xref: /netbsd-src/external/gpl3/binutils/dist/gold/layout.cc (revision cb63e24e8d6aae7ddac1859a9015f48b1d8bd90e)
1 // layout.cc -- lay out output file sections for gold
2 
3 // Copyright (C) 2006-2024 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5 
6 // This file is part of gold.
7 
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12 
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17 
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22 
23 #include "gold.h"
24 
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <fstream>
30 #include <utility>
31 #include <fcntl.h>
32 #include <fnmatch.h>
33 #include <unistd.h>
34 #include "libiberty.h"
35 #include "md5.h"
36 #include "sha1.h"
37 #ifdef __MINGW32__
38 #include <windows.h>
39 #include <rpcdce.h>
40 #endif
41 #ifdef HAVE_JANSSON
42 #include <jansson.h>
43 #endif
44 
45 #include "parameters.h"
46 #include "options.h"
47 #include "mapfile.h"
48 #include "script.h"
49 #include "script-sections.h"
50 #include "output.h"
51 #include "symtab.h"
52 #include "dynobj.h"
53 #include "ehframe.h"
54 #include "gdb-index.h"
55 #include "compressed_output.h"
56 #include "reduced_debug_output.h"
57 #include "object.h"
58 #include "reloc.h"
59 #include "descriptors.h"
60 #include "plugin.h"
61 #include "incremental.h"
62 #include "layout.h"
63 
64 namespace gold
65 {
66 
67 // Class Free_list.
68 
69 // The total number of free lists used.
70 unsigned int Free_list::num_lists = 0;
71 // The total number of free list nodes used.
72 unsigned int Free_list::num_nodes = 0;
73 // The total number of calls to Free_list::remove.
74 unsigned int Free_list::num_removes = 0;
75 // The total number of nodes visited during calls to Free_list::remove.
76 unsigned int Free_list::num_remove_visits = 0;
77 // The total number of calls to Free_list::allocate.
78 unsigned int Free_list::num_allocates = 0;
79 // The total number of nodes visited during calls to Free_list::allocate.
80 unsigned int Free_list::num_allocate_visits = 0;
81 
82 // Initialize the free list.  Creates a single free list node that
83 // describes the entire region of length LEN.  If EXTEND is true,
84 // allocate() is allowed to extend the region beyond its initial
85 // length.
86 
87 void
init(off_t len,bool extend)88 Free_list::init(off_t len, bool extend)
89 {
90   this->list_.push_front(Free_list_node(0, len));
91   this->last_remove_ = this->list_.begin();
92   this->extend_ = extend;
93   this->length_ = len;
94   ++Free_list::num_lists;
95   ++Free_list::num_nodes;
96 }
97 
98 // Remove a chunk from the free list.  Because we start with a single
99 // node that covers the entire section, and remove chunks from it one
100 // at a time, we do not need to coalesce chunks or handle cases that
101 // span more than one free node.  We expect to remove chunks from the
102 // free list in order, and we expect to have only a few chunks of free
103 // space left (corresponding to files that have changed since the last
104 // incremental link), so a simple linear list should provide sufficient
105 // performance.
106 
107 void
remove(off_t start,off_t end)108 Free_list::remove(off_t start, off_t end)
109 {
110   if (start == end)
111     return;
112   gold_assert(start < end);
113 
114   ++Free_list::num_removes;
115 
116   Iterator p = this->last_remove_;
117   if (p->start_ > start)
118     p = this->list_.begin();
119 
120   for (; p != this->list_.end(); ++p)
121     {
122       ++Free_list::num_remove_visits;
123       // Find a node that wholly contains the indicated region.
124       if (p->start_ <= start && p->end_ >= end)
125 	{
126 	  // Case 1: the indicated region spans the whole node.
127 	  // Add some fuzz to avoid creating tiny free chunks.
128 	  if (p->start_ + 3 >= start && p->end_ <= end + 3)
129 	    p = this->list_.erase(p);
130 	  // Case 2: remove a chunk from the start of the node.
131 	  else if (p->start_ + 3 >= start)
132 	    p->start_ = end;
133 	  // Case 3: remove a chunk from the end of the node.
134 	  else if (p->end_ <= end + 3)
135 	    p->end_ = start;
136 	  // Case 4: remove a chunk from the middle, and split
137 	  // the node into two.
138 	  else
139 	    {
140 	      Free_list_node newnode(p->start_, start);
141 	      p->start_ = end;
142 	      this->list_.insert(p, newnode);
143 	      ++Free_list::num_nodes;
144 	    }
145 	  this->last_remove_ = p;
146 	  return;
147 	}
148     }
149 
150   // Did not find a node containing the given chunk.  This could happen
151   // because a small chunk was already removed due to the fuzz.
152   gold_debug(DEBUG_INCREMENTAL,
153 	     "Free_list::remove(%d,%d) not found",
154 	     static_cast<int>(start), static_cast<int>(end));
155 }
156 
157 // Allocate a chunk of size LEN from the free list.  Returns -1ULL
158 // if a sufficiently large chunk of free space is not found.
159 // We use a simple first-fit algorithm.
160 
161 off_t
allocate(off_t len,uint64_t align,off_t minoff)162 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
163 {
164   gold_debug(DEBUG_INCREMENTAL,
165 	     "Free_list::allocate(%08lx, %d, %08lx)",
166 	     static_cast<long>(len), static_cast<int>(align),
167 	     static_cast<long>(minoff));
168   if (len == 0)
169     return align_address(minoff, align);
170 
171   ++Free_list::num_allocates;
172 
173   // We usually want to drop free chunks smaller than 4 bytes.
174   // If we need to guarantee a minimum hole size, though, we need
175   // to keep track of all free chunks.
176   const int fuzz = this->min_hole_ > 0 ? 0 : 3;
177 
178   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
179     {
180       ++Free_list::num_allocate_visits;
181       off_t start = p->start_ > minoff ? p->start_ : minoff;
182       start = align_address(start, align);
183       off_t end = start + len;
184       if (end > p->end_ && p->end_ == this->length_ && this->extend_)
185 	{
186 	  this->length_ = end;
187 	  p->end_ = end;
188 	}
189       if (end == p->end_ || (end <= p->end_ - this->min_hole_))
190 	{
191 	  if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
192 	    this->list_.erase(p);
193 	  else if (p->start_ + fuzz >= start)
194 	    p->start_ = end;
195 	  else if (p->end_ <= end + fuzz)
196 	    p->end_ = start;
197 	  else
198 	    {
199 	      Free_list_node newnode(p->start_, start);
200 	      p->start_ = end;
201 	      this->list_.insert(p, newnode);
202 	      ++Free_list::num_nodes;
203 	    }
204 	  return start;
205 	}
206     }
207   if (this->extend_)
208     {
209       off_t start = align_address(this->length_, align);
210       this->length_ = start + len;
211       return start;
212     }
213   return -1;
214 }
215 
216 // Dump the free list (for debugging).
217 void
dump()218 Free_list::dump()
219 {
220   gold_info("Free list:\n     start      end   length\n");
221   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
222     gold_info("  %08lx %08lx %08lx", static_cast<long>(p->start_),
223 	      static_cast<long>(p->end_),
224 	      static_cast<long>(p->end_ - p->start_));
225 }
226 
227 // Print the statistics for the free lists.
228 void
print_stats()229 Free_list::print_stats()
230 {
231   fprintf(stderr, _("%s: total free lists: %u\n"),
232 	  program_name, Free_list::num_lists);
233   fprintf(stderr, _("%s: total free list nodes: %u\n"),
234 	  program_name, Free_list::num_nodes);
235   fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
236 	  program_name, Free_list::num_removes);
237   fprintf(stderr, _("%s: nodes visited: %u\n"),
238 	  program_name, Free_list::num_remove_visits);
239   fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
240 	  program_name, Free_list::num_allocates);
241   fprintf(stderr, _("%s: nodes visited: %u\n"),
242 	  program_name, Free_list::num_allocate_visits);
243 }
244 
245 // A Hash_task computes the MD5 checksum of an array of char.
246 
247 class Hash_task : public Task
248 {
249  public:
Hash_task(Output_file * of,size_t offset,size_t size,unsigned char * dst,Task_token * final_blocker)250   Hash_task(Output_file* of,
251 	    size_t offset,
252 	    size_t size,
253 	    unsigned char* dst,
254 	    Task_token* final_blocker)
255     : of_(of), offset_(offset), size_(size), dst_(dst),
256       final_blocker_(final_blocker)
257   { }
258 
259   void
run(Workqueue *)260   run(Workqueue*)
261   {
262     const unsigned char* iv =
263 	this->of_->get_input_view(this->offset_, this->size_);
264     md5_buffer(reinterpret_cast<const char*>(iv), this->size_, this->dst_);
265     this->of_->free_input_view(this->offset_, this->size_, iv);
266   }
267 
268   Task_token*
is_runnable()269   is_runnable()
270   { return NULL; }
271 
272   // Unblock FINAL_BLOCKER_ when done.
273   void
locks(Task_locker * tl)274   locks(Task_locker* tl)
275   { tl->add(this, this->final_blocker_); }
276 
277   std::string
get_name() const278   get_name() const
279   { return "Hash_task"; }
280 
281  private:
282   Output_file* of_;
283   const size_t offset_;
284   const size_t size_;
285   unsigned char* const dst_;
286   Task_token* const final_blocker_;
287 };
288 
289 // Layout::Relaxation_debug_check methods.
290 
291 // Check that sections and special data are in reset states.
292 // We do not save states for Output_sections and special Output_data.
293 // So we check that they have not assigned any addresses or offsets.
294 // clean_up_after_relaxation simply resets their addresses and offsets.
295 void
check_output_data_for_reset_values(const Layout::Section_list & sections,const Layout::Data_list & special_outputs,const Layout::Data_list & relax_outputs)296 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
297     const Layout::Section_list& sections,
298     const Layout::Data_list& special_outputs,
299     const Layout::Data_list& relax_outputs)
300 {
301   for(Layout::Section_list::const_iterator p = sections.begin();
302       p != sections.end();
303       ++p)
304     gold_assert((*p)->address_and_file_offset_have_reset_values());
305 
306   for(Layout::Data_list::const_iterator p = special_outputs.begin();
307       p != special_outputs.end();
308       ++p)
309     gold_assert((*p)->address_and_file_offset_have_reset_values());
310 
311   gold_assert(relax_outputs.empty());
312 }
313 
314 // Save information of SECTIONS for checking later.
315 
316 void
read_sections(const Layout::Section_list & sections)317 Layout::Relaxation_debug_check::read_sections(
318     const Layout::Section_list& sections)
319 {
320   for(Layout::Section_list::const_iterator p = sections.begin();
321       p != sections.end();
322       ++p)
323     {
324       Output_section* os = *p;
325       Section_info info;
326       info.output_section = os;
327       info.address = os->is_address_valid() ? os->address() : 0;
328       info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
329       info.offset = os->is_offset_valid()? os->offset() : -1 ;
330       this->section_infos_.push_back(info);
331     }
332 }
333 
334 // Verify SECTIONS using previously recorded information.
335 
336 void
verify_sections(const Layout::Section_list & sections)337 Layout::Relaxation_debug_check::verify_sections(
338     const Layout::Section_list& sections)
339 {
340   size_t i = 0;
341   for(Layout::Section_list::const_iterator p = sections.begin();
342       p != sections.end();
343       ++p, ++i)
344     {
345       Output_section* os = *p;
346       uint64_t address = os->is_address_valid() ? os->address() : 0;
347       off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
348       off_t offset = os->is_offset_valid()? os->offset() : -1 ;
349 
350       if (i >= this->section_infos_.size())
351 	{
352 	  gold_fatal("Section_info of %s missing.\n", os->name());
353 	}
354       const Section_info& info = this->section_infos_[i];
355       if (os != info.output_section)
356 	gold_fatal("Section order changed.  Expecting %s but see %s\n",
357 		   info.output_section->name(), os->name());
358       if (address != info.address
359 	  || data_size != info.data_size
360 	  || offset != info.offset)
361 	gold_fatal("Section %s changed.\n", os->name());
362     }
363 }
364 
365 // Layout_task_runner methods.
366 
367 // Lay out the sections.  This is called after all the input objects
368 // have been read.
369 
370 void
run(Workqueue * workqueue,const Task * task)371 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
372 {
373   // See if any of the input definitions violate the One Definition Rule.
374   // TODO: if this is too slow, do this as a task, rather than inline.
375   this->symtab_->detect_odr_violations(task, this->options_.output_file_name());
376 
377   Layout* layout = this->layout_;
378   off_t file_size = layout->finalize(this->input_objects_,
379 				     this->symtab_,
380 				     this->target_,
381 				     task);
382 
383   // Now we know the final size of the output file and we know where
384   // each piece of information goes.
385 
386   if (this->mapfile_ != NULL)
387     {
388       this->mapfile_->print_discarded_sections(this->input_objects_);
389       layout->print_to_mapfile(this->mapfile_);
390     }
391 
392   Output_file* of;
393   if (layout->incremental_base() == NULL)
394     {
395       of = new Output_file(parameters->options().output_file_name());
396       if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
397 	of->set_is_temporary();
398       of->open(file_size);
399     }
400   else
401     {
402       of = layout->incremental_base()->output_file();
403 
404       // Apply the incremental relocations for symbols whose values
405       // have changed.  We do this before we resize the file and start
406       // writing anything else to it, so that we can read the old
407       // incremental information from the file before (possibly)
408       // overwriting it.
409       if (parameters->incremental_update())
410 	layout->incremental_base()->apply_incremental_relocs(this->symtab_,
411 							     this->layout_,
412 							     of);
413 
414       of->resize(file_size);
415     }
416 
417   // Queue up the final set of tasks.
418   gold::queue_final_tasks(this->options_, this->input_objects_,
419 			  this->symtab_, layout, workqueue, of);
420 }
421 
422 // Layout methods.
423 
Layout(int number_of_input_files,Script_options * script_options)424 Layout::Layout(int number_of_input_files, Script_options* script_options)
425   : number_of_input_files_(number_of_input_files),
426     script_options_(script_options),
427     namepool_(),
428     sympool_(),
429     dynpool_(),
430     signatures_(),
431     section_name_map_(),
432     segment_list_(),
433     section_list_(),
434     unattached_section_list_(),
435     special_output_list_(),
436     relax_output_list_(),
437     section_headers_(NULL),
438     tls_segment_(NULL),
439     relro_segment_(NULL),
440     interp_segment_(NULL),
441     increase_relro_(0),
442     symtab_section_(NULL),
443     symtab_xindex_(NULL),
444     dynsym_section_(NULL),
445     dynsym_xindex_(NULL),
446     dynamic_section_(NULL),
447     dynamic_symbol_(NULL),
448     dynamic_data_(NULL),
449     eh_frame_section_(NULL),
450     eh_frame_data_(NULL),
451     added_eh_frame_data_(false),
452     eh_frame_hdr_section_(NULL),
453     gdb_index_data_(NULL),
454     build_id_note_(NULL),
455     debug_abbrev_(NULL),
456     debug_info_(NULL),
457     group_signatures_(),
458     output_file_size_(-1),
459     have_added_input_section_(false),
460     sections_are_attached_(false),
461     input_requires_executable_stack_(false),
462     input_with_gnu_stack_note_(false),
463     input_without_gnu_stack_note_(false),
464     has_static_tls_(false),
465     any_postprocessing_sections_(false),
466     resized_signatures_(false),
467     have_stabstr_section_(false),
468     section_ordering_specified_(false),
469     unique_segment_for_sections_specified_(false),
470     incremental_inputs_(NULL),
471     record_output_section_data_from_script_(false),
472     lto_slim_object_(false),
473     script_output_section_data_list_(),
474     segment_states_(NULL),
475     relaxation_debug_check_(NULL),
476     section_order_map_(),
477     section_segment_map_(),
478     input_section_position_(),
479     input_section_glob_(),
480     incremental_base_(NULL),
481     free_list_(),
482     gnu_properties_()
483 {
484   // Make space for more than enough segments for a typical file.
485   // This is just for efficiency--it's OK if we wind up needing more.
486   this->segment_list_.reserve(12);
487 
488   // We expect two unattached Output_data objects: the file header and
489   // the segment headers.
490   this->special_output_list_.reserve(2);
491 
492   // Initialize structure needed for an incremental build.
493   if (parameters->incremental())
494     this->incremental_inputs_ = new Incremental_inputs;
495 
496   // The section name pool is worth optimizing in all cases, because
497   // it is small, but there are often overlaps due to .rel sections.
498   this->namepool_.set_optimize();
499 }
500 
501 // For incremental links, record the base file to be modified.
502 
503 void
set_incremental_base(Incremental_binary * base)504 Layout::set_incremental_base(Incremental_binary* base)
505 {
506   this->incremental_base_ = base;
507   this->free_list_.init(base->output_file()->filesize(), true);
508 }
509 
510 // Hash a key we use to look up an output section mapping.
511 
512 size_t
operator ()(const Layout::Key & k) const513 Layout::Hash_key::operator()(const Layout::Key& k) const
514 {
515  return k.first + k.second.first + k.second.second;
516 }
517 
518 // These are the debug sections that are actually used by gdb.
519 // Currently, we've checked versions of gdb up to and including 7.4.
520 // We only check the part of the name that follows ".debug_" or
521 // ".zdebug_".
522 
523 static const char* gdb_sections[] =
524 {
525   "abbrev",
526   "addr",         // Fission extension
527   // "aranges",   // not used by gdb as of 7.4
528   "frame",
529   "gdb_scripts",
530   "info",
531   "types",
532   "line",
533   "loc",
534   "macinfo",
535   "macro",
536   // "pubnames",  // not used by gdb as of 7.4
537   // "pubtypes",  // not used by gdb as of 7.4
538   // "gnu_pubnames",  // Fission extension
539   // "gnu_pubtypes",  // Fission extension
540   "ranges",
541   "str",
542   "str_offsets",
543 };
544 
545 // This is the minimum set of sections needed for line numbers.
546 
547 static const char* lines_only_debug_sections[] =
548 {
549   "abbrev",
550   // "addr",      // Fission extension
551   // "aranges",   // not used by gdb as of 7.4
552   // "frame",
553   // "gdb_scripts",
554   "info",
555   // "types",
556   "line",
557   // "loc",
558   // "macinfo",
559   // "macro",
560   // "pubnames",  // not used by gdb as of 7.4
561   // "pubtypes",  // not used by gdb as of 7.4
562   // "gnu_pubnames",  // Fission extension
563   // "gnu_pubtypes",  // Fission extension
564   // "ranges",
565   "str",
566   "str_offsets",  // Fission extension
567 };
568 
569 // These sections are the DWARF fast-lookup tables, and are not needed
570 // when building a .gdb_index section.
571 
572 static const char* gdb_fast_lookup_sections[] =
573 {
574   "aranges",
575   "pubnames",
576   "gnu_pubnames",
577   "pubtypes",
578   "gnu_pubtypes",
579 };
580 
581 // Returns whether the given debug section is in the list of
582 // debug-sections-used-by-some-version-of-gdb.  SUFFIX is the
583 // portion of the name following ".debug_" or ".zdebug_".
584 
585 static inline bool
is_gdb_debug_section(const char * suffix)586 is_gdb_debug_section(const char* suffix)
587 {
588   // We can do this faster: binary search or a hashtable.  But why bother?
589   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
590     if (strcmp(suffix, gdb_sections[i]) == 0)
591       return true;
592   return false;
593 }
594 
595 // Returns whether the given section is needed for lines-only debugging.
596 
597 static inline bool
is_lines_only_debug_section(const char * suffix)598 is_lines_only_debug_section(const char* suffix)
599 {
600   // We can do this faster: binary search or a hashtable.  But why bother?
601   for (size_t i = 0;
602        i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
603        ++i)
604     if (strcmp(suffix, lines_only_debug_sections[i]) == 0)
605       return true;
606   return false;
607 }
608 
609 // Returns whether the given section is a fast-lookup section that
610 // will not be needed when building a .gdb_index section.
611 
612 static inline bool
is_gdb_fast_lookup_section(const char * suffix)613 is_gdb_fast_lookup_section(const char* suffix)
614 {
615   // We can do this faster: binary search or a hashtable.  But why bother?
616   for (size_t i = 0;
617        i < sizeof(gdb_fast_lookup_sections)/sizeof(*gdb_fast_lookup_sections);
618        ++i)
619     if (strcmp(suffix, gdb_fast_lookup_sections[i]) == 0)
620       return true;
621   return false;
622 }
623 
624 // Sometimes we compress sections.  This is typically done for
625 // sections that are not part of normal program execution (such as
626 // .debug_* sections), and where the readers of these sections know
627 // how to deal with compressed sections.  This routine doesn't say for
628 // certain whether we'll compress -- it depends on commandline options
629 // as well -- just whether this section is a candidate for compression.
630 // (The Output_compressed_section class decides whether to compress
631 // a given section, and picks the name of the compressed section.)
632 
633 static bool
is_compressible_debug_section(const char * secname)634 is_compressible_debug_section(const char* secname)
635 {
636   return (is_prefix_of(".debug", secname));
637 }
638 
639 // We may see compressed debug sections in input files.  Return TRUE
640 // if this is the name of a compressed debug section.
641 
642 bool
is_compressed_debug_section(const char * secname)643 is_compressed_debug_section(const char* secname)
644 {
645   return (is_prefix_of(".zdebug", secname));
646 }
647 
648 std::string
corresponding_uncompressed_section_name(std::string secname)649 corresponding_uncompressed_section_name(std::string secname)
650 {
651   gold_assert(secname[0] == '.' && secname[1] == 'z');
652   std::string ret(".");
653   ret.append(secname, 2, std::string::npos);
654   return ret;
655 }
656 
657 // Whether to include this section in the link.
658 
659 template<int size, bool big_endian>
660 bool
include_section(Sized_relobj_file<size,big_endian> *,const char * name,const elfcpp::Shdr<size,big_endian> & shdr)661 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
662 			const elfcpp::Shdr<size, big_endian>& shdr)
663 {
664   if (!parameters->options().relocatable()
665       && (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE))
666     return false;
667 
668   elfcpp::Elf_Word sh_type = shdr.get_sh_type();
669 
670   if ((sh_type >= elfcpp::SHT_LOOS && sh_type <= elfcpp::SHT_HIOS)
671       || (sh_type >= elfcpp::SHT_LOPROC && sh_type <= elfcpp::SHT_HIPROC))
672     return parameters->target().should_include_section(sh_type);
673 
674   switch (sh_type)
675     {
676     case elfcpp::SHT_NULL:
677     case elfcpp::SHT_SYMTAB:
678     case elfcpp::SHT_DYNSYM:
679     case elfcpp::SHT_HASH:
680     case elfcpp::SHT_DYNAMIC:
681     case elfcpp::SHT_SYMTAB_SHNDX:
682       return false;
683 
684     case elfcpp::SHT_STRTAB:
685       // Discard the sections which have special meanings in the ELF
686       // ABI.  Keep others (e.g., .stabstr).  We could also do this by
687       // checking the sh_link fields of the appropriate sections.
688       return (strcmp(name, ".dynstr") != 0
689 	      && strcmp(name, ".strtab") != 0
690 	      && strcmp(name, ".shstrtab") != 0);
691 
692     case elfcpp::SHT_RELA:
693     case elfcpp::SHT_REL:
694     case elfcpp::SHT_GROUP:
695       // If we are emitting relocations these should be handled
696       // elsewhere.
697       gold_assert(!parameters->options().relocatable());
698       return false;
699 
700     case elfcpp::SHT_PROGBITS:
701       if (parameters->options().strip_debug()
702 	  && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
703 	{
704 	  if (is_debug_info_section(name))
705 	    return false;
706 	}
707       if (parameters->options().strip_debug_non_line()
708 	  && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
709 	{
710 	  // Debugging sections can only be recognized by name.
711 	  if (is_prefix_of(".debug_", name)
712 	      && !is_lines_only_debug_section(name + 7))
713 	    return false;
714 	  if (is_prefix_of(".zdebug_", name)
715 	      && !is_lines_only_debug_section(name + 8))
716 	    return false;
717 	}
718       if (parameters->options().strip_debug_gdb()
719 	  && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
720 	{
721 	  // Debugging sections can only be recognized by name.
722 	  if (is_prefix_of(".debug_", name)
723 	      && !is_gdb_debug_section(name + 7))
724 	    return false;
725 	  if (is_prefix_of(".zdebug_", name)
726 	      && !is_gdb_debug_section(name + 8))
727 	    return false;
728 	}
729       if (parameters->options().gdb_index()
730 	  && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
731 	{
732 	  // When building .gdb_index, we can strip .debug_pubnames,
733 	  // .debug_pubtypes, and .debug_aranges sections.
734 	  if (is_prefix_of(".debug_", name)
735 	      && is_gdb_fast_lookup_section(name + 7))
736 	    return false;
737 	  if (is_prefix_of(".zdebug_", name)
738 	      && is_gdb_fast_lookup_section(name + 8))
739 	    return false;
740 	}
741       if (parameters->options().strip_lto_sections()
742 	  && !parameters->options().relocatable()
743 	  && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
744 	{
745 	  // Ignore LTO sections containing intermediate code.
746 	  if (is_prefix_of(".gnu.lto_", name))
747 	    return false;
748 	}
749       // The GNU linker strips .gnu_debuglink sections, so we do too.
750       // This is a feature used to keep debugging information in
751       // separate files.
752       if (strcmp(name, ".gnu_debuglink") == 0)
753 	return false;
754       return true;
755 
756     default:
757       return true;
758     }
759 }
760 
761 // Return an output section named NAME, or NULL if there is none.
762 
763 Output_section*
find_output_section(const char * name) const764 Layout::find_output_section(const char* name) const
765 {
766   for (Section_list::const_iterator p = this->section_list_.begin();
767        p != this->section_list_.end();
768        ++p)
769     if (strcmp((*p)->name(), name) == 0)
770       return *p;
771   return NULL;
772 }
773 
774 // Return an output segment of type TYPE, with segment flags SET set
775 // and segment flags CLEAR clear.  Return NULL if there is none.
776 
777 Output_segment*
find_output_segment(elfcpp::PT type,elfcpp::Elf_Word set,elfcpp::Elf_Word clear) const778 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
779 			    elfcpp::Elf_Word clear) const
780 {
781   for (Segment_list::const_iterator p = this->segment_list_.begin();
782        p != this->segment_list_.end();
783        ++p)
784     if (static_cast<elfcpp::PT>((*p)->type()) == type
785 	&& ((*p)->flags() & set) == set
786 	&& ((*p)->flags() & clear) == 0)
787       return *p;
788   return NULL;
789 }
790 
791 // When we put a .ctors or .dtors section with more than one word into
792 // a .init_array or .fini_array section, we need to reverse the words
793 // in the .ctors/.dtors section.  This is because .init_array executes
794 // constructors front to back, where .ctors executes them back to
795 // front, and vice-versa for .fini_array/.dtors.  Although we do want
796 // to remap .ctors/.dtors into .init_array/.fini_array because it can
797 // be more efficient, we don't want to change the order in which
798 // constructors/destructors are run.  This set just keeps track of
799 // these sections which need to be reversed.  It is only changed by
800 // Layout::layout.  It should be a private member of Layout, but that
801 // would require layout.h to #include object.h to get the definition
802 // of Section_id.
803 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
804 
805 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
806 // .init_array/.fini_array section.
807 
808 bool
is_ctors_in_init_array(Relobj * relobj,unsigned int shndx) const809 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
810 {
811   return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
812 	  != ctors_sections_in_init_array.end());
813 }
814 
815 // Return the output section to use for section NAME with type TYPE
816 // and section flags FLAGS.  NAME must be canonicalized in the string
817 // pool, and NAME_KEY is the key.  ORDER is where this should appear
818 // in the output sections.  IS_RELRO is true for a relro section.
819 
820 Output_section*
get_output_section(const char * name,Stringpool::Key name_key,elfcpp::Elf_Word type,elfcpp::Elf_Xword flags,Output_section_order order,bool is_relro)821 Layout::get_output_section(const char* name, Stringpool::Key name_key,
822 			   elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
823 			   Output_section_order order, bool is_relro)
824 {
825   elfcpp::Elf_Word lookup_type = type;
826 
827   // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
828   // PREINIT_ARRAY like PROGBITS.  This ensures that we combine
829   // .init_array, .fini_array, and .preinit_array sections by name
830   // whatever their type in the input file.  We do this because the
831   // types are not always right in the input files.
832   if (lookup_type == elfcpp::SHT_INIT_ARRAY
833       || lookup_type == elfcpp::SHT_FINI_ARRAY
834       || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
835     lookup_type = elfcpp::SHT_PROGBITS;
836 
837   elfcpp::Elf_Xword lookup_flags = flags;
838 
839   // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
840   // read-write with read-only sections.  Some other ELF linkers do
841   // not do this.  FIXME: Perhaps there should be an option
842   // controlling this.
843   lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
844 
845   const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
846   const std::pair<Key, Output_section*> v(key, NULL);
847   std::pair<Section_name_map::iterator, bool> ins(
848     this->section_name_map_.insert(v));
849 
850   if (!ins.second)
851     return ins.first->second;
852   else
853     {
854       // This is the first time we've seen this name/type/flags
855       // combination.  For compatibility with the GNU linker, we
856       // combine sections with contents and zero flags with sections
857       // with non-zero flags.  This is a workaround for cases where
858       // assembler code forgets to set section flags.  FIXME: Perhaps
859       // there should be an option to control this.
860       Output_section* os = NULL;
861 
862       if (lookup_type == elfcpp::SHT_PROGBITS)
863 	{
864 	  if (flags == 0)
865 	    {
866 	      Output_section* same_name = this->find_output_section(name);
867 	      if (same_name != NULL
868 		  && (same_name->type() == elfcpp::SHT_PROGBITS
869 		      || same_name->type() == elfcpp::SHT_INIT_ARRAY
870 		      || same_name->type() == elfcpp::SHT_FINI_ARRAY
871 		      || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
872 		  && (same_name->flags() & elfcpp::SHF_TLS) == 0)
873 		os = same_name;
874 	    }
875 	  else if ((flags & elfcpp::SHF_TLS) == 0)
876 	    {
877 	      elfcpp::Elf_Xword zero_flags = 0;
878 	      const Key zero_key(name_key, std::make_pair(lookup_type,
879 							  zero_flags));
880 	      Section_name_map::iterator p =
881 		  this->section_name_map_.find(zero_key);
882 	      if (p != this->section_name_map_.end())
883 		os = p->second;
884 	    }
885 	}
886 
887       if (os == NULL)
888 	os = this->make_output_section(name, type, flags, order, is_relro);
889 
890       ins.first->second = os;
891       return os;
892     }
893 }
894 
895 // Returns TRUE iff NAME (an input section from RELOBJ) will
896 // be mapped to an output section that should be KEPT.
897 
898 bool
keep_input_section(const Relobj * relobj,const char * name)899 Layout::keep_input_section(const Relobj* relobj, const char* name)
900 {
901   if (! this->script_options_->saw_sections_clause())
902     return false;
903 
904   Script_sections* ss = this->script_options_->script_sections();
905   const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
906   Output_section** output_section_slot;
907   Script_sections::Section_type script_section_type;
908   bool keep;
909 
910   name = ss->output_section_name(file_name, name, &output_section_slot,
911 				 &script_section_type, &keep, true);
912   return name != NULL && keep;
913 }
914 
915 // Clear the input section flags that should not be copied to the
916 // output section.
917 
918 elfcpp::Elf_Xword
get_output_section_flags(elfcpp::Elf_Xword input_section_flags)919 Layout::get_output_section_flags(elfcpp::Elf_Xword input_section_flags)
920 {
921   // Some flags in the input section should not be automatically
922   // copied to the output section.
923   input_section_flags &= ~ (elfcpp::SHF_INFO_LINK
924 			    | elfcpp::SHF_GROUP
925 			    | elfcpp::SHF_COMPRESSED
926 			    | elfcpp::SHF_MERGE
927 			    | elfcpp::SHF_STRINGS);
928 
929   // We only clear the SHF_LINK_ORDER flag in for
930   // a non-relocatable link.
931   if (!parameters->options().relocatable())
932     input_section_flags &= ~elfcpp::SHF_LINK_ORDER;
933 
934   return input_section_flags;
935 }
936 
937 // Pick the output section to use for section NAME, in input file
938 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
939 // linker created section.  IS_INPUT_SECTION is true if we are
940 // choosing an output section for an input section found in a input
941 // file.  ORDER is where this section should appear in the output
942 // sections.  IS_RELRO is true for a relro section.  This will return
943 // NULL if the input section should be discarded.  MATCH_INPUT_SPEC
944 // is true if the section name should be matched against input specs
945 // in a linker script.
946 
947 Output_section*
choose_output_section(const Relobj * relobj,const char * name,elfcpp::Elf_Word type,elfcpp::Elf_Xword flags,bool is_input_section,Output_section_order order,bool is_relro,bool is_reloc,bool match_input_spec)948 Layout::choose_output_section(const Relobj* relobj, const char* name,
949 			      elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
950 			      bool is_input_section, Output_section_order order,
951 			      bool is_relro, bool is_reloc,
952 			      bool match_input_spec)
953 {
954   // We should not see any input sections after we have attached
955   // sections to segments.
956   gold_assert(!is_input_section || !this->sections_are_attached_);
957 
958   flags = this->get_output_section_flags(flags);
959 
960   if (this->script_options_->saw_sections_clause() && !is_reloc)
961     {
962       // We are using a SECTIONS clause, so the output section is
963       // chosen based only on the name.
964 
965       Script_sections* ss = this->script_options_->script_sections();
966       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
967       Output_section** output_section_slot;
968       Script_sections::Section_type script_section_type;
969       const char* orig_name = name;
970       bool keep;
971       name = ss->output_section_name(file_name, name, &output_section_slot,
972 				     &script_section_type, &keep,
973 				     match_input_spec);
974 
975       if (name == NULL)
976 	{
977 	  gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
978 				     "because it is not allowed by the "
979 				     "SECTIONS clause of the linker script"),
980 		     orig_name);
981 	  // The SECTIONS clause says to discard this input section.
982 	  return NULL;
983 	}
984 
985       // We can only handle script section types ST_NONE and ST_NOLOAD.
986       switch (script_section_type)
987 	{
988 	case Script_sections::ST_NONE:
989 	  break;
990 	case Script_sections::ST_NOLOAD:
991 	  flags &= elfcpp::SHF_ALLOC;
992 	  break;
993 	default:
994 	  gold_unreachable();
995 	}
996 
997       // If this is an orphan section--one not mentioned in the linker
998       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
999       // default processing below.
1000 
1001       if (output_section_slot != NULL)
1002 	{
1003 	  if (*output_section_slot != NULL)
1004 	    {
1005 	      (*output_section_slot)->update_flags_for_input_section(flags);
1006 	      return *output_section_slot;
1007 	    }
1008 
1009 	  // We don't put sections found in the linker script into
1010 	  // SECTION_NAME_MAP_.  That keeps us from getting confused
1011 	  // if an orphan section is mapped to a section with the same
1012 	  // name as one in the linker script.
1013 
1014 	  name = this->namepool_.add(name, false, NULL);
1015 
1016 	  Output_section* os = this->make_output_section(name, type, flags,
1017 							 order, is_relro);
1018 
1019 	  os->set_found_in_sections_clause();
1020 
1021 	  // Special handling for NOLOAD sections.
1022 	  if (script_section_type == Script_sections::ST_NOLOAD)
1023 	    {
1024 	      os->set_is_noload();
1025 
1026 	      // The constructor of Output_section sets addresses of non-ALLOC
1027 	      // sections to 0 by default.  We don't want that for NOLOAD
1028 	      // sections even if they have no SHF_ALLOC flag.
1029 	      if ((os->flags() & elfcpp::SHF_ALLOC) == 0
1030 		  && os->is_address_valid())
1031 		{
1032 		  gold_assert(os->address() == 0
1033 			      && !os->is_offset_valid()
1034 			      && !os->is_data_size_valid());
1035 		  os->reset_address_and_file_offset();
1036 		}
1037 	    }
1038 
1039 	  *output_section_slot = os;
1040 	  return os;
1041 	}
1042     }
1043 
1044   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
1045 
1046   size_t len = strlen(name);
1047   std::string uncompressed_name;
1048 
1049   // Compressed debug sections should be mapped to the corresponding
1050   // uncompressed section.
1051   if (is_compressed_debug_section(name))
1052     {
1053       uncompressed_name =
1054 	  corresponding_uncompressed_section_name(std::string(name, len));
1055       name = uncompressed_name.c_str();
1056       len = uncompressed_name.length();
1057     }
1058 
1059   // Turn NAME from the name of the input section into the name of the
1060   // output section.
1061   if (is_input_section
1062       && !this->script_options_->saw_sections_clause()
1063       && !parameters->options().relocatable())
1064     {
1065       const char *orig_name = name;
1066       name = parameters->target().output_section_name(relobj, name, &len);
1067       if (name == NULL)
1068 	name = Layout::output_section_name(relobj, orig_name, &len);
1069     }
1070 
1071   Stringpool::Key name_key;
1072   name = this->namepool_.add_with_length(name, len, true, &name_key);
1073 
1074   // Find or make the output section.  The output section is selected
1075   // based on the section name, type, and flags.
1076   return this->get_output_section(name, name_key, type, flags, order, is_relro);
1077 }
1078 
1079 // For incremental links, record the initial fixed layout of a section
1080 // from the base file, and return a pointer to the Output_section.
1081 
1082 template<int size, bool big_endian>
1083 Output_section*
init_fixed_output_section(const char * name,elfcpp::Shdr<size,big_endian> & shdr)1084 Layout::init_fixed_output_section(const char* name,
1085 				  elfcpp::Shdr<size, big_endian>& shdr)
1086 {
1087   unsigned int sh_type = shdr.get_sh_type();
1088 
1089   // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
1090   // PRE_INIT_ARRAY, and NOTE sections.
1091   // All others will be created from scratch and reallocated.
1092   if (!can_incremental_update(sh_type))
1093     return NULL;
1094 
1095   // If we're generating a .gdb_index section, we need to regenerate
1096   // it from scratch.
1097   if (parameters->options().gdb_index()
1098       && sh_type == elfcpp::SHT_PROGBITS
1099       && strcmp(name, ".gdb_index") == 0)
1100     return NULL;
1101 
1102   typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
1103   typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
1104   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1105   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags =
1106       this->get_output_section_flags(shdr.get_sh_flags());
1107   typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
1108       shdr.get_sh_addralign();
1109 
1110   // Make the output section.
1111   Stringpool::Key name_key;
1112   name = this->namepool_.add(name, true, &name_key);
1113   Output_section* os = this->get_output_section(name, name_key, sh_type,
1114 						sh_flags, ORDER_INVALID, false);
1115   os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
1116   if (sh_type != elfcpp::SHT_NOBITS)
1117     this->free_list_.remove(sh_offset, sh_offset + sh_size);
1118   return os;
1119 }
1120 
1121 // Return the index by which an input section should be ordered.  This
1122 // is used to sort some .text sections, for compatibility with GNU ld.
1123 
1124 int
special_ordering_of_input_section(const char * name)1125 Layout::special_ordering_of_input_section(const char* name)
1126 {
1127   // The GNU linker has some special handling for some sections that
1128   // wind up in the .text section.  Sections that start with these
1129   // prefixes must appear first, and must appear in the order listed
1130   // here.
1131   static const char* const text_section_sort[] =
1132   {
1133     ".text.unlikely",
1134     ".text.exit",
1135     ".text.startup",
1136     ".text.hot",
1137     ".text.sorted"
1138   };
1139 
1140   for (size_t i = 0;
1141        i < sizeof(text_section_sort) / sizeof(text_section_sort[0]);
1142        i++)
1143     if (is_prefix_of(text_section_sort[i], name))
1144       return i;
1145 
1146   return -1;
1147 }
1148 
1149 // Return the output section to use for input section SHNDX, with name
1150 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
1151 // index of a relocation section which applies to this section, or 0
1152 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
1153 // relocation section if there is one.  Set *OFF to the offset of this
1154 // input section without the output section.  Return NULL if the
1155 // section should be discarded.  Set *OFF to -1 if the section
1156 // contents should not be written directly to the output file, but
1157 // will instead receive special handling.
1158 
1159 template<int size, bool big_endian>
1160 Output_section*
layout(Sized_relobj_file<size,big_endian> * object,unsigned int shndx,const char * name,const elfcpp::Shdr<size,big_endian> & shdr,unsigned int sh_type,unsigned int reloc_shndx,unsigned int,off_t * off)1161 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
1162 	       const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
1163 	       unsigned int sh_type, unsigned int reloc_shndx,
1164 	       unsigned int, off_t* off)
1165 {
1166   *off = 0;
1167 
1168   if (!this->include_section(object, name, shdr))
1169     return NULL;
1170 
1171   // In a relocatable link a grouped section must not be combined with
1172   // any other sections.
1173   Output_section* os;
1174   if (parameters->options().relocatable()
1175       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
1176     {
1177       // Some flags in the input section should not be automatically
1178       // copied to the output section.
1179       elfcpp::Elf_Xword sh_flags = (shdr.get_sh_flags()
1180 				    & ~ elfcpp::SHF_COMPRESSED);
1181       name = this->namepool_.add(name, true, NULL);
1182       os = this->make_output_section(name, sh_type, sh_flags, ORDER_INVALID,
1183 				     false);
1184     }
1185   else
1186     {
1187       // Get the section flags and mask out any flags that do not
1188       // take part in section matching.
1189       elfcpp::Elf_Xword sh_flags
1190 	  = (this->get_output_section_flags(shdr.get_sh_flags())
1191 	     & ~object->osabi().ignored_sh_flags());
1192 
1193       // All ".text.unlikely.*" sections can be moved to a unique
1194       // segment with --text-unlikely-segment option.
1195       bool text_unlikely_segment
1196 	  = (parameters->options().text_unlikely_segment()
1197 	     && is_prefix_of(".text.unlikely",
1198 			     object->section_name(shndx).c_str()));
1199       if (text_unlikely_segment)
1200 	{
1201 	  Stringpool::Key name_key;
1202 	  const char* os_name = this->namepool_.add(".text.unlikely", true,
1203 						    &name_key);
1204 	  os = this->get_output_section(os_name, name_key, sh_type, sh_flags,
1205 					ORDER_INVALID, false);
1206 	  // Map this output section to a unique segment.  This is done to
1207 	  // separate "text" that is not likely to be executed from "text"
1208 	  // that is likely executed.
1209 	  os->set_is_unique_segment();
1210 	}
1211       else
1212 	{
1213 	  // Plugins can choose to place one or more subsets of sections in
1214 	  // unique segments and this is done by mapping these section subsets
1215 	  // to unique output sections.  Check if this section needs to be
1216 	  // remapped to a unique output section.
1217 	  Section_segment_map::iterator it
1218 	    = this->section_segment_map_.find(Const_section_id(object, shndx));
1219 	  if (it == this->section_segment_map_.end())
1220 	    {
1221 	      os = this->choose_output_section(object, name, sh_type,
1222 					       sh_flags, true, ORDER_INVALID,
1223 					       false, false, true);
1224 	    }
1225 	  else
1226 	    {
1227 	      // We know the name of the output section, directly call
1228 	      // get_output_section here by-passing choose_output_section.
1229 	      const char* os_name = it->second->name;
1230 	      Stringpool::Key name_key;
1231 	      os_name = this->namepool_.add(os_name, true, &name_key);
1232 	      os = this->get_output_section(os_name, name_key, sh_type,
1233 					    sh_flags, ORDER_INVALID, false);
1234 	      if (!os->is_unique_segment())
1235 		{
1236 		  os->set_is_unique_segment();
1237 		  os->set_extra_segment_flags(it->second->flags);
1238 		  os->set_segment_alignment(it->second->align);
1239 		}
1240 	    }
1241 	  }
1242       if (os == NULL)
1243 	return NULL;
1244     }
1245 
1246   // By default the GNU linker sorts input sections whose names match
1247   // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*.  The
1248   // sections are sorted by name.  This is used to implement
1249   // constructor priority ordering.  We are compatible.  When we put
1250   // .ctor sections in .init_array and .dtor sections in .fini_array,
1251   // we must also sort plain .ctor and .dtor sections.
1252   if (!this->script_options_->saw_sections_clause()
1253       && !parameters->options().relocatable()
1254       && (is_prefix_of(".ctors.", name)
1255 	  || is_prefix_of(".dtors.", name)
1256 	  || is_prefix_of(".init_array.", name)
1257 	  || is_prefix_of(".fini_array.", name)
1258 	  || (parameters->options().ctors_in_init_array()
1259 	      && (strcmp(name, ".ctors") == 0
1260 		  || strcmp(name, ".dtors") == 0))))
1261     os->set_must_sort_attached_input_sections();
1262 
1263   // By default the GNU linker sorts some special text sections ahead
1264   // of others.  We are compatible.
1265   if (parameters->options().text_reorder()
1266       && !this->script_options_->saw_sections_clause()
1267       && !this->is_section_ordering_specified()
1268       && !parameters->options().relocatable()
1269       && Layout::special_ordering_of_input_section(name) >= 0)
1270     os->set_must_sort_attached_input_sections();
1271 
1272   // If this is a .ctors or .ctors.* section being mapped to a
1273   // .init_array section, or a .dtors or .dtors.* section being mapped
1274   // to a .fini_array section, we will need to reverse the words if
1275   // there is more than one.  Record this section for later.  See
1276   // ctors_sections_in_init_array above.
1277   if (!this->script_options_->saw_sections_clause()
1278       && !parameters->options().relocatable()
1279       && shdr.get_sh_size() > size / 8
1280       && (((strcmp(name, ".ctors") == 0
1281 	    || is_prefix_of(".ctors.", name))
1282 	   && strcmp(os->name(), ".init_array") == 0)
1283 	  || ((strcmp(name, ".dtors") == 0
1284 	       || is_prefix_of(".dtors.", name))
1285 	      && strcmp(os->name(), ".fini_array") == 0)))
1286     ctors_sections_in_init_array.insert(Section_id(object, shndx));
1287 
1288   // FIXME: Handle SHF_LINK_ORDER somewhere.
1289 
1290   elfcpp::Elf_Xword orig_flags = os->flags();
1291 
1292   *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1293 			       this->script_options_->saw_sections_clause());
1294 
1295   // If the flags changed, we may have to change the order.
1296   if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1297     {
1298       orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1299       elfcpp::Elf_Xword new_flags =
1300 	os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1301       if (orig_flags != new_flags)
1302 	os->set_order(this->default_section_order(os, false));
1303     }
1304 
1305   this->have_added_input_section_ = true;
1306 
1307   return os;
1308 }
1309 
1310 // Maps section SECN to SEGMENT s.
1311 void
insert_section_segment_map(Const_section_id secn,Unique_segment_info * s)1312 Layout::insert_section_segment_map(Const_section_id secn,
1313 				   Unique_segment_info *s)
1314 {
1315   gold_assert(this->unique_segment_for_sections_specified_);
1316   this->section_segment_map_[secn] = s;
1317 }
1318 
1319 // Handle a relocation section when doing a relocatable link.
1320 
1321 template<int size, bool big_endian>
1322 Output_section*
layout_reloc(Sized_relobj_file<size,big_endian> *,unsigned int,const elfcpp::Shdr<size,big_endian> & shdr,Output_section * data_section,Relocatable_relocs * rr)1323 Layout::layout_reloc(Sized_relobj_file<size, big_endian>*,
1324 		     unsigned int,
1325 		     const elfcpp::Shdr<size, big_endian>& shdr,
1326 		     Output_section* data_section,
1327 		     Relocatable_relocs* rr)
1328 {
1329   gold_assert(parameters->options().relocatable()
1330 	      || parameters->options().emit_relocs());
1331 
1332   int sh_type = shdr.get_sh_type();
1333 
1334   std::string name;
1335   if (sh_type == elfcpp::SHT_REL)
1336     name = ".rel";
1337   else if (sh_type == elfcpp::SHT_RELA)
1338     name = ".rela";
1339   else
1340     gold_unreachable();
1341   name += data_section->name();
1342 
1343   // If the output data section already has a reloc section, use that;
1344   // otherwise, make a new one.
1345   Output_section* os = data_section->reloc_section();
1346   if (os == NULL)
1347     {
1348       const char* n = this->namepool_.add(name.c_str(), true, NULL);
1349       os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1350 				     ORDER_INVALID, false);
1351       os->set_should_link_to_symtab();
1352       os->set_info_section(data_section);
1353       data_section->set_reloc_section(os);
1354     }
1355 
1356   Output_section_data* posd;
1357   if (sh_type == elfcpp::SHT_REL)
1358     {
1359       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1360       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1361 					   size,
1362 					   big_endian>(rr);
1363     }
1364   else if (sh_type == elfcpp::SHT_RELA)
1365     {
1366       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1367       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1368 					   size,
1369 					   big_endian>(rr);
1370     }
1371   else
1372     gold_unreachable();
1373 
1374   os->add_output_section_data(posd);
1375   rr->set_output_data(posd);
1376 
1377   return os;
1378 }
1379 
1380 // Handle a group section when doing a relocatable link.
1381 
1382 template<int size, bool big_endian>
1383 void
layout_group(Symbol_table * symtab,Sized_relobj_file<size,big_endian> * object,unsigned int,const char * group_section_name,const char * signature,const elfcpp::Shdr<size,big_endian> & shdr,elfcpp::Elf_Word flags,std::vector<unsigned int> * shndxes)1384 Layout::layout_group(Symbol_table* symtab,
1385 		     Sized_relobj_file<size, big_endian>* object,
1386 		     unsigned int,
1387 		     const char* group_section_name,
1388 		     const char* signature,
1389 		     const elfcpp::Shdr<size, big_endian>& shdr,
1390 		     elfcpp::Elf_Word flags,
1391 		     std::vector<unsigned int>* shndxes)
1392 {
1393   gold_assert(parameters->options().relocatable());
1394   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1395   group_section_name = this->namepool_.add(group_section_name, true, NULL);
1396   Output_section* os = this->make_output_section(group_section_name,
1397 						 elfcpp::SHT_GROUP,
1398 						 shdr.get_sh_flags(),
1399 						 ORDER_INVALID, false);
1400 
1401   // We need to find a symbol with the signature in the symbol table.
1402   // If we don't find one now, we need to look again later.
1403   Symbol* sym = symtab->lookup(signature, NULL);
1404   if (sym != NULL)
1405     os->set_info_symndx(sym);
1406   else
1407     {
1408       // Reserve some space to minimize reallocations.
1409       if (this->group_signatures_.empty())
1410 	this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1411 
1412       // We will wind up using a symbol whose name is the signature.
1413       // So just put the signature in the symbol name pool to save it.
1414       signature = symtab->canonicalize_name(signature);
1415       this->group_signatures_.push_back(Group_signature(os, signature));
1416     }
1417 
1418   os->set_should_link_to_symtab();
1419   os->set_entsize(4);
1420 
1421   section_size_type entry_count =
1422     convert_to_section_size_type(shdr.get_sh_size() / 4);
1423   Output_section_data* posd =
1424     new Output_data_group<size, big_endian>(object, entry_count, flags,
1425 					    shndxes);
1426   os->add_output_section_data(posd);
1427 }
1428 
1429 // Special GNU handling of sections name .eh_frame.  They will
1430 // normally hold exception frame data as defined by the C++ ABI
1431 // (http://codesourcery.com/cxx-abi/).
1432 
1433 template<int size, bool big_endian>
1434 Output_section*
layout_eh_frame(Sized_relobj_file<size,big_endian> * object,const unsigned char * symbols,off_t symbols_size,const unsigned char * symbol_names,off_t symbol_names_size,unsigned int shndx,const elfcpp::Shdr<size,big_endian> & shdr,unsigned int reloc_shndx,unsigned int reloc_type,off_t * off)1435 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1436 			const unsigned char* symbols,
1437 			off_t symbols_size,
1438 			const unsigned char* symbol_names,
1439 			off_t symbol_names_size,
1440 			unsigned int shndx,
1441 			const elfcpp::Shdr<size, big_endian>& shdr,
1442 			unsigned int reloc_shndx, unsigned int reloc_type,
1443 			off_t* off)
1444 {
1445   const unsigned int unwind_section_type =
1446       parameters->target().unwind_section_type();
1447 
1448   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1449 	      || shdr.get_sh_type() == unwind_section_type);
1450   gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1451 
1452   Output_section* os = this->make_eh_frame_section(object);
1453   if (os == NULL)
1454     return NULL;
1455 
1456   gold_assert(this->eh_frame_section_ == os);
1457 
1458   elfcpp::Elf_Xword orig_flags = os->flags();
1459 
1460   Eh_frame::Eh_frame_section_disposition disp =
1461       Eh_frame::EH_UNRECOGNIZED_SECTION;
1462   if (!parameters->incremental())
1463     {
1464       disp = this->eh_frame_data_->add_ehframe_input_section(object,
1465 							     symbols,
1466 							     symbols_size,
1467 							     symbol_names,
1468 							     symbol_names_size,
1469 							     shndx,
1470 							     reloc_shndx,
1471 							     reloc_type);
1472     }
1473 
1474   if (disp == Eh_frame::EH_OPTIMIZABLE_SECTION)
1475     {
1476       os->update_flags_for_input_section(shdr.get_sh_flags());
1477 
1478       // A writable .eh_frame section is a RELRO section.
1479       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1480 	  != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1481 	{
1482 	  os->set_is_relro();
1483 	  os->set_order(ORDER_RELRO);
1484 	}
1485 
1486       *off = -1;
1487       return os;
1488     }
1489 
1490   if (disp == Eh_frame::EH_END_MARKER_SECTION && !this->added_eh_frame_data_)
1491     {
1492       // We found the end marker section, so now we can add the set of
1493       // optimized sections to the output section.  We need to postpone
1494       // adding this until we've found a section we can optimize so that
1495       // the .eh_frame section in crtbeginT.o winds up at the start of
1496       // the output section.
1497       os->add_output_section_data(this->eh_frame_data_);
1498       this->added_eh_frame_data_ = true;
1499      }
1500 
1501   // We couldn't handle this .eh_frame section for some reason.
1502   // Add it as a normal section.
1503   bool saw_sections_clause = this->script_options_->saw_sections_clause();
1504   *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1505 			       reloc_shndx, saw_sections_clause);
1506   this->have_added_input_section_ = true;
1507 
1508   if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1509       != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1510     os->set_order(this->default_section_order(os, false));
1511 
1512   return os;
1513 }
1514 
1515 void
finalize_eh_frame_section()1516 Layout::finalize_eh_frame_section()
1517 {
1518   // If we never found an end marker section, we need to add the
1519   // optimized eh sections to the output section now.
1520   if (!parameters->incremental()
1521       && this->eh_frame_section_ != NULL
1522       && !this->added_eh_frame_data_)
1523     {
1524       this->eh_frame_section_->add_output_section_data(this->eh_frame_data_);
1525       this->added_eh_frame_data_ = true;
1526     }
1527 }
1528 
1529 // Create and return the magic .eh_frame section.  Create
1530 // .eh_frame_hdr also if appropriate.  OBJECT is the object with the
1531 // input .eh_frame section; it may be NULL.
1532 
1533 Output_section*
make_eh_frame_section(const Relobj * object)1534 Layout::make_eh_frame_section(const Relobj* object)
1535 {
1536   const unsigned int unwind_section_type =
1537       parameters->target().unwind_section_type();
1538 
1539   Output_section* os = this->choose_output_section(object, ".eh_frame",
1540 						   unwind_section_type,
1541 						   elfcpp::SHF_ALLOC, false,
1542 						   ORDER_EHFRAME, false, false,
1543 						   false);
1544   if (os == NULL)
1545     return NULL;
1546 
1547   if (this->eh_frame_section_ == NULL)
1548     {
1549       this->eh_frame_section_ = os;
1550       this->eh_frame_data_ = new Eh_frame();
1551 
1552       // For incremental linking, we do not optimize .eh_frame sections
1553       // or create a .eh_frame_hdr section.
1554       if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1555 	{
1556 	  Output_section* hdr_os =
1557 	    this->choose_output_section(NULL, ".eh_frame_hdr",
1558 					unwind_section_type,
1559 					elfcpp::SHF_ALLOC, false,
1560 					ORDER_EHFRAME, false, false,
1561 					false);
1562 
1563 	  if (hdr_os != NULL)
1564 	    {
1565 	      Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1566 							this->eh_frame_data_);
1567 	      hdr_os->add_output_section_data(hdr_posd);
1568 
1569 	      hdr_os->set_after_input_sections();
1570 
1571 	      if (!this->script_options_->saw_phdrs_clause())
1572 		{
1573 		  Output_segment* hdr_oseg;
1574 		  hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1575 						       elfcpp::PF_R);
1576 		  hdr_oseg->add_output_section_to_nonload(hdr_os,
1577 							  elfcpp::PF_R);
1578 		}
1579 
1580 	      this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1581 	    }
1582 	}
1583     }
1584 
1585   return os;
1586 }
1587 
1588 // Add an exception frame for a PLT.  This is called from target code.
1589 
1590 void
add_eh_frame_for_plt(Output_data * plt,const unsigned char * cie_data,size_t cie_length,const unsigned char * fde_data,size_t fde_length)1591 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1592 			     size_t cie_length, const unsigned char* fde_data,
1593 			     size_t fde_length)
1594 {
1595   if (parameters->incremental())
1596     {
1597       // FIXME: Maybe this could work some day....
1598       return;
1599     }
1600   Output_section* os = this->make_eh_frame_section(NULL);
1601   if (os == NULL)
1602     return;
1603   this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1604 					    fde_data, fde_length);
1605   if (!this->added_eh_frame_data_)
1606     {
1607       os->add_output_section_data(this->eh_frame_data_);
1608       this->added_eh_frame_data_ = true;
1609     }
1610 }
1611 
1612 // Remove all post-map .eh_frame information for a PLT.
1613 
1614 void
remove_eh_frame_for_plt(Output_data * plt,const unsigned char * cie_data,size_t cie_length)1615 Layout::remove_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1616 				size_t cie_length)
1617 {
1618   if (parameters->incremental())
1619     {
1620       // FIXME: Maybe this could work some day....
1621       return;
1622     }
1623   this->eh_frame_data_->remove_ehframe_for_plt(plt, cie_data, cie_length);
1624 }
1625 
1626 // Scan a .debug_info or .debug_types section, and add summary
1627 // information to the .gdb_index section.
1628 
1629 template<int size, bool big_endian>
1630 void
add_to_gdb_index(bool is_type_unit,Sized_relobj<size,big_endian> * object,const unsigned char * symbols,off_t symbols_size,unsigned int shndx,unsigned int reloc_shndx,unsigned int reloc_type)1631 Layout::add_to_gdb_index(bool is_type_unit,
1632 			 Sized_relobj<size, big_endian>* object,
1633 			 const unsigned char* symbols,
1634 			 off_t symbols_size,
1635 			 unsigned int shndx,
1636 			 unsigned int reloc_shndx,
1637 			 unsigned int reloc_type)
1638 {
1639   if (this->gdb_index_data_ == NULL)
1640     {
1641       Output_section* os = this->choose_output_section(NULL, ".gdb_index",
1642 						       elfcpp::SHT_PROGBITS, 0,
1643 						       false, ORDER_INVALID,
1644 						       false, false, false);
1645       if (os == NULL)
1646 	return;
1647 
1648       this->gdb_index_data_ = new Gdb_index(os);
1649       os->add_output_section_data(this->gdb_index_data_);
1650       os->set_after_input_sections();
1651     }
1652 
1653   this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
1654 					 symbols_size, shndx, reloc_shndx,
1655 					 reloc_type);
1656 }
1657 
1658 // Add POSD to an output section using NAME, TYPE, and FLAGS.  Return
1659 // the output section.
1660 
1661 Output_section*
add_output_section_data(const char * name,elfcpp::Elf_Word type,elfcpp::Elf_Xword flags,Output_section_data * posd,Output_section_order order,bool is_relro)1662 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1663 				elfcpp::Elf_Xword flags,
1664 				Output_section_data* posd,
1665 				Output_section_order order, bool is_relro)
1666 {
1667   Output_section* os = this->choose_output_section(NULL, name, type, flags,
1668 						   false, order, is_relro,
1669 						   false, false);
1670   if (os != NULL)
1671     os->add_output_section_data(posd);
1672   return os;
1673 }
1674 
1675 // Map section flags to segment flags.
1676 
1677 elfcpp::Elf_Word
section_flags_to_segment(elfcpp::Elf_Xword flags)1678 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1679 {
1680   elfcpp::Elf_Word ret = elfcpp::PF_R;
1681   if ((flags & elfcpp::SHF_WRITE) != 0)
1682     ret |= elfcpp::PF_W;
1683   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1684     ret |= elfcpp::PF_X;
1685   return ret;
1686 }
1687 
1688 // Make a new Output_section, and attach it to segments as
1689 // appropriate.  ORDER is the order in which this section should
1690 // appear in the output segment.  IS_RELRO is true if this is a relro
1691 // (read-only after relocations) section.
1692 
1693 Output_section*
make_output_section(const char * name,elfcpp::Elf_Word type,elfcpp::Elf_Xword flags,Output_section_order order,bool is_relro)1694 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1695 			    elfcpp::Elf_Xword flags,
1696 			    Output_section_order order, bool is_relro)
1697 {
1698   Output_section* os;
1699   if ((flags & elfcpp::SHF_ALLOC) == 0
1700       && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1701       && is_compressible_debug_section(name))
1702     os = new Output_compressed_section(&parameters->options(), name, type,
1703 				       flags);
1704   else if ((flags & elfcpp::SHF_ALLOC) == 0
1705 	   && parameters->options().strip_debug_non_line()
1706 	   && strcmp(".debug_abbrev", name) == 0)
1707     {
1708       os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1709 	  name, type, flags);
1710       if (this->debug_info_)
1711 	this->debug_info_->set_abbreviations(this->debug_abbrev_);
1712     }
1713   else if ((flags & elfcpp::SHF_ALLOC) == 0
1714 	   && parameters->options().strip_debug_non_line()
1715 	   && strcmp(".debug_info", name) == 0)
1716     {
1717       os = this->debug_info_ = new Output_reduced_debug_info_section(
1718 	  name, type, flags);
1719       if (this->debug_abbrev_)
1720 	this->debug_info_->set_abbreviations(this->debug_abbrev_);
1721     }
1722   else
1723     {
1724       // Sometimes .init_array*, .preinit_array* and .fini_array* do
1725       // not have correct section types.  Force them here.
1726       if (type == elfcpp::SHT_PROGBITS)
1727 	{
1728 	  if (is_prefix_of(".init_array", name))
1729 	    type = elfcpp::SHT_INIT_ARRAY;
1730 	  else if (is_prefix_of(".preinit_array", name))
1731 	    type = elfcpp::SHT_PREINIT_ARRAY;
1732 	  else if (is_prefix_of(".fini_array", name))
1733 	    type = elfcpp::SHT_FINI_ARRAY;
1734 	}
1735 
1736       // FIXME: const_cast is ugly.
1737       Target* target = const_cast<Target*>(&parameters->target());
1738       os = target->make_output_section(name, type, flags);
1739     }
1740 
1741   // With -z relro, we have to recognize the special sections by name.
1742   // There is no other way.
1743   bool is_relro_local = false;
1744   if (!this->script_options_->saw_sections_clause()
1745       && parameters->options().relro()
1746       && (flags & elfcpp::SHF_ALLOC) != 0
1747       && (flags & elfcpp::SHF_WRITE) != 0)
1748     {
1749       if (type == elfcpp::SHT_PROGBITS)
1750 	{
1751 	  if ((flags & elfcpp::SHF_TLS) != 0)
1752 	    is_relro = true;
1753 	  else if (strcmp(name, ".data.rel.ro") == 0)
1754 	    is_relro = true;
1755 	  else if (strcmp(name, ".data.rel.ro.local") == 0)
1756 	    {
1757 	      is_relro = true;
1758 	      is_relro_local = true;
1759 	    }
1760 	  else if (strcmp(name, ".ctors") == 0
1761 		   || strcmp(name, ".dtors") == 0
1762 		   || strcmp(name, ".jcr") == 0)
1763 	    is_relro = true;
1764 	}
1765       else if (type == elfcpp::SHT_INIT_ARRAY
1766 	       || type == elfcpp::SHT_FINI_ARRAY
1767 	       || type == elfcpp::SHT_PREINIT_ARRAY)
1768 	is_relro = true;
1769     }
1770 
1771   if (is_relro)
1772     os->set_is_relro();
1773 
1774   if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1775     order = this->default_section_order(os, is_relro_local);
1776 
1777   os->set_order(order);
1778 
1779   parameters->target().new_output_section(os);
1780 
1781   this->section_list_.push_back(os);
1782 
1783   // The GNU linker by default sorts some sections by priority, so we
1784   // do the same.  We need to know that this might happen before we
1785   // attach any input sections.
1786   if (!this->script_options_->saw_sections_clause()
1787       && !parameters->options().relocatable()
1788       && (strcmp(name, ".init_array") == 0
1789 	  || strcmp(name, ".fini_array") == 0
1790 	  || (!parameters->options().ctors_in_init_array()
1791 	      && (strcmp(name, ".ctors") == 0
1792 		  || strcmp(name, ".dtors") == 0))))
1793     os->set_may_sort_attached_input_sections();
1794 
1795   // The GNU linker by default sorts .text.{unlikely,exit,startup,hot}
1796   // sections before other .text sections.  We are compatible.  We
1797   // need to know that this might happen before we attach any input
1798   // sections.
1799   if (parameters->options().text_reorder()
1800       && !this->script_options_->saw_sections_clause()
1801       && !this->is_section_ordering_specified()
1802       && !parameters->options().relocatable()
1803       && strcmp(name, ".text") == 0)
1804     os->set_may_sort_attached_input_sections();
1805 
1806   // GNU linker sorts section by name with --sort-section=name.
1807   if (strcmp(parameters->options().sort_section(), "name") == 0)
1808       os->set_must_sort_attached_input_sections();
1809 
1810   // Check for .stab*str sections, as .stab* sections need to link to
1811   // them.
1812   if (type == elfcpp::SHT_STRTAB
1813       && !this->have_stabstr_section_
1814       && strncmp(name, ".stab", 5) == 0
1815       && strcmp(name + strlen(name) - 3, "str") == 0)
1816     this->have_stabstr_section_ = true;
1817 
1818   // During a full incremental link, we add patch space to most
1819   // PROGBITS and NOBITS sections.  Flag those that may be
1820   // arbitrarily padded.
1821   if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1822       && order != ORDER_INTERP
1823       && order != ORDER_INIT
1824       && order != ORDER_PLT
1825       && order != ORDER_FINI
1826       && order != ORDER_RELRO_LAST
1827       && order != ORDER_NON_RELRO_FIRST
1828       && strcmp(name, ".eh_frame") != 0
1829       && strcmp(name, ".ctors") != 0
1830       && strcmp(name, ".dtors") != 0
1831       && strcmp(name, ".jcr") != 0)
1832     {
1833       os->set_is_patch_space_allowed();
1834 
1835       // Certain sections require "holes" to be filled with
1836       // specific fill patterns.  These fill patterns may have
1837       // a minimum size, so we must prevent allocations from the
1838       // free list that leave a hole smaller than the minimum.
1839       if (strcmp(name, ".debug_info") == 0)
1840 	os->set_free_space_fill(new Output_fill_debug_info(false));
1841       else if (strcmp(name, ".debug_types") == 0)
1842 	os->set_free_space_fill(new Output_fill_debug_info(true));
1843       else if (strcmp(name, ".debug_line") == 0)
1844 	os->set_free_space_fill(new Output_fill_debug_line());
1845     }
1846 
1847   // If we have already attached the sections to segments, then we
1848   // need to attach this one now.  This happens for sections created
1849   // directly by the linker.
1850   if (this->sections_are_attached_)
1851     this->attach_section_to_segment(&parameters->target(), os);
1852 
1853   return os;
1854 }
1855 
1856 // Return the default order in which a section should be placed in an
1857 // output segment.  This function captures a lot of the ideas in
1858 // ld/scripttempl/elf.sc in the GNU linker.  Note that the order of a
1859 // linker created section is normally set when the section is created;
1860 // this function is used for input sections.
1861 
1862 Output_section_order
default_section_order(Output_section * os,bool is_relro_local)1863 Layout::default_section_order(Output_section* os, bool is_relro_local)
1864 {
1865   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1866   bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1867   bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1868   bool is_bss = false;
1869 
1870   switch (os->type())
1871     {
1872     default:
1873     case elfcpp::SHT_PROGBITS:
1874       break;
1875     case elfcpp::SHT_NOBITS:
1876       is_bss = true;
1877       break;
1878     case elfcpp::SHT_RELA:
1879     case elfcpp::SHT_REL:
1880       if (!is_write)
1881 	return ORDER_DYNAMIC_RELOCS;
1882       break;
1883     case elfcpp::SHT_HASH:
1884     case elfcpp::SHT_DYNAMIC:
1885     case elfcpp::SHT_SHLIB:
1886     case elfcpp::SHT_DYNSYM:
1887     case elfcpp::SHT_GNU_HASH:
1888     case elfcpp::SHT_GNU_verdef:
1889     case elfcpp::SHT_GNU_verneed:
1890     case elfcpp::SHT_GNU_versym:
1891       if (!is_write)
1892 	return ORDER_DYNAMIC_LINKER;
1893       break;
1894     case elfcpp::SHT_NOTE:
1895       return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1896     }
1897 
1898   if ((os->flags() & elfcpp::SHF_TLS) != 0)
1899     return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1900 
1901   if (!is_bss && !is_write)
1902     {
1903       if (is_execinstr)
1904 	{
1905 	  if (strcmp(os->name(), ".init") == 0)
1906 	    return ORDER_INIT;
1907 	  else if (strcmp(os->name(), ".fini") == 0)
1908 	    return ORDER_FINI;
1909 	  else if (parameters->options().keep_text_section_prefix())
1910 	    {
1911 	      // -z,keep-text-section-prefix introduces additional
1912 	      // output sections.
1913 	      if (strcmp(os->name(), ".text.hot") == 0)
1914 		return ORDER_TEXT_HOT;
1915 	      else if (strcmp(os->name(), ".text.startup") == 0)
1916 		return ORDER_TEXT_STARTUP;
1917 	      else if (strcmp(os->name(), ".text.exit") == 0)
1918 		return ORDER_TEXT_EXIT;
1919 	      else if (strcmp(os->name(), ".text.unlikely") == 0)
1920 		return ORDER_TEXT_UNLIKELY;
1921 	    }
1922 	}
1923       return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1924     }
1925 
1926   if (os->is_relro())
1927     return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1928 
1929   if (os->is_small_section())
1930     return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1931   if (os->is_large_section())
1932     return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1933 
1934   return is_bss ? ORDER_BSS : ORDER_DATA;
1935 }
1936 
1937 // Attach output sections to segments.  This is called after we have
1938 // seen all the input sections.
1939 
1940 void
attach_sections_to_segments(const Target * target)1941 Layout::attach_sections_to_segments(const Target* target)
1942 {
1943   for (Section_list::iterator p = this->section_list_.begin();
1944        p != this->section_list_.end();
1945        ++p)
1946     this->attach_section_to_segment(target, *p);
1947 
1948   this->sections_are_attached_ = true;
1949 }
1950 
1951 // Attach an output section to a segment.
1952 
1953 void
attach_section_to_segment(const Target * target,Output_section * os)1954 Layout::attach_section_to_segment(const Target* target, Output_section* os)
1955 {
1956   if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1957     this->unattached_section_list_.push_back(os);
1958   else
1959     this->attach_allocated_section_to_segment(target, os);
1960 }
1961 
1962 // Attach an allocated output section to a segment.
1963 
1964 void
attach_allocated_section_to_segment(const Target * target,Output_section * os)1965 Layout::attach_allocated_section_to_segment(const Target* target,
1966 					    Output_section* os)
1967 {
1968   elfcpp::Elf_Xword flags = os->flags();
1969   gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1970 
1971   if (parameters->options().relocatable())
1972     return;
1973 
1974   // If we have a SECTIONS clause, we can't handle the attachment to
1975   // segments until after we've seen all the sections.
1976   if (this->script_options_->saw_sections_clause())
1977     return;
1978 
1979   gold_assert(!this->script_options_->saw_phdrs_clause());
1980 
1981   // This output section goes into a PT_LOAD segment.
1982 
1983   elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1984 
1985   // If this output section's segment has extra flags that need to be set,
1986   // coming from a linker plugin, do that.
1987   seg_flags |= os->extra_segment_flags();
1988 
1989   // Check for --section-start.
1990   uint64_t addr;
1991   bool is_address_set = parameters->options().section_start(os->name(), &addr);
1992 
1993   // In general the only thing we really care about for PT_LOAD
1994   // segments is whether or not they are writable or executable,
1995   // so that is how we search for them.
1996   // Large data sections also go into their own PT_LOAD segment.
1997   // People who need segments sorted on some other basis will
1998   // have to use a linker script.
1999 
2000   Segment_list::const_iterator p;
2001   if (!os->is_unique_segment())
2002     {
2003       for (p = this->segment_list_.begin();
2004 	   p != this->segment_list_.end();
2005 	   ++p)
2006 	{
2007 	  if ((*p)->type() != elfcpp::PT_LOAD)
2008 	    continue;
2009 	  if ((*p)->is_unique_segment())
2010 	    continue;
2011 	  if (!parameters->options().omagic()
2012 	      && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
2013 	    continue;
2014 	  if ((target->isolate_execinstr() || parameters->options().rosegment())
2015 	      && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
2016 	    continue;
2017 	  // If -Tbss was specified, we need to separate the data and BSS
2018 	  // segments.
2019 	  if (parameters->options().user_set_Tbss())
2020 	    {
2021 	      if ((os->type() == elfcpp::SHT_NOBITS)
2022 		  == (*p)->has_any_data_sections())
2023 		continue;
2024 	    }
2025 	  if (os->is_large_data_section() && !(*p)->is_large_data_segment())
2026 	    continue;
2027 
2028 	  if (is_address_set)
2029 	    {
2030 	      if ((*p)->are_addresses_set())
2031 		continue;
2032 
2033 	      (*p)->add_initial_output_data(os);
2034 	      (*p)->update_flags_for_output_section(seg_flags);
2035 	      (*p)->set_addresses(addr, addr);
2036 	      break;
2037 	    }
2038 
2039 	  (*p)->add_output_section_to_load(this, os, seg_flags);
2040 	  break;
2041 	}
2042     }
2043 
2044   if (p == this->segment_list_.end()
2045       || os->is_unique_segment())
2046     {
2047       Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
2048 						       seg_flags);
2049       if (os->is_large_data_section())
2050 	oseg->set_is_large_data_segment();
2051       oseg->add_output_section_to_load(this, os, seg_flags);
2052       if (is_address_set)
2053 	oseg->set_addresses(addr, addr);
2054       // Check if segment should be marked unique.  For segments marked
2055       // unique by linker plugins, set the new alignment if specified.
2056       if (os->is_unique_segment())
2057 	{
2058 	  oseg->set_is_unique_segment();
2059 	  if (os->segment_alignment() != 0)
2060 	    oseg->set_minimum_p_align(os->segment_alignment());
2061 	}
2062     }
2063 
2064   // If we see a loadable SHT_NOTE section, we create a PT_NOTE
2065   // segment.
2066   if (os->type() == elfcpp::SHT_NOTE)
2067     {
2068       uint64_t os_align = os->addralign();
2069 
2070       // See if we already have an equivalent PT_NOTE segment.
2071       for (p = this->segment_list_.begin();
2072 	   p != segment_list_.end();
2073 	   ++p)
2074 	{
2075 	  if ((*p)->type() == elfcpp::PT_NOTE
2076 	      && (*p)->align() == os_align
2077 	      && (((*p)->flags() & elfcpp::PF_W)
2078 		  == (seg_flags & elfcpp::PF_W)))
2079 	    {
2080 	      (*p)->add_output_section_to_nonload(os, seg_flags);
2081 	      break;
2082 	    }
2083 	}
2084 
2085       if (p == this->segment_list_.end())
2086 	{
2087 	  Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
2088 							   seg_flags);
2089 	  oseg->add_output_section_to_nonload(os, seg_flags);
2090 	  oseg->set_align(os_align);
2091 	}
2092     }
2093 
2094   // If we see a loadable SHF_TLS section, we create a PT_TLS
2095   // segment.  There can only be one such segment.
2096   if ((flags & elfcpp::SHF_TLS) != 0)
2097     {
2098       if (this->tls_segment_ == NULL)
2099 	this->make_output_segment(elfcpp::PT_TLS, seg_flags);
2100       this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
2101     }
2102 
2103   // If -z relro is in effect, and we see a relro section, we create a
2104   // PT_GNU_RELRO segment.  There can only be one such segment.
2105   if (os->is_relro() && parameters->options().relro())
2106     {
2107       gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
2108       if (this->relro_segment_ == NULL)
2109 	this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
2110       this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
2111     }
2112 
2113   // If we see a section named .interp, put it into a PT_INTERP
2114   // segment.  This seems broken to me, but this is what GNU ld does,
2115   // and glibc expects it.
2116   if (strcmp(os->name(), ".interp") == 0
2117       && !this->script_options_->saw_phdrs_clause())
2118     {
2119       if (this->interp_segment_ == NULL)
2120 	this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
2121       else
2122 	gold_warning(_("multiple '.interp' sections in input files "
2123 		       "may cause confusing PT_INTERP segment"));
2124       this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
2125     }
2126 }
2127 
2128 // Make an output section for a script.
2129 
2130 Output_section*
make_output_section_for_script(const char * name,Script_sections::Section_type section_type)2131 Layout::make_output_section_for_script(
2132     const char* name,
2133     Script_sections::Section_type section_type)
2134 {
2135   name = this->namepool_.add(name, false, NULL);
2136   elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
2137   if (section_type == Script_sections::ST_NOLOAD)
2138     sh_flags = 0;
2139   Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
2140 						 sh_flags, ORDER_INVALID,
2141 						 false);
2142   os->set_found_in_sections_clause();
2143   if (section_type == Script_sections::ST_NOLOAD)
2144     os->set_is_noload();
2145   return os;
2146 }
2147 
2148 // Return the number of segments we expect to see.
2149 
2150 size_t
expected_segment_count() const2151 Layout::expected_segment_count() const
2152 {
2153   size_t ret = this->segment_list_.size();
2154 
2155   // If we didn't see a SECTIONS clause in a linker script, we should
2156   // already have the complete list of segments.  Otherwise we ask the
2157   // SECTIONS clause how many segments it expects, and add in the ones
2158   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
2159 
2160   if (!this->script_options_->saw_sections_clause())
2161     return ret;
2162   else
2163     {
2164       const Script_sections* ss = this->script_options_->script_sections();
2165       return ret + ss->expected_segment_count(this);
2166     }
2167 }
2168 
2169 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
2170 // is whether we saw a .note.GNU-stack section in the object file.
2171 // GNU_STACK_FLAGS is the section flags.  The flags give the
2172 // protection required for stack memory.  We record this in an
2173 // executable as a PT_GNU_STACK segment.  If an object file does not
2174 // have a .note.GNU-stack segment, we must assume that it is an old
2175 // object.  On some targets that will force an executable stack.
2176 
2177 void
layout_gnu_stack(bool seen_gnu_stack,uint64_t gnu_stack_flags,const Object * obj)2178 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
2179 			 const Object* obj)
2180 {
2181   if (!seen_gnu_stack)
2182     {
2183       this->input_without_gnu_stack_note_ = true;
2184       if (parameters->options().warn_execstack()
2185 	  && parameters->target().is_default_stack_executable())
2186 	gold_warning(_("%s: missing .note.GNU-stack section"
2187 		       " implies executable stack"),
2188 		     obj->name().c_str());
2189     }
2190   else
2191     {
2192       this->input_with_gnu_stack_note_ = true;
2193       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
2194 	{
2195 	  this->input_requires_executable_stack_ = true;
2196 	  if (parameters->options().warn_execstack())
2197 	    gold_warning(_("%s: requires executable stack"),
2198 			 obj->name().c_str());
2199 	}
2200     }
2201 }
2202 
2203 // Read a value with given size and endianness.
2204 
2205 static inline uint64_t
read_sized_value(size_t size,const unsigned char * buf,bool is_big_endian,const Object * object)2206 read_sized_value(size_t size, const unsigned char* buf, bool is_big_endian,
2207 		 const Object* object)
2208 {
2209   uint64_t val = 0;
2210   if (size == 4)
2211     {
2212       if (is_big_endian)
2213 	val = elfcpp::Swap<32, true>::readval(buf);
2214       else
2215 	val = elfcpp::Swap<32, false>::readval(buf);
2216     }
2217   else if (size == 8)
2218     {
2219       if (is_big_endian)
2220 	val = elfcpp::Swap<64, true>::readval(buf);
2221       else
2222 	val = elfcpp::Swap<64, false>::readval(buf);
2223     }
2224   else
2225     {
2226       gold_warning(_("%s: in .note.gnu.property section, "
2227 		     "pr_datasz must be 4 or 8"),
2228 		   object->name().c_str());
2229     }
2230   return val;
2231 }
2232 
2233 // Write a value with given size and endianness.
2234 
2235 static inline void
write_sized_value(uint64_t value,size_t size,unsigned char * buf,bool is_big_endian)2236 write_sized_value(uint64_t value, size_t size, unsigned char* buf,
2237 		  bool is_big_endian)
2238 {
2239   if (size == 4)
2240     {
2241       if (is_big_endian)
2242 	elfcpp::Swap<32, true>::writeval(buf, static_cast<uint32_t>(value));
2243       else
2244 	elfcpp::Swap<32, false>::writeval(buf, static_cast<uint32_t>(value));
2245     }
2246   else if (size == 8)
2247     {
2248       if (is_big_endian)
2249 	elfcpp::Swap<64, true>::writeval(buf, value);
2250       else
2251 	elfcpp::Swap<64, false>::writeval(buf, value);
2252     }
2253   else
2254     {
2255       // We will have already complained about this.
2256     }
2257 }
2258 
2259 // Handle the .note.gnu.property section at layout time.
2260 
2261 void
layout_gnu_property(unsigned int note_type,unsigned int pr_type,size_t pr_datasz,const unsigned char * pr_data,const Object * object)2262 Layout::layout_gnu_property(unsigned int note_type,
2263 			    unsigned int pr_type,
2264 			    size_t pr_datasz,
2265 			    const unsigned char* pr_data,
2266 			    const Object* object)
2267 {
2268   // We currently support only the one note type.
2269   gold_assert(note_type == elfcpp::NT_GNU_PROPERTY_TYPE_0);
2270 
2271   if (pr_type >= elfcpp::GNU_PROPERTY_LOPROC
2272       && pr_type < elfcpp::GNU_PROPERTY_HIPROC)
2273     {
2274       // Target-dependent property value; call the target to record.
2275       const int size = parameters->target().get_size();
2276       const bool is_big_endian = parameters->target().is_big_endian();
2277       if (size == 32)
2278 	{
2279 	  if (is_big_endian)
2280 	    {
2281 #ifdef HAVE_TARGET_32_BIG
2282 	      parameters->sized_target<32, true>()->
2283 		  record_gnu_property(note_type, pr_type, pr_datasz, pr_data,
2284 				      object);
2285 #else
2286 	      gold_unreachable();
2287 #endif
2288 	    }
2289 	  else
2290 	    {
2291 #ifdef HAVE_TARGET_32_LITTLE
2292 	      parameters->sized_target<32, false>()->
2293 		  record_gnu_property(note_type, pr_type, pr_datasz, pr_data,
2294 				      object);
2295 #else
2296 	      gold_unreachable();
2297 #endif
2298 	    }
2299 	}
2300       else if (size == 64)
2301 	{
2302 	  if (is_big_endian)
2303 	    {
2304 #ifdef HAVE_TARGET_64_BIG
2305 	      parameters->sized_target<64, true>()->
2306 		  record_gnu_property(note_type, pr_type, pr_datasz, pr_data,
2307 				      object);
2308 #else
2309 	      gold_unreachable();
2310 #endif
2311 	    }
2312 	  else
2313 	    {
2314 #ifdef HAVE_TARGET_64_LITTLE
2315 	      parameters->sized_target<64, false>()->
2316 		  record_gnu_property(note_type, pr_type, pr_datasz, pr_data,
2317 				      object);
2318 #else
2319 	      gold_unreachable();
2320 #endif
2321 	    }
2322 	}
2323       else
2324 	gold_unreachable();
2325       return;
2326     }
2327 
2328   Gnu_properties::iterator pprop = this->gnu_properties_.find(pr_type);
2329   if (pprop == this->gnu_properties_.end())
2330     {
2331       Gnu_property prop;
2332       prop.pr_datasz = pr_datasz;
2333       prop.pr_data = new unsigned char[pr_datasz];
2334       memcpy(prop.pr_data, pr_data, pr_datasz);
2335       this->gnu_properties_[pr_type] = prop;
2336     }
2337   else
2338     {
2339       const bool is_big_endian = parameters->target().is_big_endian();
2340       switch (pr_type)
2341 	{
2342 	case elfcpp::GNU_PROPERTY_STACK_SIZE:
2343 	  // Record the maximum value seen.
2344 	  {
2345 	    uint64_t val1 = read_sized_value(pprop->second.pr_datasz,
2346 					     pprop->second.pr_data,
2347 					     is_big_endian, object);
2348 	    uint64_t val2 = read_sized_value(pr_datasz, pr_data,
2349 					     is_big_endian, object);
2350 	    if (val2 > val1)
2351 	      write_sized_value(val2, pprop->second.pr_datasz,
2352 				pprop->second.pr_data, is_big_endian);
2353 	  }
2354 	  break;
2355 	case elfcpp::GNU_PROPERTY_NO_COPY_ON_PROTECTED:
2356 	  // No data to merge.
2357 	  break;
2358 	default:
2359 	  gold_warning(_("%s: unknown program property type %d "
2360 			 "in .note.gnu.property section"),
2361 		       object->name().c_str(), pr_type);
2362 	}
2363     }
2364 }
2365 
2366 // Merge per-object properties with program properties.
2367 // This lets the target identify objects that are missing certain
2368 // properties, in cases where properties must be ANDed together.
2369 
2370 void
merge_gnu_properties(const Object * object)2371 Layout::merge_gnu_properties(const Object* object)
2372 {
2373   const int size = parameters->target().get_size();
2374   const bool is_big_endian = parameters->target().is_big_endian();
2375   if (size == 32)
2376     {
2377       if (is_big_endian)
2378 	{
2379 #ifdef HAVE_TARGET_32_BIG
2380 	  parameters->sized_target<32, true>()->merge_gnu_properties(object);
2381 #else
2382 	  gold_unreachable();
2383 #endif
2384 	}
2385       else
2386 	{
2387 #ifdef HAVE_TARGET_32_LITTLE
2388 	  parameters->sized_target<32, false>()->merge_gnu_properties(object);
2389 #else
2390 	  gold_unreachable();
2391 #endif
2392 	}
2393     }
2394   else if (size == 64)
2395     {
2396       if (is_big_endian)
2397 	{
2398 #ifdef HAVE_TARGET_64_BIG
2399 	  parameters->sized_target<64, true>()->merge_gnu_properties(object);
2400 #else
2401 	  gold_unreachable();
2402 #endif
2403 	}
2404       else
2405 	{
2406 #ifdef HAVE_TARGET_64_LITTLE
2407 	  parameters->sized_target<64, false>()->merge_gnu_properties(object);
2408 #else
2409 	  gold_unreachable();
2410 #endif
2411 	}
2412     }
2413   else
2414     gold_unreachable();
2415 }
2416 
2417 // Add a target-specific property for the output .note.gnu.property section.
2418 
2419 void
add_gnu_property(unsigned int note_type,unsigned int pr_type,size_t pr_datasz,const unsigned char * pr_data)2420 Layout::add_gnu_property(unsigned int note_type,
2421 			 unsigned int pr_type,
2422 			 size_t pr_datasz,
2423 			 const unsigned char* pr_data)
2424 {
2425   gold_assert(note_type == elfcpp::NT_GNU_PROPERTY_TYPE_0);
2426 
2427   Gnu_property prop;
2428   prop.pr_datasz = pr_datasz;
2429   prop.pr_data = new unsigned char[pr_datasz];
2430   memcpy(prop.pr_data, pr_data, pr_datasz);
2431   this->gnu_properties_[pr_type] = prop;
2432 }
2433 
2434 // Create automatic note sections.
2435 
2436 void
create_notes()2437 Layout::create_notes()
2438 {
2439   this->create_gnu_properties_note();
2440   this->create_gold_note();
2441   this->create_stack_segment();
2442   this->create_build_id();
2443   this->create_package_metadata();
2444 }
2445 
2446 // Create the dynamic sections which are needed before we read the
2447 // relocs.
2448 
2449 void
create_initial_dynamic_sections(Symbol_table * symtab)2450 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
2451 {
2452   if (parameters->doing_static_link())
2453     return;
2454 
2455   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
2456 						       elfcpp::SHT_DYNAMIC,
2457 						       (elfcpp::SHF_ALLOC
2458 							| elfcpp::SHF_WRITE),
2459 						       false, ORDER_RELRO,
2460 						       true, false, false);
2461 
2462   // A linker script may discard .dynamic, so check for NULL.
2463   if (this->dynamic_section_ != NULL)
2464     {
2465       this->dynamic_symbol_ =
2466 	symtab->define_in_output_data("_DYNAMIC", NULL,
2467 				      Symbol_table::PREDEFINED,
2468 				      this->dynamic_section_, 0, 0,
2469 				      elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
2470 				      elfcpp::STV_HIDDEN, 0, false, false);
2471 
2472       this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
2473 
2474       this->dynamic_section_->add_output_section_data(this->dynamic_data_);
2475     }
2476 }
2477 
2478 // For each output section whose name can be represented as C symbol,
2479 // define __start and __stop symbols for the section.  This is a GNU
2480 // extension.
2481 
2482 void
define_section_symbols(Symbol_table * symtab)2483 Layout::define_section_symbols(Symbol_table* symtab)
2484 {
2485   const elfcpp::STV visibility = parameters->options().start_stop_visibility_enum();
2486   for (Section_list::const_iterator p = this->section_list_.begin();
2487        p != this->section_list_.end();
2488        ++p)
2489     {
2490       const char* const name = (*p)->name();
2491       if (is_cident(name))
2492 	{
2493 	  const std::string name_string(name);
2494 	  const std::string start_name(cident_section_start_prefix
2495 				       + name_string);
2496 	  const std::string stop_name(cident_section_stop_prefix
2497 				      + name_string);
2498 
2499 	  symtab->define_in_output_data(start_name.c_str(),
2500 					NULL, // version
2501 					Symbol_table::PREDEFINED,
2502 					*p,
2503 					0, // value
2504 					0, // symsize
2505 					elfcpp::STT_NOTYPE,
2506 					elfcpp::STB_GLOBAL,
2507 					visibility,
2508 					0, // nonvis
2509 					false, // offset_is_from_end
2510 					true); // only_if_ref
2511 
2512 	  symtab->define_in_output_data(stop_name.c_str(),
2513 					NULL, // version
2514 					Symbol_table::PREDEFINED,
2515 					*p,
2516 					0, // value
2517 					0, // symsize
2518 					elfcpp::STT_NOTYPE,
2519 					elfcpp::STB_GLOBAL,
2520 					visibility,
2521 					0, // nonvis
2522 					true, // offset_is_from_end
2523 					true); // only_if_ref
2524 	}
2525     }
2526 }
2527 
2528 // Define symbols for group signatures.
2529 
2530 void
define_group_signatures(Symbol_table * symtab)2531 Layout::define_group_signatures(Symbol_table* symtab)
2532 {
2533   for (Group_signatures::iterator p = this->group_signatures_.begin();
2534        p != this->group_signatures_.end();
2535        ++p)
2536     {
2537       Symbol* sym = symtab->lookup(p->signature, NULL);
2538       if (sym != NULL)
2539 	p->section->set_info_symndx(sym);
2540       else
2541 	{
2542 	  // Force the name of the group section to the group
2543 	  // signature, and use the group's section symbol as the
2544 	  // signature symbol.
2545 	  if (strcmp(p->section->name(), p->signature) != 0)
2546 	    {
2547 	      const char* name = this->namepool_.add(p->signature,
2548 						     true, NULL);
2549 	      p->section->set_name(name);
2550 	    }
2551 	  p->section->set_needs_symtab_index();
2552 	  p->section->set_info_section_symndx(p->section);
2553 	}
2554     }
2555 
2556   this->group_signatures_.clear();
2557 }
2558 
2559 // Find the first read-only PT_LOAD segment, creating one if
2560 // necessary.
2561 
2562 Output_segment*
find_first_load_seg(const Target * target)2563 Layout::find_first_load_seg(const Target* target)
2564 {
2565   Output_segment* best = NULL;
2566   for (Segment_list::const_iterator p = this->segment_list_.begin();
2567        p != this->segment_list_.end();
2568        ++p)
2569     {
2570       if ((*p)->type() == elfcpp::PT_LOAD
2571 	  && ((*p)->flags() & elfcpp::PF_R) != 0
2572 	  && (parameters->options().omagic()
2573 	      || ((*p)->flags() & elfcpp::PF_W) == 0)
2574 	  && (!target->isolate_execinstr()
2575 	      || ((*p)->flags() & elfcpp::PF_X) == 0))
2576 	{
2577 	  if (best == NULL || this->segment_precedes(*p, best))
2578 	    best = *p;
2579 	}
2580     }
2581   if (best != NULL)
2582     return best;
2583 
2584   gold_assert(!this->script_options_->saw_phdrs_clause());
2585 
2586   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
2587 						       elfcpp::PF_R);
2588   return load_seg;
2589 }
2590 
2591 // Save states of all current output segments.  Store saved states
2592 // in SEGMENT_STATES.
2593 
2594 void
save_segments(Segment_states * segment_states)2595 Layout::save_segments(Segment_states* segment_states)
2596 {
2597   for (Segment_list::const_iterator p = this->segment_list_.begin();
2598        p != this->segment_list_.end();
2599        ++p)
2600     {
2601       Output_segment* segment = *p;
2602       // Shallow copy.
2603       Output_segment* copy = new Output_segment(*segment);
2604       (*segment_states)[segment] = copy;
2605     }
2606 }
2607 
2608 // Restore states of output segments and delete any segment not found in
2609 // SEGMENT_STATES.
2610 
2611 void
restore_segments(const Segment_states * segment_states)2612 Layout::restore_segments(const Segment_states* segment_states)
2613 {
2614   // Go through the segment list and remove any segment added in the
2615   // relaxation loop.
2616   this->tls_segment_ = NULL;
2617   this->relro_segment_ = NULL;
2618   Segment_list::iterator list_iter = this->segment_list_.begin();
2619   while (list_iter != this->segment_list_.end())
2620     {
2621       Output_segment* segment = *list_iter;
2622       Segment_states::const_iterator states_iter =
2623 	  segment_states->find(segment);
2624       if (states_iter != segment_states->end())
2625 	{
2626 	  const Output_segment* copy = states_iter->second;
2627 	  // Shallow copy to restore states.
2628 	  *segment = *copy;
2629 
2630 	  // Also fix up TLS and RELRO segment pointers as appropriate.
2631 	  if (segment->type() == elfcpp::PT_TLS)
2632 	    this->tls_segment_ = segment;
2633 	  else if (segment->type() == elfcpp::PT_GNU_RELRO)
2634 	    this->relro_segment_ = segment;
2635 
2636 	  ++list_iter;
2637 	}
2638       else
2639 	{
2640 	  list_iter = this->segment_list_.erase(list_iter);
2641 	  // This is a segment created during section layout.  It should be
2642 	  // safe to remove it since we should have removed all pointers to it.
2643 	  delete segment;
2644 	}
2645     }
2646 }
2647 
2648 // Clean up after relaxation so that sections can be laid out again.
2649 
2650 void
clean_up_after_relaxation()2651 Layout::clean_up_after_relaxation()
2652 {
2653   // Restore the segments to point state just prior to the relaxation loop.
2654   Script_sections* script_section = this->script_options_->script_sections();
2655   script_section->release_segments();
2656   this->restore_segments(this->segment_states_);
2657 
2658   // Reset section addresses and file offsets
2659   for (Section_list::iterator p = this->section_list_.begin();
2660        p != this->section_list_.end();
2661        ++p)
2662     {
2663       (*p)->restore_states();
2664 
2665       // If an input section changes size because of relaxation,
2666       // we need to adjust the section offsets of all input sections.
2667       // after such a section.
2668       if ((*p)->section_offsets_need_adjustment())
2669 	(*p)->adjust_section_offsets();
2670 
2671       (*p)->reset_address_and_file_offset();
2672     }
2673 
2674   // Reset special output object address and file offsets.
2675   for (Data_list::iterator p = this->special_output_list_.begin();
2676        p != this->special_output_list_.end();
2677        ++p)
2678     (*p)->reset_address_and_file_offset();
2679 
2680   // A linker script may have created some output section data objects.
2681   // They are useless now.
2682   for (Output_section_data_list::const_iterator p =
2683 	 this->script_output_section_data_list_.begin();
2684        p != this->script_output_section_data_list_.end();
2685        ++p)
2686     delete *p;
2687   this->script_output_section_data_list_.clear();
2688 
2689   // Special-case fill output objects are recreated each time through
2690   // the relaxation loop.
2691   this->reset_relax_output();
2692 }
2693 
2694 void
reset_relax_output()2695 Layout::reset_relax_output()
2696 {
2697   for (Data_list::const_iterator p = this->relax_output_list_.begin();
2698        p != this->relax_output_list_.end();
2699        ++p)
2700     delete *p;
2701   this->relax_output_list_.clear();
2702 }
2703 
2704 // Prepare for relaxation.
2705 
2706 void
prepare_for_relaxation()2707 Layout::prepare_for_relaxation()
2708 {
2709   // Create an relaxation debug check if in debugging mode.
2710   if (is_debugging_enabled(DEBUG_RELAXATION))
2711     this->relaxation_debug_check_ = new Relaxation_debug_check();
2712 
2713   // Save segment states.
2714   this->segment_states_ = new Segment_states();
2715   this->save_segments(this->segment_states_);
2716 
2717   for(Section_list::const_iterator p = this->section_list_.begin();
2718       p != this->section_list_.end();
2719       ++p)
2720     (*p)->save_states();
2721 
2722   if (is_debugging_enabled(DEBUG_RELAXATION))
2723     this->relaxation_debug_check_->check_output_data_for_reset_values(
2724 	this->section_list_, this->special_output_list_,
2725 	this->relax_output_list_);
2726 
2727   // Also enable recording of output section data from scripts.
2728   this->record_output_section_data_from_script_ = true;
2729 }
2730 
2731 // If the user set the address of the text segment, that may not be
2732 // compatible with putting the segment headers and file headers into
2733 // that segment.  For isolate_execinstr() targets, it's the rodata
2734 // segment rather than text where we might put the headers.
2735 static inline bool
load_seg_unusable_for_headers(const Target * target)2736 load_seg_unusable_for_headers(const Target* target)
2737 {
2738   const General_options& options = parameters->options();
2739   if (target->isolate_execinstr())
2740     return (options.user_set_Trodata_segment()
2741 	    && options.Trodata_segment() % target->abi_pagesize() != 0);
2742   else
2743     return (options.user_set_Ttext()
2744 	    && options.Ttext() % target->abi_pagesize() != 0);
2745 }
2746 
2747 // Relaxation loop body:  If target has no relaxation, this runs only once
2748 // Otherwise, the target relaxation hook is called at the end of
2749 // each iteration.  If the hook returns true, it means re-layout of
2750 // section is required.
2751 //
2752 // The number of segments created by a linking script without a PHDRS
2753 // clause may be affected by section sizes and alignments.  There is
2754 // a remote chance that relaxation causes different number of PT_LOAD
2755 // segments are created and sections are attached to different segments.
2756 // Therefore, we always throw away all segments created during section
2757 // layout.  In order to be able to restart the section layout, we keep
2758 // a copy of the segment list right before the relaxation loop and use
2759 // that to restore the segments.
2760 //
2761 // PASS is the current relaxation pass number.
2762 // SYMTAB is a symbol table.
2763 // PLOAD_SEG is the address of a pointer for the load segment.
2764 // PHDR_SEG is a pointer to the PHDR segment.
2765 // SEGMENT_HEADERS points to the output segment header.
2766 // FILE_HEADER points to the output file header.
2767 // PSHNDX is the address to store the output section index.
2768 
2769 off_t inline
relaxation_loop_body(int pass,Target * target,Symbol_table * symtab,Output_segment ** pload_seg,Output_segment * phdr_seg,Output_segment_headers * segment_headers,Output_file_header * file_header,unsigned int * pshndx)2770 Layout::relaxation_loop_body(
2771     int pass,
2772     Target* target,
2773     Symbol_table* symtab,
2774     Output_segment** pload_seg,
2775     Output_segment* phdr_seg,
2776     Output_segment_headers* segment_headers,
2777     Output_file_header* file_header,
2778     unsigned int* pshndx)
2779 {
2780   // If this is not the first iteration, we need to clean up after
2781   // relaxation so that we can lay out the sections again.
2782   if (pass != 0)
2783     this->clean_up_after_relaxation();
2784 
2785   // If there is a SECTIONS clause, put all the input sections into
2786   // the required order.
2787   Output_segment* load_seg;
2788   if (this->script_options_->saw_sections_clause())
2789     load_seg = this->set_section_addresses_from_script(symtab);
2790   else if (parameters->options().relocatable())
2791     load_seg = NULL;
2792   else
2793     load_seg = this->find_first_load_seg(target);
2794 
2795   if (parameters->options().oformat_enum()
2796       != General_options::OBJECT_FORMAT_ELF)
2797     load_seg = NULL;
2798 
2799   if (load_seg_unusable_for_headers(target))
2800     {
2801       load_seg = NULL;
2802       phdr_seg = NULL;
2803     }
2804 
2805   gold_assert(phdr_seg == NULL
2806 	      || load_seg != NULL
2807 	      || this->script_options_->saw_sections_clause());
2808 
2809   // If the address of the load segment we found has been set by
2810   // --section-start rather than by a script, then adjust the VMA and
2811   // LMA downward if possible to include the file and section headers.
2812   uint64_t header_gap = 0;
2813   if (load_seg != NULL
2814       && load_seg->are_addresses_set()
2815       && !this->script_options_->saw_sections_clause()
2816       && !parameters->options().relocatable())
2817     {
2818       file_header->finalize_data_size();
2819       segment_headers->finalize_data_size();
2820       size_t sizeof_headers = (file_header->data_size()
2821 			       + segment_headers->data_size());
2822       const uint64_t abi_pagesize = target->abi_pagesize();
2823       uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2824       hdr_paddr &= ~(abi_pagesize - 1);
2825       uint64_t subtract = load_seg->paddr() - hdr_paddr;
2826       if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2827 	load_seg = NULL;
2828       else
2829 	{
2830 	  load_seg->set_addresses(load_seg->vaddr() - subtract,
2831 				  load_seg->paddr() - subtract);
2832 	  header_gap = subtract - sizeof_headers;
2833 	}
2834     }
2835 
2836   // Lay out the segment headers.
2837   if (!parameters->options().relocatable())
2838     {
2839       gold_assert(segment_headers != NULL);
2840       if (header_gap != 0 && load_seg != NULL)
2841 	{
2842 	  Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2843 	  load_seg->add_initial_output_data(z);
2844 	}
2845       if (load_seg != NULL)
2846 	load_seg->add_initial_output_data(segment_headers);
2847       if (phdr_seg != NULL)
2848 	phdr_seg->add_initial_output_data(segment_headers);
2849     }
2850 
2851   // Lay out the file header.
2852   if (load_seg != NULL)
2853     load_seg->add_initial_output_data(file_header);
2854 
2855   if (this->script_options_->saw_phdrs_clause()
2856       && !parameters->options().relocatable())
2857     {
2858       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2859       // clause in a linker script.
2860       Script_sections* ss = this->script_options_->script_sections();
2861       ss->put_headers_in_phdrs(file_header, segment_headers);
2862     }
2863 
2864   // We set the output section indexes in set_segment_offsets and
2865   // set_section_indexes.
2866   *pshndx = 1;
2867 
2868   // Set the file offsets of all the segments, and all the sections
2869   // they contain.
2870   off_t off;
2871   if (!parameters->options().relocatable())
2872     off = this->set_segment_offsets(target, load_seg, pshndx);
2873   else
2874     off = this->set_relocatable_section_offsets(file_header, pshndx);
2875 
2876    // Verify that the dummy relaxation does not change anything.
2877   if (is_debugging_enabled(DEBUG_RELAXATION))
2878     {
2879       if (pass == 0)
2880 	this->relaxation_debug_check_->read_sections(this->section_list_);
2881       else
2882 	this->relaxation_debug_check_->verify_sections(this->section_list_);
2883     }
2884 
2885   *pload_seg = load_seg;
2886   return off;
2887 }
2888 
2889 // Search the list of patterns and find the position of the given section
2890 // name in the output section.  If the section name matches a glob
2891 // pattern and a non-glob name, then the non-glob position takes
2892 // precedence.  Return 0 if no match is found.
2893 
2894 unsigned int
find_section_order_index(const std::string & section_name)2895 Layout::find_section_order_index(const std::string& section_name)
2896 {
2897   Unordered_map<std::string, unsigned int>::iterator map_it;
2898   map_it = this->input_section_position_.find(section_name);
2899   if (map_it != this->input_section_position_.end())
2900     return map_it->second;
2901 
2902   // Absolute match failed.  Linear search the glob patterns.
2903   std::vector<std::string>::iterator it;
2904   for (it = this->input_section_glob_.begin();
2905        it != this->input_section_glob_.end();
2906        ++it)
2907     {
2908        if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2909 	 {
2910 	   map_it = this->input_section_position_.find(*it);
2911 	   gold_assert(map_it != this->input_section_position_.end());
2912 	   return map_it->second;
2913 	 }
2914     }
2915   return 0;
2916 }
2917 
2918 // Read the sequence of input sections from the file specified with
2919 // option --section-ordering-file.
2920 
2921 void
read_layout_from_file()2922 Layout::read_layout_from_file()
2923 {
2924   const char* filename = parameters->options().section_ordering_file();
2925   std::ifstream in;
2926   std::string line;
2927 
2928   in.open(filename);
2929   if (!in)
2930     gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2931 	       filename, strerror(errno));
2932 
2933   File_read::record_file_read(filename);
2934 
2935   std::getline(in, line);   // this chops off the trailing \n, if any
2936   unsigned int position = 1;
2937   this->set_section_ordering_specified();
2938 
2939   while (in)
2940     {
2941       if (!line.empty() && line[line.length() - 1] == '\r')   // Windows
2942 	line.resize(line.length() - 1);
2943       // Ignore comments, beginning with '#'
2944       if (line[0] == '#')
2945 	{
2946 	  std::getline(in, line);
2947 	  continue;
2948 	}
2949       this->input_section_position_[line] = position;
2950       // Store all glob patterns in a vector.
2951       if (is_wildcard_string(line.c_str()))
2952 	this->input_section_glob_.push_back(line);
2953       position++;
2954       std::getline(in, line);
2955     }
2956 }
2957 
2958 // Finalize the layout.  When this is called, we have created all the
2959 // output sections and all the output segments which are based on
2960 // input sections.  We have several things to do, and we have to do
2961 // them in the right order, so that we get the right results correctly
2962 // and efficiently.
2963 
2964 // 1) Finalize the list of output segments and create the segment
2965 // table header.
2966 
2967 // 2) Finalize the dynamic symbol table and associated sections.
2968 
2969 // 3) Determine the final file offset of all the output segments.
2970 
2971 // 4) Determine the final file offset of all the SHF_ALLOC output
2972 // sections.
2973 
2974 // 5) Create the symbol table sections and the section name table
2975 // section.
2976 
2977 // 6) Finalize the symbol table: set symbol values to their final
2978 // value and make a final determination of which symbols are going
2979 // into the output symbol table.
2980 
2981 // 7) Create the section table header.
2982 
2983 // 8) Determine the final file offset of all the output sections which
2984 // are not SHF_ALLOC, including the section table header.
2985 
2986 // 9) Finalize the ELF file header.
2987 
2988 // This function returns the size of the output file.
2989 
2990 off_t
finalize(const Input_objects * input_objects,Symbol_table * symtab,Target * target,const Task * task)2991 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2992 		 Target* target, const Task* task)
2993 {
2994   unsigned int local_dynamic_count = 0;
2995   unsigned int forced_local_dynamic_count = 0;
2996 
2997   target->finalize_sections(this, input_objects, symtab);
2998 
2999   this->count_local_symbols(task, input_objects);
3000 
3001   this->link_stabs_sections();
3002 
3003   Output_segment* phdr_seg = NULL;
3004   if (!parameters->options().relocatable() && !parameters->doing_static_link())
3005     {
3006       // There was a dynamic object in the link.  We need to create
3007       // some information for the dynamic linker.
3008 
3009       // Create the PT_PHDR segment which will hold the program
3010       // headers.
3011       if (!this->script_options_->saw_phdrs_clause())
3012 	phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
3013 
3014       // Create the dynamic symbol table, including the hash table.
3015       Output_section* dynstr;
3016       std::vector<Symbol*> dynamic_symbols;
3017       Versions versions(*this->script_options()->version_script_info(),
3018 			&this->dynpool_);
3019       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
3020 				  &local_dynamic_count,
3021 				  &forced_local_dynamic_count,
3022 				  &dynamic_symbols,
3023 				  &versions);
3024 
3025       // Create the .interp section to hold the name of the
3026       // interpreter, and put it in a PT_INTERP segment.  Don't do it
3027       // if we saw a .interp section in an input file.
3028       if ((!parameters->options().shared()
3029 	   || parameters->options().dynamic_linker() != NULL)
3030 	  && this->interp_segment_ == NULL)
3031 	this->create_interp(target);
3032 
3033       // Finish the .dynamic section to hold the dynamic data, and put
3034       // it in a PT_DYNAMIC segment.
3035       this->finish_dynamic_section(input_objects, symtab);
3036 
3037       // We should have added everything we need to the dynamic string
3038       // table.
3039       this->dynpool_.set_string_offsets();
3040 
3041       // Create the version sections.  We can't do this until the
3042       // dynamic string table is complete.
3043       this->create_version_sections(&versions, symtab,
3044 				    (local_dynamic_count
3045 				     + forced_local_dynamic_count),
3046 				    dynamic_symbols, dynstr);
3047 
3048       // Set the size of the _DYNAMIC symbol.  We can't do this until
3049       // after we call create_version_sections.
3050       this->set_dynamic_symbol_size(symtab);
3051     }
3052 
3053   // Create segment headers.
3054   Output_segment_headers* segment_headers =
3055     (parameters->options().relocatable()
3056      ? NULL
3057      : new Output_segment_headers(this->segment_list_));
3058 
3059   // Lay out the file header.
3060   Output_file_header* file_header = new Output_file_header(target, symtab,
3061 							   segment_headers);
3062 
3063   this->special_output_list_.push_back(file_header);
3064   if (segment_headers != NULL)
3065     this->special_output_list_.push_back(segment_headers);
3066 
3067   // Find approriate places for orphan output sections if we are using
3068   // a linker script.
3069   if (this->script_options_->saw_sections_clause())
3070     this->place_orphan_sections_in_script();
3071 
3072   Output_segment* load_seg;
3073   off_t off;
3074   unsigned int shndx;
3075   int pass = 0;
3076 
3077   // Take a snapshot of the section layout as needed.
3078   if (target->may_relax())
3079     this->prepare_for_relaxation();
3080 
3081   // Run the relaxation loop to lay out sections.
3082   do
3083     {
3084       off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
3085 				       phdr_seg, segment_headers, file_header,
3086 				       &shndx);
3087       pass++;
3088     }
3089   while (target->may_relax()
3090 	 && target->relax(pass, input_objects, symtab, this, task));
3091 
3092   // If there is a load segment that contains the file and program headers,
3093   // provide a symbol __ehdr_start pointing there.
3094   // A program can use this to examine itself robustly.
3095   Symbol *ehdr_start = symtab->lookup("__ehdr_start");
3096   if (ehdr_start != NULL && ehdr_start->is_predefined())
3097     {
3098       if (load_seg != NULL)
3099 	ehdr_start->set_output_segment(load_seg, Symbol::SEGMENT_START);
3100       else
3101 	ehdr_start->set_undefined();
3102     }
3103 
3104   // Set the file offsets of all the non-data sections we've seen so
3105   // far which don't have to wait for the input sections.  We need
3106   // this in order to finalize local symbols in non-allocated
3107   // sections.
3108   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
3109 
3110   // Set the section indexes of all unallocated sections seen so far,
3111   // in case any of them are somehow referenced by a symbol.
3112   shndx = this->set_section_indexes(shndx);
3113 
3114   // Create the symbol table sections.
3115   this->create_symtab_sections(input_objects, symtab, shndx, &off,
3116 			       local_dynamic_count);
3117   if (!parameters->doing_static_link())
3118     this->assign_local_dynsym_offsets(input_objects);
3119 
3120   // Process any symbol assignments from a linker script.  This must
3121   // be called after the symbol table has been finalized.
3122   this->script_options_->finalize_symbols(symtab, this);
3123 
3124   // Create the incremental inputs sections.
3125   if (this->incremental_inputs_)
3126     {
3127       this->incremental_inputs_->finalize();
3128       this->create_incremental_info_sections(symtab);
3129     }
3130 
3131   // Create the .shstrtab section.
3132   Output_section* shstrtab_section = this->create_shstrtab();
3133 
3134   // Set the file offsets of the rest of the non-data sections which
3135   // don't have to wait for the input sections.
3136   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
3137 
3138   // Now that all sections have been created, set the section indexes
3139   // for any sections which haven't been done yet.
3140   shndx = this->set_section_indexes(shndx);
3141 
3142   // Create the section table header.
3143   this->create_shdrs(shstrtab_section, &off);
3144 
3145   // If there are no sections which require postprocessing, we can
3146   // handle the section names now, and avoid a resize later.
3147   if (!this->any_postprocessing_sections_)
3148     {
3149       off = this->set_section_offsets(off,
3150 				      POSTPROCESSING_SECTIONS_PASS);
3151       off =
3152 	  this->set_section_offsets(off,
3153 				    STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
3154     }
3155 
3156   file_header->set_section_info(this->section_headers_, shstrtab_section);
3157 
3158   // Now we know exactly where everything goes in the output file
3159   // (except for non-allocated sections which require postprocessing).
3160   Output_data::layout_complete();
3161 
3162   this->output_file_size_ = off;
3163 
3164   return off;
3165 }
3166 
3167 // Create a note header following the format defined in the ELF ABI.
3168 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
3169 // of the section to create, DESCSZ is the size of the descriptor.
3170 // ALLOCATE is true if the section should be allocated in memory.
3171 // This returns the new note section.  It sets *TRAILING_PADDING to
3172 // the number of trailing zero bytes required.
3173 
3174 Output_section*
create_note(const char * name,int note_type,const char * section_name,size_t descsz,bool allocate,size_t * trailing_padding)3175 Layout::create_note(const char* name, int note_type,
3176 		    const char* section_name, size_t descsz,
3177 		    bool allocate, size_t* trailing_padding)
3178 {
3179   // Authorities all agree that the values in a .note field should
3180   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
3181   // they differ on what the alignment is for 64-bit binaries.
3182   // The GABI says unambiguously they take 8-byte alignment:
3183   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
3184   // Other documentation says alignment should always be 4 bytes:
3185   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
3186   // GNU ld and GNU readelf both support the latter (at least as of
3187   // version 2.16.91), and glibc always generates the latter for
3188   // .note.ABI-tag (as of version 1.6), so that's the one we go with
3189   // here.
3190 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
3191   const int size = parameters->target().get_size();
3192 #else
3193   const int size = 32;
3194 #endif
3195   // The NT_GNU_PROPERTY_TYPE_0 note is aligned to the pointer size.
3196   const int addralign = ((note_type == elfcpp::NT_GNU_PROPERTY_TYPE_0
3197 			 ? parameters->target().get_size()
3198 			 : size) / 8);
3199 
3200   // The contents of the .note section.
3201   size_t namesz = strlen(name) + 1;
3202   size_t aligned_namesz = align_address(namesz, size / 8);
3203   size_t aligned_descsz = align_address(descsz, size / 8);
3204 
3205   size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
3206 
3207   unsigned char* buffer = new unsigned char[notehdrsz];
3208   memset(buffer, 0, notehdrsz);
3209 
3210   bool is_big_endian = parameters->target().is_big_endian();
3211 
3212   if (size == 32)
3213     {
3214       if (!is_big_endian)
3215 	{
3216 	  elfcpp::Swap<32, false>::writeval(buffer, namesz);
3217 	  elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
3218 	  elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
3219 	}
3220       else
3221 	{
3222 	  elfcpp::Swap<32, true>::writeval(buffer, namesz);
3223 	  elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
3224 	  elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
3225 	}
3226     }
3227   else if (size == 64)
3228     {
3229       if (!is_big_endian)
3230 	{
3231 	  elfcpp::Swap<64, false>::writeval(buffer, namesz);
3232 	  elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
3233 	  elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
3234 	}
3235       else
3236 	{
3237 	  elfcpp::Swap<64, true>::writeval(buffer, namesz);
3238 	  elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
3239 	  elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
3240 	}
3241     }
3242   else
3243     gold_unreachable();
3244 
3245   memcpy(buffer + 3 * (size / 8), name, namesz);
3246 
3247   elfcpp::Elf_Xword flags = 0;
3248   Output_section_order order = ORDER_INVALID;
3249   if (allocate)
3250     {
3251       flags = elfcpp::SHF_ALLOC;
3252       order = (note_type == elfcpp::NT_GNU_PROPERTY_TYPE_0
3253 	       ?  ORDER_PROPERTY_NOTE : ORDER_RO_NOTE);
3254     }
3255   Output_section* os = this->choose_output_section(NULL, section_name,
3256 						   elfcpp::SHT_NOTE,
3257 						   flags, false, order, false,
3258 						   false, true);
3259   if (os == NULL)
3260     return NULL;
3261 
3262   Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
3263 							   addralign,
3264 							   "** note header");
3265   os->add_output_section_data(posd);
3266 
3267   *trailing_padding = aligned_descsz - descsz;
3268 
3269   return os;
3270 }
3271 
3272 // Create a .note.gnu.property section to record program properties
3273 // accumulated from the input files.
3274 
3275 void
create_gnu_properties_note()3276 Layout::create_gnu_properties_note()
3277 {
3278   parameters->target().finalize_gnu_properties(this);
3279 
3280   if (this->gnu_properties_.empty())
3281     return;
3282 
3283   const unsigned int size = parameters->target().get_size();
3284   const bool is_big_endian = parameters->target().is_big_endian();
3285 
3286   // Compute the total size of the properties array.
3287   size_t descsz = 0;
3288   for (Gnu_properties::const_iterator prop = this->gnu_properties_.begin();
3289        prop != this->gnu_properties_.end();
3290        ++prop)
3291     {
3292       descsz = align_address(descsz + 8 + prop->second.pr_datasz, size / 8);
3293     }
3294 
3295   // Create the note section.
3296   size_t trailing_padding;
3297   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_PROPERTY_TYPE_0,
3298 					 ".note.gnu.property", descsz,
3299 					 true, &trailing_padding);
3300   if (os == NULL)
3301     return;
3302   gold_assert(trailing_padding == 0);
3303 
3304   // Allocate and fill the properties array.
3305   unsigned char* desc = new unsigned char[descsz];
3306   unsigned char* p = desc;
3307   for (Gnu_properties::const_iterator prop = this->gnu_properties_.begin();
3308        prop != this->gnu_properties_.end();
3309        ++prop)
3310     {
3311       size_t datasz = prop->second.pr_datasz;
3312       size_t aligned_datasz = align_address(prop->second.pr_datasz, size / 8);
3313       write_sized_value(prop->first, 4, p, is_big_endian);
3314       write_sized_value(datasz, 4, p + 4, is_big_endian);
3315       memcpy(p + 8, prop->second.pr_data, datasz);
3316       if (aligned_datasz > datasz)
3317 	memset(p + 8 + datasz, 0, aligned_datasz - datasz);
3318       p += 8 + aligned_datasz;
3319     }
3320   Output_section_data* posd = new Output_data_const(desc, descsz, 4);
3321   os->add_output_section_data(posd);
3322 }
3323 
3324 // For an executable or shared library, create a note to record the
3325 // version of gold used to create the binary.
3326 
3327 void
create_gold_note()3328 Layout::create_gold_note()
3329 {
3330   if (parameters->options().relocatable()
3331       || parameters->incremental_update())
3332     return;
3333 
3334   std::string desc = std::string("gold ") + gold::get_version_string();
3335 
3336   Output_section* os;
3337   Output_section_data* posd;
3338 
3339   if (!parameters->options().enable_linker_version())
3340     {
3341       size_t trailing_padding;
3342 
3343       os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
3344 			     ".note.gnu.gold-version", desc.size(),
3345 			     false, &trailing_padding);
3346       if (os == NULL)
3347 	return;
3348 
3349       posd = new Output_data_const(desc, 4);
3350       os->add_output_section_data(posd);
3351 
3352       if (trailing_padding > 0)
3353 	{
3354 	  posd = new Output_data_zero_fill(trailing_padding, 0);
3355 	  os->add_output_section_data(posd);
3356 	}
3357     }
3358   else
3359     {
3360       os = this->choose_output_section(NULL, ".comment",
3361 				       elfcpp::SHT_PROGBITS, 0,
3362 				       false, ORDER_INVALID,
3363 				       false, false, false);
3364       if (os == NULL)
3365 	return;
3366 
3367       posd = new Output_data_const(desc, 1);
3368       os->add_output_section_data(posd);
3369     }
3370 }
3371 
3372 // Record whether the stack should be executable.  This can be set
3373 // from the command line using the -z execstack or -z noexecstack
3374 // options.  Otherwise, if any input file has a .note.GNU-stack
3375 // section with the SHF_EXECINSTR flag set, the stack should be
3376 // executable.  Otherwise, if at least one input file a
3377 // .note.GNU-stack section, and some input file has no .note.GNU-stack
3378 // section, we use the target default for whether the stack should be
3379 // executable.  If -z stack-size was used to set a p_memsz value for
3380 // PT_GNU_STACK, we generate the segment regardless.  Otherwise, we
3381 // don't generate a stack note.  When generating a object file, we
3382 // create a .note.GNU-stack section with the appropriate marking.
3383 // When generating an executable or shared library, we create a
3384 // PT_GNU_STACK segment.
3385 
3386 void
create_stack_segment()3387 Layout::create_stack_segment()
3388 {
3389   bool is_stack_executable;
3390   if (parameters->options().is_execstack_set())
3391     {
3392       is_stack_executable = parameters->options().is_stack_executable();
3393       if (!is_stack_executable
3394 	  && this->input_requires_executable_stack_
3395 	  && parameters->options().warn_execstack())
3396 	gold_warning(_("one or more inputs require executable stack, "
3397 		       "but -z noexecstack was given"));
3398     }
3399   else if (!this->input_with_gnu_stack_note_
3400 	   && (!parameters->options().user_set_stack_size()
3401 	       || parameters->options().relocatable()))
3402     return;
3403   else
3404     {
3405       if (this->input_requires_executable_stack_)
3406 	is_stack_executable = true;
3407       else if (this->input_without_gnu_stack_note_)
3408 	is_stack_executable =
3409 	  parameters->target().is_default_stack_executable();
3410       else
3411 	is_stack_executable = false;
3412     }
3413 
3414   if (parameters->options().relocatable())
3415     {
3416       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
3417       elfcpp::Elf_Xword flags = 0;
3418       if (is_stack_executable)
3419 	flags |= elfcpp::SHF_EXECINSTR;
3420       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
3421 				ORDER_INVALID, false);
3422     }
3423   else
3424     {
3425       if (this->script_options_->saw_phdrs_clause())
3426 	return;
3427       int flags = elfcpp::PF_R | elfcpp::PF_W;
3428       if (is_stack_executable)
3429 	flags |= elfcpp::PF_X;
3430       Output_segment* seg =
3431 	this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
3432       seg->set_size(parameters->options().stack_size());
3433       // BFD lets targets override this default alignment, but the only
3434       // targets that do so are ones that Gold does not support so far.
3435       seg->set_minimum_p_align(16);
3436     }
3437 }
3438 
3439 // If --build-id was used, set up the build ID note.
3440 
3441 void
create_build_id()3442 Layout::create_build_id()
3443 {
3444   if (!parameters->options().user_set_build_id())
3445     return;
3446 
3447   const char* style = parameters->options().build_id();
3448   if (strcmp(style, "none") == 0)
3449     return;
3450 
3451   // Set DESCSZ to the size of the note descriptor.  When possible,
3452   // set DESC to the note descriptor contents.
3453   size_t descsz;
3454   std::string desc;
3455   if (strcmp(style, "md5") == 0)
3456     descsz = 128 / 8;
3457   else if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
3458     descsz = 160 / 8;
3459   else if (strcmp(style, "uuid") == 0)
3460     {
3461 #ifndef __MINGW32__
3462       const size_t uuidsz = 128 / 8;
3463 
3464       char buffer[uuidsz];
3465       memset(buffer, 0, uuidsz);
3466 
3467       int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
3468       if (descriptor < 0)
3469 	gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
3470 		   strerror(errno));
3471       else
3472 	{
3473 	  ssize_t got = ::read(descriptor, buffer, uuidsz);
3474 	  release_descriptor(descriptor, true);
3475 	  if (got < 0)
3476 	    gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
3477 	  else if (static_cast<size_t>(got) != uuidsz)
3478 	    gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
3479 		       uuidsz, got);
3480 	}
3481 
3482       desc.assign(buffer, uuidsz);
3483       descsz = uuidsz;
3484 #else // __MINGW32__
3485       UUID uuid;
3486       typedef RPC_STATUS (RPC_ENTRY *UuidCreateFn)(UUID *Uuid);
3487 
3488       HMODULE rpc_library = LoadLibrary("rpcrt4.dll");
3489       if (!rpc_library)
3490 	gold_error(_("--build-id=uuid failed: could not load rpcrt4.dll"));
3491       else
3492 	{
3493 	  UuidCreateFn uuid_create = reinterpret_cast<UuidCreateFn>(
3494 	      GetProcAddress(rpc_library, "UuidCreate"));
3495 	  if (!uuid_create)
3496 	    gold_error(_("--build-id=uuid failed: could not find UuidCreate"));
3497 	  else if (uuid_create(&uuid) != RPC_S_OK)
3498 	    gold_error(_("__build_id=uuid failed: call UuidCreate() failed"));
3499 	  FreeLibrary(rpc_library);
3500 	}
3501       desc.assign(reinterpret_cast<const char *>(&uuid), sizeof(UUID));
3502       descsz = sizeof(UUID);
3503 #endif // __MINGW32__
3504     }
3505   else if (strncmp(style, "0x", 2) == 0)
3506     {
3507       hex_init();
3508       const char* p = style + 2;
3509       while (*p != '\0')
3510 	{
3511 	  if (hex_p(p[0]) && hex_p(p[1]))
3512 	    {
3513 	      char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
3514 	      desc += c;
3515 	      p += 2;
3516 	    }
3517 	  else if (*p == '-' || *p == ':')
3518 	    ++p;
3519 	  else
3520 	    gold_fatal(_("--build-id argument '%s' not a valid hex number"),
3521 		       style);
3522 	}
3523       descsz = desc.size();
3524     }
3525   else
3526     gold_fatal(_("unrecognized --build-id argument '%s'"), style);
3527 
3528   // Create the note.
3529   size_t trailing_padding;
3530   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
3531 					 ".note.gnu.build-id", descsz, true,
3532 					 &trailing_padding);
3533   if (os == NULL)
3534     return;
3535 
3536   if (!desc.empty())
3537     {
3538       // We know the value already, so we fill it in now.
3539       gold_assert(desc.size() == descsz);
3540 
3541       Output_section_data* posd = new Output_data_const(desc, 4);
3542       os->add_output_section_data(posd);
3543 
3544       if (trailing_padding != 0)
3545 	{
3546 	  posd = new Output_data_zero_fill(trailing_padding, 0);
3547 	  os->add_output_section_data(posd);
3548 	}
3549     }
3550   else
3551     {
3552       // We need to compute a checksum after we have completed the
3553       // link.
3554       gold_assert(trailing_padding == 0);
3555       this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
3556       os->add_output_section_data(this->build_id_note_);
3557     }
3558 }
3559 
3560 // If --package-metadata was used, set up the package metadata note.
3561 // https://systemd.io/ELF_PACKAGE_METADATA/
3562 
3563 void
create_package_metadata()3564 Layout::create_package_metadata()
3565 {
3566   if (!parameters->options().user_set_package_metadata())
3567     return;
3568 
3569   const char* desc = parameters->options().package_metadata();
3570   if (strcmp(desc, "") == 0)
3571     return;
3572 
3573 #ifdef HAVE_JANSSON
3574   json_error_t json_error;
3575   json_t *json = json_loads(desc, 0, &json_error);
3576   if (json)
3577     json_decref(json);
3578   else
3579     {
3580       gold_fatal(_("error: --package-metadata=%s does not contain valid "
3581 		   "JSON: %s\n"),
3582 		 desc, json_error.text);
3583     }
3584 #endif
3585 
3586   // Create the note.
3587   size_t trailing_padding;
3588   // Ensure the trailing NULL byte is always included, as per specification.
3589   size_t descsz = strlen(desc) + 1;
3590   Output_section* os = this->create_note("FDO", elfcpp::FDO_PACKAGING_METADATA,
3591 					 ".note.package", descsz, true,
3592 					 &trailing_padding);
3593   if (os == NULL)
3594     return;
3595 
3596   Output_section_data* posd = new Output_data_const(desc, descsz, 4);
3597   os->add_output_section_data(posd);
3598 
3599   if (trailing_padding != 0)
3600     {
3601       posd = new Output_data_zero_fill(trailing_padding, 0);
3602       os->add_output_section_data(posd);
3603     }
3604 }
3605 
3606 // If we have both .stabXX and .stabXXstr sections, then the sh_link
3607 // field of the former should point to the latter.  I'm not sure who
3608 // started this, but the GNU linker does it, and some tools depend
3609 // upon it.
3610 
3611 void
link_stabs_sections()3612 Layout::link_stabs_sections()
3613 {
3614   if (!this->have_stabstr_section_)
3615     return;
3616 
3617   for (Section_list::iterator p = this->section_list_.begin();
3618        p != this->section_list_.end();
3619        ++p)
3620     {
3621       if ((*p)->type() != elfcpp::SHT_STRTAB)
3622 	continue;
3623 
3624       const char* name = (*p)->name();
3625       if (strncmp(name, ".stab", 5) != 0)
3626 	continue;
3627 
3628       size_t len = strlen(name);
3629       if (strcmp(name + len - 3, "str") != 0)
3630 	continue;
3631 
3632       std::string stab_name(name, len - 3);
3633       Output_section* stab_sec;
3634       stab_sec = this->find_output_section(stab_name.c_str());
3635       if (stab_sec != NULL)
3636 	stab_sec->set_link_section(*p);
3637     }
3638 }
3639 
3640 // Create .gnu_incremental_inputs and related sections needed
3641 // for the next run of incremental linking to check what has changed.
3642 
3643 void
create_incremental_info_sections(Symbol_table * symtab)3644 Layout::create_incremental_info_sections(Symbol_table* symtab)
3645 {
3646   Incremental_inputs* incr = this->incremental_inputs_;
3647 
3648   gold_assert(incr != NULL);
3649 
3650   // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
3651   incr->create_data_sections(symtab);
3652 
3653   // Add the .gnu_incremental_inputs section.
3654   const char* incremental_inputs_name =
3655     this->namepool_.add(".gnu_incremental_inputs", false, NULL);
3656   Output_section* incremental_inputs_os =
3657     this->make_output_section(incremental_inputs_name,
3658 			      elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
3659 			      ORDER_INVALID, false);
3660   incremental_inputs_os->add_output_section_data(incr->inputs_section());
3661 
3662   // Add the .gnu_incremental_symtab section.
3663   const char* incremental_symtab_name =
3664     this->namepool_.add(".gnu_incremental_symtab", false, NULL);
3665   Output_section* incremental_symtab_os =
3666     this->make_output_section(incremental_symtab_name,
3667 			      elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
3668 			      ORDER_INVALID, false);
3669   incremental_symtab_os->add_output_section_data(incr->symtab_section());
3670   incremental_symtab_os->set_entsize(4);
3671 
3672   // Add the .gnu_incremental_relocs section.
3673   const char* incremental_relocs_name =
3674     this->namepool_.add(".gnu_incremental_relocs", false, NULL);
3675   Output_section* incremental_relocs_os =
3676     this->make_output_section(incremental_relocs_name,
3677 			      elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
3678 			      ORDER_INVALID, false);
3679   incremental_relocs_os->add_output_section_data(incr->relocs_section());
3680   incremental_relocs_os->set_entsize(incr->relocs_entsize());
3681 
3682   // Add the .gnu_incremental_got_plt section.
3683   const char* incremental_got_plt_name =
3684     this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
3685   Output_section* incremental_got_plt_os =
3686     this->make_output_section(incremental_got_plt_name,
3687 			      elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
3688 			      ORDER_INVALID, false);
3689   incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
3690 
3691   // Add the .gnu_incremental_strtab section.
3692   const char* incremental_strtab_name =
3693     this->namepool_.add(".gnu_incremental_strtab", false, NULL);
3694   Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
3695 							elfcpp::SHT_STRTAB, 0,
3696 							ORDER_INVALID, false);
3697   Output_data_strtab* strtab_data =
3698       new Output_data_strtab(incr->get_stringpool());
3699   incremental_strtab_os->add_output_section_data(strtab_data);
3700 
3701   incremental_inputs_os->set_after_input_sections();
3702   incremental_symtab_os->set_after_input_sections();
3703   incremental_relocs_os->set_after_input_sections();
3704   incremental_got_plt_os->set_after_input_sections();
3705 
3706   incremental_inputs_os->set_link_section(incremental_strtab_os);
3707   incremental_symtab_os->set_link_section(incremental_inputs_os);
3708   incremental_relocs_os->set_link_section(incremental_inputs_os);
3709   incremental_got_plt_os->set_link_section(incremental_inputs_os);
3710 }
3711 
3712 // Return whether SEG1 should be before SEG2 in the output file.  This
3713 // is based entirely on the segment type and flags.  When this is
3714 // called the segment addresses have normally not yet been set.
3715 
3716 bool
segment_precedes(const Output_segment * seg1,const Output_segment * seg2)3717 Layout::segment_precedes(const Output_segment* seg1,
3718 			 const Output_segment* seg2)
3719 {
3720   // In order to produce a stable ordering if we're called with the same pointer
3721   // return false.
3722   if (seg1 == seg2)
3723     return false;
3724 
3725   elfcpp::Elf_Word type1 = seg1->type();
3726   elfcpp::Elf_Word type2 = seg2->type();
3727 
3728   // The single PT_PHDR segment is required to precede any loadable
3729   // segment.  We simply make it always first.
3730   if (type1 == elfcpp::PT_PHDR)
3731     {
3732       gold_assert(type2 != elfcpp::PT_PHDR);
3733       return true;
3734     }
3735   if (type2 == elfcpp::PT_PHDR)
3736     return false;
3737 
3738   // The single PT_INTERP segment is required to precede any loadable
3739   // segment.  We simply make it always second.
3740   if (type1 == elfcpp::PT_INTERP)
3741     {
3742       gold_assert(type2 != elfcpp::PT_INTERP);
3743       return true;
3744     }
3745   if (type2 == elfcpp::PT_INTERP)
3746     return false;
3747 
3748   // We then put PT_LOAD segments before any other segments.
3749   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
3750     return true;
3751   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
3752     return false;
3753 
3754   // We put the PT_TLS segment last except for the PT_GNU_RELRO
3755   // segment, because that is where the dynamic linker expects to find
3756   // it (this is just for efficiency; other positions would also work
3757   // correctly).
3758   if (type1 == elfcpp::PT_TLS
3759       && type2 != elfcpp::PT_TLS
3760       && type2 != elfcpp::PT_GNU_RELRO)
3761     return false;
3762   if (type2 == elfcpp::PT_TLS
3763       && type1 != elfcpp::PT_TLS
3764       && type1 != elfcpp::PT_GNU_RELRO)
3765     return true;
3766 
3767   // We put the PT_GNU_RELRO segment last, because that is where the
3768   // dynamic linker expects to find it (as with PT_TLS, this is just
3769   // for efficiency).
3770   if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
3771     return false;
3772   if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
3773     return true;
3774 
3775   const elfcpp::Elf_Word flags1 = seg1->flags();
3776   const elfcpp::Elf_Word flags2 = seg2->flags();
3777 
3778   // The order of non-PT_LOAD segments is unimportant.  We simply sort
3779   // by the numeric segment type and flags values.  There should not
3780   // be more than one segment with the same type and flags, except
3781   // when a linker script specifies such.
3782   if (type1 != elfcpp::PT_LOAD)
3783     {
3784       if (type1 != type2)
3785 	return type1 < type2;
3786       uint64_t align1 = seg1->align();
3787       uint64_t align2 = seg2->align();
3788       // Place segments with larger alignments first.
3789       if (align1 != align2)
3790 	return align1 > align2;
3791       gold_assert(flags1 != flags2
3792 		  || this->script_options_->saw_phdrs_clause());
3793       return flags1 < flags2;
3794     }
3795 
3796   // If the addresses are set already, sort by load address.
3797   if (seg1->are_addresses_set())
3798     {
3799       if (!seg2->are_addresses_set())
3800 	return true;
3801 
3802       unsigned int section_count1 = seg1->output_section_count();
3803       unsigned int section_count2 = seg2->output_section_count();
3804       if (section_count1 == 0 && section_count2 > 0)
3805 	return true;
3806       if (section_count1 > 0 && section_count2 == 0)
3807 	return false;
3808 
3809       uint64_t paddr1 =	(seg1->are_addresses_set()
3810 			 ? seg1->paddr()
3811 			 : seg1->first_section_load_address());
3812       uint64_t paddr2 =	(seg2->are_addresses_set()
3813 			 ? seg2->paddr()
3814 			 : seg2->first_section_load_address());
3815 
3816       if (paddr1 != paddr2)
3817 	return paddr1 < paddr2;
3818     }
3819   else if (seg2->are_addresses_set())
3820     return false;
3821 
3822   // A segment which holds large data comes after a segment which does
3823   // not hold large data.
3824   if (seg1->is_large_data_segment())
3825     {
3826       if (!seg2->is_large_data_segment())
3827 	return false;
3828     }
3829   else if (seg2->is_large_data_segment())
3830     return true;
3831 
3832   // Otherwise, we sort PT_LOAD segments based on the flags.  Readonly
3833   // segments come before writable segments.  Then writable segments
3834   // with data come before writable segments without data.  Then
3835   // executable segments come before non-executable segments.  Then
3836   // the unlikely case of a non-readable segment comes before the
3837   // normal case of a readable segment.  If there are multiple
3838   // segments with the same type and flags, we require that the
3839   // address be set, and we sort by virtual address and then physical
3840   // address.
3841   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
3842     return (flags1 & elfcpp::PF_W) == 0;
3843   if ((flags1 & elfcpp::PF_W) != 0
3844       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
3845     return seg1->has_any_data_sections();
3846   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
3847     return (flags1 & elfcpp::PF_X) != 0;
3848   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
3849     return (flags1 & elfcpp::PF_R) == 0;
3850 
3851   // We shouldn't get here--we shouldn't create segments which we
3852   // can't distinguish.  Unless of course we are using a weird linker
3853   // script or overlapping --section-start options.  We could also get
3854   // here if plugins want unique segments for subsets of sections.
3855   gold_assert(this->script_options_->saw_phdrs_clause()
3856 	      || parameters->options().any_section_start()
3857 	      || this->is_unique_segment_for_sections_specified()
3858 	      || parameters->options().text_unlikely_segment());
3859   return false;
3860 }
3861 
3862 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3863 
3864 static off_t
align_file_offset(off_t off,uint64_t addr,uint64_t abi_pagesize)3865 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
3866 {
3867   uint64_t unsigned_off = off;
3868   uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
3869 			  | (addr & (abi_pagesize - 1)));
3870   if (aligned_off < unsigned_off)
3871     aligned_off += abi_pagesize;
3872   return aligned_off;
3873 }
3874 
3875 // On targets where the text segment contains only executable code,
3876 // a non-executable segment is never the text segment.
3877 
3878 static inline bool
is_text_segment(const Target * target,const Output_segment * seg)3879 is_text_segment(const Target* target, const Output_segment* seg)
3880 {
3881   elfcpp::Elf_Xword flags = seg->flags();
3882   if ((flags & elfcpp::PF_W) != 0)
3883     return false;
3884   if ((flags & elfcpp::PF_X) == 0)
3885     return !target->isolate_execinstr();
3886   return true;
3887 }
3888 
3889 // Set the file offsets of all the segments, and all the sections they
3890 // contain.  They have all been created.  LOAD_SEG must be laid out
3891 // first.  Return the offset of the data to follow.
3892 
3893 off_t
set_segment_offsets(const Target * target,Output_segment * load_seg,unsigned int * pshndx)3894 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3895 			    unsigned int* pshndx)
3896 {
3897   // Sort them into the final order.  We use a stable sort so that we
3898   // don't randomize the order of indistinguishable segments created
3899   // by linker scripts.
3900   std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3901 		   Layout::Compare_segments(this));
3902 
3903   // Find the PT_LOAD segments, and set their addresses and offsets
3904   // and their section's addresses and offsets.
3905   uint64_t start_addr;
3906   if (parameters->options().user_set_Ttext())
3907     start_addr = parameters->options().Ttext();
3908   else if (parameters->options().output_is_position_independent())
3909     start_addr = 0;
3910   else
3911     start_addr = target->default_text_segment_address();
3912 
3913   uint64_t addr = start_addr;
3914   off_t off = 0;
3915 
3916   // If LOAD_SEG is NULL, then the file header and segment headers
3917   // will not be loadable.  But they still need to be at offset 0 in
3918   // the file.  Set their offsets now.
3919   if (load_seg == NULL)
3920     {
3921       for (Data_list::iterator p = this->special_output_list_.begin();
3922 	   p != this->special_output_list_.end();
3923 	   ++p)
3924 	{
3925 	  off = align_address(off, (*p)->addralign());
3926 	  (*p)->set_address_and_file_offset(0, off);
3927 	  off += (*p)->data_size();
3928 	}
3929     }
3930 
3931   unsigned int increase_relro = this->increase_relro_;
3932   if (this->script_options_->saw_sections_clause())
3933     increase_relro = 0;
3934 
3935   const bool check_sections = parameters->options().check_sections();
3936   Output_segment* last_load_segment = NULL;
3937 
3938   unsigned int shndx_begin = *pshndx;
3939   unsigned int shndx_load_seg = *pshndx;
3940 
3941   for (Segment_list::iterator p = this->segment_list_.begin();
3942        p != this->segment_list_.end();
3943        ++p)
3944     {
3945       if ((*p)->type() == elfcpp::PT_LOAD)
3946 	{
3947 	  if (target->isolate_execinstr())
3948 	    {
3949 	      // When we hit the segment that should contain the
3950 	      // file headers, reset the file offset so we place
3951 	      // it and subsequent segments appropriately.
3952 	      // We'll fix up the preceding segments below.
3953 	      if (load_seg == *p)
3954 		{
3955 		  if (off == 0)
3956 		    load_seg = NULL;
3957 		  else
3958 		    {
3959 		      off = 0;
3960 		      shndx_load_seg = *pshndx;
3961 		    }
3962 		}
3963 	    }
3964 	  else
3965 	    {
3966 	      // Verify that the file headers fall into the first segment.
3967 	      if (load_seg != NULL && load_seg != *p)
3968 		gold_unreachable();
3969 	      load_seg = NULL;
3970 	    }
3971 
3972 	  bool are_addresses_set = (*p)->are_addresses_set();
3973 	  if (are_addresses_set)
3974 	    {
3975 	      // When it comes to setting file offsets, we care about
3976 	      // the physical address.
3977 	      addr = (*p)->paddr();
3978 	    }
3979 	  else if (parameters->options().user_set_Ttext()
3980 		   && (parameters->options().omagic()
3981 		       || is_text_segment(target, *p)))
3982 	    {
3983 	      are_addresses_set = true;
3984 	    }
3985 	  else if (parameters->options().user_set_Trodata_segment()
3986 		   && ((*p)->flags() & (elfcpp::PF_W | elfcpp::PF_X)) == 0)
3987 	    {
3988 	      addr = parameters->options().Trodata_segment();
3989 	      are_addresses_set = true;
3990 	    }
3991 	  else if (parameters->options().user_set_Tdata()
3992 		   && ((*p)->flags() & elfcpp::PF_W) != 0
3993 		   && (!parameters->options().user_set_Tbss()
3994 		       || (*p)->has_any_data_sections()))
3995 	    {
3996 	      addr = parameters->options().Tdata();
3997 	      are_addresses_set = true;
3998 	    }
3999 	  else if (parameters->options().user_set_Tbss()
4000 		   && ((*p)->flags() & elfcpp::PF_W) != 0
4001 		   && !(*p)->has_any_data_sections())
4002 	    {
4003 	      addr = parameters->options().Tbss();
4004 	      are_addresses_set = true;
4005 	    }
4006 
4007 	  uint64_t orig_addr = addr;
4008 	  uint64_t orig_off = off;
4009 
4010 	  uint64_t aligned_addr = 0;
4011 	  uint64_t abi_pagesize = target->abi_pagesize();
4012 	  uint64_t common_pagesize = target->common_pagesize();
4013 
4014 	  if (!parameters->options().nmagic()
4015 	      && !parameters->options().omagic())
4016 	    (*p)->set_minimum_p_align(abi_pagesize);
4017 
4018 	  if (!are_addresses_set)
4019 	    {
4020 	      // Skip the address forward one page, maintaining the same
4021 	      // position within the page.  This lets us store both segments
4022 	      // overlapping on a single page in the file, but the loader will
4023 	      // put them on different pages in memory. We will revisit this
4024 	      // decision once we know the size of the segment.
4025 
4026 	      uint64_t max_align = (*p)->maximum_alignment();
4027 	      if (max_align > abi_pagesize)
4028 		addr = align_address(addr, max_align);
4029 	      aligned_addr = addr;
4030 
4031 	      if (load_seg == *p)
4032 		{
4033 		  // This is the segment that will contain the file
4034 		  // headers, so its offset will have to be exactly zero.
4035 		  gold_assert(orig_off == 0);
4036 
4037 		  // If the target wants a fixed minimum distance from the
4038 		  // text segment to the read-only segment, move up now.
4039 		  uint64_t min_addr =
4040 		    start_addr + (parameters->options().user_set_rosegment_gap()
4041 				  ? parameters->options().rosegment_gap()
4042 				  : target->rosegment_gap());
4043 		  if (addr < min_addr)
4044 		    addr = min_addr;
4045 
4046 		  // But this is not the first segment!  To make its
4047 		  // address congruent with its offset, that address better
4048 		  // be aligned to the ABI-mandated page size.
4049 		  addr = align_address(addr, abi_pagesize);
4050 		  aligned_addr = addr;
4051 		}
4052 	      else
4053 		{
4054 		  if ((addr & (abi_pagesize - 1)) != 0)
4055 		    addr = addr + abi_pagesize;
4056 
4057 		  off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
4058 		}
4059 	    }
4060 
4061 	  if (!parameters->options().nmagic()
4062 	      && !parameters->options().omagic())
4063 	    {
4064 	      // Here we are also taking care of the case when
4065 	      // the maximum segment alignment is larger than the page size.
4066 	      off = align_file_offset(off, addr,
4067 				      std::max(abi_pagesize,
4068 					       (*p)->maximum_alignment()));
4069 	    }
4070 	  else
4071 	    {
4072 	      // This is -N or -n with a section script which prevents
4073 	      // us from using a load segment.  We need to ensure that
4074 	      // the file offset is aligned to the alignment of the
4075 	      // segment.  This is because the linker script
4076 	      // implicitly assumed a zero offset.  If we don't align
4077 	      // here, then the alignment of the sections in the
4078 	      // linker script may not match the alignment of the
4079 	      // sections in the set_section_addresses call below,
4080 	      // causing an error about dot moving backward.
4081 	      off = align_address(off, (*p)->maximum_alignment());
4082 	    }
4083 
4084 	  unsigned int shndx_hold = *pshndx;
4085 	  bool has_relro = false;
4086 	  uint64_t new_addr = (*p)->set_section_addresses(target, this,
4087 							  false, addr,
4088 							  &increase_relro,
4089 							  &has_relro,
4090 							  &off, pshndx);
4091 
4092 	  // Now that we know the size of this segment, we may be able
4093 	  // to save a page in memory, at the cost of wasting some
4094 	  // file space, by instead aligning to the start of a new
4095 	  // page.  Here we use the real machine page size rather than
4096 	  // the ABI mandated page size.  If the segment has been
4097 	  // aligned so that the relro data ends at a page boundary,
4098 	  // we do not try to realign it.
4099 
4100 	  if (!are_addresses_set
4101 	      && !has_relro
4102 	      && aligned_addr != addr
4103 	      && !parameters->incremental())
4104 	    {
4105 	      uint64_t first_off = (common_pagesize
4106 				    - (aligned_addr
4107 				       & (common_pagesize - 1)));
4108 	      uint64_t last_off = new_addr & (common_pagesize - 1);
4109 	      if (first_off > 0
4110 		  && last_off > 0
4111 		  && ((aligned_addr & ~ (common_pagesize - 1))
4112 		      != (new_addr & ~ (common_pagesize - 1)))
4113 		  && first_off + last_off <= common_pagesize)
4114 		{
4115 		  *pshndx = shndx_hold;
4116 		  addr = align_address(aligned_addr, common_pagesize);
4117 		  addr = align_address(addr, (*p)->maximum_alignment());
4118 		  if ((addr & (abi_pagesize - 1)) != 0)
4119 		    addr = addr + abi_pagesize;
4120 		  off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
4121 		  off = align_file_offset(off, addr, abi_pagesize);
4122 
4123 		  increase_relro = this->increase_relro_;
4124 		  if (this->script_options_->saw_sections_clause())
4125 		    increase_relro = 0;
4126 		  has_relro = false;
4127 
4128 		  new_addr = (*p)->set_section_addresses(target, this,
4129 							 true, addr,
4130 							 &increase_relro,
4131 							 &has_relro,
4132 							 &off, pshndx);
4133 		}
4134 	    }
4135 
4136 	  addr = new_addr;
4137 
4138 	  // Implement --check-sections.  We know that the segments
4139 	  // are sorted by LMA.
4140 	  if (check_sections && last_load_segment != NULL)
4141 	    {
4142 	      gold_assert(last_load_segment->paddr() <= (*p)->paddr());
4143 	      if (last_load_segment->paddr() + last_load_segment->memsz()
4144 		  > (*p)->paddr())
4145 		{
4146 		  unsigned long long lb1 = last_load_segment->paddr();
4147 		  unsigned long long le1 = lb1 + last_load_segment->memsz();
4148 		  unsigned long long lb2 = (*p)->paddr();
4149 		  unsigned long long le2 = lb2 + (*p)->memsz();
4150 		  gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
4151 			       "[0x%llx -> 0x%llx]"),
4152 			     lb1, le1, lb2, le2);
4153 		}
4154 	    }
4155 	  last_load_segment = *p;
4156 	}
4157     }
4158 
4159   if (load_seg != NULL && target->isolate_execinstr())
4160     {
4161       // Process the early segments again, setting their file offsets
4162       // so they land after the segments starting at LOAD_SEG.
4163       off = align_file_offset(off, 0, target->abi_pagesize());
4164 
4165       this->reset_relax_output();
4166 
4167       for (Segment_list::iterator p = this->segment_list_.begin();
4168 	   *p != load_seg;
4169 	   ++p)
4170 	{
4171 	  if ((*p)->type() == elfcpp::PT_LOAD)
4172 	    {
4173 	      // We repeat the whole job of assigning addresses and
4174 	      // offsets, but we really only want to change the offsets and
4175 	      // must ensure that the addresses all come out the same as
4176 	      // they did the first time through.
4177 	      bool has_relro = false;
4178 	      const uint64_t old_addr = (*p)->vaddr();
4179 	      const uint64_t old_end = old_addr + (*p)->memsz();
4180 	      uint64_t new_addr = (*p)->set_section_addresses(target, this,
4181 							      true, old_addr,
4182 							      &increase_relro,
4183 							      &has_relro,
4184 							      &off,
4185 							      &shndx_begin);
4186 	      gold_assert(new_addr == old_end);
4187 	    }
4188 	}
4189 
4190       gold_assert(shndx_begin == shndx_load_seg);
4191     }
4192 
4193   // Handle the non-PT_LOAD segments, setting their offsets from their
4194   // section's offsets.
4195   for (Segment_list::iterator p = this->segment_list_.begin();
4196        p != this->segment_list_.end();
4197        ++p)
4198     {
4199       // PT_GNU_STACK was set up correctly when it was created.
4200       if ((*p)->type() != elfcpp::PT_LOAD
4201 	  && (*p)->type() != elfcpp::PT_GNU_STACK)
4202 	(*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
4203 			 ? increase_relro
4204 			 : 0);
4205     }
4206 
4207   // Set the TLS offsets for each section in the PT_TLS segment.
4208   if (this->tls_segment_ != NULL)
4209     this->tls_segment_->set_tls_offsets();
4210 
4211   return off;
4212 }
4213 
4214 // Set the offsets of all the allocated sections when doing a
4215 // relocatable link.  This does the same jobs as set_segment_offsets,
4216 // only for a relocatable link.
4217 
4218 off_t
set_relocatable_section_offsets(Output_data * file_header,unsigned int * pshndx)4219 Layout::set_relocatable_section_offsets(Output_data* file_header,
4220 					unsigned int* pshndx)
4221 {
4222   off_t off = 0;
4223 
4224   file_header->set_address_and_file_offset(0, 0);
4225   off += file_header->data_size();
4226 
4227   for (Section_list::iterator p = this->section_list_.begin();
4228        p != this->section_list_.end();
4229        ++p)
4230     {
4231       // We skip unallocated sections here, except that group sections
4232       // have to come first.
4233       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
4234 	  && (*p)->type() != elfcpp::SHT_GROUP)
4235 	continue;
4236 
4237       off = align_address(off, (*p)->addralign());
4238 
4239       // The linker script might have set the address.
4240       if (!(*p)->is_address_valid())
4241 	(*p)->set_address(0);
4242       (*p)->set_file_offset(off);
4243       (*p)->finalize_data_size();
4244       if ((*p)->type() != elfcpp::SHT_NOBITS)
4245 	off += (*p)->data_size();
4246 
4247       (*p)->set_out_shndx(*pshndx);
4248       ++*pshndx;
4249     }
4250 
4251   return off;
4252 }
4253 
4254 // Set the file offset of all the sections not associated with a
4255 // segment.
4256 
4257 off_t
set_section_offsets(off_t off,Layout::Section_offset_pass pass)4258 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
4259 {
4260   off_t startoff = off;
4261   off_t maxoff = off;
4262 
4263   for (Section_list::iterator p = this->unattached_section_list_.begin();
4264        p != this->unattached_section_list_.end();
4265        ++p)
4266     {
4267       // The symtab section is handled in create_symtab_sections.
4268       if (*p == this->symtab_section_)
4269 	continue;
4270 
4271       // If we've already set the data size, don't set it again.
4272       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
4273 	continue;
4274 
4275       if (pass == BEFORE_INPUT_SECTIONS_PASS
4276 	  && (*p)->requires_postprocessing())
4277 	{
4278 	  (*p)->create_postprocessing_buffer();
4279 	  this->any_postprocessing_sections_ = true;
4280 	}
4281 
4282       if (pass == BEFORE_INPUT_SECTIONS_PASS
4283 	  && (*p)->after_input_sections())
4284 	continue;
4285       else if (pass == POSTPROCESSING_SECTIONS_PASS
4286 	       && (!(*p)->after_input_sections()
4287 		   || (*p)->type() == elfcpp::SHT_STRTAB))
4288 	continue;
4289       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
4290 	       && (!(*p)->after_input_sections()
4291 		   || (*p)->type() != elfcpp::SHT_STRTAB))
4292 	continue;
4293 
4294       if (!parameters->incremental_update())
4295 	{
4296 	  off = align_address(off, (*p)->addralign());
4297 	  (*p)->set_file_offset(off);
4298 	  (*p)->finalize_data_size();
4299 	}
4300       else
4301 	{
4302 	  // Incremental update: allocate file space from free list.
4303 	  (*p)->pre_finalize_data_size();
4304 	  off_t current_size = (*p)->current_data_size();
4305 	  off = this->allocate(current_size, (*p)->addralign(), startoff);
4306 	  if (off == -1)
4307 	    {
4308 	      if (is_debugging_enabled(DEBUG_INCREMENTAL))
4309 		this->free_list_.dump();
4310 	      gold_assert((*p)->output_section() != NULL);
4311 	      gold_fallback(_("out of patch space for section %s; "
4312 			      "relink with --incremental-full"),
4313 			    (*p)->output_section()->name());
4314 	    }
4315 	  (*p)->set_file_offset(off);
4316 	  (*p)->finalize_data_size();
4317 	  if ((*p)->data_size() > current_size)
4318 	    {
4319 	      gold_assert((*p)->output_section() != NULL);
4320 	      gold_fallback(_("%s: section changed size; "
4321 			      "relink with --incremental-full"),
4322 			    (*p)->output_section()->name());
4323 	    }
4324 	  gold_debug(DEBUG_INCREMENTAL,
4325 		     "set_section_offsets: %08lx %08lx %s",
4326 		     static_cast<long>(off),
4327 		     static_cast<long>((*p)->data_size()),
4328 		     ((*p)->output_section() != NULL
4329 		      ? (*p)->output_section()->name() : "(special)"));
4330 	}
4331 
4332       off += (*p)->data_size();
4333       if (off > maxoff)
4334 	maxoff = off;
4335 
4336       // At this point the name must be set.
4337       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
4338 	this->namepool_.add((*p)->name(), false, NULL);
4339     }
4340   return maxoff;
4341 }
4342 
4343 // Set the section indexes of all the sections not associated with a
4344 // segment.
4345 
4346 unsigned int
set_section_indexes(unsigned int shndx)4347 Layout::set_section_indexes(unsigned int shndx)
4348 {
4349   for (Section_list::iterator p = this->unattached_section_list_.begin();
4350        p != this->unattached_section_list_.end();
4351        ++p)
4352     {
4353       if (!(*p)->has_out_shndx())
4354 	{
4355 	  (*p)->set_out_shndx(shndx);
4356 	  ++shndx;
4357 	}
4358     }
4359   return shndx;
4360 }
4361 
4362 // Set the section addresses according to the linker script.  This is
4363 // only called when we see a SECTIONS clause.  This returns the
4364 // program segment which should hold the file header and segment
4365 // headers, if any.  It will return NULL if they should not be in a
4366 // segment.
4367 
4368 Output_segment*
set_section_addresses_from_script(Symbol_table * symtab)4369 Layout::set_section_addresses_from_script(Symbol_table* symtab)
4370 {
4371   Script_sections* ss = this->script_options_->script_sections();
4372   gold_assert(ss->saw_sections_clause());
4373   return this->script_options_->set_section_addresses(symtab, this);
4374 }
4375 
4376 // Place the orphan sections in the linker script.
4377 
4378 void
place_orphan_sections_in_script()4379 Layout::place_orphan_sections_in_script()
4380 {
4381   Script_sections* ss = this->script_options_->script_sections();
4382   gold_assert(ss->saw_sections_clause());
4383 
4384   // Place each orphaned output section in the script.
4385   for (Section_list::iterator p = this->section_list_.begin();
4386        p != this->section_list_.end();
4387        ++p)
4388     {
4389       if (!(*p)->found_in_sections_clause())
4390 	ss->place_orphan(*p);
4391     }
4392 }
4393 
4394 // Count the local symbols in the regular symbol table and the dynamic
4395 // symbol table, and build the respective string pools.
4396 
4397 void
count_local_symbols(const Task * task,const Input_objects * input_objects)4398 Layout::count_local_symbols(const Task* task,
4399 			    const Input_objects* input_objects)
4400 {
4401   // First, figure out an upper bound on the number of symbols we'll
4402   // be inserting into each pool.  This helps us create the pools with
4403   // the right size, to avoid unnecessary hashtable resizing.
4404   unsigned int symbol_count = 0;
4405   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4406        p != input_objects->relobj_end();
4407        ++p)
4408     symbol_count += (*p)->local_symbol_count();
4409 
4410   // Go from "upper bound" to "estimate."  We overcount for two
4411   // reasons: we double-count symbols that occur in more than one
4412   // object file, and we count symbols that are dropped from the
4413   // output.  Add it all together and assume we overcount by 100%.
4414   symbol_count /= 2;
4415 
4416   // We assume all symbols will go into both the sympool and dynpool.
4417   this->sympool_.reserve(symbol_count);
4418   this->dynpool_.reserve(symbol_count);
4419 
4420   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4421        p != input_objects->relobj_end();
4422        ++p)
4423     {
4424       Task_lock_obj<Object> tlo(task, *p);
4425       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
4426     }
4427 }
4428 
4429 // Create the symbol table sections.  Here we also set the final
4430 // values of the symbols.  At this point all the loadable sections are
4431 // fully laid out.  SHNUM is the number of sections so far.
4432 
4433 void
create_symtab_sections(const Input_objects * input_objects,Symbol_table * symtab,unsigned int shnum,off_t * poff,unsigned int local_dynamic_count)4434 Layout::create_symtab_sections(const Input_objects* input_objects,
4435 			       Symbol_table* symtab,
4436 			       unsigned int shnum,
4437 			       off_t* poff,
4438 			       unsigned int local_dynamic_count)
4439 {
4440   int symsize;
4441   unsigned int align;
4442   if (parameters->target().get_size() == 32)
4443     {
4444       symsize = elfcpp::Elf_sizes<32>::sym_size;
4445       align = 4;
4446     }
4447   else if (parameters->target().get_size() == 64)
4448     {
4449       symsize = elfcpp::Elf_sizes<64>::sym_size;
4450       align = 8;
4451     }
4452   else
4453     gold_unreachable();
4454 
4455   // Compute file offsets relative to the start of the symtab section.
4456   off_t off = 0;
4457 
4458   // Save space for the dummy symbol at the start of the section.  We
4459   // never bother to write this out--it will just be left as zero.
4460   off += symsize;
4461   unsigned int local_symbol_index = 1;
4462 
4463   // Add STT_SECTION symbols for each Output section which needs one.
4464   for (Section_list::iterator p = this->section_list_.begin();
4465        p != this->section_list_.end();
4466        ++p)
4467     {
4468       if (!(*p)->needs_symtab_index())
4469 	(*p)->set_symtab_index(-1U);
4470       else
4471 	{
4472 	  (*p)->set_symtab_index(local_symbol_index);
4473 	  ++local_symbol_index;
4474 	  off += symsize;
4475 	}
4476     }
4477 
4478   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4479        p != input_objects->relobj_end();
4480        ++p)
4481     {
4482       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
4483 							off, symtab);
4484       off += (index - local_symbol_index) * symsize;
4485       local_symbol_index = index;
4486     }
4487 
4488   unsigned int local_symcount = local_symbol_index;
4489   gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
4490 
4491   off_t dynoff;
4492   size_t dyncount;
4493   if (this->dynsym_section_ == NULL)
4494     {
4495       dynoff = 0;
4496       dyncount = 0;
4497     }
4498   else
4499     {
4500       off_t locsize = local_dynamic_count * this->dynsym_section_->entsize();
4501       dynoff = this->dynsym_section_->offset() + locsize;
4502       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
4503       gold_assert(static_cast<off_t>(dyncount * symsize)
4504 		  == this->dynsym_section_->data_size() - locsize);
4505     }
4506 
4507   off_t global_off = off;
4508   off = symtab->finalize(off, dynoff, local_dynamic_count, dyncount,
4509 			 &this->sympool_, &local_symcount);
4510 
4511   if (!parameters->options().strip_all())
4512     {
4513       this->sympool_.set_string_offsets();
4514 
4515       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
4516       Output_section* osymtab = this->make_output_section(symtab_name,
4517 							  elfcpp::SHT_SYMTAB,
4518 							  0, ORDER_INVALID,
4519 							  false);
4520       this->symtab_section_ = osymtab;
4521 
4522       Output_section_data* pos = new Output_data_fixed_space(off, align,
4523 							     "** symtab");
4524       osymtab->add_output_section_data(pos);
4525 
4526       // We generate a .symtab_shndx section if we have more than
4527       // SHN_LORESERVE sections.  Technically it is possible that we
4528       // don't need one, because it is possible that there are no
4529       // symbols in any of sections with indexes larger than
4530       // SHN_LORESERVE.  That is probably unusual, though, and it is
4531       // easier to always create one than to compute section indexes
4532       // twice (once here, once when writing out the symbols).
4533       if (shnum >= elfcpp::SHN_LORESERVE)
4534 	{
4535 	  const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
4536 							       false, NULL);
4537 	  Output_section* osymtab_xindex =
4538 	    this->make_output_section(symtab_xindex_name,
4539 				      elfcpp::SHT_SYMTAB_SHNDX, 0,
4540 				      ORDER_INVALID, false);
4541 
4542 	  size_t symcount = off / symsize;
4543 	  this->symtab_xindex_ = new Output_symtab_xindex(symcount);
4544 
4545 	  osymtab_xindex->add_output_section_data(this->symtab_xindex_);
4546 
4547 	  osymtab_xindex->set_link_section(osymtab);
4548 	  osymtab_xindex->set_addralign(4);
4549 	  osymtab_xindex->set_entsize(4);
4550 
4551 	  osymtab_xindex->set_after_input_sections();
4552 
4553 	  // This tells the driver code to wait until the symbol table
4554 	  // has written out before writing out the postprocessing
4555 	  // sections, including the .symtab_shndx section.
4556 	  this->any_postprocessing_sections_ = true;
4557 	}
4558 
4559       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
4560       Output_section* ostrtab = this->make_output_section(strtab_name,
4561 							  elfcpp::SHT_STRTAB,
4562 							  0, ORDER_INVALID,
4563 							  false);
4564 
4565       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
4566       ostrtab->add_output_section_data(pstr);
4567 
4568       off_t symtab_off;
4569       if (!parameters->incremental_update())
4570 	symtab_off = align_address(*poff, align);
4571       else
4572 	{
4573 	  symtab_off = this->allocate(off, align, *poff);
4574 	  if (off == -1)
4575 	    gold_fallback(_("out of patch space for symbol table; "
4576 			    "relink with --incremental-full"));
4577 	  gold_debug(DEBUG_INCREMENTAL,
4578 		     "create_symtab_sections: %08lx %08lx .symtab",
4579 		     static_cast<long>(symtab_off),
4580 		     static_cast<long>(off));
4581 	}
4582 
4583       symtab->set_file_offset(symtab_off + global_off);
4584       osymtab->set_file_offset(symtab_off);
4585       osymtab->finalize_data_size();
4586       osymtab->set_link_section(ostrtab);
4587       osymtab->set_info(local_symcount);
4588       osymtab->set_entsize(symsize);
4589 
4590       if (symtab_off + off > *poff)
4591 	*poff = symtab_off + off;
4592     }
4593 }
4594 
4595 // Create the .shstrtab section, which holds the names of the
4596 // sections.  At the time this is called, we have created all the
4597 // output sections except .shstrtab itself.
4598 
4599 Output_section*
create_shstrtab()4600 Layout::create_shstrtab()
4601 {
4602   // FIXME: We don't need to create a .shstrtab section if we are
4603   // stripping everything.
4604 
4605   const char* name = this->namepool_.add(".shstrtab", false, NULL);
4606 
4607   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
4608 						 ORDER_INVALID, false);
4609 
4610   if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
4611     {
4612       // We can't write out this section until we've set all the
4613       // section names, and we don't set the names of compressed
4614       // output sections until relocations are complete.  FIXME: With
4615       // the current names we use, this is unnecessary.
4616       os->set_after_input_sections();
4617     }
4618 
4619   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
4620   os->add_output_section_data(posd);
4621 
4622   return os;
4623 }
4624 
4625 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
4626 // offset.
4627 
4628 void
create_shdrs(const Output_section * shstrtab_section,off_t * poff)4629 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
4630 {
4631   Output_section_headers* oshdrs;
4632   oshdrs = new Output_section_headers(this,
4633 				      &this->segment_list_,
4634 				      &this->section_list_,
4635 				      &this->unattached_section_list_,
4636 				      &this->namepool_,
4637 				      shstrtab_section);
4638   off_t off;
4639   if (!parameters->incremental_update())
4640     off = align_address(*poff, oshdrs->addralign());
4641   else
4642     {
4643       oshdrs->pre_finalize_data_size();
4644       off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
4645       if (off == -1)
4646 	  gold_fallback(_("out of patch space for section header table; "
4647 			  "relink with --incremental-full"));
4648       gold_debug(DEBUG_INCREMENTAL,
4649 		 "create_shdrs: %08lx %08lx (section header table)",
4650 		 static_cast<long>(off),
4651 		 static_cast<long>(off + oshdrs->data_size()));
4652     }
4653   oshdrs->set_address_and_file_offset(0, off);
4654   off += oshdrs->data_size();
4655   if (off > *poff)
4656     *poff = off;
4657   this->section_headers_ = oshdrs;
4658 }
4659 
4660 // Count the allocated sections.
4661 
4662 size_t
allocated_output_section_count() const4663 Layout::allocated_output_section_count() const
4664 {
4665   size_t section_count = 0;
4666   for (Segment_list::const_iterator p = this->segment_list_.begin();
4667        p != this->segment_list_.end();
4668        ++p)
4669     section_count += (*p)->output_section_count();
4670   return section_count;
4671 }
4672 
4673 // Create the dynamic symbol table.
4674 // *PLOCAL_DYNAMIC_COUNT will be set to the number of local symbols
4675 // from input objects, and *PFORCED_LOCAL_DYNAMIC_COUNT will be set
4676 // to the number of global symbols that have been forced local.
4677 // We need to remember the former because the forced-local symbols are
4678 // written along with the global symbols in Symtab::write_globals().
4679 
4680 void
create_dynamic_symtab(const Input_objects * input_objects,Symbol_table * symtab,Output_section ** pdynstr,unsigned int * plocal_dynamic_count,unsigned int * pforced_local_dynamic_count,std::vector<Symbol * > * pdynamic_symbols,Versions * pversions)4681 Layout::create_dynamic_symtab(const Input_objects* input_objects,
4682 			      Symbol_table* symtab,
4683 			      Output_section** pdynstr,
4684 			      unsigned int* plocal_dynamic_count,
4685 			      unsigned int* pforced_local_dynamic_count,
4686 			      std::vector<Symbol*>* pdynamic_symbols,
4687 			      Versions* pversions)
4688 {
4689   // Count all the symbols in the dynamic symbol table, and set the
4690   // dynamic symbol indexes.
4691 
4692   // Skip symbol 0, which is always all zeroes.
4693   unsigned int index = 1;
4694 
4695   // Add STT_SECTION symbols for each Output section which needs one.
4696   for (Section_list::iterator p = this->section_list_.begin();
4697        p != this->section_list_.end();
4698        ++p)
4699     {
4700       if (!(*p)->needs_dynsym_index())
4701 	(*p)->set_dynsym_index(-1U);
4702       else
4703 	{
4704 	  (*p)->set_dynsym_index(index);
4705 	  ++index;
4706 	}
4707     }
4708 
4709   // Count the local symbols that need to go in the dynamic symbol table,
4710   // and set the dynamic symbol indexes.
4711   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4712        p != input_objects->relobj_end();
4713        ++p)
4714     {
4715       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
4716       index = new_index;
4717     }
4718 
4719   unsigned int local_symcount = index;
4720   unsigned int forced_local_count = 0;
4721 
4722   index = symtab->set_dynsym_indexes(index, &forced_local_count,
4723 				     pdynamic_symbols, &this->dynpool_,
4724 				     pversions);
4725 
4726   *plocal_dynamic_count = local_symcount;
4727   *pforced_local_dynamic_count = forced_local_count;
4728 
4729   int symsize;
4730   unsigned int align;
4731   const int size = parameters->target().get_size();
4732   if (size == 32)
4733     {
4734       symsize = elfcpp::Elf_sizes<32>::sym_size;
4735       align = 4;
4736     }
4737   else if (size == 64)
4738     {
4739       symsize = elfcpp::Elf_sizes<64>::sym_size;
4740       align = 8;
4741     }
4742   else
4743     gold_unreachable();
4744 
4745   // Create the dynamic symbol table section.
4746 
4747   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
4748 						       elfcpp::SHT_DYNSYM,
4749 						       elfcpp::SHF_ALLOC,
4750 						       false,
4751 						       ORDER_DYNAMIC_LINKER,
4752 						       false, false, false);
4753 
4754   // Check for NULL as a linker script may discard .dynsym.
4755   if (dynsym != NULL)
4756     {
4757       Output_section_data* odata = new Output_data_fixed_space(index * symsize,
4758 							       align,
4759 							       "** dynsym");
4760       dynsym->add_output_section_data(odata);
4761 
4762       dynsym->set_info(local_symcount + forced_local_count);
4763       dynsym->set_entsize(symsize);
4764       dynsym->set_addralign(align);
4765 
4766       this->dynsym_section_ = dynsym;
4767     }
4768 
4769   Output_data_dynamic* const odyn = this->dynamic_data_;
4770   if (odyn != NULL)
4771     {
4772       odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
4773       odyn->add_constant(elfcpp::DT_SYMENT, symsize);
4774     }
4775 
4776   // If there are more than SHN_LORESERVE allocated sections, we
4777   // create a .dynsym_shndx section.  It is possible that we don't
4778   // need one, because it is possible that there are no dynamic
4779   // symbols in any of the sections with indexes larger than
4780   // SHN_LORESERVE.  This is probably unusual, though, and at this
4781   // time we don't know the actual section indexes so it is
4782   // inconvenient to check.
4783   if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
4784     {
4785       Output_section* dynsym_xindex =
4786 	this->choose_output_section(NULL, ".dynsym_shndx",
4787 				    elfcpp::SHT_SYMTAB_SHNDX,
4788 				    elfcpp::SHF_ALLOC,
4789 				    false, ORDER_DYNAMIC_LINKER, false, false,
4790 				    false);
4791 
4792       if (dynsym_xindex != NULL)
4793 	{
4794 	  this->dynsym_xindex_ = new Output_symtab_xindex(index);
4795 
4796 	  dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
4797 
4798 	  dynsym_xindex->set_link_section(dynsym);
4799 	  dynsym_xindex->set_addralign(4);
4800 	  dynsym_xindex->set_entsize(4);
4801 
4802 	  dynsym_xindex->set_after_input_sections();
4803 
4804 	  // This tells the driver code to wait until the symbol table
4805 	  // has written out before writing out the postprocessing
4806 	  // sections, including the .dynsym_shndx section.
4807 	  this->any_postprocessing_sections_ = true;
4808 	}
4809     }
4810 
4811   // Create the dynamic string table section.
4812 
4813   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
4814 						       elfcpp::SHT_STRTAB,
4815 						       elfcpp::SHF_ALLOC,
4816 						       false,
4817 						       ORDER_DYNAMIC_LINKER,
4818 						       false, false, false);
4819   *pdynstr = dynstr;
4820   if (dynstr != NULL)
4821     {
4822       Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
4823       dynstr->add_output_section_data(strdata);
4824 
4825       if (dynsym != NULL)
4826 	dynsym->set_link_section(dynstr);
4827       if (this->dynamic_section_ != NULL)
4828 	this->dynamic_section_->set_link_section(dynstr);
4829 
4830       if (odyn != NULL)
4831 	{
4832 	  odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
4833 	  odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
4834 	}
4835     }
4836 
4837   // Create the hash tables.  The Gnu-style hash table must be
4838   // built first, because it changes the order of the symbols
4839   // in the dynamic symbol table.
4840 
4841   if (strcmp(parameters->options().hash_style(), "gnu") == 0
4842       || strcmp(parameters->options().hash_style(), "both") == 0)
4843     {
4844       unsigned char* phash;
4845       unsigned int hashlen;
4846       Dynobj::create_gnu_hash_table(*pdynamic_symbols,
4847 				    local_symcount + forced_local_count,
4848 				    &phash, &hashlen);
4849 
4850       Output_section* hashsec =
4851 	this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
4852 				    elfcpp::SHF_ALLOC, false,
4853 				    ORDER_DYNAMIC_LINKER, false, false,
4854 				    false);
4855 
4856       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4857 								   hashlen,
4858 								   align,
4859 								   "** hash");
4860       if (hashsec != NULL && hashdata != NULL)
4861 	hashsec->add_output_section_data(hashdata);
4862 
4863       if (hashsec != NULL)
4864 	{
4865 	  if (dynsym != NULL)
4866 	    hashsec->set_link_section(dynsym);
4867 
4868 	  // For a 64-bit target, the entries in .gnu.hash do not have
4869 	  // a uniform size, so we only set the entry size for a
4870 	  // 32-bit target.
4871 	  if (parameters->target().get_size() == 32)
4872 	    hashsec->set_entsize(4);
4873 
4874 	  if (odyn != NULL)
4875 	    odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
4876 	}
4877     }
4878 
4879   if (strcmp(parameters->options().hash_style(), "sysv") == 0
4880       || strcmp(parameters->options().hash_style(), "both") == 0)
4881     {
4882       unsigned char* phash;
4883       unsigned int hashlen;
4884       Dynobj::create_elf_hash_table(*pdynamic_symbols,
4885 				    local_symcount + forced_local_count,
4886 				    &phash, &hashlen);
4887 
4888       Output_section* hashsec =
4889 	this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
4890 				    elfcpp::SHF_ALLOC, false,
4891 				    ORDER_DYNAMIC_LINKER, false, false,
4892 				    false);
4893 
4894       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4895 								   hashlen,
4896 								   align,
4897 								   "** hash");
4898       if (hashsec != NULL && hashdata != NULL)
4899 	hashsec->add_output_section_data(hashdata);
4900 
4901       if (hashsec != NULL)
4902 	{
4903 	  if (dynsym != NULL)
4904 	    hashsec->set_link_section(dynsym);
4905 	  hashsec->set_entsize(parameters->target().hash_entry_size() / 8);
4906 	}
4907 
4908       if (odyn != NULL)
4909 	odyn->add_section_address(elfcpp::DT_HASH, hashsec);
4910     }
4911 }
4912 
4913 // Assign offsets to each local portion of the dynamic symbol table.
4914 
4915 void
assign_local_dynsym_offsets(const Input_objects * input_objects)4916 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
4917 {
4918   Output_section* dynsym = this->dynsym_section_;
4919   if (dynsym == NULL)
4920     return;
4921 
4922   off_t off = dynsym->offset();
4923 
4924   // Skip the dummy symbol at the start of the section.
4925   off += dynsym->entsize();
4926 
4927   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4928        p != input_objects->relobj_end();
4929        ++p)
4930     {
4931       unsigned int count = (*p)->set_local_dynsym_offset(off);
4932       off += count * dynsym->entsize();
4933     }
4934 }
4935 
4936 // Create the version sections.
4937 
4938 void
create_version_sections(const Versions * versions,const Symbol_table * symtab,unsigned int local_symcount,const std::vector<Symbol * > & dynamic_symbols,const Output_section * dynstr)4939 Layout::create_version_sections(const Versions* versions,
4940 				const Symbol_table* symtab,
4941 				unsigned int local_symcount,
4942 				const std::vector<Symbol*>& dynamic_symbols,
4943 				const Output_section* dynstr)
4944 {
4945   if (!versions->any_defs() && !versions->any_needs())
4946     return;
4947 
4948   switch (parameters->size_and_endianness())
4949     {
4950 #ifdef HAVE_TARGET_32_LITTLE
4951     case Parameters::TARGET_32_LITTLE:
4952       this->sized_create_version_sections<32, false>(versions, symtab,
4953 						     local_symcount,
4954 						     dynamic_symbols, dynstr);
4955       break;
4956 #endif
4957 #ifdef HAVE_TARGET_32_BIG
4958     case Parameters::TARGET_32_BIG:
4959       this->sized_create_version_sections<32, true>(versions, symtab,
4960 						    local_symcount,
4961 						    dynamic_symbols, dynstr);
4962       break;
4963 #endif
4964 #ifdef HAVE_TARGET_64_LITTLE
4965     case Parameters::TARGET_64_LITTLE:
4966       this->sized_create_version_sections<64, false>(versions, symtab,
4967 						     local_symcount,
4968 						     dynamic_symbols, dynstr);
4969       break;
4970 #endif
4971 #ifdef HAVE_TARGET_64_BIG
4972     case Parameters::TARGET_64_BIG:
4973       this->sized_create_version_sections<64, true>(versions, symtab,
4974 						    local_symcount,
4975 						    dynamic_symbols, dynstr);
4976       break;
4977 #endif
4978     default:
4979       gold_unreachable();
4980     }
4981 }
4982 
4983 // Create the version sections, sized version.
4984 
4985 template<int size, bool big_endian>
4986 void
sized_create_version_sections(const Versions * versions,const Symbol_table * symtab,unsigned int local_symcount,const std::vector<Symbol * > & dynamic_symbols,const Output_section * dynstr)4987 Layout::sized_create_version_sections(
4988     const Versions* versions,
4989     const Symbol_table* symtab,
4990     unsigned int local_symcount,
4991     const std::vector<Symbol*>& dynamic_symbols,
4992     const Output_section* dynstr)
4993 {
4994   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
4995 						     elfcpp::SHT_GNU_versym,
4996 						     elfcpp::SHF_ALLOC,
4997 						     false,
4998 						     ORDER_DYNAMIC_LINKER,
4999 						     false, false, false);
5000 
5001   // Check for NULL since a linker script may discard this section.
5002   if (vsec != NULL)
5003     {
5004       unsigned char* vbuf;
5005       unsigned int vsize;
5006       versions->symbol_section_contents<size, big_endian>(symtab,
5007 							  &this->dynpool_,
5008 							  local_symcount,
5009 							  dynamic_symbols,
5010 							  &vbuf, &vsize);
5011 
5012       Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
5013 								"** versions");
5014 
5015       vsec->add_output_section_data(vdata);
5016       vsec->set_entsize(2);
5017       vsec->set_link_section(this->dynsym_section_);
5018     }
5019 
5020   Output_data_dynamic* const odyn = this->dynamic_data_;
5021   if (odyn != NULL && vsec != NULL)
5022     odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
5023 
5024   if (versions->any_defs())
5025     {
5026       Output_section* vdsec;
5027       vdsec = this->choose_output_section(NULL, ".gnu.version_d",
5028 					  elfcpp::SHT_GNU_verdef,
5029 					  elfcpp::SHF_ALLOC,
5030 					  false, ORDER_DYNAMIC_LINKER, false,
5031 					  false, false);
5032 
5033       if (vdsec != NULL)
5034 	{
5035 	  unsigned char* vdbuf;
5036 	  unsigned int vdsize;
5037 	  unsigned int vdentries;
5038 	  versions->def_section_contents<size, big_endian>(&this->dynpool_,
5039 							   &vdbuf, &vdsize,
5040 							   &vdentries);
5041 
5042 	  Output_section_data* vddata =
5043 	    new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
5044 
5045 	  vdsec->add_output_section_data(vddata);
5046 	  vdsec->set_link_section(dynstr);
5047 	  vdsec->set_info(vdentries);
5048 
5049 	  if (odyn != NULL)
5050 	    {
5051 	      odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
5052 	      odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
5053 	    }
5054 	}
5055     }
5056 
5057   if (versions->any_needs())
5058     {
5059       Output_section* vnsec;
5060       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
5061 					  elfcpp::SHT_GNU_verneed,
5062 					  elfcpp::SHF_ALLOC,
5063 					  false, ORDER_DYNAMIC_LINKER, false,
5064 					  false, false);
5065 
5066       if (vnsec != NULL)
5067 	{
5068 	  unsigned char* vnbuf;
5069 	  unsigned int vnsize;
5070 	  unsigned int vnentries;
5071 	  versions->need_section_contents<size, big_endian>(&this->dynpool_,
5072 							    &vnbuf, &vnsize,
5073 							    &vnentries);
5074 
5075 	  Output_section_data* vndata =
5076 	    new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
5077 
5078 	  vnsec->add_output_section_data(vndata);
5079 	  vnsec->set_link_section(dynstr);
5080 	  vnsec->set_info(vnentries);
5081 
5082 	  if (odyn != NULL)
5083 	    {
5084 	      odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
5085 	      odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
5086 	    }
5087 	}
5088     }
5089 }
5090 
5091 // Create the .interp section and PT_INTERP segment.
5092 
5093 void
create_interp(const Target * target)5094 Layout::create_interp(const Target* target)
5095 {
5096   gold_assert(this->interp_segment_ == NULL);
5097 
5098   const char* interp = parameters->options().dynamic_linker();
5099   if (interp == NULL)
5100     {
5101       interp = target->dynamic_linker();
5102       gold_assert(interp != NULL);
5103     }
5104 
5105   size_t len = strlen(interp) + 1;
5106 
5107   Output_section_data* odata = new Output_data_const(interp, len, 1);
5108 
5109   Output_section* osec = this->choose_output_section(NULL, ".interp",
5110 						     elfcpp::SHT_PROGBITS,
5111 						     elfcpp::SHF_ALLOC,
5112 						     false, ORDER_INTERP,
5113 						     false, false, false);
5114   if (osec != NULL)
5115     osec->add_output_section_data(odata);
5116 }
5117 
5118 // Add dynamic tags for the PLT and the dynamic relocs.  This is
5119 // called by the target-specific code.  This does nothing if not doing
5120 // a dynamic link.
5121 
5122 // USE_REL is true for REL relocs rather than RELA relocs.
5123 
5124 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
5125 
5126 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
5127 // and we also set DT_PLTREL.  We use PLT_REL's output section, since
5128 // some targets have multiple reloc sections in PLT_REL.
5129 
5130 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
5131 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.  Again we use the output
5132 // section.
5133 
5134 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
5135 // executable.
5136 
5137 void
add_target_dynamic_tags(bool use_rel,const Output_data * plt_got,const Output_data * plt_rel,const Output_data_reloc_generic * dyn_rel,bool add_debug,bool dynrel_includes_plt,bool custom_relcount)5138 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
5139 				const Output_data* plt_rel,
5140 				const Output_data_reloc_generic* dyn_rel,
5141 				bool add_debug, bool dynrel_includes_plt,
5142 				bool custom_relcount)
5143 {
5144   Output_data_dynamic* odyn = this->dynamic_data_;
5145   if (odyn == NULL)
5146     return;
5147 
5148   if (plt_got != NULL && plt_got->output_section() != NULL)
5149     odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
5150 
5151   if (plt_rel != NULL && plt_rel->output_section() != NULL)
5152     {
5153       odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
5154       odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
5155       odyn->add_constant(elfcpp::DT_PLTREL,
5156 			 use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
5157     }
5158 
5159   if ((dyn_rel != NULL && dyn_rel->output_section() != NULL)
5160       || (dynrel_includes_plt
5161 	  && plt_rel != NULL
5162 	  && plt_rel->output_section() != NULL))
5163     {
5164       bool have_dyn_rel = dyn_rel != NULL && dyn_rel->output_section() != NULL;
5165       bool have_plt_rel = plt_rel != NULL && plt_rel->output_section() != NULL;
5166       odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
5167 				(have_dyn_rel
5168 				 ? dyn_rel->output_section()
5169 				 : plt_rel->output_section()));
5170       elfcpp::DT size_tag = use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ;
5171       if (have_dyn_rel && have_plt_rel && dynrel_includes_plt)
5172 	odyn->add_section_size(size_tag,
5173 			       dyn_rel->output_section(),
5174 			       plt_rel->output_section());
5175       else if (have_dyn_rel)
5176 	odyn->add_section_size(size_tag, dyn_rel->output_section());
5177       else
5178 	odyn->add_section_size(size_tag, plt_rel->output_section());
5179       const int size = parameters->target().get_size();
5180       elfcpp::DT rel_tag;
5181       int rel_size;
5182       if (use_rel)
5183 	{
5184 	  rel_tag = elfcpp::DT_RELENT;
5185 	  if (size == 32)
5186 	    rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
5187 	  else if (size == 64)
5188 	    rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
5189 	  else
5190 	    gold_unreachable();
5191 	}
5192       else
5193 	{
5194 	  rel_tag = elfcpp::DT_RELAENT;
5195 	  if (size == 32)
5196 	    rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
5197 	  else if (size == 64)
5198 	    rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
5199 	  else
5200 	    gold_unreachable();
5201 	}
5202       odyn->add_constant(rel_tag, rel_size);
5203 
5204       if (parameters->options().combreloc() && have_dyn_rel)
5205 	{
5206 	  size_t c = dyn_rel->relative_reloc_count();
5207 	  if (c != 0)
5208 	    {
5209 	      elfcpp::DT tag
5210 		= use_rel ? elfcpp::DT_RELCOUNT : elfcpp::DT_RELACOUNT;
5211 	      if (custom_relcount)
5212 		odyn->add_custom(tag);
5213 	      else
5214 		odyn->add_constant(tag, c);
5215 	    }
5216 	}
5217     }
5218 
5219   if (add_debug && !parameters->options().shared())
5220     {
5221       // The value of the DT_DEBUG tag is filled in by the dynamic
5222       // linker at run time, and used by the debugger.
5223       odyn->add_constant(elfcpp::DT_DEBUG, 0);
5224     }
5225 }
5226 
5227 void
add_target_specific_dynamic_tag(elfcpp::DT tag,unsigned int val)5228 Layout::add_target_specific_dynamic_tag(elfcpp::DT tag, unsigned int val)
5229 {
5230   Output_data_dynamic* odyn = this->dynamic_data_;
5231   if (odyn == NULL)
5232     return;
5233   odyn->add_constant(tag, val);
5234 }
5235 
5236 // Finish the .dynamic section and PT_DYNAMIC segment.
5237 
5238 void
finish_dynamic_section(const Input_objects * input_objects,const Symbol_table * symtab)5239 Layout::finish_dynamic_section(const Input_objects* input_objects,
5240 			       const Symbol_table* symtab)
5241 {
5242   if (!this->script_options_->saw_phdrs_clause()
5243       && this->dynamic_section_ != NULL)
5244     {
5245       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
5246 						       (elfcpp::PF_R
5247 							| elfcpp::PF_W));
5248       oseg->add_output_section_to_nonload(this->dynamic_section_,
5249 					  elfcpp::PF_R | elfcpp::PF_W);
5250     }
5251 
5252   Output_data_dynamic* const odyn = this->dynamic_data_;
5253   if (odyn == NULL)
5254     return;
5255 
5256   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
5257        p != input_objects->dynobj_end();
5258        ++p)
5259     {
5260       if (!(*p)->is_needed() && (*p)->as_needed())
5261 	{
5262 	  // This dynamic object was linked with --as-needed, but it
5263 	  // is not needed.
5264 	  continue;
5265 	}
5266 
5267       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
5268     }
5269 
5270   if (parameters->options().shared())
5271     {
5272       const char* soname = parameters->options().soname();
5273       if (soname != NULL)
5274 	odyn->add_string(elfcpp::DT_SONAME, soname);
5275     }
5276 
5277   Symbol* sym = symtab->lookup(parameters->options().init());
5278   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
5279     odyn->add_symbol(elfcpp::DT_INIT, sym);
5280 
5281   sym = symtab->lookup(parameters->options().fini());
5282   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
5283     odyn->add_symbol(elfcpp::DT_FINI, sym);
5284 
5285   // Look for .init_array, .preinit_array and .fini_array by checking
5286   // section types.
5287   for(Layout::Section_list::const_iterator p = this->section_list_.begin();
5288       p != this->section_list_.end();
5289       ++p)
5290     switch((*p)->type())
5291       {
5292       case elfcpp::SHT_FINI_ARRAY:
5293 	odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
5294 	odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
5295 	break;
5296       case elfcpp::SHT_INIT_ARRAY:
5297 	odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
5298 	odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
5299 	break;
5300       case elfcpp::SHT_PREINIT_ARRAY:
5301 	odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
5302 	odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
5303 	break;
5304       default:
5305 	break;
5306       }
5307 
5308   // Add a DT_RPATH entry if needed.
5309   const General_options::Dir_list& rpath(parameters->options().rpath());
5310   if (!rpath.empty())
5311     {
5312       std::string rpath_val;
5313       for (General_options::Dir_list::const_iterator p = rpath.begin();
5314 	   p != rpath.end();
5315 	   ++p)
5316 	{
5317 	  if (rpath_val.empty())
5318 	    rpath_val = p->name();
5319 	  else
5320 	    {
5321 	      // Eliminate duplicates.
5322 	      General_options::Dir_list::const_iterator q;
5323 	      for (q = rpath.begin(); q != p; ++q)
5324 		if (q->name() == p->name())
5325 		  break;
5326 	      if (q == p)
5327 		{
5328 		  rpath_val += ':';
5329 		  rpath_val += p->name();
5330 		}
5331 	    }
5332 	}
5333 
5334       if (!parameters->options().enable_new_dtags())
5335 	odyn->add_string(elfcpp::DT_RPATH, rpath_val);
5336       else
5337 	odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
5338     }
5339 
5340   // Look for text segments that have dynamic relocations.
5341   bool have_textrel = false;
5342   if (!this->script_options_->saw_sections_clause())
5343     {
5344       for (Segment_list::const_iterator p = this->segment_list_.begin();
5345 	   p != this->segment_list_.end();
5346 	   ++p)
5347 	{
5348 	  if ((*p)->type() == elfcpp::PT_LOAD
5349 	      && ((*p)->flags() & elfcpp::PF_W) == 0
5350 	      && (*p)->has_dynamic_reloc())
5351 	    {
5352 	      have_textrel = true;
5353 	      break;
5354 	    }
5355 	}
5356     }
5357   else
5358     {
5359       // We don't know the section -> segment mapping, so we are
5360       // conservative and just look for readonly sections with
5361       // relocations.  If those sections wind up in writable segments,
5362       // then we have created an unnecessary DT_TEXTREL entry.
5363       for (Section_list::const_iterator p = this->section_list_.begin();
5364 	   p != this->section_list_.end();
5365 	   ++p)
5366 	{
5367 	  if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
5368 	      && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
5369 	      && (*p)->has_dynamic_reloc())
5370 	    {
5371 	      have_textrel = true;
5372 	      break;
5373 	    }
5374 	}
5375     }
5376 
5377   if (parameters->options().filter() != NULL)
5378     odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
5379   if (parameters->options().any_auxiliary())
5380     {
5381       for (options::String_set::const_iterator p =
5382 	     parameters->options().auxiliary_begin();
5383 	   p != parameters->options().auxiliary_end();
5384 	   ++p)
5385 	odyn->add_string(elfcpp::DT_AUXILIARY, *p);
5386     }
5387 
5388   // Add a DT_FLAGS entry if necessary.
5389   unsigned int flags = 0;
5390   if (have_textrel)
5391     {
5392       // Add a DT_TEXTREL for compatibility with older loaders.
5393       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
5394       flags |= elfcpp::DF_TEXTREL;
5395 
5396       if (parameters->options().text())
5397 	gold_error(_("read-only segment has dynamic relocations"));
5398       else if (parameters->options().warn_shared_textrel()
5399 	       && parameters->options().shared())
5400 	gold_warning(_("shared library text segment is not shareable"));
5401     }
5402   if (parameters->options().shared() && this->has_static_tls())
5403     flags |= elfcpp::DF_STATIC_TLS;
5404   if (parameters->options().origin())
5405     flags |= elfcpp::DF_ORIGIN;
5406   if (parameters->options().Bsymbolic()
5407       && !parameters->options().have_dynamic_list())
5408     {
5409       flags |= elfcpp::DF_SYMBOLIC;
5410       // Add DT_SYMBOLIC for compatibility with older loaders.
5411       odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
5412     }
5413   if (parameters->options().now())
5414     flags |= elfcpp::DF_BIND_NOW;
5415   if (flags != 0)
5416     odyn->add_constant(elfcpp::DT_FLAGS, flags);
5417 
5418   flags = 0;
5419   if (parameters->options().global())
5420     flags |= elfcpp::DF_1_GLOBAL;
5421   if (parameters->options().initfirst())
5422     flags |= elfcpp::DF_1_INITFIRST;
5423   if (parameters->options().interpose())
5424     flags |= elfcpp::DF_1_INTERPOSE;
5425   if (parameters->options().loadfltr())
5426     flags |= elfcpp::DF_1_LOADFLTR;
5427   if (parameters->options().nodefaultlib())
5428     flags |= elfcpp::DF_1_NODEFLIB;
5429   if (parameters->options().nodelete())
5430     flags |= elfcpp::DF_1_NODELETE;
5431   if (parameters->options().nodlopen())
5432     flags |= elfcpp::DF_1_NOOPEN;
5433   if (parameters->options().nodump())
5434     flags |= elfcpp::DF_1_NODUMP;
5435   if (!parameters->options().shared())
5436     flags &= ~(elfcpp::DF_1_INITFIRST
5437 	       | elfcpp::DF_1_NODELETE
5438 	       | elfcpp::DF_1_NOOPEN);
5439   if (parameters->options().origin())
5440     flags |= elfcpp::DF_1_ORIGIN;
5441   if (parameters->options().now())
5442     flags |= elfcpp::DF_1_NOW;
5443   if (parameters->options().Bgroup())
5444     flags |= elfcpp::DF_1_GROUP;
5445   if (parameters->options().pie())
5446     flags |= elfcpp::DF_1_PIE;
5447   if (flags != 0)
5448     odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
5449 
5450   flags = 0;
5451   if (parameters->options().unique())
5452     flags |= elfcpp::DF_GNU_1_UNIQUE;
5453   if (flags != 0)
5454     odyn->add_constant(elfcpp::DT_GNU_FLAGS_1, flags);
5455 }
5456 
5457 // Set the size of the _DYNAMIC symbol table to be the size of the
5458 // dynamic data.
5459 
5460 void
set_dynamic_symbol_size(const Symbol_table * symtab)5461 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
5462 {
5463   Output_data_dynamic* const odyn = this->dynamic_data_;
5464   if (odyn == NULL)
5465     return;
5466   odyn->finalize_data_size();
5467   if (this->dynamic_symbol_ == NULL)
5468     return;
5469   off_t data_size = odyn->data_size();
5470   const int size = parameters->target().get_size();
5471   if (size == 32)
5472     symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
5473   else if (size == 64)
5474     symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
5475   else
5476     gold_unreachable();
5477 }
5478 
5479 // The mapping of input section name prefixes to output section names.
5480 // In some cases one prefix is itself a prefix of another prefix; in
5481 // such a case the longer prefix must come first.  These prefixes are
5482 // based on the GNU linker default ELF linker script.
5483 
5484 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
5485 #define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 }
5486 const Layout::Section_name_mapping Layout::section_name_mapping[] =
5487 {
5488   MAPPING_INIT(".text.", ".text"),
5489   MAPPING_INIT(".rodata.", ".rodata"),
5490   MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"),
5491   MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"),
5492   MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"),
5493   MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"),
5494   MAPPING_INIT(".data.", ".data"),
5495   MAPPING_INIT(".bss.", ".bss"),
5496   MAPPING_INIT(".tdata.", ".tdata"),
5497   MAPPING_INIT(".tbss.", ".tbss"),
5498   MAPPING_INIT(".init_array.", ".init_array"),
5499   MAPPING_INIT(".fini_array.", ".fini_array"),
5500   MAPPING_INIT(".sdata.", ".sdata"),
5501   MAPPING_INIT(".sbss.", ".sbss"),
5502   // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
5503   // differently depending on whether it is creating a shared library.
5504   MAPPING_INIT(".sdata2.", ".sdata"),
5505   MAPPING_INIT(".sbss2.", ".sbss"),
5506   MAPPING_INIT(".lrodata.", ".lrodata"),
5507   MAPPING_INIT(".ldata.", ".ldata"),
5508   MAPPING_INIT(".lbss.", ".lbss"),
5509   MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
5510   MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
5511   MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
5512   MAPPING_INIT(".gnu.linkonce.t.", ".text"),
5513   MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
5514   MAPPING_INIT(".gnu.linkonce.d.", ".data"),
5515   MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
5516   MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
5517   MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
5518   MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
5519   MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
5520   MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
5521   MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
5522   MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
5523   MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
5524   MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
5525   MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
5526   MAPPING_INIT(".ARM.extab", ".ARM.extab"),
5527   MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
5528   MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
5529   MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
5530   MAPPING_INIT(".gnu.build.attributes.", ".gnu.build.attributes"),
5531 };
5532 
5533 // Mapping for ".text" section prefixes with -z,keep-text-section-prefix.
5534 const Layout::Section_name_mapping Layout::text_section_name_mapping[] =
5535 {
5536   MAPPING_INIT(".text.hot.", ".text.hot"),
5537   MAPPING_INIT_EXACT(".text.hot", ".text.hot"),
5538   MAPPING_INIT(".text.unlikely.", ".text.unlikely"),
5539   MAPPING_INIT_EXACT(".text.unlikely", ".text.unlikely"),
5540   MAPPING_INIT(".text.startup.", ".text.startup"),
5541   MAPPING_INIT_EXACT(".text.startup", ".text.startup"),
5542   MAPPING_INIT(".text.exit.", ".text.exit"),
5543   MAPPING_INIT_EXACT(".text.exit", ".text.exit"),
5544   MAPPING_INIT(".text.", ".text"),
5545 };
5546 #undef MAPPING_INIT
5547 #undef MAPPING_INIT_EXACT
5548 
5549 const int Layout::section_name_mapping_count =
5550   (sizeof(Layout::section_name_mapping)
5551    / sizeof(Layout::section_name_mapping[0]));
5552 
5553 const int Layout::text_section_name_mapping_count =
5554   (sizeof(Layout::text_section_name_mapping)
5555    / sizeof(Layout::text_section_name_mapping[0]));
5556 
5557 // Find section name NAME in PSNM and return the mapped name if found
5558 // with the length set in PLEN.
5559 const char *
match_section_name(const Layout::Section_name_mapping * psnm,const int count,const char * name,size_t * plen)5560 Layout::match_section_name(const Layout::Section_name_mapping* psnm,
5561 			   const int count,
5562 			   const char* name, size_t* plen)
5563 {
5564   for (int i = 0; i < count; ++i, ++psnm)
5565     {
5566       if (psnm->fromlen > 0)
5567 	{
5568 	  if (strncmp(name, psnm->from, psnm->fromlen) == 0)
5569 	    {
5570 	      *plen = psnm->tolen;
5571 	      return psnm->to;
5572 	    }
5573 	}
5574       else
5575 	{
5576 	  if (strcmp(name, psnm->from) == 0)
5577 	    {
5578 	      *plen = psnm->tolen;
5579 	      return psnm->to;
5580 	    }
5581 	}
5582     }
5583   return NULL;
5584 }
5585 
5586 // Choose the output section name to use given an input section name.
5587 // Set *PLEN to the length of the name.  *PLEN is initialized to the
5588 // length of NAME.
5589 
5590 const char*
output_section_name(const Relobj * relobj,const char * name,size_t * plen)5591 Layout::output_section_name(const Relobj* relobj, const char* name,
5592 			    size_t* plen)
5593 {
5594   // gcc 4.3 generates the following sorts of section names when it
5595   // needs a section name specific to a function:
5596   //   .text.FN
5597   //   .rodata.FN
5598   //   .sdata2.FN
5599   //   .data.FN
5600   //   .data.rel.FN
5601   //   .data.rel.local.FN
5602   //   .data.rel.ro.FN
5603   //   .data.rel.ro.local.FN
5604   //   .sdata.FN
5605   //   .bss.FN
5606   //   .sbss.FN
5607   //   .tdata.FN
5608   //   .tbss.FN
5609 
5610   // The GNU linker maps all of those to the part before the .FN,
5611   // except that .data.rel.local.FN is mapped to .data, and
5612   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
5613   // beginning with .data.rel.ro.local are grouped together.
5614 
5615   // For an anonymous namespace, the string FN can contain a '.'.
5616 
5617   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
5618   // GNU linker maps to .rodata.
5619 
5620   // The .data.rel.ro sections are used with -z relro.  The sections
5621   // are recognized by name.  We use the same names that the GNU
5622   // linker does for these sections.
5623 
5624   // It is hard to handle this in a principled way, so we don't even
5625   // try.  We use a table of mappings.  If the input section name is
5626   // not found in the table, we simply use it as the output section
5627   // name.
5628 
5629   if (parameters->options().keep_text_section_prefix()
5630       && is_prefix_of(".text", name))
5631     {
5632       const char* match = match_section_name(text_section_name_mapping,
5633 					     text_section_name_mapping_count,
5634 					     name, plen);
5635       if (match != NULL)
5636 	return match;
5637     }
5638 
5639   const char* match = match_section_name(section_name_mapping,
5640 					 section_name_mapping_count, name, plen);
5641   if (match != NULL)
5642     return match;
5643 
5644   // As an additional complication, .ctors sections are output in
5645   // either .ctors or .init_array sections, and .dtors sections are
5646   // output in either .dtors or .fini_array sections.
5647   if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
5648     {
5649       if (parameters->options().ctors_in_init_array())
5650 	{
5651 	  *plen = 11;
5652 	  return name[1] == 'c' ? ".init_array" : ".fini_array";
5653 	}
5654       else
5655 	{
5656 	  *plen = 6;
5657 	  return name[1] == 'c' ? ".ctors" : ".dtors";
5658 	}
5659     }
5660   if (parameters->options().ctors_in_init_array()
5661       && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
5662     {
5663       // To make .init_array/.fini_array work with gcc we must exclude
5664       // .ctors and .dtors sections from the crtbegin and crtend
5665       // files.
5666       if (relobj == NULL
5667 	  || (!Layout::match_file_name(relobj, "crtbegin")
5668 	      && !Layout::match_file_name(relobj, "crtend")))
5669 	{
5670 	  *plen = 11;
5671 	  return name[1] == 'c' ? ".init_array" : ".fini_array";
5672 	}
5673     }
5674 
5675   return name;
5676 }
5677 
5678 // Return true if RELOBJ is an input file whose base name matches
5679 // FILE_NAME.  The base name must have an extension of ".o", and must
5680 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o".  This is
5681 // to match crtbegin.o as well as crtbeginS.o without getting confused
5682 // by other possibilities.  Overall matching the file name this way is
5683 // a dreadful hack, but the GNU linker does it in order to better
5684 // support gcc, and we need to be compatible.
5685 
5686 bool
match_file_name(const Relobj * relobj,const char * match)5687 Layout::match_file_name(const Relobj* relobj, const char* match)
5688 {
5689   const std::string& file_name(relobj->name());
5690   const char* base_name = lbasename(file_name.c_str());
5691   size_t match_len = strlen(match);
5692   if (strncmp(base_name, match, match_len) != 0)
5693     return false;
5694   size_t base_len = strlen(base_name);
5695   if (base_len != match_len + 2 && base_len != match_len + 3)
5696     return false;
5697   return memcmp(base_name + base_len - 2, ".o", 2) == 0;
5698 }
5699 
5700 // Check if a comdat group or .gnu.linkonce section with the given
5701 // NAME is selected for the link.  If there is already a section,
5702 // *KEPT_SECTION is set to point to the existing section and the
5703 // function returns false.  Otherwise, OBJECT, SHNDX, IS_COMDAT, and
5704 // IS_GROUP_NAME are recorded for this NAME in the layout object,
5705 // *KEPT_SECTION is set to the internal copy and the function returns
5706 // true.
5707 
5708 bool
find_or_add_kept_section(const std::string & name,Relobj * object,unsigned int shndx,bool is_comdat,bool is_group_name,Kept_section ** kept_section)5709 Layout::find_or_add_kept_section(const std::string& name,
5710 				 Relobj* object,
5711 				 unsigned int shndx,
5712 				 bool is_comdat,
5713 				 bool is_group_name,
5714 				 Kept_section** kept_section)
5715 {
5716   // It's normal to see a couple of entries here, for the x86 thunk
5717   // sections.  If we see more than a few, we're linking a C++
5718   // program, and we resize to get more space to minimize rehashing.
5719   if (this->signatures_.size() > 4
5720       && !this->resized_signatures_)
5721     {
5722       reserve_unordered_map(&this->signatures_,
5723 			    this->number_of_input_files_ * 64);
5724       this->resized_signatures_ = true;
5725     }
5726 
5727   Kept_section candidate;
5728   std::pair<Signatures::iterator, bool> ins =
5729     this->signatures_.insert(std::make_pair(name, candidate));
5730 
5731   if (kept_section != NULL)
5732     *kept_section = &ins.first->second;
5733   if (ins.second)
5734     {
5735       // This is the first time we've seen this signature.
5736       ins.first->second.set_object(object);
5737       ins.first->second.set_shndx(shndx);
5738       if (is_comdat)
5739 	ins.first->second.set_is_comdat();
5740       if (is_group_name)
5741 	ins.first->second.set_is_group_name();
5742       return true;
5743     }
5744 
5745   // We have already seen this signature.
5746 
5747   if (ins.first->second.is_group_name())
5748     {
5749       // We've already seen a real section group with this signature.
5750       // If the kept group is from a plugin object, and we're in the
5751       // replacement phase, accept the new one as a replacement.
5752       if (ins.first->second.object() == NULL
5753 	  && parameters->options().plugins()->in_replacement_phase())
5754 	{
5755 	  ins.first->second.set_object(object);
5756 	  ins.first->second.set_shndx(shndx);
5757 	  return true;
5758 	}
5759       return false;
5760     }
5761   else if (is_group_name)
5762     {
5763       // This is a real section group, and we've already seen a
5764       // linkonce section with this signature.  Record that we've seen
5765       // a section group, and don't include this section group.
5766       ins.first->second.set_is_group_name();
5767       return false;
5768     }
5769   else
5770     {
5771       // We've already seen a linkonce section and this is a linkonce
5772       // section.  These don't block each other--this may be the same
5773       // symbol name with different section types.
5774       return true;
5775     }
5776 }
5777 
5778 // Store the allocated sections into the section list.
5779 
5780 void
get_allocated_sections(Section_list * section_list) const5781 Layout::get_allocated_sections(Section_list* section_list) const
5782 {
5783   for (Section_list::const_iterator p = this->section_list_.begin();
5784        p != this->section_list_.end();
5785        ++p)
5786     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
5787       section_list->push_back(*p);
5788 }
5789 
5790 // Store the executable sections into the section list.
5791 
5792 void
get_executable_sections(Section_list * section_list) const5793 Layout::get_executable_sections(Section_list* section_list) const
5794 {
5795   for (Section_list::const_iterator p = this->section_list_.begin();
5796        p != this->section_list_.end();
5797        ++p)
5798     if (((*p)->flags() & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5799 	== (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5800       section_list->push_back(*p);
5801 }
5802 
5803 // Create an output segment.
5804 
5805 Output_segment*
make_output_segment(elfcpp::Elf_Word type,elfcpp::Elf_Word flags)5806 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
5807 {
5808   gold_assert(!parameters->options().relocatable());
5809   Output_segment* oseg = new Output_segment(type, flags);
5810   this->segment_list_.push_back(oseg);
5811 
5812   if (type == elfcpp::PT_TLS)
5813     this->tls_segment_ = oseg;
5814   else if (type == elfcpp::PT_GNU_RELRO)
5815     this->relro_segment_ = oseg;
5816   else if (type == elfcpp::PT_INTERP)
5817     this->interp_segment_ = oseg;
5818 
5819   return oseg;
5820 }
5821 
5822 // Return the file offset of the normal symbol table.
5823 
5824 off_t
symtab_section_offset() const5825 Layout::symtab_section_offset() const
5826 {
5827   if (this->symtab_section_ != NULL)
5828     return this->symtab_section_->offset();
5829   return 0;
5830 }
5831 
5832 // Return the section index of the normal symbol table.  It may have
5833 // been stripped by the -s/--strip-all option.
5834 
5835 unsigned int
symtab_section_shndx() const5836 Layout::symtab_section_shndx() const
5837 {
5838   if (this->symtab_section_ != NULL)
5839     return this->symtab_section_->out_shndx();
5840   return 0;
5841 }
5842 
5843 // Write out the Output_sections.  Most won't have anything to write,
5844 // since most of the data will come from input sections which are
5845 // handled elsewhere.  But some Output_sections do have Output_data.
5846 
5847 void
write_output_sections(Output_file * of) const5848 Layout::write_output_sections(Output_file* of) const
5849 {
5850   for (Section_list::const_iterator p = this->section_list_.begin();
5851        p != this->section_list_.end();
5852        ++p)
5853     {
5854       if (!(*p)->after_input_sections())
5855 	(*p)->write(of);
5856     }
5857 }
5858 
5859 // Write out data not associated with a section or the symbol table.
5860 
5861 void
write_data(const Symbol_table * symtab,Output_file * of) const5862 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
5863 {
5864   if (!parameters->options().strip_all())
5865     {
5866       const Output_section* symtab_section = this->symtab_section_;
5867       for (Section_list::const_iterator p = this->section_list_.begin();
5868 	   p != this->section_list_.end();
5869 	   ++p)
5870 	{
5871 	  if ((*p)->needs_symtab_index())
5872 	    {
5873 	      gold_assert(symtab_section != NULL);
5874 	      unsigned int index = (*p)->symtab_index();
5875 	      gold_assert(index > 0 && index != -1U);
5876 	      off_t off = (symtab_section->offset()
5877 			   + index * symtab_section->entsize());
5878 	      symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
5879 	    }
5880 	}
5881     }
5882 
5883   const Output_section* dynsym_section = this->dynsym_section_;
5884   for (Section_list::const_iterator p = this->section_list_.begin();
5885        p != this->section_list_.end();
5886        ++p)
5887     {
5888       if ((*p)->needs_dynsym_index())
5889 	{
5890 	  gold_assert(dynsym_section != NULL);
5891 	  unsigned int index = (*p)->dynsym_index();
5892 	  gold_assert(index > 0 && index != -1U);
5893 	  off_t off = (dynsym_section->offset()
5894 		       + index * dynsym_section->entsize());
5895 	  symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
5896 	}
5897     }
5898 
5899   // Write out the Output_data which are not in an Output_section.
5900   for (Data_list::const_iterator p = this->special_output_list_.begin();
5901        p != this->special_output_list_.end();
5902        ++p)
5903     (*p)->write(of);
5904 
5905   // Write out the Output_data which are not in an Output_section
5906   // and are regenerated in each iteration of relaxation.
5907   for (Data_list::const_iterator p = this->relax_output_list_.begin();
5908        p != this->relax_output_list_.end();
5909        ++p)
5910     (*p)->write(of);
5911 }
5912 
5913 // Write out the Output_sections which can only be written after the
5914 // input sections are complete.
5915 
5916 void
write_sections_after_input_sections(Output_file * of)5917 Layout::write_sections_after_input_sections(Output_file* of)
5918 {
5919   // Determine the final section offsets, and thus the final output
5920   // file size.  Note we finalize the .shstrab last, to allow the
5921   // after_input_section sections to modify their section-names before
5922   // writing.
5923   if (this->any_postprocessing_sections_)
5924     {
5925       off_t off = this->output_file_size_;
5926       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
5927 
5928       // Now that we've finalized the names, we can finalize the shstrab.
5929       off =
5930 	this->set_section_offsets(off,
5931 				  STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
5932 
5933       if (off > this->output_file_size_)
5934 	{
5935 	  of->resize(off);
5936 	  this->output_file_size_ = off;
5937 	}
5938     }
5939 
5940   for (Section_list::const_iterator p = this->section_list_.begin();
5941        p != this->section_list_.end();
5942        ++p)
5943     {
5944       if ((*p)->after_input_sections())
5945 	(*p)->write(of);
5946     }
5947 
5948   this->section_headers_->write(of);
5949 }
5950 
5951 // If a tree-style build ID was requested, the parallel part of that computation
5952 // is already done, and the final hash-of-hashes is computed here.  For other
5953 // types of build IDs, all the work is done here.
5954 
5955 void
write_build_id(Output_file * of,unsigned char * array_of_hashes,size_t size_of_hashes) const5956 Layout::write_build_id(Output_file* of, unsigned char* array_of_hashes,
5957 		       size_t size_of_hashes) const
5958 {
5959   if (this->build_id_note_ == NULL)
5960     return;
5961 
5962   unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
5963 					  this->build_id_note_->data_size());
5964 
5965   if (array_of_hashes == NULL)
5966     {
5967       const size_t output_file_size = this->output_file_size();
5968       const unsigned char* iv = of->get_input_view(0, output_file_size);
5969       const char* style = parameters->options().build_id();
5970 
5971       // If we get here with style == "tree" then the output must be
5972       // too small for chunking, and we use SHA-1 in that case.
5973       if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
5974 	sha1_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5975       else if (strcmp(style, "md5") == 0)
5976 	md5_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5977       else
5978 	gold_unreachable();
5979 
5980       of->free_input_view(0, output_file_size, iv);
5981     }
5982   else
5983     {
5984       // Non-overlapping substrings of the output file have been hashed.
5985       // Compute SHA-1 hash of the hashes.
5986       sha1_buffer(reinterpret_cast<const char*>(array_of_hashes),
5987 		  size_of_hashes, ov);
5988       delete[] array_of_hashes;
5989     }
5990 
5991   of->write_output_view(this->build_id_note_->offset(),
5992 			this->build_id_note_->data_size(),
5993 			ov);
5994 }
5995 
5996 // Write out a binary file.  This is called after the link is
5997 // complete.  IN is the temporary output file we used to generate the
5998 // ELF code.  We simply walk through the segments, read them from
5999 // their file offset in IN, and write them to their load address in
6000 // the output file.  FIXME: with a bit more work, we could support
6001 // S-records and/or Intel hex format here.
6002 
6003 void
write_binary(Output_file * in) const6004 Layout::write_binary(Output_file* in) const
6005 {
6006   gold_assert(parameters->options().oformat_enum()
6007 	      == General_options::OBJECT_FORMAT_BINARY);
6008 
6009   // Get the size of the binary file.
6010   uint64_t max_load_address = 0;
6011   for (Segment_list::const_iterator p = this->segment_list_.begin();
6012        p != this->segment_list_.end();
6013        ++p)
6014     {
6015       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
6016 	{
6017 	  uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
6018 	  if (max_paddr > max_load_address)
6019 	    max_load_address = max_paddr;
6020 	}
6021     }
6022 
6023   Output_file out(parameters->options().output_file_name());
6024   out.open(max_load_address);
6025 
6026   for (Segment_list::const_iterator p = this->segment_list_.begin();
6027        p != this->segment_list_.end();
6028        ++p)
6029     {
6030       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
6031 	{
6032 	  const unsigned char* vin = in->get_input_view((*p)->offset(),
6033 							(*p)->filesz());
6034 	  unsigned char* vout = out.get_output_view((*p)->paddr(),
6035 						    (*p)->filesz());
6036 	  memcpy(vout, vin, (*p)->filesz());
6037 	  out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
6038 	  in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
6039 	}
6040     }
6041 
6042   out.close();
6043 }
6044 
6045 // Print the output sections to the map file.
6046 
6047 void
print_to_mapfile(Mapfile * mapfile) const6048 Layout::print_to_mapfile(Mapfile* mapfile) const
6049 {
6050   for (Segment_list::const_iterator p = this->segment_list_.begin();
6051        p != this->segment_list_.end();
6052        ++p)
6053     (*p)->print_sections_to_mapfile(mapfile);
6054   for (Section_list::const_iterator p = this->unattached_section_list_.begin();
6055        p != this->unattached_section_list_.end();
6056        ++p)
6057     (*p)->print_to_mapfile(mapfile);
6058 }
6059 
6060 // Print statistical information to stderr.  This is used for --stats.
6061 
6062 void
print_stats() const6063 Layout::print_stats() const
6064 {
6065   this->namepool_.print_stats("section name pool");
6066   this->sympool_.print_stats("output symbol name pool");
6067   this->dynpool_.print_stats("dynamic name pool");
6068 
6069   for (Section_list::const_iterator p = this->section_list_.begin();
6070        p != this->section_list_.end();
6071        ++p)
6072     (*p)->print_merge_stats();
6073 }
6074 
6075 // Write_sections_task methods.
6076 
6077 // We can always run this task.
6078 
6079 Task_token*
is_runnable()6080 Write_sections_task::is_runnable()
6081 {
6082   return NULL;
6083 }
6084 
6085 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
6086 // when finished.
6087 
6088 void
locks(Task_locker * tl)6089 Write_sections_task::locks(Task_locker* tl)
6090 {
6091   tl->add(this, this->output_sections_blocker_);
6092   if (this->input_sections_blocker_ != NULL)
6093     tl->add(this, this->input_sections_blocker_);
6094   tl->add(this, this->final_blocker_);
6095 }
6096 
6097 // Run the task--write out the data.
6098 
6099 void
run(Workqueue *)6100 Write_sections_task::run(Workqueue*)
6101 {
6102   this->layout_->write_output_sections(this->of_);
6103 }
6104 
6105 // Write_data_task methods.
6106 
6107 // We can always run this task.
6108 
6109 Task_token*
is_runnable()6110 Write_data_task::is_runnable()
6111 {
6112   return NULL;
6113 }
6114 
6115 // We need to unlock FINAL_BLOCKER when finished.
6116 
6117 void
locks(Task_locker * tl)6118 Write_data_task::locks(Task_locker* tl)
6119 {
6120   tl->add(this, this->final_blocker_);
6121 }
6122 
6123 // Run the task--write out the data.
6124 
6125 void
run(Workqueue *)6126 Write_data_task::run(Workqueue*)
6127 {
6128   this->layout_->write_data(this->symtab_, this->of_);
6129 }
6130 
6131 // Write_symbols_task methods.
6132 
6133 // We can always run this task.
6134 
6135 Task_token*
is_runnable()6136 Write_symbols_task::is_runnable()
6137 {
6138   return NULL;
6139 }
6140 
6141 // We need to unlock FINAL_BLOCKER when finished.
6142 
6143 void
locks(Task_locker * tl)6144 Write_symbols_task::locks(Task_locker* tl)
6145 {
6146   tl->add(this, this->final_blocker_);
6147 }
6148 
6149 // Run the task--write out the symbols.
6150 
6151 void
run(Workqueue *)6152 Write_symbols_task::run(Workqueue*)
6153 {
6154   this->symtab_->write_globals(this->sympool_, this->dynpool_,
6155 			       this->layout_->symtab_xindex(),
6156 			       this->layout_->dynsym_xindex(), this->of_);
6157 }
6158 
6159 // Write_after_input_sections_task methods.
6160 
6161 // We can only run this task after the input sections have completed.
6162 
6163 Task_token*
is_runnable()6164 Write_after_input_sections_task::is_runnable()
6165 {
6166   if (this->input_sections_blocker_->is_blocked())
6167     return this->input_sections_blocker_;
6168   return NULL;
6169 }
6170 
6171 // We need to unlock FINAL_BLOCKER when finished.
6172 
6173 void
locks(Task_locker * tl)6174 Write_after_input_sections_task::locks(Task_locker* tl)
6175 {
6176   tl->add(this, this->final_blocker_);
6177 }
6178 
6179 // Run the task.
6180 
6181 void
run(Workqueue *)6182 Write_after_input_sections_task::run(Workqueue*)
6183 {
6184   this->layout_->write_sections_after_input_sections(this->of_);
6185 }
6186 
6187 // Build IDs can be computed as a "flat" sha1 or md5 of a string of bytes,
6188 // or as a "tree" where each chunk of the string is hashed and then those
6189 // hashes are put into a (much smaller) string which is hashed with sha1.
6190 // We compute a checksum over the entire file because that is simplest.
6191 
6192 void
run(Workqueue * workqueue,const Task *)6193 Build_id_task_runner::run(Workqueue* workqueue, const Task*)
6194 {
6195   Task_token* post_hash_tasks_blocker = new Task_token(true);
6196   const Layout* layout = this->layout_;
6197   Output_file* of = this->of_;
6198   const size_t filesize = (layout->output_file_size() <= 0 ? 0
6199 			   : static_cast<size_t>(layout->output_file_size()));
6200   unsigned char* array_of_hashes = NULL;
6201   size_t size_of_hashes = 0;
6202 
6203   if (strcmp(this->options_->build_id(), "tree") == 0
6204       && this->options_->build_id_chunk_size_for_treehash() > 0
6205       && filesize > 0
6206       && (filesize >= this->options_->build_id_min_file_size_for_treehash()))
6207     {
6208       static const size_t MD5_OUTPUT_SIZE_IN_BYTES = 16;
6209       const size_t chunk_size =
6210 	  this->options_->build_id_chunk_size_for_treehash();
6211       const size_t num_hashes = ((filesize - 1) / chunk_size) + 1;
6212       post_hash_tasks_blocker->add_blockers(num_hashes);
6213       size_of_hashes = num_hashes * MD5_OUTPUT_SIZE_IN_BYTES;
6214       array_of_hashes = new unsigned char[size_of_hashes];
6215       unsigned char *dst = array_of_hashes;
6216       for (size_t i = 0, src_offset = 0; i < num_hashes;
6217 	   i++, dst += MD5_OUTPUT_SIZE_IN_BYTES, src_offset += chunk_size)
6218 	{
6219 	  size_t size = std::min(chunk_size, filesize - src_offset);
6220 	  workqueue->queue(new Hash_task(of,
6221 					 src_offset,
6222 					 size,
6223 					 dst,
6224 					 post_hash_tasks_blocker));
6225 	}
6226     }
6227 
6228   // Queue the final task to write the build id and close the output file.
6229   workqueue->queue(new Task_function(new Close_task_runner(this->options_,
6230 							   layout,
6231 							   of,
6232 							   array_of_hashes,
6233 							   size_of_hashes),
6234 				     post_hash_tasks_blocker,
6235 				     "Task_function Close_task_runner"));
6236 }
6237 
6238 // Close_task_runner methods.
6239 
6240 // Finish up the build ID computation, if necessary, and write a binary file,
6241 // if necessary.  Then close the output file.
6242 
6243 void
run(Workqueue *,const Task *)6244 Close_task_runner::run(Workqueue*, const Task*)
6245 {
6246   // At this point the multi-threaded part of the build ID computation,
6247   // if any, is done.  See Build_id_task_runner.
6248   this->layout_->write_build_id(this->of_, this->array_of_hashes_,
6249 				this->size_of_hashes_);
6250 
6251   // If we've been asked to create a binary file, we do so here.
6252   if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
6253     this->layout_->write_binary(this->of_);
6254 
6255   if (this->options_->dependency_file())
6256     File_read::write_dependency_file(this->options_->dependency_file(),
6257 				     this->options_->output_file_name());
6258 
6259   this->of_->close();
6260 }
6261 
6262 // Instantiate the templates we need.  We could use the configure
6263 // script to restrict this to only the ones for implemented targets.
6264 
6265 #ifdef HAVE_TARGET_32_LITTLE
6266 template
6267 Output_section*
6268 Layout::init_fixed_output_section<32, false>(
6269     const char* name,
6270     elfcpp::Shdr<32, false>& shdr);
6271 #endif
6272 
6273 #ifdef HAVE_TARGET_32_BIG
6274 template
6275 Output_section*
6276 Layout::init_fixed_output_section<32, true>(
6277     const char* name,
6278     elfcpp::Shdr<32, true>& shdr);
6279 #endif
6280 
6281 #ifdef HAVE_TARGET_64_LITTLE
6282 template
6283 Output_section*
6284 Layout::init_fixed_output_section<64, false>(
6285     const char* name,
6286     elfcpp::Shdr<64, false>& shdr);
6287 #endif
6288 
6289 #ifdef HAVE_TARGET_64_BIG
6290 template
6291 Output_section*
6292 Layout::init_fixed_output_section<64, true>(
6293     const char* name,
6294     elfcpp::Shdr<64, true>& shdr);
6295 #endif
6296 
6297 #ifdef HAVE_TARGET_32_LITTLE
6298 template
6299 Output_section*
6300 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
6301 			  unsigned int shndx,
6302 			  const char* name,
6303 			  const elfcpp::Shdr<32, false>& shdr,
6304 			  unsigned int, unsigned int, unsigned int, off_t*);
6305 #endif
6306 
6307 #ifdef HAVE_TARGET_32_BIG
6308 template
6309 Output_section*
6310 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
6311 			 unsigned int shndx,
6312 			 const char* name,
6313 			 const elfcpp::Shdr<32, true>& shdr,
6314 			 unsigned int, unsigned int, unsigned int, off_t*);
6315 #endif
6316 
6317 #ifdef HAVE_TARGET_64_LITTLE
6318 template
6319 Output_section*
6320 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
6321 			  unsigned int shndx,
6322 			  const char* name,
6323 			  const elfcpp::Shdr<64, false>& shdr,
6324 			  unsigned int, unsigned int, unsigned int, off_t*);
6325 #endif
6326 
6327 #ifdef HAVE_TARGET_64_BIG
6328 template
6329 Output_section*
6330 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
6331 			 unsigned int shndx,
6332 			 const char* name,
6333 			 const elfcpp::Shdr<64, true>& shdr,
6334 			 unsigned int, unsigned int, unsigned int, off_t*);
6335 #endif
6336 
6337 #ifdef HAVE_TARGET_32_LITTLE
6338 template
6339 Output_section*
6340 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
6341 				unsigned int reloc_shndx,
6342 				const elfcpp::Shdr<32, false>& shdr,
6343 				Output_section* data_section,
6344 				Relocatable_relocs* rr);
6345 #endif
6346 
6347 #ifdef HAVE_TARGET_32_BIG
6348 template
6349 Output_section*
6350 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
6351 			       unsigned int reloc_shndx,
6352 			       const elfcpp::Shdr<32, true>& shdr,
6353 			       Output_section* data_section,
6354 			       Relocatable_relocs* rr);
6355 #endif
6356 
6357 #ifdef HAVE_TARGET_64_LITTLE
6358 template
6359 Output_section*
6360 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
6361 				unsigned int reloc_shndx,
6362 				const elfcpp::Shdr<64, false>& shdr,
6363 				Output_section* data_section,
6364 				Relocatable_relocs* rr);
6365 #endif
6366 
6367 #ifdef HAVE_TARGET_64_BIG
6368 template
6369 Output_section*
6370 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
6371 			       unsigned int reloc_shndx,
6372 			       const elfcpp::Shdr<64, true>& shdr,
6373 			       Output_section* data_section,
6374 			       Relocatable_relocs* rr);
6375 #endif
6376 
6377 #ifdef HAVE_TARGET_32_LITTLE
6378 template
6379 void
6380 Layout::layout_group<32, false>(Symbol_table* symtab,
6381 				Sized_relobj_file<32, false>* object,
6382 				unsigned int,
6383 				const char* group_section_name,
6384 				const char* signature,
6385 				const elfcpp::Shdr<32, false>& shdr,
6386 				elfcpp::Elf_Word flags,
6387 				std::vector<unsigned int>* shndxes);
6388 #endif
6389 
6390 #ifdef HAVE_TARGET_32_BIG
6391 template
6392 void
6393 Layout::layout_group<32, true>(Symbol_table* symtab,
6394 			       Sized_relobj_file<32, true>* object,
6395 			       unsigned int,
6396 			       const char* group_section_name,
6397 			       const char* signature,
6398 			       const elfcpp::Shdr<32, true>& shdr,
6399 			       elfcpp::Elf_Word flags,
6400 			       std::vector<unsigned int>* shndxes);
6401 #endif
6402 
6403 #ifdef HAVE_TARGET_64_LITTLE
6404 template
6405 void
6406 Layout::layout_group<64, false>(Symbol_table* symtab,
6407 				Sized_relobj_file<64, false>* object,
6408 				unsigned int,
6409 				const char* group_section_name,
6410 				const char* signature,
6411 				const elfcpp::Shdr<64, false>& shdr,
6412 				elfcpp::Elf_Word flags,
6413 				std::vector<unsigned int>* shndxes);
6414 #endif
6415 
6416 #ifdef HAVE_TARGET_64_BIG
6417 template
6418 void
6419 Layout::layout_group<64, true>(Symbol_table* symtab,
6420 			       Sized_relobj_file<64, true>* object,
6421 			       unsigned int,
6422 			       const char* group_section_name,
6423 			       const char* signature,
6424 			       const elfcpp::Shdr<64, true>& shdr,
6425 			       elfcpp::Elf_Word flags,
6426 			       std::vector<unsigned int>* shndxes);
6427 #endif
6428 
6429 #ifdef HAVE_TARGET_32_LITTLE
6430 template
6431 Output_section*
6432 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
6433 				   const unsigned char* symbols,
6434 				   off_t symbols_size,
6435 				   const unsigned char* symbol_names,
6436 				   off_t symbol_names_size,
6437 				   unsigned int shndx,
6438 				   const elfcpp::Shdr<32, false>& shdr,
6439 				   unsigned int reloc_shndx,
6440 				   unsigned int reloc_type,
6441 				   off_t* off);
6442 #endif
6443 
6444 #ifdef HAVE_TARGET_32_BIG
6445 template
6446 Output_section*
6447 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
6448 				  const unsigned char* symbols,
6449 				  off_t symbols_size,
6450 				  const unsigned char* symbol_names,
6451 				  off_t symbol_names_size,
6452 				  unsigned int shndx,
6453 				  const elfcpp::Shdr<32, true>& shdr,
6454 				  unsigned int reloc_shndx,
6455 				  unsigned int reloc_type,
6456 				  off_t* off);
6457 #endif
6458 
6459 #ifdef HAVE_TARGET_64_LITTLE
6460 template
6461 Output_section*
6462 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
6463 				   const unsigned char* symbols,
6464 				   off_t symbols_size,
6465 				   const unsigned char* symbol_names,
6466 				   off_t symbol_names_size,
6467 				   unsigned int shndx,
6468 				   const elfcpp::Shdr<64, false>& shdr,
6469 				   unsigned int reloc_shndx,
6470 				   unsigned int reloc_type,
6471 				   off_t* off);
6472 #endif
6473 
6474 #ifdef HAVE_TARGET_64_BIG
6475 template
6476 Output_section*
6477 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
6478 				  const unsigned char* symbols,
6479 				  off_t symbols_size,
6480 				  const unsigned char* symbol_names,
6481 				  off_t symbol_names_size,
6482 				  unsigned int shndx,
6483 				  const elfcpp::Shdr<64, true>& shdr,
6484 				  unsigned int reloc_shndx,
6485 				  unsigned int reloc_type,
6486 				  off_t* off);
6487 #endif
6488 
6489 #ifdef HAVE_TARGET_32_LITTLE
6490 template
6491 void
6492 Layout::add_to_gdb_index(bool is_type_unit,
6493 			 Sized_relobj<32, false>* object,
6494 			 const unsigned char* symbols,
6495 			 off_t symbols_size,
6496 			 unsigned int shndx,
6497 			 unsigned int reloc_shndx,
6498 			 unsigned int reloc_type);
6499 #endif
6500 
6501 #ifdef HAVE_TARGET_32_BIG
6502 template
6503 void
6504 Layout::add_to_gdb_index(bool is_type_unit,
6505 			 Sized_relobj<32, true>* object,
6506 			 const unsigned char* symbols,
6507 			 off_t symbols_size,
6508 			 unsigned int shndx,
6509 			 unsigned int reloc_shndx,
6510 			 unsigned int reloc_type);
6511 #endif
6512 
6513 #ifdef HAVE_TARGET_64_LITTLE
6514 template
6515 void
6516 Layout::add_to_gdb_index(bool is_type_unit,
6517 			 Sized_relobj<64, false>* object,
6518 			 const unsigned char* symbols,
6519 			 off_t symbols_size,
6520 			 unsigned int shndx,
6521 			 unsigned int reloc_shndx,
6522 			 unsigned int reloc_type);
6523 #endif
6524 
6525 #ifdef HAVE_TARGET_64_BIG
6526 template
6527 void
6528 Layout::add_to_gdb_index(bool is_type_unit,
6529 			 Sized_relobj<64, true>* object,
6530 			 const unsigned char* symbols,
6531 			 off_t symbols_size,
6532 			 unsigned int shndx,
6533 			 unsigned int reloc_shndx,
6534 			 unsigned int reloc_type);
6535 #endif
6536 
6537 } // End namespace gold.
6538