1@c Copyright 1991, 1992, 1993, 1994, 1995, 1997, 1998, 1999, 2000, 2@c 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2011 3@c Free Software Foundation, Inc. 4@c This is part of the GAS manual. 5@c For copying conditions, see the file as.texinfo. 6@c man end 7 8@ifset GENERIC 9@page 10@node i386-Dependent 11@chapter 80386 Dependent Features 12@end ifset 13@ifclear GENERIC 14@node Machine Dependencies 15@chapter 80386 Dependent Features 16@end ifclear 17 18@cindex i386 support 19@cindex i80386 support 20@cindex x86-64 support 21 22The i386 version @code{@value{AS}} supports both the original Intel 386 23architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture 24extending the Intel architecture to 64-bits. 25 26@menu 27* i386-Options:: Options 28* i386-Directives:: X86 specific directives 29* i386-Syntax:: Syntactical considerations 30* i386-Mnemonics:: Instruction Naming 31* i386-Regs:: Register Naming 32* i386-Prefixes:: Instruction Prefixes 33* i386-Memory:: Memory References 34* i386-Jumps:: Handling of Jump Instructions 35* i386-Float:: Floating Point 36* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations 37* i386-LWP:: AMD's Lightweight Profiling Instructions 38* i386-BMI:: Bit Manipulation Instruction 39* i386-TBM:: AMD's Trailing Bit Manipulation Instructions 40* i386-16bit:: Writing 16-bit Code 41* i386-Arch:: Specifying an x86 CPU architecture 42* i386-Bugs:: AT&T Syntax bugs 43* i386-Notes:: Notes 44@end menu 45 46@node i386-Options 47@section Options 48 49@cindex options for i386 50@cindex options for x86-64 51@cindex i386 options 52@cindex x86-64 options 53 54The i386 version of @code{@value{AS}} has a few machine 55dependent options: 56 57@c man begin OPTIONS 58@table @gcctabopt 59@cindex @samp{--32} option, i386 60@cindex @samp{--32} option, x86-64 61@cindex @samp{--x32} option, i386 62@cindex @samp{--x32} option, x86-64 63@cindex @samp{--64} option, i386 64@cindex @samp{--64} option, x86-64 65@item --32 | --x32 | --64 66Select the word size, either 32 bits or 64 bits. @samp{--32} 67implies Intel i386 architecture, while @samp{--x32} and @samp{--64} 68imply AMD x86-64 architecture with 32-bit or 64-bit word-size 69respectively. 70 71These options are only available with the ELF object file format, and 72require that the necessary BFD support has been included (on a 32-bit 73platform you have to add --enable-64-bit-bfd to configure enable 64-bit 74usage and use x86-64 as target platform). 75 76@item -n 77By default, x86 GAS replaces multiple nop instructions used for 78alignment within code sections with multi-byte nop instructions such 79as leal 0(%esi,1),%esi. This switch disables the optimization. 80 81@cindex @samp{--divide} option, i386 82@item --divide 83On SVR4-derived platforms, the character @samp{/} is treated as a comment 84character, which means that it cannot be used in expressions. The 85@samp{--divide} option turns @samp{/} into a normal character. This does 86not disable @samp{/} at the beginning of a line starting a comment, or 87affect using @samp{#} for starting a comment. 88 89@cindex @samp{-march=} option, i386 90@cindex @samp{-march=} option, x86-64 91@item -march=@var{CPU}[+@var{EXTENSION}@dots{}] 92This option specifies the target processor. The assembler will 93issue an error message if an attempt is made to assemble an instruction 94which will not execute on the target processor. The following 95processor names are recognized: 96@code{i8086}, 97@code{i186}, 98@code{i286}, 99@code{i386}, 100@code{i486}, 101@code{i586}, 102@code{i686}, 103@code{pentium}, 104@code{pentiumpro}, 105@code{pentiumii}, 106@code{pentiumiii}, 107@code{pentium4}, 108@code{prescott}, 109@code{nocona}, 110@code{core}, 111@code{core2}, 112@code{corei7}, 113@code{l1om}, 114@code{k1om}, 115@code{k6}, 116@code{k6_2}, 117@code{athlon}, 118@code{opteron}, 119@code{k8}, 120@code{amdfam10}, 121@code{bdver1}, 122@code{bdver2}, 123@code{bdver3}, 124@code{btver1}, 125@code{btver2}, 126@code{generic32} and 127@code{generic64}. 128 129In addition to the basic instruction set, the assembler can be told to 130accept various extension mnemonics. For example, 131@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and 132@var{vmx}. The following extensions are currently supported: 133@code{8087}, 134@code{287}, 135@code{387}, 136@code{no87}, 137@code{mmx}, 138@code{nommx}, 139@code{sse}, 140@code{sse2}, 141@code{sse3}, 142@code{ssse3}, 143@code{sse4.1}, 144@code{sse4.2}, 145@code{sse4}, 146@code{nosse}, 147@code{avx}, 148@code{avx2}, 149@code{adx}, 150@code{rdseed}, 151@code{prfchw}, 152@code{noavx}, 153@code{vmx}, 154@code{vmfunc}, 155@code{smx}, 156@code{xsave}, 157@code{xsaveopt}, 158@code{aes}, 159@code{pclmul}, 160@code{fsgsbase}, 161@code{rdrnd}, 162@code{f16c}, 163@code{bmi2}, 164@code{fma}, 165@code{movbe}, 166@code{ept}, 167@code{lzcnt}, 168@code{hle}, 169@code{rtm}, 170@code{invpcid}, 171@code{clflush}, 172@code{lwp}, 173@code{fma4}, 174@code{xop}, 175@code{syscall}, 176@code{rdtscp}, 177@code{3dnow}, 178@code{3dnowa}, 179@code{sse4a}, 180@code{sse5}, 181@code{svme}, 182@code{abm} and 183@code{padlock}. 184Note that rather than extending a basic instruction set, the extension 185mnemonics starting with @code{no} revoke the respective functionality. 186 187When the @code{.arch} directive is used with @option{-march}, the 188@code{.arch} directive will take precedent. 189 190@cindex @samp{-mtune=} option, i386 191@cindex @samp{-mtune=} option, x86-64 192@item -mtune=@var{CPU} 193This option specifies a processor to optimize for. When used in 194conjunction with the @option{-march} option, only instructions 195of the processor specified by the @option{-march} option will be 196generated. 197 198Valid @var{CPU} values are identical to the processor list of 199@option{-march=@var{CPU}}. 200 201@cindex @samp{-msse2avx} option, i386 202@cindex @samp{-msse2avx} option, x86-64 203@item -msse2avx 204This option specifies that the assembler should encode SSE instructions 205with VEX prefix. 206 207@cindex @samp{-msse-check=} option, i386 208@cindex @samp{-msse-check=} option, x86-64 209@item -msse-check=@var{none} 210@itemx -msse-check=@var{warning} 211@itemx -msse-check=@var{error} 212These options control if the assembler should check SSE intructions. 213@option{-msse-check=@var{none}} will make the assembler not to check SSE 214instructions, which is the default. @option{-msse-check=@var{warning}} 215will make the assembler issue a warning for any SSE intruction. 216@option{-msse-check=@var{error}} will make the assembler issue an error 217for any SSE intruction. 218 219@cindex @samp{-mavxscalar=} option, i386 220@cindex @samp{-mavxscalar=} option, x86-64 221@item -mavxscalar=@var{128} 222@itemx -mavxscalar=@var{256} 223These options control how the assembler should encode scalar AVX 224instructions. @option{-mavxscalar=@var{128}} will encode scalar 225AVX instructions with 128bit vector length, which is the default. 226@option{-mavxscalar=@var{256}} will encode scalar AVX instructions 227with 256bit vector length. 228 229@cindex @samp{-mmnemonic=} option, i386 230@cindex @samp{-mmnemonic=} option, x86-64 231@item -mmnemonic=@var{att} 232@itemx -mmnemonic=@var{intel} 233This option specifies instruction mnemonic for matching instructions. 234The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will 235take precedent. 236 237@cindex @samp{-msyntax=} option, i386 238@cindex @samp{-msyntax=} option, x86-64 239@item -msyntax=@var{att} 240@itemx -msyntax=@var{intel} 241This option specifies instruction syntax when processing instructions. 242The @code{.att_syntax} and @code{.intel_syntax} directives will 243take precedent. 244 245@cindex @samp{-mnaked-reg} option, i386 246@cindex @samp{-mnaked-reg} option, x86-64 247@item -mnaked-reg 248This opetion specifies that registers don't require a @samp{%} prefix. 249The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent. 250 251@end table 252@c man end 253 254@node i386-Directives 255@section x86 specific Directives 256 257@cindex machine directives, x86 258@cindex x86 machine directives 259@table @code 260 261@cindex @code{lcomm} directive, COFF 262@item .lcomm @var{symbol} , @var{length}[, @var{alignment}] 263Reserve @var{length} (an absolute expression) bytes for a local common 264denoted by @var{symbol}. The section and value of @var{symbol} are 265those of the new local common. The addresses are allocated in the bss 266section, so that at run-time the bytes start off zeroed. Since 267@var{symbol} is not declared global, it is normally not visible to 268@code{@value{LD}}. The optional third parameter, @var{alignment}, 269specifies the desired alignment of the symbol in the bss section. 270 271This directive is only available for COFF based x86 targets. 272 273@c FIXME: Document other x86 specific directives ? Eg: .code16gcc, 274@c .largecomm 275 276@end table 277 278@node i386-Syntax 279@section i386 Syntactical Considerations 280@menu 281* i386-Variations:: AT&T Syntax versus Intel Syntax 282* i386-Chars:: Special Characters 283@end menu 284 285@node i386-Variations 286@subsection AT&T Syntax versus Intel Syntax 287 288@cindex i386 intel_syntax pseudo op 289@cindex intel_syntax pseudo op, i386 290@cindex i386 att_syntax pseudo op 291@cindex att_syntax pseudo op, i386 292@cindex i386 syntax compatibility 293@cindex syntax compatibility, i386 294@cindex x86-64 intel_syntax pseudo op 295@cindex intel_syntax pseudo op, x86-64 296@cindex x86-64 att_syntax pseudo op 297@cindex att_syntax pseudo op, x86-64 298@cindex x86-64 syntax compatibility 299@cindex syntax compatibility, x86-64 300 301@code{@value{AS}} now supports assembly using Intel assembler syntax. 302@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches 303back to the usual AT&T mode for compatibility with the output of 304@code{@value{GCC}}. Either of these directives may have an optional 305argument, @code{prefix}, or @code{noprefix} specifying whether registers 306require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite 307different from Intel syntax. We mention these differences because 308almost all 80386 documents use Intel syntax. Notable differences 309between the two syntaxes are: 310 311@cindex immediate operands, i386 312@cindex i386 immediate operands 313@cindex register operands, i386 314@cindex i386 register operands 315@cindex jump/call operands, i386 316@cindex i386 jump/call operands 317@cindex operand delimiters, i386 318 319@cindex immediate operands, x86-64 320@cindex x86-64 immediate operands 321@cindex register operands, x86-64 322@cindex x86-64 register operands 323@cindex jump/call operands, x86-64 324@cindex x86-64 jump/call operands 325@cindex operand delimiters, x86-64 326@itemize @bullet 327@item 328AT&T immediate operands are preceded by @samp{$}; Intel immediate 329operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}). 330AT&T register operands are preceded by @samp{%}; Intel register operands 331are undelimited. AT&T absolute (as opposed to PC relative) jump/call 332operands are prefixed by @samp{*}; they are undelimited in Intel syntax. 333 334@cindex i386 source, destination operands 335@cindex source, destination operands; i386 336@cindex x86-64 source, destination operands 337@cindex source, destination operands; x86-64 338@item 339AT&T and Intel syntax use the opposite order for source and destination 340operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The 341@samp{source, dest} convention is maintained for compatibility with 342previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and 343instructions with 2 immediate operands, such as the @samp{enter} 344instruction, do @emph{not} have reversed order. @ref{i386-Bugs}. 345 346@cindex mnemonic suffixes, i386 347@cindex sizes operands, i386 348@cindex i386 size suffixes 349@cindex mnemonic suffixes, x86-64 350@cindex sizes operands, x86-64 351@cindex x86-64 size suffixes 352@item 353In AT&T syntax the size of memory operands is determined from the last 354character of the instruction mnemonic. Mnemonic suffixes of @samp{b}, 355@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long 356(32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes 357this by prefixing memory operands (@emph{not} the instruction mnemonics) with 358@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus, 359Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T 360syntax. 361 362In 64-bit code, @samp{movabs} can be used to encode the @samp{mov} 363instruction with the 64-bit displacement or immediate operand. 364 365@cindex return instructions, i386 366@cindex i386 jump, call, return 367@cindex return instructions, x86-64 368@cindex x86-64 jump, call, return 369@item 370Immediate form long jumps and calls are 371@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the 372Intel syntax is 373@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return 374instruction 375is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is 376@samp{ret far @var{stack-adjust}}. 377 378@cindex sections, i386 379@cindex i386 sections 380@cindex sections, x86-64 381@cindex x86-64 sections 382@item 383The AT&T assembler does not provide support for multiple section 384programs. Unix style systems expect all programs to be single sections. 385@end itemize 386 387@node i386-Chars 388@subsection Special Characters 389 390@cindex line comment character, i386 391@cindex i386 line comment character 392The presence of a @samp{#} appearing anywhere on a line indicates the 393start of a comment that extends to the end of that line. 394 395If a @samp{#} appears as the first character of a line then the whole 396line is treated as a comment, but in this case the line can also be a 397logical line number directive (@pxref{Comments}) or a preprocessor 398control command (@pxref{Preprocessing}). 399 400If the @option{--divide} command line option has not been specified 401then the @samp{/} character appearing anywhere on a line also 402introduces a line comment. 403 404@cindex line separator, i386 405@cindex statement separator, i386 406@cindex i386 line separator 407The @samp{;} character can be used to separate statements on the same 408line. 409 410@node i386-Mnemonics 411@section Instruction Naming 412 413@cindex i386 instruction naming 414@cindex instruction naming, i386 415@cindex x86-64 instruction naming 416@cindex instruction naming, x86-64 417 418Instruction mnemonics are suffixed with one character modifiers which 419specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l} 420and @samp{q} specify byte, word, long and quadruple word operands. If 421no suffix is specified by an instruction then @code{@value{AS}} tries to 422fill in the missing suffix based on the destination register operand 423(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent 424to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to 425@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix 426assembler which assumes that a missing mnemonic suffix implies long 427operand size. (This incompatibility does not affect compiler output 428since compilers always explicitly specify the mnemonic suffix.) 429 430Almost all instructions have the same names in AT&T and Intel format. 431There are a few exceptions. The sign extend and zero extend 432instructions need two sizes to specify them. They need a size to 433sign/zero extend @emph{from} and a size to zero extend @emph{to}. This 434is accomplished by using two instruction mnemonic suffixes in AT&T 435syntax. Base names for sign extend and zero extend are 436@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx} 437and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes 438are tacked on to this base name, the @emph{from} suffix before the 439@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for 440``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes, 441thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word), 442@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word), 443@samp{wq} (from word to quadruple word), and @samp{lq} (from long to 444quadruple word). 445 446@cindex encoding options, i386 447@cindex encoding options, x86-64 448 449Different encoding options can be specified via optional mnemonic 450suffix. @samp{.s} suffix swaps 2 register operands in encoding when 451moving from one register to another. @samp{.d8} or @samp{.d32} suffix 452prefers 8bit or 32bit displacement in encoding. 453 454@cindex conversion instructions, i386 455@cindex i386 conversion instructions 456@cindex conversion instructions, x86-64 457@cindex x86-64 conversion instructions 458The Intel-syntax conversion instructions 459 460@itemize @bullet 461@item 462@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax}, 463 464@item 465@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax}, 466 467@item 468@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax}, 469 470@item 471@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax}, 472 473@item 474@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax} 475(x86-64 only), 476 477@item 478@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in 479@samp{%rdx:%rax} (x86-64 only), 480@end itemize 481 482@noindent 483are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and 484@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these 485instructions. 486 487@cindex jump instructions, i386 488@cindex call instructions, i386 489@cindex jump instructions, x86-64 490@cindex call instructions, x86-64 491Far call/jump instructions are @samp{lcall} and @samp{ljmp} in 492AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel 493convention. 494 495@section AT&T Mnemonic versus Intel Mnemonic 496 497@cindex i386 mnemonic compatibility 498@cindex mnemonic compatibility, i386 499 500@code{@value{AS}} supports assembly using Intel mnemonic. 501@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and 502@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T 503syntax for compatibility with the output of @code{@value{GCC}}. 504Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp}, 505@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp}, 506@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386 507assembler with different mnemonics from those in Intel IA32 specification. 508@code{@value{GCC}} generates those instructions with AT&T mnemonic. 509 510@node i386-Regs 511@section Register Naming 512 513@cindex i386 registers 514@cindex registers, i386 515@cindex x86-64 registers 516@cindex registers, x86-64 517Register operands are always prefixed with @samp{%}. The 80386 registers 518consist of 519 520@itemize @bullet 521@item 522the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx}, 523@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the 524frame pointer), and @samp{%esp} (the stack pointer). 525 526@item 527the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx}, 528@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}. 529 530@item 531the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh}, 532@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These 533are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx}, 534@samp{%cx}, and @samp{%dx}) 535 536@item 537the 6 section registers @samp{%cs} (code section), @samp{%ds} 538(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs}, 539and @samp{%gs}. 540 541@item 542the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and 543@samp{%cr3}. 544 545@item 546the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2}, 547@samp{%db3}, @samp{%db6}, and @samp{%db7}. 548 549@item 550the 2 test registers @samp{%tr6} and @samp{%tr7}. 551 552@item 553the 8 floating point register stack @samp{%st} or equivalently 554@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)}, 555@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}. 556These registers are overloaded by 8 MMX registers @samp{%mm0}, 557@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5}, 558@samp{%mm6} and @samp{%mm7}. 559 560@item 561the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2}, 562@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}. 563@end itemize 564 565The AMD x86-64 architecture extends the register set by: 566 567@itemize @bullet 568@item 569enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the 570accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi}, 571@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack 572pointer) 573 574@item 575the 8 extended registers @samp{%r8}--@samp{%r15}. 576 577@item 578the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d} 579 580@item 581the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w} 582 583@item 584the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b} 585 586@item 587the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}. 588 589@item 590the 8 debug registers: @samp{%db8}--@samp{%db15}. 591 592@item 593the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}. 594@end itemize 595 596@node i386-Prefixes 597@section Instruction Prefixes 598 599@cindex i386 instruction prefixes 600@cindex instruction prefixes, i386 601@cindex prefixes, i386 602Instruction prefixes are used to modify the following instruction. They 603are used to repeat string instructions, to provide section overrides, to 604perform bus lock operations, and to change operand and address sizes. 605(Most instructions that normally operate on 32-bit operands will use 60616-bit operands if the instruction has an ``operand size'' prefix.) 607Instruction prefixes are best written on the same line as the instruction 608they act upon. For example, the @samp{scas} (scan string) instruction is 609repeated with: 610 611@smallexample 612 repne scas %es:(%edi),%al 613@end smallexample 614 615You may also place prefixes on the lines immediately preceding the 616instruction, but this circumvents checks that @code{@value{AS}} does 617with prefixes, and will not work with all prefixes. 618 619Here is a list of instruction prefixes: 620 621@cindex section override prefixes, i386 622@itemize @bullet 623@item 624Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es}, 625@samp{fs}, @samp{gs}. These are automatically added by specifying 626using the @var{section}:@var{memory-operand} form for memory references. 627 628@cindex size prefixes, i386 629@item 630Operand/Address size prefixes @samp{data16} and @samp{addr16} 631change 32-bit operands/addresses into 16-bit operands/addresses, 632while @samp{data32} and @samp{addr32} change 16-bit ones (in a 633@code{.code16} section) into 32-bit operands/addresses. These prefixes 634@emph{must} appear on the same line of code as the instruction they 635modify. For example, in a 16-bit @code{.code16} section, you might 636write: 637 638@smallexample 639 addr32 jmpl *(%ebx) 640@end smallexample 641 642@cindex bus lock prefixes, i386 643@cindex inhibiting interrupts, i386 644@item 645The bus lock prefix @samp{lock} inhibits interrupts during execution of 646the instruction it precedes. (This is only valid with certain 647instructions; see a 80386 manual for details). 648 649@cindex coprocessor wait, i386 650@item 651The wait for coprocessor prefix @samp{wait} waits for the coprocessor to 652complete the current instruction. This should never be needed for the 65380386/80387 combination. 654 655@cindex repeat prefixes, i386 656@item 657The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added 658to string instructions to make them repeat @samp{%ecx} times (@samp{%cx} 659times if the current address size is 16-bits). 660@cindex REX prefixes, i386 661@item 662The @samp{rex} family of prefixes is used by x86-64 to encode 663extensions to i386 instruction set. The @samp{rex} prefix has four 664bits --- an operand size overwrite (@code{64}) used to change operand size 665from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the 666register set. 667 668You may write the @samp{rex} prefixes directly. The @samp{rex64xyz} 669instruction emits @samp{rex} prefix with all the bits set. By omitting 670the @code{64}, @code{x}, @code{y} or @code{z} you may write other 671prefixes as well. Normally, there is no need to write the prefixes 672explicitly, since gas will automatically generate them based on the 673instruction operands. 674@end itemize 675 676@node i386-Memory 677@section Memory References 678 679@cindex i386 memory references 680@cindex memory references, i386 681@cindex x86-64 memory references 682@cindex memory references, x86-64 683An Intel syntax indirect memory reference of the form 684 685@smallexample 686@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}] 687@end smallexample 688 689@noindent 690is translated into the AT&T syntax 691 692@smallexample 693@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale}) 694@end smallexample 695 696@noindent 697where @var{base} and @var{index} are the optional 32-bit base and 698index registers, @var{disp} is the optional displacement, and 699@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index} 700to calculate the address of the operand. If no @var{scale} is 701specified, @var{scale} is taken to be 1. @var{section} specifies the 702optional section register for the memory operand, and may override the 703default section register (see a 80386 manual for section register 704defaults). Note that section overrides in AT&T syntax @emph{must} 705be preceded by a @samp{%}. If you specify a section override which 706coincides with the default section register, @code{@value{AS}} does @emph{not} 707output any section register override prefixes to assemble the given 708instruction. Thus, section overrides can be specified to emphasize which 709section register is used for a given memory operand. 710 711Here are some examples of Intel and AT&T style memory references: 712 713@table @asis 714@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]} 715@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is 716missing, and the default section is used (@samp{%ss} for addressing with 717@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing. 718 719@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]} 720@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is 721@samp{foo}. All other fields are missing. The section register here 722defaults to @samp{%ds}. 723 724@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]} 725This uses the value pointed to by @samp{foo} as a memory operand. 726Note that @var{base} and @var{index} are both missing, but there is only 727@emph{one} @samp{,}. This is a syntactic exception. 728 729@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo} 730This selects the contents of the variable @samp{foo} with section 731register @var{section} being @samp{%gs}. 732@end table 733 734Absolute (as opposed to PC relative) call and jump operands must be 735prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}} 736always chooses PC relative addressing for jump/call labels. 737 738Any instruction that has a memory operand, but no register operand, 739@emph{must} specify its size (byte, word, long, or quadruple) with an 740instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q}, 741respectively). 742 743The x86-64 architecture adds an RIP (instruction pointer relative) 744addressing. This addressing mode is specified by using @samp{rip} as a 745base register. Only constant offsets are valid. For example: 746 747@table @asis 748@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]} 749Points to the address 1234 bytes past the end of the current 750instruction. 751 752@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]} 753Points to the @code{symbol} in RIP relative way, this is shorter than 754the default absolute addressing. 755@end table 756 757Other addressing modes remain unchanged in x86-64 architecture, except 758registers used are 64-bit instead of 32-bit. 759 760@node i386-Jumps 761@section Handling of Jump Instructions 762 763@cindex jump optimization, i386 764@cindex i386 jump optimization 765@cindex jump optimization, x86-64 766@cindex x86-64 jump optimization 767Jump instructions are always optimized to use the smallest possible 768displacements. This is accomplished by using byte (8-bit) displacement 769jumps whenever the target is sufficiently close. If a byte displacement 770is insufficient a long displacement is used. We do not support 771word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump 772instruction with the @samp{data16} instruction prefix), since the 80386 773insists upon masking @samp{%eip} to 16 bits after the word displacement 774is added. (See also @pxref{i386-Arch}) 775 776Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz}, 777@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte 778displacements, so that if you use these instructions (@code{@value{GCC}} does 779not use them) you may get an error message (and incorrect code). The AT&T 78080386 assembler tries to get around this problem by expanding @samp{jcxz foo} 781to 782 783@smallexample 784 jcxz cx_zero 785 jmp cx_nonzero 786cx_zero: jmp foo 787cx_nonzero: 788@end smallexample 789 790@node i386-Float 791@section Floating Point 792 793@cindex i386 floating point 794@cindex floating point, i386 795@cindex x86-64 floating point 796@cindex floating point, x86-64 797All 80387 floating point types except packed BCD are supported. 798(BCD support may be added without much difficulty). These data 799types are 16-, 32-, and 64- bit integers, and single (32-bit), 800double (64-bit), and extended (80-bit) precision floating point. 801Each supported type has an instruction mnemonic suffix and a constructor 802associated with it. Instruction mnemonic suffixes specify the operand's 803data type. Constructors build these data types into memory. 804 805@cindex @code{float} directive, i386 806@cindex @code{single} directive, i386 807@cindex @code{double} directive, i386 808@cindex @code{tfloat} directive, i386 809@cindex @code{float} directive, x86-64 810@cindex @code{single} directive, x86-64 811@cindex @code{double} directive, x86-64 812@cindex @code{tfloat} directive, x86-64 813@itemize @bullet 814@item 815Floating point constructors are @samp{.float} or @samp{.single}, 816@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats. 817These correspond to instruction mnemonic suffixes @samp{s}, @samp{l}, 818and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387 819only supports this format via the @samp{fldt} (load 80-bit real to stack 820top) and @samp{fstpt} (store 80-bit real and pop stack) instructions. 821 822@cindex @code{word} directive, i386 823@cindex @code{long} directive, i386 824@cindex @code{int} directive, i386 825@cindex @code{quad} directive, i386 826@cindex @code{word} directive, x86-64 827@cindex @code{long} directive, x86-64 828@cindex @code{int} directive, x86-64 829@cindex @code{quad} directive, x86-64 830@item 831Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and 832@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The 833corresponding instruction mnemonic suffixes are @samp{s} (single), 834@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format, 835the 64-bit @samp{q} format is only present in the @samp{fildq} (load 836quad integer to stack top) and @samp{fistpq} (store quad integer and pop 837stack) instructions. 838@end itemize 839 840Register to register operations should not use instruction mnemonic suffixes. 841@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you 842wrote @samp{fst %st, %st(1)}, since all register to register operations 843use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem}, 844which converts @samp{%st} from 80-bit to 64-bit floating point format, 845then stores the result in the 4 byte location @samp{mem}) 846 847@node i386-SIMD 848@section Intel's MMX and AMD's 3DNow! SIMD Operations 849 850@cindex MMX, i386 851@cindex 3DNow!, i386 852@cindex SIMD, i386 853@cindex MMX, x86-64 854@cindex 3DNow!, x86-64 855@cindex SIMD, x86-64 856 857@code{@value{AS}} supports Intel's MMX instruction set (SIMD 858instructions for integer data), available on Intel's Pentium MMX 859processors and Pentium II processors, AMD's K6 and K6-2 processors, 860Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@: 861instruction set (SIMD instructions for 32-bit floating point data) 862available on AMD's K6-2 processor and possibly others in the future. 863 864Currently, @code{@value{AS}} does not support Intel's floating point 865SIMD, Katmai (KNI). 866 867The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0}, 868@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four 86916-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit 870floating point values. The MMX registers cannot be used at the same time 871as the floating point stack. 872 873See Intel and AMD documentation, keeping in mind that the operand order in 874instructions is reversed from the Intel syntax. 875 876@node i386-LWP 877@section AMD's Lightweight Profiling Instructions 878 879@cindex LWP, i386 880@cindex LWP, x86-64 881 882@code{@value{AS}} supports AMD's Lightweight Profiling (LWP) 883instruction set, available on AMD's Family 15h (Orochi) processors. 884 885LWP enables applications to collect and manage performance data, and 886react to performance events. The collection of performance data 887requires no context switches. LWP runs in the context of a thread and 888so several counters can be used independently across multiple threads. 889LWP can be used in both 64-bit and legacy 32-bit modes. 890 891For detailed information on the LWP instruction set, see the 892@cite{AMD Lightweight Profiling Specification} available at 893@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}. 894 895@node i386-BMI 896@section Bit Manipulation Instructions 897 898@cindex BMI, i386 899@cindex BMI, x86-64 900 901@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set. 902 903BMI instructions provide several instructions implementing individual 904bit manipulation operations such as isolation, masking, setting, or 905resetting. 906 907@c Need to add a specification citation here when available. 908 909@node i386-TBM 910@section AMD's Trailing Bit Manipulation Instructions 911 912@cindex TBM, i386 913@cindex TBM, x86-64 914 915@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM) 916instruction set, available on AMD's BDVER2 processors (Trinity and 917Viperfish). 918 919TBM instructions provide instructions implementing individual bit 920manipulation operations such as isolating, masking, setting, resetting, 921complementing, and operations on trailing zeros and ones. 922 923@c Need to add a specification citation here when available. 924 925@node i386-16bit 926@section Writing 16-bit Code 927 928@cindex i386 16-bit code 929@cindex 16-bit code, i386 930@cindex real-mode code, i386 931@cindex @code{code16gcc} directive, i386 932@cindex @code{code16} directive, i386 933@cindex @code{code32} directive, i386 934@cindex @code{code64} directive, i386 935@cindex @code{code64} directive, x86-64 936While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code 937or 64-bit x86-64 code depending on the default configuration, 938it also supports writing code to run in real mode or in 16-bit protected 939mode code segments. To do this, put a @samp{.code16} or 940@samp{.code16gcc} directive before the assembly language instructions to 941be run in 16-bit mode. You can switch @code{@value{AS}} to writing 94232-bit code with the @samp{.code32} directive or 64-bit code with the 943@samp{.code64} directive. 944 945@samp{.code16gcc} provides experimental support for generating 16-bit 946code from gcc, and differs from @samp{.code16} in that @samp{call}, 947@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop}, 948@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions 949default to 32-bit size. This is so that the stack pointer is 950manipulated in the same way over function calls, allowing access to 951function parameters at the same stack offsets as in 32-bit mode. 952@samp{.code16gcc} also automatically adds address size prefixes where 953necessary to use the 32-bit addressing modes that gcc generates. 954 955The code which @code{@value{AS}} generates in 16-bit mode will not 956necessarily run on a 16-bit pre-80386 processor. To write code that 957runs on such a processor, you must refrain from using @emph{any} 32-bit 958constructs which require @code{@value{AS}} to output address or operand 959size prefixes. 960 961Note that writing 16-bit code instructions by explicitly specifying a 962prefix or an instruction mnemonic suffix within a 32-bit code section 963generates different machine instructions than those generated for a 96416-bit code segment. In a 32-bit code section, the following code 965generates the machine opcode bytes @samp{66 6a 04}, which pushes the 966value @samp{4} onto the stack, decrementing @samp{%esp} by 2. 967 968@smallexample 969 pushw $4 970@end smallexample 971 972The same code in a 16-bit code section would generate the machine 973opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which 974is correct since the processor default operand size is assumed to be 16 975bits in a 16-bit code section. 976 977@node i386-Bugs 978@section AT&T Syntax bugs 979 980The UnixWare assembler, and probably other AT&T derived ix86 Unix 981assemblers, generate floating point instructions with reversed source 982and destination registers in certain cases. Unfortunately, gcc and 983possibly many other programs use this reversed syntax, so we're stuck 984with it. 985 986For example 987 988@smallexample 989 fsub %st,%st(3) 990@end smallexample 991@noindent 992results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather 993than the expected @samp{%st(3) - %st}. This happens with all the 994non-commutative arithmetic floating point operations with two register 995operands where the source register is @samp{%st} and the destination 996register is @samp{%st(i)}. 997 998@node i386-Arch 999@section Specifying CPU Architecture 1000 1001@cindex arch directive, i386 1002@cindex i386 arch directive 1003@cindex arch directive, x86-64 1004@cindex x86-64 arch directive 1005 1006@code{@value{AS}} may be told to assemble for a particular CPU 1007(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This 1008directive enables a warning when gas detects an instruction that is not 1009supported on the CPU specified. The choices for @var{cpu_type} are: 1010 1011@multitable @columnfractions .20 .20 .20 .20 1012@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386} 1013@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium} 1014@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4} 1015@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2} 1016@item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} 1017@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8} 1018@item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3} 1019@item @samp{btver1} @tab @samp{btver2} 1020@item @samp{generic32} @tab @samp{generic64} 1021@item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3} 1022@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4} 1023@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept} 1024@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt} 1025@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase} 1026@item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2} 1027@item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle} 1028@item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw} 1029@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5} 1030@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm} 1031@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} 1032@item @samp{.padlock} 1033@end multitable 1034 1035Apart from the warning, there are only two other effects on 1036@code{@value{AS}} operation; Firstly, if you specify a CPU other than 1037@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax} 1038will automatically use a two byte opcode sequence. The larger three 1039byte opcode sequence is used on the 486 (and when no architecture is 1040specified) because it executes faster on the 486. Note that you can 1041explicitly request the two byte opcode by writing @samp{sarl %eax}. 1042Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286}, 1043@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset 1044conditional jumps will be promoted when necessary to a two instruction 1045sequence consisting of a conditional jump of the opposite sense around 1046an unconditional jump to the target. 1047 1048Following the CPU architecture (but not a sub-architecture, which are those 1049starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to 1050control automatic promotion of conditional jumps. @samp{jumps} is the 1051default, and enables jump promotion; All external jumps will be of the long 1052variety, and file-local jumps will be promoted as necessary. 1053(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as 1054byte offset jumps, and warns about file-local conditional jumps that 1055@code{@value{AS}} promotes. 1056Unconditional jumps are treated as for @samp{jumps}. 1057 1058For example 1059 1060@smallexample 1061 .arch i8086,nojumps 1062@end smallexample 1063 1064@node i386-Notes 1065@section Notes 1066 1067@cindex i386 @code{mul}, @code{imul} instructions 1068@cindex @code{mul} instruction, i386 1069@cindex @code{imul} instruction, i386 1070@cindex @code{mul} instruction, x86-64 1071@cindex @code{imul} instruction, x86-64 1072There is some trickery concerning the @samp{mul} and @samp{imul} 1073instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding 1074multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5 1075for @samp{imul}) can be output only in the one operand form. Thus, 1076@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply; 1077the expanding multiply would clobber the @samp{%edx} register, and this 1078would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the 107964-bit product in @samp{%edx:%eax}. 1080 1081We have added a two operand form of @samp{imul} when the first operand 1082is an immediate mode expression and the second operand is a register. 1083This is just a shorthand, so that, multiplying @samp{%eax} by 69, for 1084example, can be done with @samp{imul $69, %eax} rather than @samp{imul 1085$69, %eax, %eax}. 1086 1087