xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/config/bfin/predicates.md (revision 8feb0f0b7eaff0608f8350bbfa3098827b4bb91b)
1;; Predicate definitions for the Blackfin.
2;; Copyright (C) 2005-2020 Free Software Foundation, Inc.
3;; Contributed by Analog Devices.
4;;
5;; This file is part of GCC.
6;;
7;; GCC is free software; you can redistribute it and/or modify
8;; it under the terms of the GNU General Public License as published by
9;; the Free Software Foundation; either version 3, or (at your option)
10;; any later version.
11;;
12;; GCC is distributed in the hope that it will be useful,
13;; but WITHOUT ANY WARRANTY; without even the implied warranty of
14;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15;; GNU General Public License for more details.
16;;
17;; You should have received a copy of the GNU General Public License
18;; along with GCC; see the file COPYING3.  If not see
19;; <http://www.gnu.org/licenses/>.
20
21;; Return nonzero iff OP is one of the integer constants 1 or 2.
22(define_predicate "pos_scale_operand"
23  (and (match_code "const_int")
24       (match_test "INTVAL (op) == 1 || INTVAL (op) == 2")))
25
26;; Return nonzero iff OP is one of the integer constants 2 or 4.
27(define_predicate "scale_by_operand"
28  (and (match_code "const_int")
29       (match_test "INTVAL (op) == 2 || INTVAL (op) == 4")))
30
31;; Return nonzero if OP is a constant that consists of two parts; lower
32;; bits all zero and upper bits all ones.  In this case, we can perform
33;; an AND operation with a sequence of two shifts.  Don't return nonzero
34;; if the constant would be cheap to load.
35(define_predicate "highbits_operand"
36  (and (match_code "const_int")
37       (match_test "log2constp (-INTVAL (op)) && !satisfies_constraint_Ks7 (op)")))
38
39;; Return nonzero if OP is suitable as a right-hand side operand for an
40;; andsi3 operation.
41(define_predicate "rhs_andsi3_operand"
42  (ior (match_operand 0 "register_operand")
43       (and (match_code "const_int")
44	    (match_test "log2constp (~INTVAL (op)) || INTVAL (op) == 255 || INTVAL (op) == 65535"))))
45
46;; Return nonzero if OP is a register or a constant with exactly one bit
47;; set.
48(define_predicate "regorlog2_operand"
49  (ior (match_operand 0 "register_operand")
50       (and (match_code "const_int")
51	    (match_test "log2constp (INTVAL (op))"))))
52
53;; Return nonzero if OP is a register or an integer constant.
54(define_predicate "reg_or_const_int_operand"
55  (ior (match_operand 0 "register_operand")
56       (match_code "const_int")))
57
58(define_predicate "const01_operand"
59  (and (match_code "const_int")
60       (match_test "op == const0_rtx || op == const1_rtx")))
61
62(define_predicate "const1_operand"
63  (and (match_code "const_int")
64       (match_test "op == const1_rtx")))
65
66(define_predicate "const3_operand"
67  (and (match_code "const_int")
68       (match_test "INTVAL (op) == 3")))
69
70(define_predicate "vec_shift_operand"
71  (ior (and (match_code "const_int")
72	    (match_test "INTVAL (op) >= -16 && INTVAL (op) < 15"))
73       (match_operand 0 "register_operand")))
74
75;; Like register_operand, but make sure that hard regs have a valid mode.
76(define_predicate "valid_reg_operand"
77  (match_operand 0 "register_operand")
78{
79  if (GET_CODE (op) == SUBREG)
80    op = SUBREG_REG (op);
81  if (REGNO (op) < FIRST_PSEUDO_REGISTER)
82    return targetm.hard_regno_mode_ok (REGNO (op), mode);
83  return 1;
84})
85
86;; Return nonzero if OP is a D register.
87(define_predicate "d_register_operand"
88  (and (match_code "reg")
89       (match_test "D_REGNO_P (REGNO (op))")))
90
91(define_predicate "p_register_operand"
92  (and (match_code "reg")
93       (match_test "P_REGNO_P (REGNO (op))")))
94
95(define_predicate "dp_register_operand"
96  (and (match_code "reg")
97       (match_test "D_REGNO_P (REGNO (op)) || P_REGNO_P (REGNO (op))")))
98
99;; Return nonzero if OP is a LC register.
100(define_predicate "lc_register_operand"
101  (and (match_code "reg")
102       (match_test "REGNO (op) == REG_LC0 || REGNO (op) == REG_LC1")))
103
104;; Return nonzero if OP is a LT register.
105(define_predicate "lt_register_operand"
106  (and (match_code "reg")
107       (match_test "REGNO (op) == REG_LT0 || REGNO (op) == REG_LT1")))
108
109;; Return nonzero if OP is a LB register.
110(define_predicate "lb_register_operand"
111  (and (match_code "reg")
112       (match_test "REGNO (op) == REG_LB0 || REGNO (op) == REG_LB1")))
113
114;; Return nonzero if OP is a register or a 7-bit signed constant.
115(define_predicate "reg_or_7bit_operand"
116  (ior (match_operand 0 "register_operand")
117       (and (match_code "const_int")
118	    (match_test "satisfies_constraint_Ks7 (op)"))))
119
120;; Return nonzero if OP is a register other than DREG and PREG.
121(define_predicate "nondp_register_operand"
122  (match_operand 0 "register_operand")
123{
124  unsigned int regno;
125  if (GET_CODE (op) == SUBREG)
126    op = SUBREG_REG (op);
127
128  regno = REGNO (op);
129  return (regno >= FIRST_PSEUDO_REGISTER || !DP_REGNO_P (regno));
130})
131
132;; Return nonzero if OP is a register other than DREG and PREG, or MEM.
133(define_predicate "nondp_reg_or_memory_operand"
134  (ior (match_operand 0 "nondp_register_operand")
135       (match_operand 0 "memory_operand")))
136
137;; Return nonzero if OP is a register or, when negated, a 7-bit signed
138;; constant.
139(define_predicate "reg_or_neg7bit_operand"
140  (ior (match_operand 0 "register_operand")
141       (and (match_code "const_int")
142	    (match_test "satisfies_constraint_KN7 (op)"))))
143
144;; Used for secondary reloads, this function returns 1 if OP is of the
145;; form (plus (fp) (const_int)).
146(define_predicate "fp_plus_const_operand"
147  (match_code "plus")
148{
149  rtx op1, op2;
150
151  op1 = XEXP (op, 0);
152  op2 = XEXP (op, 1);
153  return (REG_P (op1)
154	  && (REGNO (op1) == FRAME_POINTER_REGNUM
155	      || REGNO (op1) == STACK_POINTER_REGNUM)
156	  && GET_CODE (op2) == CONST_INT);
157})
158
159;; Returns 1 if OP is a symbolic operand, i.e. a symbol_ref or a label_ref,
160;; possibly with an offset.
161(define_predicate "symbolic_operand"
162  (ior (match_code "symbol_ref,label_ref")
163       (and (match_code "const")
164	    (match_test "GET_CODE (XEXP (op,0)) == PLUS
165			 && (GET_CODE (XEXP (XEXP (op, 0), 0)) == SYMBOL_REF
166			     || GET_CODE (XEXP (XEXP (op, 0), 0)) == LABEL_REF)
167			 && GET_CODE (XEXP (XEXP (op, 0), 1)) == CONST_INT"))))
168
169;; Returns 1 if OP is a plain constant or matched by symbolic_operand.
170(define_predicate "symbolic_or_const_operand"
171  (ior (match_code "const_int,const_double")
172       (match_operand 0 "symbolic_operand")))
173
174;; Returns 1 if OP is a SYMBOL_REF.
175(define_predicate "symbol_ref_operand"
176  (match_code "symbol_ref"))
177
178;; True for any non-virtual or eliminable register.  Used in places where
179;; instantiation of such a register may cause the pattern to not be recognized.
180(define_predicate "register_no_elim_operand"
181  (match_operand 0 "register_operand")
182{
183  if (GET_CODE (op) == SUBREG)
184    op = SUBREG_REG (op);
185  return !(op == arg_pointer_rtx
186	   || op == frame_pointer_rtx
187	   || (REGNO (op) >= FIRST_PSEUDO_REGISTER
188	       && REGNO (op) <= LAST_VIRTUAL_REGISTER));
189})
190
191;; Test for an operator valid in a BImode conditional branch
192(define_predicate "bfin_bimode_comparison_operator"
193  (match_code "eq,ne"))
194
195;; Test for an operator whose result is accessible with movbisi.
196(define_predicate "bfin_direct_comparison_operator"
197  (match_code "eq,lt,le,leu,ltu"))
198
199;; The following three are used to compute the addrtype attribute.  They return
200;; true if passed a memory address usable for a 16-bit load or store using a
201;; P or I register, respectively.  If neither matches, we know we have a
202;; 32-bit instruction.
203;; We subdivide the P case into normal P registers, and SP/FP.  We can assume
204;; that speculative loads through SP and FP are no problem, so this has
205;; an effect on the anomaly workaround code.
206
207(define_predicate "mem_p_address_operand"
208  (match_code "mem")
209{
210  if (effective_address_32bit_p (op, mode))
211    return 0;
212  op = XEXP (op, 0);
213  if (GET_CODE (op) == PLUS || GET_RTX_CLASS (GET_CODE (op)) == RTX_AUTOINC)
214    op = XEXP (op, 0);
215  gcc_assert (REG_P (op));
216  return PREG_P (op) && op != stack_pointer_rtx && op != frame_pointer_rtx;
217})
218
219(define_predicate "mem_spfp_address_operand"
220  (match_code "mem")
221{
222  if (effective_address_32bit_p (op, mode))
223    return 0;
224  op = XEXP (op, 0);
225  if (GET_CODE (op) == PLUS || GET_RTX_CLASS (GET_CODE (op)) == RTX_AUTOINC)
226    op = XEXP (op, 0);
227  gcc_assert (REG_P (op));
228  return op == stack_pointer_rtx || op == frame_pointer_rtx;
229})
230
231(define_predicate "mem_i_address_operand"
232  (match_code "mem")
233{
234  if (effective_address_32bit_p (op, mode))
235    return 0;
236  op = XEXP (op, 0);
237  if (GET_CODE (op) == PLUS || GET_RTX_CLASS (GET_CODE (op)) == RTX_AUTOINC)
238    op = XEXP (op, 0);
239  gcc_assert (REG_P (op));
240  return IREG_P (op);
241})
242
243(define_predicate "push_multiple_operation"
244  (and (match_code "parallel")
245       (match_test "analyze_push_multiple_operation (op)")))
246
247(define_predicate "pop_multiple_operation"
248  (and (match_code "parallel")
249       (match_test "analyze_pop_multiple_operation (op)")))
250