xref: /netbsd-src/external/gpl3/binutils/dist/gold/aarch64.cc (revision cb63e24e8d6aae7ddac1859a9015f48b1d8bd90e)
1 // aarch64.cc -- aarch64 target support for gold.
2 
3 // Copyright (C) 2014-2024 Free Software Foundation, Inc.
4 // Written by Jing Yu <jingyu@google.com> and Han Shen <shenhan@google.com>.
5 
6 // This file is part of gold.
7 
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12 
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17 
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22 
23 #include "gold.h"
24 
25 #include <cstring>
26 #include <map>
27 #include <set>
28 
29 #include "elfcpp.h"
30 #include "dwarf.h"
31 #include "parameters.h"
32 #include "reloc.h"
33 #include "aarch64.h"
34 #include "object.h"
35 #include "symtab.h"
36 #include "layout.h"
37 #include "output.h"
38 #include "copy-relocs.h"
39 #include "target.h"
40 #include "target-reloc.h"
41 #include "target-select.h"
42 #include "tls.h"
43 #include "freebsd.h"
44 #include "nacl.h"
45 #include "gc.h"
46 #include "icf.h"
47 #include "aarch64-reloc-property.h"
48 
49 // The first three .got.plt entries are reserved.
50 const int32_t AARCH64_GOTPLT_RESERVE_COUNT = 3;
51 
52 
53 namespace
54 {
55 
56 using namespace gold;
57 
58 template<int size, bool big_endian>
59 class Output_data_plt_aarch64;
60 
61 template<int size, bool big_endian>
62 class Output_data_plt_aarch64_standard;
63 
64 template<int size, bool big_endian>
65 class Target_aarch64;
66 
67 template<int size, bool big_endian>
68 class AArch64_relocate_functions;
69 
70 // Utility class dealing with insns. This is ported from macros in
71 // bfd/elfnn-aarch64.cc, but wrapped inside a class as static members. This
72 // class is used in erratum sequence scanning.
73 
74 template<bool big_endian>
75 class AArch64_insn_utilities
76 {
77 public:
78   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
79 
80   static const int BYTES_PER_INSN;
81 
82   // Zero register encoding - 31.
83   static const unsigned int AARCH64_ZR;
84 
85   static unsigned int
aarch64_bit(Insntype insn,int pos)86   aarch64_bit(Insntype insn, int pos)
87   { return ((1 << pos)  & insn) >> pos; }
88 
89   static unsigned int
aarch64_bits(Insntype insn,int pos,int l)90   aarch64_bits(Insntype insn, int pos, int l)
91   { return (insn >> pos) & ((1 << l) - 1); }
92 
93   // Get the encoding field "op31" of 3-source data processing insns. "op31" is
94   // the name defined in armv8 insn manual C3.5.9.
95   static unsigned int
aarch64_op31(Insntype insn)96   aarch64_op31(Insntype insn)
97   { return aarch64_bits(insn, 21, 3); }
98 
99   // Get the encoding field "ra" of 3-source data processing insns. "ra" is the
100   // third source register. See armv8 insn manual C3.5.9.
101   static unsigned int
aarch64_ra(Insntype insn)102   aarch64_ra(Insntype insn)
103   { return aarch64_bits(insn, 10, 5); }
104 
105   static bool
is_adr(const Insntype insn)106   is_adr(const Insntype insn)
107   { return (insn & 0x9F000000) == 0x10000000; }
108 
109   static bool
is_adrp(const Insntype insn)110   is_adrp(const Insntype insn)
111   { return (insn & 0x9F000000) == 0x90000000; }
112 
113   static bool
is_mrs_tpidr_el0(const Insntype insn)114   is_mrs_tpidr_el0(const Insntype insn)
115   { return (insn & 0xFFFFFFE0) == 0xd53bd040; }
116 
117   static unsigned int
aarch64_rm(const Insntype insn)118   aarch64_rm(const Insntype insn)
119   { return aarch64_bits(insn, 16, 5); }
120 
121   static unsigned int
aarch64_rn(const Insntype insn)122   aarch64_rn(const Insntype insn)
123   { return aarch64_bits(insn, 5, 5); }
124 
125   static unsigned int
aarch64_rd(const Insntype insn)126   aarch64_rd(const Insntype insn)
127   { return aarch64_bits(insn, 0, 5); }
128 
129   static unsigned int
aarch64_rt(const Insntype insn)130   aarch64_rt(const Insntype insn)
131   { return aarch64_bits(insn, 0, 5); }
132 
133   static unsigned int
aarch64_rt2(const Insntype insn)134   aarch64_rt2(const Insntype insn)
135   { return aarch64_bits(insn, 10, 5); }
136 
137   // Encode imm21 into adr. Signed imm21 is in the range of [-1M, 1M).
138   static Insntype
aarch64_adr_encode_imm(Insntype adr,int imm21)139   aarch64_adr_encode_imm(Insntype adr, int imm21)
140   {
141     gold_assert(is_adr(adr));
142     gold_assert(-(1 << 20) <= imm21 && imm21 < (1 << 20));
143     const int mask19 = (1 << 19) - 1;
144     const int mask2 = 3;
145     adr &= ~((mask19 << 5) | (mask2 << 29));
146     adr |= ((imm21 & mask2) << 29) | (((imm21 >> 2) & mask19) << 5);
147     return adr;
148   }
149 
150   // Retrieve encoded adrp 33-bit signed imm value. This value is obtained by
151   // 21-bit signed imm encoded in the insn multiplied by 4k (page size) and
152   // 64-bit sign-extended, resulting in [-4G, 4G) with 12-lsb being 0.
153   static int64_t
aarch64_adrp_decode_imm(const Insntype adrp)154   aarch64_adrp_decode_imm(const Insntype adrp)
155   {
156     const int mask19 = (1 << 19) - 1;
157     const int mask2 = 3;
158     gold_assert(is_adrp(adrp));
159     // 21-bit imm encoded in adrp.
160     uint64_t imm = ((adrp >> 29) & mask2) | (((adrp >> 5) & mask19) << 2);
161     // Retrieve msb of 21-bit-signed imm for sign extension.
162     uint64_t msbt = (imm >> 20) & 1;
163     // Real value is imm multiplied by 4k. Value now has 33-bit information.
164     int64_t value = imm << 12;
165     // Sign extend to 64-bit by repeating msbt 31 (64-33) times and merge it
166     // with value.
167     return ((((uint64_t)(1) << 32) - msbt) << 33) | value;
168   }
169 
170   static bool
aarch64_b(const Insntype insn)171   aarch64_b(const Insntype insn)
172   { return (insn & 0xFC000000) == 0x14000000; }
173 
174   static bool
aarch64_bl(const Insntype insn)175   aarch64_bl(const Insntype insn)
176   { return (insn & 0xFC000000) == 0x94000000; }
177 
178   static bool
aarch64_blr(const Insntype insn)179   aarch64_blr(const Insntype insn)
180   { return (insn & 0xFFFFFC1F) == 0xD63F0000; }
181 
182   static bool
aarch64_br(const Insntype insn)183   aarch64_br(const Insntype insn)
184   { return (insn & 0xFFFFFC1F) == 0xD61F0000; }
185 
186   // All ld/st ops.  See C4-182 of the ARM ARM.  The encoding space for
187   // LD_PCREL, LDST_RO, LDST_UI and LDST_UIMM cover prefetch ops.
188   static bool
aarch64_ld(Insntype insn)189   aarch64_ld(Insntype insn) { return aarch64_bit(insn, 22) == 1; }
190 
191   static bool
aarch64_ldst(Insntype insn)192   aarch64_ldst(Insntype insn)
193   { return (insn & 0x0a000000) == 0x08000000; }
194 
195   static bool
aarch64_ldst_ex(Insntype insn)196   aarch64_ldst_ex(Insntype insn)
197   { return (insn & 0x3f000000) == 0x08000000; }
198 
199   static bool
aarch64_ldst_pcrel(Insntype insn)200   aarch64_ldst_pcrel(Insntype insn)
201   { return (insn & 0x3b000000) == 0x18000000; }
202 
203   static bool
aarch64_ldst_nap(Insntype insn)204   aarch64_ldst_nap(Insntype insn)
205   { return (insn & 0x3b800000) == 0x28000000; }
206 
207   static bool
aarch64_ldstp_pi(Insntype insn)208   aarch64_ldstp_pi(Insntype insn)
209   { return (insn & 0x3b800000) == 0x28800000; }
210 
211   static bool
aarch64_ldstp_o(Insntype insn)212   aarch64_ldstp_o(Insntype insn)
213   { return (insn & 0x3b800000) == 0x29000000; }
214 
215   static bool
aarch64_ldstp_pre(Insntype insn)216   aarch64_ldstp_pre(Insntype insn)
217   { return (insn & 0x3b800000) == 0x29800000; }
218 
219   static bool
aarch64_ldst_ui(Insntype insn)220   aarch64_ldst_ui(Insntype insn)
221   { return (insn & 0x3b200c00) == 0x38000000; }
222 
223   static bool
aarch64_ldst_piimm(Insntype insn)224   aarch64_ldst_piimm(Insntype insn)
225   { return (insn & 0x3b200c00) == 0x38000400; }
226 
227   static bool
aarch64_ldst_u(Insntype insn)228   aarch64_ldst_u(Insntype insn)
229   { return (insn & 0x3b200c00) == 0x38000800; }
230 
231   static bool
aarch64_ldst_preimm(Insntype insn)232   aarch64_ldst_preimm(Insntype insn)
233   { return (insn & 0x3b200c00) == 0x38000c00; }
234 
235   static bool
aarch64_ldst_ro(Insntype insn)236   aarch64_ldst_ro(Insntype insn)
237   { return (insn & 0x3b200c00) == 0x38200800; }
238 
239   static bool
aarch64_ldst_uimm(Insntype insn)240   aarch64_ldst_uimm(Insntype insn)
241   { return (insn & 0x3b000000) == 0x39000000; }
242 
243   static bool
aarch64_ldst_simd_m(Insntype insn)244   aarch64_ldst_simd_m(Insntype insn)
245   { return (insn & 0xbfbf0000) == 0x0c000000; }
246 
247   static bool
aarch64_ldst_simd_m_pi(Insntype insn)248   aarch64_ldst_simd_m_pi(Insntype insn)
249   { return (insn & 0xbfa00000) == 0x0c800000; }
250 
251   static bool
aarch64_ldst_simd_s(Insntype insn)252   aarch64_ldst_simd_s(Insntype insn)
253   { return (insn & 0xbf9f0000) == 0x0d000000; }
254 
255   static bool
aarch64_ldst_simd_s_pi(Insntype insn)256   aarch64_ldst_simd_s_pi(Insntype insn)
257   { return (insn & 0xbf800000) == 0x0d800000; }
258 
259   // Classify an INSN if it is indeed a load/store. Return true if INSN is a
260   // LD/ST instruction otherwise return false. For scalar LD/ST instructions
261   // PAIR is FALSE, RT is returned and RT2 is set equal to RT. For LD/ST pair
262   // instructions PAIR is TRUE, RT and RT2 are returned.
263   static bool
aarch64_mem_op_p(Insntype insn,unsigned int * rt,unsigned int * rt2,bool * pair,bool * load)264   aarch64_mem_op_p(Insntype insn, unsigned int *rt, unsigned int *rt2,
265 		   bool *pair, bool *load)
266   {
267     uint32_t opcode;
268     unsigned int r;
269     uint32_t opc = 0;
270     uint32_t v = 0;
271     uint32_t opc_v = 0;
272 
273     /* Bail out quickly if INSN doesn't fall into the load-store
274        encoding space.  */
275     if (!aarch64_ldst (insn))
276       return false;
277 
278     *pair = false;
279     *load = false;
280     if (aarch64_ldst_ex (insn))
281       {
282 	*rt = aarch64_rt (insn);
283 	*rt2 = *rt;
284 	if (aarch64_bit (insn, 21) == 1)
285 	  {
286 	    *pair = true;
287 	    *rt2 = aarch64_rt2 (insn);
288 	  }
289 	*load = aarch64_ld (insn);
290 	return true;
291       }
292     else if (aarch64_ldst_nap (insn)
293 	     || aarch64_ldstp_pi (insn)
294 	     || aarch64_ldstp_o (insn)
295 	     || aarch64_ldstp_pre (insn))
296       {
297 	*pair = true;
298 	*rt = aarch64_rt (insn);
299 	*rt2 = aarch64_rt2 (insn);
300 	*load = aarch64_ld (insn);
301 	return true;
302       }
303     else if (aarch64_ldst_pcrel (insn)
304 	     || aarch64_ldst_ui (insn)
305 	     || aarch64_ldst_piimm (insn)
306 	     || aarch64_ldst_u (insn)
307 	     || aarch64_ldst_preimm (insn)
308 	     || aarch64_ldst_ro (insn)
309 	     || aarch64_ldst_uimm (insn))
310       {
311 	*rt = aarch64_rt (insn);
312 	*rt2 = *rt;
313 	if (aarch64_ldst_pcrel (insn))
314 	  *load = true;
315 	opc = aarch64_bits (insn, 22, 2);
316 	v = aarch64_bit (insn, 26);
317 	opc_v = opc | (v << 2);
318 	*load =  (opc_v == 1 || opc_v == 2 || opc_v == 3
319 		  || opc_v == 5 || opc_v == 7);
320 	return true;
321       }
322     else if (aarch64_ldst_simd_m (insn)
323 	     || aarch64_ldst_simd_m_pi (insn))
324       {
325 	*rt = aarch64_rt (insn);
326 	*load = aarch64_bit (insn, 22);
327 	opcode = (insn >> 12) & 0xf;
328 	switch (opcode)
329 	  {
330 	  case 0:
331 	  case 2:
332 	    *rt2 = *rt + 3;
333 	    break;
334 
335 	  case 4:
336 	  case 6:
337 	    *rt2 = *rt + 2;
338 	    break;
339 
340 	  case 7:
341 	    *rt2 = *rt;
342 	    break;
343 
344 	  case 8:
345 	  case 10:
346 	    *rt2 = *rt + 1;
347 	    break;
348 
349 	  default:
350 	    return false;
351 	  }
352 	return true;
353       }
354     else if (aarch64_ldst_simd_s (insn)
355 	     || aarch64_ldst_simd_s_pi (insn))
356       {
357 	*rt = aarch64_rt (insn);
358 	r = (insn >> 21) & 1;
359 	*load = aarch64_bit (insn, 22);
360 	opcode = (insn >> 13) & 0x7;
361 	switch (opcode)
362 	  {
363 	  case 0:
364 	  case 2:
365 	  case 4:
366 	    *rt2 = *rt + r;
367 	    break;
368 
369 	  case 1:
370 	  case 3:
371 	  case 5:
372 	    *rt2 = *rt + (r == 0 ? 2 : 3);
373 	    break;
374 
375 	  case 6:
376 	    *rt2 = *rt + r;
377 	    break;
378 
379 	  case 7:
380 	    *rt2 = *rt + (r == 0 ? 2 : 3);
381 	    break;
382 
383 	  default:
384 	    return false;
385 	  }
386 	return true;
387       }
388     return false;
389   }  // End of "aarch64_mem_op_p".
390 
391   // Return true if INSN is mac insn.
392   static bool
aarch64_mac(Insntype insn)393   aarch64_mac(Insntype insn)
394   { return (insn & 0xff000000) == 0x9b000000; }
395 
396   // Return true if INSN is multiply-accumulate.
397   // (This is similar to implementaton in elfnn-aarch64.c.)
398   static bool
aarch64_mlxl(Insntype insn)399   aarch64_mlxl(Insntype insn)
400   {
401     uint32_t op31 = aarch64_op31(insn);
402     if (aarch64_mac(insn)
403 	&& (op31 == 0 || op31 == 1 || op31 == 5)
404 	/* Exclude MUL instructions which are encoded as a multiple-accumulate
405 	   with RA = XZR.  */
406 	&& aarch64_ra(insn) != AARCH64_ZR)
407       {
408 	return true;
409       }
410     return false;
411   }
412 };  // End of "AArch64_insn_utilities".
413 
414 
415 // Insn length in byte.
416 
417 template<bool big_endian>
418 const int AArch64_insn_utilities<big_endian>::BYTES_PER_INSN = 4;
419 
420 
421 // Zero register encoding - 31.
422 
423 template<bool big_endian>
424 const unsigned int AArch64_insn_utilities<big_endian>::AARCH64_ZR = 0x1f;
425 
426 
427 // Output_data_got_aarch64 class.
428 
429 template<int size, bool big_endian>
430 class Output_data_got_aarch64 : public Output_data_got<size, big_endian>
431 {
432  public:
433   typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
Output_data_got_aarch64(Symbol_table * symtab,Layout * layout)434   Output_data_got_aarch64(Symbol_table* symtab, Layout* layout)
435     : Output_data_got<size, big_endian>(),
436       symbol_table_(symtab), layout_(layout)
437   { }
438 
439   // Add a static entry for the GOT entry at OFFSET.  GSYM is a global
440   // symbol and R_TYPE is the code of a dynamic relocation that needs to be
441   // applied in a static link.
442   void
add_static_reloc(unsigned int got_offset,unsigned int r_type,Symbol * gsym)443   add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
444   { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
445 
446 
447   // Add a static reloc for the GOT entry at OFFSET.  RELOBJ is an object
448   // defining a local symbol with INDEX.  R_TYPE is the code of a dynamic
449   // relocation that needs to be applied in a static link.
450   void
add_static_reloc(unsigned int got_offset,unsigned int r_type,Sized_relobj_file<size,big_endian> * relobj,unsigned int index)451   add_static_reloc(unsigned int got_offset, unsigned int r_type,
452 		   Sized_relobj_file<size, big_endian>* relobj,
453 		   unsigned int index)
454   {
455     this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
456 						index));
457   }
458 
459 
460  protected:
461   // Write out the GOT table.
462   void
do_write(Output_file * of)463   do_write(Output_file* of) {
464     // The first entry in the GOT is the address of the .dynamic section.
465     gold_assert(this->data_size() >= size / 8);
466     Output_section* dynamic = this->layout_->dynamic_section();
467     Valtype dynamic_addr = dynamic == NULL ? 0 : dynamic->address();
468     this->replace_constant(0, dynamic_addr);
469     Output_data_got<size, big_endian>::do_write(of);
470 
471     // Handling static relocs
472     if (this->static_relocs_.empty())
473       return;
474 
475     typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
476 
477     gold_assert(parameters->doing_static_link());
478     const off_t offset = this->offset();
479     const section_size_type oview_size =
480       convert_to_section_size_type(this->data_size());
481     unsigned char* const oview = of->get_output_view(offset, oview_size);
482 
483     Output_segment* tls_segment = this->layout_->tls_segment();
484     gold_assert(tls_segment != NULL);
485 
486     AArch64_address aligned_tcb_address =
487       align_address(Target_aarch64<size, big_endian>::TCB_SIZE,
488 		    tls_segment->maximum_alignment());
489 
490     for (size_t i = 0; i < this->static_relocs_.size(); ++i)
491       {
492 	Static_reloc& reloc(this->static_relocs_[i]);
493 	AArch64_address value;
494 
495 	if (!reloc.symbol_is_global())
496 	  {
497 	    Sized_relobj_file<size, big_endian>* object = reloc.relobj();
498 	    const Symbol_value<size>* psymval =
499 	      reloc.relobj()->local_symbol(reloc.index());
500 
501 	    // We are doing static linking.  Issue an error and skip this
502 	    // relocation if the symbol is undefined or in a discarded_section.
503 	    bool is_ordinary;
504 	    unsigned int shndx = psymval->input_shndx(&is_ordinary);
505 	    if ((shndx == elfcpp::SHN_UNDEF)
506 		|| (is_ordinary
507 		    && shndx != elfcpp::SHN_UNDEF
508 		    && !object->is_section_included(shndx)
509 		    && !this->symbol_table_->is_section_folded(object, shndx)))
510 	      {
511 		gold_error(_("undefined or discarded local symbol %u from "
512 			     " object %s in GOT"),
513 			   reloc.index(), reloc.relobj()->name().c_str());
514 		continue;
515 	      }
516 	    value = psymval->value(object, 0);
517 	  }
518 	else
519 	  {
520 	    const Symbol* gsym = reloc.symbol();
521 	    gold_assert(gsym != NULL);
522 	    if (gsym->is_forwarder())
523 	      gsym = this->symbol_table_->resolve_forwards(gsym);
524 
525 	    // We are doing static linking.  Issue an error and skip this
526 	    // relocation if the symbol is undefined or in a discarded_section
527 	    // unless it is a weakly_undefined symbol.
528 	    if ((gsym->is_defined_in_discarded_section()
529 		 || gsym->is_undefined())
530 		&& !gsym->is_weak_undefined())
531 	      {
532 		gold_error(_("undefined or discarded symbol %s in GOT"),
533 			   gsym->name());
534 		continue;
535 	      }
536 
537 	    if (!gsym->is_weak_undefined())
538 	      {
539 		const Sized_symbol<size>* sym =
540 		  static_cast<const Sized_symbol<size>*>(gsym);
541 		value = sym->value();
542 	      }
543 	    else
544 	      value = 0;
545 	  }
546 
547 	unsigned got_offset = reloc.got_offset();
548 	gold_assert(got_offset < oview_size);
549 
550 	typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
551 	Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
552 	Valtype x;
553 	switch (reloc.r_type())
554 	  {
555 	  case elfcpp::R_AARCH64_TLS_DTPREL64:
556 	    x = value;
557 	    break;
558 	  case elfcpp::R_AARCH64_TLS_TPREL64:
559 	    x = value + aligned_tcb_address;
560 	    break;
561 	  default:
562 	    gold_unreachable();
563 	  }
564 	elfcpp::Swap<size, big_endian>::writeval(wv, x);
565       }
566 
567     of->write_output_view(offset, oview_size, oview);
568   }
569 
570  private:
571   // Symbol table of the output object.
572   Symbol_table* symbol_table_;
573   // A pointer to the Layout class, so that we can find the .dynamic
574   // section when we write out the GOT section.
575   Layout* layout_;
576 
577   // This class represent dynamic relocations that need to be applied by
578   // gold because we are using TLS relocations in a static link.
579   class Static_reloc
580   {
581    public:
Static_reloc(unsigned int got_offset,unsigned int r_type,Symbol * gsym)582     Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
583       : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
584     { this->u_.global.symbol = gsym; }
585 
Static_reloc(unsigned int got_offset,unsigned int r_type,Sized_relobj_file<size,big_endian> * relobj,unsigned int index)586     Static_reloc(unsigned int got_offset, unsigned int r_type,
587 	  Sized_relobj_file<size, big_endian>* relobj, unsigned int index)
588       : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
589     {
590       this->u_.local.relobj = relobj;
591       this->u_.local.index = index;
592     }
593 
594     // Return the GOT offset.
595     unsigned int
got_offset() const596     got_offset() const
597     { return this->got_offset_; }
598 
599     // Relocation type.
600     unsigned int
r_type() const601     r_type() const
602     { return this->r_type_; }
603 
604     // Whether the symbol is global or not.
605     bool
symbol_is_global() const606     symbol_is_global() const
607     { return this->symbol_is_global_; }
608 
609     // For a relocation against a global symbol, the global symbol.
610     Symbol*
symbol() const611     symbol() const
612     {
613       gold_assert(this->symbol_is_global_);
614       return this->u_.global.symbol;
615     }
616 
617     // For a relocation against a local symbol, the defining object.
618     Sized_relobj_file<size, big_endian>*
relobj() const619     relobj() const
620     {
621       gold_assert(!this->symbol_is_global_);
622       return this->u_.local.relobj;
623     }
624 
625     // For a relocation against a local symbol, the local symbol index.
626     unsigned int
index() const627     index() const
628     {
629       gold_assert(!this->symbol_is_global_);
630       return this->u_.local.index;
631     }
632 
633    private:
634     // GOT offset of the entry to which this relocation is applied.
635     unsigned int got_offset_;
636     // Type of relocation.
637     unsigned int r_type_;
638     // Whether this relocation is against a global symbol.
639     bool symbol_is_global_;
640     // A global or local symbol.
641     union
642     {
643       struct
644       {
645 	// For a global symbol, the symbol itself.
646 	Symbol* symbol;
647       } global;
648       struct
649       {
650 	// For a local symbol, the object defining the symbol.
651 	Sized_relobj_file<size, big_endian>* relobj;
652 	// For a local symbol, the symbol index.
653 	unsigned int index;
654       } local;
655     } u_;
656   };  // End of inner class Static_reloc
657 
658   std::vector<Static_reloc> static_relocs_;
659 };  // End of Output_data_got_aarch64
660 
661 
662 template<int size, bool big_endian>
663 class AArch64_input_section;
664 
665 
666 template<int size, bool big_endian>
667 class AArch64_output_section;
668 
669 
670 template<int size, bool big_endian>
671 class AArch64_relobj;
672 
673 
674 // Stub type enum constants.
675 
676 enum
677 {
678   ST_NONE = 0,
679 
680   // Using adrp/add pair, 4 insns (including alignment) without mem access,
681   // the fastest stub. This has a limited jump distance, which is tested by
682   // aarch64_valid_for_adrp_p.
683   ST_ADRP_BRANCH = 1,
684 
685   // Using ldr-absolute-address/br-register, 4 insns with 1 mem access,
686   // unlimited in jump distance.
687   ST_LONG_BRANCH_ABS = 2,
688 
689   // Using ldr/calculate-pcrel/jump, 8 insns (including alignment) with 1
690   // mem access, slowest one. Only used in position independent executables.
691   ST_LONG_BRANCH_PCREL = 3,
692 
693   // Stub for erratum 843419 handling.
694   ST_E_843419 = 4,
695 
696   // Stub for erratum 835769 handling.
697   ST_E_835769 = 5,
698 
699   // Number of total stub types.
700   ST_NUMBER = 6
701 };
702 
703 
704 // Struct that wraps insns for a particular stub. All stub templates are
705 // created/initialized as constants by Stub_template_repertoire.
706 
707 template<bool big_endian>
708 struct Stub_template
709 {
710   const typename AArch64_insn_utilities<big_endian>::Insntype* insns;
711   const int insn_num;
712 };
713 
714 
715 // Simple singleton class that creates/initializes/stores all types of stub
716 // templates.
717 
718 template<bool big_endian>
719 class Stub_template_repertoire
720 {
721 public:
722   typedef typename AArch64_insn_utilities<big_endian>::Insntype Insntype;
723 
724   // Single static method to get stub template for a given stub type.
725   static const Stub_template<big_endian>*
get_stub_template(int type)726   get_stub_template(int type)
727   {
728     static Stub_template_repertoire<big_endian> singleton;
729     return singleton.stub_templates_[type];
730   }
731 
732 private:
733   // Constructor - creates/initializes all stub templates.
734   Stub_template_repertoire();
~Stub_template_repertoire()735   ~Stub_template_repertoire()
736   { }
737 
738   // Disallowing copy ctor and copy assignment operator.
739   Stub_template_repertoire(Stub_template_repertoire&);
740   Stub_template_repertoire& operator=(Stub_template_repertoire&);
741 
742   // Data that stores all insn templates.
743   const Stub_template<big_endian>* stub_templates_[ST_NUMBER];
744 };  // End of "class Stub_template_repertoire".
745 
746 
747 // Constructor - creates/initilizes all stub templates.
748 
749 template<bool big_endian>
Stub_template_repertoire()750 Stub_template_repertoire<big_endian>::Stub_template_repertoire()
751 {
752   // Insn array definitions.
753   const static Insntype ST_NONE_INSNS[] = {};
754 
755   const static Insntype ST_ADRP_BRANCH_INSNS[] =
756     {
757       0x90000010,	/*	adrp	ip0, X		   */
758 			/*	  ADR_PREL_PG_HI21(X)	   */
759       0x91000210,	/*	add	ip0, ip0, :lo12:X  */
760 			/*	  ADD_ABS_LO12_NC(X)	   */
761       0xd61f0200,	/*	br	ip0		   */
762       0x00000000,	/*	alignment padding	   */
763     };
764 
765   const static Insntype ST_LONG_BRANCH_ABS_INSNS[] =
766     {
767       0x58000050,	/*	ldr   ip0, 0x8		   */
768       0xd61f0200,	/*	br    ip0		   */
769       0x00000000,	/*	address field		   */
770       0x00000000,	/*	address fields		   */
771     };
772 
773   const static Insntype ST_LONG_BRANCH_PCREL_INSNS[] =
774     {
775       0x58000090,	/*	ldr   ip0, 0x10            */
776       0x10000011,	/*	adr   ip1, #0		   */
777       0x8b110210,	/*	add   ip0, ip0, ip1	   */
778       0xd61f0200,	/*	br    ip0		   */
779       0x00000000,	/*	address field		   */
780       0x00000000,	/*	address field		   */
781       0x00000000,	/*	alignment padding	   */
782       0x00000000,	/*	alignment padding	   */
783     };
784 
785   const static Insntype ST_E_843419_INSNS[] =
786     {
787       0x00000000,    /* Placeholder for erratum insn. */
788       0x14000000,    /* b <label> */
789     };
790 
791   // ST_E_835769 has the same stub template as ST_E_843419
792   // but we reproduce the array here so that the sizeof
793   // expressions in install_insn_template will work.
794   const static Insntype ST_E_835769_INSNS[] =
795     {
796       0x00000000,    /* Placeholder for erratum insn. */
797       0x14000000,    /* b <label> */
798     };
799 
800 #define install_insn_template(T) \
801   const static Stub_template<big_endian> template_##T = {  \
802     T##_INSNS, sizeof(T##_INSNS) / sizeof(T##_INSNS[0]) }; \
803   this->stub_templates_[T] = &template_##T
804 
805   install_insn_template(ST_NONE);
806   install_insn_template(ST_ADRP_BRANCH);
807   install_insn_template(ST_LONG_BRANCH_ABS);
808   install_insn_template(ST_LONG_BRANCH_PCREL);
809   install_insn_template(ST_E_843419);
810   install_insn_template(ST_E_835769);
811 
812 #undef install_insn_template
813 }
814 
815 
816 // Base class for stubs.
817 
818 template<int size, bool big_endian>
819 class Stub_base
820 {
821 public:
822   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
823   typedef typename AArch64_insn_utilities<big_endian>::Insntype Insntype;
824 
825   static const AArch64_address invalid_address =
826     static_cast<AArch64_address>(-1);
827 
828   static const section_offset_type invalid_offset =
829     static_cast<section_offset_type>(-1);
830 
Stub_base(int type)831   Stub_base(int type)
832     : destination_address_(invalid_address),
833       offset_(invalid_offset),
834       type_(type)
835   {}
836 
~Stub_base()837   ~Stub_base()
838   {}
839 
840   // Get stub type.
841   int
type() const842   type() const
843   { return this->type_; }
844 
845   // Get stub template that provides stub insn information.
846   const Stub_template<big_endian>*
stub_template() const847   stub_template() const
848   {
849     return Stub_template_repertoire<big_endian>::
850       get_stub_template(this->type());
851   }
852 
853   // Get destination address.
854   AArch64_address
destination_address() const855   destination_address() const
856   {
857     gold_assert(this->destination_address_ != this->invalid_address);
858     return this->destination_address_;
859   }
860 
861   // Set destination address.
862   void
set_destination_address(AArch64_address address)863   set_destination_address(AArch64_address address)
864   {
865     gold_assert(address != this->invalid_address);
866     this->destination_address_ = address;
867   }
868 
869   // Reset the destination address.
870   void
reset_destination_address()871   reset_destination_address()
872   { this->destination_address_ = this->invalid_address; }
873 
874   // Get offset of code stub. For Reloc_stub, it is the offset from the
875   // beginning of its containing stub table; for Erratum_stub, it is the offset
876   // from the end of reloc_stubs.
877   section_offset_type
offset() const878   offset() const
879   {
880     gold_assert(this->offset_ != this->invalid_offset);
881     return this->offset_;
882   }
883 
884   // Set stub offset.
885   void
set_offset(section_offset_type offset)886   set_offset(section_offset_type offset)
887   { this->offset_ = offset; }
888 
889   // Return the stub insn.
890   const Insntype*
insns() const891   insns() const
892   { return this->stub_template()->insns; }
893 
894   // Return num of stub insns.
895   unsigned int
insn_num() const896   insn_num() const
897   { return this->stub_template()->insn_num; }
898 
899   // Get size of the stub.
900   int
stub_size() const901   stub_size() const
902   {
903     return this->insn_num() *
904       AArch64_insn_utilities<big_endian>::BYTES_PER_INSN;
905   }
906 
907   // Write stub to output file.
908   void
write(unsigned char * view,section_size_type view_size)909   write(unsigned char* view, section_size_type view_size)
910   { this->do_write(view, view_size); }
911 
912 protected:
913   // Abstract method to be implemented by sub-classes.
914   virtual void
915   do_write(unsigned char*, section_size_type) = 0;
916 
917 private:
918   // The last insn of a stub is a jump to destination insn. This field records
919   // the destination address.
920   AArch64_address destination_address_;
921   // The stub offset. Note this has difference interpretations between an
922   // Reloc_stub and an Erratum_stub. For Reloc_stub this is the offset from the
923   // beginning of the containing stub_table, whereas for Erratum_stub, this is
924   // the offset from the end of reloc_stubs.
925   section_offset_type offset_;
926   // Stub type.
927   const int type_;
928 };  // End of "Stub_base".
929 
930 
931 // Erratum stub class. An erratum stub differs from a reloc stub in that for
932 // each erratum occurrence, we generate an erratum stub. We never share erratum
933 // stubs, whereas for reloc stubs, different branch insns share a single reloc
934 // stub as long as the branch targets are the same. (More to the point, reloc
935 // stubs can be shared because they're used to reach a specific target, whereas
936 // erratum stubs branch back to the original control flow.)
937 
938 template<int size, bool big_endian>
939 class Erratum_stub : public Stub_base<size, big_endian>
940 {
941 public:
942   typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
943   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
944   typedef AArch64_insn_utilities<big_endian> Insn_utilities;
945   typedef typename AArch64_insn_utilities<big_endian>::Insntype Insntype;
946 
947   static const int STUB_ADDR_ALIGN;
948 
949   static const Insntype invalid_insn = static_cast<Insntype>(-1);
950 
Erratum_stub(The_aarch64_relobj * relobj,int type,unsigned shndx,unsigned int sh_offset)951   Erratum_stub(The_aarch64_relobj* relobj, int type,
952 	       unsigned shndx, unsigned int sh_offset)
953     : Stub_base<size, big_endian>(type), relobj_(relobj),
954       shndx_(shndx), sh_offset_(sh_offset),
955       erratum_insn_(invalid_insn),
956       erratum_address_(this->invalid_address)
957   {}
958 
~Erratum_stub()959   ~Erratum_stub() {}
960 
961   // Return the object that contains the erratum.
962   The_aarch64_relobj*
relobj()963   relobj()
964   { return this->relobj_; }
965 
966   // Get section index of the erratum.
967   unsigned int
shndx() const968   shndx() const
969   { return this->shndx_; }
970 
971   // Get section offset of the erratum.
972   unsigned int
sh_offset() const973   sh_offset() const
974   { return this->sh_offset_; }
975 
976   // Get the erratum insn. This is the insn located at erratum_insn_address.
977   Insntype
erratum_insn() const978   erratum_insn() const
979   {
980     gold_assert(this->erratum_insn_ != this->invalid_insn);
981     return this->erratum_insn_;
982   }
983 
984   // Set the insn that the erratum happens to.
985   void
set_erratum_insn(Insntype insn)986   set_erratum_insn(Insntype insn)
987   { this->erratum_insn_ = insn; }
988 
989   // For 843419, the erratum insn is ld/st xt, [xn, #uimm], which may be a
990   // relocation spot, in this case, the erratum_insn_ recorded at scanning phase
991   // is no longer the one we want to write out to the stub, update erratum_insn_
992   // with relocated version. Also note that in this case xn must not be "PC", so
993   // it is safe to move the erratum insn from the origin place to the stub. For
994   // 835769, the erratum insn is multiply-accumulate insn, which could not be a
995   // relocation spot (assertion added though).
996   void
update_erratum_insn(Insntype insn)997   update_erratum_insn(Insntype insn)
998   {
999     gold_assert(this->erratum_insn_ != this->invalid_insn);
1000     switch (this->type())
1001       {
1002       case ST_E_843419:
1003 	gold_assert(Insn_utilities::aarch64_ldst_uimm(insn));
1004 	gold_assert(Insn_utilities::aarch64_ldst_uimm(this->erratum_insn()));
1005 	gold_assert(Insn_utilities::aarch64_rd(insn) ==
1006 		    Insn_utilities::aarch64_rd(this->erratum_insn()));
1007 	gold_assert(Insn_utilities::aarch64_rn(insn) ==
1008 		    Insn_utilities::aarch64_rn(this->erratum_insn()));
1009 	// Update plain ld/st insn with relocated insn.
1010 	this->erratum_insn_ = insn;
1011 	break;
1012       case ST_E_835769:
1013 	gold_assert(insn == this->erratum_insn());
1014 	break;
1015       default:
1016 	gold_unreachable();
1017       }
1018   }
1019 
1020 
1021   // Return the address where an erratum must be done.
1022   AArch64_address
erratum_address() const1023   erratum_address() const
1024   {
1025     gold_assert(this->erratum_address_ != this->invalid_address);
1026     return this->erratum_address_;
1027   }
1028 
1029   // Set the address where an erratum must be done.
1030   void
set_erratum_address(AArch64_address addr)1031   set_erratum_address(AArch64_address addr)
1032   { this->erratum_address_ = addr; }
1033 
1034   // Later relaxation passes of may alter the recorded erratum and destination
1035   // address. Given an up to date output section address of shidx_ in
1036   // relobj_ we can derive the erratum_address and destination address.
1037   void
update_erratum_address(AArch64_address output_section_addr)1038   update_erratum_address(AArch64_address output_section_addr)
1039   {
1040     const int BPI = AArch64_insn_utilities<big_endian>::BYTES_PER_INSN;
1041     AArch64_address updated_addr = output_section_addr + this->sh_offset_;
1042     this->set_erratum_address(updated_addr);
1043     this->set_destination_address(updated_addr + BPI);
1044   }
1045 
1046   // Comparator used to group Erratum_stubs in a set by (obj, shndx,
1047   // sh_offset). We do not include 'type' in the calculation, because there is
1048   // at most one stub type at (obj, shndx, sh_offset).
1049   bool
operator <(const Erratum_stub<size,big_endian> & k) const1050   operator<(const Erratum_stub<size, big_endian>& k) const
1051   {
1052     if (this == &k)
1053       return false;
1054     // We group stubs by relobj.
1055     if (this->relobj_ != k.relobj_)
1056       return this->relobj_ < k.relobj_;
1057     // Then by section index.
1058     if (this->shndx_ != k.shndx_)
1059       return this->shndx_ < k.shndx_;
1060     // Lastly by section offset.
1061     return this->sh_offset_ < k.sh_offset_;
1062   }
1063 
1064   void
invalidate_erratum_stub()1065   invalidate_erratum_stub()
1066   {
1067      gold_assert(this->erratum_insn_ != invalid_insn);
1068      this->erratum_insn_ = invalid_insn;
1069   }
1070 
1071   bool
is_invalidated_erratum_stub()1072   is_invalidated_erratum_stub()
1073   { return this->erratum_insn_ == invalid_insn; }
1074 
1075 protected:
1076   virtual void
1077   do_write(unsigned char*, section_size_type);
1078 
1079 private:
1080   // The object that needs to be fixed.
1081   The_aarch64_relobj* relobj_;
1082   // The shndx in the object that needs to be fixed.
1083   const unsigned int shndx_;
1084   // The section offset in the obejct that needs to be fixed.
1085   const unsigned int sh_offset_;
1086   // The insn to be fixed.
1087   Insntype erratum_insn_;
1088   // The address of the above insn.
1089   AArch64_address erratum_address_;
1090 };  // End of "Erratum_stub".
1091 
1092 
1093 // Erratum sub class to wrap additional info needed by 843419.  In fixing this
1094 // erratum, we may choose to replace 'adrp' with 'adr', in this case, we need
1095 // adrp's code position (two or three insns before erratum insn itself).
1096 
1097 template<int size, bool big_endian>
1098 class E843419_stub : public Erratum_stub<size, big_endian>
1099 {
1100 public:
1101   typedef typename AArch64_insn_utilities<big_endian>::Insntype Insntype;
1102 
E843419_stub(AArch64_relobj<size,big_endian> * relobj,unsigned int shndx,unsigned int sh_offset,unsigned int adrp_sh_offset)1103   E843419_stub(AArch64_relobj<size, big_endian>* relobj,
1104 		      unsigned int shndx, unsigned int sh_offset,
1105 		      unsigned int adrp_sh_offset)
1106     : Erratum_stub<size, big_endian>(relobj, ST_E_843419, shndx, sh_offset),
1107       adrp_sh_offset_(adrp_sh_offset)
1108   {}
1109 
1110   unsigned int
adrp_sh_offset() const1111   adrp_sh_offset() const
1112   { return this->adrp_sh_offset_; }
1113 
1114 private:
1115   // Section offset of "adrp". (We do not need a "adrp_shndx_" field, because we
1116   // can obtain it from its parent.)
1117   const unsigned int adrp_sh_offset_;
1118 };
1119 
1120 
1121 template<int size, bool big_endian>
1122 const int Erratum_stub<size, big_endian>::STUB_ADDR_ALIGN = 4;
1123 
1124 // Comparator used in set definition.
1125 template<int size, bool big_endian>
1126 struct Erratum_stub_less
1127 {
1128   bool
operator ()__anon66bd29fd0111::Erratum_stub_less1129   operator()(const Erratum_stub<size, big_endian>* s1,
1130 	     const Erratum_stub<size, big_endian>* s2) const
1131   { return *s1 < *s2; }
1132 };
1133 
1134 // Erratum_stub implementation for writing stub to output file.
1135 
1136 template<int size, bool big_endian>
1137 void
do_write(unsigned char * view,section_size_type)1138 Erratum_stub<size, big_endian>::do_write(unsigned char* view, section_size_type)
1139 {
1140   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
1141   const Insntype* insns = this->insns();
1142   uint32_t num_insns = this->insn_num();
1143   Insntype* ip = reinterpret_cast<Insntype*>(view);
1144   // For current implemented erratum 843419 and 835769, the first insn in the
1145   // stub is always a copy of the problematic insn (in 843419, the mem access
1146   // insn, in 835769, the mac insn), followed by a jump-back.
1147   elfcpp::Swap<32, big_endian>::writeval(ip, this->erratum_insn());
1148   for (uint32_t i = 1; i < num_insns; ++i)
1149     elfcpp::Swap<32, big_endian>::writeval(ip + i, insns[i]);
1150 }
1151 
1152 
1153 // Reloc stub class.
1154 
1155 template<int size, bool big_endian>
1156 class Reloc_stub : public Stub_base<size, big_endian>
1157 {
1158  public:
1159   typedef Reloc_stub<size, big_endian> This;
1160   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
1161 
1162   // Branch range. This is used to calculate the section group size, as well as
1163   // determine whether a stub is needed.
1164   static const int MAX_BRANCH_OFFSET = ((1 << 25) - 1) << 2;
1165   static const int MIN_BRANCH_OFFSET = -((1 << 25) << 2);
1166 
1167   // Constant used to determine if an offset fits in the adrp instruction
1168   // encoding.
1169   static const int MAX_ADRP_IMM = (1 << 20) - 1;
1170   static const int MIN_ADRP_IMM = -(1 << 20);
1171 
1172   static const int BYTES_PER_INSN = 4;
1173   static const int STUB_ADDR_ALIGN;
1174 
1175   // Determine whether the offset fits in the jump/branch instruction.
1176   static bool
aarch64_valid_branch_offset_p(int64_t offset)1177   aarch64_valid_branch_offset_p(int64_t offset)
1178   { return offset >= MIN_BRANCH_OFFSET && offset <= MAX_BRANCH_OFFSET; }
1179 
1180   // Determine whether the offset fits in the adrp immediate field.
1181   static bool
aarch64_valid_for_adrp_p(AArch64_address location,AArch64_address dest)1182   aarch64_valid_for_adrp_p(AArch64_address location, AArch64_address dest)
1183   {
1184     typedef AArch64_relocate_functions<size, big_endian> Reloc;
1185     int64_t adrp_imm = Reloc::Page (dest) - Reloc::Page (location);
1186     adrp_imm = adrp_imm < 0 ? ~(~adrp_imm >> 12) : adrp_imm >> 12;
1187     return adrp_imm >= MIN_ADRP_IMM && adrp_imm <= MAX_ADRP_IMM;
1188   }
1189 
1190   // Determine the stub type for a certain relocation or ST_NONE, if no stub is
1191   // needed.
1192   static int
1193   stub_type_for_reloc(unsigned int r_type, AArch64_address address,
1194 		      AArch64_address target);
1195 
Reloc_stub(int type)1196   Reloc_stub(int type)
1197     : Stub_base<size, big_endian>(type)
1198   { }
1199 
~Reloc_stub()1200   ~Reloc_stub()
1201   { }
1202 
1203   // The key class used to index the stub instance in the stub table's stub map.
1204   class Key
1205   {
1206    public:
Key(int type,const Symbol * symbol,const Relobj * relobj,unsigned int r_sym,int32_t addend)1207     Key(int type, const Symbol* symbol, const Relobj* relobj,
1208 	unsigned int r_sym, int32_t addend)
1209       : type_(type), addend_(addend)
1210     {
1211       if (symbol != NULL)
1212 	{
1213 	  this->r_sym_ = Reloc_stub::invalid_index;
1214 	  this->u_.symbol = symbol;
1215 	}
1216       else
1217 	{
1218 	  gold_assert(relobj != NULL && r_sym != invalid_index);
1219 	  this->r_sym_ = r_sym;
1220 	  this->u_.relobj = relobj;
1221 	}
1222     }
1223 
~Key()1224     ~Key()
1225     { }
1226 
1227     // Return stub type.
1228     int
type() const1229     type() const
1230     { return this->type_; }
1231 
1232     // Return the local symbol index or invalid_index.
1233     unsigned int
r_sym() const1234     r_sym() const
1235     { return this->r_sym_; }
1236 
1237     // Return the symbol if there is one.
1238     const Symbol*
symbol() const1239     symbol() const
1240     { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
1241 
1242     // Return the relobj if there is one.
1243     const Relobj*
relobj() const1244     relobj() const
1245     { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
1246 
1247     // Whether this equals to another key k.
1248     bool
eq(const Key & k) const1249     eq(const Key& k) const
1250     {
1251       return ((this->type_ == k.type_)
1252 	      && (this->r_sym_ == k.r_sym_)
1253 	      && ((this->r_sym_ != Reloc_stub::invalid_index)
1254 		  ? (this->u_.relobj == k.u_.relobj)
1255 		  : (this->u_.symbol == k.u_.symbol))
1256 	      && (this->addend_ == k.addend_));
1257     }
1258 
1259     // Return a hash value.
1260     size_t
hash_value() const1261     hash_value() const
1262     {
1263       size_t name_hash_value = gold::string_hash<char>(
1264 	  (this->r_sym_ != Reloc_stub::invalid_index)
1265 	  ? this->u_.relobj->name().c_str()
1266 	  : this->u_.symbol->name());
1267       // We only have 4 stub types.
1268       size_t stub_type_hash_value = 0x03 & this->type_;
1269       return (name_hash_value
1270 	      ^ stub_type_hash_value
1271 	      ^ ((this->r_sym_ & 0x3fff) << 2)
1272 	      ^ ((this->addend_ & 0xffff) << 16));
1273     }
1274 
1275     // Functors for STL associative containers.
1276     struct hash
1277     {
1278       size_t
operator ()__anon66bd29fd0111::Reloc_stub::Key::hash1279       operator()(const Key& k) const
1280       { return k.hash_value(); }
1281     };
1282 
1283     struct equal_to
1284     {
1285       bool
operator ()__anon66bd29fd0111::Reloc_stub::Key::equal_to1286       operator()(const Key& k1, const Key& k2) const
1287       { return k1.eq(k2); }
1288     };
1289 
1290    private:
1291     // Stub type.
1292     const int type_;
1293     // If this is a local symbol, this is the index in the defining object.
1294     // Otherwise, it is invalid_index for a global symbol.
1295     unsigned int r_sym_;
1296     // If r_sym_ is an invalid index, this points to a global symbol.
1297     // Otherwise, it points to a relobj.  We used the unsized and target
1298     // independent Symbol and Relobj classes instead of Sized_symbol<32> and
1299     // Arm_relobj, in order to avoid making the stub class a template
1300     // as most of the stub machinery is endianness-neutral.  However, it
1301     // may require a bit of casting done by users of this class.
1302     union
1303     {
1304       const Symbol* symbol;
1305       const Relobj* relobj;
1306     } u_;
1307     // Addend associated with a reloc.
1308     int32_t addend_;
1309   };  // End of inner class Reloc_stub::Key
1310 
1311  protected:
1312   // This may be overridden in the child class.
1313   virtual void
1314   do_write(unsigned char*, section_size_type);
1315 
1316  private:
1317   static const unsigned int invalid_index = static_cast<unsigned int>(-1);
1318 };  // End of Reloc_stub
1319 
1320 template<int size, bool big_endian>
1321 const int Reloc_stub<size, big_endian>::STUB_ADDR_ALIGN = 4;
1322 
1323 // Write data to output file.
1324 
1325 template<int size, bool big_endian>
1326 void
1327 Reloc_stub<size, big_endian>::
do_write(unsigned char * view,section_size_type)1328 do_write(unsigned char* view, section_size_type)
1329 {
1330   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
1331   const uint32_t* insns = this->insns();
1332   uint32_t num_insns = this->insn_num();
1333   Insntype* ip = reinterpret_cast<Insntype*>(view);
1334   for (uint32_t i = 0; i < num_insns; ++i)
1335     elfcpp::Swap<32, big_endian>::writeval(ip + i, insns[i]);
1336 }
1337 
1338 
1339 // Determine the stub type for a certain relocation or ST_NONE, if no stub is
1340 // needed.
1341 
1342 template<int size, bool big_endian>
1343 inline int
stub_type_for_reloc(unsigned int r_type,AArch64_address location,AArch64_address dest)1344 Reloc_stub<size, big_endian>::stub_type_for_reloc(
1345     unsigned int r_type, AArch64_address location, AArch64_address dest)
1346 {
1347   int64_t branch_offset = 0;
1348   switch(r_type)
1349     {
1350     case elfcpp::R_AARCH64_CALL26:
1351     case elfcpp::R_AARCH64_JUMP26:
1352       branch_offset = dest - location;
1353       break;
1354     default:
1355       gold_unreachable();
1356     }
1357 
1358   if (aarch64_valid_branch_offset_p(branch_offset))
1359     return ST_NONE;
1360 
1361   if (aarch64_valid_for_adrp_p(location, dest))
1362     return ST_ADRP_BRANCH;
1363 
1364   // Always use PC-relative addressing in case of -shared or -pie.
1365   if (parameters->options().output_is_position_independent())
1366     return ST_LONG_BRANCH_PCREL;
1367 
1368   // This saves 2 insns per stub, compared to ST_LONG_BRANCH_PCREL.
1369   // But is only applicable to non-shared or non-pie.
1370   return ST_LONG_BRANCH_ABS;
1371 }
1372 
1373 // A class to hold stubs for the ARM target. This contains 2 different types of
1374 // stubs - reloc stubs and erratum stubs.
1375 
1376 template<int size, bool big_endian>
1377 class Stub_table : public Output_data
1378 {
1379  public:
1380   typedef Target_aarch64<size, big_endian> The_target_aarch64;
1381   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
1382   typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
1383   typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
1384   typedef Reloc_stub<size, big_endian> The_reloc_stub;
1385   typedef typename The_reloc_stub::Key The_reloc_stub_key;
1386   typedef Erratum_stub<size, big_endian> The_erratum_stub;
1387   typedef Erratum_stub_less<size, big_endian> The_erratum_stub_less;
1388   typedef typename The_reloc_stub_key::hash The_reloc_stub_key_hash;
1389   typedef typename The_reloc_stub_key::equal_to The_reloc_stub_key_equal_to;
1390   typedef Stub_table<size, big_endian> The_stub_table;
1391   typedef Unordered_map<The_reloc_stub_key, The_reloc_stub*,
1392 			The_reloc_stub_key_hash, The_reloc_stub_key_equal_to>
1393 			Reloc_stub_map;
1394   typedef typename Reloc_stub_map::const_iterator Reloc_stub_map_const_iter;
1395   typedef Relocate_info<size, big_endian> The_relocate_info;
1396 
1397   typedef std::set<The_erratum_stub*, The_erratum_stub_less> Erratum_stub_set;
1398   typedef typename Erratum_stub_set::iterator Erratum_stub_set_iter;
1399 
Stub_table(The_aarch64_input_section * owner)1400   Stub_table(The_aarch64_input_section* owner)
1401     : Output_data(), owner_(owner), reloc_stubs_size_(0),
1402       erratum_stubs_size_(0), prev_data_size_(0)
1403   { }
1404 
~Stub_table()1405   ~Stub_table()
1406   { }
1407 
1408   The_aarch64_input_section*
owner() const1409   owner() const
1410   { return owner_; }
1411 
1412   // Whether this stub table is empty.
1413   bool
empty() const1414   empty() const
1415   { return reloc_stubs_.empty() && erratum_stubs_.empty(); }
1416 
1417   // Return the current data size.
1418   off_t
current_data_size() const1419   current_data_size() const
1420   { return this->current_data_size_for_child(); }
1421 
1422   // Add a STUB using KEY.  The caller is responsible for avoiding addition
1423   // if a STUB with the same key has already been added.
1424   void
1425   add_reloc_stub(The_reloc_stub* stub, const The_reloc_stub_key& key);
1426 
1427   // Add an erratum stub into the erratum stub set. The set is ordered by
1428   // (relobj, shndx, sh_offset).
1429   void
1430   add_erratum_stub(The_erratum_stub* stub);
1431 
1432   // Find if such erratum exists for any given (obj, shndx, sh_offset).
1433   The_erratum_stub*
1434   find_erratum_stub(The_aarch64_relobj* a64relobj,
1435 		    unsigned int shndx, unsigned int sh_offset);
1436 
1437   // Find all the erratums for a given input section. The return value is a pair
1438   // of iterators [begin, end).
1439   std::pair<Erratum_stub_set_iter, Erratum_stub_set_iter>
1440   find_erratum_stubs_for_input_section(The_aarch64_relobj* a64relobj,
1441 				       unsigned int shndx);
1442 
1443   // Compute the erratum stub address.
1444   AArch64_address
erratum_stub_address(The_erratum_stub * stub) const1445   erratum_stub_address(The_erratum_stub* stub) const
1446   {
1447     AArch64_address r = align_address(this->address() + this->reloc_stubs_size_,
1448 				      The_erratum_stub::STUB_ADDR_ALIGN);
1449     r += stub->offset();
1450     return r;
1451   }
1452 
1453   // Finalize stubs. No-op here, just for completeness.
1454   void
finalize_stubs()1455   finalize_stubs()
1456   { }
1457 
1458   // Look up a relocation stub using KEY. Return NULL if there is none.
1459   The_reloc_stub*
find_reloc_stub(The_reloc_stub_key & key)1460   find_reloc_stub(The_reloc_stub_key& key)
1461   {
1462     Reloc_stub_map_const_iter p = this->reloc_stubs_.find(key);
1463     return (p != this->reloc_stubs_.end()) ? p->second : NULL;
1464   }
1465 
1466   // Relocate reloc stubs in this stub table. This does not relocate erratum stubs.
1467   void
1468   relocate_reloc_stubs(const The_relocate_info*,
1469                        The_target_aarch64*,
1470                        Output_section*,
1471                        unsigned char*,
1472                        AArch64_address,
1473                        section_size_type);
1474 
1475   // Relocate an erratum stub.
1476   void
1477   relocate_erratum_stub(The_erratum_stub*, unsigned char*);
1478 
1479   // Update data size at the end of a relaxation pass.  Return true if data size
1480   // is different from that of the previous relaxation pass.
1481   bool
update_data_size_changed_p()1482   update_data_size_changed_p()
1483   {
1484     // No addralign changed here.
1485     off_t s = align_address(this->reloc_stubs_size_,
1486 			    The_erratum_stub::STUB_ADDR_ALIGN)
1487 	      + this->erratum_stubs_size_;
1488     bool changed = (s != this->prev_data_size_);
1489     this->prev_data_size_ = s;
1490     return changed;
1491   }
1492 
1493  protected:
1494   // Write out section contents.
1495   void
1496   do_write(Output_file*);
1497 
1498   // Return the required alignment.
1499   uint64_t
do_addralign() const1500   do_addralign() const
1501   {
1502     return std::max(The_reloc_stub::STUB_ADDR_ALIGN,
1503 		    The_erratum_stub::STUB_ADDR_ALIGN);
1504   }
1505 
1506   // Reset address and file offset.
1507   void
do_reset_address_and_file_offset()1508   do_reset_address_and_file_offset()
1509   { this->set_current_data_size_for_child(this->prev_data_size_); }
1510 
1511   // Set final data size.
1512   void
set_final_data_size()1513   set_final_data_size()
1514   { this->set_data_size(this->current_data_size()); }
1515 
1516  private:
1517   // Relocate one reloc stub.
1518   void
1519   relocate_reloc_stub(The_reloc_stub*,
1520                       const The_relocate_info*,
1521                       The_target_aarch64*,
1522                       Output_section*,
1523                       unsigned char*,
1524                       AArch64_address,
1525                       section_size_type);
1526 
1527  private:
1528   // Owner of this stub table.
1529   The_aarch64_input_section* owner_;
1530   // The relocation stubs.
1531   Reloc_stub_map reloc_stubs_;
1532   // The erratum stubs.
1533   Erratum_stub_set erratum_stubs_;
1534   // Size of reloc stubs.
1535   off_t reloc_stubs_size_;
1536   // Size of erratum stubs.
1537   off_t erratum_stubs_size_;
1538   // data size of this in the previous pass.
1539   off_t prev_data_size_;
1540 };  // End of Stub_table
1541 
1542 
1543 // Add an erratum stub into the erratum stub set. The set is ordered by
1544 // (relobj, shndx, sh_offset).
1545 
1546 template<int size, bool big_endian>
1547 void
add_erratum_stub(The_erratum_stub * stub)1548 Stub_table<size, big_endian>::add_erratum_stub(The_erratum_stub* stub)
1549 {
1550   std::pair<Erratum_stub_set_iter, bool> ret =
1551     this->erratum_stubs_.insert(stub);
1552   gold_assert(ret.second);
1553   this->erratum_stubs_size_ = align_address(
1554 	this->erratum_stubs_size_, The_erratum_stub::STUB_ADDR_ALIGN);
1555   stub->set_offset(this->erratum_stubs_size_);
1556   this->erratum_stubs_size_ += stub->stub_size();
1557 }
1558 
1559 
1560 // Find if such erratum exists for given (obj, shndx, sh_offset).
1561 
1562 template<int size, bool big_endian>
1563 Erratum_stub<size, big_endian>*
find_erratum_stub(The_aarch64_relobj * a64relobj,unsigned int shndx,unsigned int sh_offset)1564 Stub_table<size, big_endian>::find_erratum_stub(
1565     The_aarch64_relobj* a64relobj, unsigned int shndx, unsigned int sh_offset)
1566 {
1567   // A dummy object used as key to search in the set.
1568   The_erratum_stub key(a64relobj, ST_NONE,
1569 			 shndx, sh_offset);
1570   Erratum_stub_set_iter i = this->erratum_stubs_.find(&key);
1571   if (i != this->erratum_stubs_.end())
1572     {
1573 	The_erratum_stub* stub(*i);
1574 	gold_assert(stub->erratum_insn() != 0);
1575 	return stub;
1576     }
1577   return NULL;
1578 }
1579 
1580 
1581 // Find all the errata for a given input section. The return value is a pair of
1582 // iterators [begin, end).
1583 
1584 template<int size, bool big_endian>
1585 std::pair<typename Stub_table<size, big_endian>::Erratum_stub_set_iter,
1586 	  typename Stub_table<size, big_endian>::Erratum_stub_set_iter>
find_erratum_stubs_for_input_section(The_aarch64_relobj * a64relobj,unsigned int shndx)1587 Stub_table<size, big_endian>::find_erratum_stubs_for_input_section(
1588     The_aarch64_relobj* a64relobj, unsigned int shndx)
1589 {
1590   typedef std::pair<Erratum_stub_set_iter, Erratum_stub_set_iter> Result_pair;
1591   Erratum_stub_set_iter start, end;
1592   The_erratum_stub low_key(a64relobj, ST_NONE, shndx, 0);
1593   start = this->erratum_stubs_.lower_bound(&low_key);
1594   if (start == this->erratum_stubs_.end())
1595     return Result_pair(this->erratum_stubs_.end(),
1596 		       this->erratum_stubs_.end());
1597   end = start;
1598   while (end != this->erratum_stubs_.end() &&
1599 	 (*end)->relobj() == a64relobj && (*end)->shndx() == shndx)
1600     ++end;
1601   return Result_pair(start, end);
1602 }
1603 
1604 
1605 // Add a STUB using KEY.  The caller is responsible for avoiding addition
1606 // if a STUB with the same key has already been added.
1607 
1608 template<int size, bool big_endian>
1609 void
add_reloc_stub(The_reloc_stub * stub,const The_reloc_stub_key & key)1610 Stub_table<size, big_endian>::add_reloc_stub(
1611     The_reloc_stub* stub, const The_reloc_stub_key& key)
1612 {
1613   gold_assert(stub->type() == key.type());
1614   this->reloc_stubs_[key] = stub;
1615 
1616   // Assign stub offset early.  We can do this because we never remove
1617   // reloc stubs and they are in the beginning of the stub table.
1618   this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_,
1619 					  The_reloc_stub::STUB_ADDR_ALIGN);
1620   stub->set_offset(this->reloc_stubs_size_);
1621   this->reloc_stubs_size_ += stub->stub_size();
1622 }
1623 
1624 
1625 // Relocate an erratum stub.
1626 
1627 template<int size, bool big_endian>
1628 void
1629 Stub_table<size, big_endian>::
relocate_erratum_stub(The_erratum_stub * estub,unsigned char * view)1630 relocate_erratum_stub(The_erratum_stub* estub,
1631                       unsigned char* view)
1632 {
1633   // Just for convenience.
1634   const int BPI = AArch64_insn_utilities<big_endian>::BYTES_PER_INSN;
1635 
1636   gold_assert(!estub->is_invalidated_erratum_stub());
1637   AArch64_address stub_address = this->erratum_stub_address(estub);
1638   // The address of "b" in the stub that is to be "relocated".
1639   AArch64_address stub_b_insn_address;
1640   // Branch offset that is to be filled in "b" insn.
1641   int b_offset = 0;
1642   switch (estub->type())
1643     {
1644     case ST_E_843419:
1645     case ST_E_835769:
1646       // The 1st insn of the erratum could be a relocation spot,
1647       // in this case we need to fix it with
1648       // "(*i)->erratum_insn()".
1649       elfcpp::Swap<32, big_endian>::writeval(
1650           view + (stub_address - this->address()),
1651           estub->erratum_insn());
1652       // For the erratum, the 2nd insn is a b-insn to be patched
1653       // (relocated).
1654       stub_b_insn_address = stub_address + 1 * BPI;
1655       b_offset = estub->destination_address() - stub_b_insn_address;
1656       AArch64_relocate_functions<size, big_endian>::construct_b(
1657           view + (stub_b_insn_address - this->address()),
1658           ((unsigned int)(b_offset)) & 0xfffffff);
1659       break;
1660     default:
1661       gold_unreachable();
1662       break;
1663     }
1664   estub->invalidate_erratum_stub();
1665 }
1666 
1667 
1668 // Relocate only reloc stubs in this stub table. This does not relocate erratum
1669 // stubs.
1670 
1671 template<int size, bool big_endian>
1672 void
1673 Stub_table<size, big_endian>::
relocate_reloc_stubs(const The_relocate_info * relinfo,The_target_aarch64 * target_aarch64,Output_section * output_section,unsigned char * view,AArch64_address address,section_size_type view_size)1674 relocate_reloc_stubs(const The_relocate_info* relinfo,
1675                      The_target_aarch64* target_aarch64,
1676                      Output_section* output_section,
1677                      unsigned char* view,
1678                      AArch64_address address,
1679                      section_size_type view_size)
1680 {
1681   // "view_size" is the total size of the stub_table.
1682   gold_assert(address == this->address() &&
1683 	      view_size == static_cast<section_size_type>(this->data_size()));
1684   for(Reloc_stub_map_const_iter p = this->reloc_stubs_.begin();
1685       p != this->reloc_stubs_.end(); ++p)
1686     relocate_reloc_stub(p->second, relinfo, target_aarch64, output_section,
1687                         view, address, view_size);
1688 }
1689 
1690 
1691 // Relocate one reloc stub. This is a helper for
1692 // Stub_table::relocate_reloc_stubs().
1693 
1694 template<int size, bool big_endian>
1695 void
1696 Stub_table<size, big_endian>::
relocate_reloc_stub(The_reloc_stub * stub,const The_relocate_info * relinfo,The_target_aarch64 * target_aarch64,Output_section * output_section,unsigned char * view,AArch64_address address,section_size_type view_size)1697 relocate_reloc_stub(The_reloc_stub* stub,
1698                     const The_relocate_info* relinfo,
1699                     The_target_aarch64* target_aarch64,
1700                     Output_section* output_section,
1701                     unsigned char* view,
1702                     AArch64_address address,
1703                     section_size_type view_size)
1704 {
1705   // "offset" is the offset from the beginning of the stub_table.
1706   section_size_type offset = stub->offset();
1707   section_size_type stub_size = stub->stub_size();
1708   // "view_size" is the total size of the stub_table.
1709   gold_assert(offset + stub_size <= view_size);
1710 
1711   target_aarch64->relocate_reloc_stub(stub, relinfo, output_section,
1712                                       view + offset, address + offset, view_size);
1713 }
1714 
1715 
1716 // Write out the stubs to file.
1717 
1718 template<int size, bool big_endian>
1719 void
do_write(Output_file * of)1720 Stub_table<size, big_endian>::do_write(Output_file* of)
1721 {
1722   off_t offset = this->offset();
1723   const section_size_type oview_size =
1724     convert_to_section_size_type(this->data_size());
1725   unsigned char* const oview = of->get_output_view(offset, oview_size);
1726 
1727   // Write relocation stubs.
1728   for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
1729       p != this->reloc_stubs_.end(); ++p)
1730     {
1731       The_reloc_stub* stub = p->second;
1732       AArch64_address address = this->address() + stub->offset();
1733       gold_assert(address ==
1734 		  align_address(address, The_reloc_stub::STUB_ADDR_ALIGN));
1735       stub->write(oview + stub->offset(), stub->stub_size());
1736     }
1737 
1738   // Write erratum stubs.
1739   unsigned int erratum_stub_start_offset =
1740     align_address(this->reloc_stubs_size_, The_erratum_stub::STUB_ADDR_ALIGN);
1741   for (typename Erratum_stub_set::iterator p = this->erratum_stubs_.begin();
1742        p != this->erratum_stubs_.end(); ++p)
1743     {
1744       The_erratum_stub* stub(*p);
1745       stub->write(oview + erratum_stub_start_offset + stub->offset(),
1746 		  stub->stub_size());
1747     }
1748 
1749   of->write_output_view(this->offset(), oview_size, oview);
1750 }
1751 
1752 
1753 // AArch64_relobj class.
1754 
1755 template<int size, bool big_endian>
1756 class AArch64_relobj : public Sized_relobj_file<size, big_endian>
1757 {
1758  public:
1759   typedef AArch64_relobj<size, big_endian> This;
1760   typedef Target_aarch64<size, big_endian> The_target_aarch64;
1761   typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
1762   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
1763   typedef Stub_table<size, big_endian> The_stub_table;
1764   typedef Erratum_stub<size, big_endian> The_erratum_stub;
1765   typedef typename The_stub_table::Erratum_stub_set_iter Erratum_stub_set_iter;
1766   typedef std::vector<The_stub_table*> Stub_table_list;
1767   static const AArch64_address invalid_address =
1768       static_cast<AArch64_address>(-1);
1769 
AArch64_relobj(const std::string & name,Input_file * input_file,off_t offset,const typename elfcpp::Ehdr<size,big_endian> & ehdr)1770   AArch64_relobj(const std::string& name, Input_file* input_file, off_t offset,
1771 		 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
1772     : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
1773       stub_tables_()
1774   { }
1775 
~AArch64_relobj()1776   ~AArch64_relobj()
1777   { }
1778 
1779   // Return the stub table of the SHNDX-th section if there is one.
1780   The_stub_table*
stub_table(unsigned int shndx) const1781   stub_table(unsigned int shndx) const
1782   {
1783     gold_assert(shndx < this->stub_tables_.size());
1784     return this->stub_tables_[shndx];
1785   }
1786 
1787   // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1788   void
set_stub_table(unsigned int shndx,The_stub_table * stub_table)1789   set_stub_table(unsigned int shndx, The_stub_table* stub_table)
1790   {
1791     gold_assert(shndx < this->stub_tables_.size());
1792     this->stub_tables_[shndx] = stub_table;
1793   }
1794 
1795   // Entrance to errata scanning.
1796   void
1797   scan_errata(unsigned int shndx,
1798 	      const elfcpp::Shdr<size, big_endian>&,
1799 	      Output_section*, const Symbol_table*,
1800 	      The_target_aarch64*);
1801 
1802   // Scan all relocation sections for stub generation.
1803   void
1804   scan_sections_for_stubs(The_target_aarch64*, const Symbol_table*,
1805 			  const Layout*);
1806 
1807   // Whether a section is a scannable text section.
1808   bool
1809   text_section_is_scannable(const elfcpp::Shdr<size, big_endian>&, unsigned int,
1810 			    const Output_section*, const Symbol_table*);
1811 
1812   // Convert regular input section with index SHNDX to a relaxed section.
1813   void
convert_input_section_to_relaxed_section(unsigned shndx)1814   convert_input_section_to_relaxed_section(unsigned shndx)
1815   {
1816     // The stubs have relocations and we need to process them after writing
1817     // out the stubs.  So relocation now must follow section write.
1818     this->set_section_offset(shndx, -1ULL);
1819     this->set_relocs_must_follow_section_writes();
1820   }
1821 
1822   // Structure for mapping symbol position.
1823   struct Mapping_symbol_position
1824   {
Mapping_symbol_position__anon66bd29fd0111::AArch64_relobj::Mapping_symbol_position1825     Mapping_symbol_position(unsigned int shndx, AArch64_address offset):
1826       shndx_(shndx), offset_(offset)
1827     {}
1828 
1829     // "<" comparator used in ordered_map container.
1830     bool
operator <__anon66bd29fd0111::AArch64_relobj::Mapping_symbol_position1831     operator<(const Mapping_symbol_position& p) const
1832     {
1833       return (this->shndx_ < p.shndx_
1834 	      || (this->shndx_ == p.shndx_ && this->offset_ < p.offset_));
1835     }
1836 
1837     // Section index.
1838     unsigned int shndx_;
1839 
1840     // Section offset.
1841     AArch64_address offset_;
1842   };
1843 
1844   typedef std::map<Mapping_symbol_position, char> Mapping_symbol_info;
1845 
1846  protected:
1847   // Post constructor setup.
1848   void
do_setup()1849   do_setup()
1850   {
1851     // Call parent's setup method.
1852     Sized_relobj_file<size, big_endian>::do_setup();
1853 
1854     // Initialize look-up tables.
1855     this->stub_tables_.resize(this->shnum());
1856   }
1857 
1858   virtual void
1859   do_relocate_sections(
1860       const Symbol_table* symtab, const Layout* layout,
1861       const unsigned char* pshdrs, Output_file* of,
1862       typename Sized_relobj_file<size, big_endian>::Views* pviews);
1863 
1864   // Count local symbols and (optionally) record mapping info.
1865   virtual void
1866   do_count_local_symbols(Stringpool_template<char>*,
1867 			 Stringpool_template<char>*);
1868 
1869  private:
1870   // Fix all errata in the object, and for each erratum, relocate corresponding
1871   // erratum stub.
1872   void
1873   fix_errata_and_relocate_erratum_stubs(
1874       typename Sized_relobj_file<size, big_endian>::Views* pviews);
1875 
1876   // Try to fix erratum 843419 in an optimized way. Return true if patch is
1877   // applied.
1878   bool
1879   try_fix_erratum_843419_optimized(
1880       The_erratum_stub*, AArch64_address,
1881       typename Sized_relobj_file<size, big_endian>::View_size&);
1882 
1883   // Whether a section needs to be scanned for relocation stubs.
1884   bool
1885   section_needs_reloc_stub_scanning(const elfcpp::Shdr<size, big_endian>&,
1886 				    const Relobj::Output_sections&,
1887 				    const Symbol_table*, const unsigned char*);
1888 
1889   // List of stub tables.
1890   Stub_table_list stub_tables_;
1891 
1892   // Mapping symbol information sorted by (section index, section_offset).
1893   Mapping_symbol_info mapping_symbol_info_;
1894 };  // End of AArch64_relobj
1895 
1896 
1897 // Override to record mapping symbol information.
1898 template<int size, bool big_endian>
1899 void
do_count_local_symbols(Stringpool_template<char> * pool,Stringpool_template<char> * dynpool)1900 AArch64_relobj<size, big_endian>::do_count_local_symbols(
1901     Stringpool_template<char>* pool, Stringpool_template<char>* dynpool)
1902 {
1903   Sized_relobj_file<size, big_endian>::do_count_local_symbols(pool, dynpool);
1904 
1905   // Only erratum-fixing work needs mapping symbols, so skip this time consuming
1906   // processing if not fixing erratum.
1907   if (!parameters->options().fix_cortex_a53_843419()
1908       && !parameters->options().fix_cortex_a53_835769())
1909     return;
1910 
1911   const unsigned int loccount = this->local_symbol_count();
1912   if (loccount == 0)
1913     return;
1914 
1915   // Read the symbol table section header.
1916   const unsigned int symtab_shndx = this->symtab_shndx();
1917   elfcpp::Shdr<size, big_endian>
1918       symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
1919   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
1920 
1921   // Read the local symbols.
1922   const int sym_size =elfcpp::Elf_sizes<size>::sym_size;
1923   gold_assert(loccount == symtabshdr.get_sh_info());
1924   off_t locsize = loccount * sym_size;
1925   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
1926 					      locsize, true, true);
1927 
1928   // For mapping symbol processing, we need to read the symbol names.
1929   unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
1930   if (strtab_shndx >= this->shnum())
1931     {
1932       this->error(_("invalid symbol table name index: %u"), strtab_shndx);
1933       return;
1934     }
1935 
1936   elfcpp::Shdr<size, big_endian>
1937     strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
1938   if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
1939     {
1940       this->error(_("symbol table name section has wrong type: %u"),
1941 		  static_cast<unsigned int>(strtabshdr.get_sh_type()));
1942       return;
1943     }
1944 
1945   const char* pnames =
1946     reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
1947 						 strtabshdr.get_sh_size(),
1948 						 false, false));
1949 
1950   // Skip the first dummy symbol.
1951   psyms += sym_size;
1952   typename Sized_relobj_file<size, big_endian>::Local_values*
1953     plocal_values = this->local_values();
1954   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1955     {
1956       elfcpp::Sym<size, big_endian> sym(psyms);
1957       Symbol_value<size>& lv((*plocal_values)[i]);
1958       AArch64_address input_value = lv.input_value();
1959 
1960       // Check to see if this is a mapping symbol. AArch64 mapping symbols are
1961       // defined in "ELF for the ARM 64-bit Architecture", Table 4-4, Mapping
1962       // symbols.
1963       // Mapping symbols could be one of the following 4 forms -
1964       //   a) $x
1965       //   b) $x.<any...>
1966       //   c) $d
1967       //   d) $d.<any...>
1968       const char* sym_name = pnames + sym.get_st_name();
1969       if (sym_name[0] == '$' && (sym_name[1] == 'x' || sym_name[1] == 'd')
1970 	  && (sym_name[2] == '\0' || sym_name[2] == '.'))
1971 	{
1972 	  bool is_ordinary;
1973 	  unsigned int input_shndx =
1974 	    this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
1975 	  gold_assert(is_ordinary);
1976 
1977 	  Mapping_symbol_position msp(input_shndx, input_value);
1978 	  // Insert mapping_symbol_info into map whose ordering is defined by
1979 	  // (shndx, offset_within_section).
1980 	  this->mapping_symbol_info_[msp] = sym_name[1];
1981 	}
1982    }
1983 }
1984 
1985 
1986 // Fix all errata in the object and for each erratum, we relocate the
1987 // corresponding erratum stub (by calling Stub_table::relocate_erratum_stub).
1988 
1989 template<int size, bool big_endian>
1990 void
fix_errata_and_relocate_erratum_stubs(typename Sized_relobj_file<size,big_endian>::Views * pviews)1991 AArch64_relobj<size, big_endian>::fix_errata_and_relocate_erratum_stubs(
1992     typename Sized_relobj_file<size, big_endian>::Views* pviews)
1993 {
1994   typedef typename elfcpp::Swap<32,big_endian>::Valtype Insntype;
1995   unsigned int shnum = this->shnum();
1996   const Relobj::Output_sections& out_sections(this->output_sections());
1997   for (unsigned int i = 1; i < shnum; ++i)
1998     {
1999       The_stub_table* stub_table = this->stub_table(i);
2000       if (!stub_table)
2001 	continue;
2002       std::pair<Erratum_stub_set_iter, Erratum_stub_set_iter>
2003 	ipair(stub_table->find_erratum_stubs_for_input_section(this, i));
2004       Erratum_stub_set_iter p = ipair.first, end = ipair.second;
2005       typename Sized_relobj_file<size, big_endian>::View_size&
2006 	pview((*pviews)[i]);
2007       AArch64_address view_offset = 0;
2008       if (pview.is_input_output_view)
2009 	{
2010 	  // In this case, write_sections has not added the output offset to
2011 	  // the view's address, so we must do so. Currently this only happens
2012 	  // for a relaxed section.
2013 	  unsigned int index = this->adjust_shndx(i);
2014 	  const Output_relaxed_input_section* poris =
2015 	      out_sections[index]->find_relaxed_input_section(this, index);
2016 	  gold_assert(poris != NULL);
2017 	  view_offset = poris->address() - pview.address;
2018 	}
2019 
2020       while (p != end)
2021 	{
2022 	  The_erratum_stub* stub = *p;
2023 
2024 	  // Double check data before fix.
2025 	  gold_assert(pview.address + view_offset + stub->sh_offset()
2026 		      == stub->erratum_address());
2027 
2028 	  // Update previously recorded erratum insn with relocated
2029 	  // version.
2030 	  Insntype* ip =
2031 	    reinterpret_cast<Insntype*>(
2032 	      pview.view + view_offset + stub->sh_offset());
2033 	  Insntype insn_to_fix = ip[0];
2034 	  stub->update_erratum_insn(insn_to_fix);
2035 
2036 	  // First try to see if erratum is 843419 and if it can be fixed
2037 	  // without using branch-to-stub.
2038 	  if (!try_fix_erratum_843419_optimized(stub, view_offset, pview))
2039 	    {
2040 	      // Replace the erratum insn with a branch-to-stub.
2041 	      AArch64_address stub_address =
2042 		stub_table->erratum_stub_address(stub);
2043 	      unsigned int b_offset = stub_address - stub->erratum_address();
2044 	      AArch64_relocate_functions<size, big_endian>::construct_b(
2045 		pview.view + view_offset + stub->sh_offset(),
2046 		b_offset & 0xfffffff);
2047 	    }
2048 
2049           // Erratum fix is done (or skipped), continue to relocate erratum
2050           // stub. Note, when erratum fix is skipped (either because we
2051           // proactively change the code sequence or the code sequence is
2052           // changed by relaxation, etc), we can still safely relocate the
2053           // erratum stub, ignoring the fact the erratum could never be
2054           // executed.
2055           stub_table->relocate_erratum_stub(
2056 	    stub,
2057 	    pview.view + (stub_table->address() - pview.address));
2058 
2059           // Next erratum stub.
2060 	  ++p;
2061 	}
2062     }
2063 }
2064 
2065 
2066 // This is an optimization for 843419. This erratum requires the sequence begin
2067 // with 'adrp', when final value calculated by adrp fits in adr, we can just
2068 // replace 'adrp' with 'adr', so we save 2 jumps per occurrence. (Note, however,
2069 // in this case, we do not delete the erratum stub (too late to do so), it is
2070 // merely generated without ever being called.)
2071 
2072 template<int size, bool big_endian>
2073 bool
try_fix_erratum_843419_optimized(The_erratum_stub * stub,AArch64_address view_offset,typename Sized_relobj_file<size,big_endian>::View_size & pview)2074 AArch64_relobj<size, big_endian>::try_fix_erratum_843419_optimized(
2075     The_erratum_stub* stub, AArch64_address view_offset,
2076     typename Sized_relobj_file<size, big_endian>::View_size& pview)
2077 {
2078   if (stub->type() != ST_E_843419)
2079     return false;
2080 
2081   typedef AArch64_insn_utilities<big_endian> Insn_utilities;
2082   typedef typename elfcpp::Swap<32,big_endian>::Valtype Insntype;
2083   E843419_stub<size, big_endian>* e843419_stub =
2084     reinterpret_cast<E843419_stub<size, big_endian>*>(stub);
2085   AArch64_address pc =
2086     pview.address + view_offset + e843419_stub->adrp_sh_offset();
2087   unsigned int adrp_offset = e843419_stub->adrp_sh_offset ();
2088   Insntype* adrp_view =
2089     reinterpret_cast<Insntype*>(pview.view + view_offset + adrp_offset);
2090   Insntype adrp_insn = adrp_view[0];
2091 
2092   // If the instruction at adrp_sh_offset is "mrs R, tpidr_el0", it may come
2093   // from IE -> LE relaxation etc.  This is a side-effect of TLS relaxation that
2094   // ADRP has been turned into MRS, there is no erratum risk anymore.
2095   // Therefore, we return true to avoid doing unnecessary branch-to-stub.
2096   if (Insn_utilities::is_mrs_tpidr_el0(adrp_insn))
2097     return true;
2098 
2099   // If the instruction at adrp_sh_offset is not ADRP and the instruction before
2100   // it is "mrs R, tpidr_el0", it may come from LD -> LE relaxation etc.
2101   // Like the above case, there is no erratum risk any more, we can safely
2102   // return true.
2103   if (!Insn_utilities::is_adrp(adrp_insn) && adrp_offset)
2104     {
2105       Insntype* prev_view =
2106 	reinterpret_cast<Insntype*>(
2107 	  pview.view + view_offset + adrp_offset - 4);
2108       Insntype prev_insn = prev_view[0];
2109 
2110       if (Insn_utilities::is_mrs_tpidr_el0(prev_insn))
2111 	return true;
2112     }
2113 
2114   /* If we reach here, the first instruction must be ADRP.  */
2115   gold_assert(Insn_utilities::is_adrp(adrp_insn));
2116   // Get adrp 33-bit signed imm value.
2117   int64_t adrp_imm = Insn_utilities::
2118     aarch64_adrp_decode_imm(adrp_insn);
2119   // adrp - final value transferred to target register is calculated as:
2120   //     PC[11:0] = Zeros(12)
2121   //     adrp_dest_value = PC + adrp_imm;
2122   int64_t adrp_dest_value = (pc & ~((1 << 12) - 1)) + adrp_imm;
2123   // adr -final value transferred to target register is calucalted as:
2124   //     PC + adr_imm
2125   // So we have:
2126   //     PC + adr_imm = adrp_dest_value
2127   //   ==>
2128   //     adr_imm = adrp_dest_value - PC
2129   int64_t adr_imm = adrp_dest_value - pc;
2130   // Check if imm fits in adr (21-bit signed).
2131   if (-(1 << 20) <= adr_imm && adr_imm < (1 << 20))
2132     {
2133       // Convert 'adrp' into 'adr'.
2134       Insntype adr_insn = adrp_insn & ((1u << 31) - 1);
2135       adr_insn = Insn_utilities::
2136 	aarch64_adr_encode_imm(adr_insn, adr_imm);
2137       elfcpp::Swap<32, big_endian>::writeval(adrp_view, adr_insn);
2138       return true;
2139     }
2140   return false;
2141 }
2142 
2143 
2144 // Relocate sections.
2145 
2146 template<int size, bool big_endian>
2147 void
do_relocate_sections(const Symbol_table * symtab,const Layout * layout,const unsigned char * pshdrs,Output_file * of,typename Sized_relobj_file<size,big_endian>::Views * pviews)2148 AArch64_relobj<size, big_endian>::do_relocate_sections(
2149     const Symbol_table* symtab, const Layout* layout,
2150     const unsigned char* pshdrs, Output_file* of,
2151     typename Sized_relobj_file<size, big_endian>::Views* pviews)
2152 {
2153   // Relocate the section data.
2154   this->relocate_section_range(symtab, layout, pshdrs, of, pviews,
2155 			       1, this->shnum() - 1);
2156 
2157   // We do not generate stubs if doing a relocatable link.
2158   if (parameters->options().relocatable())
2159     return;
2160 
2161   // This part only relocates erratum stubs that belong to input sections of this
2162   // object file.
2163   if (parameters->options().fix_cortex_a53_843419()
2164       || parameters->options().fix_cortex_a53_835769())
2165     this->fix_errata_and_relocate_erratum_stubs(pviews);
2166 
2167   Relocate_info<size, big_endian> relinfo;
2168   relinfo.symtab = symtab;
2169   relinfo.layout = layout;
2170   relinfo.object = this;
2171 
2172   // This part relocates all reloc stubs that are contained in stub_tables of
2173   // this object file.
2174   unsigned int shnum = this->shnum();
2175   The_target_aarch64* target = The_target_aarch64::current_target();
2176 
2177   for (unsigned int i = 1; i < shnum; ++i)
2178     {
2179       The_aarch64_input_section* aarch64_input_section =
2180 	  target->find_aarch64_input_section(this, i);
2181       if (aarch64_input_section != NULL
2182 	  && aarch64_input_section->is_stub_table_owner()
2183 	  && !aarch64_input_section->stub_table()->empty())
2184 	{
2185 	  Output_section* os = this->output_section(i);
2186 	  gold_assert(os != NULL);
2187 
2188 	  relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
2189 	  relinfo.reloc_shdr = NULL;
2190 	  relinfo.data_shndx = i;
2191 	  relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<size>::shdr_size;
2192 
2193 	  typename Sized_relobj_file<size, big_endian>::View_size&
2194 	      view_struct = (*pviews)[i];
2195 	  gold_assert(view_struct.view != NULL);
2196 
2197 	  The_stub_table* stub_table = aarch64_input_section->stub_table();
2198 	  off_t offset = stub_table->address() - view_struct.address;
2199 	  unsigned char* view = view_struct.view + offset;
2200 	  AArch64_address address = stub_table->address();
2201 	  section_size_type view_size = stub_table->data_size();
2202 	  stub_table->relocate_reloc_stubs(&relinfo, target, os, view, address,
2203 					   view_size);
2204 	}
2205     }
2206 }
2207 
2208 
2209 // Determine if an input section is scannable for stub processing.  SHDR is
2210 // the header of the section and SHNDX is the section index.  OS is the output
2211 // section for the input section and SYMTAB is the global symbol table used to
2212 // look up ICF information.
2213 
2214 template<int size, bool big_endian>
2215 bool
text_section_is_scannable(const elfcpp::Shdr<size,big_endian> & text_shdr,unsigned int text_shndx,const Output_section * os,const Symbol_table * symtab)2216 AArch64_relobj<size, big_endian>::text_section_is_scannable(
2217     const elfcpp::Shdr<size, big_endian>& text_shdr,
2218     unsigned int text_shndx,
2219     const Output_section* os,
2220     const Symbol_table* symtab)
2221 {
2222   // Skip any empty sections, unallocated sections or sections whose
2223   // type are not SHT_PROGBITS.
2224   if (text_shdr.get_sh_size() == 0
2225       || (text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
2226       || text_shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
2227     return false;
2228 
2229   // Skip any discarded or ICF'ed sections.
2230   if (os == NULL || symtab->is_section_folded(this, text_shndx))
2231     return false;
2232 
2233   // Skip exception frame.
2234   if (strcmp(os->name(), ".eh_frame") == 0)
2235     return false ;
2236 
2237   gold_assert(!this->is_output_section_offset_invalid(text_shndx) ||
2238 	      os->find_relaxed_input_section(this, text_shndx) != NULL);
2239 
2240   return true;
2241 }
2242 
2243 
2244 // Determine if we want to scan the SHNDX-th section for relocation stubs.
2245 // This is a helper for AArch64_relobj::scan_sections_for_stubs().
2246 
2247 template<int size, bool big_endian>
2248 bool
section_needs_reloc_stub_scanning(const elfcpp::Shdr<size,big_endian> & shdr,const Relobj::Output_sections & out_sections,const Symbol_table * symtab,const unsigned char * pshdrs)2249 AArch64_relobj<size, big_endian>::section_needs_reloc_stub_scanning(
2250     const elfcpp::Shdr<size, big_endian>& shdr,
2251     const Relobj::Output_sections& out_sections,
2252     const Symbol_table* symtab,
2253     const unsigned char* pshdrs)
2254 {
2255   unsigned int sh_type = shdr.get_sh_type();
2256   if (sh_type != elfcpp::SHT_RELA)
2257     return false;
2258 
2259   // Ignore empty section.
2260   off_t sh_size = shdr.get_sh_size();
2261   if (sh_size == 0)
2262     return false;
2263 
2264   // Ignore reloc section with unexpected symbol table.  The
2265   // error will be reported in the final link.
2266   if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
2267     return false;
2268 
2269   gold_assert(sh_type == elfcpp::SHT_RELA);
2270   unsigned int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
2271 
2272   // Ignore reloc section with unexpected entsize or uneven size.
2273   // The error will be reported in the final link.
2274   if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
2275     return false;
2276 
2277   // Ignore reloc section with bad info.  This error will be
2278   // reported in the final link.
2279   unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_info());
2280   if (text_shndx >= this->shnum())
2281     return false;
2282 
2283   const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
2284   const elfcpp::Shdr<size, big_endian> text_shdr(pshdrs +
2285 						 text_shndx * shdr_size);
2286   return this->text_section_is_scannable(text_shdr, text_shndx,
2287 					 out_sections[text_shndx], symtab);
2288 }
2289 
2290 
2291 // Scan section SHNDX for erratum 843419 and 835769.
2292 
2293 template<int size, bool big_endian>
2294 void
scan_errata(unsigned int shndx,const elfcpp::Shdr<size,big_endian> & shdr,Output_section * os,const Symbol_table * symtab,The_target_aarch64 * target)2295 AArch64_relobj<size, big_endian>::scan_errata(
2296     unsigned int shndx, const elfcpp::Shdr<size, big_endian>& shdr,
2297     Output_section* os, const Symbol_table* symtab,
2298     The_target_aarch64* target)
2299 {
2300   if (shdr.get_sh_size() == 0
2301       || (shdr.get_sh_flags() &
2302 	  (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR)) == 0
2303       || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
2304     return;
2305 
2306   if (!os || symtab->is_section_folded(this, shndx)) return;
2307 
2308   AArch64_address output_offset = this->get_output_section_offset(shndx);
2309   AArch64_address output_address;
2310   if (output_offset != invalid_address)
2311     output_address = os->address() + output_offset;
2312   else
2313     {
2314       const Output_relaxed_input_section* poris =
2315 	os->find_relaxed_input_section(this, shndx);
2316       if (!poris) return;
2317       output_address = poris->address();
2318     }
2319 
2320   // Update the addresses in previously generated erratum stubs. Unlike when
2321   // we scan relocations for stubs, if section addresses have changed due to
2322   // other relaxations we are unlikely to scan the same erratum instances
2323   // again.
2324   The_stub_table* stub_table = this->stub_table(shndx);
2325   if (stub_table)
2326     {
2327       std::pair<Erratum_stub_set_iter, Erratum_stub_set_iter>
2328 	  ipair(stub_table->find_erratum_stubs_for_input_section(this, shndx));
2329       for (Erratum_stub_set_iter p = ipair.first;  p != ipair.second; ++p)
2330           (*p)->update_erratum_address(output_address);
2331     }
2332 
2333   section_size_type input_view_size = 0;
2334   const unsigned char* input_view =
2335     this->section_contents(shndx, &input_view_size, false);
2336 
2337   Mapping_symbol_position section_start(shndx, 0);
2338   // Find the first mapping symbol record within section shndx.
2339   typename Mapping_symbol_info::const_iterator p =
2340     this->mapping_symbol_info_.lower_bound(section_start);
2341   while (p != this->mapping_symbol_info_.end() &&
2342 	 p->first.shndx_ == shndx)
2343     {
2344       typename Mapping_symbol_info::const_iterator prev = p;
2345       ++p;
2346       if (prev->second == 'x')
2347 	{
2348 	  section_size_type span_start =
2349 	    convert_to_section_size_type(prev->first.offset_);
2350 	  section_size_type span_end;
2351 	  if (p != this->mapping_symbol_info_.end()
2352 	      && p->first.shndx_ == shndx)
2353 	    span_end = convert_to_section_size_type(p->first.offset_);
2354 	  else
2355 	    span_end = convert_to_section_size_type(shdr.get_sh_size());
2356 
2357 	  // Here we do not share the scanning code of both errata. For 843419,
2358 	  // only the last few insns of each page are examined, which is fast,
2359 	  // whereas, for 835769, every insn pair needs to be checked.
2360 
2361 	  if (parameters->options().fix_cortex_a53_843419())
2362 	    target->scan_erratum_843419_span(
2363 	      this, shndx, span_start, span_end,
2364 	      const_cast<unsigned char*>(input_view), output_address);
2365 
2366 	  if (parameters->options().fix_cortex_a53_835769())
2367 	    target->scan_erratum_835769_span(
2368 	      this, shndx, span_start, span_end,
2369 	      const_cast<unsigned char*>(input_view), output_address);
2370 	}
2371     }
2372 }
2373 
2374 
2375 // Scan relocations for stub generation.
2376 
2377 template<int size, bool big_endian>
2378 void
scan_sections_for_stubs(The_target_aarch64 * target,const Symbol_table * symtab,const Layout * layout)2379 AArch64_relobj<size, big_endian>::scan_sections_for_stubs(
2380     The_target_aarch64* target,
2381     const Symbol_table* symtab,
2382     const Layout* layout)
2383 {
2384   unsigned int shnum = this->shnum();
2385   const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
2386 
2387   // Read the section headers.
2388   const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
2389 					       shnum * shdr_size,
2390 					       true, true);
2391 
2392   // To speed up processing, we set up hash tables for fast lookup of
2393   // input offsets to output addresses.
2394   this->initialize_input_to_output_maps();
2395 
2396   const Relobj::Output_sections& out_sections(this->output_sections());
2397 
2398   Relocate_info<size, big_endian> relinfo;
2399   relinfo.symtab = symtab;
2400   relinfo.layout = layout;
2401   relinfo.object = this;
2402 
2403   // Do relocation stubs scanning.
2404   const unsigned char* p = pshdrs + shdr_size;
2405   for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
2406     {
2407       const elfcpp::Shdr<size, big_endian> shdr(p);
2408       if (parameters->options().fix_cortex_a53_843419()
2409 	  || parameters->options().fix_cortex_a53_835769())
2410 	scan_errata(i, shdr, out_sections[i], symtab, target);
2411       if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
2412 						  pshdrs))
2413 	{
2414 	  unsigned int index = this->adjust_shndx(shdr.get_sh_info());
2415 	  AArch64_address output_offset =
2416 	      this->get_output_section_offset(index);
2417 	  AArch64_address output_address;
2418 	  if (output_offset != invalid_address)
2419 	    {
2420 	      output_address = out_sections[index]->address() + output_offset;
2421 	    }
2422 	  else
2423 	    {
2424 	      // Currently this only happens for a relaxed section.
2425 	      const Output_relaxed_input_section* poris =
2426 		  out_sections[index]->find_relaxed_input_section(this, index);
2427 	      gold_assert(poris != NULL);
2428 	      output_address = poris->address();
2429 	    }
2430 
2431 	  // Get the relocations.
2432 	  const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
2433 							shdr.get_sh_size(),
2434 							true, false);
2435 
2436 	  // Get the section contents.
2437 	  section_size_type input_view_size = 0;
2438 	  const unsigned char* input_view =
2439 	      this->section_contents(index, &input_view_size, false);
2440 
2441 	  relinfo.reloc_shndx = i;
2442 	  relinfo.data_shndx = index;
2443 	  unsigned int sh_type = shdr.get_sh_type();
2444 	  unsigned int reloc_size;
2445 	  gold_assert (sh_type == elfcpp::SHT_RELA);
2446 	  reloc_size = elfcpp::Elf_sizes<size>::rela_size;
2447 
2448 	  Output_section* os = out_sections[index];
2449 	  target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
2450 					 shdr.get_sh_size() / reloc_size,
2451 					 os,
2452 					 output_offset == invalid_address,
2453 					 input_view, output_address,
2454 					 input_view_size);
2455 	}
2456     }
2457 }
2458 
2459 
2460 // A class to wrap an ordinary input section containing executable code.
2461 
2462 template<int size, bool big_endian>
2463 class AArch64_input_section : public Output_relaxed_input_section
2464 {
2465  public:
2466   typedef Stub_table<size, big_endian> The_stub_table;
2467 
AArch64_input_section(Relobj * relobj,unsigned int shndx)2468   AArch64_input_section(Relobj* relobj, unsigned int shndx)
2469     : Output_relaxed_input_section(relobj, shndx, 1),
2470       stub_table_(NULL),
2471       original_contents_(NULL), original_size_(0),
2472       original_addralign_(1)
2473   { }
2474 
~AArch64_input_section()2475   ~AArch64_input_section()
2476   { delete[] this->original_contents_; }
2477 
2478   // Initialize.
2479   void
2480   init();
2481 
2482   // Set the stub_table.
2483   void
set_stub_table(The_stub_table * st)2484   set_stub_table(The_stub_table* st)
2485   { this->stub_table_ = st; }
2486 
2487   // Whether this is a stub table owner.
2488   bool
is_stub_table_owner() const2489   is_stub_table_owner() const
2490   { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
2491 
2492   // Return the original size of the section.
2493   uint32_t
original_size() const2494   original_size() const
2495   { return this->original_size_; }
2496 
2497   // Return the stub table.
2498   The_stub_table*
stub_table()2499   stub_table()
2500   { return stub_table_; }
2501 
2502  protected:
2503   // Write out this input section.
2504   void
2505   do_write(Output_file*);
2506 
2507   // Return required alignment of this.
2508   uint64_t
do_addralign() const2509   do_addralign() const
2510   {
2511     if (this->is_stub_table_owner())
2512       return std::max(this->stub_table_->addralign(),
2513 		      static_cast<uint64_t>(this->original_addralign_));
2514     else
2515       return this->original_addralign_;
2516   }
2517 
2518   // Finalize data size.
2519   void
2520   set_final_data_size();
2521 
2522   // Reset address and file offset.
2523   void
2524   do_reset_address_and_file_offset();
2525 
2526   // Output offset.
2527   bool
do_output_offset(const Relobj * object,unsigned int shndx,section_offset_type offset,section_offset_type * poutput) const2528   do_output_offset(const Relobj* object, unsigned int shndx,
2529 		   section_offset_type offset,
2530 		   section_offset_type* poutput) const
2531   {
2532     if ((object == this->relobj())
2533 	&& (shndx == this->shndx())
2534 	&& (offset >= 0)
2535 	&& (offset <=
2536 	    convert_types<section_offset_type, uint32_t>(this->original_size_)))
2537       {
2538 	*poutput = offset;
2539 	return true;
2540       }
2541     else
2542       return false;
2543   }
2544 
2545  private:
2546   // Copying is not allowed.
2547   AArch64_input_section(const AArch64_input_section&);
2548   AArch64_input_section& operator=(const AArch64_input_section&);
2549 
2550   // The relocation stubs.
2551   The_stub_table* stub_table_;
2552   // Original section contents.  We have to make a copy here since the file
2553   // containing the original section may not be locked when we need to access
2554   // the contents.
2555   unsigned char* original_contents_;
2556   // Section size of the original input section.
2557   uint32_t original_size_;
2558   // Address alignment of the original input section.
2559   uint32_t original_addralign_;
2560 };  // End of AArch64_input_section
2561 
2562 
2563 // Finalize data size.
2564 
2565 template<int size, bool big_endian>
2566 void
set_final_data_size()2567 AArch64_input_section<size, big_endian>::set_final_data_size()
2568 {
2569   off_t off = convert_types<off_t, uint64_t>(this->original_size_);
2570 
2571   if (this->is_stub_table_owner())
2572     {
2573       this->stub_table_->finalize_data_size();
2574       off = align_address(off, this->stub_table_->addralign());
2575       off += this->stub_table_->data_size();
2576     }
2577   this->set_data_size(off);
2578 }
2579 
2580 
2581 // Reset address and file offset.
2582 
2583 template<int size, bool big_endian>
2584 void
do_reset_address_and_file_offset()2585 AArch64_input_section<size, big_endian>::do_reset_address_and_file_offset()
2586 {
2587   // Size of the original input section contents.
2588   off_t off = convert_types<off_t, uint64_t>(this->original_size_);
2589 
2590   // If this is a stub table owner, account for the stub table size.
2591   if (this->is_stub_table_owner())
2592     {
2593       The_stub_table* stub_table = this->stub_table_;
2594 
2595       // Reset the stub table's address and file offset.  The
2596       // current data size for child will be updated after that.
2597       stub_table_->reset_address_and_file_offset();
2598       off = align_address(off, stub_table_->addralign());
2599       off += stub_table->current_data_size();
2600     }
2601 
2602   this->set_current_data_size(off);
2603 }
2604 
2605 
2606 // Initialize an Arm_input_section.
2607 
2608 template<int size, bool big_endian>
2609 void
init()2610 AArch64_input_section<size, big_endian>::init()
2611 {
2612   Relobj* relobj = this->relobj();
2613   unsigned int shndx = this->shndx();
2614 
2615   // We have to cache original size, alignment and contents to avoid locking
2616   // the original file.
2617   this->original_addralign_ =
2618       convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));
2619 
2620   // This is not efficient but we expect only a small number of relaxed
2621   // input sections for stubs.
2622   section_size_type section_size;
2623   const unsigned char* section_contents =
2624       relobj->section_contents(shndx, &section_size, false);
2625   this->original_size_ =
2626       convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));
2627 
2628   gold_assert(this->original_contents_ == NULL);
2629   this->original_contents_ = new unsigned char[section_size];
2630   memcpy(this->original_contents_, section_contents, section_size);
2631 
2632   // We want to make this look like the original input section after
2633   // output sections are finalized.
2634   Output_section* os = relobj->output_section(shndx);
2635   off_t offset = relobj->output_section_offset(shndx);
2636   gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
2637   this->set_address(os->address() + offset);
2638   this->set_file_offset(os->offset() + offset);
2639   this->set_current_data_size(this->original_size_);
2640   this->finalize_data_size();
2641 }
2642 
2643 
2644 // Write data to output file.
2645 
2646 template<int size, bool big_endian>
2647 void
do_write(Output_file * of)2648 AArch64_input_section<size, big_endian>::do_write(Output_file* of)
2649 {
2650   // We have to write out the original section content.
2651   gold_assert(this->original_contents_ != NULL);
2652   of->write(this->offset(), this->original_contents_,
2653 	    this->original_size_);
2654 
2655   // If this owns a stub table and it is not empty, write it.
2656   if (this->is_stub_table_owner() && !this->stub_table_->empty())
2657     this->stub_table_->write(of);
2658 }
2659 
2660 
2661 // Arm output section class.  This is defined mainly to add a number of stub
2662 // generation methods.
2663 
2664 template<int size, bool big_endian>
2665 class AArch64_output_section : public Output_section
2666 {
2667  public:
2668   typedef Target_aarch64<size, big_endian> The_target_aarch64;
2669   typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
2670   typedef Stub_table<size, big_endian> The_stub_table;
2671   typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
2672 
2673  public:
AArch64_output_section(const char * name,elfcpp::Elf_Word type,elfcpp::Elf_Xword flags)2674   AArch64_output_section(const char* name, elfcpp::Elf_Word type,
2675 			 elfcpp::Elf_Xword flags)
2676     : Output_section(name, type, flags)
2677   { }
2678 
~AArch64_output_section()2679   ~AArch64_output_section() {}
2680 
2681   // Group input sections for stub generation.
2682   void
2683   group_sections(section_size_type, bool, Target_aarch64<size, big_endian>*,
2684 		 const Task*);
2685 
2686  private:
2687   typedef Output_section::Input_section Input_section;
2688   typedef Output_section::Input_section_list Input_section_list;
2689 
2690   // Create a stub group.
2691   void
2692   create_stub_group(Input_section_list::const_iterator,
2693 		    Input_section_list::const_iterator,
2694 		    Input_section_list::const_iterator,
2695 		    The_target_aarch64*,
2696 		    std::vector<Output_relaxed_input_section*>&,
2697 		    const Task*);
2698 };  // End of AArch64_output_section
2699 
2700 
2701 // Create a stub group for input sections from FIRST to LAST. OWNER points to
2702 // the input section that will be the owner of the stub table.
2703 
2704 template<int size, bool big_endian> void
create_stub_group(Input_section_list::const_iterator first,Input_section_list::const_iterator last,Input_section_list::const_iterator owner,The_target_aarch64 * target,std::vector<Output_relaxed_input_section * > & new_relaxed_sections,const Task * task)2705 AArch64_output_section<size, big_endian>::create_stub_group(
2706     Input_section_list::const_iterator first,
2707     Input_section_list::const_iterator last,
2708     Input_section_list::const_iterator owner,
2709     The_target_aarch64* target,
2710     std::vector<Output_relaxed_input_section*>& new_relaxed_sections,
2711     const Task* task)
2712 {
2713   // Currently we convert ordinary input sections into relaxed sections only
2714   // at this point.
2715   The_aarch64_input_section* input_section;
2716   if (owner->is_relaxed_input_section())
2717     gold_unreachable();
2718   else
2719     {
2720       gold_assert(owner->is_input_section());
2721       // Create a new relaxed input section.  We need to lock the original
2722       // file.
2723       Task_lock_obj<Object> tl(task, owner->relobj());
2724       input_section =
2725 	  target->new_aarch64_input_section(owner->relobj(), owner->shndx());
2726       new_relaxed_sections.push_back(input_section);
2727     }
2728 
2729   // Create a stub table.
2730   The_stub_table* stub_table =
2731       target->new_stub_table(input_section);
2732 
2733   input_section->set_stub_table(stub_table);
2734 
2735   Input_section_list::const_iterator p = first;
2736   // Look for input sections or relaxed input sections in [first ... last].
2737   do
2738     {
2739       if (p->is_input_section() || p->is_relaxed_input_section())
2740 	{
2741 	  // The stub table information for input sections live
2742 	  // in their objects.
2743 	  The_aarch64_relobj* aarch64_relobj =
2744 	      static_cast<The_aarch64_relobj*>(p->relobj());
2745 	  aarch64_relobj->set_stub_table(p->shndx(), stub_table);
2746 	}
2747     }
2748   while (p++ != last);
2749 }
2750 
2751 
2752 // Group input sections for stub generation. GROUP_SIZE is roughly the limit of
2753 // stub groups. We grow a stub group by adding input section until the size is
2754 // just below GROUP_SIZE. The last input section will be converted into a stub
2755 // table owner. If STUB_ALWAYS_AFTER_BRANCH is false, we also add input sectiond
2756 // after the stub table, effectively doubling the group size.
2757 //
2758 // This is similar to the group_sections() function in elf32-arm.c but is
2759 // implemented differently.
2760 
2761 template<int size, bool big_endian>
group_sections(section_size_type group_size,bool stubs_always_after_branch,Target_aarch64<size,big_endian> * target,const Task * task)2762 void AArch64_output_section<size, big_endian>::group_sections(
2763     section_size_type group_size,
2764     bool stubs_always_after_branch,
2765     Target_aarch64<size, big_endian>* target,
2766     const Task* task)
2767 {
2768   typedef enum
2769   {
2770     NO_GROUP,
2771     FINDING_STUB_SECTION,
2772     HAS_STUB_SECTION
2773   } State;
2774 
2775   std::vector<Output_relaxed_input_section*> new_relaxed_sections;
2776 
2777   State state = NO_GROUP;
2778   section_size_type off = 0;
2779   section_size_type group_begin_offset = 0;
2780   section_size_type group_end_offset = 0;
2781   section_size_type stub_table_end_offset = 0;
2782   Input_section_list::const_iterator group_begin =
2783       this->input_sections().end();
2784   Input_section_list::const_iterator stub_table =
2785       this->input_sections().end();
2786   Input_section_list::const_iterator group_end = this->input_sections().end();
2787   for (Input_section_list::const_iterator p = this->input_sections().begin();
2788        p != this->input_sections().end();
2789        ++p)
2790     {
2791       section_size_type section_begin_offset =
2792 	align_address(off, p->addralign());
2793       section_size_type section_end_offset =
2794 	section_begin_offset + p->data_size();
2795 
2796       // Check to see if we should group the previously seen sections.
2797       switch (state)
2798 	{
2799 	case NO_GROUP:
2800 	  break;
2801 
2802 	case FINDING_STUB_SECTION:
2803 	  // Adding this section makes the group larger than GROUP_SIZE.
2804 	  if (section_end_offset - group_begin_offset >= group_size)
2805 	    {
2806 	      if (stubs_always_after_branch)
2807 		{
2808 		  gold_assert(group_end != this->input_sections().end());
2809 		  this->create_stub_group(group_begin, group_end, group_end,
2810 					  target, new_relaxed_sections,
2811 					  task);
2812 		  state = NO_GROUP;
2813 		}
2814 	      else
2815 		{
2816 		  // Input sections up to stub_group_size bytes after the stub
2817 		  // table can be handled by it too.
2818 		  state = HAS_STUB_SECTION;
2819 		  stub_table = group_end;
2820 		  stub_table_end_offset = group_end_offset;
2821 		}
2822 	    }
2823 	    break;
2824 
2825 	case HAS_STUB_SECTION:
2826 	  // Adding this section makes the post stub-section group larger
2827 	  // than GROUP_SIZE.
2828 	  gold_unreachable();
2829 	  // NOT SUPPORTED YET. For completeness only.
2830 	  if (section_end_offset - stub_table_end_offset >= group_size)
2831 	   {
2832 	     gold_assert(group_end != this->input_sections().end());
2833 	     this->create_stub_group(group_begin, group_end, stub_table,
2834 				     target, new_relaxed_sections, task);
2835 	     state = NO_GROUP;
2836 	   }
2837 	   break;
2838 
2839 	  default:
2840 	    gold_unreachable();
2841 	}
2842 
2843       // If we see an input section and currently there is no group, start
2844       // a new one.  Skip any empty sections.  We look at the data size
2845       // instead of calling p->relobj()->section_size() to avoid locking.
2846       if ((p->is_input_section() || p->is_relaxed_input_section())
2847 	  && (p->data_size() != 0))
2848 	{
2849 	  if (state == NO_GROUP)
2850 	    {
2851 	      state = FINDING_STUB_SECTION;
2852 	      group_begin = p;
2853 	      group_begin_offset = section_begin_offset;
2854 	    }
2855 
2856 	  // Keep track of the last input section seen.
2857 	  group_end = p;
2858 	  group_end_offset = section_end_offset;
2859 	}
2860 
2861       off = section_end_offset;
2862     }
2863 
2864   // Create a stub group for any ungrouped sections.
2865   if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
2866     {
2867       gold_assert(group_end != this->input_sections().end());
2868       this->create_stub_group(group_begin, group_end,
2869 			      (state == FINDING_STUB_SECTION
2870 			       ? group_end
2871 			       : stub_table),
2872 			      target, new_relaxed_sections, task);
2873     }
2874 
2875   if (!new_relaxed_sections.empty())
2876     this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
2877 
2878   // Update the section offsets
2879   for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
2880     {
2881       The_aarch64_relobj* relobj = static_cast<The_aarch64_relobj*>(
2882 	  new_relaxed_sections[i]->relobj());
2883       unsigned int shndx = new_relaxed_sections[i]->shndx();
2884       // Tell AArch64_relobj that this input section is converted.
2885       relobj->convert_input_section_to_relaxed_section(shndx);
2886     }
2887 }  // End of AArch64_output_section::group_sections
2888 
2889 
2890 AArch64_reloc_property_table* aarch64_reloc_property_table = NULL;
2891 
2892 
2893 // The aarch64 target class.
2894 // See the ABI at
2895 // http://infocenter.arm.com/help/topic/com.arm.doc.ihi0056b/IHI0056B_aaelf64.pdf
2896 template<int size, bool big_endian>
2897 class Target_aarch64 : public Sized_target<size, big_endian>
2898 {
2899  public:
2900   typedef Target_aarch64<size, big_endian> This;
2901   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
2902       Reloc_section;
2903   typedef Relocate_info<size, big_endian> The_relocate_info;
2904   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
2905   typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
2906   typedef Reloc_stub<size, big_endian> The_reloc_stub;
2907   typedef Erratum_stub<size, big_endian> The_erratum_stub;
2908   typedef typename Reloc_stub<size, big_endian>::Key The_reloc_stub_key;
2909   typedef Stub_table<size, big_endian> The_stub_table;
2910   typedef std::vector<The_stub_table*> Stub_table_list;
2911   typedef typename Stub_table_list::iterator Stub_table_iterator;
2912   typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
2913   typedef AArch64_output_section<size, big_endian> The_aarch64_output_section;
2914   typedef Unordered_map<Section_id,
2915 			AArch64_input_section<size, big_endian>*,
2916 			Section_id_hash> AArch64_input_section_map;
2917   typedef AArch64_insn_utilities<big_endian> Insn_utilities;
2918   const static int TCB_SIZE = size / 8 * 2;
2919   static const Address invalid_address = static_cast<Address>(-1);
2920 
Target_aarch64(const Target::Target_info * info=& aarch64_info)2921   Target_aarch64(const Target::Target_info* info = &aarch64_info)
2922     : Sized_target<size, big_endian>(info),
2923       got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
2924       got_tlsdesc_(NULL), global_offset_table_(NULL), rela_dyn_(NULL),
2925       rela_irelative_(NULL), copy_relocs_(elfcpp::R_AARCH64_COPY),
2926       got_mod_index_offset_(-1U),
2927       tlsdesc_reloc_info_(), tls_base_symbol_defined_(false),
2928       stub_tables_(), stub_group_size_(0), aarch64_input_section_map_()
2929   { }
2930 
2931   // Scan the relocations to determine unreferenced sections for
2932   // garbage collection.
2933   void
2934   gc_process_relocs(Symbol_table* symtab,
2935 		    Layout* layout,
2936 		    Sized_relobj_file<size, big_endian>* object,
2937 		    unsigned int data_shndx,
2938 		    unsigned int sh_type,
2939 		    const unsigned char* prelocs,
2940 		    size_t reloc_count,
2941 		    Output_section* output_section,
2942 		    bool needs_special_offset_handling,
2943 		    size_t local_symbol_count,
2944 		    const unsigned char* plocal_symbols);
2945 
2946   // Scan the relocations to look for symbol adjustments.
2947   void
2948   scan_relocs(Symbol_table* symtab,
2949 	      Layout* layout,
2950 	      Sized_relobj_file<size, big_endian>* object,
2951 	      unsigned int data_shndx,
2952 	      unsigned int sh_type,
2953 	      const unsigned char* prelocs,
2954 	      size_t reloc_count,
2955 	      Output_section* output_section,
2956 	      bool needs_special_offset_handling,
2957 	      size_t local_symbol_count,
2958 	      const unsigned char* plocal_symbols);
2959 
2960   // Finalize the sections.
2961   void
2962   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
2963 
2964   // Return the value to use for a dynamic which requires special
2965   // treatment.
2966   uint64_t
2967   do_dynsym_value(const Symbol*) const;
2968 
2969   // Relocate a section.
2970   void
2971   relocate_section(const Relocate_info<size, big_endian>*,
2972 		   unsigned int sh_type,
2973 		   const unsigned char* prelocs,
2974 		   size_t reloc_count,
2975 		   Output_section* output_section,
2976 		   bool needs_special_offset_handling,
2977 		   unsigned char* view,
2978 		   typename elfcpp::Elf_types<size>::Elf_Addr view_address,
2979 		   section_size_type view_size,
2980 		   const Reloc_symbol_changes*);
2981 
2982   // Scan the relocs during a relocatable link.
2983   void
2984   scan_relocatable_relocs(Symbol_table* symtab,
2985 			  Layout* layout,
2986 			  Sized_relobj_file<size, big_endian>* object,
2987 			  unsigned int data_shndx,
2988 			  unsigned int sh_type,
2989 			  const unsigned char* prelocs,
2990 			  size_t reloc_count,
2991 			  Output_section* output_section,
2992 			  bool needs_special_offset_handling,
2993 			  size_t local_symbol_count,
2994 			  const unsigned char* plocal_symbols,
2995 			  Relocatable_relocs*);
2996 
2997   // Scan the relocs for --emit-relocs.
2998   void
2999   emit_relocs_scan(Symbol_table* symtab,
3000 		   Layout* layout,
3001 		   Sized_relobj_file<size, big_endian>* object,
3002 		   unsigned int data_shndx,
3003 		   unsigned int sh_type,
3004 		   const unsigned char* prelocs,
3005 		   size_t reloc_count,
3006 		   Output_section* output_section,
3007 		   bool needs_special_offset_handling,
3008 		   size_t local_symbol_count,
3009 		   const unsigned char* plocal_syms,
3010 		   Relocatable_relocs* rr);
3011 
3012   // Relocate a section during a relocatable link.
3013   void
3014   relocate_relocs(
3015       const Relocate_info<size, big_endian>*,
3016       unsigned int sh_type,
3017       const unsigned char* prelocs,
3018       size_t reloc_count,
3019       Output_section* output_section,
3020       typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
3021       unsigned char* view,
3022       typename elfcpp::Elf_types<size>::Elf_Addr view_address,
3023       section_size_type view_size,
3024       unsigned char* reloc_view,
3025       section_size_type reloc_view_size);
3026 
3027   // Return the symbol index to use for a target specific relocation.
3028   // The only target specific relocation is R_AARCH64_TLSDESC for a
3029   // local symbol, which is an absolute reloc.
3030   unsigned int
do_reloc_symbol_index(void *,unsigned int r_type) const3031   do_reloc_symbol_index(void*, unsigned int r_type) const
3032   {
3033     gold_assert(r_type == elfcpp::R_AARCH64_TLSDESC);
3034     return 0;
3035   }
3036 
3037   // Return the addend to use for a target specific relocation.
3038   uint64_t
3039   do_reloc_addend(void* arg, unsigned int r_type, uint64_t addend) const;
3040 
3041   // Return the PLT section.
3042   uint64_t
do_plt_address_for_global(const Symbol * gsym) const3043   do_plt_address_for_global(const Symbol* gsym) const
3044   { return this->plt_section()->address_for_global(gsym); }
3045 
3046   uint64_t
do_plt_address_for_local(const Relobj * relobj,unsigned int symndx) const3047   do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
3048   { return this->plt_section()->address_for_local(relobj, symndx); }
3049 
3050   // This function should be defined in targets that can use relocation
3051   // types to determine (implemented in local_reloc_may_be_function_pointer
3052   // and global_reloc_may_be_function_pointer)
3053   // if a function's pointer is taken.  ICF uses this in safe mode to only
3054   // fold those functions whose pointer is defintely not taken.
3055   bool
do_can_check_for_function_pointers() const3056   do_can_check_for_function_pointers() const
3057   { return true; }
3058 
3059   // Return the number of entries in the PLT.
3060   unsigned int
3061   plt_entry_count() const;
3062 
3063   //Return the offset of the first non-reserved PLT entry.
3064   unsigned int
3065   first_plt_entry_offset() const;
3066 
3067   // Return the size of each PLT entry.
3068   unsigned int
3069   plt_entry_size() const;
3070 
3071   // Create a stub table.
3072   The_stub_table*
3073   new_stub_table(The_aarch64_input_section*);
3074 
3075   // Create an aarch64 input section.
3076   The_aarch64_input_section*
3077   new_aarch64_input_section(Relobj*, unsigned int);
3078 
3079   // Find an aarch64 input section instance for a given OBJ and SHNDX.
3080   The_aarch64_input_section*
3081   find_aarch64_input_section(Relobj*, unsigned int) const;
3082 
3083   // Return the thread control block size.
3084   unsigned int
tcb_size() const3085   tcb_size() const { return This::TCB_SIZE; }
3086 
3087   // Scan a section for stub generation.
3088   void
3089   scan_section_for_stubs(const Relocate_info<size, big_endian>*, unsigned int,
3090 			 const unsigned char*, size_t, Output_section*,
3091 			 bool, const unsigned char*,
3092 			 Address,
3093 			 section_size_type);
3094 
3095   // Scan a relocation section for stub.
3096   template<int sh_type>
3097   void
3098   scan_reloc_section_for_stubs(
3099       const The_relocate_info* relinfo,
3100       const unsigned char* prelocs,
3101       size_t reloc_count,
3102       Output_section* output_section,
3103       bool needs_special_offset_handling,
3104       const unsigned char* view,
3105       Address view_address,
3106       section_size_type);
3107 
3108   // Relocate a single reloc stub.
3109   void
3110   relocate_reloc_stub(The_reloc_stub*, const Relocate_info<size, big_endian>*,
3111                       Output_section*, unsigned char*, Address,
3112                       section_size_type);
3113 
3114   // Get the default AArch64 target.
3115   static This*
current_target()3116   current_target()
3117   {
3118     gold_assert(parameters->target().machine_code() == elfcpp::EM_AARCH64
3119 		&& parameters->target().get_size() == size
3120 		&& parameters->target().is_big_endian() == big_endian);
3121     return static_cast<This*>(parameters->sized_target<size, big_endian>());
3122   }
3123 
3124 
3125   // Scan erratum 843419 for a part of a section.
3126   void
3127   scan_erratum_843419_span(
3128     AArch64_relobj<size, big_endian>*,
3129     unsigned int,
3130     const section_size_type,
3131     const section_size_type,
3132     unsigned char*,
3133     Address);
3134 
3135   // Scan erratum 835769 for a part of a section.
3136   void
3137   scan_erratum_835769_span(
3138     AArch64_relobj<size, big_endian>*,
3139     unsigned int,
3140     const section_size_type,
3141     const section_size_type,
3142     unsigned char*,
3143     Address);
3144 
3145  protected:
3146   void
do_select_as_default_target()3147   do_select_as_default_target()
3148   {
3149     gold_assert(aarch64_reloc_property_table == NULL);
3150     aarch64_reloc_property_table = new AArch64_reloc_property_table();
3151   }
3152 
3153   // Add a new reloc argument, returning the index in the vector.
3154   size_t
add_tlsdesc_info(Sized_relobj_file<size,big_endian> * object,unsigned int r_sym)3155   add_tlsdesc_info(Sized_relobj_file<size, big_endian>* object,
3156 		   unsigned int r_sym)
3157   {
3158     this->tlsdesc_reloc_info_.push_back(Tlsdesc_info(object, r_sym));
3159     return this->tlsdesc_reloc_info_.size() - 1;
3160   }
3161 
3162   virtual Output_data_plt_aarch64<size, big_endian>*
do_make_data_plt(Layout * layout,Output_data_got_aarch64<size,big_endian> * got,Output_data_space * got_plt,Output_data_space * got_irelative)3163   do_make_data_plt(Layout* layout,
3164 		   Output_data_got_aarch64<size, big_endian>* got,
3165 		   Output_data_space* got_plt,
3166 		   Output_data_space* got_irelative)
3167   {
3168     return new Output_data_plt_aarch64_standard<size, big_endian>(
3169       layout, got, got_plt, got_irelative);
3170   }
3171 
3172 
3173   // do_make_elf_object to override the same function in the base class.
3174   Object*
3175   do_make_elf_object(const std::string&, Input_file*, off_t,
3176 		     const elfcpp::Ehdr<size, big_endian>&);
3177 
3178   Output_data_plt_aarch64<size, big_endian>*
make_data_plt(Layout * layout,Output_data_got_aarch64<size,big_endian> * got,Output_data_space * got_plt,Output_data_space * got_irelative)3179   make_data_plt(Layout* layout,
3180 		Output_data_got_aarch64<size, big_endian>* got,
3181 		Output_data_space* got_plt,
3182 		Output_data_space* got_irelative)
3183   {
3184     return this->do_make_data_plt(layout, got, got_plt, got_irelative);
3185   }
3186 
3187   // We only need to generate stubs, and hence perform relaxation if we are
3188   // not doing relocatable linking.
3189   virtual bool
do_may_relax() const3190   do_may_relax() const
3191   { return !parameters->options().relocatable(); }
3192 
3193   // Relaxation hook.  This is where we do stub generation.
3194   virtual bool
3195   do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
3196 
3197   void
3198   group_sections(Layout* layout,
3199 		 section_size_type group_size,
3200 		 bool stubs_always_after_branch,
3201 		 const Task* task);
3202 
3203   void
3204   scan_reloc_for_stub(const The_relocate_info*, unsigned int,
3205 		      const Sized_symbol<size>*, unsigned int,
3206 		      const Symbol_value<size>*,
3207 		      typename elfcpp::Elf_types<size>::Elf_Swxword,
3208 		      Address Elf_Addr);
3209 
3210   // Make an output section.
3211   Output_section*
do_make_output_section(const char * name,elfcpp::Elf_Word type,elfcpp::Elf_Xword flags)3212   do_make_output_section(const char* name, elfcpp::Elf_Word type,
3213 			 elfcpp::Elf_Xword flags)
3214   { return new The_aarch64_output_section(name, type, flags); }
3215 
3216  private:
3217   // The class which scans relocations.
3218   class Scan
3219   {
3220   public:
Scan()3221     Scan()
3222       : issued_non_pic_error_(false)
3223     { }
3224 
3225     inline void
3226     local(Symbol_table* symtab, Layout* layout, Target_aarch64* target,
3227 	  Sized_relobj_file<size, big_endian>* object,
3228 	  unsigned int data_shndx,
3229 	  Output_section* output_section,
3230 	  const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
3231 	  const elfcpp::Sym<size, big_endian>& lsym,
3232 	  bool is_discarded);
3233 
3234     inline void
3235     global(Symbol_table* symtab, Layout* layout, Target_aarch64* target,
3236 	   Sized_relobj_file<size, big_endian>* object,
3237 	   unsigned int data_shndx,
3238 	   Output_section* output_section,
3239 	   const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
3240 	   Symbol* gsym);
3241 
3242     inline bool
3243     local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
3244 					Target_aarch64<size, big_endian>* ,
3245 					Sized_relobj_file<size, big_endian>* ,
3246 					unsigned int ,
3247 					Output_section* ,
3248 					const elfcpp::Rela<size, big_endian>& ,
3249 					unsigned int r_type,
3250 					const elfcpp::Sym<size, big_endian>&);
3251 
3252     inline bool
3253     global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
3254 					 Target_aarch64<size, big_endian>* ,
3255 					 Sized_relobj_file<size, big_endian>* ,
3256 					 unsigned int ,
3257 					 Output_section* ,
3258 					 const elfcpp::Rela<size, big_endian>& ,
3259 					 unsigned int r_type,
3260 					 Symbol* gsym);
3261 
3262   private:
3263     static void
3264     unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
3265 			    unsigned int r_type);
3266 
3267     static void
3268     unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
3269 			     unsigned int r_type, Symbol*);
3270 
3271     inline bool
3272     possible_function_pointer_reloc(unsigned int r_type);
3273 
3274     void
3275     check_non_pic(Relobj*, unsigned int r_type);
3276 
3277     bool
3278     reloc_needs_plt_for_ifunc(Sized_relobj_file<size, big_endian>*,
3279 			      unsigned int r_type);
3280 
3281     // Whether we have issued an error about a non-PIC compilation.
3282     bool issued_non_pic_error_;
3283   };
3284 
3285   // The class which implements relocation.
3286   class Relocate
3287   {
3288    public:
Relocate()3289     Relocate()
3290       : skip_call_tls_get_addr_(false)
3291     { }
3292 
~Relocate()3293     ~Relocate()
3294     { }
3295 
3296     // Do a relocation.  Return false if the caller should not issue
3297     // any warnings about this relocation.
3298     inline bool
3299     relocate(const Relocate_info<size, big_endian>*, unsigned int,
3300 	     Target_aarch64*, Output_section*, size_t, const unsigned char*,
3301 	     const Sized_symbol<size>*, const Symbol_value<size>*,
3302 	     unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
3303 	     section_size_type);
3304 
3305   private:
3306     inline typename AArch64_relocate_functions<size, big_endian>::Status
3307     relocate_tls(const Relocate_info<size, big_endian>*,
3308 		 Target_aarch64<size, big_endian>*,
3309 		 size_t,
3310 		 const elfcpp::Rela<size, big_endian>&,
3311 		 unsigned int r_type, const Sized_symbol<size>*,
3312 		 const Symbol_value<size>*,
3313 		 unsigned char*,
3314 		 typename elfcpp::Elf_types<size>::Elf_Addr);
3315 
3316     inline typename AArch64_relocate_functions<size, big_endian>::Status
3317     tls_gd_to_le(
3318 		 const Relocate_info<size, big_endian>*,
3319 		 Target_aarch64<size, big_endian>*,
3320 		 const elfcpp::Rela<size, big_endian>&,
3321 		 unsigned int,
3322 		 unsigned char*,
3323 		 const Symbol_value<size>*);
3324 
3325     inline typename AArch64_relocate_functions<size, big_endian>::Status
3326     tls_ld_to_le(
3327 		 const Relocate_info<size, big_endian>*,
3328 		 Target_aarch64<size, big_endian>*,
3329 		 const elfcpp::Rela<size, big_endian>&,
3330 		 unsigned int,
3331 		 unsigned char*,
3332 		 const Symbol_value<size>*);
3333 
3334     inline typename AArch64_relocate_functions<size, big_endian>::Status
3335     tls_ie_to_le(
3336 		 const Relocate_info<size, big_endian>*,
3337 		 Target_aarch64<size, big_endian>*,
3338 		 const elfcpp::Rela<size, big_endian>&,
3339 		 unsigned int,
3340 		 unsigned char*,
3341 		 const Symbol_value<size>*);
3342 
3343     inline typename AArch64_relocate_functions<size, big_endian>::Status
3344     tls_desc_gd_to_le(
3345 		 const Relocate_info<size, big_endian>*,
3346 		 Target_aarch64<size, big_endian>*,
3347 		 const elfcpp::Rela<size, big_endian>&,
3348 		 unsigned int,
3349 		 unsigned char*,
3350 		 const Symbol_value<size>*);
3351 
3352     inline typename AArch64_relocate_functions<size, big_endian>::Status
3353     tls_desc_gd_to_ie(
3354 		 const Relocate_info<size, big_endian>*,
3355 		 Target_aarch64<size, big_endian>*,
3356 		 const elfcpp::Rela<size, big_endian>&,
3357 		 unsigned int,
3358 		 unsigned char*,
3359 		 const Symbol_value<size>*,
3360 		 typename elfcpp::Elf_types<size>::Elf_Addr,
3361 		 typename elfcpp::Elf_types<size>::Elf_Addr);
3362 
3363     bool skip_call_tls_get_addr_;
3364 
3365   };  // End of class Relocate
3366 
3367   // Adjust TLS relocation type based on the options and whether this
3368   // is a local symbol.
3369   static tls::Tls_optimization
3370   optimize_tls_reloc(bool is_final, int r_type);
3371 
3372   // Get the GOT section, creating it if necessary.
3373   Output_data_got_aarch64<size, big_endian>*
3374   got_section(Symbol_table*, Layout*);
3375 
3376   // Get the GOT PLT section.
3377   Output_data_space*
got_plt_section() const3378   got_plt_section() const
3379   {
3380     gold_assert(this->got_plt_ != NULL);
3381     return this->got_plt_;
3382   }
3383 
3384   // Get the GOT section for TLSDESC entries.
3385   Output_data_got<size, big_endian>*
got_tlsdesc_section() const3386   got_tlsdesc_section() const
3387   {
3388     gold_assert(this->got_tlsdesc_ != NULL);
3389     return this->got_tlsdesc_;
3390   }
3391 
3392   // Create the PLT section.
3393   void
3394   make_plt_section(Symbol_table* symtab, Layout* layout);
3395 
3396   // Create a PLT entry for a global symbol.
3397   void
3398   make_plt_entry(Symbol_table*, Layout*, Symbol*);
3399 
3400   // Create a PLT entry for a local STT_GNU_IFUNC symbol.
3401   void
3402   make_local_ifunc_plt_entry(Symbol_table*, Layout*,
3403 			     Sized_relobj_file<size, big_endian>* relobj,
3404 			     unsigned int local_sym_index);
3405 
3406   // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
3407   void
3408   define_tls_base_symbol(Symbol_table*, Layout*);
3409 
3410   // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
3411   void
3412   reserve_tlsdesc_entries(Symbol_table* symtab, Layout* layout);
3413 
3414   // Create a GOT entry for the TLS module index.
3415   unsigned int
3416   got_mod_index_entry(Symbol_table* symtab, Layout* layout,
3417 		      Sized_relobj_file<size, big_endian>* object);
3418 
3419   // Get the PLT section.
3420   Output_data_plt_aarch64<size, big_endian>*
plt_section() const3421   plt_section() const
3422   {
3423     gold_assert(this->plt_ != NULL);
3424     return this->plt_;
3425   }
3426 
3427   // Helper method to create erratum stubs for ST_E_843419 and ST_E_835769. For
3428   // ST_E_843419, we need an additional field for adrp offset.
3429   void create_erratum_stub(
3430     AArch64_relobj<size, big_endian>* relobj,
3431     unsigned int shndx,
3432     section_size_type erratum_insn_offset,
3433     Address erratum_address,
3434     typename Insn_utilities::Insntype erratum_insn,
3435     int erratum_type,
3436     unsigned int e843419_adrp_offset=0);
3437 
3438   // Return whether this is a 3-insn erratum sequence.
3439   bool is_erratum_843419_sequence(
3440       typename elfcpp::Swap<32,big_endian>::Valtype insn1,
3441       typename elfcpp::Swap<32,big_endian>::Valtype insn2,
3442       typename elfcpp::Swap<32,big_endian>::Valtype insn3);
3443 
3444   // Return whether this is a 835769 sequence.
3445   // (Similarly implemented as in elfnn-aarch64.c.)
3446   bool is_erratum_835769_sequence(
3447       typename elfcpp::Swap<32,big_endian>::Valtype,
3448       typename elfcpp::Swap<32,big_endian>::Valtype);
3449 
3450   // Get the dynamic reloc section, creating it if necessary.
3451   Reloc_section*
3452   rela_dyn_section(Layout*);
3453 
3454   // Get the section to use for TLSDESC relocations.
3455   Reloc_section*
3456   rela_tlsdesc_section(Layout*) const;
3457 
3458   // Get the section to use for IRELATIVE relocations.
3459   Reloc_section*
3460   rela_irelative_section(Layout*);
3461 
3462   // Add a potential copy relocation.
3463   void
copy_reloc(Symbol_table * symtab,Layout * layout,Sized_relobj_file<size,big_endian> * object,unsigned int shndx,Output_section * output_section,Symbol * sym,const elfcpp::Rela<size,big_endian> & reloc)3464   copy_reloc(Symbol_table* symtab, Layout* layout,
3465 	     Sized_relobj_file<size, big_endian>* object,
3466 	     unsigned int shndx, Output_section* output_section,
3467 	     Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
3468   {
3469     unsigned int r_type = elfcpp::elf_r_type<size>(reloc.get_r_info());
3470     this->copy_relocs_.copy_reloc(symtab, layout,
3471 				  symtab->get_sized_symbol<size>(sym),
3472 				  object, shndx, output_section,
3473 				  r_type, reloc.get_r_offset(),
3474 				  reloc.get_r_addend(),
3475 				  this->rela_dyn_section(layout));
3476   }
3477 
3478   // Information about this specific target which we pass to the
3479   // general Target structure.
3480   static const Target::Target_info aarch64_info;
3481 
3482   // The types of GOT entries needed for this platform.
3483   // These values are exposed to the ABI in an incremental link.
3484   // Do not renumber existing values without changing the version
3485   // number of the .gnu_incremental_inputs section.
3486   enum Got_type
3487   {
3488     GOT_TYPE_STANDARD = 0,      // GOT entry for a regular symbol
3489     GOT_TYPE_TLS_OFFSET = 1,    // GOT entry for TLS offset
3490     GOT_TYPE_TLS_PAIR = 2,      // GOT entry for TLS module/offset pair
3491     GOT_TYPE_TLS_DESC = 3       // GOT entry for TLS_DESC pair
3492   };
3493 
3494   // This type is used as the argument to the target specific
3495   // relocation routines.  The only target specific reloc is
3496   // R_AARCh64_TLSDESC against a local symbol.
3497   struct Tlsdesc_info
3498   {
Tlsdesc_info__anon66bd29fd0111::Target_aarch64::Tlsdesc_info3499     Tlsdesc_info(Sized_relobj_file<size, big_endian>* a_object,
3500 		 unsigned int a_r_sym)
3501       : object(a_object), r_sym(a_r_sym)
3502     { }
3503 
3504     // The object in which the local symbol is defined.
3505     Sized_relobj_file<size, big_endian>* object;
3506     // The local symbol index in the object.
3507     unsigned int r_sym;
3508   };
3509 
3510   // The GOT section.
3511   Output_data_got_aarch64<size, big_endian>* got_;
3512   // The PLT section.
3513   Output_data_plt_aarch64<size, big_endian>* plt_;
3514   // The GOT PLT section.
3515   Output_data_space* got_plt_;
3516   // The GOT section for IRELATIVE relocations.
3517   Output_data_space* got_irelative_;
3518   // The GOT section for TLSDESC relocations.
3519   Output_data_got<size, big_endian>* got_tlsdesc_;
3520   // The _GLOBAL_OFFSET_TABLE_ symbol.
3521   Symbol* global_offset_table_;
3522   // The dynamic reloc section.
3523   Reloc_section* rela_dyn_;
3524   // The section to use for IRELATIVE relocs.
3525   Reloc_section* rela_irelative_;
3526   // Relocs saved to avoid a COPY reloc.
3527   Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
3528   // Offset of the GOT entry for the TLS module index.
3529   unsigned int got_mod_index_offset_;
3530   // We handle R_AARCH64_TLSDESC against a local symbol as a target
3531   // specific relocation. Here we store the object and local symbol
3532   // index for the relocation.
3533   std::vector<Tlsdesc_info> tlsdesc_reloc_info_;
3534   // True if the _TLS_MODULE_BASE_ symbol has been defined.
3535   bool tls_base_symbol_defined_;
3536   // List of stub_tables
3537   Stub_table_list stub_tables_;
3538   // Actual stub group size
3539   section_size_type stub_group_size_;
3540   AArch64_input_section_map aarch64_input_section_map_;
3541 };  // End of Target_aarch64
3542 
3543 
3544 template<>
3545 const Target::Target_info Target_aarch64<64, false>::aarch64_info =
3546 {
3547   64,			// size
3548   false,		// is_big_endian
3549   elfcpp::EM_AARCH64,	// machine_code
3550   false,		// has_make_symbol
3551   false,		// has_resolve
3552   false,		// has_code_fill
3553   false,		// is_default_stack_executable
3554   true,			// can_icf_inline_merge_sections
3555   '\0',			// wrap_char
3556   "/lib/ld.so.1",	// program interpreter
3557   0x400000,		// default_text_segment_address
3558   0x10000,		// abi_pagesize (overridable by -z max-page-size)
3559   0x1000,		// common_pagesize (overridable by -z common-page-size)
3560   false,                // isolate_execinstr
3561   0,                    // rosegment_gap
3562   elfcpp::SHN_UNDEF,	// small_common_shndx
3563   elfcpp::SHN_UNDEF,	// large_common_shndx
3564   0,			// small_common_section_flags
3565   0,			// large_common_section_flags
3566   NULL,			// attributes_section
3567   NULL,			// attributes_vendor
3568   "_start",		// entry_symbol_name
3569   32,			// hash_entry_size
3570   elfcpp::SHT_PROGBITS,	// unwind_section_type
3571 };
3572 
3573 template<>
3574 const Target::Target_info Target_aarch64<32, false>::aarch64_info =
3575 {
3576   32,			// size
3577   false,		// is_big_endian
3578   elfcpp::EM_AARCH64,	// machine_code
3579   false,		// has_make_symbol
3580   false,		// has_resolve
3581   false,		// has_code_fill
3582   false,		// is_default_stack_executable
3583   false,		// can_icf_inline_merge_sections
3584   '\0',			// wrap_char
3585   "/lib/ld.so.1",	// program interpreter
3586   0x400000,		// default_text_segment_address
3587   0x10000,		// abi_pagesize (overridable by -z max-page-size)
3588   0x1000,		// common_pagesize (overridable by -z common-page-size)
3589   false,                // isolate_execinstr
3590   0,                    // rosegment_gap
3591   elfcpp::SHN_UNDEF,	// small_common_shndx
3592   elfcpp::SHN_UNDEF,	// large_common_shndx
3593   0,			// small_common_section_flags
3594   0,			// large_common_section_flags
3595   NULL,			// attributes_section
3596   NULL,			// attributes_vendor
3597   "_start",		// entry_symbol_name
3598   32,			// hash_entry_size
3599   elfcpp::SHT_PROGBITS,	// unwind_section_type
3600 };
3601 
3602 template<>
3603 const Target::Target_info Target_aarch64<64, true>::aarch64_info =
3604 {
3605   64,			// size
3606   true,			// is_big_endian
3607   elfcpp::EM_AARCH64,	// machine_code
3608   false,		// has_make_symbol
3609   false,		// has_resolve
3610   false,		// has_code_fill
3611   false,		// is_default_stack_executable
3612   true,			// can_icf_inline_merge_sections
3613   '\0',			// wrap_char
3614   "/lib/ld.so.1",	// program interpreter
3615   0x400000,		// default_text_segment_address
3616   0x10000,		// abi_pagesize (overridable by -z max-page-size)
3617   0x1000,		// common_pagesize (overridable by -z common-page-size)
3618   false,                // isolate_execinstr
3619   0,                    // rosegment_gap
3620   elfcpp::SHN_UNDEF,	// small_common_shndx
3621   elfcpp::SHN_UNDEF,	// large_common_shndx
3622   0,			// small_common_section_flags
3623   0,			// large_common_section_flags
3624   NULL,			// attributes_section
3625   NULL,			// attributes_vendor
3626   "_start",		// entry_symbol_name
3627   32,			// hash_entry_size
3628   elfcpp::SHT_PROGBITS,	// unwind_section_type
3629 };
3630 
3631 template<>
3632 const Target::Target_info Target_aarch64<32, true>::aarch64_info =
3633 {
3634   32,			// size
3635   true,			// is_big_endian
3636   elfcpp::EM_AARCH64,	// machine_code
3637   false,		// has_make_symbol
3638   false,		// has_resolve
3639   false,		// has_code_fill
3640   false,		// is_default_stack_executable
3641   false,		// can_icf_inline_merge_sections
3642   '\0',			// wrap_char
3643   "/lib/ld.so.1",	// program interpreter
3644   0x400000,		// default_text_segment_address
3645   0x10000,		// abi_pagesize (overridable by -z max-page-size)
3646   0x1000,		// common_pagesize (overridable by -z common-page-size)
3647   false,                // isolate_execinstr
3648   0,                    // rosegment_gap
3649   elfcpp::SHN_UNDEF,	// small_common_shndx
3650   elfcpp::SHN_UNDEF,	// large_common_shndx
3651   0,			// small_common_section_flags
3652   0,			// large_common_section_flags
3653   NULL,			// attributes_section
3654   NULL,			// attributes_vendor
3655   "_start",		// entry_symbol_name
3656   32,			// hash_entry_size
3657   elfcpp::SHT_PROGBITS,	// unwind_section_type
3658 };
3659 
3660 // Get the GOT section, creating it if necessary.
3661 
3662 template<int size, bool big_endian>
3663 Output_data_got_aarch64<size, big_endian>*
got_section(Symbol_table * symtab,Layout * layout)3664 Target_aarch64<size, big_endian>::got_section(Symbol_table* symtab,
3665 					      Layout* layout)
3666 {
3667   if (this->got_ == NULL)
3668     {
3669       gold_assert(symtab != NULL && layout != NULL);
3670 
3671       // When using -z now, we can treat .got.plt as a relro section.
3672       // Without -z now, it is modified after program startup by lazy
3673       // PLT relocations.
3674       bool is_got_plt_relro = parameters->options().now();
3675       Output_section_order got_order = (is_got_plt_relro
3676 					? ORDER_RELRO
3677 					: ORDER_RELRO_LAST);
3678       Output_section_order got_plt_order = (is_got_plt_relro
3679 					    ? ORDER_RELRO
3680 					    : ORDER_NON_RELRO_FIRST);
3681 
3682       // Layout of .got and .got.plt sections.
3683       // .got[0] &_DYNAMIC                          <-_GLOBAL_OFFSET_TABLE_
3684       // ...
3685       // .gotplt[0] reserved for ld.so (&linkmap)   <--DT_PLTGOT
3686       // .gotplt[1] reserved for ld.so (resolver)
3687       // .gotplt[2] reserved
3688 
3689       // Generate .got section.
3690       this->got_ = new Output_data_got_aarch64<size, big_endian>(symtab,
3691 								 layout);
3692       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
3693 				      (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
3694 				      this->got_, got_order, true);
3695       // The first word of GOT is reserved for the address of .dynamic.
3696       // We put 0 here now. The value will be replaced later in
3697       // Output_data_got_aarch64::do_write.
3698       this->got_->add_constant(0);
3699 
3700       // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
3701       // _GLOBAL_OFFSET_TABLE_ value points to the start of the .got section,
3702       // even if there is a .got.plt section.
3703       this->global_offset_table_ =
3704 	symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
3705 				      Symbol_table::PREDEFINED,
3706 				      this->got_,
3707 				      0, 0, elfcpp::STT_OBJECT,
3708 				      elfcpp::STB_LOCAL,
3709 				      elfcpp::STV_HIDDEN, 0,
3710 				      false, false);
3711 
3712       // Generate .got.plt section.
3713       this->got_plt_ = new Output_data_space(size / 8, "** GOT PLT");
3714       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
3715 				      (elfcpp::SHF_ALLOC
3716 				       | elfcpp::SHF_WRITE),
3717 				      this->got_plt_, got_plt_order,
3718 				      is_got_plt_relro);
3719 
3720       // The first three entries are reserved.
3721       this->got_plt_->set_current_data_size(
3722 	AARCH64_GOTPLT_RESERVE_COUNT * (size / 8));
3723 
3724       // If there are any IRELATIVE relocations, they get GOT entries
3725       // in .got.plt after the jump slot entries.
3726       this->got_irelative_ = new Output_data_space(size / 8,
3727 						   "** GOT IRELATIVE PLT");
3728       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
3729 				      (elfcpp::SHF_ALLOC
3730 				       | elfcpp::SHF_WRITE),
3731 				      this->got_irelative_,
3732 				      got_plt_order,
3733 				      is_got_plt_relro);
3734 
3735       // If there are any TLSDESC relocations, they get GOT entries in
3736       // .got.plt after the jump slot and IRELATIVE entries.
3737       this->got_tlsdesc_ = new Output_data_got<size, big_endian>();
3738       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
3739 				      (elfcpp::SHF_ALLOC
3740 				       | elfcpp::SHF_WRITE),
3741 				      this->got_tlsdesc_,
3742 				      got_plt_order,
3743 				      is_got_plt_relro);
3744 
3745       if (!is_got_plt_relro)
3746 	{
3747 	  // Those bytes can go into the relro segment.
3748 	  layout->increase_relro(
3749 	    AARCH64_GOTPLT_RESERVE_COUNT * (size / 8));
3750 	}
3751 
3752     }
3753   return this->got_;
3754 }
3755 
3756 // Get the dynamic reloc section, creating it if necessary.
3757 
3758 template<int size, bool big_endian>
3759 typename Target_aarch64<size, big_endian>::Reloc_section*
rela_dyn_section(Layout * layout)3760 Target_aarch64<size, big_endian>::rela_dyn_section(Layout* layout)
3761 {
3762   if (this->rela_dyn_ == NULL)
3763     {
3764       gold_assert(layout != NULL);
3765       this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
3766       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
3767 				      elfcpp::SHF_ALLOC, this->rela_dyn_,
3768 				      ORDER_DYNAMIC_RELOCS, false);
3769     }
3770   return this->rela_dyn_;
3771 }
3772 
3773 // Get the section to use for IRELATIVE relocs, creating it if
3774 // necessary.  These go in .rela.dyn, but only after all other dynamic
3775 // relocations.  They need to follow the other dynamic relocations so
3776 // that they can refer to global variables initialized by those
3777 // relocs.
3778 
3779 template<int size, bool big_endian>
3780 typename Target_aarch64<size, big_endian>::Reloc_section*
rela_irelative_section(Layout * layout)3781 Target_aarch64<size, big_endian>::rela_irelative_section(Layout* layout)
3782 {
3783   if (this->rela_irelative_ == NULL)
3784     {
3785       // Make sure we have already created the dynamic reloc section.
3786       this->rela_dyn_section(layout);
3787       this->rela_irelative_ = new Reloc_section(false);
3788       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
3789 				      elfcpp::SHF_ALLOC, this->rela_irelative_,
3790 				      ORDER_DYNAMIC_RELOCS, false);
3791       gold_assert(this->rela_dyn_->output_section()
3792 		  == this->rela_irelative_->output_section());
3793     }
3794   return this->rela_irelative_;
3795 }
3796 
3797 
3798 // do_make_elf_object to override the same function in the base class.  We need
3799 // to use a target-specific sub-class of Sized_relobj_file<size, big_endian> to
3800 // store backend specific information. Hence we need to have our own ELF object
3801 // creation.
3802 
3803 template<int size, bool big_endian>
3804 Object*
do_make_elf_object(const std::string & name,Input_file * input_file,off_t offset,const elfcpp::Ehdr<size,big_endian> & ehdr)3805 Target_aarch64<size, big_endian>::do_make_elf_object(
3806     const std::string& name,
3807     Input_file* input_file,
3808     off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
3809 {
3810   int et = ehdr.get_e_type();
3811   // ET_EXEC files are valid input for --just-symbols/-R,
3812   // and we treat them as relocatable objects.
3813   if (et == elfcpp::ET_EXEC && input_file->just_symbols())
3814     return Sized_target<size, big_endian>::do_make_elf_object(
3815 	name, input_file, offset, ehdr);
3816   else if (et == elfcpp::ET_REL)
3817     {
3818       AArch64_relobj<size, big_endian>* obj =
3819 	new AArch64_relobj<size, big_endian>(name, input_file, offset, ehdr);
3820       obj->setup();
3821       return obj;
3822     }
3823   else if (et == elfcpp::ET_DYN)
3824     {
3825       // Keep base implementation.
3826       Sized_dynobj<size, big_endian>* obj =
3827 	  new Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr);
3828       obj->setup();
3829       return obj;
3830     }
3831   else
3832     {
3833       gold_error(_("%s: unsupported ELF file type %d"),
3834 		 name.c_str(), et);
3835       return NULL;
3836     }
3837 }
3838 
3839 
3840 // Scan a relocation for stub generation.
3841 
3842 template<int size, bool big_endian>
3843 void
scan_reloc_for_stub(const Relocate_info<size,big_endian> * relinfo,unsigned int r_type,const Sized_symbol<size> * gsym,unsigned int r_sym,const Symbol_value<size> * psymval,typename elfcpp::Elf_types<size>::Elf_Swxword addend,Address address)3844 Target_aarch64<size, big_endian>::scan_reloc_for_stub(
3845     const Relocate_info<size, big_endian>* relinfo,
3846     unsigned int r_type,
3847     const Sized_symbol<size>* gsym,
3848     unsigned int r_sym,
3849     const Symbol_value<size>* psymval,
3850     typename elfcpp::Elf_types<size>::Elf_Swxword addend,
3851     Address address)
3852 {
3853   const AArch64_relobj<size, big_endian>* aarch64_relobj =
3854       static_cast<AArch64_relobj<size, big_endian>*>(relinfo->object);
3855 
3856   Symbol_value<size> symval;
3857   if (gsym != NULL)
3858     {
3859       const AArch64_reloc_property* arp = aarch64_reloc_property_table->
3860 	get_reloc_property(r_type);
3861       if (gsym->use_plt_offset(arp->reference_flags()))
3862 	{
3863 	  // This uses a PLT, change the symbol value.
3864 	  symval.set_output_value(this->plt_address_for_global(gsym));
3865 	  psymval = &symval;
3866 	}
3867       else if (gsym->is_undefined())
3868 	{
3869           // There is no need to generate a stub symbol if the original symbol
3870           // is undefined.
3871           gold_debug(DEBUG_TARGET,
3872                      "stub: not creating a stub for undefined symbol %s in file %s",
3873                      gsym->name(), aarch64_relobj->name().c_str());
3874           return;
3875 	}
3876     }
3877 
3878   // Get the symbol value.
3879   typename Symbol_value<size>::Value value = psymval->value(aarch64_relobj, 0);
3880 
3881   // Owing to pipelining, the PC relative branches below actually skip
3882   // two instructions when the branch offset is 0.
3883   Address destination = static_cast<Address>(-1);
3884   switch (r_type)
3885     {
3886     case elfcpp::R_AARCH64_CALL26:
3887     case elfcpp::R_AARCH64_JUMP26:
3888       destination = value + addend;
3889       break;
3890     default:
3891       gold_unreachable();
3892     }
3893 
3894   int stub_type = The_reloc_stub::
3895       stub_type_for_reloc(r_type, address, destination);
3896   if (stub_type == ST_NONE)
3897     return;
3898 
3899   The_stub_table* stub_table = aarch64_relobj->stub_table(relinfo->data_shndx);
3900   gold_assert(stub_table != NULL);
3901 
3902   The_reloc_stub_key key(stub_type, gsym, aarch64_relobj, r_sym, addend);
3903   The_reloc_stub* stub = stub_table->find_reloc_stub(key);
3904   if (stub == NULL)
3905     {
3906       stub = new The_reloc_stub(stub_type);
3907       stub_table->add_reloc_stub(stub, key);
3908     }
3909   stub->set_destination_address(destination);
3910 }  // End of Target_aarch64::scan_reloc_for_stub
3911 
3912 
3913 // This function scans a relocation section for stub generation.
3914 // The template parameter Relocate must be a class type which provides
3915 // a single function, relocate(), which implements the machine
3916 // specific part of a relocation.
3917 
3918 // BIG_ENDIAN is the endianness of the data.  SH_TYPE is the section type:
3919 // SHT_REL or SHT_RELA.
3920 
3921 // PRELOCS points to the relocation data.  RELOC_COUNT is the number
3922 // of relocs.  OUTPUT_SECTION is the output section.
3923 // NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
3924 // mapped to output offsets.
3925 
3926 // VIEW is the section data, VIEW_ADDRESS is its memory address, and
3927 // VIEW_SIZE is the size.  These refer to the input section, unless
3928 // NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
3929 // the output section.
3930 
3931 template<int size, bool big_endian>
3932 template<int sh_type>
3933 void inline
scan_reloc_section_for_stubs(const Relocate_info<size,big_endian> * relinfo,const unsigned char * prelocs,size_t reloc_count,Output_section *,bool,const unsigned char *,Address view_address,section_size_type)3934 Target_aarch64<size, big_endian>::scan_reloc_section_for_stubs(
3935     const Relocate_info<size, big_endian>* relinfo,
3936     const unsigned char* prelocs,
3937     size_t reloc_count,
3938     Output_section* /*output_section*/,
3939     bool /*needs_special_offset_handling*/,
3940     const unsigned char* /*view*/,
3941     Address view_address,
3942     section_size_type)
3943 {
3944   typedef typename Reloc_types<sh_type,size,big_endian>::Reloc Reltype;
3945 
3946   const int reloc_size =
3947       Reloc_types<sh_type,size,big_endian>::reloc_size;
3948   AArch64_relobj<size, big_endian>* object =
3949       static_cast<AArch64_relobj<size, big_endian>*>(relinfo->object);
3950   unsigned int local_count = object->local_symbol_count();
3951 
3952   gold::Default_comdat_behavior default_comdat_behavior;
3953   Comdat_behavior comdat_behavior = CB_UNDETERMINED;
3954 
3955   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
3956     {
3957       Reltype reloc(prelocs);
3958       typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
3959       unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
3960       unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
3961       if (r_type != elfcpp::R_AARCH64_CALL26
3962 	  && r_type != elfcpp::R_AARCH64_JUMP26)
3963 	continue;
3964 
3965       section_offset_type offset =
3966 	  convert_to_section_size_type(reloc.get_r_offset());
3967 
3968       // Get the addend.
3969       typename elfcpp::Elf_types<size>::Elf_Swxword addend =
3970 	  reloc.get_r_addend();
3971 
3972       const Sized_symbol<size>* sym;
3973       Symbol_value<size> symval;
3974       const Symbol_value<size> *psymval;
3975       bool is_defined_in_discarded_section;
3976       unsigned int shndx;
3977       const Symbol* gsym = NULL;
3978       if (r_sym < local_count)
3979 	{
3980 	  sym = NULL;
3981 	  psymval = object->local_symbol(r_sym);
3982 
3983 	  // If the local symbol belongs to a section we are discarding,
3984 	  // and that section is a debug section, try to find the
3985 	  // corresponding kept section and map this symbol to its
3986 	  // counterpart in the kept section.  The symbol must not
3987 	  // correspond to a section we are folding.
3988 	  bool is_ordinary;
3989 	  shndx = psymval->input_shndx(&is_ordinary);
3990 	  is_defined_in_discarded_section =
3991 	    (is_ordinary
3992 	     && shndx != elfcpp::SHN_UNDEF
3993 	     && !object->is_section_included(shndx)
3994 	     && !relinfo->symtab->is_section_folded(object, shndx));
3995 
3996 	  // We need to compute the would-be final value of this local
3997 	  // symbol.
3998 	  if (!is_defined_in_discarded_section)
3999 	    {
4000 	      typedef Sized_relobj_file<size, big_endian> ObjType;
4001 	      if (psymval->is_section_symbol())
4002 		symval.set_is_section_symbol();
4003 	      typename ObjType::Compute_final_local_value_status status =
4004 		object->compute_final_local_value(r_sym, psymval, &symval,
4005 						  relinfo->symtab);
4006 	      if (status == ObjType::CFLV_OK)
4007 		{
4008 		  // Currently we cannot handle a branch to a target in
4009 		  // a merged section.  If this is the case, issue an error
4010 		  // and also free the merge symbol value.
4011 		  if (!symval.has_output_value())
4012 		    {
4013 		      const std::string& section_name =
4014 			object->section_name(shndx);
4015 		      object->error(_("cannot handle branch to local %u "
4016 					  "in a merged section %s"),
4017 					r_sym, section_name.c_str());
4018 		    }
4019 		  psymval = &symval;
4020 		}
4021 	      else
4022 		{
4023 		  // We cannot determine the final value.
4024 		  continue;
4025 		}
4026 	    }
4027 	}
4028       else
4029 	{
4030 	  gsym = object->global_symbol(r_sym);
4031 	  gold_assert(gsym != NULL);
4032 	  if (gsym->is_forwarder())
4033 	    gsym = relinfo->symtab->resolve_forwards(gsym);
4034 
4035 	  sym = static_cast<const Sized_symbol<size>*>(gsym);
4036 	  if (sym->has_symtab_index() && sym->symtab_index() != -1U)
4037 	    symval.set_output_symtab_index(sym->symtab_index());
4038 	  else
4039 	    symval.set_no_output_symtab_entry();
4040 
4041 	  // We need to compute the would-be final value of this global
4042 	  // symbol.
4043 	  const Symbol_table* symtab = relinfo->symtab;
4044 	  const Sized_symbol<size>* sized_symbol =
4045 	      symtab->get_sized_symbol<size>(gsym);
4046 	  Symbol_table::Compute_final_value_status status;
4047 	  typename elfcpp::Elf_types<size>::Elf_Addr value =
4048 	      symtab->compute_final_value<size>(sized_symbol, &status);
4049 
4050 	  // Skip this if the symbol has not output section.
4051 	  if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
4052 	    continue;
4053 	  symval.set_output_value(value);
4054 
4055 	  if (gsym->type() == elfcpp::STT_TLS)
4056 	    symval.set_is_tls_symbol();
4057 	  else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
4058 	    symval.set_is_ifunc_symbol();
4059 	  psymval = &symval;
4060 
4061 	  is_defined_in_discarded_section =
4062 	      (gsym->is_defined_in_discarded_section()
4063 	       && gsym->is_undefined());
4064 	  shndx = 0;
4065 	}
4066 
4067       Symbol_value<size> symval2;
4068       if (is_defined_in_discarded_section)
4069 	{
4070 	  std::string name = object->section_name(relinfo->data_shndx);
4071 
4072 	  if (comdat_behavior == CB_UNDETERMINED)
4073 	      comdat_behavior = default_comdat_behavior.get(name.c_str());
4074 
4075 	  if (comdat_behavior == CB_PRETEND)
4076 	    {
4077 	      bool found;
4078 	      typename elfcpp::Elf_types<size>::Elf_Addr value =
4079 		object->map_to_kept_section(shndx, name, &found);
4080 	      if (found)
4081 		symval2.set_output_value(value + psymval->input_value());
4082 	      else
4083 		symval2.set_output_value(0);
4084 	    }
4085 	  else
4086 	    {
4087 	      if (comdat_behavior == CB_ERROR)
4088 	        issue_discarded_error(relinfo, i, offset, r_sym, gsym);
4089 	      symval2.set_output_value(0);
4090 	    }
4091 	  symval2.set_no_output_symtab_entry();
4092 	  psymval = &symval2;
4093 	}
4094 
4095       this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
4096 				addend, view_address + offset);
4097     }  // End of iterating relocs in a section
4098 }  // End of Target_aarch64::scan_reloc_section_for_stubs
4099 
4100 
4101 // Scan an input section for stub generation.
4102 
4103 template<int size, bool big_endian>
4104 void
scan_section_for_stubs(const Relocate_info<size,big_endian> * relinfo,unsigned int sh_type,const unsigned char * prelocs,size_t reloc_count,Output_section * output_section,bool needs_special_offset_handling,const unsigned char * view,Address view_address,section_size_type view_size)4105 Target_aarch64<size, big_endian>::scan_section_for_stubs(
4106     const Relocate_info<size, big_endian>* relinfo,
4107     unsigned int sh_type,
4108     const unsigned char* prelocs,
4109     size_t reloc_count,
4110     Output_section* output_section,
4111     bool needs_special_offset_handling,
4112     const unsigned char* view,
4113     Address view_address,
4114     section_size_type view_size)
4115 {
4116   gold_assert(sh_type == elfcpp::SHT_RELA);
4117   this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
4118       relinfo,
4119       prelocs,
4120       reloc_count,
4121       output_section,
4122       needs_special_offset_handling,
4123       view,
4124       view_address,
4125       view_size);
4126 }
4127 
4128 
4129 // Relocate a single reloc stub.
4130 
4131 template<int size, bool big_endian>
4132 void Target_aarch64<size, big_endian>::
relocate_reloc_stub(The_reloc_stub * stub,const The_relocate_info *,Output_section *,unsigned char * view,Address address,section_size_type)4133 relocate_reloc_stub(The_reloc_stub* stub,
4134                     const The_relocate_info*,
4135                     Output_section*,
4136                     unsigned char* view,
4137                     Address address,
4138                     section_size_type)
4139 {
4140   typedef AArch64_relocate_functions<size, big_endian> The_reloc_functions;
4141   typedef typename The_reloc_functions::Status The_reloc_functions_status;
4142   typedef typename elfcpp::Swap<32,big_endian>::Valtype Insntype;
4143 
4144   Insntype* ip = reinterpret_cast<Insntype*>(view);
4145   int insn_number = stub->insn_num();
4146   const uint32_t* insns = stub->insns();
4147   // Check the insns are really those stub insns.
4148   for (int i = 0; i < insn_number; ++i)
4149     {
4150       Insntype insn = elfcpp::Swap<32,big_endian>::readval(ip + i);
4151       gold_assert(((uint32_t)insn == insns[i]));
4152     }
4153 
4154   Address dest = stub->destination_address();
4155 
4156   switch(stub->type())
4157     {
4158     case ST_ADRP_BRANCH:
4159       {
4160 	// 1st reloc is ADR_PREL_PG_HI21
4161 	The_reloc_functions_status status =
4162 	    The_reloc_functions::adrp(view, dest, address);
4163 	// An error should never arise in the above step. If so, please
4164 	// check 'aarch64_valid_for_adrp_p'.
4165 	gold_assert(status == The_reloc_functions::STATUS_OKAY);
4166 
4167 	// 2nd reloc is ADD_ABS_LO12_NC
4168 	const AArch64_reloc_property* arp =
4169 	    aarch64_reloc_property_table->get_reloc_property(
4170 		elfcpp::R_AARCH64_ADD_ABS_LO12_NC);
4171 	gold_assert(arp != NULL);
4172 	status = The_reloc_functions::template
4173 	    rela_general<32>(view + 4, dest, 0, arp);
4174 	// An error should never arise, it is an "_NC" relocation.
4175 	gold_assert(status == The_reloc_functions::STATUS_OKAY);
4176       }
4177       break;
4178 
4179     case ST_LONG_BRANCH_ABS:
4180       // 1st reloc is R_AARCH64_PREL64, at offset 8
4181       elfcpp::Swap<64,big_endian>::writeval(view + 8, dest);
4182       break;
4183 
4184     case ST_LONG_BRANCH_PCREL:
4185       {
4186 	// "PC" calculation is the 2nd insn in the stub.
4187 	uint64_t offset = dest - (address + 4);
4188 	// Offset is placed at offset 4 and 5.
4189 	elfcpp::Swap<64,big_endian>::writeval(view + 16, offset);
4190       }
4191       break;
4192 
4193     default:
4194       gold_unreachable();
4195     }
4196 }
4197 
4198 
4199 // A class to handle the PLT data.
4200 // This is an abstract base class that handles most of the linker details
4201 // but does not know the actual contents of PLT entries.  The derived
4202 // classes below fill in those details.
4203 
4204 template<int size, bool big_endian>
4205 class Output_data_plt_aarch64 : public Output_section_data
4206 {
4207  public:
4208   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
4209       Reloc_section;
4210   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4211 
Output_data_plt_aarch64(Layout * layout,uint64_t addralign,Output_data_got_aarch64<size,big_endian> * got,Output_data_space * got_plt,Output_data_space * got_irelative)4212   Output_data_plt_aarch64(Layout* layout,
4213 			  uint64_t addralign,
4214 			  Output_data_got_aarch64<size, big_endian>* got,
4215 			  Output_data_space* got_plt,
4216 			  Output_data_space* got_irelative)
4217     : Output_section_data(addralign), tlsdesc_rel_(NULL), irelative_rel_(NULL),
4218       got_(got), got_plt_(got_plt), got_irelative_(got_irelative),
4219       count_(0), irelative_count_(0), tlsdesc_got_offset_(-1U)
4220   { this->init(layout); }
4221 
4222   // Initialize the PLT section.
4223   void
4224   init(Layout* layout);
4225 
4226   // Add an entry to the PLT.
4227   void
4228   add_entry(Symbol_table*, Layout*, Symbol* gsym);
4229 
4230   // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
4231   unsigned int
4232   add_local_ifunc_entry(Symbol_table* symtab, Layout*,
4233 			Sized_relobj_file<size, big_endian>* relobj,
4234 			unsigned int local_sym_index);
4235 
4236   // Add the relocation for a PLT entry.
4237   void
4238   add_relocation(Symbol_table*, Layout*, Symbol* gsym,
4239 		 unsigned int got_offset);
4240 
4241   // Add the reserved TLSDESC_PLT entry to the PLT.
4242   void
reserve_tlsdesc_entry(unsigned int got_offset)4243   reserve_tlsdesc_entry(unsigned int got_offset)
4244   { this->tlsdesc_got_offset_ = got_offset; }
4245 
4246   // Return true if a TLSDESC_PLT entry has been reserved.
4247   bool
has_tlsdesc_entry() const4248   has_tlsdesc_entry() const
4249   { return this->tlsdesc_got_offset_ != -1U; }
4250 
4251   // Return the GOT offset for the reserved TLSDESC_PLT entry.
4252   unsigned int
get_tlsdesc_got_offset() const4253   get_tlsdesc_got_offset() const
4254   { return this->tlsdesc_got_offset_; }
4255 
4256   // Return the PLT offset of the reserved TLSDESC_PLT entry.
4257   unsigned int
get_tlsdesc_plt_offset() const4258   get_tlsdesc_plt_offset() const
4259   {
4260     return (this->first_plt_entry_offset() +
4261 	    (this->count_ + this->irelative_count_)
4262 	    * this->get_plt_entry_size());
4263   }
4264 
4265   // Return the .rela.plt section data.
4266   Reloc_section*
rela_plt()4267   rela_plt()
4268   { return this->rel_; }
4269 
4270   // Return where the TLSDESC relocations should go.
4271   Reloc_section*
4272   rela_tlsdesc(Layout*);
4273 
4274   // Return where the IRELATIVE relocations should go in the PLT
4275   // relocations.
4276   Reloc_section*
4277   rela_irelative(Symbol_table*, Layout*);
4278 
4279   // Return whether we created a section for IRELATIVE relocations.
4280   bool
has_irelative_section() const4281   has_irelative_section() const
4282   { return this->irelative_rel_ != NULL; }
4283 
4284   // Return the number of PLT entries.
4285   unsigned int
entry_count() const4286   entry_count() const
4287   { return this->count_ + this->irelative_count_; }
4288 
4289   // Return the offset of the first non-reserved PLT entry.
4290   unsigned int
first_plt_entry_offset() const4291   first_plt_entry_offset() const
4292   { return this->do_first_plt_entry_offset(); }
4293 
4294   // Return the size of a PLT entry.
4295   unsigned int
get_plt_entry_size() const4296   get_plt_entry_size() const
4297   { return this->do_get_plt_entry_size(); }
4298 
4299   // Return the reserved tlsdesc entry size.
4300   unsigned int
get_plt_tlsdesc_entry_size() const4301   get_plt_tlsdesc_entry_size() const
4302   { return this->do_get_plt_tlsdesc_entry_size(); }
4303 
4304   // Return the PLT address to use for a global symbol.
4305   uint64_t
4306   address_for_global(const Symbol*);
4307 
4308   // Return the PLT address to use for a local symbol.
4309   uint64_t
4310   address_for_local(const Relobj*, unsigned int symndx);
4311 
4312  protected:
4313   // Fill in the first PLT entry.
4314   void
fill_first_plt_entry(unsigned char * pov,Address got_address,Address plt_address)4315   fill_first_plt_entry(unsigned char* pov,
4316 		       Address got_address,
4317 		       Address plt_address)
4318   { this->do_fill_first_plt_entry(pov, got_address, plt_address); }
4319 
4320   // Fill in a normal PLT entry.
4321   void
fill_plt_entry(unsigned char * pov,Address got_address,Address plt_address,unsigned int got_offset,unsigned int plt_offset)4322   fill_plt_entry(unsigned char* pov,
4323 		 Address got_address,
4324 		 Address plt_address,
4325 		 unsigned int got_offset,
4326 		 unsigned int plt_offset)
4327   {
4328     this->do_fill_plt_entry(pov, got_address, plt_address,
4329 			    got_offset, plt_offset);
4330   }
4331 
4332   // Fill in the reserved TLSDESC PLT entry.
4333   void
fill_tlsdesc_entry(unsigned char * pov,Address gotplt_address,Address plt_address,Address got_base,unsigned int tlsdesc_got_offset,unsigned int plt_offset)4334   fill_tlsdesc_entry(unsigned char* pov,
4335 		     Address gotplt_address,
4336 		     Address plt_address,
4337 		     Address got_base,
4338 		     unsigned int tlsdesc_got_offset,
4339 		     unsigned int plt_offset)
4340   {
4341     this->do_fill_tlsdesc_entry(pov, gotplt_address, plt_address, got_base,
4342 				tlsdesc_got_offset, plt_offset);
4343   }
4344 
4345   virtual unsigned int
4346   do_first_plt_entry_offset() const = 0;
4347 
4348   virtual unsigned int
4349   do_get_plt_entry_size() const = 0;
4350 
4351   virtual unsigned int
4352   do_get_plt_tlsdesc_entry_size() const = 0;
4353 
4354   virtual void
4355   do_fill_first_plt_entry(unsigned char* pov,
4356 			  Address got_addr,
4357 			  Address plt_addr) = 0;
4358 
4359   virtual void
4360   do_fill_plt_entry(unsigned char* pov,
4361 		    Address got_address,
4362 		    Address plt_address,
4363 		    unsigned int got_offset,
4364 		    unsigned int plt_offset) = 0;
4365 
4366   virtual void
4367   do_fill_tlsdesc_entry(unsigned char* pov,
4368 			Address gotplt_address,
4369 			Address plt_address,
4370 			Address got_base,
4371 			unsigned int tlsdesc_got_offset,
4372 			unsigned int plt_offset) = 0;
4373 
4374   void
4375   do_adjust_output_section(Output_section* os);
4376 
4377   // Write to a map file.
4378   void
do_print_to_mapfile(Mapfile * mapfile) const4379   do_print_to_mapfile(Mapfile* mapfile) const
4380   { mapfile->print_output_data(this, _("** PLT")); }
4381 
4382  private:
4383   // Set the final size.
4384   void
4385   set_final_data_size();
4386 
4387   // Write out the PLT data.
4388   void
4389   do_write(Output_file*);
4390 
4391   // The reloc section.
4392   Reloc_section* rel_;
4393 
4394   // The TLSDESC relocs, if necessary.  These must follow the regular
4395   // PLT relocs.
4396   Reloc_section* tlsdesc_rel_;
4397 
4398   // The IRELATIVE relocs, if necessary.  These must follow the
4399   // regular PLT relocations.
4400   Reloc_section* irelative_rel_;
4401 
4402   // The .got section.
4403   Output_data_got_aarch64<size, big_endian>* got_;
4404 
4405   // The .got.plt section.
4406   Output_data_space* got_plt_;
4407 
4408   // The part of the .got.plt section used for IRELATIVE relocs.
4409   Output_data_space* got_irelative_;
4410 
4411   // The number of PLT entries.
4412   unsigned int count_;
4413 
4414   // Number of PLT entries with R_AARCH64_IRELATIVE relocs.  These
4415   // follow the regular PLT entries.
4416   unsigned int irelative_count_;
4417 
4418   // GOT offset of the reserved TLSDESC_GOT entry for the lazy trampoline.
4419   // Communicated to the loader via DT_TLSDESC_GOT. The magic value -1
4420   // indicates an offset is not allocated.
4421   unsigned int tlsdesc_got_offset_;
4422 };
4423 
4424 // Initialize the PLT section.
4425 
4426 template<int size, bool big_endian>
4427 void
init(Layout * layout)4428 Output_data_plt_aarch64<size, big_endian>::init(Layout* layout)
4429 {
4430   this->rel_ = new Reloc_section(false);
4431   layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
4432 				  elfcpp::SHF_ALLOC, this->rel_,
4433 				  ORDER_DYNAMIC_PLT_RELOCS, false);
4434 }
4435 
4436 template<int size, bool big_endian>
4437 void
do_adjust_output_section(Output_section * os)4438 Output_data_plt_aarch64<size, big_endian>::do_adjust_output_section(
4439     Output_section* os)
4440 {
4441   os->set_entsize(this->get_plt_entry_size());
4442 }
4443 
4444 // Add an entry to the PLT.
4445 
4446 template<int size, bool big_endian>
4447 void
add_entry(Symbol_table * symtab,Layout * layout,Symbol * gsym)4448 Output_data_plt_aarch64<size, big_endian>::add_entry(Symbol_table* symtab,
4449     Layout* layout, Symbol* gsym)
4450 {
4451   gold_assert(!gsym->has_plt_offset());
4452 
4453   unsigned int* pcount;
4454   unsigned int plt_reserved;
4455   Output_section_data_build* got;
4456 
4457   if (gsym->type() == elfcpp::STT_GNU_IFUNC
4458       && gsym->can_use_relative_reloc(false))
4459     {
4460       pcount = &this->irelative_count_;
4461       plt_reserved = 0;
4462       got = this->got_irelative_;
4463     }
4464   else
4465     {
4466       pcount = &this->count_;
4467       plt_reserved = this->first_plt_entry_offset();
4468       got = this->got_plt_;
4469     }
4470 
4471   gsym->set_plt_offset((*pcount) * this->get_plt_entry_size()
4472 		       + plt_reserved);
4473 
4474   ++*pcount;
4475 
4476   section_offset_type got_offset = got->current_data_size();
4477 
4478   // Every PLT entry needs a GOT entry which points back to the PLT
4479   // entry (this will be changed by the dynamic linker, normally
4480   // lazily when the function is called).
4481   got->set_current_data_size(got_offset + size / 8);
4482 
4483   // Every PLT entry needs a reloc.
4484   this->add_relocation(symtab, layout, gsym, got_offset);
4485 
4486   // Note that we don't need to save the symbol. The contents of the
4487   // PLT are independent of which symbols are used. The symbols only
4488   // appear in the relocations.
4489 }
4490 
4491 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.  Return
4492 // the PLT offset.
4493 
4494 template<int size, bool big_endian>
4495 unsigned int
add_local_ifunc_entry(Symbol_table * symtab,Layout * layout,Sized_relobj_file<size,big_endian> * relobj,unsigned int local_sym_index)4496 Output_data_plt_aarch64<size, big_endian>::add_local_ifunc_entry(
4497     Symbol_table* symtab,
4498     Layout* layout,
4499     Sized_relobj_file<size, big_endian>* relobj,
4500     unsigned int local_sym_index)
4501 {
4502   unsigned int plt_offset = this->irelative_count_ * this->get_plt_entry_size();
4503   ++this->irelative_count_;
4504 
4505   section_offset_type got_offset = this->got_irelative_->current_data_size();
4506 
4507   // Every PLT entry needs a GOT entry which points back to the PLT
4508   // entry.
4509   this->got_irelative_->set_current_data_size(got_offset + size / 8);
4510 
4511   // Every PLT entry needs a reloc.
4512   Reloc_section* rela = this->rela_irelative(symtab, layout);
4513   rela->add_symbolless_local_addend(relobj, local_sym_index,
4514 				    elfcpp::R_AARCH64_IRELATIVE,
4515 				    this->got_irelative_, got_offset, 0);
4516 
4517   return plt_offset;
4518 }
4519 
4520 // Add the relocation for a PLT entry.
4521 
4522 template<int size, bool big_endian>
4523 void
add_relocation(Symbol_table * symtab,Layout * layout,Symbol * gsym,unsigned int got_offset)4524 Output_data_plt_aarch64<size, big_endian>::add_relocation(
4525     Symbol_table* symtab, Layout* layout, Symbol* gsym, unsigned int got_offset)
4526 {
4527   if (gsym->type() == elfcpp::STT_GNU_IFUNC
4528       && gsym->can_use_relative_reloc(false))
4529     {
4530       Reloc_section* rela = this->rela_irelative(symtab, layout);
4531       rela->add_symbolless_global_addend(gsym, elfcpp::R_AARCH64_IRELATIVE,
4532 					 this->got_irelative_, got_offset, 0);
4533     }
4534   else
4535     {
4536       gsym->set_needs_dynsym_entry();
4537       this->rel_->add_global(gsym, elfcpp::R_AARCH64_JUMP_SLOT, this->got_plt_,
4538 			     got_offset, 0);
4539     }
4540 }
4541 
4542 // Return where the TLSDESC relocations should go, creating it if
4543 // necessary.  These follow the JUMP_SLOT relocations.
4544 
4545 template<int size, bool big_endian>
4546 typename Output_data_plt_aarch64<size, big_endian>::Reloc_section*
rela_tlsdesc(Layout * layout)4547 Output_data_plt_aarch64<size, big_endian>::rela_tlsdesc(Layout* layout)
4548 {
4549   if (this->tlsdesc_rel_ == NULL)
4550     {
4551       this->tlsdesc_rel_ = new Reloc_section(false);
4552       layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
4553 				      elfcpp::SHF_ALLOC, this->tlsdesc_rel_,
4554 				      ORDER_DYNAMIC_PLT_RELOCS, false);
4555       gold_assert(this->tlsdesc_rel_->output_section()
4556 		  == this->rel_->output_section());
4557     }
4558   return this->tlsdesc_rel_;
4559 }
4560 
4561 // Return where the IRELATIVE relocations should go in the PLT.  These
4562 // follow the JUMP_SLOT and the TLSDESC relocations.
4563 
4564 template<int size, bool big_endian>
4565 typename Output_data_plt_aarch64<size, big_endian>::Reloc_section*
rela_irelative(Symbol_table * symtab,Layout * layout)4566 Output_data_plt_aarch64<size, big_endian>::rela_irelative(Symbol_table* symtab,
4567 							  Layout* layout)
4568 {
4569   if (this->irelative_rel_ == NULL)
4570     {
4571       // Make sure we have a place for the TLSDESC relocations, in
4572       // case we see any later on.
4573       this->rela_tlsdesc(layout);
4574       this->irelative_rel_ = new Reloc_section(false);
4575       layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
4576 				      elfcpp::SHF_ALLOC, this->irelative_rel_,
4577 				      ORDER_DYNAMIC_PLT_RELOCS, false);
4578       gold_assert(this->irelative_rel_->output_section()
4579 		  == this->rel_->output_section());
4580 
4581       if (parameters->doing_static_link())
4582 	{
4583 	  // A statically linked executable will only have a .rela.plt
4584 	  // section to hold R_AARCH64_IRELATIVE relocs for
4585 	  // STT_GNU_IFUNC symbols.  The library will use these
4586 	  // symbols to locate the IRELATIVE relocs at program startup
4587 	  // time.
4588 	  symtab->define_in_output_data("__rela_iplt_start", NULL,
4589 					Symbol_table::PREDEFINED,
4590 					this->irelative_rel_, 0, 0,
4591 					elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
4592 					elfcpp::STV_HIDDEN, 0, false, true);
4593 	  symtab->define_in_output_data("__rela_iplt_end", NULL,
4594 					Symbol_table::PREDEFINED,
4595 					this->irelative_rel_, 0, 0,
4596 					elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
4597 					elfcpp::STV_HIDDEN, 0, true, true);
4598 	}
4599     }
4600   return this->irelative_rel_;
4601 }
4602 
4603 // Return the PLT address to use for a global symbol.
4604 
4605 template<int size, bool big_endian>
4606 uint64_t
address_for_global(const Symbol * gsym)4607 Output_data_plt_aarch64<size, big_endian>::address_for_global(
4608   const Symbol* gsym)
4609 {
4610   uint64_t offset = 0;
4611   if (gsym->type() == elfcpp::STT_GNU_IFUNC
4612       && gsym->can_use_relative_reloc(false))
4613     offset = (this->first_plt_entry_offset() +
4614 	      this->count_ * this->get_plt_entry_size());
4615   return this->address() + offset + gsym->plt_offset();
4616 }
4617 
4618 // Return the PLT address to use for a local symbol.  These are always
4619 // IRELATIVE relocs.
4620 
4621 template<int size, bool big_endian>
4622 uint64_t
address_for_local(const Relobj * object,unsigned int r_sym)4623 Output_data_plt_aarch64<size, big_endian>::address_for_local(
4624     const Relobj* object,
4625     unsigned int r_sym)
4626 {
4627   return (this->address()
4628 	  + this->first_plt_entry_offset()
4629 	  + this->count_ * this->get_plt_entry_size()
4630 	  + object->local_plt_offset(r_sym));
4631 }
4632 
4633 // Set the final size.
4634 
4635 template<int size, bool big_endian>
4636 void
set_final_data_size()4637 Output_data_plt_aarch64<size, big_endian>::set_final_data_size()
4638 {
4639   unsigned int count = this->count_ + this->irelative_count_;
4640   unsigned int extra_size = 0;
4641   if (this->has_tlsdesc_entry())
4642     extra_size += this->get_plt_tlsdesc_entry_size();
4643   this->set_data_size(this->first_plt_entry_offset()
4644 		      + count * this->get_plt_entry_size()
4645 		      + extra_size);
4646 }
4647 
4648 template<int size, bool big_endian>
4649 class Output_data_plt_aarch64_standard :
4650   public Output_data_plt_aarch64<size, big_endian>
4651 {
4652  public:
4653   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
Output_data_plt_aarch64_standard(Layout * layout,Output_data_got_aarch64<size,big_endian> * got,Output_data_space * got_plt,Output_data_space * got_irelative)4654   Output_data_plt_aarch64_standard(
4655       Layout* layout,
4656       Output_data_got_aarch64<size, big_endian>* got,
4657       Output_data_space* got_plt,
4658       Output_data_space* got_irelative)
4659     : Output_data_plt_aarch64<size, big_endian>(layout,
4660 						size == 32 ? 4 : 8,
4661 						got, got_plt,
4662 						got_irelative)
4663   { }
4664 
4665  protected:
4666   // Return the offset of the first non-reserved PLT entry.
4667   virtual unsigned int
do_first_plt_entry_offset() const4668   do_first_plt_entry_offset() const
4669   { return this->first_plt_entry_size; }
4670 
4671   // Return the size of a PLT entry
4672   virtual unsigned int
do_get_plt_entry_size() const4673   do_get_plt_entry_size() const
4674   { return this->plt_entry_size; }
4675 
4676   // Return the size of a tlsdesc entry
4677   virtual unsigned int
do_get_plt_tlsdesc_entry_size() const4678   do_get_plt_tlsdesc_entry_size() const
4679   { return this->plt_tlsdesc_entry_size; }
4680 
4681   virtual void
4682   do_fill_first_plt_entry(unsigned char* pov,
4683 			  Address got_address,
4684 			  Address plt_address);
4685 
4686   virtual void
4687   do_fill_plt_entry(unsigned char* pov,
4688 		    Address got_address,
4689 		    Address plt_address,
4690 		    unsigned int got_offset,
4691 		    unsigned int plt_offset);
4692 
4693   virtual void
4694   do_fill_tlsdesc_entry(unsigned char* pov,
4695 			Address gotplt_address,
4696 			Address plt_address,
4697 			Address got_base,
4698 			unsigned int tlsdesc_got_offset,
4699 			unsigned int plt_offset);
4700 
4701  private:
4702   // The size of the first plt entry size.
4703   static const int first_plt_entry_size = 32;
4704   // The size of the plt entry size.
4705   static const int plt_entry_size = 16;
4706   // The size of the plt tlsdesc entry size.
4707   static const int plt_tlsdesc_entry_size = 32;
4708   // Template for the first PLT entry.
4709   static const uint32_t first_plt_entry[first_plt_entry_size / 4];
4710   // Template for subsequent PLT entries.
4711   static const uint32_t plt_entry[plt_entry_size / 4];
4712   // The reserved TLSDESC entry in the PLT for an executable.
4713   static const uint32_t tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4];
4714 };
4715 
4716 // The first entry in the PLT for an executable.
4717 
4718 template<>
4719 const uint32_t
4720 Output_data_plt_aarch64_standard<32, false>::
4721     first_plt_entry[first_plt_entry_size / 4] =
4722 {
4723   0xa9bf7bf0,	/* stp x16, x30, [sp, #-16]!  */
4724   0x90000010,	/* adrp x16, PLT_GOT+0x8  */
4725   0xb9400A11,	/* ldr w17, [x16, #PLT_GOT+0x8]  */
4726   0x11002210,	/* add w16, w16,#PLT_GOT+0x8   */
4727   0xd61f0220,	/* br x17  */
4728   0xd503201f,	/* nop */
4729   0xd503201f,	/* nop */
4730   0xd503201f,	/* nop */
4731 };
4732 
4733 
4734 template<>
4735 const uint32_t
4736 Output_data_plt_aarch64_standard<32, true>::
4737     first_plt_entry[first_plt_entry_size / 4] =
4738 {
4739   0xa9bf7bf0,	/* stp x16, x30, [sp, #-16]!  */
4740   0x90000010,	/* adrp x16, PLT_GOT+0x8  */
4741   0xb9400A11,	/* ldr w17, [x16, #PLT_GOT+0x8]  */
4742   0x11002210,	/* add w16, w16,#PLT_GOT+0x8   */
4743   0xd61f0220,	/* br x17  */
4744   0xd503201f,	/* nop */
4745   0xd503201f,	/* nop */
4746   0xd503201f,	/* nop */
4747 };
4748 
4749 
4750 template<>
4751 const uint32_t
4752 Output_data_plt_aarch64_standard<64, false>::
4753     first_plt_entry[first_plt_entry_size / 4] =
4754 {
4755   0xa9bf7bf0,	/* stp x16, x30, [sp, #-16]!  */
4756   0x90000010,	/* adrp x16, PLT_GOT+16  */
4757   0xf9400A11,	/* ldr x17, [x16, #PLT_GOT+0x10]  */
4758   0x91004210,	/* add x16, x16,#PLT_GOT+0x10   */
4759   0xd61f0220,	/* br x17  */
4760   0xd503201f,	/* nop */
4761   0xd503201f,	/* nop */
4762   0xd503201f,	/* nop */
4763 };
4764 
4765 
4766 template<>
4767 const uint32_t
4768 Output_data_plt_aarch64_standard<64, true>::
4769     first_plt_entry[first_plt_entry_size / 4] =
4770 {
4771   0xa9bf7bf0,	/* stp x16, x30, [sp, #-16]!  */
4772   0x90000010,	/* adrp x16, PLT_GOT+16  */
4773   0xf9400A11,	/* ldr x17, [x16, #PLT_GOT+0x10]  */
4774   0x91004210,	/* add x16, x16,#PLT_GOT+0x10   */
4775   0xd61f0220,	/* br x17  */
4776   0xd503201f,	/* nop */
4777   0xd503201f,	/* nop */
4778   0xd503201f,	/* nop */
4779 };
4780 
4781 
4782 template<>
4783 const uint32_t
4784 Output_data_plt_aarch64_standard<32, false>::
4785     plt_entry[plt_entry_size / 4] =
4786 {
4787   0x90000010,	/* adrp x16, PLTGOT + n * 4  */
4788   0xb9400211,	/* ldr w17, [w16, PLTGOT + n * 4] */
4789   0x11000210,	/* add w16, w16, :lo12:PLTGOT + n * 4  */
4790   0xd61f0220,	/* br x17.  */
4791 };
4792 
4793 
4794 template<>
4795 const uint32_t
4796 Output_data_plt_aarch64_standard<32, true>::
4797     plt_entry[plt_entry_size / 4] =
4798 {
4799   0x90000010,	/* adrp x16, PLTGOT + n * 4  */
4800   0xb9400211,	/* ldr w17, [w16, PLTGOT + n * 4] */
4801   0x11000210,	/* add w16, w16, :lo12:PLTGOT + n * 4  */
4802   0xd61f0220,	/* br x17.  */
4803 };
4804 
4805 
4806 template<>
4807 const uint32_t
4808 Output_data_plt_aarch64_standard<64, false>::
4809     plt_entry[plt_entry_size / 4] =
4810 {
4811   0x90000010,	/* adrp x16, PLTGOT + n * 8  */
4812   0xf9400211,	/* ldr x17, [x16, PLTGOT + n * 8] */
4813   0x91000210,	/* add x16, x16, :lo12:PLTGOT + n * 8  */
4814   0xd61f0220,	/* br x17.  */
4815 };
4816 
4817 
4818 template<>
4819 const uint32_t
4820 Output_data_plt_aarch64_standard<64, true>::
4821     plt_entry[plt_entry_size / 4] =
4822 {
4823   0x90000010,	/* adrp x16, PLTGOT + n * 8  */
4824   0xf9400211,	/* ldr x17, [x16, PLTGOT + n * 8] */
4825   0x91000210,	/* add x16, x16, :lo12:PLTGOT + n * 8  */
4826   0xd61f0220,	/* br x17.  */
4827 };
4828 
4829 
4830 template<int size, bool big_endian>
4831 void
do_fill_first_plt_entry(unsigned char * pov,Address got_address,Address plt_address)4832 Output_data_plt_aarch64_standard<size, big_endian>::do_fill_first_plt_entry(
4833     unsigned char* pov,
4834     Address got_address,
4835     Address plt_address)
4836 {
4837   // PLT0 of the small PLT looks like this in ELF64 -
4838   // stp x16, x30, [sp, #-16]!	 	Save the reloc and lr on stack.
4839   // adrp x16, PLT_GOT + 16		Get the page base of the GOTPLT
4840   // ldr  x17, [x16, #:lo12:PLT_GOT+16]	Load the address of the
4841   // 					symbol resolver
4842   // add  x16, x16, #:lo12:PLT_GOT+16	Load the lo12 bits of the
4843   // 					GOTPLT entry for this.
4844   // br   x17
4845   // PLT0 will be slightly different in ELF32 due to different got entry
4846   // size.
4847   memcpy(pov, this->first_plt_entry, this->first_plt_entry_size);
4848   Address gotplt_2nd_ent = got_address + (size / 8) * 2;
4849 
4850   // Fill in the top 21 bits for this: ADRP x16, PLT_GOT + 8 * 2.
4851   // ADRP:  (PG(S+A)-PG(P)) >> 12) & 0x1fffff.
4852   // FIXME: This only works for 64bit
4853   AArch64_relocate_functions<size, big_endian>::adrp(pov + 4,
4854       gotplt_2nd_ent, plt_address + 4);
4855 
4856   // Fill in R_AARCH64_LDST8_LO12
4857   elfcpp::Swap<32, big_endian>::writeval(
4858       pov + 8,
4859       ((this->first_plt_entry[2] & 0xffc003ff)
4860        | ((gotplt_2nd_ent & 0xff8) << 7)));
4861 
4862   // Fill in R_AARCH64_ADD_ABS_LO12
4863   elfcpp::Swap<32, big_endian>::writeval(
4864       pov + 12,
4865       ((this->first_plt_entry[3] & 0xffc003ff)
4866        | ((gotplt_2nd_ent & 0xfff) << 10)));
4867 }
4868 
4869 
4870 // Subsequent entries in the PLT for an executable.
4871 // FIXME: This only works for 64bit
4872 
4873 template<int size, bool big_endian>
4874 void
do_fill_plt_entry(unsigned char * pov,Address got_address,Address plt_address,unsigned int got_offset,unsigned int plt_offset)4875 Output_data_plt_aarch64_standard<size, big_endian>::do_fill_plt_entry(
4876     unsigned char* pov,
4877     Address got_address,
4878     Address plt_address,
4879     unsigned int got_offset,
4880     unsigned int plt_offset)
4881 {
4882   memcpy(pov, this->plt_entry, this->plt_entry_size);
4883 
4884   Address gotplt_entry_address = got_address + got_offset;
4885   Address plt_entry_address = plt_address + plt_offset;
4886 
4887   // Fill in R_AARCH64_PCREL_ADR_HI21
4888   AArch64_relocate_functions<size, big_endian>::adrp(
4889       pov,
4890       gotplt_entry_address,
4891       plt_entry_address);
4892 
4893   // Fill in R_AARCH64_LDST64_ABS_LO12
4894   elfcpp::Swap<32, big_endian>::writeval(
4895       pov + 4,
4896       ((this->plt_entry[1] & 0xffc003ff)
4897        | ((gotplt_entry_address & 0xff8) << 7)));
4898 
4899   // Fill in R_AARCH64_ADD_ABS_LO12
4900   elfcpp::Swap<32, big_endian>::writeval(
4901       pov + 8,
4902       ((this->plt_entry[2] & 0xffc003ff)
4903        | ((gotplt_entry_address & 0xfff) <<10)));
4904 
4905 }
4906 
4907 
4908 template<>
4909 const uint32_t
4910 Output_data_plt_aarch64_standard<32, false>::
4911     tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
4912 {
4913   0xa9bf0fe2,	/* stp x2, x3, [sp, #-16]!  */
4914   0x90000002,	/* adrp x2, 0 */
4915   0x90000003,	/* adrp x3, 0 */
4916   0xb9400042,	/* ldr w2, [w2, #0] */
4917   0x11000063,	/* add w3, w3, 0 */
4918   0xd61f0040,	/* br x2 */
4919   0xd503201f,	/* nop */
4920   0xd503201f,	/* nop */
4921 };
4922 
4923 template<>
4924 const uint32_t
4925 Output_data_plt_aarch64_standard<32, true>::
4926     tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
4927 {
4928   0xa9bf0fe2,	/* stp x2, x3, [sp, #-16]!  */
4929   0x90000002,	/* adrp x2, 0 */
4930   0x90000003,	/* adrp x3, 0 */
4931   0xb9400042,	/* ldr w2, [w2, #0] */
4932   0x11000063,	/* add w3, w3, 0 */
4933   0xd61f0040,	/* br x2 */
4934   0xd503201f,	/* nop */
4935   0xd503201f,	/* nop */
4936 };
4937 
4938 template<>
4939 const uint32_t
4940 Output_data_plt_aarch64_standard<64, false>::
4941     tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
4942 {
4943   0xa9bf0fe2,	/* stp x2, x3, [sp, #-16]!  */
4944   0x90000002,	/* adrp x2, 0 */
4945   0x90000003,	/* adrp x3, 0 */
4946   0xf9400042,	/* ldr x2, [x2, #0] */
4947   0x91000063,	/* add x3, x3, 0 */
4948   0xd61f0040,	/* br x2 */
4949   0xd503201f,	/* nop */
4950   0xd503201f,	/* nop */
4951 };
4952 
4953 template<>
4954 const uint32_t
4955 Output_data_plt_aarch64_standard<64, true>::
4956     tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
4957 {
4958   0xa9bf0fe2,	/* stp x2, x3, [sp, #-16]!  */
4959   0x90000002,	/* adrp x2, 0 */
4960   0x90000003,	/* adrp x3, 0 */
4961   0xf9400042,	/* ldr x2, [x2, #0] */
4962   0x91000063,	/* add x3, x3, 0 */
4963   0xd61f0040,	/* br x2 */
4964   0xd503201f,	/* nop */
4965   0xd503201f,	/* nop */
4966 };
4967 
4968 template<int size, bool big_endian>
4969 void
do_fill_tlsdesc_entry(unsigned char * pov,Address gotplt_address,Address plt_address,Address got_base,unsigned int tlsdesc_got_offset,unsigned int plt_offset)4970 Output_data_plt_aarch64_standard<size, big_endian>::do_fill_tlsdesc_entry(
4971     unsigned char* pov,
4972     Address gotplt_address,
4973     Address plt_address,
4974     Address got_base,
4975     unsigned int tlsdesc_got_offset,
4976     unsigned int plt_offset)
4977 {
4978   memcpy(pov, tlsdesc_plt_entry, plt_tlsdesc_entry_size);
4979 
4980   // move DT_TLSDESC_GOT address into x2
4981   // move .got.plt address into x3
4982   Address tlsdesc_got_entry = got_base + tlsdesc_got_offset;
4983   Address plt_entry_address = plt_address + plt_offset;
4984 
4985   // R_AARCH64_ADR_PREL_PG_HI21
4986   AArch64_relocate_functions<size, big_endian>::adrp(
4987       pov + 4,
4988       tlsdesc_got_entry,
4989       plt_entry_address + 4);
4990 
4991   // R_AARCH64_ADR_PREL_PG_HI21
4992   AArch64_relocate_functions<size, big_endian>::adrp(
4993       pov + 8,
4994       gotplt_address,
4995       plt_entry_address + 8);
4996 
4997   // R_AARCH64_LDST64_ABS_LO12
4998   elfcpp::Swap<32, big_endian>::writeval(
4999       pov + 12,
5000       ((this->tlsdesc_plt_entry[3] & 0xffc003ff)
5001        | ((tlsdesc_got_entry & 0xff8) << 7)));
5002 
5003   // R_AARCH64_ADD_ABS_LO12
5004   elfcpp::Swap<32, big_endian>::writeval(
5005       pov + 16,
5006       ((this->tlsdesc_plt_entry[4] & 0xffc003ff)
5007        | ((gotplt_address & 0xfff) << 10)));
5008 }
5009 
5010 // Write out the PLT.  This uses the hand-coded instructions above,
5011 // and adjusts them as needed.  This is specified by the AMD64 ABI.
5012 
5013 template<int size, bool big_endian>
5014 void
do_write(Output_file * of)5015 Output_data_plt_aarch64<size, big_endian>::do_write(Output_file* of)
5016 {
5017   const off_t offset = this->offset();
5018   const section_size_type oview_size =
5019     convert_to_section_size_type(this->data_size());
5020   unsigned char* const oview = of->get_output_view(offset, oview_size);
5021 
5022   const off_t got_file_offset = this->got_plt_->offset();
5023   gold_assert(got_file_offset + this->got_plt_->data_size()
5024 	      == this->got_irelative_->offset());
5025 
5026   const section_size_type got_size =
5027       convert_to_section_size_type(this->got_plt_->data_size()
5028 				   + this->got_irelative_->data_size());
5029   unsigned char* const got_view = of->get_output_view(got_file_offset,
5030 						      got_size);
5031 
5032   unsigned char* pov = oview;
5033 
5034   // The base address of the .plt section.
5035   typename elfcpp::Elf_types<size>::Elf_Addr plt_address = this->address();
5036   // The base address of the PLT portion of the .got section.
5037   typename elfcpp::Elf_types<size>::Elf_Addr gotplt_address
5038       = this->got_plt_->address();
5039 
5040   this->fill_first_plt_entry(pov, gotplt_address, plt_address);
5041   pov += this->first_plt_entry_offset();
5042 
5043   // The first three entries in .got.plt are reserved.
5044   unsigned char* got_pov = got_view;
5045   memset(got_pov, 0, size / 8 * AARCH64_GOTPLT_RESERVE_COUNT);
5046   got_pov += (size / 8) * AARCH64_GOTPLT_RESERVE_COUNT;
5047 
5048   unsigned int plt_offset = this->first_plt_entry_offset();
5049   unsigned int got_offset = (size / 8) * AARCH64_GOTPLT_RESERVE_COUNT;
5050   const unsigned int count = this->count_ + this->irelative_count_;
5051   for (unsigned int plt_index = 0;
5052        plt_index < count;
5053        ++plt_index,
5054 	 pov += this->get_plt_entry_size(),
5055 	 got_pov += size / 8,
5056 	 plt_offset += this->get_plt_entry_size(),
5057 	 got_offset += size / 8)
5058     {
5059       // Set and adjust the PLT entry itself.
5060       this->fill_plt_entry(pov, gotplt_address, plt_address,
5061 			   got_offset, plt_offset);
5062 
5063       // Set the entry in the GOT, which points to plt0.
5064       elfcpp::Swap<size, big_endian>::writeval(got_pov, plt_address);
5065     }
5066 
5067   if (this->has_tlsdesc_entry())
5068     {
5069       // Set and adjust the reserved TLSDESC PLT entry.
5070       unsigned int tlsdesc_got_offset = this->get_tlsdesc_got_offset();
5071       // The base address of the .base section.
5072       typename elfcpp::Elf_types<size>::Elf_Addr got_base =
5073 	  this->got_->address();
5074       this->fill_tlsdesc_entry(pov, gotplt_address, plt_address, got_base,
5075 			       tlsdesc_got_offset, plt_offset);
5076       pov += this->get_plt_tlsdesc_entry_size();
5077     }
5078 
5079   gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
5080   gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
5081 
5082   of->write_output_view(offset, oview_size, oview);
5083   of->write_output_view(got_file_offset, got_size, got_view);
5084 }
5085 
5086 // Telling how to update the immediate field of an instruction.
5087 struct AArch64_howto
5088 {
5089   // The immediate field mask.
5090   elfcpp::Elf_Xword dst_mask;
5091 
5092   // The offset to apply relocation immediate
5093   int doffset;
5094 
5095   // The second part offset, if the immediate field has two parts.
5096   // -1 if the immediate field has only one part.
5097   int doffset2;
5098 };
5099 
5100 static const AArch64_howto aarch64_howto[AArch64_reloc_property::INST_NUM] =
5101 {
5102   {0, -1, -1},		// DATA
5103   {0x1fffe0, 5, -1},	// MOVW  [20:5]-imm16
5104   {0xffffe0, 5, -1},	// LD    [23:5]-imm19
5105   {0x60ffffe0, 29, 5},	// ADR   [30:29]-immlo  [23:5]-immhi
5106   {0x60ffffe0, 29, 5},	// ADRP  [30:29]-immlo  [23:5]-immhi
5107   {0x3ffc00, 10, -1},	// ADD   [21:10]-imm12
5108   {0x3ffc00, 10, -1},	// LDST  [21:10]-imm12
5109   {0x7ffe0, 5, -1},	// TBZNZ [18:5]-imm14
5110   {0xffffe0, 5, -1},	// CONDB [23:5]-imm19
5111   {0x3ffffff, 0, -1},	// B     [25:0]-imm26
5112   {0x3ffffff, 0, -1},	// CALL  [25:0]-imm26
5113 };
5114 
5115 // AArch64 relocate function class
5116 
5117 template<int size, bool big_endian>
5118 class AArch64_relocate_functions
5119 {
5120  public:
5121   typedef enum
5122   {
5123     STATUS_OKAY,	// No error during relocation.
5124     STATUS_OVERFLOW,	// Relocation overflow.
5125     STATUS_BAD_RELOC,	// Relocation cannot be applied.
5126   } Status;
5127 
5128   typedef AArch64_relocate_functions<size, big_endian> This;
5129   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
5130   typedef Relocate_info<size, big_endian> The_relocate_info;
5131   typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
5132   typedef Reloc_stub<size, big_endian> The_reloc_stub;
5133   typedef Stub_table<size, big_endian> The_stub_table;
5134   typedef elfcpp::Rela<size, big_endian> The_rela;
5135   typedef typename elfcpp::Swap<size, big_endian>::Valtype AArch64_valtype;
5136 
5137   // Return the page address of the address.
5138   // Page(address) = address & ~0xFFF
5139 
5140   static inline AArch64_valtype
Page(Address address)5141   Page(Address address)
5142   {
5143     return (address & (~static_cast<Address>(0xFFF)));
5144   }
5145 
5146  private:
5147   // Update instruction (pointed by view) with selected bits (immed).
5148   // val = (val & ~dst_mask) | (immed << doffset)
5149 
5150   template<int valsize>
5151   static inline void
update_view(unsigned char * view,AArch64_valtype immed,elfcpp::Elf_Xword doffset,elfcpp::Elf_Xword dst_mask)5152   update_view(unsigned char* view,
5153 	      AArch64_valtype immed,
5154 	      elfcpp::Elf_Xword doffset,
5155 	      elfcpp::Elf_Xword dst_mask)
5156   {
5157     typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
5158     Valtype* wv = reinterpret_cast<Valtype*>(view);
5159     Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
5160 
5161     // Clear immediate fields.
5162     val &= ~dst_mask;
5163     elfcpp::Swap<valsize, big_endian>::writeval(wv,
5164       static_cast<Valtype>(val | (immed << doffset)));
5165   }
5166 
5167   // Update two parts of an instruction (pointed by view) with selected
5168   // bits (immed1 and immed2).
5169   // val = (val & ~dst_mask) | (immed1 << doffset1) | (immed2 << doffset2)
5170 
5171   template<int valsize>
5172   static inline void
update_view_two_parts(unsigned char * view,AArch64_valtype immed1,AArch64_valtype immed2,elfcpp::Elf_Xword doffset1,elfcpp::Elf_Xword doffset2,elfcpp::Elf_Xword dst_mask)5173   update_view_two_parts(
5174     unsigned char* view,
5175     AArch64_valtype immed1,
5176     AArch64_valtype immed2,
5177     elfcpp::Elf_Xword doffset1,
5178     elfcpp::Elf_Xword doffset2,
5179     elfcpp::Elf_Xword dst_mask)
5180   {
5181     typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
5182     Valtype* wv = reinterpret_cast<Valtype*>(view);
5183     Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
5184     val &= ~dst_mask;
5185     elfcpp::Swap<valsize, big_endian>::writeval(wv,
5186       static_cast<Valtype>(val | (immed1 << doffset1) |
5187 			   (immed2 << doffset2)));
5188   }
5189 
5190   // Update adr or adrp instruction with immed.
5191   // In adr and adrp: [30:29] immlo   [23:5] immhi
5192 
5193   static inline void
update_adr(unsigned char * view,AArch64_valtype immed)5194   update_adr(unsigned char* view, AArch64_valtype immed)
5195   {
5196     elfcpp::Elf_Xword dst_mask = (0x3 << 29) | (0x7ffff << 5);
5197     This::template update_view_two_parts<32>(
5198       view,
5199       immed & 0x3,
5200       (immed & 0x1ffffc) >> 2,
5201       29,
5202       5,
5203       dst_mask);
5204   }
5205 
5206   // Update movz/movn instruction with bits immed.
5207   // Set instruction to movz if is_movz is true, otherwise set instruction
5208   // to movn.
5209 
5210   static inline void
update_movnz(unsigned char * view,AArch64_valtype immed,bool is_movz)5211   update_movnz(unsigned char* view,
5212 	       AArch64_valtype immed,
5213 	       bool is_movz)
5214   {
5215     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5216     Valtype* wv = reinterpret_cast<Valtype*>(view);
5217     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
5218 
5219     const elfcpp::Elf_Xword doffset =
5220 	aarch64_howto[AArch64_reloc_property::INST_MOVW].doffset;
5221     const elfcpp::Elf_Xword dst_mask =
5222 	aarch64_howto[AArch64_reloc_property::INST_MOVW].dst_mask;
5223 
5224     // Clear immediate fields and opc code.
5225     val &= ~(dst_mask | (0x3 << 29));
5226 
5227     // Set instruction to movz or movn.
5228     // movz: [30:29] is 10   movn: [30:29] is 00
5229     if (is_movz)
5230       val |= (0x2 << 29);
5231 
5232     elfcpp::Swap<32, big_endian>::writeval(wv,
5233       static_cast<Valtype>(val | (immed << doffset)));
5234   }
5235 
5236  public:
5237 
5238   // Update selected bits in text.
5239 
5240   template<int valsize>
5241   static inline typename This::Status
reloc_common(unsigned char * view,Address x,const AArch64_reloc_property * reloc_property)5242   reloc_common(unsigned char* view, Address x,
5243 		const AArch64_reloc_property* reloc_property)
5244   {
5245     // Select bits from X.
5246     Address immed = reloc_property->select_x_value(x);
5247 
5248     // Update view.
5249     const AArch64_reloc_property::Reloc_inst inst =
5250       reloc_property->reloc_inst();
5251     // If it is a data relocation or instruction has 2 parts of immediate
5252     // fields, you should not call pcrela_general.
5253     gold_assert(aarch64_howto[inst].doffset2 == -1 &&
5254 		aarch64_howto[inst].doffset != -1);
5255     This::template update_view<valsize>(view, immed,
5256 					aarch64_howto[inst].doffset,
5257 					aarch64_howto[inst].dst_mask);
5258 
5259     // Do check overflow or alignment if needed.
5260     return (reloc_property->checkup_x_value(x)
5261 	    ? This::STATUS_OKAY
5262 	    : This::STATUS_OVERFLOW);
5263   }
5264 
5265   // Construct a B insn. Note, although we group it here with other relocation
5266   // operation, there is actually no 'relocation' involved here.
5267   static inline void
construct_b(unsigned char * view,unsigned int branch_offset)5268   construct_b(unsigned char* view, unsigned int branch_offset)
5269   {
5270     update_view_two_parts<32>(view, 0x05, (branch_offset >> 2),
5271 			      26, 0, 0xffffffff);
5272   }
5273 
5274   // Do a simple rela relocation at unaligned addresses.
5275 
5276   template<int valsize>
5277   static inline typename This::Status
rela_ua(unsigned char * view,const Sized_relobj_file<size,big_endian> * object,const Symbol_value<size> * psymval,AArch64_valtype addend,const AArch64_reloc_property * reloc_property)5278   rela_ua(unsigned char* view,
5279 	  const Sized_relobj_file<size, big_endian>* object,
5280 	  const Symbol_value<size>* psymval,
5281 	  AArch64_valtype addend,
5282 	  const AArch64_reloc_property* reloc_property)
5283   {
5284     typedef typename elfcpp::Swap_unaligned<valsize, big_endian>::Valtype
5285       Valtype;
5286     typename elfcpp::Elf_types<size>::Elf_Addr x =
5287 	psymval->value(object, addend);
5288     elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view,
5289       static_cast<Valtype>(x));
5290     return (reloc_property->checkup_x_value(x)
5291 	    ? This::STATUS_OKAY
5292 	    : This::STATUS_OVERFLOW);
5293   }
5294 
5295   // Do a simple pc-relative relocation at unaligned addresses.
5296 
5297   template<int valsize>
5298   static inline typename This::Status
pcrela_ua(unsigned char * view,const Sized_relobj_file<size,big_endian> * object,const Symbol_value<size> * psymval,AArch64_valtype addend,Address address,const AArch64_reloc_property * reloc_property)5299   pcrela_ua(unsigned char* view,
5300 	    const Sized_relobj_file<size, big_endian>* object,
5301 	    const Symbol_value<size>* psymval,
5302 	    AArch64_valtype addend,
5303 	    Address address,
5304 	    const AArch64_reloc_property* reloc_property)
5305   {
5306     typedef typename elfcpp::Swap_unaligned<valsize, big_endian>::Valtype
5307       Valtype;
5308     Address x = psymval->value(object, addend) - address;
5309     elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view,
5310       static_cast<Valtype>(x));
5311     return (reloc_property->checkup_x_value(x)
5312 	    ? This::STATUS_OKAY
5313 	    : This::STATUS_OVERFLOW);
5314   }
5315 
5316   // Do a simple rela relocation at aligned addresses.
5317 
5318   template<int valsize>
5319   static inline typename This::Status
rela(unsigned char * view,const Sized_relobj_file<size,big_endian> * object,const Symbol_value<size> * psymval,AArch64_valtype addend,const AArch64_reloc_property * reloc_property)5320   rela(
5321     unsigned char* view,
5322     const Sized_relobj_file<size, big_endian>* object,
5323     const Symbol_value<size>* psymval,
5324     AArch64_valtype addend,
5325     const AArch64_reloc_property* reloc_property)
5326   {
5327     typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
5328     Valtype* wv = reinterpret_cast<Valtype*>(view);
5329     Address x = psymval->value(object, addend);
5330     elfcpp::Swap<valsize, big_endian>::writeval(wv,static_cast<Valtype>(x));
5331     return (reloc_property->checkup_x_value(x)
5332 	    ? This::STATUS_OKAY
5333 	    : This::STATUS_OVERFLOW);
5334   }
5335 
5336   // Do relocate. Update selected bits in text.
5337   // new_val = (val & ~dst_mask) | (immed << doffset)
5338 
5339   template<int valsize>
5340   static inline typename This::Status
rela_general(unsigned char * view,const Sized_relobj_file<size,big_endian> * object,const Symbol_value<size> * psymval,AArch64_valtype addend,const AArch64_reloc_property * reloc_property)5341   rela_general(unsigned char* view,
5342 	       const Sized_relobj_file<size, big_endian>* object,
5343 	       const Symbol_value<size>* psymval,
5344 	       AArch64_valtype addend,
5345 	       const AArch64_reloc_property* reloc_property)
5346   {
5347     // Calculate relocation.
5348     Address x = psymval->value(object, addend);
5349     return This::template reloc_common<valsize>(view, x, reloc_property);
5350   }
5351 
5352   // Do relocate. Update selected bits in text.
5353   // new val = (val & ~dst_mask) | (immed << doffset)
5354 
5355   template<int valsize>
5356   static inline typename This::Status
rela_general(unsigned char * view,AArch64_valtype s,AArch64_valtype addend,const AArch64_reloc_property * reloc_property)5357   rela_general(
5358     unsigned char* view,
5359     AArch64_valtype s,
5360     AArch64_valtype addend,
5361     const AArch64_reloc_property* reloc_property)
5362   {
5363     // Calculate relocation.
5364     Address x = s + addend;
5365     return This::template reloc_common<valsize>(view, x, reloc_property);
5366   }
5367 
5368   // Do address relative relocate. Update selected bits in text.
5369   // new val = (val & ~dst_mask) | (immed << doffset)
5370 
5371   template<int valsize>
5372   static inline typename This::Status
pcrela_general(unsigned char * view,const Sized_relobj_file<size,big_endian> * object,const Symbol_value<size> * psymval,AArch64_valtype addend,Address address,const AArch64_reloc_property * reloc_property)5373   pcrela_general(
5374     unsigned char* view,
5375     const Sized_relobj_file<size, big_endian>* object,
5376     const Symbol_value<size>* psymval,
5377     AArch64_valtype addend,
5378     Address address,
5379     const AArch64_reloc_property* reloc_property)
5380   {
5381     // Calculate relocation.
5382     Address x = psymval->value(object, addend) - address;
5383     return This::template reloc_common<valsize>(view, x, reloc_property);
5384   }
5385 
5386 
5387   // Calculate (S + A) - address, update adr instruction.
5388 
5389   static inline typename This::Status
adr(unsigned char * view,const Sized_relobj_file<size,big_endian> * object,const Symbol_value<size> * psymval,Address addend,Address address,const AArch64_reloc_property *)5390   adr(unsigned char* view,
5391       const Sized_relobj_file<size, big_endian>* object,
5392       const Symbol_value<size>* psymval,
5393       Address addend,
5394       Address address,
5395       const AArch64_reloc_property* /* reloc_property */)
5396   {
5397     AArch64_valtype x = psymval->value(object, addend) - address;
5398     // Pick bits [20:0] of X.
5399     AArch64_valtype immed = x & 0x1fffff;
5400     update_adr(view, immed);
5401     // Check -2^20 <= X < 2^20
5402     return (size == 64 && Bits<21>::has_overflow((x))
5403 	    ? This::STATUS_OVERFLOW
5404 	    : This::STATUS_OKAY);
5405   }
5406 
5407   // Calculate PG(S+A) - PG(address), update adrp instruction.
5408   // R_AARCH64_ADR_PREL_PG_HI21
5409 
5410   static inline typename This::Status
adrp(unsigned char * view,Address sa,Address address)5411   adrp(
5412     unsigned char* view,
5413     Address sa,
5414     Address address)
5415   {
5416     AArch64_valtype x = This::Page(sa) - This::Page(address);
5417     // Pick [32:12] of X.
5418     AArch64_valtype immed = (x >> 12) & 0x1fffff;
5419     update_adr(view, immed);
5420     // Check -2^32 <= X < 2^32
5421     return (size == 64 && Bits<33>::has_overflow((x))
5422 	    ? This::STATUS_OVERFLOW
5423 	    : This::STATUS_OKAY);
5424   }
5425 
5426   // Calculate PG(S+A) - PG(address), update adrp instruction.
5427   // R_AARCH64_ADR_PREL_PG_HI21
5428 
5429   static inline typename This::Status
adrp(unsigned char * view,const Sized_relobj_file<size,big_endian> * object,const Symbol_value<size> * psymval,Address addend,Address address,const AArch64_reloc_property * reloc_property)5430   adrp(unsigned char* view,
5431        const Sized_relobj_file<size, big_endian>* object,
5432        const Symbol_value<size>* psymval,
5433        Address addend,
5434        Address address,
5435        const AArch64_reloc_property* reloc_property)
5436   {
5437     Address sa = psymval->value(object, addend);
5438     AArch64_valtype x = This::Page(sa) - This::Page(address);
5439     // Pick [32:12] of X.
5440     AArch64_valtype immed = (x >> 12) & 0x1fffff;
5441     update_adr(view, immed);
5442     return (reloc_property->checkup_x_value(x)
5443 	    ? This::STATUS_OKAY
5444 	    : This::STATUS_OVERFLOW);
5445   }
5446 
5447   // Update mov[n/z] instruction. Check overflow if needed.
5448   // If X >=0, set the instruction to movz and its immediate value to the
5449   // selected bits S.
5450   // If X < 0, set the instruction to movn and its immediate value to
5451   // NOT (selected bits of).
5452 
5453   static inline typename This::Status
movnz(unsigned char * view,AArch64_valtype x,const AArch64_reloc_property * reloc_property)5454   movnz(unsigned char* view,
5455 	AArch64_valtype x,
5456 	const AArch64_reloc_property* reloc_property)
5457   {
5458     // Select bits from X.
5459     Address immed;
5460     bool is_movz;
5461     typedef typename elfcpp::Elf_types<size>::Elf_Swxword SignedW;
5462     if (static_cast<SignedW>(x) >= 0)
5463       {
5464 	immed = reloc_property->select_x_value(x);
5465         is_movz = true;
5466       }
5467     else
5468       {
5469 	immed = reloc_property->select_x_value(~x);;
5470 	is_movz = false;
5471       }
5472 
5473     // Update movnz instruction.
5474     update_movnz(view, immed, is_movz);
5475 
5476     // Do check overflow or alignment if needed.
5477     return (reloc_property->checkup_x_value(x)
5478 	    ? This::STATUS_OKAY
5479 	    : This::STATUS_OVERFLOW);
5480   }
5481 
5482   static inline bool
5483   maybe_apply_stub(unsigned int,
5484 		   const The_relocate_info*,
5485 		   const The_rela&,
5486 		   unsigned char*,
5487 		   Address,
5488 		   const Sized_symbol<size>*,
5489 		   const Symbol_value<size>*,
5490 		   const Sized_relobj_file<size, big_endian>*,
5491 		   section_size_type);
5492 
5493 };  // End of AArch64_relocate_functions
5494 
5495 
5496 // For a certain relocation type (usually jump/branch), test to see if the
5497 // destination needs a stub to fulfil. If so, re-route the destination of the
5498 // original instruction to the stub, note, at this time, the stub has already
5499 // been generated.
5500 
5501 template<int size, bool big_endian>
5502 bool
5503 AArch64_relocate_functions<size, big_endian>::
maybe_apply_stub(unsigned int r_type,const The_relocate_info * relinfo,const The_rela & rela,unsigned char * view,Address address,const Sized_symbol<size> * gsym,const Symbol_value<size> * psymval,const Sized_relobj_file<size,big_endian> * object,section_size_type current_group_size)5504 maybe_apply_stub(unsigned int r_type,
5505 		 const The_relocate_info* relinfo,
5506 		 const The_rela& rela,
5507 		 unsigned char* view,
5508 		 Address address,
5509 		 const Sized_symbol<size>* gsym,
5510 		 const Symbol_value<size>* psymval,
5511 		 const Sized_relobj_file<size, big_endian>* object,
5512 		 section_size_type current_group_size)
5513 {
5514   if (parameters->options().relocatable())
5515     return false;
5516 
5517   typename elfcpp::Elf_types<size>::Elf_Swxword addend = rela.get_r_addend();
5518   Address branch_target = psymval->value(object, 0) + addend;
5519   int stub_type =
5520     The_reloc_stub::stub_type_for_reloc(r_type, address, branch_target);
5521   if (stub_type == ST_NONE)
5522     return false;
5523 
5524   const The_aarch64_relobj* aarch64_relobj =
5525       static_cast<const The_aarch64_relobj*>(object);
5526   const AArch64_reloc_property* arp =
5527     aarch64_reloc_property_table->get_reloc_property(r_type);
5528   gold_assert(arp != NULL);
5529 
5530   // We don't create stubs for undefined symbols, but do for weak.
5531   if (gsym
5532       && !gsym->use_plt_offset(arp->reference_flags())
5533       && gsym->is_undefined())
5534     {
5535       gold_debug(DEBUG_TARGET,
5536 		 "stub: looking for a stub for undefined symbol %s in file %s",
5537 		 gsym->name(), aarch64_relobj->name().c_str());
5538       return false;
5539     }
5540 
5541   The_stub_table* stub_table = aarch64_relobj->stub_table(relinfo->data_shndx);
5542   gold_assert(stub_table != NULL);
5543 
5544   unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
5545   typename The_reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
5546   The_reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
5547   gold_assert(stub != NULL);
5548 
5549   Address new_branch_target = stub_table->address() + stub->offset();
5550   typename elfcpp::Swap<size, big_endian>::Valtype branch_offset =
5551       new_branch_target - address;
5552   typename This::Status status = This::template
5553       rela_general<32>(view, branch_offset, 0, arp);
5554   if (status != This::STATUS_OKAY)
5555     gold_error(_("Stub is too far away, try a smaller value "
5556 		 "for '--stub-group-size'. The current value is 0x%lx."),
5557 	       static_cast<unsigned long>(current_group_size));
5558   return true;
5559 }
5560 
5561 
5562 // Group input sections for stub generation.
5563 //
5564 // We group input sections in an output section so that the total size,
5565 // including any padding space due to alignment is smaller than GROUP_SIZE
5566 // unless the only input section in group is bigger than GROUP_SIZE already.
5567 // Then an ARM stub table is created to follow the last input section
5568 // in group.  For each group an ARM stub table is created an is placed
5569 // after the last group.  If STUB_ALWAYS_AFTER_BRANCH is false, we further
5570 // extend the group after the stub table.
5571 
5572 template<int size, bool big_endian>
5573 void
group_sections(Layout * layout,section_size_type group_size,bool stubs_always_after_branch,const Task * task)5574 Target_aarch64<size, big_endian>::group_sections(
5575     Layout* layout,
5576     section_size_type group_size,
5577     bool stubs_always_after_branch,
5578     const Task* task)
5579 {
5580   // Group input sections and insert stub table
5581   Layout::Section_list section_list;
5582   layout->get_executable_sections(&section_list);
5583   for (Layout::Section_list::const_iterator p = section_list.begin();
5584        p != section_list.end();
5585        ++p)
5586     {
5587       AArch64_output_section<size, big_endian>* output_section =
5588 	  static_cast<AArch64_output_section<size, big_endian>*>(*p);
5589       output_section->group_sections(group_size, stubs_always_after_branch,
5590 				     this, task);
5591     }
5592 }
5593 
5594 
5595 // Find the AArch64_input_section object corresponding to the SHNDX-th input
5596 // section of RELOBJ.
5597 
5598 template<int size, bool big_endian>
5599 AArch64_input_section<size, big_endian>*
find_aarch64_input_section(Relobj * relobj,unsigned int shndx) const5600 Target_aarch64<size, big_endian>::find_aarch64_input_section(
5601     Relobj* relobj, unsigned int shndx) const
5602 {
5603   Section_id sid(relobj, shndx);
5604   typename AArch64_input_section_map::const_iterator p =
5605     this->aarch64_input_section_map_.find(sid);
5606   return (p != this->aarch64_input_section_map_.end()) ? p->second : NULL;
5607 }
5608 
5609 
5610 // Make a new AArch64_input_section object.
5611 
5612 template<int size, bool big_endian>
5613 AArch64_input_section<size, big_endian>*
new_aarch64_input_section(Relobj * relobj,unsigned int shndx)5614 Target_aarch64<size, big_endian>::new_aarch64_input_section(
5615     Relobj* relobj, unsigned int shndx)
5616 {
5617   Section_id sid(relobj, shndx);
5618 
5619   AArch64_input_section<size, big_endian>* input_section =
5620       new AArch64_input_section<size, big_endian>(relobj, shndx);
5621   input_section->init();
5622 
5623   // Register new AArch64_input_section in map for look-up.
5624   std::pair<typename AArch64_input_section_map::iterator,bool> ins =
5625       this->aarch64_input_section_map_.insert(
5626 	  std::make_pair(sid, input_section));
5627 
5628   // Make sure that it we have not created another AArch64_input_section
5629   // for this input section already.
5630   gold_assert(ins.second);
5631 
5632   return input_section;
5633 }
5634 
5635 
5636 // Relaxation hook.  This is where we do stub generation.
5637 
5638 template<int size, bool big_endian>
5639 bool
do_relax(int pass,const Input_objects * input_objects,Symbol_table * symtab,Layout * layout,const Task * task)5640 Target_aarch64<size, big_endian>::do_relax(
5641     int pass,
5642     const Input_objects* input_objects,
5643     Symbol_table* symtab,
5644     Layout* layout ,
5645     const Task* task)
5646 {
5647   gold_assert(!parameters->options().relocatable());
5648   if (pass == 1)
5649     {
5650       // We don't handle negative stub_group_size right now.
5651       this->stub_group_size_ = abs(parameters->options().stub_group_size());
5652       if (this->stub_group_size_ == 1)
5653 	{
5654 	  // Leave room for 4096 4-byte stub entries. If we exceed that, then we
5655 	  // will fail to link.  The user will have to relink with an explicit
5656 	  // group size option.
5657 	  this->stub_group_size_ = The_reloc_stub::MAX_BRANCH_OFFSET -
5658 				   4096 * 4;
5659 	}
5660       group_sections(layout, this->stub_group_size_, true, task);
5661     }
5662   else
5663     {
5664       // If this is not the first pass, addresses and file offsets have
5665       // been reset at this point, set them here.
5666       for (Stub_table_iterator sp = this->stub_tables_.begin();
5667 	   sp != this->stub_tables_.end(); ++sp)
5668 	{
5669 	  The_stub_table* stt = *sp;
5670 	  The_aarch64_input_section* owner = stt->owner();
5671 	  off_t off = align_address(owner->original_size(),
5672 				    stt->addralign());
5673 	  stt->set_address_and_file_offset(owner->address() + off,
5674 					   owner->offset() + off);
5675 	}
5676     }
5677 
5678   // Scan relocs for relocation stubs
5679   for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
5680        op != input_objects->relobj_end();
5681        ++op)
5682     {
5683       The_aarch64_relobj* aarch64_relobj =
5684 	  static_cast<The_aarch64_relobj*>(*op);
5685       // Lock the object so we can read from it.  This is only called
5686       // single-threaded from Layout::finalize, so it is OK to lock.
5687       Task_lock_obj<Object> tl(task, aarch64_relobj);
5688       aarch64_relobj->scan_sections_for_stubs(this, symtab, layout);
5689     }
5690 
5691   bool any_stub_table_changed = false;
5692   for (Stub_table_iterator siter = this->stub_tables_.begin();
5693        siter != this->stub_tables_.end() && !any_stub_table_changed; ++siter)
5694     {
5695       The_stub_table* stub_table = *siter;
5696       if (stub_table->update_data_size_changed_p())
5697 	{
5698 	  The_aarch64_input_section* owner = stub_table->owner();
5699 	  uint64_t address = owner->address();
5700 	  off_t offset = owner->offset();
5701 	  owner->reset_address_and_file_offset();
5702 	  owner->set_address_and_file_offset(address, offset);
5703 
5704 	  any_stub_table_changed = true;
5705 	}
5706     }
5707 
5708   // Do not continue relaxation.
5709   bool continue_relaxation = any_stub_table_changed;
5710   if (!continue_relaxation)
5711     for (Stub_table_iterator sp = this->stub_tables_.begin();
5712 	 (sp != this->stub_tables_.end());
5713 	 ++sp)
5714       (*sp)->finalize_stubs();
5715 
5716   return continue_relaxation;
5717 }
5718 
5719 
5720 // Make a new Stub_table.
5721 
5722 template<int size, bool big_endian>
5723 Stub_table<size, big_endian>*
new_stub_table(AArch64_input_section<size,big_endian> * owner)5724 Target_aarch64<size, big_endian>::new_stub_table(
5725     AArch64_input_section<size, big_endian>* owner)
5726 {
5727   Stub_table<size, big_endian>* stub_table =
5728       new Stub_table<size, big_endian>(owner);
5729   stub_table->set_address(align_address(
5730       owner->address() + owner->data_size(), 8));
5731   stub_table->set_file_offset(owner->offset() + owner->data_size());
5732   stub_table->finalize_data_size();
5733 
5734   this->stub_tables_.push_back(stub_table);
5735 
5736   return stub_table;
5737 }
5738 
5739 
5740 template<int size, bool big_endian>
5741 uint64_t
do_reloc_addend(void * arg,unsigned int r_type,uint64_t) const5742 Target_aarch64<size, big_endian>::do_reloc_addend(
5743     void* arg, unsigned int r_type, uint64_t) const
5744 {
5745   gold_assert(r_type == elfcpp::R_AARCH64_TLSDESC);
5746   uintptr_t intarg = reinterpret_cast<uintptr_t>(arg);
5747   gold_assert(intarg < this->tlsdesc_reloc_info_.size());
5748   const Tlsdesc_info& ti(this->tlsdesc_reloc_info_[intarg]);
5749   const Symbol_value<size>* psymval = ti.object->local_symbol(ti.r_sym);
5750   gold_assert(psymval->is_tls_symbol());
5751   // The value of a TLS symbol is the offset in the TLS segment.
5752   return psymval->value(ti.object, 0);
5753 }
5754 
5755 // Return the number of entries in the PLT.
5756 
5757 template<int size, bool big_endian>
5758 unsigned int
plt_entry_count() const5759 Target_aarch64<size, big_endian>::plt_entry_count() const
5760 {
5761   if (this->plt_ == NULL)
5762     return 0;
5763   return this->plt_->entry_count();
5764 }
5765 
5766 // Return the offset of the first non-reserved PLT entry.
5767 
5768 template<int size, bool big_endian>
5769 unsigned int
first_plt_entry_offset() const5770 Target_aarch64<size, big_endian>::first_plt_entry_offset() const
5771 {
5772   return this->plt_->first_plt_entry_offset();
5773 }
5774 
5775 // Return the size of each PLT entry.
5776 
5777 template<int size, bool big_endian>
5778 unsigned int
plt_entry_size() const5779 Target_aarch64<size, big_endian>::plt_entry_size() const
5780 {
5781   return this->plt_->get_plt_entry_size();
5782 }
5783 
5784 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
5785 
5786 template<int size, bool big_endian>
5787 void
define_tls_base_symbol(Symbol_table * symtab,Layout * layout)5788 Target_aarch64<size, big_endian>::define_tls_base_symbol(
5789     Symbol_table* symtab, Layout* layout)
5790 {
5791   if (this->tls_base_symbol_defined_)
5792     return;
5793 
5794   Output_segment* tls_segment = layout->tls_segment();
5795   if (tls_segment != NULL)
5796     {
5797       // _TLS_MODULE_BASE_ always points to the beginning of tls segment.
5798       symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
5799 				       Symbol_table::PREDEFINED,
5800 				       tls_segment, 0, 0,
5801 				       elfcpp::STT_TLS,
5802 				       elfcpp::STB_LOCAL,
5803 				       elfcpp::STV_HIDDEN, 0,
5804 				       Symbol::SEGMENT_START,
5805 				       true);
5806     }
5807   this->tls_base_symbol_defined_ = true;
5808 }
5809 
5810 // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
5811 
5812 template<int size, bool big_endian>
5813 void
reserve_tlsdesc_entries(Symbol_table * symtab,Layout * layout)5814 Target_aarch64<size, big_endian>::reserve_tlsdesc_entries(
5815     Symbol_table* symtab, Layout* layout)
5816 {
5817   if (this->plt_ == NULL)
5818     this->make_plt_section(symtab, layout);
5819 
5820   if (!this->plt_->has_tlsdesc_entry())
5821     {
5822       // Allocate the TLSDESC_GOT entry.
5823       Output_data_got_aarch64<size, big_endian>* got =
5824 	  this->got_section(symtab, layout);
5825       unsigned int got_offset = got->add_constant(0);
5826 
5827       // Allocate the TLSDESC_PLT entry.
5828       this->plt_->reserve_tlsdesc_entry(got_offset);
5829     }
5830 }
5831 
5832 // Create a GOT entry for the TLS module index.
5833 
5834 template<int size, bool big_endian>
5835 unsigned int
got_mod_index_entry(Symbol_table * symtab,Layout * layout,Sized_relobj_file<size,big_endian> * object)5836 Target_aarch64<size, big_endian>::got_mod_index_entry(
5837     Symbol_table* symtab, Layout* layout,
5838     Sized_relobj_file<size, big_endian>* object)
5839 {
5840   if (this->got_mod_index_offset_ == -1U)
5841     {
5842       gold_assert(symtab != NULL && layout != NULL && object != NULL);
5843       Reloc_section* rela_dyn = this->rela_dyn_section(layout);
5844       Output_data_got_aarch64<size, big_endian>* got =
5845 	  this->got_section(symtab, layout);
5846       unsigned int got_offset = got->add_constant(0);
5847       rela_dyn->add_local(object, 0, elfcpp::R_AARCH64_TLS_DTPMOD64, got,
5848 			  got_offset, 0);
5849       got->add_constant(0);
5850       this->got_mod_index_offset_ = got_offset;
5851     }
5852   return this->got_mod_index_offset_;
5853 }
5854 
5855 // Optimize the TLS relocation type based on what we know about the
5856 // symbol.  IS_FINAL is true if the final address of this symbol is
5857 // known at link time.
5858 
5859 template<int size, bool big_endian>
5860 tls::Tls_optimization
optimize_tls_reloc(bool is_final,int r_type)5861 Target_aarch64<size, big_endian>::optimize_tls_reloc(bool is_final,
5862 						     int r_type)
5863 {
5864   // If we are generating a shared library, then we can't do anything
5865   // in the linker
5866   if (parameters->options().shared())
5867     return tls::TLSOPT_NONE;
5868 
5869   switch (r_type)
5870     {
5871     case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
5872     case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
5873     case elfcpp::R_AARCH64_TLSDESC_LD_PREL19:
5874     case elfcpp::R_AARCH64_TLSDESC_ADR_PREL21:
5875     case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
5876     case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
5877     case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
5878     case elfcpp::R_AARCH64_TLSDESC_OFF_G1:
5879     case elfcpp::R_AARCH64_TLSDESC_OFF_G0_NC:
5880     case elfcpp::R_AARCH64_TLSDESC_LDR:
5881     case elfcpp::R_AARCH64_TLSDESC_ADD:
5882     case elfcpp::R_AARCH64_TLSDESC_CALL:
5883       // These are General-Dynamic which permits fully general TLS
5884       // access.  Since we know that we are generating an executable,
5885       // we can convert this to Initial-Exec.  If we also know that
5886       // this is a local symbol, we can further switch to Local-Exec.
5887       if (is_final)
5888 	return tls::TLSOPT_TO_LE;
5889       return tls::TLSOPT_TO_IE;
5890 
5891     case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
5892     case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
5893     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
5894     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
5895     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
5896     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
5897       // These are Local-Dynamic, which refer to local symbols in the
5898       // dynamic TLS block. Since we know that we generating an
5899       // executable, we can switch to Local-Exec.
5900       return tls::TLSOPT_TO_LE;
5901 
5902     case elfcpp::R_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
5903     case elfcpp::R_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
5904     case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
5905     case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
5906     case elfcpp::R_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
5907       // These are Initial-Exec relocs which get the thread offset
5908       // from the GOT. If we know that we are linking against the
5909       // local symbol, we can switch to Local-Exec, which links the
5910       // thread offset into the instruction.
5911       if (is_final)
5912 	return tls::TLSOPT_TO_LE;
5913       return tls::TLSOPT_NONE;
5914 
5915     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
5916     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
5917     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
5918     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
5919     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
5920     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
5921     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
5922     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
5923     case elfcpp::R_AARCH64_TLSLE_LDST8_TPREL_LO12:
5924     case elfcpp::R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
5925     case elfcpp::R_AARCH64_TLSLE_LDST16_TPREL_LO12:
5926     case elfcpp::R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
5927     case elfcpp::R_AARCH64_TLSLE_LDST32_TPREL_LO12:
5928     case elfcpp::R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
5929     case elfcpp::R_AARCH64_TLSLE_LDST64_TPREL_LO12:
5930     case elfcpp::R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
5931       // When we already have Local-Exec, there is nothing further we
5932       // can do.
5933       return tls::TLSOPT_NONE;
5934 
5935     default:
5936       gold_unreachable();
5937     }
5938 }
5939 
5940 // Returns true if this relocation type could be that of a function pointer.
5941 
5942 template<int size, bool big_endian>
5943 inline bool
possible_function_pointer_reloc(unsigned int r_type)5944 Target_aarch64<size, big_endian>::Scan::possible_function_pointer_reloc(
5945   unsigned int r_type)
5946 {
5947   switch (r_type)
5948     {
5949     case elfcpp::R_AARCH64_ADR_PREL_PG_HI21:
5950     case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC:
5951     case elfcpp::R_AARCH64_ADD_ABS_LO12_NC:
5952     case elfcpp::R_AARCH64_ADR_GOT_PAGE:
5953     case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
5954       {
5955 	return true;
5956       }
5957     }
5958   return false;
5959 }
5960 
5961 // For safe ICF, scan a relocation for a local symbol to check if it
5962 // corresponds to a function pointer being taken.  In that case mark
5963 // the function whose pointer was taken as not foldable.
5964 
5965 template<int size, bool big_endian>
5966 inline bool
local_reloc_may_be_function_pointer(Symbol_table *,Layout *,Target_aarch64<size,big_endian> *,Sized_relobj_file<size,big_endian> *,unsigned int,Output_section *,const elfcpp::Rela<size,big_endian> &,unsigned int r_type,const elfcpp::Sym<size,big_endian> &)5967 Target_aarch64<size, big_endian>::Scan::local_reloc_may_be_function_pointer(
5968   Symbol_table* ,
5969   Layout* ,
5970   Target_aarch64<size, big_endian>* ,
5971   Sized_relobj_file<size, big_endian>* ,
5972   unsigned int ,
5973   Output_section* ,
5974   const elfcpp::Rela<size, big_endian>& ,
5975   unsigned int r_type,
5976   const elfcpp::Sym<size, big_endian>&)
5977 {
5978   // When building a shared library, do not fold any local symbols.
5979   return (parameters->options().shared()
5980 	  || possible_function_pointer_reloc(r_type));
5981 }
5982 
5983 // For safe ICF, scan a relocation for a global symbol to check if it
5984 // corresponds to a function pointer being taken.  In that case mark
5985 // the function whose pointer was taken as not foldable.
5986 
5987 template<int size, bool big_endian>
5988 inline bool
global_reloc_may_be_function_pointer(Symbol_table *,Layout *,Target_aarch64<size,big_endian> *,Sized_relobj_file<size,big_endian> *,unsigned int,Output_section *,const elfcpp::Rela<size,big_endian> &,unsigned int r_type,Symbol * gsym)5989 Target_aarch64<size, big_endian>::Scan::global_reloc_may_be_function_pointer(
5990   Symbol_table* ,
5991   Layout* ,
5992   Target_aarch64<size, big_endian>* ,
5993   Sized_relobj_file<size, big_endian>* ,
5994   unsigned int ,
5995   Output_section* ,
5996   const elfcpp::Rela<size, big_endian>& ,
5997   unsigned int r_type,
5998   Symbol* gsym)
5999 {
6000   // When building a shared library, do not fold symbols whose visibility
6001   // is hidden, internal or protected.
6002   return ((parameters->options().shared()
6003 	   && (gsym->visibility() == elfcpp::STV_INTERNAL
6004 	       || gsym->visibility() == elfcpp::STV_PROTECTED
6005 	       || gsym->visibility() == elfcpp::STV_HIDDEN))
6006 	  || possible_function_pointer_reloc(r_type));
6007 }
6008 
6009 // Report an unsupported relocation against a local symbol.
6010 
6011 template<int size, bool big_endian>
6012 void
unsupported_reloc_local(Sized_relobj_file<size,big_endian> * object,unsigned int r_type)6013 Target_aarch64<size, big_endian>::Scan::unsupported_reloc_local(
6014      Sized_relobj_file<size, big_endian>* object,
6015      unsigned int r_type)
6016 {
6017   gold_error(_("%s: unsupported reloc %u against local symbol"),
6018 	     object->name().c_str(), r_type);
6019 }
6020 
6021 // We are about to emit a dynamic relocation of type R_TYPE.  If the
6022 // dynamic linker does not support it, issue an error.
6023 
6024 template<int size, bool big_endian>
6025 void
check_non_pic(Relobj * object,unsigned int r_type)6026 Target_aarch64<size, big_endian>::Scan::check_non_pic(Relobj* object,
6027 						      unsigned int r_type)
6028 {
6029   gold_assert(r_type != elfcpp::R_AARCH64_NONE);
6030 
6031   switch (r_type)
6032     {
6033     // These are the relocation types supported by glibc for AARCH64.
6034     case elfcpp::R_AARCH64_NONE:
6035     case elfcpp::R_AARCH64_COPY:
6036     case elfcpp::R_AARCH64_GLOB_DAT:
6037     case elfcpp::R_AARCH64_JUMP_SLOT:
6038     case elfcpp::R_AARCH64_RELATIVE:
6039     case elfcpp::R_AARCH64_TLS_DTPREL64:
6040     case elfcpp::R_AARCH64_TLS_DTPMOD64:
6041     case elfcpp::R_AARCH64_TLS_TPREL64:
6042     case elfcpp::R_AARCH64_TLSDESC:
6043     case elfcpp::R_AARCH64_IRELATIVE:
6044     case elfcpp::R_AARCH64_ABS32:
6045     case elfcpp::R_AARCH64_ABS64:
6046       return;
6047 
6048     default:
6049       break;
6050     }
6051 
6052   // This prevents us from issuing more than one error per reloc
6053   // section. But we can still wind up issuing more than one
6054   // error per object file.
6055   if (this->issued_non_pic_error_)
6056     return;
6057   gold_assert(parameters->options().output_is_position_independent());
6058   object->error(_("requires unsupported dynamic reloc; "
6059 		  "recompile with -fPIC"));
6060   this->issued_non_pic_error_ = true;
6061   return;
6062 }
6063 
6064 // Return whether we need to make a PLT entry for a relocation of the
6065 // given type against a STT_GNU_IFUNC symbol.
6066 
6067 template<int size, bool big_endian>
6068 bool
reloc_needs_plt_for_ifunc(Sized_relobj_file<size,big_endian> * object,unsigned int r_type)6069 Target_aarch64<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
6070     Sized_relobj_file<size, big_endian>* object,
6071     unsigned int r_type)
6072 {
6073   const AArch64_reloc_property* arp =
6074       aarch64_reloc_property_table->get_reloc_property(r_type);
6075   gold_assert(arp != NULL);
6076 
6077   int flags = arp->reference_flags();
6078   if (flags & Symbol::TLS_REF)
6079     {
6080       gold_error(_("%s: unsupported TLS reloc %s for IFUNC symbol"),
6081 		 object->name().c_str(), arp->name().c_str());
6082       return false;
6083     }
6084   return flags != 0;
6085 }
6086 
6087 // Scan a relocation for a local symbol.
6088 
6089 template<int size, bool big_endian>
6090 inline void
local(Symbol_table * symtab,Layout * layout,Target_aarch64<size,big_endian> * target,Sized_relobj_file<size,big_endian> * object,unsigned int data_shndx,Output_section * output_section,const elfcpp::Rela<size,big_endian> & rela,unsigned int r_type,const elfcpp::Sym<size,big_endian> & lsym,bool is_discarded)6091 Target_aarch64<size, big_endian>::Scan::local(
6092     Symbol_table* symtab,
6093     Layout* layout,
6094     Target_aarch64<size, big_endian>* target,
6095     Sized_relobj_file<size, big_endian>* object,
6096     unsigned int data_shndx,
6097     Output_section* output_section,
6098     const elfcpp::Rela<size, big_endian>& rela,
6099     unsigned int r_type,
6100     const elfcpp::Sym<size, big_endian>& lsym,
6101     bool is_discarded)
6102 {
6103   if (is_discarded)
6104     return;
6105 
6106   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
6107       Reloc_section;
6108   unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6109 
6110   // A local STT_GNU_IFUNC symbol may require a PLT entry.
6111   bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
6112   if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type))
6113     target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
6114 
6115   switch (r_type)
6116     {
6117     case elfcpp::R_AARCH64_NONE:
6118       break;
6119 
6120     case elfcpp::R_AARCH64_ABS32:
6121     case elfcpp::R_AARCH64_ABS16:
6122       if (parameters->options().output_is_position_independent())
6123 	{
6124 	  gold_error(_("%s: unsupported reloc %u in pos independent link."),
6125 		     object->name().c_str(), r_type);
6126 	}
6127       break;
6128 
6129     case elfcpp::R_AARCH64_ABS64:
6130       // If building a shared library or pie, we need to mark this as a dynmic
6131       // reloction, so that the dynamic loader can relocate it.
6132       if (parameters->options().output_is_position_independent())
6133 	{
6134 	  Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6135 	  rela_dyn->add_local_relative(object, r_sym,
6136 				       elfcpp::R_AARCH64_RELATIVE,
6137 				       output_section,
6138 				       data_shndx,
6139 				       rela.get_r_offset(),
6140 				       rela.get_r_addend(),
6141 				       is_ifunc);
6142 	}
6143       break;
6144 
6145     case elfcpp::R_AARCH64_PREL64:
6146     case elfcpp::R_AARCH64_PREL32:
6147     case elfcpp::R_AARCH64_PREL16:
6148       break;
6149 
6150     case elfcpp::R_AARCH64_ADR_GOT_PAGE:
6151     case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
6152     case elfcpp::R_AARCH64_LD64_GOTPAGE_LO15:
6153       // The above relocations are used to access GOT entries.
6154       {
6155 	Output_data_got_aarch64<size, big_endian>* got =
6156 	    target->got_section(symtab, layout);
6157 	bool is_new = false;
6158 	// This symbol requires a GOT entry.
6159 	if (is_ifunc)
6160 	  is_new = got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
6161 	else
6162 	  is_new = got->add_local(object, r_sym, GOT_TYPE_STANDARD);
6163 	if (is_new && parameters->options().output_is_position_independent())
6164 	  target->rela_dyn_section(layout)->
6165 	    add_local_relative(object,
6166 			       r_sym,
6167 			       elfcpp::R_AARCH64_RELATIVE,
6168 			       got,
6169 			       object->local_got_offset(r_sym,
6170 							GOT_TYPE_STANDARD),
6171 			       0,
6172 			       false);
6173       }
6174       break;
6175 
6176     case elfcpp::R_AARCH64_MOVW_UABS_G0:        // 263
6177     case elfcpp::R_AARCH64_MOVW_UABS_G0_NC:     // 264
6178     case elfcpp::R_AARCH64_MOVW_UABS_G1:        // 265
6179     case elfcpp::R_AARCH64_MOVW_UABS_G1_NC:     // 266
6180     case elfcpp::R_AARCH64_MOVW_UABS_G2:        // 267
6181     case elfcpp::R_AARCH64_MOVW_UABS_G2_NC:     // 268
6182     case elfcpp::R_AARCH64_MOVW_UABS_G3:        // 269
6183     case elfcpp::R_AARCH64_MOVW_SABS_G0:        // 270
6184     case elfcpp::R_AARCH64_MOVW_SABS_G1:        // 271
6185     case elfcpp::R_AARCH64_MOVW_SABS_G2:        // 272
6186       if (parameters->options().output_is_position_independent())
6187 	{
6188 	  gold_error(_("%s: unsupported reloc %u in pos independent link."),
6189 		     object->name().c_str(), r_type);
6190 	}
6191       break;
6192 
6193     case elfcpp::R_AARCH64_LD_PREL_LO19:        // 273
6194     case elfcpp::R_AARCH64_ADR_PREL_LO21:       // 274
6195     case elfcpp::R_AARCH64_ADR_PREL_PG_HI21:    // 275
6196     case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC: // 276
6197     case elfcpp::R_AARCH64_ADD_ABS_LO12_NC:     // 277
6198     case elfcpp::R_AARCH64_LDST8_ABS_LO12_NC:   // 278
6199     case elfcpp::R_AARCH64_LDST16_ABS_LO12_NC:  // 284
6200     case elfcpp::R_AARCH64_LDST32_ABS_LO12_NC:  // 285
6201     case elfcpp::R_AARCH64_LDST64_ABS_LO12_NC:  // 286
6202     case elfcpp::R_AARCH64_LDST128_ABS_LO12_NC: // 299
6203        break;
6204 
6205     // Control flow, pc-relative. We don't need to do anything for a relative
6206     // addressing relocation against a local symbol if it does not reference
6207     // the GOT.
6208     case elfcpp::R_AARCH64_TSTBR14:
6209     case elfcpp::R_AARCH64_CONDBR19:
6210     case elfcpp::R_AARCH64_JUMP26:
6211     case elfcpp::R_AARCH64_CALL26:
6212       break;
6213 
6214     case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6215     case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
6216       {
6217 	tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6218 	  optimize_tls_reloc(!parameters->options().shared(), r_type);
6219 	if (tlsopt == tls::TLSOPT_TO_LE)
6220 	  break;
6221 
6222 	layout->set_has_static_tls();
6223 	// Create a GOT entry for the tp-relative offset.
6224 	if (!parameters->doing_static_link())
6225 	  {
6226 	    Output_data_got_aarch64<size, big_endian>* got =
6227 		target->got_section(symtab, layout);
6228 	    got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
6229 				    target->rela_dyn_section(layout),
6230 				    elfcpp::R_AARCH64_TLS_TPREL64);
6231 	  }
6232 	else if (!object->local_has_got_offset(r_sym,
6233 					       GOT_TYPE_TLS_OFFSET))
6234 	  {
6235 	    Output_data_got_aarch64<size, big_endian>* got =
6236 		target->got_section(symtab, layout);
6237 	    got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
6238 	    unsigned int got_offset =
6239 		object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
6240 	    const elfcpp::Elf_Xword addend = rela.get_r_addend();
6241 	    gold_assert(addend == 0);
6242 	    got->add_static_reloc(got_offset, elfcpp::R_AARCH64_TLS_TPREL64,
6243 				  object, r_sym);
6244 	  }
6245       }
6246       break;
6247 
6248     case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
6249     case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
6250       {
6251 	tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6252 	    optimize_tls_reloc(!parameters->options().shared(), r_type);
6253 	if (tlsopt == tls::TLSOPT_TO_LE)
6254 	  {
6255 	    layout->set_has_static_tls();
6256 	    break;
6257 	  }
6258 	gold_assert(tlsopt == tls::TLSOPT_NONE);
6259 
6260 	Output_data_got_aarch64<size, big_endian>* got =
6261 	    target->got_section(symtab, layout);
6262 	got->add_local_pair_with_rel(object,r_sym, data_shndx,
6263 				     GOT_TYPE_TLS_PAIR,
6264 				     target->rela_dyn_section(layout),
6265 				     elfcpp::R_AARCH64_TLS_DTPMOD64);
6266       }
6267       break;
6268 
6269     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
6270     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
6271     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
6272     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
6273     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
6274     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
6275     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
6276     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
6277     case elfcpp::R_AARCH64_TLSLE_LDST8_TPREL_LO12:
6278     case elfcpp::R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
6279     case elfcpp::R_AARCH64_TLSLE_LDST16_TPREL_LO12:
6280     case elfcpp::R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
6281     case elfcpp::R_AARCH64_TLSLE_LDST32_TPREL_LO12:
6282     case elfcpp::R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
6283     case elfcpp::R_AARCH64_TLSLE_LDST64_TPREL_LO12:
6284     case elfcpp::R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
6285       {
6286 	layout->set_has_static_tls();
6287 	bool output_is_shared = parameters->options().shared();
6288 	if (output_is_shared)
6289 	  gold_error(_("%s: unsupported TLSLE reloc %u in shared code."),
6290 		     object->name().c_str(), r_type);
6291       }
6292       break;
6293 
6294     case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
6295     case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
6296       {
6297 	tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6298 	    optimize_tls_reloc(!parameters->options().shared(), r_type);
6299 	if (tlsopt == tls::TLSOPT_NONE)
6300 	  {
6301 	    // Create a GOT entry for the module index.
6302 	    target->got_mod_index_entry(symtab, layout, object);
6303 	  }
6304 	else if (tlsopt != tls::TLSOPT_TO_LE)
6305 	  unsupported_reloc_local(object, r_type);
6306       }
6307       break;
6308 
6309     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
6310     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
6311     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
6312     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
6313       break;
6314 
6315     case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
6316     case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
6317     case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
6318       {
6319 	tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6320 	    optimize_tls_reloc(!parameters->options().shared(), r_type);
6321 	target->define_tls_base_symbol(symtab, layout);
6322 	if (tlsopt == tls::TLSOPT_NONE)
6323 	  {
6324 	    // Create reserved PLT and GOT entries for the resolver.
6325 	    target->reserve_tlsdesc_entries(symtab, layout);
6326 
6327 	    // Generate a double GOT entry with an R_AARCH64_TLSDESC reloc.
6328 	    // The R_AARCH64_TLSDESC reloc is resolved lazily, so the GOT
6329 	    // entry needs to be in an area in .got.plt, not .got. Call
6330 	    // got_section to make sure the section has been created.
6331 	    target->got_section(symtab, layout);
6332 	    Output_data_got<size, big_endian>* got =
6333 		target->got_tlsdesc_section();
6334 	    unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6335 	    if (!object->local_has_got_offset(r_sym, GOT_TYPE_TLS_DESC))
6336 	      {
6337 		unsigned int got_offset = got->add_constant(0);
6338 		got->add_constant(0);
6339 		object->set_local_got_offset(r_sym, GOT_TYPE_TLS_DESC,
6340 					     got_offset);
6341 		Reloc_section* rt = target->rela_tlsdesc_section(layout);
6342 		// We store the arguments we need in a vector, and use
6343 		// the index into the vector as the parameter to pass
6344 		// to the target specific routines.
6345 		uintptr_t intarg = target->add_tlsdesc_info(object, r_sym);
6346 		void* arg = reinterpret_cast<void*>(intarg);
6347 		rt->add_target_specific(elfcpp::R_AARCH64_TLSDESC, arg,
6348 					got, got_offset, 0);
6349 	      }
6350 	  }
6351 	else if (tlsopt != tls::TLSOPT_TO_LE)
6352 	  unsupported_reloc_local(object, r_type);
6353       }
6354       break;
6355 
6356     case elfcpp::R_AARCH64_TLSDESC_CALL:
6357       break;
6358 
6359     default:
6360       unsupported_reloc_local(object, r_type);
6361     }
6362 }
6363 
6364 
6365 // Report an unsupported relocation against a global symbol.
6366 
6367 template<int size, bool big_endian>
6368 void
unsupported_reloc_global(Sized_relobj_file<size,big_endian> * object,unsigned int r_type,Symbol * gsym)6369 Target_aarch64<size, big_endian>::Scan::unsupported_reloc_global(
6370     Sized_relobj_file<size, big_endian>* object,
6371     unsigned int r_type,
6372     Symbol* gsym)
6373 {
6374   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
6375 	     object->name().c_str(), r_type, gsym->demangled_name().c_str());
6376 }
6377 
6378 template<int size, bool big_endian>
6379 inline void
global(Symbol_table * symtab,Layout * layout,Target_aarch64<size,big_endian> * target,Sized_relobj_file<size,big_endian> * object,unsigned int data_shndx,Output_section * output_section,const elfcpp::Rela<size,big_endian> & rela,unsigned int r_type,Symbol * gsym)6380 Target_aarch64<size, big_endian>::Scan::global(
6381     Symbol_table* symtab,
6382     Layout* layout,
6383     Target_aarch64<size, big_endian>* target,
6384     Sized_relobj_file<size, big_endian> * object,
6385     unsigned int data_shndx,
6386     Output_section* output_section,
6387     const elfcpp::Rela<size, big_endian>& rela,
6388     unsigned int r_type,
6389     Symbol* gsym)
6390 {
6391   // A STT_GNU_IFUNC symbol may require a PLT entry.
6392   if (gsym->type() == elfcpp::STT_GNU_IFUNC
6393       && this->reloc_needs_plt_for_ifunc(object, r_type))
6394     target->make_plt_entry(symtab, layout, gsym);
6395 
6396   typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
6397     Reloc_section;
6398   const AArch64_reloc_property* arp =
6399       aarch64_reloc_property_table->get_reloc_property(r_type);
6400   gold_assert(arp != NULL);
6401 
6402   switch (r_type)
6403     {
6404     case elfcpp::R_AARCH64_NONE:
6405       break;
6406 
6407     case elfcpp::R_AARCH64_ABS16:
6408     case elfcpp::R_AARCH64_ABS32:
6409     case elfcpp::R_AARCH64_ABS64:
6410       {
6411 	// Make a PLT entry if necessary.
6412 	if (gsym->needs_plt_entry())
6413 	  {
6414 	    target->make_plt_entry(symtab, layout, gsym);
6415 	    // Since this is not a PC-relative relocation, we may be
6416 	    // taking the address of a function. In that case we need to
6417 	    // set the entry in the dynamic symbol table to the address of
6418 	    // the PLT entry.
6419 	    if (gsym->is_from_dynobj() && !parameters->options().shared())
6420 	      gsym->set_needs_dynsym_value();
6421 	  }
6422 	// Make a dynamic relocation if necessary.
6423 	if (gsym->needs_dynamic_reloc(arp->reference_flags()))
6424 	  {
6425 	    if (!parameters->options().output_is_position_independent()
6426 		&& gsym->may_need_copy_reloc())
6427 	      {
6428 		target->copy_reloc(symtab, layout, object,
6429 				   data_shndx, output_section, gsym, rela);
6430 	      }
6431 	    else if (r_type == elfcpp::R_AARCH64_ABS64
6432 		     && gsym->type() == elfcpp::STT_GNU_IFUNC
6433 		     && gsym->can_use_relative_reloc(false)
6434 		     && !gsym->is_from_dynobj()
6435 		     && !gsym->is_undefined()
6436 		     && !gsym->is_preemptible())
6437 	      {
6438 		// Use an IRELATIVE reloc for a locally defined STT_GNU_IFUNC
6439 		// symbol. This makes a function address in a PIE executable
6440 		// match the address in a shared library that it links against.
6441 		Reloc_section* rela_dyn =
6442 		    target->rela_irelative_section(layout);
6443 		unsigned int r_type = elfcpp::R_AARCH64_IRELATIVE;
6444 		rela_dyn->add_symbolless_global_addend(gsym, r_type,
6445 						       output_section, object,
6446 						       data_shndx,
6447 						       rela.get_r_offset(),
6448 						       rela.get_r_addend());
6449 	      }
6450 	    else if (r_type == elfcpp::R_AARCH64_ABS64
6451 		     && gsym->can_use_relative_reloc(false))
6452 	      {
6453 		Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6454 		rela_dyn->add_global_relative(gsym,
6455 					      elfcpp::R_AARCH64_RELATIVE,
6456 					      output_section,
6457 					      object,
6458 					      data_shndx,
6459 					      rela.get_r_offset(),
6460 					      rela.get_r_addend(),
6461 					      false);
6462 	      }
6463 	    else
6464 	      {
6465 		check_non_pic(object, r_type);
6466 		Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>*
6467 		    rela_dyn = target->rela_dyn_section(layout);
6468 		rela_dyn->add_global(
6469 		  gsym, r_type, output_section, object,
6470 		  data_shndx, rela.get_r_offset(),rela.get_r_addend());
6471 	      }
6472 	  }
6473       }
6474       break;
6475 
6476     case elfcpp::R_AARCH64_PREL16:
6477     case elfcpp::R_AARCH64_PREL32:
6478     case elfcpp::R_AARCH64_PREL64:
6479       // This is used to fill the GOT absolute address.
6480       if (gsym->needs_plt_entry())
6481 	{
6482 	  target->make_plt_entry(symtab, layout, gsym);
6483 	}
6484       break;
6485 
6486     case elfcpp::R_AARCH64_MOVW_UABS_G0:        // 263
6487     case elfcpp::R_AARCH64_MOVW_UABS_G0_NC:     // 264
6488     case elfcpp::R_AARCH64_MOVW_UABS_G1:        // 265
6489     case elfcpp::R_AARCH64_MOVW_UABS_G1_NC:     // 266
6490     case elfcpp::R_AARCH64_MOVW_UABS_G2:        // 267
6491     case elfcpp::R_AARCH64_MOVW_UABS_G2_NC:     // 268
6492     case elfcpp::R_AARCH64_MOVW_UABS_G3:        // 269
6493     case elfcpp::R_AARCH64_MOVW_SABS_G0:        // 270
6494     case elfcpp::R_AARCH64_MOVW_SABS_G1:        // 271
6495     case elfcpp::R_AARCH64_MOVW_SABS_G2:        // 272
6496       if (parameters->options().output_is_position_independent())
6497 	{
6498 	  gold_error(_("%s: unsupported reloc %u in pos independent link."),
6499 		     object->name().c_str(), r_type);
6500 	}
6501       // Make a PLT entry if necessary.
6502       if (gsym->needs_plt_entry())
6503 	{
6504 	  target->make_plt_entry(symtab, layout, gsym);
6505 	  // Since this is not a PC-relative relocation, we may be
6506 	  // taking the address of a function. In that case we need to
6507 	  // set the entry in the dynamic symbol table to the address of
6508 	  // the PLT entry.
6509 	  if (gsym->is_from_dynobj() && !parameters->options().shared())
6510 	    gsym->set_needs_dynsym_value();
6511 	}
6512       break;
6513 
6514     case elfcpp::R_AARCH64_LD_PREL_LO19:        // 273
6515     case elfcpp::R_AARCH64_ADR_PREL_LO21:       // 274
6516     case elfcpp::R_AARCH64_ADR_PREL_PG_HI21:    // 275
6517     case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC: // 276
6518     case elfcpp::R_AARCH64_ADD_ABS_LO12_NC:     // 277
6519     case elfcpp::R_AARCH64_LDST8_ABS_LO12_NC:   // 278
6520     case elfcpp::R_AARCH64_LDST16_ABS_LO12_NC:  // 284
6521     case elfcpp::R_AARCH64_LDST32_ABS_LO12_NC:  // 285
6522     case elfcpp::R_AARCH64_LDST64_ABS_LO12_NC:  // 286
6523     case elfcpp::R_AARCH64_LDST128_ABS_LO12_NC: // 299
6524       {
6525 	if (gsym->needs_plt_entry())
6526 	  target->make_plt_entry(symtab, layout, gsym);
6527 	// Make a dynamic relocation if necessary.
6528 	if (gsym->needs_dynamic_reloc(arp->reference_flags()))
6529 	  {
6530 	    if (parameters->options().output_is_executable()
6531 		&& gsym->may_need_copy_reloc())
6532 	      {
6533 		target->copy_reloc(symtab, layout, object,
6534 				   data_shndx, output_section, gsym, rela);
6535 	      }
6536 	  }
6537 	break;
6538       }
6539 
6540     case elfcpp::R_AARCH64_ADR_GOT_PAGE:
6541     case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
6542     case elfcpp::R_AARCH64_LD64_GOTPAGE_LO15:
6543       {
6544 	// The above relocations are used to access GOT entries.
6545 	// Note a GOT entry is an *address* to a symbol.
6546 	// The symbol requires a GOT entry
6547 	Output_data_got_aarch64<size, big_endian>* got =
6548 	  target->got_section(symtab, layout);
6549 	if (gsym->final_value_is_known())
6550 	  {
6551 	    // For a STT_GNU_IFUNC symbol we want the PLT address.
6552 	    if (gsym->type() == elfcpp::STT_GNU_IFUNC)
6553 	      got->add_global_plt(gsym, GOT_TYPE_STANDARD);
6554 	    else
6555 	      got->add_global(gsym, GOT_TYPE_STANDARD);
6556 	  }
6557 	else
6558 	  {
6559 	    // If this symbol is not fully resolved, we need to add a dynamic
6560 	    // relocation for it.
6561 	    Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6562 
6563 	    // Use a GLOB_DAT rather than a RELATIVE reloc if:
6564 	    //
6565 	    // 1) The symbol may be defined in some other module.
6566 	    // 2) We are building a shared library and this is a protected
6567 	    // symbol; using GLOB_DAT means that the dynamic linker can use
6568 	    // the address of the PLT in the main executable when appropriate
6569 	    // so that function address comparisons work.
6570 	    // 3) This is a STT_GNU_IFUNC symbol in position dependent code,
6571 	    // again so that function address comparisons work.
6572 	    if (gsym->is_from_dynobj()
6573 		|| gsym->is_undefined()
6574 		|| gsym->is_preemptible()
6575 		|| (gsym->visibility() == elfcpp::STV_PROTECTED
6576 		    && parameters->options().shared())
6577 		|| (gsym->type() == elfcpp::STT_GNU_IFUNC
6578 		    && parameters->options().output_is_position_independent()))
6579 	      got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
6580 				       rela_dyn, elfcpp::R_AARCH64_GLOB_DAT);
6581 	    else
6582 	      {
6583 		// For a STT_GNU_IFUNC symbol we want to write the PLT
6584 		// offset into the GOT, so that function pointer
6585 		// comparisons work correctly.
6586 		bool is_new;
6587 		if (gsym->type() != elfcpp::STT_GNU_IFUNC)
6588 		  is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
6589 		else
6590 		  {
6591 		    is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
6592 		    // Tell the dynamic linker to use the PLT address
6593 		    // when resolving relocations.
6594 		    if (gsym->is_from_dynobj()
6595 			&& !parameters->options().shared())
6596 		      gsym->set_needs_dynsym_value();
6597 		  }
6598 		if (is_new)
6599 		  {
6600 		    rela_dyn->add_global_relative(
6601 			gsym, elfcpp::R_AARCH64_RELATIVE,
6602 			got,
6603 			gsym->got_offset(GOT_TYPE_STANDARD),
6604 			0,
6605 			false);
6606 		  }
6607 	      }
6608 	  }
6609 	break;
6610       }
6611 
6612     case elfcpp::R_AARCH64_TSTBR14:
6613     case elfcpp::R_AARCH64_CONDBR19:
6614     case elfcpp::R_AARCH64_JUMP26:
6615     case elfcpp::R_AARCH64_CALL26:
6616       {
6617 	if (gsym->final_value_is_known())
6618 	  break;
6619 
6620 	if (gsym->is_defined() &&
6621 	    !gsym->is_from_dynobj() &&
6622 	    !gsym->is_preemptible())
6623 	  break;
6624 
6625 	// Make plt entry for function call.
6626 	target->make_plt_entry(symtab, layout, gsym);
6627 	break;
6628       }
6629 
6630     case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
6631     case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:  // General dynamic
6632       {
6633 	tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6634 	    optimize_tls_reloc(gsym->final_value_is_known(), r_type);
6635 	if (tlsopt == tls::TLSOPT_TO_LE)
6636 	  {
6637 	    layout->set_has_static_tls();
6638 	    break;
6639 	  }
6640 	gold_assert(tlsopt == tls::TLSOPT_NONE);
6641 
6642 	// General dynamic.
6643 	Output_data_got_aarch64<size, big_endian>* got =
6644 	    target->got_section(symtab, layout);
6645 	// Create 2 consecutive entries for module index and offset.
6646 	got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
6647 				      target->rela_dyn_section(layout),
6648 				      elfcpp::R_AARCH64_TLS_DTPMOD64,
6649 				      elfcpp::R_AARCH64_TLS_DTPREL64);
6650       }
6651       break;
6652 
6653     case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
6654     case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:  // Local dynamic
6655       {
6656 	tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6657 	    optimize_tls_reloc(!parameters->options().shared(), r_type);
6658 	if (tlsopt == tls::TLSOPT_NONE)
6659 	  {
6660 	    // Create a GOT entry for the module index.
6661 	    target->got_mod_index_entry(symtab, layout, object);
6662 	  }
6663 	else if (tlsopt != tls::TLSOPT_TO_LE)
6664 	  unsupported_reloc_local(object, r_type);
6665       }
6666       break;
6667 
6668     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
6669     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
6670     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
6671     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:  // Other local dynamic
6672       break;
6673 
6674     case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6675     case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:  // Initial executable
6676       {
6677 	tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6678 	  optimize_tls_reloc(gsym->final_value_is_known(), r_type);
6679 	if (tlsopt == tls::TLSOPT_TO_LE)
6680 	  break;
6681 
6682 	layout->set_has_static_tls();
6683 	// Create a GOT entry for the tp-relative offset.
6684 	Output_data_got_aarch64<size, big_endian>* got
6685 	  = target->got_section(symtab, layout);
6686 	if (!parameters->doing_static_link())
6687 	  {
6688 	    got->add_global_with_rel(
6689 	      gsym, GOT_TYPE_TLS_OFFSET,
6690 	      target->rela_dyn_section(layout),
6691 	      elfcpp::R_AARCH64_TLS_TPREL64);
6692 	  }
6693 	if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
6694 	  {
6695 	    got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
6696 	    unsigned int got_offset =
6697 	      gsym->got_offset(GOT_TYPE_TLS_OFFSET);
6698 	    const elfcpp::Elf_Xword addend = rela.get_r_addend();
6699 	    gold_assert(addend == 0);
6700 	    got->add_static_reloc(got_offset,
6701 				  elfcpp::R_AARCH64_TLS_TPREL64, gsym);
6702 	  }
6703       }
6704       break;
6705 
6706     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
6707     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
6708     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
6709     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
6710     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
6711     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
6712     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
6713     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
6714     case elfcpp::R_AARCH64_TLSLE_LDST8_TPREL_LO12:
6715     case elfcpp::R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
6716     case elfcpp::R_AARCH64_TLSLE_LDST16_TPREL_LO12:
6717     case elfcpp::R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
6718     case elfcpp::R_AARCH64_TLSLE_LDST32_TPREL_LO12:
6719     case elfcpp::R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
6720     case elfcpp::R_AARCH64_TLSLE_LDST64_TPREL_LO12:
6721     case elfcpp::R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:  // Local executable
6722       layout->set_has_static_tls();
6723       if (parameters->options().shared())
6724 	gold_error(_("%s: unsupported TLSLE reloc type %u in shared objects."),
6725 		   object->name().c_str(), r_type);
6726       break;
6727 
6728     case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
6729     case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
6730     case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:  // TLS descriptor
6731       {
6732 	target->define_tls_base_symbol(symtab, layout);
6733 	tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6734 	    optimize_tls_reloc(gsym->final_value_is_known(), r_type);
6735 	if (tlsopt == tls::TLSOPT_NONE)
6736 	  {
6737 	    // Create reserved PLT and GOT entries for the resolver.
6738 	    target->reserve_tlsdesc_entries(symtab, layout);
6739 
6740 	    // Create a double GOT entry with an R_AARCH64_TLSDESC
6741 	    // relocation. The R_AARCH64_TLSDESC is resolved lazily, so the GOT
6742 	    // entry needs to be in an area in .got.plt, not .got. Call
6743 	    // got_section to make sure the section has been created.
6744 	    target->got_section(symtab, layout);
6745 	    Output_data_got<size, big_endian>* got =
6746 		target->got_tlsdesc_section();
6747 	    Reloc_section* rt = target->rela_tlsdesc_section(layout);
6748 	    got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_DESC, rt,
6749 					  elfcpp::R_AARCH64_TLSDESC, 0);
6750 	  }
6751 	else if (tlsopt == tls::TLSOPT_TO_IE)
6752 	  {
6753 	    // Create a GOT entry for the tp-relative offset.
6754 	    Output_data_got<size, big_endian>* got
6755 		= target->got_section(symtab, layout);
6756 	    got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
6757 				     target->rela_dyn_section(layout),
6758 				     elfcpp::R_AARCH64_TLS_TPREL64);
6759 	  }
6760 	else if (tlsopt != tls::TLSOPT_TO_LE)
6761 	  unsupported_reloc_global(object, r_type, gsym);
6762       }
6763       break;
6764 
6765     case elfcpp::R_AARCH64_TLSDESC_CALL:
6766       break;
6767 
6768     default:
6769       gold_error(_("%s: unsupported reloc type in global scan"),
6770 		 aarch64_reloc_property_table->
6771 		 reloc_name_in_error_message(r_type).c_str());
6772     }
6773   return;
6774 }  // End of Scan::global
6775 
6776 
6777 // Create the PLT section.
6778 template<int size, bool big_endian>
6779 void
make_plt_section(Symbol_table * symtab,Layout * layout)6780 Target_aarch64<size, big_endian>::make_plt_section(
6781   Symbol_table* symtab, Layout* layout)
6782 {
6783   if (this->plt_ == NULL)
6784     {
6785       // Create the GOT section first.
6786       this->got_section(symtab, layout);
6787 
6788       this->plt_ = this->make_data_plt(layout, this->got_, this->got_plt_,
6789 				       this->got_irelative_);
6790 
6791       layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
6792 				      (elfcpp::SHF_ALLOC
6793 				       | elfcpp::SHF_EXECINSTR),
6794 				      this->plt_, ORDER_PLT, false);
6795 
6796       // Make the sh_info field of .rela.plt point to .plt.
6797       Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
6798       rela_plt_os->set_info_section(this->plt_->output_section());
6799     }
6800 }
6801 
6802 // Return the section for TLSDESC relocations.
6803 
6804 template<int size, bool big_endian>
6805 typename Target_aarch64<size, big_endian>::Reloc_section*
rela_tlsdesc_section(Layout * layout) const6806 Target_aarch64<size, big_endian>::rela_tlsdesc_section(Layout* layout) const
6807 {
6808   return this->plt_section()->rela_tlsdesc(layout);
6809 }
6810 
6811 // Create a PLT entry for a global symbol.
6812 
6813 template<int size, bool big_endian>
6814 void
make_plt_entry(Symbol_table * symtab,Layout * layout,Symbol * gsym)6815 Target_aarch64<size, big_endian>::make_plt_entry(
6816     Symbol_table* symtab,
6817     Layout* layout,
6818     Symbol* gsym)
6819 {
6820   if (gsym->has_plt_offset())
6821     return;
6822 
6823   if (this->plt_ == NULL)
6824     this->make_plt_section(symtab, layout);
6825 
6826   this->plt_->add_entry(symtab, layout, gsym);
6827 }
6828 
6829 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
6830 
6831 template<int size, bool big_endian>
6832 void
make_local_ifunc_plt_entry(Symbol_table * symtab,Layout * layout,Sized_relobj_file<size,big_endian> * relobj,unsigned int local_sym_index)6833 Target_aarch64<size, big_endian>::make_local_ifunc_plt_entry(
6834     Symbol_table* symtab, Layout* layout,
6835     Sized_relobj_file<size, big_endian>* relobj,
6836     unsigned int local_sym_index)
6837 {
6838   if (relobj->local_has_plt_offset(local_sym_index))
6839     return;
6840   if (this->plt_ == NULL)
6841     this->make_plt_section(symtab, layout);
6842   unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
6843 							      relobj,
6844 							      local_sym_index);
6845   relobj->set_local_plt_offset(local_sym_index, plt_offset);
6846 }
6847 
6848 template<int size, bool big_endian>
6849 void
gc_process_relocs(Symbol_table * symtab,Layout * layout,Sized_relobj_file<size,big_endian> * object,unsigned int data_shndx,unsigned int sh_type,const unsigned char * prelocs,size_t reloc_count,Output_section * output_section,bool needs_special_offset_handling,size_t local_symbol_count,const unsigned char * plocal_symbols)6850 Target_aarch64<size, big_endian>::gc_process_relocs(
6851     Symbol_table* symtab,
6852     Layout* layout,
6853     Sized_relobj_file<size, big_endian>* object,
6854     unsigned int data_shndx,
6855     unsigned int sh_type,
6856     const unsigned char* prelocs,
6857     size_t reloc_count,
6858     Output_section* output_section,
6859     bool needs_special_offset_handling,
6860     size_t local_symbol_count,
6861     const unsigned char* plocal_symbols)
6862 {
6863   typedef Target_aarch64<size, big_endian> Aarch64;
6864   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
6865       Classify_reloc;
6866 
6867   if (sh_type == elfcpp::SHT_REL)
6868     {
6869       return;
6870     }
6871 
6872   gold::gc_process_relocs<size, big_endian, Aarch64, Scan, Classify_reloc>(
6873     symtab,
6874     layout,
6875     this,
6876     object,
6877     data_shndx,
6878     prelocs,
6879     reloc_count,
6880     output_section,
6881     needs_special_offset_handling,
6882     local_symbol_count,
6883     plocal_symbols);
6884 }
6885 
6886 // Scan relocations for a section.
6887 
6888 template<int size, bool big_endian>
6889 void
scan_relocs(Symbol_table * symtab,Layout * layout,Sized_relobj_file<size,big_endian> * object,unsigned int data_shndx,unsigned int sh_type,const unsigned char * prelocs,size_t reloc_count,Output_section * output_section,bool needs_special_offset_handling,size_t local_symbol_count,const unsigned char * plocal_symbols)6890 Target_aarch64<size, big_endian>::scan_relocs(
6891     Symbol_table* symtab,
6892     Layout* layout,
6893     Sized_relobj_file<size, big_endian>* object,
6894     unsigned int data_shndx,
6895     unsigned int sh_type,
6896     const unsigned char* prelocs,
6897     size_t reloc_count,
6898     Output_section* output_section,
6899     bool needs_special_offset_handling,
6900     size_t local_symbol_count,
6901     const unsigned char* plocal_symbols)
6902 {
6903   typedef Target_aarch64<size, big_endian> Aarch64;
6904   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
6905       Classify_reloc;
6906 
6907   if (sh_type == elfcpp::SHT_REL)
6908     {
6909       gold_error(_("%s: unsupported REL reloc section"),
6910 		 object->name().c_str());
6911       return;
6912     }
6913 
6914   gold::scan_relocs<size, big_endian, Aarch64, Scan, Classify_reloc>(
6915     symtab,
6916     layout,
6917     this,
6918     object,
6919     data_shndx,
6920     prelocs,
6921     reloc_count,
6922     output_section,
6923     needs_special_offset_handling,
6924     local_symbol_count,
6925     plocal_symbols);
6926 }
6927 
6928 // Return the value to use for a dynamic which requires special
6929 // treatment.  This is how we support equality comparisons of function
6930 // pointers across shared library boundaries, as described in the
6931 // processor specific ABI supplement.
6932 
6933 template<int size, bool big_endian>
6934 uint64_t
do_dynsym_value(const Symbol * gsym) const6935 Target_aarch64<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
6936 {
6937   gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
6938   return this->plt_address_for_global(gsym);
6939 }
6940 
6941 
6942 // Finalize the sections.
6943 
6944 template<int size, bool big_endian>
6945 void
do_finalize_sections(Layout * layout,const Input_objects *,Symbol_table * symtab)6946 Target_aarch64<size, big_endian>::do_finalize_sections(
6947     Layout* layout,
6948     const Input_objects*,
6949     Symbol_table* symtab)
6950 {
6951   const Reloc_section* rel_plt = (this->plt_ == NULL
6952 				  ? NULL
6953 				  : this->plt_->rela_plt());
6954   layout->add_target_dynamic_tags(false, this->got_plt_, rel_plt,
6955 				  this->rela_dyn_, true, false, false);
6956 
6957   // Emit any relocs we saved in an attempt to avoid generating COPY
6958   // relocs.
6959   if (this->copy_relocs_.any_saved_relocs())
6960     this->copy_relocs_.emit(this->rela_dyn_section(layout));
6961 
6962   // Fill in some more dynamic tags.
6963   Output_data_dynamic* const odyn = layout->dynamic_data();
6964   if (odyn != NULL)
6965     {
6966       if (this->plt_ != NULL
6967 	  && this->plt_->output_section() != NULL
6968 	  && this->plt_ ->has_tlsdesc_entry())
6969 	{
6970 	  unsigned int plt_offset = this->plt_->get_tlsdesc_plt_offset();
6971 	  unsigned int got_offset = this->plt_->get_tlsdesc_got_offset();
6972 	  this->got_->finalize_data_size();
6973 	  odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_PLT,
6974 					this->plt_, plt_offset);
6975 	  odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_GOT,
6976 					this->got_, got_offset);
6977 	}
6978     }
6979 
6980   // Set the size of the _GLOBAL_OFFSET_TABLE_ symbol to the size of
6981   // the .got section.
6982   Symbol* sym = this->global_offset_table_;
6983   if (sym != NULL)
6984     {
6985       uint64_t data_size = this->got_->current_data_size();
6986       symtab->get_sized_symbol<size>(sym)->set_symsize(data_size);
6987 
6988       // If the .got section is more than 0x8000 bytes, we add
6989       // 0x8000 to the value of _GLOBAL_OFFSET_TABLE_, so that 16
6990       // bit relocations have a greater chance of working.
6991       if (data_size >= 0x8000)
6992 	symtab->get_sized_symbol<size>(sym)->set_value(
6993 	  symtab->get_sized_symbol<size>(sym)->value() + 0x8000);
6994     }
6995 
6996   if (parameters->doing_static_link()
6997       && (this->plt_ == NULL || !this->plt_->has_irelative_section()))
6998     {
6999       // If linking statically, make sure that the __rela_iplt symbols
7000       // were defined if necessary, even if we didn't create a PLT.
7001       static const Define_symbol_in_segment syms[] =
7002 	{
7003 	  {
7004 	    "__rela_iplt_start",	// name
7005 	    elfcpp::PT_LOAD,		// segment_type
7006 	    elfcpp::PF_W,		// segment_flags_set
7007 	    elfcpp::PF(0),		// segment_flags_clear
7008 	    0,				// value
7009 	    0,				// size
7010 	    elfcpp::STT_NOTYPE,		// type
7011 	    elfcpp::STB_GLOBAL,		// binding
7012 	    elfcpp::STV_HIDDEN,		// visibility
7013 	    0,				// nonvis
7014 	    Symbol::SEGMENT_START,	// offset_from_base
7015 	    true			// only_if_ref
7016 	  },
7017 	  {
7018 	    "__rela_iplt_end",		// name
7019 	    elfcpp::PT_LOAD,		// segment_type
7020 	    elfcpp::PF_W,		// segment_flags_set
7021 	    elfcpp::PF(0),		// segment_flags_clear
7022 	    0,				// value
7023 	    0,				// size
7024 	    elfcpp::STT_NOTYPE,		// type
7025 	    elfcpp::STB_GLOBAL,		// binding
7026 	    elfcpp::STV_HIDDEN,		// visibility
7027 	    0,				// nonvis
7028 	    Symbol::SEGMENT_START,	// offset_from_base
7029 	    true			// only_if_ref
7030 	  }
7031 	};
7032 
7033       symtab->define_symbols(layout, 2, syms,
7034 			     layout->script_options()->saw_sections_clause());
7035     }
7036 
7037   return;
7038 }
7039 
7040 // Perform a relocation.
7041 
7042 template<int size, bool big_endian>
7043 inline bool
relocate(const Relocate_info<size,big_endian> * relinfo,unsigned int,Target_aarch64<size,big_endian> * target,Output_section *,size_t relnum,const unsigned char * preloc,const Sized_symbol<size> * gsym,const Symbol_value<size> * psymval,unsigned char * view,typename elfcpp::Elf_types<size>::Elf_Addr address,section_size_type)7044 Target_aarch64<size, big_endian>::Relocate::relocate(
7045     const Relocate_info<size, big_endian>* relinfo,
7046     unsigned int,
7047     Target_aarch64<size, big_endian>* target,
7048     Output_section* ,
7049     size_t relnum,
7050     const unsigned char* preloc,
7051     const Sized_symbol<size>* gsym,
7052     const Symbol_value<size>* psymval,
7053     unsigned char* view,
7054     typename elfcpp::Elf_types<size>::Elf_Addr address,
7055     section_size_type /* view_size */)
7056 {
7057   if (view == NULL)
7058     return true;
7059 
7060   typedef AArch64_relocate_functions<size, big_endian> Reloc;
7061 
7062   const elfcpp::Rela<size, big_endian> rela(preloc);
7063   unsigned int r_type = elfcpp::elf_r_type<size>(rela.get_r_info());
7064   const AArch64_reloc_property* reloc_property =
7065       aarch64_reloc_property_table->get_reloc_property(r_type);
7066 
7067   if (reloc_property == NULL)
7068     {
7069       std::string reloc_name =
7070 	  aarch64_reloc_property_table->reloc_name_in_error_message(r_type);
7071       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7072 			     _("cannot relocate %s in object file"),
7073 			     reloc_name.c_str());
7074       return true;
7075     }
7076 
7077   const Sized_relobj_file<size, big_endian>* object = relinfo->object;
7078 
7079   // Pick the value to use for symbols defined in the PLT.
7080   Symbol_value<size> symval;
7081   if (gsym != NULL
7082       && gsym->use_plt_offset(reloc_property->reference_flags()))
7083     {
7084       symval.set_output_value(target->plt_address_for_global(gsym));
7085       psymval = &symval;
7086     }
7087   else if (gsym == NULL && psymval->is_ifunc_symbol())
7088     {
7089       unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7090       if (object->local_has_plt_offset(r_sym))
7091 	{
7092 	  symval.set_output_value(target->plt_address_for_local(object, r_sym));
7093 	  psymval = &symval;
7094 	}
7095     }
7096 
7097   const elfcpp::Elf_Xword addend = rela.get_r_addend();
7098 
7099   // Get the GOT offset if needed.
7100   // For aarch64, the GOT pointer points to the start of the GOT section.
7101   bool have_got_offset = false;
7102   int got_offset = 0;
7103   int got_base = (target->got_ != NULL
7104 		  ? (target->got_->current_data_size() >= 0x8000
7105 		     ? 0x8000 : 0)
7106 		  : 0);
7107   switch (r_type)
7108     {
7109     case elfcpp::R_AARCH64_MOVW_GOTOFF_G0:
7110     case elfcpp::R_AARCH64_MOVW_GOTOFF_G0_NC:
7111     case elfcpp::R_AARCH64_MOVW_GOTOFF_G1:
7112     case elfcpp::R_AARCH64_MOVW_GOTOFF_G1_NC:
7113     case elfcpp::R_AARCH64_MOVW_GOTOFF_G2:
7114     case elfcpp::R_AARCH64_MOVW_GOTOFF_G2_NC:
7115     case elfcpp::R_AARCH64_MOVW_GOTOFF_G3:
7116     case elfcpp::R_AARCH64_GOTREL64:
7117     case elfcpp::R_AARCH64_GOTREL32:
7118     case elfcpp::R_AARCH64_GOT_LD_PREL19:
7119     case elfcpp::R_AARCH64_LD64_GOTOFF_LO15:
7120     case elfcpp::R_AARCH64_ADR_GOT_PAGE:
7121     case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
7122     case elfcpp::R_AARCH64_LD64_GOTPAGE_LO15:
7123       if (gsym != NULL)
7124 	{
7125 	  gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
7126 	  got_offset = gsym->got_offset(GOT_TYPE_STANDARD) - got_base;
7127 	}
7128       else
7129 	{
7130 	  unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7131 	  gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
7132 	  got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
7133 			- got_base);
7134 	}
7135       have_got_offset = true;
7136       break;
7137 
7138     default:
7139       break;
7140     }
7141 
7142   typename Reloc::Status reloc_status = Reloc::STATUS_OKAY;
7143   typename elfcpp::Elf_types<size>::Elf_Addr value;
7144   switch (r_type)
7145     {
7146     case elfcpp::R_AARCH64_NONE:
7147       break;
7148 
7149     case elfcpp::R_AARCH64_ABS64:
7150       if (!parameters->options().apply_dynamic_relocs()
7151           && parameters->options().output_is_position_independent()
7152           && gsym != NULL
7153           && gsym->needs_dynamic_reloc(reloc_property->reference_flags())
7154           && !gsym->can_use_relative_reloc(false))
7155         // We have generated an absolute dynamic relocation, so do not
7156         // apply the relocation statically. (Works around bugs in older
7157         // Android dynamic linkers.)
7158         break;
7159       reloc_status = Reloc::template rela_ua<64>(
7160 	view, object, psymval, addend, reloc_property);
7161       break;
7162 
7163     case elfcpp::R_AARCH64_ABS32:
7164       if (!parameters->options().apply_dynamic_relocs()
7165           && parameters->options().output_is_position_independent()
7166           && gsym != NULL
7167           && gsym->needs_dynamic_reloc(reloc_property->reference_flags()))
7168         // We have generated an absolute dynamic relocation, so do not
7169         // apply the relocation statically. (Works around bugs in older
7170         // Android dynamic linkers.)
7171         break;
7172       reloc_status = Reloc::template rela_ua<32>(
7173 	view, object, psymval, addend, reloc_property);
7174       break;
7175 
7176     case elfcpp::R_AARCH64_ABS16:
7177       if (!parameters->options().apply_dynamic_relocs()
7178           && parameters->options().output_is_position_independent()
7179           && gsym != NULL
7180           && gsym->needs_dynamic_reloc(reloc_property->reference_flags()))
7181         // We have generated an absolute dynamic relocation, so do not
7182         // apply the relocation statically. (Works around bugs in older
7183         // Android dynamic linkers.)
7184         break;
7185       reloc_status = Reloc::template rela_ua<16>(
7186 	view, object, psymval, addend, reloc_property);
7187       break;
7188 
7189     case elfcpp::R_AARCH64_PREL64:
7190       reloc_status = Reloc::template pcrela_ua<64>(
7191 	view, object, psymval, addend, address, reloc_property);
7192       break;
7193 
7194     case elfcpp::R_AARCH64_PREL32:
7195       reloc_status = Reloc::template pcrela_ua<32>(
7196 	view, object, psymval, addend, address, reloc_property);
7197       break;
7198 
7199     case elfcpp::R_AARCH64_PREL16:
7200       reloc_status = Reloc::template pcrela_ua<16>(
7201 	view, object, psymval, addend, address, reloc_property);
7202       break;
7203 
7204     case elfcpp::R_AARCH64_MOVW_UABS_G0:
7205     case elfcpp::R_AARCH64_MOVW_UABS_G0_NC:
7206     case elfcpp::R_AARCH64_MOVW_UABS_G1:
7207     case elfcpp::R_AARCH64_MOVW_UABS_G1_NC:
7208     case elfcpp::R_AARCH64_MOVW_UABS_G2:
7209     case elfcpp::R_AARCH64_MOVW_UABS_G2_NC:
7210     case elfcpp::R_AARCH64_MOVW_UABS_G3:
7211       reloc_status = Reloc::template rela_general<32>(
7212 	view, object, psymval, addend, reloc_property);
7213       break;
7214     case elfcpp::R_AARCH64_MOVW_SABS_G0:
7215     case elfcpp::R_AARCH64_MOVW_SABS_G1:
7216     case elfcpp::R_AARCH64_MOVW_SABS_G2:
7217       reloc_status = Reloc::movnz(view, psymval->value(object, addend),
7218 				  reloc_property);
7219       break;
7220 
7221     case elfcpp::R_AARCH64_LD_PREL_LO19:
7222       reloc_status = Reloc::template pcrela_general<32>(
7223 	  view, object, psymval, addend, address, reloc_property);
7224       break;
7225 
7226     case elfcpp::R_AARCH64_ADR_PREL_LO21:
7227       reloc_status = Reloc::adr(view, object, psymval, addend,
7228 				address, reloc_property);
7229       break;
7230 
7231     case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC:
7232     case elfcpp::R_AARCH64_ADR_PREL_PG_HI21:
7233       reloc_status = Reloc::adrp(view, object, psymval, addend, address,
7234 				 reloc_property);
7235       break;
7236 
7237     case elfcpp::R_AARCH64_LDST8_ABS_LO12_NC:
7238     case elfcpp::R_AARCH64_LDST16_ABS_LO12_NC:
7239     case elfcpp::R_AARCH64_LDST32_ABS_LO12_NC:
7240     case elfcpp::R_AARCH64_LDST64_ABS_LO12_NC:
7241     case elfcpp::R_AARCH64_LDST128_ABS_LO12_NC:
7242     case elfcpp::R_AARCH64_ADD_ABS_LO12_NC:
7243       reloc_status = Reloc::template rela_general<32>(
7244 	view, object, psymval, addend, reloc_property);
7245       break;
7246 
7247     case elfcpp::R_AARCH64_CALL26:
7248       if (this->skip_call_tls_get_addr_)
7249 	{
7250 	  // Double check that the TLSGD insn has been optimized away.
7251 	  typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7252 	  Insntype insn = elfcpp::Swap<32, big_endian>::readval(
7253 	      reinterpret_cast<Insntype*>(view));
7254 	  gold_assert((insn & 0xff000000) == 0x91000000);
7255 
7256 	  reloc_status = Reloc::STATUS_OKAY;
7257 	  this->skip_call_tls_get_addr_ = false;
7258 	  // Return false to stop further processing this reloc.
7259 	  return false;
7260 	}
7261       // Fall through.
7262     case elfcpp::R_AARCH64_JUMP26:
7263       if (Reloc::maybe_apply_stub(r_type, relinfo, rela, view, address,
7264 				  gsym, psymval, object,
7265 				  target->stub_group_size_))
7266 	break;
7267       // Fall through.
7268     case elfcpp::R_AARCH64_TSTBR14:
7269     case elfcpp::R_AARCH64_CONDBR19:
7270       reloc_status = Reloc::template pcrela_general<32>(
7271 	view, object, psymval, addend, address, reloc_property);
7272       break;
7273 
7274     case elfcpp::R_AARCH64_ADR_GOT_PAGE:
7275       gold_assert(have_got_offset);
7276       value = target->got_->address() + got_base + got_offset;
7277       reloc_status = Reloc::adrp(view, value + addend, address);
7278       break;
7279 
7280     case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
7281       gold_assert(have_got_offset);
7282       value = target->got_->address() + got_base + got_offset;
7283       reloc_status = Reloc::template rela_general<32>(
7284 	view, value, addend, reloc_property);
7285       break;
7286 
7287     case elfcpp::R_AARCH64_LD64_GOTPAGE_LO15:
7288       {
7289 	gold_assert(have_got_offset);
7290 	value = target->got_->address() + got_base + got_offset + addend -
7291 	  Reloc::Page(target->got_->address() + got_base);
7292 	if ((value & 7) != 0)
7293 	  reloc_status = Reloc::STATUS_OVERFLOW;
7294 	else
7295 	  reloc_status = Reloc::template reloc_common<32>(
7296 	    view, value, reloc_property);
7297 	break;
7298       }
7299 
7300     case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
7301     case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
7302     case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
7303     case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
7304     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
7305     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
7306     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
7307     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
7308     case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7309     case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
7310     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
7311     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
7312     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
7313     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
7314     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
7315     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
7316     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
7317     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
7318     case elfcpp::R_AARCH64_TLSLE_LDST8_TPREL_LO12:
7319     case elfcpp::R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
7320     case elfcpp::R_AARCH64_TLSLE_LDST16_TPREL_LO12:
7321     case elfcpp::R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
7322     case elfcpp::R_AARCH64_TLSLE_LDST32_TPREL_LO12:
7323     case elfcpp::R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
7324     case elfcpp::R_AARCH64_TLSLE_LDST64_TPREL_LO12:
7325     case elfcpp::R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
7326     case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
7327     case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
7328     case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
7329     case elfcpp::R_AARCH64_TLSDESC_CALL:
7330       reloc_status = relocate_tls(relinfo, target, relnum, rela, r_type,
7331 				  gsym, psymval, view, address);
7332       break;
7333 
7334     // These are dynamic relocations, which are unexpected when linking.
7335     case elfcpp::R_AARCH64_COPY:
7336     case elfcpp::R_AARCH64_GLOB_DAT:
7337     case elfcpp::R_AARCH64_JUMP_SLOT:
7338     case elfcpp::R_AARCH64_RELATIVE:
7339     case elfcpp::R_AARCH64_IRELATIVE:
7340     case elfcpp::R_AARCH64_TLS_DTPREL64:
7341     case elfcpp::R_AARCH64_TLS_DTPMOD64:
7342     case elfcpp::R_AARCH64_TLS_TPREL64:
7343     case elfcpp::R_AARCH64_TLSDESC:
7344       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7345 			     _("unexpected reloc %u in object file"),
7346 			     r_type);
7347       break;
7348 
7349     default:
7350       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7351 			     _("unsupported reloc %s"),
7352 			     reloc_property->name().c_str());
7353       break;
7354     }
7355 
7356   // Report any errors.
7357   switch (reloc_status)
7358     {
7359     case Reloc::STATUS_OKAY:
7360       break;
7361     case Reloc::STATUS_OVERFLOW:
7362       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7363 			     _("relocation overflow in %s"),
7364 			     reloc_property->name().c_str());
7365       break;
7366     case Reloc::STATUS_BAD_RELOC:
7367       gold_error_at_location(
7368 	  relinfo,
7369 	  relnum,
7370 	  rela.get_r_offset(),
7371 	  _("unexpected opcode while processing relocation %s"),
7372 	  reloc_property->name().c_str());
7373       break;
7374     default:
7375       gold_unreachable();
7376     }
7377 
7378   return true;
7379 }
7380 
7381 
7382 template<int size, bool big_endian>
7383 inline
7384 typename AArch64_relocate_functions<size, big_endian>::Status
relocate_tls(const Relocate_info<size,big_endian> * relinfo,Target_aarch64<size,big_endian> * target,size_t relnum,const elfcpp::Rela<size,big_endian> & rela,unsigned int r_type,const Sized_symbol<size> * gsym,const Symbol_value<size> * psymval,unsigned char * view,typename elfcpp::Elf_types<size>::Elf_Addr address)7385 Target_aarch64<size, big_endian>::Relocate::relocate_tls(
7386     const Relocate_info<size, big_endian>* relinfo,
7387     Target_aarch64<size, big_endian>* target,
7388     size_t relnum,
7389     const elfcpp::Rela<size, big_endian>& rela,
7390     unsigned int r_type, const Sized_symbol<size>* gsym,
7391     const Symbol_value<size>* psymval,
7392     unsigned char* view,
7393     typename elfcpp::Elf_types<size>::Elf_Addr address)
7394 {
7395   typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
7396   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
7397 
7398   Output_segment* tls_segment = relinfo->layout->tls_segment();
7399   const elfcpp::Elf_Xword addend = rela.get_r_addend();
7400   const AArch64_reloc_property* reloc_property =
7401       aarch64_reloc_property_table->get_reloc_property(r_type);
7402   gold_assert(reloc_property != NULL);
7403 
7404   const bool is_final = (gsym == NULL
7405 			 ? !parameters->options().shared()
7406 			 : gsym->final_value_is_known());
7407   tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
7408       optimize_tls_reloc(is_final, r_type);
7409 
7410   Sized_relobj_file<size, big_endian>* object = relinfo->object;
7411   int tls_got_offset_type;
7412   switch (r_type)
7413     {
7414     case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
7415     case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:  // Global-dynamic
7416       {
7417 	if (tlsopt == tls::TLSOPT_TO_LE)
7418 	  {
7419 	    if (tls_segment == NULL)
7420 	      {
7421 		gold_assert(parameters->errors()->error_count() > 0
7422 			    || issue_undefined_symbol_error(gsym));
7423 		return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7424 	      }
7425 	    return tls_gd_to_le(relinfo, target, rela, r_type, view,
7426 				psymval);
7427 	  }
7428 	else if (tlsopt == tls::TLSOPT_NONE)
7429 	  {
7430 	    tls_got_offset_type = GOT_TYPE_TLS_PAIR;
7431 	    // Firstly get the address for the got entry.
7432 	    typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
7433 	    if (gsym != NULL)
7434 	      {
7435 		gold_assert(gsym->has_got_offset(tls_got_offset_type));
7436 		got_entry_address = target->got_->address() +
7437 				    gsym->got_offset(tls_got_offset_type);
7438 	      }
7439 	    else
7440 	      {
7441 		unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7442 		gold_assert(
7443 		  object->local_has_got_offset(r_sym, tls_got_offset_type));
7444 		got_entry_address = target->got_->address() +
7445 		  object->local_got_offset(r_sym, tls_got_offset_type);
7446 	      }
7447 
7448 	    // Relocate the address into adrp/ld, adrp/add pair.
7449 	    switch (r_type)
7450 	      {
7451 	      case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
7452 		return aarch64_reloc_funcs::adrp(
7453 		  view, got_entry_address + addend, address);
7454 
7455 		break;
7456 
7457 	      case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
7458 		return aarch64_reloc_funcs::template rela_general<32>(
7459 		  view, got_entry_address, addend, reloc_property);
7460 		break;
7461 
7462 	      default:
7463 		gold_unreachable();
7464 	      }
7465 	  }
7466 	gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7467 			       _("unsupported gd_to_ie relaxation on %u"),
7468 			       r_type);
7469       }
7470       break;
7471 
7472     case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
7473     case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:  // Local-dynamic
7474       {
7475 	if (tlsopt == tls::TLSOPT_TO_LE)
7476 	  {
7477 	    if (tls_segment == NULL)
7478 	      {
7479 		gold_assert(parameters->errors()->error_count() > 0
7480 			    || issue_undefined_symbol_error(gsym));
7481 		return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7482 	      }
7483 	    return this->tls_ld_to_le(relinfo, target, rela, r_type, view,
7484 				      psymval);
7485 	  }
7486 
7487 	gold_assert(tlsopt == tls::TLSOPT_NONE);
7488 	// Relocate the field with the offset of the GOT entry for
7489 	// the module index.
7490 	typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
7491 	got_entry_address = (target->got_mod_index_entry(NULL, NULL, NULL) +
7492 			     target->got_->address());
7493 
7494 	switch (r_type)
7495 	  {
7496 	  case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
7497 	    return aarch64_reloc_funcs::adrp(
7498 	      view, got_entry_address + addend, address);
7499 	    break;
7500 
7501 	  case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
7502 	    return aarch64_reloc_funcs::template rela_general<32>(
7503 	      view, got_entry_address, addend, reloc_property);
7504 	    break;
7505 
7506 	  default:
7507 	    gold_unreachable();
7508 	  }
7509       }
7510       break;
7511 
7512     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
7513     case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
7514     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
7515     case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:  // Other local-dynamic
7516       {
7517 	AArch64_address value = psymval->value(object, 0);
7518 	if (tlsopt == tls::TLSOPT_TO_LE)
7519 	  {
7520 	    if (tls_segment == NULL)
7521 	      {
7522 		gold_assert(parameters->errors()->error_count() > 0
7523 			    || issue_undefined_symbol_error(gsym));
7524 		return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7525 	      }
7526 	  }
7527 	switch (r_type)
7528 	  {
7529 	  case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
7530 	    return aarch64_reloc_funcs::movnz(view, value + addend,
7531 					      reloc_property);
7532 	    break;
7533 
7534 	  case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
7535 	  case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
7536 	  case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
7537 	    return aarch64_reloc_funcs::template rela_general<32>(
7538 		view, value, addend, reloc_property);
7539 	    break;
7540 
7541 	  default:
7542 	    gold_unreachable();
7543 	  }
7544 	// We should never reach here.
7545       }
7546       break;
7547 
7548     case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7549     case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:  // Initial-exec
7550       {
7551 	if (tlsopt == tls::TLSOPT_TO_LE)
7552 	  {
7553 	    if (tls_segment == NULL)
7554 	      {
7555 		gold_assert(parameters->errors()->error_count() > 0
7556 			    || issue_undefined_symbol_error(gsym));
7557 		return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7558 	      }
7559 	    return tls_ie_to_le(relinfo, target, rela, r_type, view,
7560 				psymval);
7561 	  }
7562 	tls_got_offset_type = GOT_TYPE_TLS_OFFSET;
7563 
7564 	// Firstly get the address for the got entry.
7565 	typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
7566 	if (gsym != NULL)
7567 	  {
7568 	    gold_assert(gsym->has_got_offset(tls_got_offset_type));
7569 	    got_entry_address = target->got_->address() +
7570 				gsym->got_offset(tls_got_offset_type);
7571 	  }
7572 	else
7573 	  {
7574 	    unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7575 	    gold_assert(
7576 		object->local_has_got_offset(r_sym, tls_got_offset_type));
7577 	    got_entry_address = target->got_->address() +
7578 		object->local_got_offset(r_sym, tls_got_offset_type);
7579 	  }
7580 	// Relocate the address into adrp/ld, adrp/add pair.
7581 	switch (r_type)
7582 	  {
7583 	  case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7584 	    return aarch64_reloc_funcs::adrp(view, got_entry_address + addend,
7585 					     address);
7586 	    break;
7587 	  case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
7588 	    return aarch64_reloc_funcs::template rela_general<32>(
7589 	      view, got_entry_address, addend, reloc_property);
7590 	  default:
7591 	    gold_unreachable();
7592 	  }
7593       }
7594       // We shall never reach here.
7595       break;
7596 
7597     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
7598     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
7599     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
7600     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
7601     case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
7602     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
7603     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
7604     case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
7605     case elfcpp::R_AARCH64_TLSLE_LDST8_TPREL_LO12:
7606     case elfcpp::R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
7607     case elfcpp::R_AARCH64_TLSLE_LDST16_TPREL_LO12:
7608     case elfcpp::R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
7609     case elfcpp::R_AARCH64_TLSLE_LDST32_TPREL_LO12:
7610     case elfcpp::R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
7611     case elfcpp::R_AARCH64_TLSLE_LDST64_TPREL_LO12:
7612     case elfcpp::R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
7613       {
7614 	gold_assert(tls_segment != NULL);
7615 	AArch64_address value = psymval->value(object, 0);
7616 
7617 	if (!parameters->options().shared())
7618 	  {
7619 	    AArch64_address aligned_tcb_size =
7620 		align_address(target->tcb_size(),
7621 			      tls_segment->maximum_alignment());
7622 	    value += aligned_tcb_size;
7623 	    switch (r_type)
7624 	      {
7625 	      case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
7626 	      case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
7627 	      case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
7628 		return aarch64_reloc_funcs::movnz(view, value + addend,
7629 						  reloc_property);
7630 	      default:
7631 		return aarch64_reloc_funcs::template
7632 		  rela_general<32>(view,
7633 				   value,
7634 				   addend,
7635 				   reloc_property);
7636 	      }
7637 	  }
7638 	else
7639 	  gold_error(_("%s: unsupported reloc %u "
7640 		       "in non-static TLSLE mode."),
7641 		     object->name().c_str(), r_type);
7642       }
7643       break;
7644 
7645     case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
7646     case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
7647     case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
7648     case elfcpp::R_AARCH64_TLSDESC_CALL:
7649       {
7650 	if (tlsopt == tls::TLSOPT_TO_LE)
7651 	  {
7652 	    if (tls_segment == NULL)
7653 	      {
7654 		gold_assert(parameters->errors()->error_count() > 0
7655 			    || issue_undefined_symbol_error(gsym));
7656 		return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7657 	      }
7658 	    return tls_desc_gd_to_le(relinfo, target, rela, r_type,
7659 				     view, psymval);
7660 	  }
7661 	else
7662 	  {
7663 	    tls_got_offset_type = (tlsopt == tls::TLSOPT_TO_IE
7664 				   ? GOT_TYPE_TLS_OFFSET
7665 				   : GOT_TYPE_TLS_DESC);
7666 	    int got_tlsdesc_offset = 0;
7667 	    if (r_type != elfcpp::R_AARCH64_TLSDESC_CALL
7668 		&& tlsopt == tls::TLSOPT_NONE)
7669 	      {
7670 		// We created GOT entries in the .got.tlsdesc portion of the
7671 		// .got.plt section, but the offset stored in the symbol is the
7672 		// offset within .got.tlsdesc.
7673 		got_tlsdesc_offset = (target->got_tlsdesc_->address()
7674 				      - target->got_->address());
7675 	      }
7676 	    typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
7677 	    if (gsym != NULL)
7678 	      {
7679 		gold_assert(gsym->has_got_offset(tls_got_offset_type));
7680 		got_entry_address = target->got_->address()
7681 				    + got_tlsdesc_offset
7682 				    + gsym->got_offset(tls_got_offset_type);
7683 	      }
7684 	    else
7685 	      {
7686 		unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7687 		gold_assert(
7688 		    object->local_has_got_offset(r_sym, tls_got_offset_type));
7689 		got_entry_address = target->got_->address() +
7690 		  got_tlsdesc_offset +
7691 		  object->local_got_offset(r_sym, tls_got_offset_type);
7692 	      }
7693 	    if (tlsopt == tls::TLSOPT_TO_IE)
7694 	      {
7695 		return tls_desc_gd_to_ie(relinfo, target, rela, r_type,
7696 					 view, psymval, got_entry_address,
7697 					 address);
7698 	      }
7699 
7700 	    // Now do tlsdesc relocation.
7701 	    switch (r_type)
7702 	      {
7703 	      case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
7704 		return aarch64_reloc_funcs::adrp(view,
7705 						 got_entry_address + addend,
7706 						 address);
7707 		break;
7708 	      case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
7709 	      case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
7710 		return aarch64_reloc_funcs::template rela_general<32>(
7711 		  view, got_entry_address, addend, reloc_property);
7712 		break;
7713 	      case elfcpp::R_AARCH64_TLSDESC_CALL:
7714 		return aarch64_reloc_funcs::STATUS_OKAY;
7715 		break;
7716 	      default:
7717 		gold_unreachable();
7718 	      }
7719 	  }
7720 	}
7721       break;
7722 
7723     default:
7724       gold_error(_("%s: unsupported TLS reloc %u."),
7725 		 object->name().c_str(), r_type);
7726     }
7727   return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7728 }  // End of relocate_tls.
7729 
7730 
7731 template<int size, bool big_endian>
7732 inline
7733 typename AArch64_relocate_functions<size, big_endian>::Status
tls_gd_to_le(const Relocate_info<size,big_endian> * relinfo,Target_aarch64<size,big_endian> * target,const elfcpp::Rela<size,big_endian> & rela,unsigned int r_type,unsigned char * view,const Symbol_value<size> * psymval)7734 Target_aarch64<size, big_endian>::Relocate::tls_gd_to_le(
7735 	     const Relocate_info<size, big_endian>* relinfo,
7736 	     Target_aarch64<size, big_endian>* target,
7737 	     const elfcpp::Rela<size, big_endian>& rela,
7738 	     unsigned int r_type,
7739 	     unsigned char* view,
7740 	     const Symbol_value<size>* psymval)
7741 {
7742   typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
7743   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7744   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
7745 
7746   Insntype* ip = reinterpret_cast<Insntype*>(view);
7747   Insntype insn1 = elfcpp::Swap<32, big_endian>::readval(ip);
7748   Insntype insn2 = elfcpp::Swap<32, big_endian>::readval(ip + 1);
7749   Insntype insn3 = elfcpp::Swap<32, big_endian>::readval(ip + 2);
7750 
7751   if (r_type == elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC)
7752     {
7753       // This is the 2nd relocs, optimization should already have been
7754       // done.
7755       gold_assert((insn1 & 0xfff00000) == 0x91400000);
7756       return aarch64_reloc_funcs::STATUS_OKAY;
7757     }
7758 
7759   // The original sequence is -
7760   //   90000000        adrp    x0, 0 <main>
7761   //   91000000        add     x0, x0, #0x0
7762   //   94000000        bl      0 <__tls_get_addr>
7763   // optimized to sequence -
7764   //   d53bd040        mrs     x0, tpidr_el0
7765   //   91400000        add     x0, x0, #0x0, lsl #12
7766   //   91000000        add     x0, x0, #0x0
7767 
7768   // Unlike tls_ie_to_le, we change the 3 insns in one function call when we
7769   // encounter the first relocation "R_AARCH64_TLSGD_ADR_PAGE21". Because we
7770   // have to change "bl tls_get_addr", which does not have a corresponding tls
7771   // relocation type. So before proceeding, we need to make sure compiler
7772   // does not change the sequence.
7773   if(!(insn1 == 0x90000000      // adrp x0,0
7774        && insn2 == 0x91000000   // add x0, x0, #0x0
7775        && insn3 == 0x94000000)) // bl 0
7776     {
7777       // Ideally we should give up gd_to_le relaxation and do gd access.
7778       // However the gd_to_le relaxation decision has been made early
7779       // in the scan stage, where we did not allocate any GOT entry for
7780       // this symbol. Therefore we have to exit and report error now.
7781       gold_error(_("unexpected reloc insn sequence while relaxing "
7782 		   "tls gd to le for reloc %u."), r_type);
7783       return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7784     }
7785 
7786   // Write new insns.
7787   insn1 = 0xd53bd040;  // mrs x0, tpidr_el0
7788   insn2 = 0x91400000;  // add x0, x0, #0x0, lsl #12
7789   insn3 = 0x91000000;  // add x0, x0, #0x0
7790   elfcpp::Swap<32, big_endian>::writeval(ip, insn1);
7791   elfcpp::Swap<32, big_endian>::writeval(ip + 1, insn2);
7792   elfcpp::Swap<32, big_endian>::writeval(ip + 2, insn3);
7793 
7794   // Calculate tprel value.
7795   Output_segment* tls_segment = relinfo->layout->tls_segment();
7796   gold_assert(tls_segment != NULL);
7797   AArch64_address value = psymval->value(relinfo->object, 0);
7798   const elfcpp::Elf_Xword addend = rela.get_r_addend();
7799   AArch64_address aligned_tcb_size =
7800       align_address(target->tcb_size(), tls_segment->maximum_alignment());
7801   AArch64_address x = value + aligned_tcb_size;
7802 
7803   // After new insns are written, apply TLSLE relocs.
7804   const AArch64_reloc_property* rp1 =
7805       aarch64_reloc_property_table->get_reloc_property(
7806 	  elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12);
7807   const AArch64_reloc_property* rp2 =
7808       aarch64_reloc_property_table->get_reloc_property(
7809 	  elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12);
7810   gold_assert(rp1 != NULL && rp2 != NULL);
7811 
7812   typename aarch64_reloc_funcs::Status s1 =
7813       aarch64_reloc_funcs::template rela_general<32>(view + 4,
7814 						     x,
7815 						     addend,
7816 						     rp1);
7817   if (s1 != aarch64_reloc_funcs::STATUS_OKAY)
7818     return s1;
7819 
7820   typename aarch64_reloc_funcs::Status s2 =
7821       aarch64_reloc_funcs::template rela_general<32>(view + 8,
7822 						     x,
7823 						     addend,
7824 						     rp2);
7825 
7826   this->skip_call_tls_get_addr_ = true;
7827   return s2;
7828 }  // End of tls_gd_to_le
7829 
7830 
7831 template<int size, bool big_endian>
7832 inline
7833 typename AArch64_relocate_functions<size, big_endian>::Status
tls_ld_to_le(const Relocate_info<size,big_endian> * relinfo,Target_aarch64<size,big_endian> * target,const elfcpp::Rela<size,big_endian> & rela,unsigned int r_type,unsigned char * view,const Symbol_value<size> * psymval)7834 Target_aarch64<size, big_endian>::Relocate::tls_ld_to_le(
7835 	     const Relocate_info<size, big_endian>* relinfo,
7836 	     Target_aarch64<size, big_endian>* target,
7837 	     const elfcpp::Rela<size, big_endian>& rela,
7838 	     unsigned int r_type,
7839 	     unsigned char* view,
7840 	     const Symbol_value<size>* psymval)
7841 {
7842   typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
7843   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7844   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
7845 
7846   Insntype* ip = reinterpret_cast<Insntype*>(view);
7847   Insntype insn1 = elfcpp::Swap<32, big_endian>::readval(ip);
7848   Insntype insn2 = elfcpp::Swap<32, big_endian>::readval(ip + 1);
7849   Insntype insn3 = elfcpp::Swap<32, big_endian>::readval(ip + 2);
7850 
7851   if (r_type == elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC)
7852     {
7853       // This is the 2nd relocs, optimization should already have been
7854       // done.
7855       gold_assert((insn1 & 0xfff00000) == 0x91400000);
7856       return aarch64_reloc_funcs::STATUS_OKAY;
7857     }
7858 
7859   // The original sequence is -
7860   //   90000000        adrp    x0, 0 <main>
7861   //   91000000        add     x0, x0, #0x0
7862   //   94000000        bl      0 <__tls_get_addr>
7863   // optimized to sequence -
7864   //   d53bd040        mrs     x0, tpidr_el0
7865   //   91400000        add     x0, x0, #0x0, lsl #12
7866   //   91000000        add     x0, x0, #0x0
7867 
7868   // Unlike tls_ie_to_le, we change the 3 insns in one function call when we
7869   // encounter the first relocation "R_AARCH64_TLSLD_ADR_PAGE21". Because we
7870   // have to change "bl tls_get_addr", which does not have a corresponding tls
7871   // relocation type. So before proceeding, we need to make sure compiler
7872   // does not change the sequence.
7873   if(!(insn1 == 0x90000000      // adrp x0,0
7874        && insn2 == 0x91000000   // add x0, x0, #0x0
7875        && insn3 == 0x94000000)) // bl 0
7876     {
7877       // Ideally we should give up gd_to_le relaxation and do gd access.
7878       // However the gd_to_le relaxation decision has been made early
7879       // in the scan stage, where we did not allocate a GOT entry for
7880       // this symbol. Therefore we have to exit and report an error now.
7881       gold_error(_("unexpected reloc insn sequence while relaxing "
7882 		   "tls gd to le for reloc %u."), r_type);
7883       return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7884     }
7885 
7886   // Write new insns.
7887   insn1 = 0xd53bd040;  // mrs x0, tpidr_el0
7888   insn2 = 0x91400000;  // add x0, x0, #0x0, lsl #12
7889   insn3 = 0x91000000;  // add x0, x0, #0x0
7890   elfcpp::Swap<32, big_endian>::writeval(ip, insn1);
7891   elfcpp::Swap<32, big_endian>::writeval(ip + 1, insn2);
7892   elfcpp::Swap<32, big_endian>::writeval(ip + 2, insn3);
7893 
7894   // Calculate tprel value.
7895   Output_segment* tls_segment = relinfo->layout->tls_segment();
7896   gold_assert(tls_segment != NULL);
7897   AArch64_address value = psymval->value(relinfo->object, 0);
7898   const elfcpp::Elf_Xword addend = rela.get_r_addend();
7899   AArch64_address aligned_tcb_size =
7900       align_address(target->tcb_size(), tls_segment->maximum_alignment());
7901   AArch64_address x = value + aligned_tcb_size;
7902 
7903   // After new insns are written, apply TLSLE relocs.
7904   const AArch64_reloc_property* rp1 =
7905       aarch64_reloc_property_table->get_reloc_property(
7906 	  elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12);
7907   const AArch64_reloc_property* rp2 =
7908       aarch64_reloc_property_table->get_reloc_property(
7909 	  elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12);
7910   gold_assert(rp1 != NULL && rp2 != NULL);
7911 
7912   typename aarch64_reloc_funcs::Status s1 =
7913       aarch64_reloc_funcs::template rela_general<32>(view + 4,
7914 						     x,
7915 						     addend,
7916 						     rp1);
7917   if (s1 != aarch64_reloc_funcs::STATUS_OKAY)
7918     return s1;
7919 
7920   typename aarch64_reloc_funcs::Status s2 =
7921       aarch64_reloc_funcs::template rela_general<32>(view + 8,
7922 						     x,
7923 						     addend,
7924 						     rp2);
7925 
7926   this->skip_call_tls_get_addr_ = true;
7927   return s2;
7928 
7929 }  // End of tls_ld_to_le
7930 
7931 template<int size, bool big_endian>
7932 inline
7933 typename AArch64_relocate_functions<size, big_endian>::Status
tls_ie_to_le(const Relocate_info<size,big_endian> * relinfo,Target_aarch64<size,big_endian> * target,const elfcpp::Rela<size,big_endian> & rela,unsigned int r_type,unsigned char * view,const Symbol_value<size> * psymval)7934 Target_aarch64<size, big_endian>::Relocate::tls_ie_to_le(
7935 	     const Relocate_info<size, big_endian>* relinfo,
7936 	     Target_aarch64<size, big_endian>* target,
7937 	     const elfcpp::Rela<size, big_endian>& rela,
7938 	     unsigned int r_type,
7939 	     unsigned char* view,
7940 	     const Symbol_value<size>* psymval)
7941 {
7942   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
7943   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7944   typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
7945 
7946   AArch64_address value = psymval->value(relinfo->object, 0);
7947   Output_segment* tls_segment = relinfo->layout->tls_segment();
7948   AArch64_address aligned_tcb_address =
7949       align_address(target->tcb_size(), tls_segment->maximum_alignment());
7950   const elfcpp::Elf_Xword addend = rela.get_r_addend();
7951   AArch64_address x = value + addend + aligned_tcb_address;
7952   // "x" is the offset to tp, we can only do this if x is within
7953   // range [0, 2^32-1]
7954   if (!(size == 32 || (size == 64 && (static_cast<uint64_t>(x) >> 32) == 0)))
7955     {
7956       gold_error(_("TLS variable referred by reloc %u is too far from TP."),
7957 		 r_type);
7958       return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7959     }
7960 
7961   Insntype* ip = reinterpret_cast<Insntype*>(view);
7962   Insntype insn = elfcpp::Swap<32, big_endian>::readval(ip);
7963   unsigned int regno;
7964   Insntype newinsn;
7965   if (r_type == elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21)
7966     {
7967       // Generate movz.
7968       regno = (insn & 0x1f);
7969       newinsn = (0xd2a00000 | regno) | (((x >> 16) & 0xffff) << 5);
7970     }
7971   else if (r_type == elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC)
7972     {
7973       // Generate movk.
7974       regno = (insn & 0x1f);
7975       gold_assert(regno == ((insn >> 5) & 0x1f));
7976       newinsn = (0xf2800000 | regno) | ((x & 0xffff) << 5);
7977     }
7978   else
7979     gold_unreachable();
7980 
7981   elfcpp::Swap<32, big_endian>::writeval(ip, newinsn);
7982   return aarch64_reloc_funcs::STATUS_OKAY;
7983 }  // End of tls_ie_to_le
7984 
7985 
7986 template<int size, bool big_endian>
7987 inline
7988 typename AArch64_relocate_functions<size, big_endian>::Status
tls_desc_gd_to_le(const Relocate_info<size,big_endian> * relinfo,Target_aarch64<size,big_endian> * target,const elfcpp::Rela<size,big_endian> & rela,unsigned int r_type,unsigned char * view,const Symbol_value<size> * psymval)7989 Target_aarch64<size, big_endian>::Relocate::tls_desc_gd_to_le(
7990 	     const Relocate_info<size, big_endian>* relinfo,
7991 	     Target_aarch64<size, big_endian>* target,
7992 	     const elfcpp::Rela<size, big_endian>& rela,
7993 	     unsigned int r_type,
7994 	     unsigned char* view,
7995 	     const Symbol_value<size>* psymval)
7996 {
7997   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
7998   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7999   typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
8000 
8001   // TLSDESC-GD sequence is like:
8002   //   adrp  x0, :tlsdesc:v1
8003   //   ldr   x1, [x0, #:tlsdesc_lo12:v1]
8004   //   add   x0, x0, :tlsdesc_lo12:v1
8005   //   .tlsdesccall    v1
8006   //   blr   x1
8007   // After desc_gd_to_le optimization, the sequence will be like:
8008   //   movz  x0, #0x0, lsl #16
8009   //   movk  x0, #0x10
8010   //   nop
8011   //   nop
8012 
8013   // Calculate tprel value.
8014   Output_segment* tls_segment = relinfo->layout->tls_segment();
8015   gold_assert(tls_segment != NULL);
8016   Insntype* ip = reinterpret_cast<Insntype*>(view);
8017   const elfcpp::Elf_Xword addend = rela.get_r_addend();
8018   AArch64_address value = psymval->value(relinfo->object, addend);
8019   AArch64_address aligned_tcb_size =
8020       align_address(target->tcb_size(), tls_segment->maximum_alignment());
8021   AArch64_address x = value + aligned_tcb_size;
8022   // x is the offset to tp, we can only do this if x is within range
8023   // [0, 2^32-1]. If x is out of range, fail and exit.
8024   if (size == 64 && (static_cast<uint64_t>(x) >> 32) != 0)
8025     {
8026       gold_error(_("TLS variable referred by reloc %u is too far from TP. "
8027 		   "We Can't do gd_to_le relaxation.\n"), r_type);
8028       return aarch64_reloc_funcs::STATUS_BAD_RELOC;
8029     }
8030   Insntype newinsn;
8031   switch (r_type)
8032     {
8033     case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
8034     case elfcpp::R_AARCH64_TLSDESC_CALL:
8035       // Change to nop
8036       newinsn = 0xd503201f;
8037       break;
8038 
8039     case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
8040       // Change to movz.
8041       newinsn = 0xd2a00000 | (((x >> 16) & 0xffff) << 5);
8042       break;
8043 
8044     case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
8045       // Change to movk.
8046       newinsn = 0xf2800000 | ((x & 0xffff) << 5);
8047       break;
8048 
8049     default:
8050       gold_error(_("unsupported tlsdesc gd_to_le optimization on reloc %u"),
8051 		 r_type);
8052       gold_unreachable();
8053     }
8054   elfcpp::Swap<32, big_endian>::writeval(ip, newinsn);
8055   return aarch64_reloc_funcs::STATUS_OKAY;
8056 }  // End of tls_desc_gd_to_le
8057 
8058 
8059 template<int size, bool big_endian>
8060 inline
8061 typename AArch64_relocate_functions<size, big_endian>::Status
tls_desc_gd_to_ie(const Relocate_info<size,big_endian> *,Target_aarch64<size,big_endian> *,const elfcpp::Rela<size,big_endian> & rela,unsigned int r_type,unsigned char * view,const Symbol_value<size> *,typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address,typename elfcpp::Elf_types<size>::Elf_Addr address)8062 Target_aarch64<size, big_endian>::Relocate::tls_desc_gd_to_ie(
8063 	     const Relocate_info<size, big_endian>* /* relinfo */,
8064 	     Target_aarch64<size, big_endian>* /* target */,
8065 	     const elfcpp::Rela<size, big_endian>& rela,
8066 	     unsigned int r_type,
8067 	     unsigned char* view,
8068 	     const Symbol_value<size>* /* psymval */,
8069 	     typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address,
8070 	     typename elfcpp::Elf_types<size>::Elf_Addr address)
8071 {
8072   typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
8073   typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
8074 
8075   // TLSDESC-GD sequence is like:
8076   //   adrp  x0, :tlsdesc:v1
8077   //   ldr   x1, [x0, #:tlsdesc_lo12:v1]
8078   //   add   x0, x0, :tlsdesc_lo12:v1
8079   //   .tlsdesccall    v1
8080   //   blr   x1
8081   // After desc_gd_to_ie optimization, the sequence will be like:
8082   //   adrp  x0, :tlsie:v1
8083   //   ldr   x0, [x0, :tlsie_lo12:v1]
8084   //   nop
8085   //   nop
8086 
8087   Insntype* ip = reinterpret_cast<Insntype*>(view);
8088   const elfcpp::Elf_Xword addend = rela.get_r_addend();
8089   Insntype newinsn;
8090   switch (r_type)
8091     {
8092     case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
8093     case elfcpp::R_AARCH64_TLSDESC_CALL:
8094       // Change to nop
8095       newinsn = 0xd503201f;
8096       elfcpp::Swap<32, big_endian>::writeval(ip, newinsn);
8097       break;
8098 
8099     case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
8100       {
8101 	return aarch64_reloc_funcs::adrp(view, got_entry_address + addend,
8102 					 address);
8103       }
8104       break;
8105 
8106     case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
8107       {
8108        // Set ldr target register to be x0.
8109        Insntype insn = elfcpp::Swap<32, big_endian>::readval(ip);
8110        insn &= 0xffffffe0;
8111        elfcpp::Swap<32, big_endian>::writeval(ip, insn);
8112        // Do relocation.
8113 	const AArch64_reloc_property* reloc_property =
8114 	    aarch64_reloc_property_table->get_reloc_property(
8115 	      elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC);
8116 	return aarch64_reloc_funcs::template rela_general<32>(
8117 		 view, got_entry_address, addend, reloc_property);
8118       }
8119       break;
8120 
8121     default:
8122       gold_error(_("Don't support tlsdesc gd_to_ie optimization on reloc %u"),
8123 		 r_type);
8124       gold_unreachable();
8125     }
8126   return aarch64_reloc_funcs::STATUS_OKAY;
8127 }  // End of tls_desc_gd_to_ie
8128 
8129 // Relocate section data.
8130 
8131 template<int size, bool big_endian>
8132 void
relocate_section(const Relocate_info<size,big_endian> * relinfo,unsigned int sh_type,const unsigned char * prelocs,size_t reloc_count,Output_section * output_section,bool needs_special_offset_handling,unsigned char * view,typename elfcpp::Elf_types<size>::Elf_Addr address,section_size_type view_size,const Reloc_symbol_changes * reloc_symbol_changes)8133 Target_aarch64<size, big_endian>::relocate_section(
8134     const Relocate_info<size, big_endian>* relinfo,
8135     unsigned int sh_type,
8136     const unsigned char* prelocs,
8137     size_t reloc_count,
8138     Output_section* output_section,
8139     bool needs_special_offset_handling,
8140     unsigned char* view,
8141     typename elfcpp::Elf_types<size>::Elf_Addr address,
8142     section_size_type view_size,
8143     const Reloc_symbol_changes* reloc_symbol_changes)
8144 {
8145   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
8146   typedef Target_aarch64<size, big_endian> Aarch64;
8147   typedef typename Target_aarch64<size, big_endian>::Relocate AArch64_relocate;
8148   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8149       Classify_reloc;
8150 
8151   gold_assert(sh_type == elfcpp::SHT_RELA);
8152 
8153   // See if we are relocating a relaxed input section.  If so, the view
8154   // covers the whole output section and we need to adjust accordingly.
8155   if (needs_special_offset_handling)
8156     {
8157       const Output_relaxed_input_section* poris =
8158 	output_section->find_relaxed_input_section(relinfo->object,
8159 						   relinfo->data_shndx);
8160       if (poris != NULL)
8161 	{
8162 	  Address section_address = poris->address();
8163 	  section_size_type section_size = poris->data_size();
8164 
8165 	  gold_assert((section_address >= address)
8166 		      && ((section_address + section_size)
8167 			  <= (address + view_size)));
8168 
8169 	  off_t offset = section_address - address;
8170 	  view += offset;
8171 	  address += offset;
8172 	  view_size = section_size;
8173 	}
8174     }
8175 
8176   gold::relocate_section<size, big_endian, Aarch64, AArch64_relocate,
8177 			 gold::Default_comdat_behavior, Classify_reloc>(
8178     relinfo,
8179     this,
8180     prelocs,
8181     reloc_count,
8182     output_section,
8183     needs_special_offset_handling,
8184     view,
8185     address,
8186     view_size,
8187     reloc_symbol_changes);
8188 }
8189 
8190 // Scan the relocs during a relocatable link.
8191 
8192 template<int size, bool big_endian>
8193 void
scan_relocatable_relocs(Symbol_table * symtab,Layout * layout,Sized_relobj_file<size,big_endian> * object,unsigned int data_shndx,unsigned int sh_type,const unsigned char * prelocs,size_t reloc_count,Output_section * output_section,bool needs_special_offset_handling,size_t local_symbol_count,const unsigned char * plocal_symbols,Relocatable_relocs * rr)8194 Target_aarch64<size, big_endian>::scan_relocatable_relocs(
8195     Symbol_table* symtab,
8196     Layout* layout,
8197     Sized_relobj_file<size, big_endian>* object,
8198     unsigned int data_shndx,
8199     unsigned int sh_type,
8200     const unsigned char* prelocs,
8201     size_t reloc_count,
8202     Output_section* output_section,
8203     bool needs_special_offset_handling,
8204     size_t local_symbol_count,
8205     const unsigned char* plocal_symbols,
8206     Relocatable_relocs* rr)
8207 {
8208   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8209       Classify_reloc;
8210   typedef gold::Default_scan_relocatable_relocs<Classify_reloc>
8211       Scan_relocatable_relocs;
8212 
8213   gold_assert(sh_type == elfcpp::SHT_RELA);
8214 
8215   gold::scan_relocatable_relocs<size, big_endian, Scan_relocatable_relocs>(
8216     symtab,
8217     layout,
8218     object,
8219     data_shndx,
8220     prelocs,
8221     reloc_count,
8222     output_section,
8223     needs_special_offset_handling,
8224     local_symbol_count,
8225     plocal_symbols,
8226     rr);
8227 }
8228 
8229 // Scan the relocs for --emit-relocs.
8230 
8231 template<int size, bool big_endian>
8232 void
emit_relocs_scan(Symbol_table * symtab,Layout * layout,Sized_relobj_file<size,big_endian> * object,unsigned int data_shndx,unsigned int sh_type,const unsigned char * prelocs,size_t reloc_count,Output_section * output_section,bool needs_special_offset_handling,size_t local_symbol_count,const unsigned char * plocal_syms,Relocatable_relocs * rr)8233 Target_aarch64<size, big_endian>::emit_relocs_scan(
8234     Symbol_table* symtab,
8235     Layout* layout,
8236     Sized_relobj_file<size, big_endian>* object,
8237     unsigned int data_shndx,
8238     unsigned int sh_type,
8239     const unsigned char* prelocs,
8240     size_t reloc_count,
8241     Output_section* output_section,
8242     bool needs_special_offset_handling,
8243     size_t local_symbol_count,
8244     const unsigned char* plocal_syms,
8245     Relocatable_relocs* rr)
8246 {
8247   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8248       Classify_reloc;
8249   typedef gold::Default_emit_relocs_strategy<Classify_reloc>
8250       Emit_relocs_strategy;
8251 
8252   gold_assert(sh_type == elfcpp::SHT_RELA);
8253 
8254   gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>(
8255     symtab,
8256     layout,
8257     object,
8258     data_shndx,
8259     prelocs,
8260     reloc_count,
8261     output_section,
8262     needs_special_offset_handling,
8263     local_symbol_count,
8264     plocal_syms,
8265     rr);
8266 }
8267 
8268 // Relocate a section during a relocatable link.
8269 
8270 template<int size, bool big_endian>
8271 void
relocate_relocs(const Relocate_info<size,big_endian> * relinfo,unsigned int sh_type,const unsigned char * prelocs,size_t reloc_count,Output_section * output_section,typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,unsigned char * view,typename elfcpp::Elf_types<size>::Elf_Addr view_address,section_size_type view_size,unsigned char * reloc_view,section_size_type reloc_view_size)8272 Target_aarch64<size, big_endian>::relocate_relocs(
8273     const Relocate_info<size, big_endian>* relinfo,
8274     unsigned int sh_type,
8275     const unsigned char* prelocs,
8276     size_t reloc_count,
8277     Output_section* output_section,
8278     typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
8279     unsigned char* view,
8280     typename elfcpp::Elf_types<size>::Elf_Addr view_address,
8281     section_size_type view_size,
8282     unsigned char* reloc_view,
8283     section_size_type reloc_view_size)
8284 {
8285   typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8286       Classify_reloc;
8287 
8288   gold_assert(sh_type == elfcpp::SHT_RELA);
8289 
8290   if (offset_in_output_section == this->invalid_address)
8291     {
8292       const Output_relaxed_input_section *poris
8293 	= output_section->find_relaxed_input_section(relinfo->object,
8294 						     relinfo->data_shndx);
8295       if (poris != NULL)
8296 	{
8297 	  Address section_address = poris->address();
8298 	  section_size_type section_size = poris->data_size();
8299 
8300 	  gold_assert(section_address >= view_address
8301 		      && (section_address + section_size
8302 			  <= view_address + view_size));
8303 
8304 	  off_t offset = section_address - view_address;
8305 	  view += offset;
8306 	  view_address += offset;
8307 	  view_size = section_size;
8308 	}
8309     }
8310 
8311   gold::relocate_relocs<size, big_endian, Classify_reloc>(
8312     relinfo,
8313     prelocs,
8314     reloc_count,
8315     output_section,
8316     offset_in_output_section,
8317     view,
8318     view_address,
8319     view_size,
8320     reloc_view,
8321     reloc_view_size);
8322 }
8323 
8324 
8325 // Return whether this is a 3-insn erratum sequence.
8326 
8327 template<int size, bool big_endian>
8328 bool
is_erratum_843419_sequence(typename elfcpp::Swap<32,big_endian>::Valtype insn1,typename elfcpp::Swap<32,big_endian>::Valtype insn2,typename elfcpp::Swap<32,big_endian>::Valtype insn3)8329 Target_aarch64<size, big_endian>::is_erratum_843419_sequence(
8330     typename elfcpp::Swap<32,big_endian>::Valtype insn1,
8331     typename elfcpp::Swap<32,big_endian>::Valtype insn2,
8332     typename elfcpp::Swap<32,big_endian>::Valtype insn3)
8333 {
8334   unsigned rt1, rt2;
8335   bool load, pair;
8336 
8337   // The 2nd insn is a single register load or store; or register pair
8338   // store.
8339   if (Insn_utilities::aarch64_mem_op_p(insn2, &rt1, &rt2, &pair, &load)
8340       && (!pair || (pair && !load)))
8341     {
8342       // The 3rd insn is a load or store instruction from the "Load/store
8343       // register (unsigned immediate)" encoding class, using Rn as the
8344       // base address register.
8345       if (Insn_utilities::aarch64_ldst_uimm(insn3)
8346 	  && (Insn_utilities::aarch64_rn(insn3)
8347 	      == Insn_utilities::aarch64_rd(insn1)))
8348 	return true;
8349     }
8350   return false;
8351 }
8352 
8353 
8354 // Return whether this is a 835769 sequence.
8355 // (Similarly implemented as in elfnn-aarch64.c.)
8356 
8357 template<int size, bool big_endian>
8358 bool
is_erratum_835769_sequence(typename elfcpp::Swap<32,big_endian>::Valtype insn1,typename elfcpp::Swap<32,big_endian>::Valtype insn2)8359 Target_aarch64<size, big_endian>::is_erratum_835769_sequence(
8360     typename elfcpp::Swap<32,big_endian>::Valtype insn1,
8361     typename elfcpp::Swap<32,big_endian>::Valtype insn2)
8362 {
8363   uint32_t rt;
8364   uint32_t rt2 = 0;
8365   uint32_t rn;
8366   uint32_t rm;
8367   uint32_t ra;
8368   bool pair;
8369   bool load;
8370 
8371   if (Insn_utilities::aarch64_mlxl(insn2)
8372       && Insn_utilities::aarch64_mem_op_p (insn1, &rt, &rt2, &pair, &load))
8373     {
8374       /* Any SIMD memory op is independent of the subsequent MLA
8375 	 by definition of the erratum.  */
8376       if (Insn_utilities::aarch64_bit(insn1, 26))
8377 	return true;
8378 
8379       /* If not SIMD, check for integer memory ops and MLA relationship.  */
8380       rn = Insn_utilities::aarch64_rn(insn2);
8381       ra = Insn_utilities::aarch64_ra(insn2);
8382       rm = Insn_utilities::aarch64_rm(insn2);
8383 
8384       /* If this is a load and there's a true(RAW) dependency, we are safe
8385 	 and this is not an erratum sequence.  */
8386       if (load &&
8387 	  (rt == rn || rt == rm || rt == ra
8388 	   || (pair && (rt2 == rn || rt2 == rm || rt2 == ra))))
8389 	return false;
8390 
8391       /* We conservatively put out stubs for all other cases (including
8392 	 writebacks).  */
8393       return true;
8394     }
8395 
8396   return false;
8397 }
8398 
8399 
8400 // Helper method to create erratum stub for ST_E_843419 and ST_E_835769.
8401 
8402 template<int size, bool big_endian>
8403 void
create_erratum_stub(AArch64_relobj<size,big_endian> * relobj,unsigned int shndx,section_size_type erratum_insn_offset,Address erratum_address,typename Insn_utilities::Insntype erratum_insn,int erratum_type,unsigned int e843419_adrp_offset)8404 Target_aarch64<size, big_endian>::create_erratum_stub(
8405     AArch64_relobj<size, big_endian>* relobj,
8406     unsigned int shndx,
8407     section_size_type erratum_insn_offset,
8408     Address erratum_address,
8409     typename Insn_utilities::Insntype erratum_insn,
8410     int erratum_type,
8411     unsigned int e843419_adrp_offset)
8412 {
8413   gold_assert(erratum_type == ST_E_843419 || erratum_type == ST_E_835769);
8414   The_stub_table* stub_table = relobj->stub_table(shndx);
8415   gold_assert(stub_table != NULL);
8416   if (stub_table->find_erratum_stub(relobj,
8417 				    shndx,
8418 				    erratum_insn_offset) == NULL)
8419     {
8420       const int BPI = AArch64_insn_utilities<big_endian>::BYTES_PER_INSN;
8421       The_erratum_stub* stub;
8422       if (erratum_type == ST_E_835769)
8423 	stub = new The_erratum_stub(relobj, erratum_type, shndx,
8424 				    erratum_insn_offset);
8425       else if (erratum_type == ST_E_843419)
8426 	stub = new E843419_stub<size, big_endian>(
8427 	    relobj, shndx, erratum_insn_offset, e843419_adrp_offset);
8428       else
8429 	gold_unreachable();
8430       stub->set_erratum_insn(erratum_insn);
8431       stub->set_erratum_address(erratum_address);
8432       // For erratum ST_E_843419 and ST_E_835769, the destination address is
8433       // always the next insn after erratum insn.
8434       stub->set_destination_address(erratum_address + BPI);
8435       stub_table->add_erratum_stub(stub);
8436     }
8437 }
8438 
8439 
8440 // Scan erratum for section SHNDX range [output_address + span_start,
8441 // output_address + span_end). Note here we do not share the code with
8442 // scan_erratum_843419_span function, because for 843419 we optimize by only
8443 // scanning the last few insns of a page, whereas for 835769, we need to scan
8444 // every insn.
8445 
8446 template<int size, bool big_endian>
8447 void
scan_erratum_835769_span(AArch64_relobj<size,big_endian> * relobj,unsigned int shndx,const section_size_type span_start,const section_size_type span_end,unsigned char * input_view,Address output_address)8448 Target_aarch64<size, big_endian>::scan_erratum_835769_span(
8449     AArch64_relobj<size, big_endian>*  relobj,
8450     unsigned int shndx,
8451     const section_size_type span_start,
8452     const section_size_type span_end,
8453     unsigned char* input_view,
8454     Address output_address)
8455 {
8456   typedef typename Insn_utilities::Insntype Insntype;
8457 
8458   const int BPI = AArch64_insn_utilities<big_endian>::BYTES_PER_INSN;
8459 
8460   // Adjust output_address and view to the start of span.
8461   output_address += span_start;
8462   input_view += span_start;
8463 
8464   section_size_type span_length = span_end - span_start;
8465   section_size_type offset = 0;
8466   for (offset = 0; offset + BPI < span_length; offset += BPI)
8467     {
8468       Insntype* ip = reinterpret_cast<Insntype*>(input_view + offset);
8469       Insntype insn1 = ip[0];
8470       Insntype insn2 = ip[1];
8471       if (is_erratum_835769_sequence(insn1, insn2))
8472 	{
8473 	  Insntype erratum_insn = insn2;
8474 	  // "span_start + offset" is the offset for insn1. So for insn2, it is
8475 	  // "span_start + offset + BPI".
8476 	  section_size_type erratum_insn_offset = span_start + offset + BPI;
8477 	  Address erratum_address = output_address + offset + BPI;
8478 	  gold_info(_("Erratum 835769 found and fixed at \"%s\", "
8479 			 "section %d, offset 0x%08x."),
8480 		       relobj->name().c_str(), shndx,
8481 		       (unsigned int)(span_start + offset));
8482 
8483 	  this->create_erratum_stub(relobj, shndx,
8484 				    erratum_insn_offset, erratum_address,
8485 				    erratum_insn, ST_E_835769);
8486 	  offset += BPI;  // Skip mac insn.
8487 	}
8488     }
8489 }  // End of "Target_aarch64::scan_erratum_835769_span".
8490 
8491 
8492 // Scan erratum for section SHNDX range
8493 // [output_address + span_start, output_address + span_end).
8494 
8495 template<int size, bool big_endian>
8496 void
scan_erratum_843419_span(AArch64_relobj<size,big_endian> * relobj,unsigned int shndx,const section_size_type span_start,const section_size_type span_end,unsigned char * input_view,Address output_address)8497 Target_aarch64<size, big_endian>::scan_erratum_843419_span(
8498     AArch64_relobj<size, big_endian>*  relobj,
8499     unsigned int shndx,
8500     const section_size_type span_start,
8501     const section_size_type span_end,
8502     unsigned char* input_view,
8503     Address output_address)
8504 {
8505   typedef typename Insn_utilities::Insntype Insntype;
8506 
8507   // Adjust output_address and view to the start of span.
8508   output_address += span_start;
8509   input_view += span_start;
8510 
8511   if ((output_address & 0x03) != 0)
8512     return;
8513 
8514   section_size_type offset = 0;
8515   section_size_type span_length = span_end - span_start;
8516   // The first instruction must be ending at 0xFF8 or 0xFFC.
8517   unsigned int page_offset = output_address & 0xFFF;
8518   // Make sure starting position, that is "output_address+offset",
8519   // starts at page position 0xff8 or 0xffc.
8520   if (page_offset < 0xff8)
8521     offset = 0xff8 - page_offset;
8522   while (offset + 3 * Insn_utilities::BYTES_PER_INSN <= span_length)
8523     {
8524       Insntype* ip = reinterpret_cast<Insntype*>(input_view + offset);
8525       Insntype insn1 = ip[0];
8526       if (Insn_utilities::is_adrp(insn1))
8527 	{
8528 	  Insntype insn2 = ip[1];
8529 	  Insntype insn3 = ip[2];
8530 	  Insntype erratum_insn;
8531 	  unsigned insn_offset;
8532 	  bool do_report = false;
8533 	  if (is_erratum_843419_sequence(insn1, insn2, insn3))
8534 	    {
8535 	      do_report = true;
8536 	      erratum_insn = insn3;
8537 	      insn_offset = 2 * Insn_utilities::BYTES_PER_INSN;
8538 	    }
8539 	  else if (offset + 4 * Insn_utilities::BYTES_PER_INSN <= span_length)
8540 	    {
8541 	      // Optionally we can have an insn between ins2 and ins3
8542 	      Insntype insn_opt = ip[2];
8543 	      // And insn_opt must not be a branch.
8544 	      if (!Insn_utilities::aarch64_b(insn_opt)
8545 		  && !Insn_utilities::aarch64_bl(insn_opt)
8546 		  && !Insn_utilities::aarch64_blr(insn_opt)
8547 		  && !Insn_utilities::aarch64_br(insn_opt))
8548 		{
8549 		  // And insn_opt must not write to dest reg in insn1. However
8550 		  // we do a conservative scan, which means we may fix/report
8551 		  // more than necessary, but it doesn't hurt.
8552 
8553 		  Insntype insn4 = ip[3];
8554 		  if (is_erratum_843419_sequence(insn1, insn2, insn4))
8555 		    {
8556 		      do_report = true;
8557 		      erratum_insn = insn4;
8558 		      insn_offset = 3 * Insn_utilities::BYTES_PER_INSN;
8559 		    }
8560 		}
8561 	    }
8562 	  if (do_report)
8563 	    {
8564 	      unsigned int erratum_insn_offset =
8565 		span_start + offset + insn_offset;
8566 	      Address erratum_address =
8567 		output_address + offset + insn_offset;
8568 	      create_erratum_stub(relobj, shndx,
8569 				  erratum_insn_offset, erratum_address,
8570 				  erratum_insn, ST_E_843419,
8571 				  span_start + offset);
8572 	    }
8573 	}
8574 
8575       // Advance to next candidate instruction. We only consider instruction
8576       // sequences starting at a page offset of 0xff8 or 0xffc.
8577       page_offset = (output_address + offset) & 0xfff;
8578       if (page_offset == 0xff8)
8579 	offset += 4;
8580       else  // (page_offset == 0xffc), we move to next page's 0xff8.
8581 	offset += 0xffc;
8582     }
8583 }  // End of "Target_aarch64::scan_erratum_843419_span".
8584 
8585 
8586 // The selector for aarch64 object files.
8587 
8588 template<int size, bool big_endian>
8589 class Target_selector_aarch64 : public Target_selector
8590 {
8591  public:
8592   Target_selector_aarch64();
8593 
8594   virtual Target*
do_instantiate_target()8595   do_instantiate_target()
8596   { return new Target_aarch64<size, big_endian>(); }
8597 };
8598 
8599 template<>
Target_selector_aarch64()8600 Target_selector_aarch64<32, true>::Target_selector_aarch64()
8601   : Target_selector(elfcpp::EM_AARCH64, 32, true,
8602 		    "elf32-bigaarch64", "aarch64_elf32_be_vec")
8603 { }
8604 
8605 template<>
Target_selector_aarch64()8606 Target_selector_aarch64<32, false>::Target_selector_aarch64()
8607   : Target_selector(elfcpp::EM_AARCH64, 32, false,
8608 		    "elf32-littleaarch64", "aarch64_elf32_le_vec")
8609 { }
8610 
8611 template<>
Target_selector_aarch64()8612 Target_selector_aarch64<64, true>::Target_selector_aarch64()
8613   : Target_selector(elfcpp::EM_AARCH64, 64, true,
8614 		    "elf64-bigaarch64", "aarch64_elf64_be_vec")
8615 { }
8616 
8617 template<>
Target_selector_aarch64()8618 Target_selector_aarch64<64, false>::Target_selector_aarch64()
8619   : Target_selector(elfcpp::EM_AARCH64, 64, false,
8620 		    "elf64-littleaarch64", "aarch64_elf64_le_vec")
8621 { }
8622 
8623 Target_selector_aarch64<32, true> target_selector_aarch64elf32b;
8624 Target_selector_aarch64<32, false> target_selector_aarch64elf32;
8625 Target_selector_aarch64<64, true> target_selector_aarch64elfb;
8626 Target_selector_aarch64<64, false> target_selector_aarch64elf;
8627 
8628 } // End anonymous namespace.
8629