered in nondecreasing order; that is,
261    a larger-numbered class must never be contained completely
262    in a smaller-numbered class.
263 
264    For any two classes, it is very desirable that there be another
265    class that represents their union.  */
266 
267   /* The HP-PA has four kinds of registers: general regs, 1.0 fp regs,
268      1.1 fp regs, and the high 1.1 fp regs, to which the operands of
269      fmpyadd and fmpysub are restricted.  */
270 
271 enum reg_class { NO_REGS, R1_REGS, GENERAL_REGS, FPUPPER_REGS, FP_REGS,
272 		 GENERAL_OR_FP_REGS, SHIFT_REGS, ALL_REGS, LIM_REG_CLASSES};
273 
274 #define N_REG_CLASSES (int) LIM_REG_CLASSES
275 
276 /* Give names of register classes as strings for dump file.  */
277 
278 #define REG_CLASS_NAMES \
279   {"NO_REGS", "R1_REGS", "GENERAL_REGS", "FPUPPER_REGS", "FP_REGS", \
280    "GENERAL_OR_FP_REGS", "SHIFT_REGS", "ALL_REGS"}
281 
282 /* Define which registers fit in which classes.
283    This is an initializer for a vector of HARD_REG_SET
284    of length N_REG_CLASSES. Register 0, the "condition code" register,
285    is in no class.  */
286 
287 #define REG_CLASS_CONTENTS	\
288  {{0x00000000, 0x00000000, 0x00000000},	/* NO_REGS */			\
289   {0x00000002, 0x00000000, 0x00000000},	/* R1_REGS */			\
290   {0xfffffffe, 0x00000000, 0x02000000},	/* GENERAL_REGS */		\
291   {0x00000000, 0xff000000, 0x00ffffff},	/* FPUPPER_REGS */		\
292   {0x00000000, 0xffffffff, 0x00ffffff},	/* FP_REGS */			\
293   {0xfffffffe, 0xffffffff, 0x02ffffff},	/* GENERAL_OR_FP_REGS */	\
294   {0x00000000, 0x00000000, 0x01000000},	/* SHIFT_REGS */		\
295   {0xfffffffe, 0xffffffff, 0x03ffffff}}	/* ALL_REGS */
296 
297 /* Return the class number of the smallest class containing
298    reg number REGNO.  This could be a conditional expression
299    or could index an array.  */
300 
301 #define REGNO_REG_CLASS(REGNO)						\
302   ((REGNO) == 0 ? NO_REGS 						\
303    : (REGNO) == 1 ? R1_REGS						\
304    : (REGNO) < 32 || (REGNO) == 89 ? GENERAL_REGS			\
305    : (REGNO) < 56 ? FP_REGS						\
306    : (REGNO) < 88 ? FPUPPER_REGS					\
307    : SHIFT_REGS)
308 
309 /* Return the maximum number of consecutive registers
310    needed to represent mode MODE in a register of class CLASS.  */
311 #define CLASS_MAX_NREGS(CLASS, MODE)					\
312   ((CLASS) == FP_REGS || (CLASS) == FPUPPER_REGS			\
313    ? (!TARGET_PA_11							\
314       ? COMPLEX_MODE_P (MODE) ? 2 : 1					\
315       : (GET_MODE_SIZE (MODE) + 4 - 1) / 4)				\
316    : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
317 
318 /* 1 if N is a possible register number for function argument passing.  */
319 
320 #define FUNCTION_ARG_REGNO_P(N) \
321   (((N) >= 23 && (N) <= 26) || (! TARGET_SOFT_FLOAT && (N) >= 32 && (N) <= 39))
322 
323 /* How to refer to registers in assembler output.
324    This sequence is indexed by compiler's hard-register-number (see above).  */
325 
326 #define REGISTER_NAMES \
327 {"%r0",   "%r1",    "%r2",   "%r3",    "%r4",   "%r5",    "%r6",   "%r7",    \
328  "%r8",   "%r9",    "%r10",  "%r11",   "%r12",  "%r13",   "%r14",  "%r15",   \
329  "%r16",  "%r17",   "%r18",  "%r19",   "%r20",  "%r21",   "%r22",  "%r23",   \
330  "%r24",  "%r25",   "%r26",  "%r27",   "%r28",  "%r29",   "%r30",  "%r31",   \
331  "%fr4",  "%fr4R",  "%fr5",  "%fr5R",  "%fr6",  "%fr6R",  "%fr7",  "%fr7R",  \
332  "%fr8",  "%fr8R",  "%fr9",  "%fr9R",  "%fr10", "%fr10R", "%fr11", "%fr11R", \
333  "%fr12", "%fr12R", "%fr13", "%fr13R", "%fr14", "%fr14R", "%fr15", "%fr15R", \
334  "%fr16", "%fr16R", "%fr17", "%fr17R", "%fr18", "%fr18R", "%fr19", "%fr19R", \
335  "%fr20", "%fr20R", "%fr21", "%fr21R", "%fr22", "%fr22R", "%fr23", "%fr23R", \
336  "%fr24", "%fr24R", "%fr25", "%fr25R", "%fr26", "%fr26R", "%fr27", "%fr27R", \
337  "%fr28", "%fr28R", "%fr29", "%fr29R", "%fr30", "%fr30R", "%fr31", "%fr31R", \
338  "SAR",   "sfp"}
339 
340 #define ADDITIONAL_REGISTER_NAMES \
341 {{"%fr4L",32}, {"%fr5L",34}, {"%fr6L",36}, {"%fr7L",38},		\
342  {"%fr8L",40}, {"%fr9L",42}, {"%fr10L",44}, {"%fr11L",46},		\
343  {"%fr12L",48}, {"%fr13L",50}, {"%fr14L",52}, {"%fr15L",54},		\
344  {"%fr16L",56}, {"%fr17L",58}, {"%fr18L",60}, {"%fr19L",62},		\
345  {"%fr20L",64}, {"%fr21L",66}, {"%fr22L",68}, {"%fr23L",70},		\
346  {"%fr24L",72}, {"%fr25L",74}, {"%fr26L",76}, {"%fr27L",78},		\
347  {"%fr28L",80}, {"%fr29L",82}, {"%fr30L",84}, {"%fr31R",86},		\
348  {"%cr11",88}}
349 
350 #define FP_SAVED_REG_LAST 66
351 #define FP_SAVED_REG_FIRST 48
352 #define FP_REG_STEP 2
353 #define FP_REG_FIRST 32
354 #define FP_REG_LAST 87
355