xref: /netbsd-src/external/gpl3/binutils/dist/gold/symtab.h (revision cb63e24e8d6aae7ddac1859a9015f48b1d8bd90e)
1 // symtab.h -- the gold symbol table   -*- C++ -*-
2 
3 // Copyright (C) 2006-2024 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5 
6 // This file is part of gold.
7 
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12 
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17 
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22 
23 // Symbol_table
24 //   The symbol table.
25 
26 #ifndef GOLD_SYMTAB_H
27 #define GOLD_SYMTAB_H
28 
29 #include <string>
30 #include <utility>
31 #include <vector>
32 
33 #include "elfcpp.h"
34 #include "parameters.h"
35 #include "stringpool.h"
36 #include "object.h"
37 
38 namespace gold
39 {
40 
41 class Mapfile;
42 class Object;
43 class Relobj;
44 template<int size, bool big_endian>
45 class Sized_relobj_file;
46 template<int size, bool big_endian>
47 class Sized_pluginobj;
48 class Dynobj;
49 template<int size, bool big_endian>
50 class Sized_dynobj;
51 template<int size, bool big_endian>
52 class Sized_incrobj;
53 class Versions;
54 class Version_script_info;
55 class Input_objects;
56 class Output_data;
57 class Output_section;
58 class Output_segment;
59 class Output_file;
60 class Output_symtab_xindex;
61 class Garbage_collection;
62 class Icf;
63 
64 // The base class of an entry in the symbol table.  The symbol table
65 // can have a lot of entries, so we don't want this class too big.
66 // Size dependent fields can be found in the template class
67 // Sized_symbol.  Targets may support their own derived classes.
68 
69 class Symbol
70 {
71  public:
72   // Because we want the class to be small, we don't use any virtual
73   // functions.  But because symbols can be defined in different
74   // places, we need to classify them.  This enum is the different
75   // sources of symbols we support.
76   enum Source
77   {
78     // Symbol defined in a relocatable or dynamic input file--this is
79     // the most common case.
80     FROM_OBJECT,
81     // Symbol defined in an Output_data, a special section created by
82     // the target.
83     IN_OUTPUT_DATA,
84     // Symbol defined in an Output_segment, with no associated
85     // section.
86     IN_OUTPUT_SEGMENT,
87     // Symbol value is constant.
88     IS_CONSTANT,
89     // Symbol is undefined.
90     IS_UNDEFINED
91   };
92 
93   // When the source is IN_OUTPUT_SEGMENT, we need to describe what
94   // the offset means.
95   enum Segment_offset_base
96   {
97     // From the start of the segment.
98     SEGMENT_START,
99     // From the end of the segment.
100     SEGMENT_END,
101     // From the filesz of the segment--i.e., after the loaded bytes
102     // but before the bytes which are allocated but zeroed.
103     SEGMENT_BSS
104   };
105 
106   // Return the symbol name.
107   const char*
name()108   name() const
109   { return this->name_; }
110 
111   // Return the (ANSI) demangled version of the name, if
112   // parameters.demangle() is true.  Otherwise, return the name.  This
113   // is intended to be used only for logging errors, so it's not
114   // super-efficient.
115   std::string
116   demangled_name() const;
117 
118   // Return the symbol version.  This will return NULL for an
119   // unversioned symbol.
120   const char*
version()121   version() const
122   { return this->version_; }
123 
124   void
clear_version()125   clear_version()
126   { this->version_ = NULL; }
127 
128   // Return whether this version is the default for this symbol name
129   // (eg, "foo@@V2" is a default version; "foo@V1" is not).  Only
130   // meaningful for versioned symbols.
131   bool
is_default()132   is_default() const
133   {
134     gold_assert(this->version_ != NULL);
135     return this->is_def_;
136   }
137 
138   // Set that this version is the default for this symbol name.
139   void
set_is_default()140   set_is_default()
141   { this->is_def_ = true; }
142 
143   // Set that this version is not the default for this symbol name.
144   void
set_is_not_default()145   set_is_not_default()
146   { this->is_def_ = false; }
147 
148   // Return the symbol's name as name@version (or name@@version).
149   std::string
150   versioned_name() const;
151 
152   // Return the symbol source.
153   Source
source()154   source() const
155   { return this->source_; }
156 
157   // Return the object with which this symbol is associated.
158   Object*
object()159   object() const
160   {
161     gold_assert(this->source_ == FROM_OBJECT);
162     return this->u1_.object;
163   }
164 
165   // Return the index of the section in the input relocatable or
166   // dynamic object file.
167   unsigned int
shndx(bool * is_ordinary)168   shndx(bool* is_ordinary) const
169   {
170     gold_assert(this->source_ == FROM_OBJECT);
171     *is_ordinary = this->is_ordinary_shndx_;
172     return this->u2_.shndx;
173   }
174 
175   // Return the output data section with which this symbol is
176   // associated, if the symbol was specially defined with respect to
177   // an output data section.
178   Output_data*
output_data()179   output_data() const
180   {
181     gold_assert(this->source_ == IN_OUTPUT_DATA);
182     return this->u1_.output_data;
183   }
184 
185   // If this symbol was defined with respect to an output data
186   // section, return whether the value is an offset from end.
187   bool
offset_is_from_end()188   offset_is_from_end() const
189   {
190     gold_assert(this->source_ == IN_OUTPUT_DATA);
191     return this->u2_.offset_is_from_end;
192   }
193 
194   // Return the output segment with which this symbol is associated,
195   // if the symbol was specially defined with respect to an output
196   // segment.
197   Output_segment*
output_segment()198   output_segment() const
199   {
200     gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
201     return this->u1_.output_segment;
202   }
203 
204   // If this symbol was defined with respect to an output segment,
205   // return the offset base.
206   Segment_offset_base
offset_base()207   offset_base() const
208   {
209     gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
210     return this->u2_.offset_base;
211   }
212 
213   // Return the symbol binding.
214   elfcpp::STB
binding()215   binding() const
216   { return this->binding_; }
217 
218   // Return the symbol type.
219   elfcpp::STT
type()220   type() const
221   { return this->type_; }
222 
223   // Set the symbol type.
224   void
set_type(elfcpp::STT type)225   set_type(elfcpp::STT type)
226   { this->type_ = type; }
227 
228   // Return true for function symbol.
229   bool
is_func()230   is_func() const
231   {
232     return (this->type_ == elfcpp::STT_FUNC
233 	    || this->type_ == elfcpp::STT_GNU_IFUNC);
234   }
235 
236   // Return the symbol visibility.
237   elfcpp::STV
visibility()238   visibility() const
239   { return this->visibility_; }
240 
241   // Set the visibility.
242   void
set_visibility(elfcpp::STV visibility)243   set_visibility(elfcpp::STV visibility)
244   { this->visibility_ = visibility; }
245 
246   // Override symbol visibility.
247   void
248   override_visibility(elfcpp::STV);
249 
250   // Set whether the symbol was originally a weak undef or a regular undef
251   // when resolved by a dynamic def or by a special symbol.
252   inline void
set_undef_binding(elfcpp::STB bind)253   set_undef_binding(elfcpp::STB bind)
254   {
255     if (!this->undef_binding_set_ || this->undef_binding_weak_)
256       {
257         this->undef_binding_weak_ = bind == elfcpp::STB_WEAK;
258         this->undef_binding_set_ = true;
259       }
260   }
261 
262   // Return TRUE if a weak undef was resolved by a dynamic def or
263   // by a special symbol.
264   inline bool
is_undef_binding_weak()265   is_undef_binding_weak() const
266   { return this->undef_binding_weak_; }
267 
268   // Return the non-visibility part of the st_other field.
269   unsigned char
nonvis()270   nonvis() const
271   { return this->nonvis_; }
272 
273   // Set the non-visibility part of the st_other field.
274   void
set_nonvis(unsigned int nonvis)275   set_nonvis(unsigned int nonvis)
276   { this->nonvis_ = nonvis; }
277 
278   // Return whether this symbol is a forwarder.  This will never be
279   // true of a symbol found in the hash table, but may be true of
280   // symbol pointers attached to object files.
281   bool
is_forwarder()282   is_forwarder() const
283   { return this->is_forwarder_; }
284 
285   // Mark this symbol as a forwarder.
286   void
set_forwarder()287   set_forwarder()
288   { this->is_forwarder_ = true; }
289 
290   // Return whether this symbol has an alias in the weak aliases table
291   // in Symbol_table.
292   bool
has_alias()293   has_alias() const
294   { return this->has_alias_; }
295 
296   // Mark this symbol as having an alias.
297   void
set_has_alias()298   set_has_alias()
299   { this->has_alias_ = true; }
300 
301   // Return whether this symbol needs an entry in the dynamic symbol
302   // table.
303   bool
needs_dynsym_entry()304   needs_dynsym_entry() const
305   {
306     return (this->needs_dynsym_entry_
307             || (this->in_reg()
308 		&& this->in_dyn()
309 		&& this->is_externally_visible()));
310   }
311 
312   // Mark this symbol as needing an entry in the dynamic symbol table.
313   void
set_needs_dynsym_entry()314   set_needs_dynsym_entry()
315   { this->needs_dynsym_entry_ = true; }
316 
317   // Return whether this symbol should be added to the dynamic symbol
318   // table.
319   bool
320   should_add_dynsym_entry(Symbol_table*) const;
321 
322   // Return whether this symbol has been seen in a regular object.
323   bool
in_reg()324   in_reg() const
325   { return this->in_reg_; }
326 
327   // Mark this symbol as having been seen in a regular object.
328   void
set_in_reg()329   set_in_reg()
330   { this->in_reg_ = true; }
331 
332   // Forget this symbol was seen in a regular object.
333   void
clear_in_reg()334   clear_in_reg()
335   { this->in_reg_ = false; }
336 
337   // Return whether this symbol has been seen in a dynamic object.
338   bool
in_dyn()339   in_dyn() const
340   { return this->in_dyn_; }
341 
342   // Mark this symbol as having been seen in a dynamic object.
343   void
set_in_dyn()344   set_in_dyn()
345   { this->in_dyn_ = true; }
346 
347   // Return whether this symbol is defined in a dynamic object.
348   bool
from_dyn()349   from_dyn() const
350   { return this->source_ == FROM_OBJECT && this->object()->is_dynamic(); }
351 
352   // Return whether this symbol has been seen in a real ELF object.
353   // (IN_REG will return TRUE if the symbol has been seen in either
354   // a real ELF object or an object claimed by a plugin.)
355   bool
in_real_elf()356   in_real_elf() const
357   { return this->in_real_elf_; }
358 
359   // Mark this symbol as having been seen in a real ELF object.
360   void
set_in_real_elf()361   set_in_real_elf()
362   { this->in_real_elf_ = true; }
363 
364   // Return whether this symbol was defined in a section that was
365   // discarded from the link.  This is used to control some error
366   // reporting.
367   bool
is_defined_in_discarded_section()368   is_defined_in_discarded_section() const
369   { return this->is_defined_in_discarded_section_; }
370 
371   // Mark this symbol as having been defined in a discarded section.
372   void
set_is_defined_in_discarded_section()373   set_is_defined_in_discarded_section()
374   { this->is_defined_in_discarded_section_ = true; }
375 
376   // Return the index of this symbol in the output file symbol table.
377   // A value of -1U means that this symbol is not going into the
378   // output file.  This starts out as zero, and is set to a non-zero
379   // value by Symbol_table::finalize.  It is an error to ask for the
380   // symbol table index before it has been set.
381   unsigned int
symtab_index()382   symtab_index() const
383   {
384     gold_assert(this->symtab_index_ != 0);
385     return this->symtab_index_;
386   }
387 
388   // Set the index of the symbol in the output file symbol table.
389   void
set_symtab_index(unsigned int index)390   set_symtab_index(unsigned int index)
391   {
392     gold_assert(index != 0);
393     this->symtab_index_ = index;
394   }
395 
396   // Return whether this symbol already has an index in the output
397   // file symbol table.
398   bool
has_symtab_index()399   has_symtab_index() const
400   { return this->symtab_index_ != 0; }
401 
402   // Return the index of this symbol in the dynamic symbol table.  A
403   // value of -1U means that this symbol is not going into the dynamic
404   // symbol table.  This starts out as zero, and is set to a non-zero
405   // during Layout::finalize.  It is an error to ask for the dynamic
406   // symbol table index before it has been set.
407   unsigned int
dynsym_index()408   dynsym_index() const
409   {
410     gold_assert(this->dynsym_index_ != 0);
411     return this->dynsym_index_;
412   }
413 
414   // Set the index of the symbol in the dynamic symbol table.
415   void
set_dynsym_index(unsigned int index)416   set_dynsym_index(unsigned int index)
417   {
418     gold_assert(index != 0);
419     this->dynsym_index_ = index;
420   }
421 
422   // Return whether this symbol already has an index in the dynamic
423   // symbol table.
424   bool
has_dynsym_index()425   has_dynsym_index() const
426   { return this->dynsym_index_ != 0; }
427 
428   // Return whether this symbol has an entry in the GOT section.
429   // For a TLS symbol, this GOT entry will hold its tp-relative offset.
430   bool
431   has_got_offset(unsigned int got_type, uint64_t addend = 0) const
432   { return this->got_offsets_.get_offset(got_type, addend) != -1U; }
433 
434   // Return the offset into the GOT section of this symbol.
435   unsigned int
436   got_offset(unsigned int got_type, uint64_t addend = 0) const
437   {
438     unsigned int got_offset = this->got_offsets_.get_offset(got_type, addend);
439     gold_assert(got_offset != -1U);
440     return got_offset;
441   }
442 
443   // Set the GOT offset of this symbol.
444   void
445   set_got_offset(unsigned int got_type, unsigned int got_offset,
446 		 uint64_t addend = 0)
447   { this->got_offsets_.set_offset(got_type, got_offset, addend); }
448 
449   // Return the GOT offset list.
450   const Got_offset_list*
got_offset_list()451   got_offset_list() const
452   { return this->got_offsets_.get_list(); }
453 
454   // Return whether this symbol has an entry in the PLT section.
455   bool
has_plt_offset()456   has_plt_offset() const
457   { return this->plt_offset_ != -1U; }
458 
459   // Return the offset into the PLT section of this symbol.
460   unsigned int
plt_offset()461   plt_offset() const
462   {
463     gold_assert(this->has_plt_offset());
464     return this->plt_offset_;
465   }
466 
467   // Set the PLT offset of this symbol.
468   void
set_plt_offset(unsigned int plt_offset)469   set_plt_offset(unsigned int plt_offset)
470   {
471     gold_assert(plt_offset != -1U);
472     this->plt_offset_ = plt_offset;
473   }
474 
475   // Return whether this dynamic symbol needs a special value in the
476   // dynamic symbol table.
477   bool
needs_dynsym_value()478   needs_dynsym_value() const
479   { return this->needs_dynsym_value_; }
480 
481   // Set that this dynamic symbol needs a special value in the dynamic
482   // symbol table.
483   void
set_needs_dynsym_value()484   set_needs_dynsym_value()
485   {
486     gold_assert(this->object()->is_dynamic());
487     this->needs_dynsym_value_ = true;
488   }
489 
490   // Return true if the final value of this symbol is known at link
491   // time.
492   bool
493   final_value_is_known() const;
494 
495   // Return true if SHNDX represents a common symbol.  This depends on
496   // the target.
497   static bool
498   is_common_shndx(unsigned int shndx);
499 
500   // Return whether this is a defined symbol (not undefined or
501   // common).
502   bool
is_defined()503   is_defined() const
504   {
505     bool is_ordinary;
506     if (this->source_ != FROM_OBJECT)
507       return this->source_ != IS_UNDEFINED;
508     unsigned int shndx = this->shndx(&is_ordinary);
509     return (is_ordinary
510 	    ? shndx != elfcpp::SHN_UNDEF
511 	    : !Symbol::is_common_shndx(shndx));
512   }
513 
514   // Return true if this symbol is from a dynamic object.
515   bool
is_from_dynobj()516   is_from_dynobj() const
517   {
518     return this->source_ == FROM_OBJECT && this->object()->is_dynamic();
519   }
520 
521   // Return whether this is a placeholder symbol from a plugin object.
522   bool
is_placeholder()523   is_placeholder() const
524   {
525     return this->source_ == FROM_OBJECT && this->object()->pluginobj() != NULL;
526   }
527 
528   // Return whether this is an undefined symbol.
529   bool
is_undefined()530   is_undefined() const
531   {
532     bool is_ordinary;
533     return ((this->source_ == FROM_OBJECT
534 	     && this->shndx(&is_ordinary) == elfcpp::SHN_UNDEF
535 	     && is_ordinary)
536 	    || this->source_ == IS_UNDEFINED);
537   }
538 
539   // Return whether this is a weak undefined symbol.
540   bool
is_weak_undefined()541   is_weak_undefined() const
542   {
543     return (this->is_undefined()
544 	    && (this->binding() == elfcpp::STB_WEAK
545 		|| this->is_undef_binding_weak()
546 		|| parameters->options().weak_unresolved_symbols()));
547   }
548 
549   // Return whether this is a strong undefined symbol.
550   bool
is_strong_undefined()551   is_strong_undefined() const
552   {
553     return (this->is_undefined()
554 	    && this->binding() != elfcpp::STB_WEAK
555 	    && !this->is_undef_binding_weak()
556 	    && !parameters->options().weak_unresolved_symbols());
557   }
558 
559   // Return whether this is an absolute symbol.
560   bool
is_absolute()561   is_absolute() const
562   {
563     bool is_ordinary;
564     return ((this->source_ == FROM_OBJECT
565 	     && this->shndx(&is_ordinary) == elfcpp::SHN_ABS
566 	     && !is_ordinary)
567 	    || this->source_ == IS_CONSTANT);
568   }
569 
570   // Return whether this is a common symbol.
571   bool
is_common()572   is_common() const
573   {
574     if (this->source_ != FROM_OBJECT)
575       return false;
576     bool is_ordinary;
577     unsigned int shndx = this->shndx(&is_ordinary);
578     return !is_ordinary && Symbol::is_common_shndx(shndx);
579   }
580 
581   // Return whether this symbol can be seen outside this object.
582   bool
is_externally_visible()583   is_externally_visible() const
584   {
585     return ((this->visibility_ == elfcpp::STV_DEFAULT
586              || this->visibility_ == elfcpp::STV_PROTECTED)
587 	    && !this->is_forced_local_);
588   }
589 
590   // Return true if this symbol can be preempted by a definition in
591   // another link unit.
592   bool
is_preemptible()593   is_preemptible() const
594   {
595     // It doesn't make sense to ask whether a symbol defined in
596     // another object is preemptible.
597     gold_assert(!this->is_from_dynobj());
598 
599     // It doesn't make sense to ask whether an undefined symbol
600     // is preemptible.
601     gold_assert(!this->is_undefined());
602 
603     // If a symbol does not have default visibility, it can not be
604     // seen outside this link unit and therefore is not preemptible.
605     if (this->visibility_ != elfcpp::STV_DEFAULT)
606       return false;
607 
608     // If this symbol has been forced to be a local symbol by a
609     // version script, then it is not visible outside this link unit
610     // and is not preemptible.
611     if (this->is_forced_local_)
612       return false;
613 
614     // If we are not producing a shared library, then nothing is
615     // preemptible.
616     if (!parameters->options().shared())
617       return false;
618 
619     // If the symbol was named in a --dynamic-list script, it is preemptible.
620     if (parameters->options().in_dynamic_list(this->name()))
621       return true;
622 
623     // If the user used -Bsymbolic, then nothing (else) is preemptible.
624     if (parameters->options().Bsymbolic())
625       return false;
626 
627     // If the user used -Bsymbolic-functions, then functions are not
628     // preemptible.  We explicitly check for not being STT_OBJECT,
629     // rather than for being STT_FUNC, because that is what the GNU
630     // linker does.
631     if (this->type() != elfcpp::STT_OBJECT
632 	&& parameters->options().Bsymbolic_functions())
633       return false;
634 
635     // Otherwise the symbol is preemptible.
636     return true;
637   }
638 
639   // Return true if this symbol is a function that needs a PLT entry.
640   bool
needs_plt_entry()641   needs_plt_entry() const
642   {
643     // An undefined symbol from an executable does not need a PLT entry.
644     if (this->is_undefined() && !parameters->options().shared())
645       return false;
646 
647     // An STT_GNU_IFUNC symbol always needs a PLT entry, even when
648     // doing a static link.
649     if (this->type() == elfcpp::STT_GNU_IFUNC)
650       return true;
651 
652     // We only need a PLT entry for a function.
653     if (!this->is_func())
654       return false;
655 
656     // If we're doing a static link or a -pie link, we don't create
657     // PLT entries.
658     if (parameters->doing_static_link()
659 	|| parameters->options().pie())
660       return false;
661 
662     // We need a PLT entry if the function is defined in a dynamic
663     // object, or is undefined when building a shared object, or if it
664     // is subject to pre-emption.
665     return (this->is_from_dynobj()
666 	    || this->is_undefined()
667 	    || this->is_preemptible());
668   }
669 
670   // When determining whether a reference to a symbol needs a dynamic
671   // relocation, we need to know several things about the reference.
672   // These flags may be or'ed together.  0 means that the symbol
673   // isn't referenced at all.
674   enum Reference_flags
675   {
676     // A reference to the symbol's absolute address.  This includes
677     // references that cause an absolute address to be stored in the GOT.
678     ABSOLUTE_REF = 1,
679     // A reference that calculates the offset of the symbol from some
680     // anchor point, such as the PC or GOT.
681     RELATIVE_REF = 2,
682     // A TLS-related reference.
683     TLS_REF = 4,
684     // A reference that can always be treated as a function call.
685     FUNCTION_CALL = 8,
686     // When set, says that dynamic relocations are needed even if a
687     // symbol has a plt entry.
688     FUNC_DESC_ABI = 16,
689   };
690 
691   // Given a direct absolute or pc-relative static relocation against
692   // the global symbol, this function returns whether a dynamic relocation
693   // is needed.
694 
695   bool
needs_dynamic_reloc(int flags)696   needs_dynamic_reloc(int flags) const
697   {
698     // No dynamic relocations in a static link!
699     if (parameters->doing_static_link())
700       return false;
701 
702     // A reference to an undefined symbol from an executable should be
703     // statically resolved to 0, and does not need a dynamic relocation.
704     // This matches gnu ld behavior.
705     if (this->is_undefined() && !parameters->options().shared())
706       return false;
707 
708     // A reference to an absolute symbol does not need a dynamic relocation.
709     if (this->is_absolute())
710       return false;
711 
712     // An absolute reference within a position-independent output file
713     // will need a dynamic relocation.
714     if ((flags & ABSOLUTE_REF)
715         && parameters->options().output_is_position_independent())
716       return true;
717 
718     // A function call that can branch to a local PLT entry does not need
719     // a dynamic relocation.
720     if ((flags & FUNCTION_CALL) && this->has_plt_offset())
721       return false;
722 
723     // A reference to any PLT entry in a non-position-independent executable
724     // does not need a dynamic relocation.
725     if (!(flags & FUNC_DESC_ABI)
726 	&& !parameters->options().output_is_position_independent()
727         && this->has_plt_offset())
728       return false;
729 
730     // A reference to a symbol defined in a dynamic object or to a
731     // symbol that is preemptible will need a dynamic relocation.
732     if (this->is_from_dynobj()
733         || this->is_undefined()
734         || this->is_preemptible())
735       return true;
736 
737     // For all other cases, return FALSE.
738     return false;
739   }
740 
741   // Whether we should use the PLT offset associated with a symbol for
742   // a relocation.  FLAGS is a set of Reference_flags.
743 
744   bool
use_plt_offset(int flags)745   use_plt_offset(int flags) const
746   {
747     // If the symbol doesn't have a PLT offset, then naturally we
748     // don't want to use it.
749     if (!this->has_plt_offset())
750       return false;
751 
752     // For a STT_GNU_IFUNC symbol we always have to use the PLT entry.
753     if (this->type() == elfcpp::STT_GNU_IFUNC)
754       return true;
755 
756     // If we are going to generate a dynamic relocation, then we will
757     // wind up using that, so no need to use the PLT entry.
758     if (this->needs_dynamic_reloc(flags))
759       return false;
760 
761     // If the symbol is from a dynamic object, we need to use the PLT
762     // entry.
763     if (this->is_from_dynobj())
764       return true;
765 
766     // If we are generating a shared object, and this symbol is
767     // undefined or preemptible, we need to use the PLT entry.
768     if (parameters->options().shared()
769 	&& (this->is_undefined() || this->is_preemptible()))
770       return true;
771 
772     // If this is a call to a weak undefined symbol, we need to use
773     // the PLT entry; the symbol may be defined by a library loaded
774     // at runtime.
775     if ((flags & FUNCTION_CALL) && this->is_weak_undefined())
776       return true;
777 
778     // Otherwise we can use the regular definition.
779     return false;
780   }
781 
782   // Given a direct absolute static relocation against
783   // the global symbol, where a dynamic relocation is needed, this
784   // function returns whether a relative dynamic relocation can be used.
785   // The caller must determine separately whether the static relocation
786   // is compatible with a relative relocation.
787 
788   bool
can_use_relative_reloc(bool is_function_call)789   can_use_relative_reloc(bool is_function_call) const
790   {
791     // A function call that can branch to a local PLT entry can
792     // use a RELATIVE relocation.
793     if (is_function_call && this->has_plt_offset())
794       return true;
795 
796     // A reference to a symbol defined in a dynamic object or to a
797     // symbol that is preemptible can not use a RELATIVE relocation.
798     if (this->is_from_dynobj()
799         || this->is_undefined()
800         || this->is_preemptible())
801       return false;
802 
803     // For all other cases, return TRUE.
804     return true;
805   }
806 
807   // Return the output section where this symbol is defined.  Return
808   // NULL if the symbol has an absolute value.
809   Output_section*
810   output_section() const;
811 
812   // Set the symbol's output section.  This is used for symbols
813   // defined in scripts.  This should only be called after the symbol
814   // table has been finalized.
815   void
816   set_output_section(Output_section*);
817 
818   // Set the symbol's output segment.  This is used for pre-defined
819   // symbols whose segments aren't known until after layout is done
820   // (e.g., __ehdr_start).
821   void
822   set_output_segment(Output_segment*, Segment_offset_base);
823 
824   // Set the symbol to undefined.  This is used for pre-defined
825   // symbols whose segments aren't known until after layout is done
826   // (e.g., __ehdr_start).
827   void
828   set_undefined();
829 
830   // Return whether there should be a warning for references to this
831   // symbol.
832   bool
has_warning()833   has_warning() const
834   { return this->has_warning_; }
835 
836   // Mark this symbol as having a warning.
837   void
set_has_warning()838   set_has_warning()
839   { this->has_warning_ = true; }
840 
841   // Return whether this symbol is defined by a COPY reloc from a
842   // dynamic object.
843   bool
is_copied_from_dynobj()844   is_copied_from_dynobj() const
845   { return this->is_copied_from_dynobj_; }
846 
847   // Mark this symbol as defined by a COPY reloc.
848   void
set_is_copied_from_dynobj()849   set_is_copied_from_dynobj()
850   { this->is_copied_from_dynobj_ = true; }
851 
852   // Return whether this symbol is forced to visibility STB_LOCAL
853   // by a "local:" entry in a version script.
854   bool
is_forced_local()855   is_forced_local() const
856   { return this->is_forced_local_; }
857 
858   // Mark this symbol as forced to STB_LOCAL visibility.
859   void
set_is_forced_local()860   set_is_forced_local()
861   { this->is_forced_local_ = true; }
862 
863   // Return true if this may need a COPY relocation.
864   // References from an executable object to non-function symbols
865   // defined in a dynamic object may need a COPY relocation.
866   bool
may_need_copy_reloc()867   may_need_copy_reloc() const
868   {
869     return (parameters->options().copyreloc()
870 	    && this->is_from_dynobj()
871 	    && !this->is_func());
872   }
873 
874   // Return true if this symbol was predefined by the linker.
875   bool
is_predefined()876   is_predefined() const
877   { return this->is_predefined_; }
878 
879   // Return true if this is a C++ vtable symbol.
880   bool
is_cxx_vtable()881   is_cxx_vtable() const
882   { return is_prefix_of("_ZTV", this->name_); }
883 
884   // Return true if this symbol is protected in a shared object.
885   // This is not the same as checking if visibility() == elfcpp::STV_PROTECTED,
886   // because the visibility_ field reflects the symbol's visibility from
887   // outside the shared object.
888   bool
is_protected()889   is_protected() const
890   { return this->is_protected_; }
891 
892   // Mark this symbol as protected in a shared object.
893   void
set_is_protected()894   set_is_protected()
895   { this->is_protected_ = true; }
896 
897   // Return state of PowerPC64 ELFv2 specific flag.
898   bool
non_zero_localentry()899   non_zero_localentry() const
900   { return this->non_zero_localentry_; }
901 
902   // Set PowerPC64 ELFv2 specific flag.
903   void
set_non_zero_localentry()904   set_non_zero_localentry()
905   { this->non_zero_localentry_ = true; }
906 
907   // Completely override existing symbol.  Everything bar name_,
908   // version_, and is_forced_local_ flag are copied.  version_ is
909   // cleared if from->version_ is clear.  Returns true if this symbol
910   // should be forced local.
911   bool
912   clone(const Symbol* from);
913 
914  protected:
915   // Instances of this class should always be created at a specific
916   // size.
Symbol()917   Symbol()
918   { memset(static_cast<void*>(this), 0, sizeof *this); }
919 
920   // Initialize the general fields.
921   void
922   init_fields(const char* name, const char* version,
923 	      elfcpp::STT type, elfcpp::STB binding,
924 	      elfcpp::STV visibility, unsigned char nonvis);
925 
926   // Initialize fields from an ELF symbol in OBJECT.  ST_SHNDX is the
927   // section index, IS_ORDINARY is whether it is a normal section
928   // index rather than a special code.
929   template<int size, bool big_endian>
930   void
931   init_base_object(const char* name, const char* version, Object* object,
932 		   const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
933 		   bool is_ordinary);
934 
935   // Initialize fields for an Output_data.
936   void
937   init_base_output_data(const char* name, const char* version, Output_data*,
938 			elfcpp::STT, elfcpp::STB, elfcpp::STV,
939 			unsigned char nonvis, bool offset_is_from_end,
940 			bool is_predefined);
941 
942   // Initialize fields for an Output_segment.
943   void
944   init_base_output_segment(const char* name, const char* version,
945 			   Output_segment* os, elfcpp::STT type,
946 			   elfcpp::STB binding, elfcpp::STV visibility,
947 			   unsigned char nonvis,
948 			   Segment_offset_base offset_base,
949 			   bool is_predefined);
950 
951   // Initialize fields for a constant.
952   void
953   init_base_constant(const char* name, const char* version, elfcpp::STT type,
954 		     elfcpp::STB binding, elfcpp::STV visibility,
955 		     unsigned char nonvis, bool is_predefined);
956 
957   // Initialize fields for an undefined symbol.
958   void
959   init_base_undefined(const char* name, const char* version, elfcpp::STT type,
960 		      elfcpp::STB binding, elfcpp::STV visibility,
961 		      unsigned char nonvis);
962 
963   // Override existing symbol.
964   template<int size, bool big_endian>
965   void
966   override_base(const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
967 		bool is_ordinary, Object* object, const char* version);
968 
969   // Override existing symbol with a special symbol.
970   void
971   override_base_with_special(const Symbol* from);
972 
973   // Override symbol version.
974   void
975   override_version(const char* version);
976 
977   // Allocate a common symbol by giving it a location in the output
978   // file.
979   void
980   allocate_base_common(Output_data*);
981 
982  private:
983   Symbol(const Symbol&);
984   Symbol& operator=(const Symbol&);
985 
986   // Symbol name (expected to point into a Stringpool).
987   const char* name_;
988   // Symbol version (expected to point into a Stringpool).  This may
989   // be NULL.
990   const char* version_;
991 
992   union
993   {
994     // This is used if SOURCE_ == FROM_OBJECT.
995     // Object in which symbol is defined, or in which it was first
996     // seen.
997     Object* object;
998 
999     // This is used if SOURCE_ == IN_OUTPUT_DATA.
1000     // Output_data in which symbol is defined.  Before
1001     // Layout::finalize the symbol's value is an offset within the
1002     // Output_data.
1003     Output_data* output_data;
1004 
1005     // This is used if SOURCE_ == IN_OUTPUT_SEGMENT.
1006     // Output_segment in which the symbol is defined.  Before
1007     // Layout::finalize the symbol's value is an offset.
1008     Output_segment* output_segment;
1009   } u1_;
1010 
1011   union
1012   {
1013     // This is used if SOURCE_ == FROM_OBJECT.
1014     // Section number in object in which symbol is defined.
1015     unsigned int shndx;
1016 
1017     // This is used if SOURCE_ == IN_OUTPUT_DATA.
1018     // True if the offset is from the end, false if the offset is
1019     // from the beginning.
1020     bool offset_is_from_end;
1021 
1022     // This is used if SOURCE_ == IN_OUTPUT_SEGMENT.
1023     // The base to use for the offset before Layout::finalize.
1024     Segment_offset_base offset_base;
1025   } u2_;
1026 
1027   // The index of this symbol in the output file.  If the symbol is
1028   // not going into the output file, this value is -1U.  This field
1029   // starts as always holding zero.  It is set to a non-zero value by
1030   // Symbol_table::finalize.
1031   unsigned int symtab_index_;
1032 
1033   // The index of this symbol in the dynamic symbol table.  If the
1034   // symbol is not going into the dynamic symbol table, this value is
1035   // -1U.  This field starts as always holding zero.  It is set to a
1036   // non-zero value during Layout::finalize.
1037   unsigned int dynsym_index_;
1038 
1039   // If this symbol has an entry in the PLT section, then this is the
1040   // offset from the start of the PLT section.  This is -1U if there
1041   // is no PLT entry.
1042   unsigned int plt_offset_;
1043 
1044   // The GOT section entries for this symbol.  A symbol may have more
1045   // than one GOT offset (e.g., when mixing modules compiled with two
1046   // different TLS models), but will usually have at most one.
1047   Got_offset_list got_offsets_;
1048 
1049   // Symbol type (bits 0 to 3).
1050   elfcpp::STT type_ : 4;
1051   // Symbol binding (bits 4 to 7).
1052   elfcpp::STB binding_ : 4;
1053   // Symbol visibility (bits 8 to 9).
1054   elfcpp::STV visibility_ : 2;
1055   // Rest of symbol st_other field (bits 10 to 15).
1056   unsigned int nonvis_ : 6;
1057   // The type of symbol (bits 16 to 18).
1058   Source source_ : 3;
1059   // True if this is the default version of the symbol (bit 19).
1060   bool is_def_ : 1;
1061   // True if this symbol really forwards to another symbol.  This is
1062   // used when we discover after the fact that two different entries
1063   // in the hash table really refer to the same symbol.  This will
1064   // never be set for a symbol found in the hash table, but may be set
1065   // for a symbol found in the list of symbols attached to an Object.
1066   // It forwards to the symbol found in the forwarders_ map of
1067   // Symbol_table (bit 20).
1068   bool is_forwarder_ : 1;
1069   // True if the symbol has an alias in the weak_aliases table in
1070   // Symbol_table (bit 21).
1071   bool has_alias_ : 1;
1072   // True if this symbol needs to be in the dynamic symbol table (bit
1073   // 22).
1074   bool needs_dynsym_entry_ : 1;
1075   // True if we've seen this symbol in a regular object (bit 23).
1076   bool in_reg_ : 1;
1077   // True if we've seen this symbol in a dynamic object (bit 24).
1078   bool in_dyn_ : 1;
1079   // True if this is a dynamic symbol which needs a special value in
1080   // the dynamic symbol table (bit 25).
1081   bool needs_dynsym_value_ : 1;
1082   // True if there is a warning for this symbol (bit 26).
1083   bool has_warning_ : 1;
1084   // True if we are using a COPY reloc for this symbol, so that the
1085   // real definition lives in a dynamic object (bit 27).
1086   bool is_copied_from_dynobj_ : 1;
1087   // True if this symbol was forced to local visibility by a version
1088   // script (bit 28).
1089   bool is_forced_local_ : 1;
1090   // True if the field u2_.shndx is an ordinary section
1091   // index, not one of the special codes from SHN_LORESERVE to
1092   // SHN_HIRESERVE (bit 29).
1093   bool is_ordinary_shndx_ : 1;
1094   // True if we've seen this symbol in a "real" ELF object (bit 30).
1095   // If the symbol has been seen in a relocatable, non-IR, object file,
1096   // it's known to be referenced from outside the IR.  A reference from
1097   // a dynamic object doesn't count as a "real" ELF, and we'll simply
1098   // mark the symbol as "visible" from outside the IR.  The compiler
1099   // can use this distinction to guide its handling of COMDAT symbols.
1100   bool in_real_elf_ : 1;
1101   // True if this symbol is defined in a section which was discarded
1102   // (bit 31).
1103   bool is_defined_in_discarded_section_ : 1;
1104   // True if UNDEF_BINDING_WEAK_ has been set (bit 32).
1105   bool undef_binding_set_ : 1;
1106   // True if this symbol was a weak undef resolved by a dynamic def
1107   // or by a special symbol (bit 33).
1108   bool undef_binding_weak_ : 1;
1109   // True if this symbol is a predefined linker symbol (bit 34).
1110   bool is_predefined_ : 1;
1111   // True if this symbol has protected visibility in a shared object (bit 35).
1112   // The visibility_ field will be STV_DEFAULT in this case because we
1113   // must treat it as such from outside the shared object.
1114   bool is_protected_  : 1;
1115   // Used by PowerPC64 ELFv2 to track st_other localentry (bit 36).
1116   bool non_zero_localentry_ : 1;
1117 };
1118 
1119 // The parts of a symbol which are size specific.  Using a template
1120 // derived class like this helps us use less space on a 32-bit system.
1121 
1122 template<int size>
1123 class Sized_symbol : public Symbol
1124 {
1125  public:
1126   typedef typename elfcpp::Elf_types<size>::Elf_Addr Value_type;
1127   typedef typename elfcpp::Elf_types<size>::Elf_WXword Size_type;
1128 
Sized_symbol()1129   Sized_symbol()
1130   { }
1131 
1132   // Initialize fields from an ELF symbol in OBJECT.  ST_SHNDX is the
1133   // section index, IS_ORDINARY is whether it is a normal section
1134   // index rather than a special code.
1135   template<bool big_endian>
1136   void
1137   init_object(const char* name, const char* version, Object* object,
1138 	      const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
1139 	      bool is_ordinary);
1140 
1141   // Initialize fields for an Output_data.
1142   void
1143   init_output_data(const char* name, const char* version, Output_data*,
1144 		   Value_type value, Size_type symsize, elfcpp::STT,
1145 		   elfcpp::STB, elfcpp::STV, unsigned char nonvis,
1146 		   bool offset_is_from_end, bool is_predefined);
1147 
1148   // Initialize fields for an Output_segment.
1149   void
1150   init_output_segment(const char* name, const char* version, Output_segment*,
1151 		      Value_type value, Size_type symsize, elfcpp::STT,
1152 		      elfcpp::STB, elfcpp::STV, unsigned char nonvis,
1153 		      Segment_offset_base offset_base, bool is_predefined);
1154 
1155   // Initialize fields for a constant.
1156   void
1157   init_constant(const char* name, const char* version, Value_type value,
1158 		Size_type symsize, elfcpp::STT, elfcpp::STB, elfcpp::STV,
1159 		unsigned char nonvis, bool is_predefined);
1160 
1161   // Initialize fields for an undefined symbol.
1162   void
1163   init_undefined(const char* name, const char* version, Value_type value,
1164 		 elfcpp::STT, elfcpp::STB, elfcpp::STV, unsigned char nonvis);
1165 
1166   // Override existing symbol.
1167   template<bool big_endian>
1168   void
1169   override(const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
1170 	   bool is_ordinary, Object* object, const char* version);
1171 
1172   // Override existing symbol with a special symbol.
1173   void
1174   override_with_special(const Sized_symbol<size>*);
1175 
1176   // Return the symbol's value.
1177   Value_type
value()1178   value() const
1179   { return this->value_; }
1180 
1181   // Return the symbol's size (we can't call this 'size' because that
1182   // is a template parameter).
1183   Size_type
symsize()1184   symsize() const
1185   { return this->symsize_; }
1186 
1187   // Set the symbol size.  This is used when resolving common symbols.
1188   void
set_symsize(Size_type symsize)1189   set_symsize(Size_type symsize)
1190   { this->symsize_ = symsize; }
1191 
1192   // Set the symbol value.  This is called when we store the final
1193   // values of the symbols into the symbol table.
1194   void
set_value(Value_type value)1195   set_value(Value_type value)
1196   { this->value_ = value; }
1197 
1198   // Allocate a common symbol by giving it a location in the output
1199   // file.
1200   void
1201   allocate_common(Output_data*, Value_type value);
1202 
1203   // Completely override existing symbol.  Everything bar name_,
1204   // version_, and is_forced_local_ flag are copied.  version_ is
1205   // cleared if from->version_ is clear.  Returns true if this symbol
1206   // should be forced local.
1207   bool
1208   clone(const Sized_symbol<size>* from);
1209 
1210  private:
1211   Sized_symbol(const Sized_symbol&);
1212   Sized_symbol& operator=(const Sized_symbol&);
1213 
1214   // Symbol value.  Before Layout::finalize this is the offset in the
1215   // input section.  This is set to the final value during
1216   // Layout::finalize.
1217   Value_type value_;
1218   // Symbol size.
1219   Size_type symsize_;
1220 };
1221 
1222 // A struct describing a symbol defined by the linker, where the value
1223 // of the symbol is defined based on an output section.  This is used
1224 // for symbols defined by the linker, like "_init_array_start".
1225 
1226 struct Define_symbol_in_section
1227 {
1228   // The symbol name.
1229   const char* name;
1230   // The name of the output section with which this symbol should be
1231   // associated.  If there is no output section with that name, the
1232   // symbol will be defined as zero.
1233   const char* output_section;
1234   // The offset of the symbol within the output section.  This is an
1235   // offset from the start of the output section, unless start_at_end
1236   // is true, in which case this is an offset from the end of the
1237   // output section.
1238   uint64_t value;
1239   // The size of the symbol.
1240   uint64_t size;
1241   // The symbol type.
1242   elfcpp::STT type;
1243   // The symbol binding.
1244   elfcpp::STB binding;
1245   // The symbol visibility.
1246   elfcpp::STV visibility;
1247   // The rest of the st_other field.
1248   unsigned char nonvis;
1249   // If true, the value field is an offset from the end of the output
1250   // section.
1251   bool offset_is_from_end;
1252   // If true, this symbol is defined only if we see a reference to it.
1253   bool only_if_ref;
1254 };
1255 
1256 // A struct describing a symbol defined by the linker, where the value
1257 // of the symbol is defined based on a segment.  This is used for
1258 // symbols defined by the linker, like "_end".  We describe the
1259 // segment with which the symbol should be associated by its
1260 // characteristics.  If no segment meets these characteristics, the
1261 // symbol will be defined as zero.  If there is more than one segment
1262 // which meets these characteristics, we will use the first one.
1263 
1264 struct Define_symbol_in_segment
1265 {
1266   // The symbol name.
1267   const char* name;
1268   // The segment type where the symbol should be defined, typically
1269   // PT_LOAD.
1270   elfcpp::PT segment_type;
1271   // Bitmask of segment flags which must be set.
1272   elfcpp::PF segment_flags_set;
1273   // Bitmask of segment flags which must be clear.
1274   elfcpp::PF segment_flags_clear;
1275   // The offset of the symbol within the segment.  The offset is
1276   // calculated from the position set by offset_base.
1277   uint64_t value;
1278   // The size of the symbol.
1279   uint64_t size;
1280   // The symbol type.
1281   elfcpp::STT type;
1282   // The symbol binding.
1283   elfcpp::STB binding;
1284   // The symbol visibility.
1285   elfcpp::STV visibility;
1286   // The rest of the st_other field.
1287   unsigned char nonvis;
1288   // The base from which we compute the offset.
1289   Symbol::Segment_offset_base offset_base;
1290   // If true, this symbol is defined only if we see a reference to it.
1291   bool only_if_ref;
1292 };
1293 
1294 // Specify an object/section/offset location.  Used by ODR code.
1295 
1296 struct Symbol_location
1297 {
1298   // Object where the symbol is defined.
1299   Object* object;
1300   // Section-in-object where the symbol is defined.
1301   unsigned int shndx;
1302   // For relocatable objects, offset-in-section where the symbol is defined.
1303   // For dynamic objects, address where the symbol is defined.
1304   off_t offset;
1305   bool operator==(const Symbol_location& that) const
1306   {
1307     return (this->object == that.object
1308 	    && this->shndx == that.shndx
1309 	    && this->offset == that.offset);
1310   }
1311 };
1312 
1313 // A map from symbol name (as a pointer into the namepool) to all
1314 // the locations the symbols is (weakly) defined (and certain other
1315 // conditions are met).  This map will be used later to detect
1316 // possible One Definition Rule (ODR) violations.
1317 struct Symbol_location_hash
1318 {
operatorSymbol_location_hash1319   size_t operator()(const Symbol_location& loc) const
1320   { return reinterpret_cast<uintptr_t>(loc.object) ^ loc.offset ^ loc.shndx; }
1321 };
1322 
1323 // This class manages warnings.  Warnings are a GNU extension.  When
1324 // we see a section named .gnu.warning.SYM in an object file, and if
1325 // we wind using the definition of SYM from that object file, then we
1326 // will issue a warning for any relocation against SYM from a
1327 // different object file.  The text of the warning is the contents of
1328 // the section.  This is not precisely the definition used by the old
1329 // GNU linker; the old GNU linker treated an occurrence of
1330 // .gnu.warning.SYM as defining a warning symbol.  A warning symbol
1331 // would trigger a warning on any reference.  However, it was
1332 // inconsistent in that a warning in a dynamic object only triggered
1333 // if there was no definition in a regular object.  This linker is
1334 // different in that we only issue a warning if we use the symbol
1335 // definition from the same object file as the warning section.
1336 
1337 class Warnings
1338 {
1339  public:
Warnings()1340   Warnings()
1341     : warnings_()
1342   { }
1343 
1344   // Add a warning for symbol NAME in object OBJ.  WARNING is the text
1345   // of the warning.
1346   void
1347   add_warning(Symbol_table* symtab, const char* name, Object* obj,
1348 	      const std::string& warning);
1349 
1350   // For each symbol for which we should give a warning, make a note
1351   // on the symbol.
1352   void
1353   note_warnings(Symbol_table* symtab);
1354 
1355   // Issue a warning for a reference to SYM at RELINFO's location.
1356   template<int size, bool big_endian>
1357   void
1358   issue_warning(const Symbol* sym, const Relocate_info<size, big_endian>*,
1359 		size_t relnum, off_t reloffset) const;
1360 
1361  private:
1362   Warnings(const Warnings&);
1363   Warnings& operator=(const Warnings&);
1364 
1365   // What we need to know to get the warning text.
1366   struct Warning_location
1367   {
1368     // The object the warning is in.
1369     Object* object;
1370     // The warning text.
1371     std::string text;
1372 
Warning_locationWarning_location1373     Warning_location()
1374       : object(NULL), text()
1375     { }
1376 
1377     void
setWarning_location1378     set(Object* o, const std::string& t)
1379     {
1380       this->object = o;
1381       this->text = t;
1382     }
1383   };
1384 
1385   // A mapping from warning symbol names (canonicalized in
1386   // Symbol_table's namepool_ field) to warning information.
1387   typedef Unordered_map<const char*, Warning_location> Warning_table;
1388 
1389   Warning_table warnings_;
1390 };
1391 
1392 // The main linker symbol table.
1393 
1394 class Symbol_table
1395 {
1396  public:
1397   // The different places where a symbol definition can come from.
1398   enum Defined
1399   {
1400     // Defined in an object file--the normal case.
1401     OBJECT,
1402     // Defined for a COPY reloc.
1403     COPY,
1404     // Defined on the command line using --defsym.
1405     DEFSYM,
1406     // Defined (so to speak) on the command line using -u.
1407     UNDEFINED,
1408     // Defined in a linker script.
1409     SCRIPT,
1410     // Predefined by the linker.
1411     PREDEFINED,
1412     // Defined by the linker during an incremental base link, but not
1413     // a predefined symbol (e.g., common, defined in script).
1414     INCREMENTAL_BASE,
1415   };
1416 
1417   // The order in which we sort common symbols.
1418   enum Sort_commons_order
1419   {
1420     SORT_COMMONS_BY_SIZE_DESCENDING,
1421     SORT_COMMONS_BY_ALIGNMENT_DESCENDING,
1422     SORT_COMMONS_BY_ALIGNMENT_ASCENDING
1423   };
1424 
1425   // COUNT is an estimate of how many symbols will be inserted in the
1426   // symbol table.  It's ok to put 0 if you don't know; a correct
1427   // guess will just save some CPU by reducing hashtable resizes.
1428   Symbol_table(unsigned int count, const Version_script_info& version_script);
1429 
1430   ~Symbol_table();
1431 
1432   void
set_icf(Icf * icf)1433   set_icf(Icf* icf)
1434   { this->icf_ = icf;}
1435 
1436   Icf*
icf()1437   icf() const
1438   { return this->icf_; }
1439 
1440   // Returns true if ICF determined that this is a duplicate section.
1441   bool
1442   is_section_folded(Relobj* obj, unsigned int shndx) const;
1443 
1444   void
set_gc(Garbage_collection * gc)1445   set_gc(Garbage_collection* gc)
1446   { this->gc_ = gc; }
1447 
1448   Garbage_collection*
gc()1449   gc() const
1450   { return this->gc_; }
1451 
1452   // During garbage collection, this keeps undefined symbols.
1453   void
1454   gc_mark_undef_symbols(Layout*);
1455 
1456   // This tells garbage collection that this symbol is referenced.
1457   void
1458   gc_mark_symbol(Symbol* sym);
1459 
1460   // During garbage collection, this keeps sections that correspond to
1461   // symbols seen in dynamic objects.
1462   inline void
1463   gc_mark_dyn_syms(Symbol* sym);
1464 
1465   // Add COUNT external symbols from the relocatable object RELOBJ to
1466   // the symbol table.  SYMS is the symbols, SYMNDX_OFFSET is the
1467   // offset in the symbol table of the first symbol, SYM_NAMES is
1468   // their names, SYM_NAME_SIZE is the size of SYM_NAMES.  This sets
1469   // SYMPOINTERS to point to the symbols in the symbol table.  It sets
1470   // *DEFINED to the number of defined symbols.
1471   template<int size, bool big_endian>
1472   void
1473   add_from_relobj(Sized_relobj_file<size, big_endian>* relobj,
1474 		  const unsigned char* syms, size_t count,
1475 		  size_t symndx_offset, const char* sym_names,
1476 		  size_t sym_name_size,
1477 		  typename Sized_relobj_file<size, big_endian>::Symbols*,
1478 		  size_t* defined);
1479 
1480   // Add one external symbol from the plugin object OBJ to the symbol table.
1481   // Returns a pointer to the resolved symbol in the symbol table.
1482   template<int size, bool big_endian>
1483   Symbol*
1484   add_from_pluginobj(Sized_pluginobj<size, big_endian>* obj,
1485                      const char* name, const char* ver,
1486                      elfcpp::Sym<size, big_endian>* sym);
1487 
1488   // Add COUNT dynamic symbols from the dynamic object DYNOBJ to the
1489   // symbol table.  SYMS is the symbols.  SYM_NAMES is their names.
1490   // SYM_NAME_SIZE is the size of SYM_NAMES.  The other parameters are
1491   // symbol version data.
1492   template<int size, bool big_endian>
1493   void
1494   add_from_dynobj(Sized_dynobj<size, big_endian>* dynobj,
1495 		  const unsigned char* syms, size_t count,
1496 		  const char* sym_names, size_t sym_name_size,
1497 		  const unsigned char* versym, size_t versym_size,
1498 		  const std::vector<const char*>*,
1499 		  typename Sized_relobj_file<size, big_endian>::Symbols*,
1500 		  size_t* defined);
1501 
1502   // Add one external symbol from the incremental object OBJ to the symbol
1503   // table.  Returns a pointer to the resolved symbol in the symbol table.
1504   template<int size, bool big_endian>
1505   Sized_symbol<size>*
1506   add_from_incrobj(Object* obj, const char* name,
1507 		   const char* ver, elfcpp::Sym<size, big_endian>* sym);
1508 
1509   // Define a special symbol based on an Output_data.  It is a
1510   // multiple definition error if this symbol is already defined.
1511   Symbol*
1512   define_in_output_data(const char* name, const char* version, Defined,
1513 			Output_data*, uint64_t value, uint64_t symsize,
1514 			elfcpp::STT type, elfcpp::STB binding,
1515 			elfcpp::STV visibility, unsigned char nonvis,
1516 			bool offset_is_from_end, bool only_if_ref);
1517 
1518   // Define a special symbol based on an Output_segment.  It is a
1519   // multiple definition error if this symbol is already defined.
1520   Symbol*
1521   define_in_output_segment(const char* name, const char* version, Defined,
1522 			   Output_segment*, uint64_t value, uint64_t symsize,
1523 			   elfcpp::STT type, elfcpp::STB binding,
1524 			   elfcpp::STV visibility, unsigned char nonvis,
1525 			   Symbol::Segment_offset_base, bool only_if_ref);
1526 
1527   // Define a special symbol with a constant value.  It is a multiple
1528   // definition error if this symbol is already defined.
1529   Symbol*
1530   define_as_constant(const char* name, const char* version, Defined,
1531 		     uint64_t value, uint64_t symsize, elfcpp::STT type,
1532 		     elfcpp::STB binding, elfcpp::STV visibility,
1533 		     unsigned char nonvis, bool only_if_ref,
1534                      bool force_override);
1535 
1536   // Define a set of symbols in output sections.  If ONLY_IF_REF is
1537   // true, only define them if they are referenced.
1538   void
1539   define_symbols(const Layout*, int count, const Define_symbol_in_section*,
1540 		 bool only_if_ref);
1541 
1542   // Define a set of symbols in output segments.  If ONLY_IF_REF is
1543   // true, only defined them if they are referenced.
1544   void
1545   define_symbols(const Layout*, int count, const Define_symbol_in_segment*,
1546 		 bool only_if_ref);
1547 
1548   // Add a target-specific global symbol.
1549   // (Used by SPARC backend to add STT_SPARC_REGISTER symbols.)
1550   void
add_target_global_symbol(Symbol * sym)1551   add_target_global_symbol(Symbol* sym)
1552   { this->target_symbols_.push_back(sym); }
1553 
1554   // Define SYM using a COPY reloc.  POSD is the Output_data where the
1555   // symbol should be defined--typically a .dyn.bss section.  VALUE is
1556   // the offset within POSD.
1557   template<int size>
1558   void
1559   define_with_copy_reloc(Sized_symbol<size>* sym, Output_data* posd,
1560 			 typename elfcpp::Elf_types<size>::Elf_Addr);
1561 
1562   // Look up a symbol.
1563   Symbol*
1564   lookup(const char*, const char* version = NULL) const;
1565 
1566   // Return the real symbol associated with the forwarder symbol FROM.
1567   Symbol*
1568   resolve_forwards(const Symbol* from) const;
1569 
1570   // Return the sized version of a symbol in this table.
1571   template<int size>
1572   Sized_symbol<size>*
1573   get_sized_symbol(Symbol*) const;
1574 
1575   template<int size>
1576   const Sized_symbol<size>*
1577   get_sized_symbol(const Symbol*) const;
1578 
1579   // Return the count of undefined symbols seen.
1580   size_t
saw_undefined()1581   saw_undefined() const
1582   { return this->saw_undefined_; }
1583 
1584   void
set_has_gnu_output()1585   set_has_gnu_output()
1586   { this->has_gnu_output_ = true; }
1587 
1588   // Allocate the common symbols
1589   void
1590   allocate_commons(Layout*, Mapfile*);
1591 
1592   // Add a warning for symbol NAME in object OBJ.  WARNING is the text
1593   // of the warning.
1594   void
add_warning(const char * name,Object * obj,const std::string & warning)1595   add_warning(const char* name, Object* obj, const std::string& warning)
1596   { this->warnings_.add_warning(this, name, obj, warning); }
1597 
1598   // Canonicalize a symbol name for use in the hash table.
1599   const char*
canonicalize_name(const char * name)1600   canonicalize_name(const char* name)
1601   { return this->namepool_.add(name, true, NULL); }
1602 
1603   // Possibly issue a warning for a reference to SYM at LOCATION which
1604   // is in OBJ.
1605   template<int size, bool big_endian>
1606   void
issue_warning(const Symbol * sym,const Relocate_info<size,big_endian> * relinfo,size_t relnum,off_t reloffset)1607   issue_warning(const Symbol* sym,
1608 		const Relocate_info<size, big_endian>* relinfo,
1609 		size_t relnum, off_t reloffset) const
1610   { this->warnings_.issue_warning(sym, relinfo, relnum, reloffset); }
1611 
1612   // Check candidate_odr_violations_ to find symbols with the same name
1613   // but apparently different definitions (different source-file/line-no).
1614   void
1615   detect_odr_violations(const Task*, const char* output_file_name) const;
1616 
1617   // Add any undefined symbols named on the command line to the symbol
1618   // table.
1619   void
1620   add_undefined_symbols_from_command_line(Layout*);
1621 
1622   // SYM is defined using a COPY reloc.  Return the dynamic object
1623   // where the original definition was found.
1624   Dynobj*
1625   get_copy_source(const Symbol* sym) const;
1626 
1627   // Set the dynamic symbol indexes.  INDEX is the index of the first
1628   // global dynamic symbol.  Return the count of forced-local symbols in
1629   // *PFORCED_LOCAL_COUNT.  Pointers to the symbols are stored into
1630   // the vector.  The names are stored into the Stringpool.  This
1631   // returns an updated dynamic symbol index.
1632   unsigned int
1633   set_dynsym_indexes(unsigned int index, unsigned int* pforced_local_count,
1634 		     std::vector<Symbol*>*, Stringpool*, Versions*);
1635 
1636   // Finalize the symbol table after we have set the final addresses
1637   // of all the input sections.  This sets the final symbol indexes,
1638   // values and adds the names to *POOL.  *PLOCAL_SYMCOUNT is the
1639   // index of the first global symbol.  OFF is the file offset of the
1640   // global symbol table, DYNOFF is the offset of the globals in the
1641   // dynamic symbol table, DYN_GLOBAL_INDEX is the index of the first
1642   // global dynamic symbol, and DYNCOUNT is the number of global
1643   // dynamic symbols.  This records the parameters, and returns the
1644   // new file offset.  It updates *PLOCAL_SYMCOUNT if it created any
1645   // local symbols.
1646   off_t
1647   finalize(off_t off, off_t dynoff, size_t dyn_global_index, size_t dyncount,
1648 	   Stringpool* pool, unsigned int* plocal_symcount);
1649 
1650   // Set the final file offset of the symbol table.
1651   void
set_file_offset(off_t off)1652   set_file_offset(off_t off)
1653   { this->offset_ = off; }
1654 
1655   // Status code of Symbol_table::compute_final_value.
1656   enum Compute_final_value_status
1657   {
1658     // No error.
1659     CFVS_OK,
1660     // Unsupported symbol section.
1661     CFVS_UNSUPPORTED_SYMBOL_SECTION,
1662     // No output section.
1663     CFVS_NO_OUTPUT_SECTION
1664   };
1665 
1666   // Compute the final value of SYM and store status in location PSTATUS.
1667   // During relaxation, this may be called multiple times for a symbol to
1668   // compute its would-be final value in each relaxation pass.
1669 
1670   template<int size>
1671   typename Sized_symbol<size>::Value_type
1672   compute_final_value(const Sized_symbol<size>* sym,
1673 		      Compute_final_value_status* pstatus) const;
1674 
1675   // Return the index of the first global symbol.
1676   unsigned int
first_global_index()1677   first_global_index() const
1678   { return this->first_global_index_; }
1679 
1680   // Return the total number of symbols in the symbol table.
1681   unsigned int
output_count()1682   output_count() const
1683   { return this->output_count_; }
1684 
1685   // Write out the global symbols.
1686   void
1687   write_globals(const Stringpool*, const Stringpool*,
1688 		Output_symtab_xindex*, Output_symtab_xindex*,
1689 		Output_file*) const;
1690 
1691   // Write out a section symbol.  Return the updated offset.
1692   void
1693   write_section_symbol(const Output_section*, Output_symtab_xindex*,
1694 		       Output_file*, off_t) const;
1695 
1696   // Loop over all symbols, applying the function F to each.
1697   template<int size, typename F>
1698   void
for_all_symbols(F f)1699   for_all_symbols(F f) const
1700   {
1701     for (Symbol_table_type::const_iterator p = this->table_.begin();
1702          p != this->table_.end();
1703          ++p)
1704       {
1705 	Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1706 	f(sym);
1707       }
1708   }
1709 
1710   // Dump statistical information to stderr.
1711   void
1712   print_stats() const;
1713 
1714   // Return the version script information.
1715   const Version_script_info&
version_script()1716   version_script() const
1717   { return version_script_; }
1718 
1719   // Completely override existing symbol.
1720   template<int size>
1721   void
clone(Sized_symbol<size> * to,const Sized_symbol<size> * from)1722   clone(Sized_symbol<size>* to, const Sized_symbol<size>* from)
1723   {
1724     if (to->clone(from))
1725       this->force_local(to);
1726   }
1727 
1728  private:
1729   Symbol_table(const Symbol_table&);
1730   Symbol_table& operator=(const Symbol_table&);
1731 
1732   // The type of the list of common symbols.
1733   typedef std::vector<Symbol*> Commons_type;
1734 
1735   // The type of the symbol hash table.
1736 
1737   typedef std::pair<Stringpool::Key, Stringpool::Key> Symbol_table_key;
1738 
1739   // The hash function.  The key values are Stringpool keys.
1740   struct Symbol_table_hash
1741   {
1742     inline size_t
operatorSymbol_table_hash1743     operator()(const Symbol_table_key& key) const
1744     {
1745       return key.first ^ key.second;
1746     }
1747   };
1748 
1749   struct Symbol_table_eq
1750   {
1751     bool
1752     operator()(const Symbol_table_key&, const Symbol_table_key&) const;
1753   };
1754 
1755   typedef Unordered_map<Symbol_table_key, Symbol*, Symbol_table_hash,
1756 			Symbol_table_eq> Symbol_table_type;
1757 
1758   typedef Unordered_map<const char*,
1759                         Unordered_set<Symbol_location, Symbol_location_hash> >
1760   Odr_map;
1761 
1762   // Make FROM a forwarder symbol to TO.
1763   void
1764   make_forwarder(Symbol* from, Symbol* to);
1765 
1766   // Add a symbol.
1767   template<int size, bool big_endian>
1768   Sized_symbol<size>*
1769   add_from_object(Object*, const char* name, Stringpool::Key name_key,
1770 		  const char* version, Stringpool::Key version_key,
1771 		  bool def, const elfcpp::Sym<size, big_endian>& sym,
1772 		  unsigned int st_shndx, bool is_ordinary,
1773 		  unsigned int orig_st_shndx);
1774 
1775   // Define a default symbol.
1776   template<int size, bool big_endian>
1777   void
1778   define_default_version(Sized_symbol<size>*, bool,
1779 			 Symbol_table_type::iterator);
1780 
1781   // Resolve symbols.
1782   template<int size, bool big_endian>
1783   void
1784   resolve(Sized_symbol<size>* to,
1785 	  const elfcpp::Sym<size, big_endian>& sym,
1786 	  unsigned int st_shndx, bool is_ordinary,
1787 	  unsigned int orig_st_shndx,
1788 	  Object*, const char* version,
1789 	  bool is_default_version);
1790 
1791   template<int size, bool big_endian>
1792   void
1793   resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from);
1794 
1795   // Record that a symbol is forced to be local by a version script or
1796   // by visibility.
1797   void
1798   force_local(Symbol*);
1799 
1800   // Adjust NAME and *NAME_KEY for wrapping.
1801   const char*
1802   wrap_symbol(const char* name, Stringpool::Key* name_key);
1803 
1804   // Whether we should override a symbol, based on flags in
1805   // resolve.cc.
1806   static bool
1807   should_override(const Symbol*, unsigned int, elfcpp::STT, Defined,
1808 		  Object*, bool*, bool*, bool);
1809 
1810   // Report a problem in symbol resolution.
1811   static void
1812   report_resolve_problem(bool is_error, const char* msg, const Symbol* to,
1813 			 Defined, Object* object);
1814 
1815   // Override a symbol.
1816   template<int size, bool big_endian>
1817   void
1818   override(Sized_symbol<size>* tosym,
1819 	   const elfcpp::Sym<size, big_endian>& fromsym,
1820 	   unsigned int st_shndx, bool is_ordinary,
1821 	   Object* object, const char* version);
1822 
1823   // Whether we should override a symbol with a special symbol which
1824   // is automatically defined by the linker.
1825   static bool
1826   should_override_with_special(const Symbol*, elfcpp::STT, Defined);
1827 
1828   // Override a symbol with a special symbol.
1829   template<int size>
1830   void
1831   override_with_special(Sized_symbol<size>* tosym,
1832 			const Sized_symbol<size>* fromsym);
1833 
1834   // Record all weak alias sets for a dynamic object.
1835   template<int size>
1836   void
1837   record_weak_aliases(std::vector<Sized_symbol<size>*>*);
1838 
1839   // Define a special symbol.
1840   template<int size, bool big_endian>
1841   Sized_symbol<size>*
1842   define_special_symbol(const char** pname, const char** pversion,
1843 			bool only_if_ref, elfcpp::STV visibility,
1844 			Sized_symbol<size>** poldsym,
1845 			bool* resolve_oldsym, bool is_forced_local);
1846 
1847   // Define a symbol in an Output_data, sized version.
1848   template<int size>
1849   Sized_symbol<size>*
1850   do_define_in_output_data(const char* name, const char* version, Defined,
1851 			   Output_data*,
1852 			   typename elfcpp::Elf_types<size>::Elf_Addr value,
1853 			   typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1854 			   elfcpp::STT type, elfcpp::STB binding,
1855 			   elfcpp::STV visibility, unsigned char nonvis,
1856 			   bool offset_is_from_end, bool only_if_ref);
1857 
1858   // Define a symbol in an Output_segment, sized version.
1859   template<int size>
1860   Sized_symbol<size>*
1861   do_define_in_output_segment(
1862     const char* name, const char* version, Defined, Output_segment* os,
1863     typename elfcpp::Elf_types<size>::Elf_Addr value,
1864     typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1865     elfcpp::STT type, elfcpp::STB binding,
1866     elfcpp::STV visibility, unsigned char nonvis,
1867     Symbol::Segment_offset_base offset_base, bool only_if_ref);
1868 
1869   // Define a symbol as a constant, sized version.
1870   template<int size>
1871   Sized_symbol<size>*
1872   do_define_as_constant(
1873     const char* name, const char* version, Defined,
1874     typename elfcpp::Elf_types<size>::Elf_Addr value,
1875     typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1876     elfcpp::STT type, elfcpp::STB binding,
1877     elfcpp::STV visibility, unsigned char nonvis,
1878     bool only_if_ref, bool force_override);
1879 
1880   // Add any undefined symbols named on the command line to the symbol
1881   // table, sized version.
1882   template<int size>
1883   void
1884   do_add_undefined_symbols_from_command_line(Layout*);
1885 
1886   // Add one undefined symbol.
1887   template<int size>
1888   void
1889   add_undefined_symbol_from_command_line(const char* name);
1890 
1891   // Types of common symbols.
1892 
1893   enum Commons_section_type
1894   {
1895     COMMONS_NORMAL,
1896     COMMONS_TLS,
1897     COMMONS_SMALL,
1898     COMMONS_LARGE
1899   };
1900 
1901   // Allocate the common symbols, sized version.
1902   template<int size>
1903   void
1904   do_allocate_commons(Layout*, Mapfile*, Sort_commons_order);
1905 
1906   // Allocate the common symbols from one list.
1907   template<int size>
1908   void
1909   do_allocate_commons_list(Layout*, Commons_section_type, Commons_type*,
1910 			   Mapfile*, Sort_commons_order);
1911 
1912   // Returns all of the lines attached to LOC, not just the one the
1913   // instruction actually came from.  This helps the ODR checker avoid
1914   // false positives.
1915   static std::vector<std::string>
1916   linenos_from_loc(const Task* task, const Symbol_location& loc);
1917 
1918   // Implement detect_odr_violations.
1919   template<int size, bool big_endian>
1920   void
1921   sized_detect_odr_violations() const;
1922 
1923   // Finalize symbols specialized for size.
1924   template<int size>
1925   off_t
1926   sized_finalize(off_t, Stringpool*, unsigned int*);
1927 
1928   // Finalize a symbol.  Return whether it should be added to the
1929   // symbol table.
1930   template<int size>
1931   bool
1932   sized_finalize_symbol(Symbol*);
1933 
1934   // Add a symbol the final symtab by setting its index.
1935   template<int size>
1936   void
1937   add_to_final_symtab(Symbol*, Stringpool*, unsigned int* pindex, off_t* poff);
1938 
1939   // Write globals specialized for size and endianness.
1940   template<int size, bool big_endian>
1941   void
1942   sized_write_globals(const Stringpool*, const Stringpool*,
1943 		      Output_symtab_xindex*, Output_symtab_xindex*,
1944 		      Output_file*) const;
1945 
1946   // Write out a symbol to P.
1947   template<int size, bool big_endian>
1948   void
1949   sized_write_symbol(Sized_symbol<size>*,
1950 		     typename elfcpp::Elf_types<size>::Elf_Addr value,
1951 		     unsigned int shndx, elfcpp::STB,
1952 		     const Stringpool*, unsigned char* p) const;
1953 
1954   // Possibly warn about an undefined symbol from a dynamic object.
1955   void
1956   warn_about_undefined_dynobj_symbol(Symbol*) const;
1957 
1958   // Write out a section symbol, specialized for size and endianness.
1959   template<int size, bool big_endian>
1960   void
1961   sized_write_section_symbol(const Output_section*, Output_symtab_xindex*,
1962 			     Output_file*, off_t) const;
1963 
1964   // The type of the list of symbols which have been forced local.
1965   typedef std::vector<Symbol*> Forced_locals;
1966 
1967   // A map from symbols with COPY relocs to the dynamic objects where
1968   // they are defined.
1969   typedef Unordered_map<const Symbol*, Dynobj*> Copied_symbol_dynobjs;
1970 
1971   // We increment this every time we see a new undefined symbol, for
1972   // use in archive groups.
1973   size_t saw_undefined_;
1974   // The index of the first global symbol in the output file.
1975   unsigned int first_global_index_;
1976   // The file offset within the output symtab section where we should
1977   // write the table.
1978   off_t offset_;
1979   // The number of global symbols we want to write out.
1980   unsigned int output_count_;
1981   // The file offset of the global dynamic symbols, or 0 if none.
1982   off_t dynamic_offset_;
1983   // The index of the first global dynamic symbol (including
1984   // forced-local symbols).
1985   unsigned int first_dynamic_global_index_;
1986   // The number of global dynamic symbols (including forced-local symbols),
1987   // or 0 if none.
1988   unsigned int dynamic_count_;
1989   // Set if a STT_GNU_IFUNC or STB_GNU_UNIQUE symbol will be output.
1990   bool has_gnu_output_;
1991   // The symbol hash table.
1992   Symbol_table_type table_;
1993   // A pool of symbol names.  This is used for all global symbols.
1994   // Entries in the hash table point into this pool.
1995   Stringpool namepool_;
1996   // Forwarding symbols.
1997   Unordered_map<const Symbol*, Symbol*> forwarders_;
1998   // Weak aliases.  A symbol in this list points to the next alias.
1999   // The aliases point to each other in a circular list.
2000   Unordered_map<Symbol*, Symbol*> weak_aliases_;
2001   // We don't expect there to be very many common symbols, so we keep
2002   // a list of them.  When we find a common symbol we add it to this
2003   // list.  It is possible that by the time we process the list the
2004   // symbol is no longer a common symbol.  It may also have become a
2005   // forwarder.
2006   Commons_type commons_;
2007   // This is like the commons_ field, except that it holds TLS common
2008   // symbols.
2009   Commons_type tls_commons_;
2010   // This is for small common symbols.
2011   Commons_type small_commons_;
2012   // This is for large common symbols.
2013   Commons_type large_commons_;
2014   // A list of symbols which have been forced to be local.  We don't
2015   // expect there to be very many of them, so we keep a list of them
2016   // rather than walking the whole table to find them.
2017   Forced_locals forced_locals_;
2018   // Manage symbol warnings.
2019   Warnings warnings_;
2020   // Manage potential One Definition Rule (ODR) violations.
2021   Odr_map candidate_odr_violations_;
2022 
2023   // When we emit a COPY reloc for a symbol, we define it in an
2024   // Output_data.  When it's time to emit version information for it,
2025   // we need to know the dynamic object in which we found the original
2026   // definition.  This maps symbols with COPY relocs to the dynamic
2027   // object where they were defined.
2028   Copied_symbol_dynobjs copied_symbol_dynobjs_;
2029   // Information parsed from the version script, if any.
2030   const Version_script_info& version_script_;
2031   Garbage_collection* gc_;
2032   Icf* icf_;
2033   // Target-specific symbols, if any.
2034   std::vector<Symbol*> target_symbols_;
2035 };
2036 
2037 // We inline get_sized_symbol for efficiency.
2038 
2039 template<int size>
2040 Sized_symbol<size>*
get_sized_symbol(Symbol * sym)2041 Symbol_table::get_sized_symbol(Symbol* sym) const
2042 {
2043   gold_assert(size == parameters->target().get_size());
2044   return static_cast<Sized_symbol<size>*>(sym);
2045 }
2046 
2047 template<int size>
2048 const Sized_symbol<size>*
get_sized_symbol(const Symbol * sym)2049 Symbol_table::get_sized_symbol(const Symbol* sym) const
2050 {
2051   gold_assert(size == parameters->target().get_size());
2052   return static_cast<const Sized_symbol<size>*>(sym);
2053 }
2054 
2055 } // End namespace gold.
2056 
2057 #endif // !defined(GOLD_SYMTAB_H)
2058