xref: /netbsd-src/external/gpl3/binutils/dist/gold/layout.cc (revision 27fd3f6531803adac12382d7643a9a492b576601)
1 // layout.cc -- lay out output file sections for gold
2 
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5 
6 // This file is part of gold.
7 
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12 
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17 
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22 
23 #include "gold.h"
24 
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <utility>
30 #include <fcntl.h>
31 #include <unistd.h>
32 #include "libiberty.h"
33 #include "md5.h"
34 #include "sha1.h"
35 
36 #include "parameters.h"
37 #include "options.h"
38 #include "mapfile.h"
39 #include "script.h"
40 #include "script-sections.h"
41 #include "output.h"
42 #include "symtab.h"
43 #include "dynobj.h"
44 #include "ehframe.h"
45 #include "compressed_output.h"
46 #include "reduced_debug_output.h"
47 #include "reloc.h"
48 #include "descriptors.h"
49 #include "layout.h"
50 
51 namespace gold
52 {
53 
54 // Layout_task_runner methods.
55 
56 // Lay out the sections.  This is called after all the input objects
57 // have been read.
58 
59 void
60 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
61 {
62   off_t file_size = this->layout_->finalize(this->input_objects_,
63 					    this->symtab_,
64                                             this->target_,
65 					    task);
66 
67   // Now we know the final size of the output file and we know where
68   // each piece of information goes.
69 
70   if (this->mapfile_ != NULL)
71     {
72       this->mapfile_->print_discarded_sections(this->input_objects_);
73       this->layout_->print_to_mapfile(this->mapfile_);
74     }
75 
76   Output_file* of = new Output_file(parameters->options().output_file_name());
77   if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
78     of->set_is_temporary();
79   of->open(file_size);
80 
81   // Queue up the final set of tasks.
82   gold::queue_final_tasks(this->options_, this->input_objects_,
83 			  this->symtab_, this->layout_, workqueue, of);
84 }
85 
86 // Layout methods.
87 
88 Layout::Layout(const General_options& options, Script_options* script_options)
89   : options_(options),
90     script_options_(script_options),
91     namepool_(),
92     sympool_(),
93     dynpool_(),
94     signatures_(),
95     section_name_map_(),
96     segment_list_(),
97     section_list_(),
98     unattached_section_list_(),
99     sections_are_attached_(false),
100     special_output_list_(),
101     section_headers_(NULL),
102     tls_segment_(NULL),
103     relro_segment_(NULL),
104     symtab_section_(NULL),
105     symtab_xindex_(NULL),
106     dynsym_section_(NULL),
107     dynsym_xindex_(NULL),
108     dynamic_section_(NULL),
109     dynamic_data_(NULL),
110     eh_frame_section_(NULL),
111     eh_frame_data_(NULL),
112     added_eh_frame_data_(false),
113     eh_frame_hdr_section_(NULL),
114     build_id_note_(NULL),
115     debug_abbrev_(NULL),
116     debug_info_(NULL),
117     group_signatures_(),
118     output_file_size_(-1),
119     input_requires_executable_stack_(false),
120     input_with_gnu_stack_note_(false),
121     input_without_gnu_stack_note_(false),
122     has_static_tls_(false),
123     any_postprocessing_sections_(false)
124 {
125   // Make space for more than enough segments for a typical file.
126   // This is just for efficiency--it's OK if we wind up needing more.
127   this->segment_list_.reserve(12);
128 
129   // We expect two unattached Output_data objects: the file header and
130   // the segment headers.
131   this->special_output_list_.reserve(2);
132 }
133 
134 // Hash a key we use to look up an output section mapping.
135 
136 size_t
137 Layout::Hash_key::operator()(const Layout::Key& k) const
138 {
139  return k.first + k.second.first + k.second.second;
140 }
141 
142 // Return whether PREFIX is a prefix of STR.
143 
144 static inline bool
145 is_prefix_of(const char* prefix, const char* str)
146 {
147   return strncmp(prefix, str, strlen(prefix)) == 0;
148 }
149 
150 // Returns whether the given section is in the list of
151 // debug-sections-used-by-some-version-of-gdb.  Currently,
152 // we've checked versions of gdb up to and including 6.7.1.
153 
154 static const char* gdb_sections[] =
155 { ".debug_abbrev",
156   // ".debug_aranges",   // not used by gdb as of 6.7.1
157   ".debug_frame",
158   ".debug_info",
159   ".debug_line",
160   ".debug_loc",
161   ".debug_macinfo",
162   // ".debug_pubnames",  // not used by gdb as of 6.7.1
163   ".debug_ranges",
164   ".debug_str",
165 };
166 
167 static const char* lines_only_debug_sections[] =
168 { ".debug_abbrev",
169   // ".debug_aranges",   // not used by gdb as of 6.7.1
170   // ".debug_frame",
171   ".debug_info",
172   ".debug_line",
173   // ".debug_loc",
174   // ".debug_macinfo",
175   // ".debug_pubnames",  // not used by gdb as of 6.7.1
176   // ".debug_ranges",
177   ".debug_str",
178 };
179 
180 static inline bool
181 is_gdb_debug_section(const char* str)
182 {
183   // We can do this faster: binary search or a hashtable.  But why bother?
184   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
185     if (strcmp(str, gdb_sections[i]) == 0)
186       return true;
187   return false;
188 }
189 
190 static inline bool
191 is_lines_only_debug_section(const char* str)
192 {
193   // We can do this faster: binary search or a hashtable.  But why bother?
194   for (size_t i = 0;
195        i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
196        ++i)
197     if (strcmp(str, lines_only_debug_sections[i]) == 0)
198       return true;
199   return false;
200 }
201 
202 // Whether to include this section in the link.
203 
204 template<int size, bool big_endian>
205 bool
206 Layout::include_section(Sized_relobj<size, big_endian>*, const char* name,
207 			const elfcpp::Shdr<size, big_endian>& shdr)
208 {
209   switch (shdr.get_sh_type())
210     {
211     case elfcpp::SHT_NULL:
212     case elfcpp::SHT_SYMTAB:
213     case elfcpp::SHT_DYNSYM:
214     case elfcpp::SHT_HASH:
215     case elfcpp::SHT_DYNAMIC:
216     case elfcpp::SHT_SYMTAB_SHNDX:
217       return false;
218 
219     case elfcpp::SHT_STRTAB:
220       // Discard the sections which have special meanings in the ELF
221       // ABI.  Keep others (e.g., .stabstr).  We could also do this by
222       // checking the sh_link fields of the appropriate sections.
223       return (strcmp(name, ".dynstr") != 0
224 	      && strcmp(name, ".strtab") != 0
225 	      && strcmp(name, ".shstrtab") != 0);
226 
227     case elfcpp::SHT_RELA:
228     case elfcpp::SHT_REL:
229     case elfcpp::SHT_GROUP:
230       // If we are emitting relocations these should be handled
231       // elsewhere.
232       gold_assert(!parameters->options().relocatable()
233 		  && !parameters->options().emit_relocs());
234       return false;
235 
236     case elfcpp::SHT_PROGBITS:
237       if (parameters->options().strip_debug()
238 	  && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
239 	{
240 	  if (is_debug_info_section(name))
241 	    return false;
242 	}
243       if (parameters->options().strip_debug_non_line()
244 	  && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
245 	{
246 	  // Debugging sections can only be recognized by name.
247 	  if (is_prefix_of(".debug", name)
248               && !is_lines_only_debug_section(name))
249 	    return false;
250 	}
251       if (parameters->options().strip_debug_gdb()
252 	  && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
253 	{
254 	  // Debugging sections can only be recognized by name.
255 	  if (is_prefix_of(".debug", name)
256               && !is_gdb_debug_section(name))
257 	    return false;
258 	}
259       return true;
260 
261     default:
262       return true;
263     }
264 }
265 
266 // Return an output section named NAME, or NULL if there is none.
267 
268 Output_section*
269 Layout::find_output_section(const char* name) const
270 {
271   for (Section_list::const_iterator p = this->section_list_.begin();
272        p != this->section_list_.end();
273        ++p)
274     if (strcmp((*p)->name(), name) == 0)
275       return *p;
276   return NULL;
277 }
278 
279 // Return an output segment of type TYPE, with segment flags SET set
280 // and segment flags CLEAR clear.  Return NULL if there is none.
281 
282 Output_segment*
283 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
284 			    elfcpp::Elf_Word clear) const
285 {
286   for (Segment_list::const_iterator p = this->segment_list_.begin();
287        p != this->segment_list_.end();
288        ++p)
289     if (static_cast<elfcpp::PT>((*p)->type()) == type
290 	&& ((*p)->flags() & set) == set
291 	&& ((*p)->flags() & clear) == 0)
292       return *p;
293   return NULL;
294 }
295 
296 // Return the output section to use for section NAME with type TYPE
297 // and section flags FLAGS.  NAME must be canonicalized in the string
298 // pool, and NAME_KEY is the key.
299 
300 Output_section*
301 Layout::get_output_section(const char* name, Stringpool::Key name_key,
302 			   elfcpp::Elf_Word type, elfcpp::Elf_Xword flags)
303 {
304   elfcpp::Elf_Xword lookup_flags = flags;
305 
306   // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
307   // read-write with read-only sections.  Some other ELF linkers do
308   // not do this.  FIXME: Perhaps there should be an option
309   // controlling this.
310   lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
311 
312   const Key key(name_key, std::make_pair(type, lookup_flags));
313   const std::pair<Key, Output_section*> v(key, NULL);
314   std::pair<Section_name_map::iterator, bool> ins(
315     this->section_name_map_.insert(v));
316 
317   if (!ins.second)
318     return ins.first->second;
319   else
320     {
321       // This is the first time we've seen this name/type/flags
322       // combination.  For compatibility with the GNU linker, we
323       // combine sections with contents and zero flags with sections
324       // with non-zero flags.  This is a workaround for cases where
325       // assembler code forgets to set section flags.  FIXME: Perhaps
326       // there should be an option to control this.
327       Output_section* os = NULL;
328 
329       if (type == elfcpp::SHT_PROGBITS)
330 	{
331           if (flags == 0)
332             {
333               Output_section* same_name = this->find_output_section(name);
334               if (same_name != NULL
335                   && same_name->type() == elfcpp::SHT_PROGBITS
336                   && (same_name->flags() & elfcpp::SHF_TLS) == 0)
337                 os = same_name;
338             }
339           else if ((flags & elfcpp::SHF_TLS) == 0)
340             {
341               elfcpp::Elf_Xword zero_flags = 0;
342               const Key zero_key(name_key, std::make_pair(type, zero_flags));
343               Section_name_map::iterator p =
344                   this->section_name_map_.find(zero_key);
345               if (p != this->section_name_map_.end())
346 		os = p->second;
347             }
348 	}
349 
350       if (os == NULL)
351 	os = this->make_output_section(name, type, flags);
352       ins.first->second = os;
353       return os;
354     }
355 }
356 
357 // Pick the output section to use for section NAME, in input file
358 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
359 // linker created section.  IS_INPUT_SECTION is true if we are
360 // choosing an output section for an input section found in a input
361 // file.  This will return NULL if the input section should be
362 // discarded.
363 
364 Output_section*
365 Layout::choose_output_section(const Relobj* relobj, const char* name,
366 			      elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
367 			      bool is_input_section)
368 {
369   // We should not see any input sections after we have attached
370   // sections to segments.
371   gold_assert(!is_input_section || !this->sections_are_attached_);
372 
373   // Some flags in the input section should not be automatically
374   // copied to the output section.
375   flags &= ~ (elfcpp::SHF_INFO_LINK
376 	      | elfcpp::SHF_LINK_ORDER
377 	      | elfcpp::SHF_GROUP
378 	      | elfcpp::SHF_MERGE
379 	      | elfcpp::SHF_STRINGS);
380 
381   if (this->script_options_->saw_sections_clause())
382     {
383       // We are using a SECTIONS clause, so the output section is
384       // chosen based only on the name.
385 
386       Script_sections* ss = this->script_options_->script_sections();
387       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
388       Output_section** output_section_slot;
389       name = ss->output_section_name(file_name, name, &output_section_slot);
390       if (name == NULL)
391 	{
392 	  // The SECTIONS clause says to discard this input section.
393 	  return NULL;
394 	}
395 
396       // If this is an orphan section--one not mentioned in the linker
397       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
398       // default processing below.
399 
400       if (output_section_slot != NULL)
401 	{
402 	  if (*output_section_slot != NULL)
403 	    return *output_section_slot;
404 
405 	  // We don't put sections found in the linker script into
406 	  // SECTION_NAME_MAP_.  That keeps us from getting confused
407 	  // if an orphan section is mapped to a section with the same
408 	  // name as one in the linker script.
409 
410 	  name = this->namepool_.add(name, false, NULL);
411 
412 	  Output_section* os = this->make_output_section(name, type, flags);
413 	  os->set_found_in_sections_clause();
414 	  *output_section_slot = os;
415 	  return os;
416 	}
417     }
418 
419   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
420 
421   // Turn NAME from the name of the input section into the name of the
422   // output section.
423 
424   size_t len = strlen(name);
425   if (is_input_section && !parameters->options().relocatable())
426     name = Layout::output_section_name(name, &len);
427 
428   Stringpool::Key name_key;
429   name = this->namepool_.add_with_length(name, len, true, &name_key);
430 
431   // Find or make the output section.  The output section is selected
432   // based on the section name, type, and flags.
433   return this->get_output_section(name, name_key, type, flags);
434 }
435 
436 // Return the output section to use for input section SHNDX, with name
437 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
438 // index of a relocation section which applies to this section, or 0
439 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
440 // relocation section if there is one.  Set *OFF to the offset of this
441 // input section without the output section.  Return NULL if the
442 // section should be discarded.  Set *OFF to -1 if the section
443 // contents should not be written directly to the output file, but
444 // will instead receive special handling.
445 
446 template<int size, bool big_endian>
447 Output_section*
448 Layout::layout(Sized_relobj<size, big_endian>* object, unsigned int shndx,
449 	       const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
450 	       unsigned int reloc_shndx, unsigned int, off_t* off)
451 {
452   *off = 0;
453 
454   if (!this->include_section(object, name, shdr))
455     return NULL;
456 
457   Output_section* os;
458 
459   // In a relocatable link a grouped section must not be combined with
460   // any other sections.
461   if (parameters->options().relocatable()
462       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
463     {
464       name = this->namepool_.add(name, true, NULL);
465       os = this->make_output_section(name, shdr.get_sh_type(),
466 				     shdr.get_sh_flags());
467     }
468   else
469     {
470       os = this->choose_output_section(object, name, shdr.get_sh_type(),
471 				       shdr.get_sh_flags(), true);
472       if (os == NULL)
473 	return NULL;
474     }
475 
476   // By default the GNU linker sorts input sections whose names match
477   // .ctor.*, .dtor.*, .init_array.*, or .fini_array.*.  The sections
478   // are sorted by name.  This is used to implement constructor
479   // priority ordering.  We are compatible.
480   if (!this->script_options_->saw_sections_clause()
481       && (is_prefix_of(".ctors.", name)
482 	  || is_prefix_of(".dtors.", name)
483 	  || is_prefix_of(".init_array.", name)
484 	  || is_prefix_of(".fini_array.", name)))
485     os->set_must_sort_attached_input_sections();
486 
487   // FIXME: Handle SHF_LINK_ORDER somewhere.
488 
489   *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
490 			       this->script_options_->saw_sections_clause());
491 
492   return os;
493 }
494 
495 // Handle a relocation section when doing a relocatable link.
496 
497 template<int size, bool big_endian>
498 Output_section*
499 Layout::layout_reloc(Sized_relobj<size, big_endian>* object,
500 		     unsigned int,
501 		     const elfcpp::Shdr<size, big_endian>& shdr,
502 		     Output_section* data_section,
503 		     Relocatable_relocs* rr)
504 {
505   gold_assert(parameters->options().relocatable()
506 	      || parameters->options().emit_relocs());
507 
508   int sh_type = shdr.get_sh_type();
509 
510   std::string name;
511   if (sh_type == elfcpp::SHT_REL)
512     name = ".rel";
513   else if (sh_type == elfcpp::SHT_RELA)
514     name = ".rela";
515   else
516     gold_unreachable();
517   name += data_section->name();
518 
519   Output_section* os = this->choose_output_section(object, name.c_str(),
520 						   sh_type,
521 						   shdr.get_sh_flags(),
522 						   false);
523 
524   os->set_should_link_to_symtab();
525   os->set_info_section(data_section);
526 
527   Output_section_data* posd;
528   if (sh_type == elfcpp::SHT_REL)
529     {
530       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
531       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
532 					   size,
533 					   big_endian>(rr);
534     }
535   else if (sh_type == elfcpp::SHT_RELA)
536     {
537       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
538       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
539 					   size,
540 					   big_endian>(rr);
541     }
542   else
543     gold_unreachable();
544 
545   os->add_output_section_data(posd);
546   rr->set_output_data(posd);
547 
548   return os;
549 }
550 
551 // Handle a group section when doing a relocatable link.
552 
553 template<int size, bool big_endian>
554 void
555 Layout::layout_group(Symbol_table* symtab,
556 		     Sized_relobj<size, big_endian>* object,
557 		     unsigned int,
558 		     const char* group_section_name,
559 		     const char* signature,
560 		     const elfcpp::Shdr<size, big_endian>& shdr,
561 		     elfcpp::Elf_Word flags,
562 		     std::vector<unsigned int>* shndxes)
563 {
564   gold_assert(parameters->options().relocatable());
565   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
566   group_section_name = this->namepool_.add(group_section_name, true, NULL);
567   Output_section* os = this->make_output_section(group_section_name,
568 						 elfcpp::SHT_GROUP,
569 						 shdr.get_sh_flags());
570 
571   // We need to find a symbol with the signature in the symbol table.
572   // If we don't find one now, we need to look again later.
573   Symbol* sym = symtab->lookup(signature, NULL);
574   if (sym != NULL)
575     os->set_info_symndx(sym);
576   else
577     {
578       // We will wind up using a symbol whose name is the signature.
579       // So just put the signature in the symbol name pool to save it.
580       signature = symtab->canonicalize_name(signature);
581       this->group_signatures_.push_back(Group_signature(os, signature));
582     }
583 
584   os->set_should_link_to_symtab();
585   os->set_entsize(4);
586 
587   section_size_type entry_count =
588     convert_to_section_size_type(shdr.get_sh_size() / 4);
589   Output_section_data* posd =
590     new Output_data_group<size, big_endian>(object, entry_count, flags,
591 					    shndxes);
592   os->add_output_section_data(posd);
593 }
594 
595 // Special GNU handling of sections name .eh_frame.  They will
596 // normally hold exception frame data as defined by the C++ ABI
597 // (http://codesourcery.com/cxx-abi/).
598 
599 template<int size, bool big_endian>
600 Output_section*
601 Layout::layout_eh_frame(Sized_relobj<size, big_endian>* object,
602 			const unsigned char* symbols,
603 			off_t symbols_size,
604 			const unsigned char* symbol_names,
605 			off_t symbol_names_size,
606 			unsigned int shndx,
607 			const elfcpp::Shdr<size, big_endian>& shdr,
608 			unsigned int reloc_shndx, unsigned int reloc_type,
609 			off_t* off)
610 {
611   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS);
612   gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
613 
614   const char* const name = ".eh_frame";
615   Output_section* os = this->choose_output_section(object,
616 						   name,
617 						   elfcpp::SHT_PROGBITS,
618 						   elfcpp::SHF_ALLOC,
619 						   false);
620   if (os == NULL)
621     return NULL;
622 
623   if (this->eh_frame_section_ == NULL)
624     {
625       this->eh_frame_section_ = os;
626       this->eh_frame_data_ = new Eh_frame();
627 
628       if (this->options_.eh_frame_hdr())
629 	{
630 	  Output_section* hdr_os =
631 	    this->choose_output_section(NULL,
632 					".eh_frame_hdr",
633 					elfcpp::SHT_PROGBITS,
634 					elfcpp::SHF_ALLOC,
635 					false);
636 
637 	  if (hdr_os != NULL)
638 	    {
639 	      Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
640 							this->eh_frame_data_);
641 	      hdr_os->add_output_section_data(hdr_posd);
642 
643 	      hdr_os->set_after_input_sections();
644 
645 	      if (!this->script_options_->saw_phdrs_clause())
646 		{
647 		  Output_segment* hdr_oseg;
648 		  hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
649 						       elfcpp::PF_R);
650 		  hdr_oseg->add_output_section(hdr_os, elfcpp::PF_R);
651 		}
652 
653 	      this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
654 	    }
655 	}
656     }
657 
658   gold_assert(this->eh_frame_section_ == os);
659 
660   if (this->eh_frame_data_->add_ehframe_input_section(object,
661 						      symbols,
662 						      symbols_size,
663 						      symbol_names,
664 						      symbol_names_size,
665 						      shndx,
666 						      reloc_shndx,
667 						      reloc_type))
668     {
669       os->update_flags_for_input_section(shdr.get_sh_flags());
670 
671       // We found a .eh_frame section we are going to optimize, so now
672       // we can add the set of optimized sections to the output
673       // section.  We need to postpone adding this until we've found a
674       // section we can optimize so that the .eh_frame section in
675       // crtbegin.o winds up at the start of the output section.
676       if (!this->added_eh_frame_data_)
677 	{
678 	  os->add_output_section_data(this->eh_frame_data_);
679 	  this->added_eh_frame_data_ = true;
680 	}
681       *off = -1;
682     }
683   else
684     {
685       // We couldn't handle this .eh_frame section for some reason.
686       // Add it as a normal section.
687       bool saw_sections_clause = this->script_options_->saw_sections_clause();
688       *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
689 				   saw_sections_clause);
690     }
691 
692   return os;
693 }
694 
695 // Add POSD to an output section using NAME, TYPE, and FLAGS.  Return
696 // the output section.
697 
698 Output_section*
699 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
700 				elfcpp::Elf_Xword flags,
701 				Output_section_data* posd)
702 {
703   Output_section* os = this->choose_output_section(NULL, name, type, flags,
704 						   false);
705   if (os != NULL)
706     os->add_output_section_data(posd);
707   return os;
708 }
709 
710 // Map section flags to segment flags.
711 
712 elfcpp::Elf_Word
713 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
714 {
715   elfcpp::Elf_Word ret = elfcpp::PF_R;
716   if ((flags & elfcpp::SHF_WRITE) != 0)
717     ret |= elfcpp::PF_W;
718   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
719     ret |= elfcpp::PF_X;
720   return ret;
721 }
722 
723 // Sometimes we compress sections.  This is typically done for
724 // sections that are not part of normal program execution (such as
725 // .debug_* sections), and where the readers of these sections know
726 // how to deal with compressed sections.  (To make it easier for them,
727 // we will rename the ouput section in such cases from .foo to
728 // .foo.zlib.nnnn, where nnnn is the uncompressed size.)  This routine
729 // doesn't say for certain whether we'll compress -- it depends on
730 // commandline options as well -- just whether this section is a
731 // candidate for compression.
732 
733 static bool
734 is_compressible_debug_section(const char* secname)
735 {
736   return (strncmp(secname, ".debug", sizeof(".debug") - 1) == 0);
737 }
738 
739 // Make a new Output_section, and attach it to segments as
740 // appropriate.
741 
742 Output_section*
743 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
744 			    elfcpp::Elf_Xword flags)
745 {
746   Output_section* os;
747   if ((flags & elfcpp::SHF_ALLOC) == 0
748       && strcmp(this->options_.compress_debug_sections(), "none") != 0
749       && is_compressible_debug_section(name))
750     os = new Output_compressed_section(&this->options_, name, type, flags);
751 
752   else if ((flags & elfcpp::SHF_ALLOC) == 0
753            && this->options_.strip_debug_non_line()
754            && strcmp(".debug_abbrev", name) == 0)
755     {
756       os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
757           name, type, flags);
758       if (this->debug_info_)
759         this->debug_info_->set_abbreviations(this->debug_abbrev_);
760     }
761   else if ((flags & elfcpp::SHF_ALLOC) == 0
762            && this->options_.strip_debug_non_line()
763            && strcmp(".debug_info", name) == 0)
764     {
765       os = this->debug_info_ = new Output_reduced_debug_info_section(
766           name, type, flags);
767       if (this->debug_abbrev_)
768         this->debug_info_->set_abbreviations(this->debug_abbrev_);
769     }
770  else
771     os = new Output_section(name, type, flags);
772 
773   this->section_list_.push_back(os);
774 
775   // The GNU linker by default sorts some sections by priority, so we
776   // do the same.  We need to know that this might happen before we
777   // attach any input sections.
778   if (!this->script_options_->saw_sections_clause()
779       && (strcmp(name, ".ctors") == 0
780 	  || strcmp(name, ".dtors") == 0
781 	  || strcmp(name, ".init_array") == 0
782 	  || strcmp(name, ".fini_array") == 0))
783     os->set_may_sort_attached_input_sections();
784 
785   // With -z relro, we have to recognize the special sections by name.
786   // There is no other way.
787   if (!this->script_options_->saw_sections_clause()
788       && parameters->options().relro()
789       && type == elfcpp::SHT_PROGBITS
790       && (flags & elfcpp::SHF_ALLOC) != 0
791       && (flags & elfcpp::SHF_WRITE) != 0)
792     {
793       if (strcmp(name, ".data.rel.ro") == 0)
794 	os->set_is_relro();
795       else if (strcmp(name, ".data.rel.ro.local") == 0)
796 	{
797 	  os->set_is_relro();
798 	  os->set_is_relro_local();
799 	}
800     }
801 
802   // If we have already attached the sections to segments, then we
803   // need to attach this one now.  This happens for sections created
804   // directly by the linker.
805   if (this->sections_are_attached_)
806     this->attach_section_to_segment(os);
807 
808   return os;
809 }
810 
811 // Attach output sections to segments.  This is called after we have
812 // seen all the input sections.
813 
814 void
815 Layout::attach_sections_to_segments()
816 {
817   for (Section_list::iterator p = this->section_list_.begin();
818        p != this->section_list_.end();
819        ++p)
820     this->attach_section_to_segment(*p);
821 
822   this->sections_are_attached_ = true;
823 }
824 
825 // Attach an output section to a segment.
826 
827 void
828 Layout::attach_section_to_segment(Output_section* os)
829 {
830   if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
831     this->unattached_section_list_.push_back(os);
832   else
833     this->attach_allocated_section_to_segment(os);
834 }
835 
836 // Attach an allocated output section to a segment.
837 
838 void
839 Layout::attach_allocated_section_to_segment(Output_section* os)
840 {
841   elfcpp::Elf_Xword flags = os->flags();
842   gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
843 
844   if (parameters->options().relocatable())
845     return;
846 
847   // If we have a SECTIONS clause, we can't handle the attachment to
848   // segments until after we've seen all the sections.
849   if (this->script_options_->saw_sections_clause())
850     return;
851 
852   gold_assert(!this->script_options_->saw_phdrs_clause());
853 
854   // This output section goes into a PT_LOAD segment.
855 
856   elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
857 
858   // In general the only thing we really care about for PT_LOAD
859   // segments is whether or not they are writable, so that is how we
860   // search for them.  People who need segments sorted on some other
861   // basis will have to use a linker script.
862 
863   Segment_list::const_iterator p;
864   for (p = this->segment_list_.begin();
865        p != this->segment_list_.end();
866        ++p)
867     {
868       if ((*p)->type() == elfcpp::PT_LOAD
869 	  && (parameters->options().omagic()
870 	      || ((*p)->flags() & elfcpp::PF_W) == (seg_flags & elfcpp::PF_W)))
871         {
872           // If -Tbss was specified, we need to separate the data
873           // and BSS segments.
874           if (this->options_.user_set_Tbss())
875             {
876               if ((os->type() == elfcpp::SHT_NOBITS)
877                   == (*p)->has_any_data_sections())
878                 continue;
879             }
880 
881           (*p)->add_output_section(os, seg_flags);
882           break;
883         }
884     }
885 
886   if (p == this->segment_list_.end())
887     {
888       Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
889                                                        seg_flags);
890       oseg->add_output_section(os, seg_flags);
891     }
892 
893   // If we see a loadable SHT_NOTE section, we create a PT_NOTE
894   // segment.
895   if (os->type() == elfcpp::SHT_NOTE)
896     {
897       // See if we already have an equivalent PT_NOTE segment.
898       for (p = this->segment_list_.begin();
899            p != segment_list_.end();
900            ++p)
901         {
902           if ((*p)->type() == elfcpp::PT_NOTE
903               && (((*p)->flags() & elfcpp::PF_W)
904                   == (seg_flags & elfcpp::PF_W)))
905             {
906               (*p)->add_output_section(os, seg_flags);
907               break;
908             }
909         }
910 
911       if (p == this->segment_list_.end())
912         {
913           Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
914                                                            seg_flags);
915           oseg->add_output_section(os, seg_flags);
916         }
917     }
918 
919   // If we see a loadable SHF_TLS section, we create a PT_TLS
920   // segment.  There can only be one such segment.
921   if ((flags & elfcpp::SHF_TLS) != 0)
922     {
923       if (this->tls_segment_ == NULL)
924 	this->make_output_segment(elfcpp::PT_TLS, seg_flags);
925       this->tls_segment_->add_output_section(os, seg_flags);
926     }
927 
928   // If -z relro is in effect, and we see a relro section, we create a
929   // PT_GNU_RELRO segment.  There can only be one such segment.
930   if (os->is_relro() && parameters->options().relro())
931     {
932       gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
933       if (this->relro_segment_ == NULL)
934 	this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
935       this->relro_segment_->add_output_section(os, seg_flags);
936     }
937 }
938 
939 // Make an output section for a script.
940 
941 Output_section*
942 Layout::make_output_section_for_script(const char* name)
943 {
944   name = this->namepool_.add(name, false, NULL);
945   Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
946 						 elfcpp::SHF_ALLOC);
947   os->set_found_in_sections_clause();
948   return os;
949 }
950 
951 // Return the number of segments we expect to see.
952 
953 size_t
954 Layout::expected_segment_count() const
955 {
956   size_t ret = this->segment_list_.size();
957 
958   // If we didn't see a SECTIONS clause in a linker script, we should
959   // already have the complete list of segments.  Otherwise we ask the
960   // SECTIONS clause how many segments it expects, and add in the ones
961   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
962 
963   if (!this->script_options_->saw_sections_clause())
964     return ret;
965   else
966     {
967       const Script_sections* ss = this->script_options_->script_sections();
968       return ret + ss->expected_segment_count(this);
969     }
970 }
971 
972 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
973 // is whether we saw a .note.GNU-stack section in the object file.
974 // GNU_STACK_FLAGS is the section flags.  The flags give the
975 // protection required for stack memory.  We record this in an
976 // executable as a PT_GNU_STACK segment.  If an object file does not
977 // have a .note.GNU-stack segment, we must assume that it is an old
978 // object.  On some targets that will force an executable stack.
979 
980 void
981 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags)
982 {
983   if (!seen_gnu_stack)
984     this->input_without_gnu_stack_note_ = true;
985   else
986     {
987       this->input_with_gnu_stack_note_ = true;
988       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
989 	this->input_requires_executable_stack_ = true;
990     }
991 }
992 
993 // Create the dynamic sections which are needed before we read the
994 // relocs.
995 
996 void
997 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
998 {
999   if (parameters->doing_static_link())
1000     return;
1001 
1002   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
1003 						       elfcpp::SHT_DYNAMIC,
1004 						       (elfcpp::SHF_ALLOC
1005 							| elfcpp::SHF_WRITE),
1006 						       false);
1007   this->dynamic_section_->set_is_relro();
1008 
1009   symtab->define_in_output_data("_DYNAMIC", NULL, this->dynamic_section_, 0, 0,
1010 				elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
1011 				elfcpp::STV_HIDDEN, 0, false, false);
1012 
1013   this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
1014 
1015   this->dynamic_section_->add_output_section_data(this->dynamic_data_);
1016 }
1017 
1018 // For each output section whose name can be represented as C symbol,
1019 // define __start and __stop symbols for the section.  This is a GNU
1020 // extension.
1021 
1022 void
1023 Layout::define_section_symbols(Symbol_table* symtab)
1024 {
1025   for (Section_list::const_iterator p = this->section_list_.begin();
1026        p != this->section_list_.end();
1027        ++p)
1028     {
1029       const char* const name = (*p)->name();
1030       if (name[strspn(name,
1031 		      ("0123456789"
1032 		       "ABCDEFGHIJKLMNOPWRSTUVWXYZ"
1033 		       "abcdefghijklmnopqrstuvwxyz"
1034 		       "_"))]
1035 	  == '\0')
1036 	{
1037 	  const std::string name_string(name);
1038 	  const std::string start_name("__start_" + name_string);
1039 	  const std::string stop_name("__stop_" + name_string);
1040 
1041 	  symtab->define_in_output_data(start_name.c_str(),
1042 					NULL, // version
1043 					*p,
1044 					0, // value
1045 					0, // symsize
1046 					elfcpp::STT_NOTYPE,
1047 					elfcpp::STB_GLOBAL,
1048 					elfcpp::STV_DEFAULT,
1049 					0, // nonvis
1050 					false, // offset_is_from_end
1051 					true); // only_if_ref
1052 
1053 	  symtab->define_in_output_data(stop_name.c_str(),
1054 					NULL, // version
1055 					*p,
1056 					0, // value
1057 					0, // symsize
1058 					elfcpp::STT_NOTYPE,
1059 					elfcpp::STB_GLOBAL,
1060 					elfcpp::STV_DEFAULT,
1061 					0, // nonvis
1062 					true, // offset_is_from_end
1063 					true); // only_if_ref
1064 	}
1065     }
1066 }
1067 
1068 // Define symbols for group signatures.
1069 
1070 void
1071 Layout::define_group_signatures(Symbol_table* symtab)
1072 {
1073   for (Group_signatures::iterator p = this->group_signatures_.begin();
1074        p != this->group_signatures_.end();
1075        ++p)
1076     {
1077       Symbol* sym = symtab->lookup(p->signature, NULL);
1078       if (sym != NULL)
1079 	p->section->set_info_symndx(sym);
1080       else
1081 	{
1082 	  // Force the name of the group section to the group
1083 	  // signature, and use the group's section symbol as the
1084 	  // signature symbol.
1085 	  if (strcmp(p->section->name(), p->signature) != 0)
1086 	    {
1087 	      const char* name = this->namepool_.add(p->signature,
1088 						     true, NULL);
1089 	      p->section->set_name(name);
1090 	    }
1091 	  p->section->set_needs_symtab_index();
1092 	  p->section->set_info_section_symndx(p->section);
1093 	}
1094     }
1095 
1096   this->group_signatures_.clear();
1097 }
1098 
1099 // Find the first read-only PT_LOAD segment, creating one if
1100 // necessary.
1101 
1102 Output_segment*
1103 Layout::find_first_load_seg()
1104 {
1105   for (Segment_list::const_iterator p = this->segment_list_.begin();
1106        p != this->segment_list_.end();
1107        ++p)
1108     {
1109       if ((*p)->type() == elfcpp::PT_LOAD
1110 	  && ((*p)->flags() & elfcpp::PF_R) != 0
1111 	  && (parameters->options().omagic()
1112 	      || ((*p)->flags() & elfcpp::PF_W) == 0))
1113 	return *p;
1114     }
1115 
1116   gold_assert(!this->script_options_->saw_phdrs_clause());
1117 
1118   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
1119 						       elfcpp::PF_R);
1120   return load_seg;
1121 }
1122 
1123 // Finalize the layout.  When this is called, we have created all the
1124 // output sections and all the output segments which are based on
1125 // input sections.  We have several things to do, and we have to do
1126 // them in the right order, so that we get the right results correctly
1127 // and efficiently.
1128 
1129 // 1) Finalize the list of output segments and create the segment
1130 // table header.
1131 
1132 // 2) Finalize the dynamic symbol table and associated sections.
1133 
1134 // 3) Determine the final file offset of all the output segments.
1135 
1136 // 4) Determine the final file offset of all the SHF_ALLOC output
1137 // sections.
1138 
1139 // 5) Create the symbol table sections and the section name table
1140 // section.
1141 
1142 // 6) Finalize the symbol table: set symbol values to their final
1143 // value and make a final determination of which symbols are going
1144 // into the output symbol table.
1145 
1146 // 7) Create the section table header.
1147 
1148 // 8) Determine the final file offset of all the output sections which
1149 // are not SHF_ALLOC, including the section table header.
1150 
1151 // 9) Finalize the ELF file header.
1152 
1153 // This function returns the size of the output file.
1154 
1155 off_t
1156 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
1157 		 Target* target, const Task* task)
1158 {
1159   target->finalize_sections(this);
1160 
1161   this->count_local_symbols(task, input_objects);
1162 
1163   this->create_gold_note();
1164   this->create_executable_stack_info(target);
1165   this->create_build_id();
1166 
1167   Output_segment* phdr_seg = NULL;
1168   if (!parameters->options().relocatable() && !parameters->doing_static_link())
1169     {
1170       // There was a dynamic object in the link.  We need to create
1171       // some information for the dynamic linker.
1172 
1173       // Create the PT_PHDR segment which will hold the program
1174       // headers.
1175       if (!this->script_options_->saw_phdrs_clause())
1176 	phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
1177 
1178       // Create the dynamic symbol table, including the hash table.
1179       Output_section* dynstr;
1180       std::vector<Symbol*> dynamic_symbols;
1181       unsigned int local_dynamic_count;
1182       Versions versions(*this->script_options()->version_script_info(),
1183                         &this->dynpool_);
1184       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
1185 				  &local_dynamic_count, &dynamic_symbols,
1186 				  &versions);
1187 
1188       // Create the .interp section to hold the name of the
1189       // interpreter, and put it in a PT_INTERP segment.
1190       if (!parameters->options().shared())
1191         this->create_interp(target);
1192 
1193       // Finish the .dynamic section to hold the dynamic data, and put
1194       // it in a PT_DYNAMIC segment.
1195       this->finish_dynamic_section(input_objects, symtab);
1196 
1197       // We should have added everything we need to the dynamic string
1198       // table.
1199       this->dynpool_.set_string_offsets();
1200 
1201       // Create the version sections.  We can't do this until the
1202       // dynamic string table is complete.
1203       this->create_version_sections(&versions, symtab, local_dynamic_count,
1204 				    dynamic_symbols, dynstr);
1205     }
1206 
1207   // If there is a SECTIONS clause, put all the input sections into
1208   // the required order.
1209   Output_segment* load_seg;
1210   if (this->script_options_->saw_sections_clause())
1211     load_seg = this->set_section_addresses_from_script(symtab);
1212   else if (parameters->options().relocatable())
1213     load_seg = NULL;
1214   else
1215     load_seg = this->find_first_load_seg();
1216 
1217   if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
1218     load_seg = NULL;
1219 
1220   gold_assert(phdr_seg == NULL || load_seg != NULL);
1221 
1222   // Lay out the segment headers.
1223   Output_segment_headers* segment_headers;
1224   if (parameters->options().relocatable())
1225     segment_headers = NULL;
1226   else
1227     {
1228       segment_headers = new Output_segment_headers(this->segment_list_);
1229       if (load_seg != NULL)
1230 	load_seg->add_initial_output_data(segment_headers);
1231       if (phdr_seg != NULL)
1232 	phdr_seg->add_initial_output_data(segment_headers);
1233     }
1234 
1235   // Lay out the file header.
1236   Output_file_header* file_header;
1237   file_header = new Output_file_header(target, symtab, segment_headers,
1238 				       this->options_.entry());
1239   if (load_seg != NULL)
1240     load_seg->add_initial_output_data(file_header);
1241 
1242   this->special_output_list_.push_back(file_header);
1243   if (segment_headers != NULL)
1244     this->special_output_list_.push_back(segment_headers);
1245 
1246   if (this->script_options_->saw_phdrs_clause()
1247       && !parameters->options().relocatable())
1248     {
1249       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
1250       // clause in a linker script.
1251       Script_sections* ss = this->script_options_->script_sections();
1252       ss->put_headers_in_phdrs(file_header, segment_headers);
1253     }
1254 
1255   // We set the output section indexes in set_segment_offsets and
1256   // set_section_indexes.
1257   unsigned int shndx = 1;
1258 
1259   // Set the file offsets of all the segments, and all the sections
1260   // they contain.
1261   off_t off;
1262   if (!parameters->options().relocatable())
1263     off = this->set_segment_offsets(target, load_seg, &shndx);
1264   else
1265     off = this->set_relocatable_section_offsets(file_header, &shndx);
1266 
1267   // Set the file offsets of all the non-data sections we've seen so
1268   // far which don't have to wait for the input sections.  We need
1269   // this in order to finalize local symbols in non-allocated
1270   // sections.
1271   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1272 
1273   // Set the section indexes of all unallocated sections seen so far,
1274   // in case any of them are somehow referenced by a symbol.
1275   shndx = this->set_section_indexes(shndx);
1276 
1277   // Create the symbol table sections.
1278   this->create_symtab_sections(input_objects, symtab, shndx, &off);
1279   if (!parameters->doing_static_link())
1280     this->assign_local_dynsym_offsets(input_objects);
1281 
1282   // Process any symbol assignments from a linker script.  This must
1283   // be called after the symbol table has been finalized.
1284   this->script_options_->finalize_symbols(symtab, this);
1285 
1286   // Create the .shstrtab section.
1287   Output_section* shstrtab_section = this->create_shstrtab();
1288 
1289   // Set the file offsets of the rest of the non-data sections which
1290   // don't have to wait for the input sections.
1291   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1292 
1293   // Now that all sections have been created, set the section indexes
1294   // for any sections which haven't been done yet.
1295   shndx = this->set_section_indexes(shndx);
1296 
1297   // Create the section table header.
1298   this->create_shdrs(shstrtab_section, &off);
1299 
1300   // If there are no sections which require postprocessing, we can
1301   // handle the section names now, and avoid a resize later.
1302   if (!this->any_postprocessing_sections_)
1303     off = this->set_section_offsets(off,
1304 				    STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
1305 
1306   file_header->set_section_info(this->section_headers_, shstrtab_section);
1307 
1308   // Now we know exactly where everything goes in the output file
1309   // (except for non-allocated sections which require postprocessing).
1310   Output_data::layout_complete();
1311 
1312   this->output_file_size_ = off;
1313 
1314   return off;
1315 }
1316 
1317 // Create a note header following the format defined in the ELF ABI.
1318 // NAME is the name, NOTE_TYPE is the type, DESCSZ is the size of the
1319 // descriptor.  ALLOCATE is true if the section should be allocated in
1320 // memory.  This returns the new note section.  It sets
1321 // *TRAILING_PADDING to the number of trailing zero bytes required.
1322 
1323 Output_section*
1324 Layout::create_note(const char* name, int note_type, size_t descsz,
1325 		    bool allocate, size_t* trailing_padding)
1326 {
1327   // Authorities all agree that the values in a .note field should
1328   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
1329   // they differ on what the alignment is for 64-bit binaries.
1330   // The GABI says unambiguously they take 8-byte alignment:
1331   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
1332   // Other documentation says alignment should always be 4 bytes:
1333   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
1334   // GNU ld and GNU readelf both support the latter (at least as of
1335   // version 2.16.91), and glibc always generates the latter for
1336   // .note.ABI-tag (as of version 1.6), so that's the one we go with
1337   // here.
1338 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
1339   const int size = parameters->target().get_size();
1340 #else
1341   const int size = 32;
1342 #endif
1343 
1344   // The contents of the .note section.
1345   size_t namesz = strlen(name) + 1;
1346   size_t aligned_namesz = align_address(namesz, size / 8);
1347   size_t aligned_descsz = align_address(descsz, size / 8);
1348 
1349   size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
1350 
1351   unsigned char* buffer = new unsigned char[notehdrsz];
1352   memset(buffer, 0, notehdrsz);
1353 
1354   bool is_big_endian = parameters->target().is_big_endian();
1355 
1356   if (size == 32)
1357     {
1358       if (!is_big_endian)
1359 	{
1360 	  elfcpp::Swap<32, false>::writeval(buffer, namesz);
1361 	  elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
1362 	  elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
1363 	}
1364       else
1365 	{
1366 	  elfcpp::Swap<32, true>::writeval(buffer, namesz);
1367 	  elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
1368 	  elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
1369 	}
1370     }
1371   else if (size == 64)
1372     {
1373       if (!is_big_endian)
1374 	{
1375 	  elfcpp::Swap<64, false>::writeval(buffer, namesz);
1376 	  elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
1377 	  elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
1378 	}
1379       else
1380 	{
1381 	  elfcpp::Swap<64, true>::writeval(buffer, namesz);
1382 	  elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
1383 	  elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
1384 	}
1385     }
1386   else
1387     gold_unreachable();
1388 
1389   memcpy(buffer + 3 * (size / 8), name, namesz);
1390 
1391   const char* note_name = this->namepool_.add(".note", false, NULL);
1392   elfcpp::Elf_Xword flags = 0;
1393   if (allocate)
1394     flags = elfcpp::SHF_ALLOC;
1395   Output_section* os = this->make_output_section(note_name,
1396 						 elfcpp::SHT_NOTE,
1397 						 flags);
1398   Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
1399 							   size / 8,
1400 							   "** note header");
1401   os->add_output_section_data(posd);
1402 
1403   *trailing_padding = aligned_descsz - descsz;
1404 
1405   return os;
1406 }
1407 
1408 // For an executable or shared library, create a note to record the
1409 // version of gold used to create the binary.
1410 
1411 void
1412 Layout::create_gold_note()
1413 {
1414   if (parameters->options().relocatable())
1415     return;
1416 
1417   std::string desc = std::string("gold ") + gold::get_version_string();
1418 
1419   size_t trailing_padding;
1420   Output_section *os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
1421 					 desc.size(), false, &trailing_padding);
1422 
1423   Output_section_data* posd = new Output_data_const(desc, 4);
1424   os->add_output_section_data(posd);
1425 
1426   if (trailing_padding > 0)
1427     {
1428       posd = new Output_data_zero_fill(trailing_padding, 0);
1429       os->add_output_section_data(posd);
1430     }
1431 }
1432 
1433 // Record whether the stack should be executable.  This can be set
1434 // from the command line using the -z execstack or -z noexecstack
1435 // options.  Otherwise, if any input file has a .note.GNU-stack
1436 // section with the SHF_EXECINSTR flag set, the stack should be
1437 // executable.  Otherwise, if at least one input file a
1438 // .note.GNU-stack section, and some input file has no .note.GNU-stack
1439 // section, we use the target default for whether the stack should be
1440 // executable.  Otherwise, we don't generate a stack note.  When
1441 // generating a object file, we create a .note.GNU-stack section with
1442 // the appropriate marking.  When generating an executable or shared
1443 // library, we create a PT_GNU_STACK segment.
1444 
1445 void
1446 Layout::create_executable_stack_info(const Target* target)
1447 {
1448   bool is_stack_executable;
1449   if (this->options_.is_execstack_set())
1450     is_stack_executable = this->options_.is_stack_executable();
1451   else if (!this->input_with_gnu_stack_note_)
1452     return;
1453   else
1454     {
1455       if (this->input_requires_executable_stack_)
1456 	is_stack_executable = true;
1457       else if (this->input_without_gnu_stack_note_)
1458 	is_stack_executable = target->is_default_stack_executable();
1459       else
1460 	is_stack_executable = false;
1461     }
1462 
1463   if (parameters->options().relocatable())
1464     {
1465       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
1466       elfcpp::Elf_Xword flags = 0;
1467       if (is_stack_executable)
1468 	flags |= elfcpp::SHF_EXECINSTR;
1469       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags);
1470     }
1471   else
1472     {
1473       if (this->script_options_->saw_phdrs_clause())
1474 	return;
1475       int flags = elfcpp::PF_R | elfcpp::PF_W;
1476       if (is_stack_executable)
1477 	flags |= elfcpp::PF_X;
1478       this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
1479     }
1480 }
1481 
1482 // If --build-id was used, set up the build ID note.
1483 
1484 void
1485 Layout::create_build_id()
1486 {
1487   if (!parameters->options().user_set_build_id())
1488     return;
1489 
1490   const char* style = parameters->options().build_id();
1491   if (strcmp(style, "none") == 0)
1492     return;
1493 
1494   // Set DESCSZ to the size of the note descriptor.  When possible,
1495   // set DESC to the note descriptor contents.
1496   size_t descsz;
1497   std::string desc;
1498   if (strcmp(style, "md5") == 0)
1499     descsz = 128 / 8;
1500   else if (strcmp(style, "sha1") == 0)
1501     descsz = 160 / 8;
1502   else if (strcmp(style, "uuid") == 0)
1503     {
1504       const size_t uuidsz = 128 / 8;
1505 
1506       char buffer[uuidsz];
1507       memset(buffer, 0, uuidsz);
1508 
1509       int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
1510       if (descriptor < 0)
1511 	gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
1512 		   strerror(errno));
1513       else
1514 	{
1515 	  ssize_t got = ::read(descriptor, buffer, uuidsz);
1516 	  release_descriptor(descriptor, true);
1517 	  if (got < 0)
1518 	    gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
1519 	  else if (static_cast<size_t>(got) != uuidsz)
1520 	    gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
1521 		       uuidsz, got);
1522 	}
1523 
1524       desc.assign(buffer, uuidsz);
1525       descsz = uuidsz;
1526     }
1527   else if (strncmp(style, "0x", 2) == 0)
1528     {
1529       hex_init();
1530       const char* p = style + 2;
1531       while (*p != '\0')
1532 	{
1533 	  if (hex_p(p[0]) && hex_p(p[1]))
1534 	    {
1535 	      char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
1536 	      desc += c;
1537 	      p += 2;
1538 	    }
1539 	  else if (*p == '-' || *p == ':')
1540 	    ++p;
1541 	  else
1542 	    gold_fatal(_("--build-id argument '%s' not a valid hex number"),
1543 		       style);
1544 	}
1545       descsz = desc.size();
1546     }
1547   else
1548     gold_fatal(_("unrecognized --build-id argument '%s'"), style);
1549 
1550   // Create the note.
1551   size_t trailing_padding;
1552   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
1553 					 descsz, true, &trailing_padding);
1554 
1555   if (!desc.empty())
1556     {
1557       // We know the value already, so we fill it in now.
1558       gold_assert(desc.size() == descsz);
1559 
1560       Output_section_data* posd = new Output_data_const(desc, 4);
1561       os->add_output_section_data(posd);
1562 
1563       if (trailing_padding != 0)
1564 	{
1565 	  posd = new Output_data_zero_fill(trailing_padding, 0);
1566 	  os->add_output_section_data(posd);
1567 	}
1568     }
1569   else
1570     {
1571       // We need to compute a checksum after we have completed the
1572       // link.
1573       gold_assert(trailing_padding == 0);
1574       this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
1575       os->add_output_section_data(this->build_id_note_);
1576       os->set_after_input_sections();
1577     }
1578 }
1579 
1580 // Return whether SEG1 should be before SEG2 in the output file.  This
1581 // is based entirely on the segment type and flags.  When this is
1582 // called the segment addresses has normally not yet been set.
1583 
1584 bool
1585 Layout::segment_precedes(const Output_segment* seg1,
1586 			 const Output_segment* seg2)
1587 {
1588   elfcpp::Elf_Word type1 = seg1->type();
1589   elfcpp::Elf_Word type2 = seg2->type();
1590 
1591   // The single PT_PHDR segment is required to precede any loadable
1592   // segment.  We simply make it always first.
1593   if (type1 == elfcpp::PT_PHDR)
1594     {
1595       gold_assert(type2 != elfcpp::PT_PHDR);
1596       return true;
1597     }
1598   if (type2 == elfcpp::PT_PHDR)
1599     return false;
1600 
1601   // The single PT_INTERP segment is required to precede any loadable
1602   // segment.  We simply make it always second.
1603   if (type1 == elfcpp::PT_INTERP)
1604     {
1605       gold_assert(type2 != elfcpp::PT_INTERP);
1606       return true;
1607     }
1608   if (type2 == elfcpp::PT_INTERP)
1609     return false;
1610 
1611   // We then put PT_LOAD segments before any other segments.
1612   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
1613     return true;
1614   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
1615     return false;
1616 
1617   // We put the PT_TLS segment last except for the PT_GNU_RELRO
1618   // segment, because that is where the dynamic linker expects to find
1619   // it (this is just for efficiency; other positions would also work
1620   // correctly).
1621   if (type1 == elfcpp::PT_TLS
1622       && type2 != elfcpp::PT_TLS
1623       && type2 != elfcpp::PT_GNU_RELRO)
1624     return false;
1625   if (type2 == elfcpp::PT_TLS
1626       && type1 != elfcpp::PT_TLS
1627       && type1 != elfcpp::PT_GNU_RELRO)
1628     return true;
1629 
1630   // We put the PT_GNU_RELRO segment last, because that is where the
1631   // dynamic linker expects to find it (as with PT_TLS, this is just
1632   // for efficiency).
1633   if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
1634     return false;
1635   if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
1636     return true;
1637 
1638   const elfcpp::Elf_Word flags1 = seg1->flags();
1639   const elfcpp::Elf_Word flags2 = seg2->flags();
1640 
1641   // The order of non-PT_LOAD segments is unimportant.  We simply sort
1642   // by the numeric segment type and flags values.  There should not
1643   // be more than one segment with the same type and flags.
1644   if (type1 != elfcpp::PT_LOAD)
1645     {
1646       if (type1 != type2)
1647 	return type1 < type2;
1648       gold_assert(flags1 != flags2);
1649       return flags1 < flags2;
1650     }
1651 
1652   // If the addresses are set already, sort by load address.
1653   if (seg1->are_addresses_set())
1654     {
1655       if (!seg2->are_addresses_set())
1656 	return true;
1657 
1658       unsigned int section_count1 = seg1->output_section_count();
1659       unsigned int section_count2 = seg2->output_section_count();
1660       if (section_count1 == 0 && section_count2 > 0)
1661 	return true;
1662       if (section_count1 > 0 && section_count2 == 0)
1663 	return false;
1664 
1665       uint64_t paddr1 = seg1->first_section_load_address();
1666       uint64_t paddr2 = seg2->first_section_load_address();
1667       if (paddr1 != paddr2)
1668 	return paddr1 < paddr2;
1669     }
1670   else if (seg2->are_addresses_set())
1671     return false;
1672 
1673   // We sort PT_LOAD segments based on the flags.  Readonly segments
1674   // come before writable segments.  Then writable segments with data
1675   // come before writable segments without data.  Then executable
1676   // segments come before non-executable segments.  Then the unlikely
1677   // case of a non-readable segment comes before the normal case of a
1678   // readable segment.  If there are multiple segments with the same
1679   // type and flags, we require that the address be set, and we sort
1680   // by virtual address and then physical address.
1681   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
1682     return (flags1 & elfcpp::PF_W) == 0;
1683   if ((flags1 & elfcpp::PF_W) != 0
1684       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
1685     return seg1->has_any_data_sections();
1686   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
1687     return (flags1 & elfcpp::PF_X) != 0;
1688   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
1689     return (flags1 & elfcpp::PF_R) == 0;
1690 
1691   // We shouldn't get here--we shouldn't create segments which we
1692   // can't distinguish.
1693   gold_unreachable();
1694 }
1695 
1696 // Set the file offsets of all the segments, and all the sections they
1697 // contain.  They have all been created.  LOAD_SEG must be be laid out
1698 // first.  Return the offset of the data to follow.
1699 
1700 off_t
1701 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
1702 			    unsigned int *pshndx)
1703 {
1704   // Sort them into the final order.
1705   std::sort(this->segment_list_.begin(), this->segment_list_.end(),
1706 	    Layout::Compare_segments());
1707 
1708   // Find the PT_LOAD segments, and set their addresses and offsets
1709   // and their section's addresses and offsets.
1710   uint64_t addr;
1711   if (this->options_.user_set_Ttext())
1712     addr = this->options_.Ttext();
1713   else if (parameters->options().shared())
1714     addr = 0;
1715   else
1716     addr = target->default_text_segment_address();
1717   off_t off = 0;
1718 
1719   // If LOAD_SEG is NULL, then the file header and segment headers
1720   // will not be loadable.  But they still need to be at offset 0 in
1721   // the file.  Set their offsets now.
1722   if (load_seg == NULL)
1723     {
1724       for (Data_list::iterator p = this->special_output_list_.begin();
1725 	   p != this->special_output_list_.end();
1726 	   ++p)
1727 	{
1728 	  off = align_address(off, (*p)->addralign());
1729 	  (*p)->set_address_and_file_offset(0, off);
1730 	  off += (*p)->data_size();
1731 	}
1732     }
1733 
1734   const bool check_sections = parameters->options().check_sections();
1735   Output_segment* last_load_segment = NULL;
1736 
1737   bool was_readonly = false;
1738   for (Segment_list::iterator p = this->segment_list_.begin();
1739        p != this->segment_list_.end();
1740        ++p)
1741     {
1742       if ((*p)->type() == elfcpp::PT_LOAD)
1743 	{
1744 	  if (load_seg != NULL && load_seg != *p)
1745 	    gold_unreachable();
1746 	  load_seg = NULL;
1747 
1748 	  bool are_addresses_set = (*p)->are_addresses_set();
1749 	  if (are_addresses_set)
1750 	    {
1751 	      // When it comes to setting file offsets, we care about
1752 	      // the physical address.
1753 	      addr = (*p)->paddr();
1754 	    }
1755 	  else if (this->options_.user_set_Tdata()
1756 		   && ((*p)->flags() & elfcpp::PF_W) != 0
1757 		   && (!this->options_.user_set_Tbss()
1758 		       || (*p)->has_any_data_sections()))
1759 	    {
1760 	      addr = this->options_.Tdata();
1761 	      are_addresses_set = true;
1762 	    }
1763 	  else if (this->options_.user_set_Tbss()
1764 		   && ((*p)->flags() & elfcpp::PF_W) != 0
1765 		   && !(*p)->has_any_data_sections())
1766 	    {
1767 	      addr = this->options_.Tbss();
1768 	      are_addresses_set = true;
1769 	    }
1770 
1771 	  uint64_t orig_addr = addr;
1772 	  uint64_t orig_off = off;
1773 
1774 	  uint64_t aligned_addr = 0;
1775 	  uint64_t abi_pagesize = target->abi_pagesize();
1776 	  uint64_t common_pagesize = target->common_pagesize();
1777 
1778 	  if (!parameters->options().nmagic()
1779 	      && !parameters->options().omagic())
1780 	    (*p)->set_minimum_p_align(common_pagesize);
1781 
1782 	  if (are_addresses_set)
1783 	    {
1784 	      if (!parameters->options().nmagic()
1785 		  && !parameters->options().omagic())
1786 		{
1787 		  // Adjust the file offset to the same address modulo
1788 		  // the page size.
1789 		  uint64_t unsigned_off = off;
1790 		  uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
1791 					  | (addr & (abi_pagesize - 1)));
1792 		  if (aligned_off < unsigned_off)
1793 		    aligned_off += abi_pagesize;
1794 		  off = aligned_off;
1795 		}
1796 	    }
1797 	  else
1798 	    {
1799 	      // If the last segment was readonly, and this one is
1800 	      // not, then skip the address forward one page,
1801 	      // maintaining the same position within the page.  This
1802 	      // lets us store both segments overlapping on a single
1803 	      // page in the file, but the loader will put them on
1804 	      // different pages in memory.
1805 
1806 	      addr = align_address(addr, (*p)->maximum_alignment());
1807 	      aligned_addr = addr;
1808 
1809 	      if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
1810 		{
1811 		  if ((addr & (abi_pagesize - 1)) != 0)
1812 		    addr = addr + abi_pagesize;
1813 		}
1814 
1815 	      off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
1816 	    }
1817 
1818 	  unsigned int shndx_hold = *pshndx;
1819 	  uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
1820                                                           &off, pshndx);
1821 
1822 	  // Now that we know the size of this segment, we may be able
1823 	  // to save a page in memory, at the cost of wasting some
1824 	  // file space, by instead aligning to the start of a new
1825 	  // page.  Here we use the real machine page size rather than
1826 	  // the ABI mandated page size.
1827 
1828 	  if (!are_addresses_set && aligned_addr != addr)
1829 	    {
1830 	      uint64_t first_off = (common_pagesize
1831 				    - (aligned_addr
1832 				       & (common_pagesize - 1)));
1833 	      uint64_t last_off = new_addr & (common_pagesize - 1);
1834 	      if (first_off > 0
1835 		  && last_off > 0
1836 		  && ((aligned_addr & ~ (common_pagesize - 1))
1837 		      != (new_addr & ~ (common_pagesize - 1)))
1838 		  && first_off + last_off <= common_pagesize)
1839 		{
1840 		  *pshndx = shndx_hold;
1841 		  addr = align_address(aligned_addr, common_pagesize);
1842 		  addr = align_address(addr, (*p)->maximum_alignment());
1843 		  off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
1844 		  new_addr = (*p)->set_section_addresses(this, true, addr,
1845                                                          &off, pshndx);
1846 		}
1847 	    }
1848 
1849 	  addr = new_addr;
1850 
1851 	  if (((*p)->flags() & elfcpp::PF_W) == 0)
1852 	    was_readonly = true;
1853 
1854 	  // Implement --check-sections.  We know that the segments
1855 	  // are sorted by LMA.
1856 	  if (check_sections && last_load_segment != NULL)
1857 	    {
1858 	      gold_assert(last_load_segment->paddr() <= (*p)->paddr());
1859 	      if (last_load_segment->paddr() + last_load_segment->memsz()
1860 		  > (*p)->paddr())
1861 		{
1862 		  unsigned long long lb1 = last_load_segment->paddr();
1863 		  unsigned long long le1 = lb1 + last_load_segment->memsz();
1864 		  unsigned long long lb2 = (*p)->paddr();
1865 		  unsigned long long le2 = lb2 + (*p)->memsz();
1866 		  gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
1867 			       "[0x%llx -> 0x%llx]"),
1868 			     lb1, le1, lb2, le2);
1869 		}
1870 	    }
1871 	  last_load_segment = *p;
1872 	}
1873     }
1874 
1875   // Handle the non-PT_LOAD segments, setting their offsets from their
1876   // section's offsets.
1877   for (Segment_list::iterator p = this->segment_list_.begin();
1878        p != this->segment_list_.end();
1879        ++p)
1880     {
1881       if ((*p)->type() != elfcpp::PT_LOAD)
1882 	(*p)->set_offset();
1883     }
1884 
1885   // Set the TLS offsets for each section in the PT_TLS segment.
1886   if (this->tls_segment_ != NULL)
1887     this->tls_segment_->set_tls_offsets();
1888 
1889   return off;
1890 }
1891 
1892 // Set the offsets of all the allocated sections when doing a
1893 // relocatable link.  This does the same jobs as set_segment_offsets,
1894 // only for a relocatable link.
1895 
1896 off_t
1897 Layout::set_relocatable_section_offsets(Output_data* file_header,
1898 					unsigned int *pshndx)
1899 {
1900   off_t off = 0;
1901 
1902   file_header->set_address_and_file_offset(0, 0);
1903   off += file_header->data_size();
1904 
1905   for (Section_list::iterator p = this->section_list_.begin();
1906        p != this->section_list_.end();
1907        ++p)
1908     {
1909       // We skip unallocated sections here, except that group sections
1910       // have to come first.
1911       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
1912 	  && (*p)->type() != elfcpp::SHT_GROUP)
1913 	continue;
1914 
1915       off = align_address(off, (*p)->addralign());
1916 
1917       // The linker script might have set the address.
1918       if (!(*p)->is_address_valid())
1919 	(*p)->set_address(0);
1920       (*p)->set_file_offset(off);
1921       (*p)->finalize_data_size();
1922       off += (*p)->data_size();
1923 
1924       (*p)->set_out_shndx(*pshndx);
1925       ++*pshndx;
1926     }
1927 
1928   return off;
1929 }
1930 
1931 // Set the file offset of all the sections not associated with a
1932 // segment.
1933 
1934 off_t
1935 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
1936 {
1937   for (Section_list::iterator p = this->unattached_section_list_.begin();
1938        p != this->unattached_section_list_.end();
1939        ++p)
1940     {
1941       // The symtab section is handled in create_symtab_sections.
1942       if (*p == this->symtab_section_)
1943 	continue;
1944 
1945       // If we've already set the data size, don't set it again.
1946       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
1947 	continue;
1948 
1949       if (pass == BEFORE_INPUT_SECTIONS_PASS
1950 	  && (*p)->requires_postprocessing())
1951 	{
1952 	  (*p)->create_postprocessing_buffer();
1953 	  this->any_postprocessing_sections_ = true;
1954 	}
1955 
1956       if (pass == BEFORE_INPUT_SECTIONS_PASS
1957           && (*p)->after_input_sections())
1958         continue;
1959       else if (pass == POSTPROCESSING_SECTIONS_PASS
1960                && (!(*p)->after_input_sections()
1961                    || (*p)->type() == elfcpp::SHT_STRTAB))
1962         continue;
1963       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
1964                && (!(*p)->after_input_sections()
1965                    || (*p)->type() != elfcpp::SHT_STRTAB))
1966         continue;
1967 
1968       off = align_address(off, (*p)->addralign());
1969       (*p)->set_file_offset(off);
1970       (*p)->finalize_data_size();
1971       off += (*p)->data_size();
1972 
1973       // At this point the name must be set.
1974       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
1975 	this->namepool_.add((*p)->name(), false, NULL);
1976     }
1977   return off;
1978 }
1979 
1980 // Set the section indexes of all the sections not associated with a
1981 // segment.
1982 
1983 unsigned int
1984 Layout::set_section_indexes(unsigned int shndx)
1985 {
1986   for (Section_list::iterator p = this->unattached_section_list_.begin();
1987        p != this->unattached_section_list_.end();
1988        ++p)
1989     {
1990       if (!(*p)->has_out_shndx())
1991 	{
1992 	  (*p)->set_out_shndx(shndx);
1993 	  ++shndx;
1994 	}
1995     }
1996   return shndx;
1997 }
1998 
1999 // Set the section addresses according to the linker script.  This is
2000 // only called when we see a SECTIONS clause.  This returns the
2001 // program segment which should hold the file header and segment
2002 // headers, if any.  It will return NULL if they should not be in a
2003 // segment.
2004 
2005 Output_segment*
2006 Layout::set_section_addresses_from_script(Symbol_table* symtab)
2007 {
2008   Script_sections* ss = this->script_options_->script_sections();
2009   gold_assert(ss->saw_sections_clause());
2010 
2011   // Place each orphaned output section in the script.
2012   for (Section_list::iterator p = this->section_list_.begin();
2013        p != this->section_list_.end();
2014        ++p)
2015     {
2016       if (!(*p)->found_in_sections_clause())
2017 	ss->place_orphan(*p);
2018     }
2019 
2020   return this->script_options_->set_section_addresses(symtab, this);
2021 }
2022 
2023 // Count the local symbols in the regular symbol table and the dynamic
2024 // symbol table, and build the respective string pools.
2025 
2026 void
2027 Layout::count_local_symbols(const Task* task,
2028 			    const Input_objects* input_objects)
2029 {
2030   // First, figure out an upper bound on the number of symbols we'll
2031   // be inserting into each pool.  This helps us create the pools with
2032   // the right size, to avoid unnecessary hashtable resizing.
2033   unsigned int symbol_count = 0;
2034   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2035        p != input_objects->relobj_end();
2036        ++p)
2037     symbol_count += (*p)->local_symbol_count();
2038 
2039   // Go from "upper bound" to "estimate."  We overcount for two
2040   // reasons: we double-count symbols that occur in more than one
2041   // object file, and we count symbols that are dropped from the
2042   // output.  Add it all together and assume we overcount by 100%.
2043   symbol_count /= 2;
2044 
2045   // We assume all symbols will go into both the sympool and dynpool.
2046   this->sympool_.reserve(symbol_count);
2047   this->dynpool_.reserve(symbol_count);
2048 
2049   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2050        p != input_objects->relobj_end();
2051        ++p)
2052     {
2053       Task_lock_obj<Object> tlo(task, *p);
2054       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
2055     }
2056 }
2057 
2058 // Create the symbol table sections.  Here we also set the final
2059 // values of the symbols.  At this point all the loadable sections are
2060 // fully laid out.  SHNUM is the number of sections so far.
2061 
2062 void
2063 Layout::create_symtab_sections(const Input_objects* input_objects,
2064 			       Symbol_table* symtab,
2065 			       unsigned int shnum,
2066 			       off_t* poff)
2067 {
2068   int symsize;
2069   unsigned int align;
2070   if (parameters->target().get_size() == 32)
2071     {
2072       symsize = elfcpp::Elf_sizes<32>::sym_size;
2073       align = 4;
2074     }
2075   else if (parameters->target().get_size() == 64)
2076     {
2077       symsize = elfcpp::Elf_sizes<64>::sym_size;
2078       align = 8;
2079     }
2080   else
2081     gold_unreachable();
2082 
2083   off_t off = *poff;
2084   off = align_address(off, align);
2085   off_t startoff = off;
2086 
2087   // Save space for the dummy symbol at the start of the section.  We
2088   // never bother to write this out--it will just be left as zero.
2089   off += symsize;
2090   unsigned int local_symbol_index = 1;
2091 
2092   // Add STT_SECTION symbols for each Output section which needs one.
2093   for (Section_list::iterator p = this->section_list_.begin();
2094        p != this->section_list_.end();
2095        ++p)
2096     {
2097       if (!(*p)->needs_symtab_index())
2098 	(*p)->set_symtab_index(-1U);
2099       else
2100 	{
2101 	  (*p)->set_symtab_index(local_symbol_index);
2102 	  ++local_symbol_index;
2103 	  off += symsize;
2104 	}
2105     }
2106 
2107   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2108        p != input_objects->relobj_end();
2109        ++p)
2110     {
2111       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
2112                                                         off);
2113       off += (index - local_symbol_index) * symsize;
2114       local_symbol_index = index;
2115     }
2116 
2117   unsigned int local_symcount = local_symbol_index;
2118   gold_assert(local_symcount * symsize == off - startoff);
2119 
2120   off_t dynoff;
2121   size_t dyn_global_index;
2122   size_t dyncount;
2123   if (this->dynsym_section_ == NULL)
2124     {
2125       dynoff = 0;
2126       dyn_global_index = 0;
2127       dyncount = 0;
2128     }
2129   else
2130     {
2131       dyn_global_index = this->dynsym_section_->info();
2132       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
2133       dynoff = this->dynsym_section_->offset() + locsize;
2134       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
2135       gold_assert(static_cast<off_t>(dyncount * symsize)
2136 		  == this->dynsym_section_->data_size() - locsize);
2137     }
2138 
2139   off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
2140 			 &this->sympool_, &local_symcount);
2141 
2142   if (!parameters->options().strip_all())
2143     {
2144       this->sympool_.set_string_offsets();
2145 
2146       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
2147       Output_section* osymtab = this->make_output_section(symtab_name,
2148 							  elfcpp::SHT_SYMTAB,
2149 							  0);
2150       this->symtab_section_ = osymtab;
2151 
2152       Output_section_data* pos = new Output_data_fixed_space(off - startoff,
2153 							     align,
2154 							     "** symtab");
2155       osymtab->add_output_section_data(pos);
2156 
2157       // We generate a .symtab_shndx section if we have more than
2158       // SHN_LORESERVE sections.  Technically it is possible that we
2159       // don't need one, because it is possible that there are no
2160       // symbols in any of sections with indexes larger than
2161       // SHN_LORESERVE.  That is probably unusual, though, and it is
2162       // easier to always create one than to compute section indexes
2163       // twice (once here, once when writing out the symbols).
2164       if (shnum >= elfcpp::SHN_LORESERVE)
2165 	{
2166 	  const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
2167 							       false, NULL);
2168 	  Output_section* osymtab_xindex =
2169 	    this->make_output_section(symtab_xindex_name,
2170 				      elfcpp::SHT_SYMTAB_SHNDX, 0);
2171 
2172 	  size_t symcount = (off - startoff) / symsize;
2173 	  this->symtab_xindex_ = new Output_symtab_xindex(symcount);
2174 
2175 	  osymtab_xindex->add_output_section_data(this->symtab_xindex_);
2176 
2177 	  osymtab_xindex->set_link_section(osymtab);
2178 	  osymtab_xindex->set_addralign(4);
2179 	  osymtab_xindex->set_entsize(4);
2180 
2181 	  osymtab_xindex->set_after_input_sections();
2182 
2183 	  // This tells the driver code to wait until the symbol table
2184 	  // has written out before writing out the postprocessing
2185 	  // sections, including the .symtab_shndx section.
2186 	  this->any_postprocessing_sections_ = true;
2187 	}
2188 
2189       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
2190       Output_section* ostrtab = this->make_output_section(strtab_name,
2191 							  elfcpp::SHT_STRTAB,
2192 							  0);
2193 
2194       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
2195       ostrtab->add_output_section_data(pstr);
2196 
2197       osymtab->set_file_offset(startoff);
2198       osymtab->finalize_data_size();
2199       osymtab->set_link_section(ostrtab);
2200       osymtab->set_info(local_symcount);
2201       osymtab->set_entsize(symsize);
2202 
2203       *poff = off;
2204     }
2205 }
2206 
2207 // Create the .shstrtab section, which holds the names of the
2208 // sections.  At the time this is called, we have created all the
2209 // output sections except .shstrtab itself.
2210 
2211 Output_section*
2212 Layout::create_shstrtab()
2213 {
2214   // FIXME: We don't need to create a .shstrtab section if we are
2215   // stripping everything.
2216 
2217   const char* name = this->namepool_.add(".shstrtab", false, NULL);
2218 
2219   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0);
2220 
2221   // We can't write out this section until we've set all the section
2222   // names, and we don't set the names of compressed output sections
2223   // until relocations are complete.
2224   os->set_after_input_sections();
2225 
2226   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
2227   os->add_output_section_data(posd);
2228 
2229   return os;
2230 }
2231 
2232 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
2233 // offset.
2234 
2235 void
2236 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
2237 {
2238   Output_section_headers* oshdrs;
2239   oshdrs = new Output_section_headers(this,
2240 				      &this->segment_list_,
2241 				      &this->section_list_,
2242 				      &this->unattached_section_list_,
2243 				      &this->namepool_,
2244 				      shstrtab_section);
2245   off_t off = align_address(*poff, oshdrs->addralign());
2246   oshdrs->set_address_and_file_offset(0, off);
2247   off += oshdrs->data_size();
2248   *poff = off;
2249   this->section_headers_ = oshdrs;
2250 }
2251 
2252 // Count the allocated sections.
2253 
2254 size_t
2255 Layout::allocated_output_section_count() const
2256 {
2257   size_t section_count = 0;
2258   for (Segment_list::const_iterator p = this->segment_list_.begin();
2259        p != this->segment_list_.end();
2260        ++p)
2261     section_count += (*p)->output_section_count();
2262   return section_count;
2263 }
2264 
2265 // Create the dynamic symbol table.
2266 
2267 void
2268 Layout::create_dynamic_symtab(const Input_objects* input_objects,
2269                               Symbol_table* symtab,
2270 			      Output_section **pdynstr,
2271 			      unsigned int* plocal_dynamic_count,
2272 			      std::vector<Symbol*>* pdynamic_symbols,
2273 			      Versions* pversions)
2274 {
2275   // Count all the symbols in the dynamic symbol table, and set the
2276   // dynamic symbol indexes.
2277 
2278   // Skip symbol 0, which is always all zeroes.
2279   unsigned int index = 1;
2280 
2281   // Add STT_SECTION symbols for each Output section which needs one.
2282   for (Section_list::iterator p = this->section_list_.begin();
2283        p != this->section_list_.end();
2284        ++p)
2285     {
2286       if (!(*p)->needs_dynsym_index())
2287 	(*p)->set_dynsym_index(-1U);
2288       else
2289 	{
2290 	  (*p)->set_dynsym_index(index);
2291 	  ++index;
2292 	}
2293     }
2294 
2295   // Count the local symbols that need to go in the dynamic symbol table,
2296   // and set the dynamic symbol indexes.
2297   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2298        p != input_objects->relobj_end();
2299        ++p)
2300     {
2301       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
2302       index = new_index;
2303     }
2304 
2305   unsigned int local_symcount = index;
2306   *plocal_dynamic_count = local_symcount;
2307 
2308   index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
2309 				     &this->dynpool_, pversions);
2310 
2311   int symsize;
2312   unsigned int align;
2313   const int size = parameters->target().get_size();
2314   if (size == 32)
2315     {
2316       symsize = elfcpp::Elf_sizes<32>::sym_size;
2317       align = 4;
2318     }
2319   else if (size == 64)
2320     {
2321       symsize = elfcpp::Elf_sizes<64>::sym_size;
2322       align = 8;
2323     }
2324   else
2325     gold_unreachable();
2326 
2327   // Create the dynamic symbol table section.
2328 
2329   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
2330 						       elfcpp::SHT_DYNSYM,
2331 						       elfcpp::SHF_ALLOC,
2332 						       false);
2333 
2334   Output_section_data* odata = new Output_data_fixed_space(index * symsize,
2335 							   align,
2336 							   "** dynsym");
2337   dynsym->add_output_section_data(odata);
2338 
2339   dynsym->set_info(local_symcount);
2340   dynsym->set_entsize(symsize);
2341   dynsym->set_addralign(align);
2342 
2343   this->dynsym_section_ = dynsym;
2344 
2345   Output_data_dynamic* const odyn = this->dynamic_data_;
2346   odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
2347   odyn->add_constant(elfcpp::DT_SYMENT, symsize);
2348 
2349   // If there are more than SHN_LORESERVE allocated sections, we
2350   // create a .dynsym_shndx section.  It is possible that we don't
2351   // need one, because it is possible that there are no dynamic
2352   // symbols in any of the sections with indexes larger than
2353   // SHN_LORESERVE.  This is probably unusual, though, and at this
2354   // time we don't know the actual section indexes so it is
2355   // inconvenient to check.
2356   if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
2357     {
2358       Output_section* dynsym_xindex =
2359 	this->choose_output_section(NULL, ".dynsym_shndx",
2360 				    elfcpp::SHT_SYMTAB_SHNDX,
2361 				    elfcpp::SHF_ALLOC,
2362 				    false);
2363 
2364       this->dynsym_xindex_ = new Output_symtab_xindex(index);
2365 
2366       dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
2367 
2368       dynsym_xindex->set_link_section(dynsym);
2369       dynsym_xindex->set_addralign(4);
2370       dynsym_xindex->set_entsize(4);
2371 
2372       dynsym_xindex->set_after_input_sections();
2373 
2374       // This tells the driver code to wait until the symbol table has
2375       // written out before writing out the postprocessing sections,
2376       // including the .dynsym_shndx section.
2377       this->any_postprocessing_sections_ = true;
2378     }
2379 
2380   // Create the dynamic string table section.
2381 
2382   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
2383 						       elfcpp::SHT_STRTAB,
2384 						       elfcpp::SHF_ALLOC,
2385 						       false);
2386 
2387   Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
2388   dynstr->add_output_section_data(strdata);
2389 
2390   dynsym->set_link_section(dynstr);
2391   this->dynamic_section_->set_link_section(dynstr);
2392 
2393   odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
2394   odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
2395 
2396   *pdynstr = dynstr;
2397 
2398   // Create the hash tables.
2399 
2400   if (strcmp(parameters->options().hash_style(), "sysv") == 0
2401       || strcmp(parameters->options().hash_style(), "both") == 0)
2402     {
2403       unsigned char* phash;
2404       unsigned int hashlen;
2405       Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
2406 				    &phash, &hashlen);
2407 
2408       Output_section* hashsec = this->choose_output_section(NULL, ".hash",
2409 							    elfcpp::SHT_HASH,
2410 							    elfcpp::SHF_ALLOC,
2411 							    false);
2412 
2413       Output_section_data* hashdata = new Output_data_const_buffer(phash,
2414 								   hashlen,
2415 								   align,
2416 								   "** hash");
2417       hashsec->add_output_section_data(hashdata);
2418 
2419       hashsec->set_link_section(dynsym);
2420       hashsec->set_entsize(4);
2421 
2422       odyn->add_section_address(elfcpp::DT_HASH, hashsec);
2423     }
2424 
2425   if (strcmp(parameters->options().hash_style(), "gnu") == 0
2426       || strcmp(parameters->options().hash_style(), "both") == 0)
2427     {
2428       unsigned char* phash;
2429       unsigned int hashlen;
2430       Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
2431 				    &phash, &hashlen);
2432 
2433       Output_section* hashsec = this->choose_output_section(NULL, ".gnu.hash",
2434 							    elfcpp::SHT_GNU_HASH,
2435 							    elfcpp::SHF_ALLOC,
2436 							    false);
2437 
2438       Output_section_data* hashdata = new Output_data_const_buffer(phash,
2439 								   hashlen,
2440 								   align,
2441 								   "** hash");
2442       hashsec->add_output_section_data(hashdata);
2443 
2444       hashsec->set_link_section(dynsym);
2445       hashsec->set_entsize(4);
2446 
2447       odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
2448     }
2449 }
2450 
2451 // Assign offsets to each local portion of the dynamic symbol table.
2452 
2453 void
2454 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
2455 {
2456   Output_section* dynsym = this->dynsym_section_;
2457   gold_assert(dynsym != NULL);
2458 
2459   off_t off = dynsym->offset();
2460 
2461   // Skip the dummy symbol at the start of the section.
2462   off += dynsym->entsize();
2463 
2464   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2465        p != input_objects->relobj_end();
2466        ++p)
2467     {
2468       unsigned int count = (*p)->set_local_dynsym_offset(off);
2469       off += count * dynsym->entsize();
2470     }
2471 }
2472 
2473 // Create the version sections.
2474 
2475 void
2476 Layout::create_version_sections(const Versions* versions,
2477 				const Symbol_table* symtab,
2478 				unsigned int local_symcount,
2479 				const std::vector<Symbol*>& dynamic_symbols,
2480 				const Output_section* dynstr)
2481 {
2482   if (!versions->any_defs() && !versions->any_needs())
2483     return;
2484 
2485   switch (parameters->size_and_endianness())
2486     {
2487 #ifdef HAVE_TARGET_32_LITTLE
2488     case Parameters::TARGET_32_LITTLE:
2489       this->sized_create_version_sections<32, false>(versions, symtab,
2490 						     local_symcount,
2491 						     dynamic_symbols, dynstr);
2492       break;
2493 #endif
2494 #ifdef HAVE_TARGET_32_BIG
2495     case Parameters::TARGET_32_BIG:
2496       this->sized_create_version_sections<32, true>(versions, symtab,
2497 						    local_symcount,
2498 						    dynamic_symbols, dynstr);
2499       break;
2500 #endif
2501 #ifdef HAVE_TARGET_64_LITTLE
2502     case Parameters::TARGET_64_LITTLE:
2503       this->sized_create_version_sections<64, false>(versions, symtab,
2504 						     local_symcount,
2505 						     dynamic_symbols, dynstr);
2506       break;
2507 #endif
2508 #ifdef HAVE_TARGET_64_BIG
2509     case Parameters::TARGET_64_BIG:
2510       this->sized_create_version_sections<64, true>(versions, symtab,
2511 						    local_symcount,
2512 						    dynamic_symbols, dynstr);
2513       break;
2514 #endif
2515     default:
2516       gold_unreachable();
2517     }
2518 }
2519 
2520 // Create the version sections, sized version.
2521 
2522 template<int size, bool big_endian>
2523 void
2524 Layout::sized_create_version_sections(
2525     const Versions* versions,
2526     const Symbol_table* symtab,
2527     unsigned int local_symcount,
2528     const std::vector<Symbol*>& dynamic_symbols,
2529     const Output_section* dynstr)
2530 {
2531   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
2532 						     elfcpp::SHT_GNU_versym,
2533 						     elfcpp::SHF_ALLOC,
2534 						     false);
2535 
2536   unsigned char* vbuf;
2537   unsigned int vsize;
2538   versions->symbol_section_contents<size, big_endian>(symtab, &this->dynpool_,
2539 						      local_symcount,
2540 						      dynamic_symbols,
2541 						      &vbuf, &vsize);
2542 
2543   Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
2544 							    "** versions");
2545 
2546   vsec->add_output_section_data(vdata);
2547   vsec->set_entsize(2);
2548   vsec->set_link_section(this->dynsym_section_);
2549 
2550   Output_data_dynamic* const odyn = this->dynamic_data_;
2551   odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
2552 
2553   if (versions->any_defs())
2554     {
2555       Output_section* vdsec;
2556       vdsec= this->choose_output_section(NULL, ".gnu.version_d",
2557 					 elfcpp::SHT_GNU_verdef,
2558 					 elfcpp::SHF_ALLOC,
2559 					 false);
2560 
2561       unsigned char* vdbuf;
2562       unsigned int vdsize;
2563       unsigned int vdentries;
2564       versions->def_section_contents<size, big_endian>(&this->dynpool_, &vdbuf,
2565 						       &vdsize, &vdentries);
2566 
2567       Output_section_data* vddata =
2568 	new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
2569 
2570       vdsec->add_output_section_data(vddata);
2571       vdsec->set_link_section(dynstr);
2572       vdsec->set_info(vdentries);
2573 
2574       odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
2575       odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
2576     }
2577 
2578   if (versions->any_needs())
2579     {
2580       Output_section* vnsec;
2581       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
2582 					  elfcpp::SHT_GNU_verneed,
2583 					  elfcpp::SHF_ALLOC,
2584 					  false);
2585 
2586       unsigned char* vnbuf;
2587       unsigned int vnsize;
2588       unsigned int vnentries;
2589       versions->need_section_contents<size, big_endian>(&this->dynpool_,
2590 							&vnbuf, &vnsize,
2591 							&vnentries);
2592 
2593       Output_section_data* vndata =
2594 	new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
2595 
2596       vnsec->add_output_section_data(vndata);
2597       vnsec->set_link_section(dynstr);
2598       vnsec->set_info(vnentries);
2599 
2600       odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
2601       odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
2602     }
2603 }
2604 
2605 // Create the .interp section and PT_INTERP segment.
2606 
2607 void
2608 Layout::create_interp(const Target* target)
2609 {
2610   const char* interp = this->options_.dynamic_linker();
2611   if (interp == NULL)
2612     {
2613       interp = target->dynamic_linker();
2614       gold_assert(interp != NULL);
2615     }
2616 
2617   size_t len = strlen(interp) + 1;
2618 
2619   Output_section_data* odata = new Output_data_const(interp, len, 1);
2620 
2621   Output_section* osec = this->choose_output_section(NULL, ".interp",
2622 						     elfcpp::SHT_PROGBITS,
2623 						     elfcpp::SHF_ALLOC,
2624 						     false);
2625   osec->add_output_section_data(odata);
2626 
2627   if (!this->script_options_->saw_phdrs_clause())
2628     {
2629       Output_segment* oseg = this->make_output_segment(elfcpp::PT_INTERP,
2630 						       elfcpp::PF_R);
2631       oseg->add_output_section(osec, elfcpp::PF_R);
2632     }
2633 }
2634 
2635 // Finish the .dynamic section and PT_DYNAMIC segment.
2636 
2637 void
2638 Layout::finish_dynamic_section(const Input_objects* input_objects,
2639 			       const Symbol_table* symtab)
2640 {
2641   if (!this->script_options_->saw_phdrs_clause())
2642     {
2643       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
2644 						       (elfcpp::PF_R
2645 							| elfcpp::PF_W));
2646       oseg->add_output_section(this->dynamic_section_,
2647 			       elfcpp::PF_R | elfcpp::PF_W);
2648     }
2649 
2650   Output_data_dynamic* const odyn = this->dynamic_data_;
2651 
2652   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
2653        p != input_objects->dynobj_end();
2654        ++p)
2655     {
2656       // FIXME: Handle --as-needed.
2657       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
2658     }
2659 
2660   if (parameters->options().shared())
2661     {
2662       const char* soname = this->options_.soname();
2663       if (soname != NULL)
2664 	odyn->add_string(elfcpp::DT_SONAME, soname);
2665     }
2666 
2667   // FIXME: Support --init and --fini.
2668   Symbol* sym = symtab->lookup("_init");
2669   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
2670     odyn->add_symbol(elfcpp::DT_INIT, sym);
2671 
2672   sym = symtab->lookup("_fini");
2673   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
2674     odyn->add_symbol(elfcpp::DT_FINI, sym);
2675 
2676   // FIXME: Support DT_INIT_ARRAY and DT_FINI_ARRAY.
2677 
2678   // Add a DT_RPATH entry if needed.
2679   const General_options::Dir_list& rpath(this->options_.rpath());
2680   if (!rpath.empty())
2681     {
2682       std::string rpath_val;
2683       for (General_options::Dir_list::const_iterator p = rpath.begin();
2684            p != rpath.end();
2685            ++p)
2686         {
2687           if (rpath_val.empty())
2688             rpath_val = p->name();
2689           else
2690             {
2691               // Eliminate duplicates.
2692               General_options::Dir_list::const_iterator q;
2693               for (q = rpath.begin(); q != p; ++q)
2694 		if (q->name() == p->name())
2695                   break;
2696               if (q == p)
2697                 {
2698                   rpath_val += ':';
2699                   rpath_val += p->name();
2700                 }
2701             }
2702         }
2703 
2704       odyn->add_string(elfcpp::DT_RPATH, rpath_val);
2705       if (parameters->options().enable_new_dtags())
2706 	odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
2707     }
2708 
2709   // Look for text segments that have dynamic relocations.
2710   bool have_textrel = false;
2711   if (!this->script_options_->saw_sections_clause())
2712     {
2713       for (Segment_list::const_iterator p = this->segment_list_.begin();
2714            p != this->segment_list_.end();
2715            ++p)
2716         {
2717           if (((*p)->flags() & elfcpp::PF_W) == 0
2718               && (*p)->dynamic_reloc_count() > 0)
2719             {
2720               have_textrel = true;
2721               break;
2722             }
2723         }
2724     }
2725   else
2726     {
2727       // We don't know the section -> segment mapping, so we are
2728       // conservative and just look for readonly sections with
2729       // relocations.  If those sections wind up in writable segments,
2730       // then we have created an unnecessary DT_TEXTREL entry.
2731       for (Section_list::const_iterator p = this->section_list_.begin();
2732            p != this->section_list_.end();
2733            ++p)
2734         {
2735           if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
2736               && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
2737               && ((*p)->dynamic_reloc_count() > 0))
2738             {
2739               have_textrel = true;
2740               break;
2741             }
2742         }
2743     }
2744 
2745   // Add a DT_FLAGS entry. We add it even if no flags are set so that
2746   // post-link tools can easily modify these flags if desired.
2747   unsigned int flags = 0;
2748   if (have_textrel)
2749     {
2750       // Add a DT_TEXTREL for compatibility with older loaders.
2751       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
2752       flags |= elfcpp::DF_TEXTREL;
2753     }
2754   if (parameters->options().shared() && this->has_static_tls())
2755     flags |= elfcpp::DF_STATIC_TLS;
2756   odyn->add_constant(elfcpp::DT_FLAGS, flags);
2757 
2758   flags = 0;
2759   if (parameters->options().initfirst())
2760     flags |= elfcpp::DF_1_INITFIRST;
2761   if (parameters->options().interpose())
2762     flags |= elfcpp::DF_1_INTERPOSE;
2763   if (parameters->options().loadfltr())
2764     flags |= elfcpp::DF_1_LOADFLTR;
2765   if (parameters->options().nodefaultlib())
2766     flags |= elfcpp::DF_1_NODEFLIB;
2767   if (parameters->options().nodelete())
2768     flags |= elfcpp::DF_1_NODELETE;
2769   if (parameters->options().nodlopen())
2770     flags |= elfcpp::DF_1_NOOPEN;
2771   if (parameters->options().nodump())
2772     flags |= elfcpp::DF_1_NODUMP;
2773   if (!parameters->options().shared())
2774     flags &= ~(elfcpp::DF_1_INITFIRST
2775 	       | elfcpp::DF_1_NODELETE
2776 	       | elfcpp::DF_1_NOOPEN);
2777   if (flags)
2778     odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
2779 }
2780 
2781 // The mapping of .gnu.linkonce section names to real section names.
2782 
2783 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
2784 const Layout::Linkonce_mapping Layout::linkonce_mapping[] =
2785 {
2786   MAPPING_INIT("d.rel.ro.local", ".data.rel.ro.local"), // Before "d.rel.ro".
2787   MAPPING_INIT("d.rel.ro", ".data.rel.ro"),		// Before "d".
2788   MAPPING_INIT("t", ".text"),
2789   MAPPING_INIT("r", ".rodata"),
2790   MAPPING_INIT("d", ".data"),
2791   MAPPING_INIT("b", ".bss"),
2792   MAPPING_INIT("s", ".sdata"),
2793   MAPPING_INIT("sb", ".sbss"),
2794   MAPPING_INIT("s2", ".sdata2"),
2795   MAPPING_INIT("sb2", ".sbss2"),
2796   MAPPING_INIT("wi", ".debug_info"),
2797   MAPPING_INIT("td", ".tdata"),
2798   MAPPING_INIT("tb", ".tbss"),
2799   MAPPING_INIT("lr", ".lrodata"),
2800   MAPPING_INIT("l", ".ldata"),
2801   MAPPING_INIT("lb", ".lbss"),
2802 };
2803 #undef MAPPING_INIT
2804 
2805 const int Layout::linkonce_mapping_count =
2806   sizeof(Layout::linkonce_mapping) / sizeof(Layout::linkonce_mapping[0]);
2807 
2808 // Return the name of the output section to use for a .gnu.linkonce
2809 // section.  This is based on the default ELF linker script of the old
2810 // GNU linker.  For example, we map a name like ".gnu.linkonce.t.foo"
2811 // to ".text".  Set *PLEN to the length of the name.  *PLEN is
2812 // initialized to the length of NAME.
2813 
2814 const char*
2815 Layout::linkonce_output_name(const char* name, size_t *plen)
2816 {
2817   const char* s = name + sizeof(".gnu.linkonce") - 1;
2818   if (*s != '.')
2819     return name;
2820   ++s;
2821   const Linkonce_mapping* plm = linkonce_mapping;
2822   for (int i = 0; i < linkonce_mapping_count; ++i, ++plm)
2823     {
2824       if (strncmp(s, plm->from, plm->fromlen) == 0 && s[plm->fromlen] == '.')
2825 	{
2826 	  *plen = plm->tolen;
2827 	  return plm->to;
2828 	}
2829     }
2830   return name;
2831 }
2832 
2833 // Choose the output section name to use given an input section name.
2834 // Set *PLEN to the length of the name.  *PLEN is initialized to the
2835 // length of NAME.
2836 
2837 const char*
2838 Layout::output_section_name(const char* name, size_t* plen)
2839 {
2840   if (Layout::is_linkonce(name))
2841     {
2842       // .gnu.linkonce sections are laid out as though they were named
2843       // for the sections are placed into.
2844       return Layout::linkonce_output_name(name, plen);
2845     }
2846 
2847   // gcc 4.3 generates the following sorts of section names when it
2848   // needs a section name specific to a function:
2849   //   .text.FN
2850   //   .rodata.FN
2851   //   .sdata2.FN
2852   //   .data.FN
2853   //   .data.rel.FN
2854   //   .data.rel.local.FN
2855   //   .data.rel.ro.FN
2856   //   .data.rel.ro.local.FN
2857   //   .sdata.FN
2858   //   .bss.FN
2859   //   .sbss.FN
2860   //   .tdata.FN
2861   //   .tbss.FN
2862 
2863   // The GNU linker maps all of those to the part before the .FN,
2864   // except that .data.rel.local.FN is mapped to .data, and
2865   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
2866   // beginning with .data.rel.ro.local are grouped together.
2867 
2868   // For an anonymous namespace, the string FN can contain a '.'.
2869 
2870   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
2871   // GNU linker maps to .rodata.
2872 
2873   // The .data.rel.ro sections enable a security feature triggered by
2874   // the -z relro option.  Section which need to be relocated at
2875   // program startup time but which may be readonly after startup are
2876   // grouped into .data.rel.ro.  They are then put into a PT_GNU_RELRO
2877   // segment.  The dynamic linker will make that segment writable,
2878   // perform relocations, and then make it read-only.  FIXME: We do
2879   // not yet implement this optimization.
2880 
2881   // It is hard to handle this in a principled way.
2882 
2883   // These are the rules we follow:
2884 
2885   // If the section name has no initial '.', or no dot other than an
2886   // initial '.', we use the name unchanged (i.e., "mysection" and
2887   // ".text" are unchanged).
2888 
2889   // If the name starts with ".data.rel.ro.local" we use
2890   // ".data.rel.ro.local".
2891 
2892   // If the name starts with ".data.rel.ro" we use ".data.rel.ro".
2893 
2894   // Otherwise, we drop the second '.' and everything that comes after
2895   // it (i.e., ".text.XXX" becomes ".text").
2896 
2897   const char* s = name;
2898   if (*s != '.')
2899     return name;
2900   ++s;
2901   const char* sdot = strchr(s, '.');
2902   if (sdot == NULL)
2903     return name;
2904 
2905   const char* const data_rel_ro_local = ".data.rel.ro.local";
2906   if (strncmp(name, data_rel_ro_local, strlen(data_rel_ro_local)) == 0)
2907     {
2908       *plen = strlen(data_rel_ro_local);
2909       return data_rel_ro_local;
2910     }
2911 
2912   const char* const data_rel_ro = ".data.rel.ro";
2913   if (strncmp(name, data_rel_ro, strlen(data_rel_ro)) == 0)
2914     {
2915       *plen = strlen(data_rel_ro);
2916       return data_rel_ro;
2917     }
2918 
2919   *plen = sdot - name;
2920   return name;
2921 }
2922 
2923 // Record the signature of a comdat section, and return whether to
2924 // include it in the link.  If GROUP is true, this is a regular
2925 // section group.  If GROUP is false, this is a group signature
2926 // derived from the name of a linkonce section.  We want linkonce
2927 // signatures and group signatures to block each other, but we don't
2928 // want a linkonce signature to block another linkonce signature.
2929 
2930 bool
2931 Layout::add_comdat(Relobj* object, unsigned int shndx,
2932                    const std::string& signature, bool group)
2933 {
2934   Kept_section kept(object, shndx, group);
2935   std::pair<Signatures::iterator, bool> ins(
2936     this->signatures_.insert(std::make_pair(signature, kept)));
2937 
2938   if (ins.second)
2939     {
2940       // This is the first time we've seen this signature.
2941       return true;
2942     }
2943 
2944   if (ins.first->second.group_)
2945     {
2946       // We've already seen a real section group with this signature.
2947       return false;
2948     }
2949   else if (group)
2950     {
2951       // This is a real section group, and we've already seen a
2952       // linkonce section with this signature.  Record that we've seen
2953       // a section group, and don't include this section group.
2954       ins.first->second.group_ = true;
2955       return false;
2956     }
2957   else
2958     {
2959       // We've already seen a linkonce section and this is a linkonce
2960       // section.  These don't block each other--this may be the same
2961       // symbol name with different section types.
2962       return true;
2963     }
2964 }
2965 
2966 // Find the given comdat signature, and return the object and section
2967 // index of the kept group.
2968 Relobj*
2969 Layout::find_kept_object(const std::string& signature,
2970                          unsigned int* pshndx) const
2971 {
2972   Signatures::const_iterator p = this->signatures_.find(signature);
2973   if (p == this->signatures_.end())
2974     return NULL;
2975   if (pshndx != NULL)
2976     *pshndx = p->second.shndx_;
2977   return p->second.object_;
2978 }
2979 
2980 // Store the allocated sections into the section list.
2981 
2982 void
2983 Layout::get_allocated_sections(Section_list* section_list) const
2984 {
2985   for (Section_list::const_iterator p = this->section_list_.begin();
2986        p != this->section_list_.end();
2987        ++p)
2988     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
2989       section_list->push_back(*p);
2990 }
2991 
2992 // Create an output segment.
2993 
2994 Output_segment*
2995 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
2996 {
2997   gold_assert(!parameters->options().relocatable());
2998   Output_segment* oseg = new Output_segment(type, flags);
2999   this->segment_list_.push_back(oseg);
3000 
3001   if (type == elfcpp::PT_TLS)
3002     this->tls_segment_ = oseg;
3003   else if (type == elfcpp::PT_GNU_RELRO)
3004     this->relro_segment_ = oseg;
3005 
3006   return oseg;
3007 }
3008 
3009 // Write out the Output_sections.  Most won't have anything to write,
3010 // since most of the data will come from input sections which are
3011 // handled elsewhere.  But some Output_sections do have Output_data.
3012 
3013 void
3014 Layout::write_output_sections(Output_file* of) const
3015 {
3016   for (Section_list::const_iterator p = this->section_list_.begin();
3017        p != this->section_list_.end();
3018        ++p)
3019     {
3020       if (!(*p)->after_input_sections())
3021 	(*p)->write(of);
3022     }
3023 }
3024 
3025 // Write out data not associated with a section or the symbol table.
3026 
3027 void
3028 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
3029 {
3030   if (!parameters->options().strip_all())
3031     {
3032       const Output_section* symtab_section = this->symtab_section_;
3033       for (Section_list::const_iterator p = this->section_list_.begin();
3034 	   p != this->section_list_.end();
3035 	   ++p)
3036 	{
3037 	  if ((*p)->needs_symtab_index())
3038 	    {
3039 	      gold_assert(symtab_section != NULL);
3040 	      unsigned int index = (*p)->symtab_index();
3041 	      gold_assert(index > 0 && index != -1U);
3042 	      off_t off = (symtab_section->offset()
3043 			   + index * symtab_section->entsize());
3044 	      symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
3045 	    }
3046 	}
3047     }
3048 
3049   const Output_section* dynsym_section = this->dynsym_section_;
3050   for (Section_list::const_iterator p = this->section_list_.begin();
3051        p != this->section_list_.end();
3052        ++p)
3053     {
3054       if ((*p)->needs_dynsym_index())
3055 	{
3056 	  gold_assert(dynsym_section != NULL);
3057 	  unsigned int index = (*p)->dynsym_index();
3058 	  gold_assert(index > 0 && index != -1U);
3059 	  off_t off = (dynsym_section->offset()
3060 		       + index * dynsym_section->entsize());
3061 	  symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
3062 	}
3063     }
3064 
3065   // Write out the Output_data which are not in an Output_section.
3066   for (Data_list::const_iterator p = this->special_output_list_.begin();
3067        p != this->special_output_list_.end();
3068        ++p)
3069     (*p)->write(of);
3070 }
3071 
3072 // Write out the Output_sections which can only be written after the
3073 // input sections are complete.
3074 
3075 void
3076 Layout::write_sections_after_input_sections(Output_file* of)
3077 {
3078   // Determine the final section offsets, and thus the final output
3079   // file size.  Note we finalize the .shstrab last, to allow the
3080   // after_input_section sections to modify their section-names before
3081   // writing.
3082   if (this->any_postprocessing_sections_)
3083     {
3084       off_t off = this->output_file_size_;
3085       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
3086 
3087       // Now that we've finalized the names, we can finalize the shstrab.
3088       off =
3089 	this->set_section_offsets(off,
3090 				  STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
3091 
3092       if (off > this->output_file_size_)
3093 	{
3094 	  of->resize(off);
3095 	  this->output_file_size_ = off;
3096 	}
3097     }
3098 
3099   for (Section_list::const_iterator p = this->section_list_.begin();
3100        p != this->section_list_.end();
3101        ++p)
3102     {
3103       if ((*p)->after_input_sections())
3104 	(*p)->write(of);
3105     }
3106 
3107   this->section_headers_->write(of);
3108 }
3109 
3110 // If the build ID requires computing a checksum, do so here, and
3111 // write it out.  We compute a checksum over the entire file because
3112 // that is simplest.
3113 
3114 void
3115 Layout::write_build_id(Output_file* of) const
3116 {
3117   if (this->build_id_note_ == NULL)
3118     return;
3119 
3120   const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
3121 
3122   unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
3123 					  this->build_id_note_->data_size());
3124 
3125   const char* style = parameters->options().build_id();
3126   if (strcmp(style, "sha1") == 0)
3127     {
3128       sha1_ctx ctx;
3129       sha1_init_ctx(&ctx);
3130       sha1_process_bytes(iv, this->output_file_size_, &ctx);
3131       sha1_finish_ctx(&ctx, ov);
3132     }
3133   else if (strcmp(style, "md5") == 0)
3134     {
3135       md5_ctx ctx;
3136       md5_init_ctx(&ctx);
3137       md5_process_bytes(iv, this->output_file_size_, &ctx);
3138       md5_finish_ctx(&ctx, ov);
3139     }
3140   else
3141     gold_unreachable();
3142 
3143   of->write_output_view(this->build_id_note_->offset(),
3144 			this->build_id_note_->data_size(),
3145 			ov);
3146 
3147   of->free_input_view(0, this->output_file_size_, iv);
3148 }
3149 
3150 // Write out a binary file.  This is called after the link is
3151 // complete.  IN is the temporary output file we used to generate the
3152 // ELF code.  We simply walk through the segments, read them from
3153 // their file offset in IN, and write them to their load address in
3154 // the output file.  FIXME: with a bit more work, we could support
3155 // S-records and/or Intel hex format here.
3156 
3157 void
3158 Layout::write_binary(Output_file* in) const
3159 {
3160   gold_assert(this->options_.oformat_enum()
3161 	      == General_options::OBJECT_FORMAT_BINARY);
3162 
3163   // Get the size of the binary file.
3164   uint64_t max_load_address = 0;
3165   for (Segment_list::const_iterator p = this->segment_list_.begin();
3166        p != this->segment_list_.end();
3167        ++p)
3168     {
3169       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
3170 	{
3171 	  uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
3172 	  if (max_paddr > max_load_address)
3173 	    max_load_address = max_paddr;
3174 	}
3175     }
3176 
3177   Output_file out(parameters->options().output_file_name());
3178   out.open(max_load_address);
3179 
3180   for (Segment_list::const_iterator p = this->segment_list_.begin();
3181        p != this->segment_list_.end();
3182        ++p)
3183     {
3184       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
3185 	{
3186 	  const unsigned char* vin = in->get_input_view((*p)->offset(),
3187 							(*p)->filesz());
3188 	  unsigned char* vout = out.get_output_view((*p)->paddr(),
3189 						    (*p)->filesz());
3190 	  memcpy(vout, vin, (*p)->filesz());
3191 	  out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
3192 	  in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
3193 	}
3194     }
3195 
3196   out.close();
3197 }
3198 
3199 // Print the output sections to the map file.
3200 
3201 void
3202 Layout::print_to_mapfile(Mapfile* mapfile) const
3203 {
3204   for (Segment_list::const_iterator p = this->segment_list_.begin();
3205        p != this->segment_list_.end();
3206        ++p)
3207     (*p)->print_sections_to_mapfile(mapfile);
3208 }
3209 
3210 // Print statistical information to stderr.  This is used for --stats.
3211 
3212 void
3213 Layout::print_stats() const
3214 {
3215   this->namepool_.print_stats("section name pool");
3216   this->sympool_.print_stats("output symbol name pool");
3217   this->dynpool_.print_stats("dynamic name pool");
3218 
3219   for (Section_list::const_iterator p = this->section_list_.begin();
3220        p != this->section_list_.end();
3221        ++p)
3222     (*p)->print_merge_stats();
3223 }
3224 
3225 // Write_sections_task methods.
3226 
3227 // We can always run this task.
3228 
3229 Task_token*
3230 Write_sections_task::is_runnable()
3231 {
3232   return NULL;
3233 }
3234 
3235 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
3236 // when finished.
3237 
3238 void
3239 Write_sections_task::locks(Task_locker* tl)
3240 {
3241   tl->add(this, this->output_sections_blocker_);
3242   tl->add(this, this->final_blocker_);
3243 }
3244 
3245 // Run the task--write out the data.
3246 
3247 void
3248 Write_sections_task::run(Workqueue*)
3249 {
3250   this->layout_->write_output_sections(this->of_);
3251 }
3252 
3253 // Write_data_task methods.
3254 
3255 // We can always run this task.
3256 
3257 Task_token*
3258 Write_data_task::is_runnable()
3259 {
3260   return NULL;
3261 }
3262 
3263 // We need to unlock FINAL_BLOCKER when finished.
3264 
3265 void
3266 Write_data_task::locks(Task_locker* tl)
3267 {
3268   tl->add(this, this->final_blocker_);
3269 }
3270 
3271 // Run the task--write out the data.
3272 
3273 void
3274 Write_data_task::run(Workqueue*)
3275 {
3276   this->layout_->write_data(this->symtab_, this->of_);
3277 }
3278 
3279 // Write_symbols_task methods.
3280 
3281 // We can always run this task.
3282 
3283 Task_token*
3284 Write_symbols_task::is_runnable()
3285 {
3286   return NULL;
3287 }
3288 
3289 // We need to unlock FINAL_BLOCKER when finished.
3290 
3291 void
3292 Write_symbols_task::locks(Task_locker* tl)
3293 {
3294   tl->add(this, this->final_blocker_);
3295 }
3296 
3297 // Run the task--write out the symbols.
3298 
3299 void
3300 Write_symbols_task::run(Workqueue*)
3301 {
3302   this->symtab_->write_globals(this->input_objects_, this->sympool_,
3303 			       this->dynpool_, this->layout_->symtab_xindex(),
3304 			       this->layout_->dynsym_xindex(), this->of_);
3305 }
3306 
3307 // Write_after_input_sections_task methods.
3308 
3309 // We can only run this task after the input sections have completed.
3310 
3311 Task_token*
3312 Write_after_input_sections_task::is_runnable()
3313 {
3314   if (this->input_sections_blocker_->is_blocked())
3315     return this->input_sections_blocker_;
3316   return NULL;
3317 }
3318 
3319 // We need to unlock FINAL_BLOCKER when finished.
3320 
3321 void
3322 Write_after_input_sections_task::locks(Task_locker* tl)
3323 {
3324   tl->add(this, this->final_blocker_);
3325 }
3326 
3327 // Run the task.
3328 
3329 void
3330 Write_after_input_sections_task::run(Workqueue*)
3331 {
3332   this->layout_->write_sections_after_input_sections(this->of_);
3333 }
3334 
3335 // Close_task_runner methods.
3336 
3337 // Run the task--close the file.
3338 
3339 void
3340 Close_task_runner::run(Workqueue*, const Task*)
3341 {
3342   // If we need to compute a checksum for the BUILD if, we do so here.
3343   this->layout_->write_build_id(this->of_);
3344 
3345   // If we've been asked to create a binary file, we do so here.
3346   if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
3347     this->layout_->write_binary(this->of_);
3348 
3349   this->of_->close();
3350 }
3351 
3352 // Instantiate the templates we need.  We could use the configure
3353 // script to restrict this to only the ones for implemented targets.
3354 
3355 #ifdef HAVE_TARGET_32_LITTLE
3356 template
3357 Output_section*
3358 Layout::layout<32, false>(Sized_relobj<32, false>* object, unsigned int shndx,
3359 			  const char* name,
3360 			  const elfcpp::Shdr<32, false>& shdr,
3361 			  unsigned int, unsigned int, off_t*);
3362 #endif
3363 
3364 #ifdef HAVE_TARGET_32_BIG
3365 template
3366 Output_section*
3367 Layout::layout<32, true>(Sized_relobj<32, true>* object, unsigned int shndx,
3368 			 const char* name,
3369 			 const elfcpp::Shdr<32, true>& shdr,
3370 			 unsigned int, unsigned int, off_t*);
3371 #endif
3372 
3373 #ifdef HAVE_TARGET_64_LITTLE
3374 template
3375 Output_section*
3376 Layout::layout<64, false>(Sized_relobj<64, false>* object, unsigned int shndx,
3377 			  const char* name,
3378 			  const elfcpp::Shdr<64, false>& shdr,
3379 			  unsigned int, unsigned int, off_t*);
3380 #endif
3381 
3382 #ifdef HAVE_TARGET_64_BIG
3383 template
3384 Output_section*
3385 Layout::layout<64, true>(Sized_relobj<64, true>* object, unsigned int shndx,
3386 			 const char* name,
3387 			 const elfcpp::Shdr<64, true>& shdr,
3388 			 unsigned int, unsigned int, off_t*);
3389 #endif
3390 
3391 #ifdef HAVE_TARGET_32_LITTLE
3392 template
3393 Output_section*
3394 Layout::layout_reloc<32, false>(Sized_relobj<32, false>* object,
3395 				unsigned int reloc_shndx,
3396 				const elfcpp::Shdr<32, false>& shdr,
3397 				Output_section* data_section,
3398 				Relocatable_relocs* rr);
3399 #endif
3400 
3401 #ifdef HAVE_TARGET_32_BIG
3402 template
3403 Output_section*
3404 Layout::layout_reloc<32, true>(Sized_relobj<32, true>* object,
3405 			       unsigned int reloc_shndx,
3406 			       const elfcpp::Shdr<32, true>& shdr,
3407 			       Output_section* data_section,
3408 			       Relocatable_relocs* rr);
3409 #endif
3410 
3411 #ifdef HAVE_TARGET_64_LITTLE
3412 template
3413 Output_section*
3414 Layout::layout_reloc<64, false>(Sized_relobj<64, false>* object,
3415 				unsigned int reloc_shndx,
3416 				const elfcpp::Shdr<64, false>& shdr,
3417 				Output_section* data_section,
3418 				Relocatable_relocs* rr);
3419 #endif
3420 
3421 #ifdef HAVE_TARGET_64_BIG
3422 template
3423 Output_section*
3424 Layout::layout_reloc<64, true>(Sized_relobj<64, true>* object,
3425 			       unsigned int reloc_shndx,
3426 			       const elfcpp::Shdr<64, true>& shdr,
3427 			       Output_section* data_section,
3428 			       Relocatable_relocs* rr);
3429 #endif
3430 
3431 #ifdef HAVE_TARGET_32_LITTLE
3432 template
3433 void
3434 Layout::layout_group<32, false>(Symbol_table* symtab,
3435 				Sized_relobj<32, false>* object,
3436 				unsigned int,
3437 				const char* group_section_name,
3438 				const char* signature,
3439 				const elfcpp::Shdr<32, false>& shdr,
3440 				elfcpp::Elf_Word flags,
3441 				std::vector<unsigned int>* shndxes);
3442 #endif
3443 
3444 #ifdef HAVE_TARGET_32_BIG
3445 template
3446 void
3447 Layout::layout_group<32, true>(Symbol_table* symtab,
3448 			       Sized_relobj<32, true>* object,
3449 			       unsigned int,
3450 			       const char* group_section_name,
3451 			       const char* signature,
3452 			       const elfcpp::Shdr<32, true>& shdr,
3453 			       elfcpp::Elf_Word flags,
3454 			       std::vector<unsigned int>* shndxes);
3455 #endif
3456 
3457 #ifdef HAVE_TARGET_64_LITTLE
3458 template
3459 void
3460 Layout::layout_group<64, false>(Symbol_table* symtab,
3461 				Sized_relobj<64, false>* object,
3462 				unsigned int,
3463 				const char* group_section_name,
3464 				const char* signature,
3465 				const elfcpp::Shdr<64, false>& shdr,
3466 				elfcpp::Elf_Word flags,
3467 				std::vector<unsigned int>* shndxes);
3468 #endif
3469 
3470 #ifdef HAVE_TARGET_64_BIG
3471 template
3472 void
3473 Layout::layout_group<64, true>(Symbol_table* symtab,
3474 			       Sized_relobj<64, true>* object,
3475 			       unsigned int,
3476 			       const char* group_section_name,
3477 			       const char* signature,
3478 			       const elfcpp::Shdr<64, true>& shdr,
3479 			       elfcpp::Elf_Word flags,
3480 			       std::vector<unsigned int>* shndxes);
3481 #endif
3482 
3483 #ifdef HAVE_TARGET_32_LITTLE
3484 template
3485 Output_section*
3486 Layout::layout_eh_frame<32, false>(Sized_relobj<32, false>* object,
3487 				   const unsigned char* symbols,
3488 				   off_t symbols_size,
3489 				   const unsigned char* symbol_names,
3490 				   off_t symbol_names_size,
3491 				   unsigned int shndx,
3492 				   const elfcpp::Shdr<32, false>& shdr,
3493 				   unsigned int reloc_shndx,
3494 				   unsigned int reloc_type,
3495 				   off_t* off);
3496 #endif
3497 
3498 #ifdef HAVE_TARGET_32_BIG
3499 template
3500 Output_section*
3501 Layout::layout_eh_frame<32, true>(Sized_relobj<32, true>* object,
3502 				   const unsigned char* symbols,
3503 				   off_t symbols_size,
3504 				  const unsigned char* symbol_names,
3505 				  off_t symbol_names_size,
3506 				  unsigned int shndx,
3507 				  const elfcpp::Shdr<32, true>& shdr,
3508 				  unsigned int reloc_shndx,
3509 				  unsigned int reloc_type,
3510 				  off_t* off);
3511 #endif
3512 
3513 #ifdef HAVE_TARGET_64_LITTLE
3514 template
3515 Output_section*
3516 Layout::layout_eh_frame<64, false>(Sized_relobj<64, false>* object,
3517 				   const unsigned char* symbols,
3518 				   off_t symbols_size,
3519 				   const unsigned char* symbol_names,
3520 				   off_t symbol_names_size,
3521 				   unsigned int shndx,
3522 				   const elfcpp::Shdr<64, false>& shdr,
3523 				   unsigned int reloc_shndx,
3524 				   unsigned int reloc_type,
3525 				   off_t* off);
3526 #endif
3527 
3528 #ifdef HAVE_TARGET_64_BIG
3529 template
3530 Output_section*
3531 Layout::layout_eh_frame<64, true>(Sized_relobj<64, true>* object,
3532 				   const unsigned char* symbols,
3533 				   off_t symbols_size,
3534 				  const unsigned char* symbol_names,
3535 				  off_t symbol_names_size,
3536 				  unsigned int shndx,
3537 				  const elfcpp::Shdr<64, true>& shdr,
3538 				  unsigned int reloc_shndx,
3539 				  unsigned int reloc_type,
3540 				  off_t* off);
3541 #endif
3542 
3543 } // End namespace gold.
3544