1@c Copyright (C) 1991-2024 Free Software Foundation, Inc. 2@c This is part of the GAS manual. 3@c For copying conditions, see the file as.texinfo. 4@c man end 5 6@ifset GENERIC 7@page 8@node i386-Dependent 9@chapter 80386 Dependent Features 10@end ifset 11@ifclear GENERIC 12@node Machine Dependencies 13@chapter 80386 Dependent Features 14@end ifclear 15 16@cindex i386 support 17@cindex i80386 support 18@cindex x86-64 support 19 20The i386 version @code{@value{AS}} supports both the original Intel 386 21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture 22extending the Intel architecture to 64-bits. 23 24@menu 25* i386-Options:: Options 26* i386-Directives:: X86 specific directives 27* i386-Syntax:: Syntactical considerations 28* i386-Mnemonics:: Instruction Naming 29* i386-Regs:: Register Naming 30* i386-Prefixes:: Instruction Prefixes 31* i386-Memory:: Memory References 32* i386-Jumps:: Handling of Jump Instructions 33* i386-Float:: Floating Point 34* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations 35* i386-LWP:: AMD's Lightweight Profiling Instructions 36* i386-BMI:: Bit Manipulation Instruction 37* i386-TBM:: AMD's Trailing Bit Manipulation Instructions 38* i386-16bit:: Writing 16-bit Code 39* i386-Arch:: Specifying an x86 CPU architecture 40* i386-ISA:: AMD64 ISA vs. Intel64 ISA 41* i386-Bugs:: AT&T Syntax bugs 42* i386-Notes:: Notes 43@end menu 44 45@node i386-Options 46@section Options 47 48@cindex options for i386 49@cindex options for x86-64 50@cindex i386 options 51@cindex x86-64 options 52 53The i386 version of @code{@value{AS}} has a few machine 54dependent options: 55 56@c man begin OPTIONS 57@table @gcctabopt 58@cindex @samp{--32} option, i386 59@cindex @samp{--32} option, x86-64 60@cindex @samp{--x32} option, i386 61@cindex @samp{--x32} option, x86-64 62@cindex @samp{--64} option, i386 63@cindex @samp{--64} option, x86-64 64@item --32 | --x32 | --64 65Select the word size, either 32 bits or 64 bits. @samp{--32} 66implies Intel i386 architecture, while @samp{--x32} and @samp{--64} 67imply AMD x86-64 architecture with 32-bit or 64-bit word-size 68respectively. 69 70These options are only available with the ELF object file format, and 71require that the necessary BFD support has been included (on a 32-bit 72platform you have to add --enable-64-bit-bfd to configure enable 64-bit 73usage and use x86-64 as target platform). 74 75@item -n 76By default, x86 GAS replaces multiple nop instructions used for 77alignment within code sections with multi-byte nop instructions such 78as leal 0(%esi,1),%esi. This switch disables the optimization if a single 79byte nop (0x90) is explicitly specified as the fill byte for alignment. 80 81@cindex @samp{--divide} option, i386 82@item --divide 83On SVR4-derived platforms, the character @samp{/} is treated as a comment 84character, which means that it cannot be used in expressions. The 85@samp{--divide} option turns @samp{/} into a normal character. This does 86not disable @samp{/} at the beginning of a line starting a comment, or 87affect using @samp{#} for starting a comment. 88 89@cindex @samp{-march=} option, i386 90@cindex @samp{-march=} option, x86-64 91@item -march=@var{CPU}[+@var{EXTENSION}@dots{}] 92This option specifies the target processor. The assembler will 93issue an error message if an attempt is made to assemble an instruction 94which will not execute on the target processor. The following 95processor names are recognized: 96@code{i8086}, 97@code{i186}, 98@code{i286}, 99@code{i386}, 100@code{i486}, 101@code{i586}, 102@code{i686}, 103@code{pentium}, 104@code{pentiumpro}, 105@code{pentiumii}, 106@code{pentiumiii}, 107@code{pentium4}, 108@code{prescott}, 109@code{nocona}, 110@code{core}, 111@code{core2}, 112@code{corei7}, 113@code{iamcu}, 114@code{k6}, 115@code{k6_2}, 116@code{athlon}, 117@code{opteron}, 118@code{k8}, 119@code{amdfam10}, 120@code{bdver1}, 121@code{bdver2}, 122@code{bdver3}, 123@code{bdver4}, 124@code{znver1}, 125@code{znver2}, 126@code{znver3}, 127@code{znver4}, 128@code{znver5}, 129@code{btver1}, 130@code{btver2}, 131@code{generic32} and 132@code{generic64}. 133 134In addition to the basic instruction set, the assembler can be told to 135accept various extension mnemonics. For example, 136@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and 137@var{vmx}. The following extensions are currently supported: 138@code{8087}, 139@code{287}, 140@code{387}, 141@code{687}, 142@code{cmov}, 143@code{fxsr}, 144@code{mmx}, 145@code{sse}, 146@code{sse2}, 147@code{sse3}, 148@code{sse4a}, 149@code{ssse3}, 150@code{sse4.1}, 151@code{sse4.2}, 152@code{sse4}, 153@code{avx}, 154@code{avx2}, 155@code{lahf_sahf}, 156@code{monitor}, 157@code{adx}, 158@code{rdseed}, 159@code{prfchw}, 160@code{smap}, 161@code{mpx}, 162@code{sha}, 163@code{rdpid}, 164@code{ptwrite}, 165@code{cet}, 166@code{gfni}, 167@code{vaes}, 168@code{vpclmulqdq}, 169@code{prefetchwt1}, 170@code{clflushopt}, 171@code{se1}, 172@code{clwb}, 173@code{movdiri}, 174@code{movdir64b}, 175@code{enqcmd}, 176@code{serialize}, 177@code{tsxldtrk}, 178@code{kl}, 179@code{widekl}, 180@code{hreset}, 181@code{avx512f}, 182@code{avx512cd}, 183@code{avx512er}, 184@code{avx512pf}, 185@code{avx512vl}, 186@code{avx512bw}, 187@code{avx512dq}, 188@code{avx512ifma}, 189@code{avx512vbmi}, 190@code{avx512_4fmaps}, 191@code{avx512_4vnniw}, 192@code{avx512_vpopcntdq}, 193@code{avx512_vbmi2}, 194@code{avx512_vnni}, 195@code{avx512_bitalg}, 196@code{avx512_vp2intersect}, 197@code{tdx}, 198@code{avx512_bf16}, 199@code{avx_vnni}, 200@code{avx512_fp16}, 201@code{prefetchi}, 202@code{avx_ifma}, 203@code{avx_vnni_int8}, 204@code{cmpccxadd}, 205@code{wrmsrns}, 206@code{msrlist}, 207@code{avx_ne_convert}, 208@code{rao_int}, 209@code{fred}, 210@code{lkgs}, 211@code{avx_vnni_int16}, 212@code{sha512}, 213@code{sm3}, 214@code{sm4}, 215@code{pbndkb}, 216@code{avx10.1}, 217@code{avx10.1/512}, 218@code{avx10.1/256}, 219@code{avx10.1/128}, 220@code{user_msr}, 221@code{apx_f}, 222@code{amx_int8}, 223@code{amx_bf16}, 224@code{amx_fp16}, 225@code{amx_complex}, 226@code{amx_tile}, 227@code{vmx}, 228@code{vmfunc}, 229@code{smx}, 230@code{xsave}, 231@code{xsaveopt}, 232@code{xsavec}, 233@code{xsaves}, 234@code{aes}, 235@code{pclmul}, 236@code{fsgsbase}, 237@code{rdrnd}, 238@code{f16c}, 239@code{bmi2}, 240@code{fma}, 241@code{movbe}, 242@code{ept}, 243@code{lzcnt}, 244@code{popcnt}, 245@code{hle}, 246@code{rtm}, 247@code{tsx}, 248@code{invpcid}, 249@code{clflush}, 250@code{mwaitx}, 251@code{clzero}, 252@code{wbnoinvd}, 253@code{pconfig}, 254@code{waitpkg}, 255@code{uintr}, 256@code{cldemote}, 257@code{rdpru}, 258@code{mcommit}, 259@code{sev_es}, 260@code{lwp}, 261@code{fma4}, 262@code{xop}, 263@code{cx16}, 264@code{syscall}, 265@code{rdtscp}, 266@code{3dnow}, 267@code{3dnowa}, 268@code{sse4a}, 269@code{sse5}, 270@code{snp}, 271@code{invlpgb}, 272@code{tlbsync}, 273@code{svme} and 274@code{padlock}. 275Note that these extension mnemonics can be prefixed with @code{no} to revoke 276the respective (and any dependent) functionality. Note further that the 277suffixes permitted on @code{-march=avx10.<N>} enforce a vector length 278restriction, i.e. despite these otherwise being "enabling" options, using 279these suffixes will disable all insns with wider vector or mask register 280operands. 281 282When the @code{.arch} directive is used with @option{-march}, the 283@code{.arch} directive will take precedent. 284 285@cindex @samp{-mtune=} option, i386 286@cindex @samp{-mtune=} option, x86-64 287@item -mtune=@var{CPU} 288This option specifies a processor to optimize for. When used in 289conjunction with the @option{-march} option, only instructions 290of the processor specified by the @option{-march} option will be 291generated. 292 293Valid @var{CPU} values are identical to the processor list of 294@option{-march=@var{CPU}}. 295 296@cindex @samp{-msse2avx} option, i386 297@cindex @samp{-msse2avx} option, x86-64 298@item -msse2avx 299This option specifies that the assembler should encode SSE instructions 300with VEX prefix. 301 302@cindex @samp{-muse-unaligned-vector-move} option, i386 303@cindex @samp{-muse-unaligned-vector-move} option, x86-64 304@item -muse-unaligned-vector-move 305This option specifies that the assembler should encode aligned vector 306move as unaligned vector move. 307 308@cindex @samp{-msse-check=} option, i386 309@cindex @samp{-msse-check=} option, x86-64 310@item -msse-check=@var{none} 311@itemx -msse-check=@var{warning} 312@itemx -msse-check=@var{error} 313These options control if the assembler should check SSE instructions. 314@option{-msse-check=@var{none}} will make the assembler not to check SSE 315instructions, which is the default. @option{-msse-check=@var{warning}} 316will make the assembler issue a warning for any SSE instruction. 317@option{-msse-check=@var{error}} will make the assembler issue an error 318for any SSE instruction. 319 320@cindex @samp{-mavxscalar=} option, i386 321@cindex @samp{-mavxscalar=} option, x86-64 322@item -mavxscalar=@var{128} 323@itemx -mavxscalar=@var{256} 324These options control how the assembler should encode scalar AVX 325instructions. @option{-mavxscalar=@var{128}} will encode scalar 326AVX instructions with 128bit vector length, which is the default. 327@option{-mavxscalar=@var{256}} will encode scalar AVX instructions 328with 256bit vector length. 329 330WARNING: Don't use this for production code - due to CPU errata the 331resulting code may not work on certain models. 332 333@cindex @samp{-mvexwig=} option, i386 334@cindex @samp{-mvexwig=} option, x86-64 335@item -mvexwig=@var{0} 336@itemx -mvexwig=@var{1} 337These options control how the assembler should encode VEX.W-ignored (WIG) 338VEX instructions. @option{-mvexwig=@var{0}} will encode WIG VEX 339instructions with vex.w = 0, which is the default. 340@option{-mvexwig=@var{1}} will encode WIG EVEX instructions with 341vex.w = 1. 342 343WARNING: Don't use this for production code - due to CPU errata the 344resulting code may not work on certain models. 345 346@cindex @samp{-mevexlig=} option, i386 347@cindex @samp{-mevexlig=} option, x86-64 348@item -mevexlig=@var{128} 349@itemx -mevexlig=@var{256} 350@itemx -mevexlig=@var{512} 351These options control how the assembler should encode length-ignored 352(LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG 353EVEX instructions with 128bit vector length, which is the default. 354@option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will 355encode LIG EVEX instructions with 256bit and 512bit vector length, 356respectively. 357 358@cindex @samp{-mevexwig=} option, i386 359@cindex @samp{-mevexwig=} option, x86-64 360@item -mevexwig=@var{0} 361@itemx -mevexwig=@var{1} 362These options control how the assembler should encode w-ignored (WIG) 363EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG 364EVEX instructions with evex.w = 0, which is the default. 365@option{-mevexwig=@var{1}} will encode WIG EVEX instructions with 366evex.w = 1. 367 368@cindex @samp{-mmnemonic=} option, i386 369@cindex @samp{-mmnemonic=} option, x86-64 370@item -mmnemonic=@var{att} 371@itemx -mmnemonic=@var{intel} 372This option specifies instruction mnemonic for matching instructions. 373The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will 374take precedent. 375 376@cindex @samp{-msyntax=} option, i386 377@cindex @samp{-msyntax=} option, x86-64 378@item -msyntax=@var{att} 379@itemx -msyntax=@var{intel} 380This option specifies instruction syntax when processing instructions. 381The @code{.att_syntax} and @code{.intel_syntax} directives will 382take precedent. 383 384@cindex @samp{-mnaked-reg} option, i386 385@cindex @samp{-mnaked-reg} option, x86-64 386@item -mnaked-reg 387This option specifies that registers don't require a @samp{%} prefix. 388The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent. 389 390@cindex @samp{-madd-bnd-prefix} option, i386 391@cindex @samp{-madd-bnd-prefix} option, x86-64 392@item -madd-bnd-prefix 393This option forces the assembler to add BND prefix to all branches, even 394if such prefix was not explicitly specified in the source code. 395 396@cindex @samp{-mshared} option, i386 397@cindex @samp{-mshared} option, x86-64 398@item -mno-shared 399On ELF target, the assembler normally optimizes out non-PLT relocations 400against defined non-weak global branch targets with default visibility. 401The @samp{-mshared} option tells the assembler to generate code which 402may go into a shared library where all non-weak global branch targets 403with default visibility can be preempted. The resulting code is 404slightly bigger. This option only affects the handling of branch 405instructions. 406 407@cindex @samp{-mbig-obj} option, i386 408@cindex @samp{-mbig-obj} option, x86-64 409@item -mbig-obj 410On PE/COFF target this option forces the use of big object file 411format, which allows more than 32768 sections. 412 413@cindex @samp{-momit-lock-prefix=} option, i386 414@cindex @samp{-momit-lock-prefix=} option, x86-64 415@item -momit-lock-prefix=@var{no} 416@itemx -momit-lock-prefix=@var{yes} 417These options control how the assembler should encode lock prefix. 418This option is intended as a workaround for processors, that fail on 419lock prefix. This option can only be safely used with single-core, 420single-thread computers 421@option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes. 422@option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual, 423which is the default. 424 425@cindex @samp{-mfence-as-lock-add=} option, i386 426@cindex @samp{-mfence-as-lock-add=} option, x86-64 427@item -mfence-as-lock-add=@var{no} 428@itemx -mfence-as-lock-add=@var{yes} 429These options control how the assembler should encode lfence, mfence and 430sfence. 431@option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and 432sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and 433@samp{lock addl $0x0, (%esp)} in 32-bit mode. 434@option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and 435sfence as usual, which is the default. 436 437@cindex @samp{-mrelax-relocations=} option, i386 438@cindex @samp{-mrelax-relocations=} option, x86-64 439@item -mrelax-relocations=@var{no} 440@itemx -mrelax-relocations=@var{yes} 441These options control whether the assembler should generate relax 442relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and 443R_X86_64_REX_GOTPCRELX, in 64-bit mode. 444@option{-mrelax-relocations=@var{yes}} will generate relax relocations. 445@option{-mrelax-relocations=@var{no}} will not generate relax 446relocations. The default can be controlled by a configure option 447@option{--enable-x86-relax-relocations}. 448 449@cindex @samp{-malign-branch-boundary=} option, i386 450@cindex @samp{-malign-branch-boundary=} option, x86-64 451@item -malign-branch-boundary=@var{NUM} 452This option controls how the assembler should align branches with segment 453prefixes or NOP. @var{NUM} must be a power of 2. It should be 0 or 454no less than 16. Branches will be aligned within @var{NUM} byte 455boundary. @option{-malign-branch-boundary=0}, which is the default, 456doesn't align branches. 457 458@cindex @samp{-malign-branch=} option, i386 459@cindex @samp{-malign-branch=} option, x86-64 460@item -malign-branch=@var{TYPE}[+@var{TYPE}...] 461This option specifies types of branches to align. @var{TYPE} is 462combination of @samp{jcc}, which aligns conditional jumps, 463@samp{fused}, which aligns fused conditional jumps, @samp{jmp}, 464which aligns unconditional jumps, @samp{call} which aligns calls, 465@samp{ret}, which aligns rets, @samp{indirect}, which aligns indirect 466jumps and calls. The default is @option{-malign-branch=jcc+fused+jmp}. 467 468@cindex @samp{-malign-branch-prefix-size=} option, i386 469@cindex @samp{-malign-branch-prefix-size=} option, x86-64 470@item -malign-branch-prefix-size=@var{NUM} 471This option specifies the maximum number of prefixes on an instruction 472to align branches. @var{NUM} should be between 0 and 5. The default 473@var{NUM} is 5. 474 475@cindex @samp{-mbranches-within-32B-boundaries} option, i386 476@cindex @samp{-mbranches-within-32B-boundaries} option, x86-64 477@item -mbranches-within-32B-boundaries 478This option aligns conditional jumps, fused conditional jumps and 479unconditional jumps within 32 byte boundary with up to 5 segment prefixes 480on an instruction. It is equivalent to 481@option{-malign-branch-boundary=32} 482@option{-malign-branch=jcc+fused+jmp} 483@option{-malign-branch-prefix-size=5}. 484The default doesn't align branches. 485 486@cindex @samp{-mlfence-after-load=} option, i386 487@cindex @samp{-mlfence-after-load=} option, x86-64 488@item -mlfence-after-load=@var{no} 489@itemx -mlfence-after-load=@var{yes} 490These options control whether the assembler should generate lfence 491after load instructions. @option{-mlfence-after-load=@var{yes}} will 492generate lfence. @option{-mlfence-after-load=@var{no}} will not generate 493lfence, which is the default. 494 495@cindex @samp{-mlfence-before-indirect-branch=} option, i386 496@cindex @samp{-mlfence-before-indirect-branch=} option, x86-64 497@item -mlfence-before-indirect-branch=@var{none} 498@item -mlfence-before-indirect-branch=@var{all} 499@item -mlfence-before-indirect-branch=@var{register} 500@itemx -mlfence-before-indirect-branch=@var{memory} 501These options control whether the assembler should generate lfence 502before indirect near branch instructions. 503@option{-mlfence-before-indirect-branch=@var{all}} will generate lfence 504before indirect near branch via register and issue a warning before 505indirect near branch via memory. 506It also implicitly sets @option{-mlfence-before-ret=@var{shl}} when 507there's no explicit @option{-mlfence-before-ret=}. 508@option{-mlfence-before-indirect-branch=@var{register}} will generate 509lfence before indirect near branch via register. 510@option{-mlfence-before-indirect-branch=@var{memory}} will issue a 511warning before indirect near branch via memory. 512@option{-mlfence-before-indirect-branch=@var{none}} will not generate 513lfence nor issue warning, which is the default. Note that lfence won't 514be generated before indirect near branch via register with 515@option{-mlfence-after-load=@var{yes}} since lfence will be generated 516after loading branch target register. 517 518@cindex @samp{-mlfence-before-ret=} option, i386 519@cindex @samp{-mlfence-before-ret=} option, x86-64 520@item -mlfence-before-ret=@var{none} 521@item -mlfence-before-ret=@var{shl} 522@item -mlfence-before-ret=@var{or} 523@item -mlfence-before-ret=@var{yes} 524@itemx -mlfence-before-ret=@var{not} 525These options control whether the assembler should generate lfence 526before ret. @option{-mlfence-before-ret=@var{or}} will generate 527generate or instruction with lfence. 528@option{-mlfence-before-ret=@var{shl/yes}} will generate shl instruction 529with lfence. @option{-mlfence-before-ret=@var{not}} will generate not 530instruction with lfence. @option{-mlfence-before-ret=@var{none}} will not 531generate lfence, which is the default. 532 533@cindex @samp{-mx86-used-note=} option, i386 534@cindex @samp{-mx86-used-note=} option, x86-64 535@item -mx86-used-note=@var{no} 536@itemx -mx86-used-note=@var{yes} 537These options control whether the assembler should generate 538GNU_PROPERTY_X86_ISA_1_USED and GNU_PROPERTY_X86_FEATURE_2_USED 539GNU property notes. The default can be controlled by the 540@option{--enable-x86-used-note} configure option. 541 542@cindex @samp{-mevexrcig=} option, i386 543@cindex @samp{-mevexrcig=} option, x86-64 544@item -mevexrcig=@var{rne} 545@itemx -mevexrcig=@var{rd} 546@itemx -mevexrcig=@var{ru} 547@itemx -mevexrcig=@var{rz} 548These options control how the assembler should encode SAE-only 549EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits 550of EVEX instruction with 00, which is the default. 551@option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}} 552and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions 553with 01, 10 and 11 RC bits, respectively. 554 555@cindex @samp{-mamd64} option, x86-64 556@cindex @samp{-mintel64} option, x86-64 557@item -mamd64 558@itemx -mintel64 559This option specifies that the assembler should accept only AMD64 or 560Intel64 ISA in 64-bit mode. The default is to accept common, Intel64 561only and AMD64 ISAs. 562 563@cindex @samp{-O0} option, i386 564@cindex @samp{-O0} option, x86-64 565@cindex @samp{-O} option, i386 566@cindex @samp{-O} option, x86-64 567@cindex @samp{-O1} option, i386 568@cindex @samp{-O1} option, x86-64 569@cindex @samp{-O2} option, i386 570@cindex @samp{-O2} option, x86-64 571@cindex @samp{-Os} option, i386 572@cindex @samp{-Os} option, x86-64 573@item -O0 | -O | -O1 | -O2 | -Os 574Optimize instruction encoding with smaller instruction size. @samp{-O} 575and @samp{-O1} encode 64-bit register load instructions with 64-bit 576immediate as 32-bit register load instructions with 31-bit or 32-bits 577immediates, encode 64-bit register clearing instructions with 32-bit 578register clearing instructions, encode 256-bit/512-bit VEX/EVEX vector 579register clearing instructions with 128-bit VEX vector register 580clearing instructions, encode 128-bit/256-bit EVEX vector 581register load/store instructions with VEX vector register load/store 582instructions, and encode 128-bit/256-bit EVEX packed integer logical 583instructions with 128-bit/256-bit VEX packed integer logical. 584 585@samp{-O2} includes @samp{-O1} optimization plus encodes 586256-bit/512-bit EVEX vector register clearing instructions with 128-bit 587EVEX vector register clearing instructions. In 64-bit mode VEX encoded 588instructions with commutative source operands will also have their 589source operands swapped if this allows using the 2-byte VEX prefix form 590instead of the 3-byte one. Certain forms of AND as well as OR with the 591same (register) operand specified twice will also be changed to TEST. 592 593@samp{-Os} includes @samp{-O2} optimization plus encodes 16-bit, 32-bit 594and 64-bit register tests with immediate as 8-bit register test with 595immediate. @samp{-O0} turns off this optimization. 596 597@end table 598@c man end 599 600@node i386-Directives 601@section x86 specific Directives 602 603@cindex machine directives, x86 604@cindex x86 machine directives 605@table @code 606 607@cindex @code{lcomm} directive, COFF 608@item .lcomm @var{symbol} , @var{length}[, @var{alignment}] 609Reserve @var{length} (an absolute expression) bytes for a local common 610denoted by @var{symbol}. The section and value of @var{symbol} are 611those of the new local common. The addresses are allocated in the bss 612section, so that at run-time the bytes start off zeroed. Since 613@var{symbol} is not declared global, it is normally not visible to 614@code{@value{LD}}. The optional third parameter, @var{alignment}, 615specifies the desired alignment of the symbol in the bss section. 616 617This directive is only available for COFF based x86 targets. 618 619@cindex @code{largecomm} directive, ELF 620@item .largecomm @var{symbol} , @var{length}[, @var{alignment}] 621This directive behaves in the same way as the @code{comm} directive 622except that the data is placed into the @var{.lbss} section instead of 623the @var{.bss} section @ref{Comm}. 624 625The directive is intended to be used for data which requires a large 626amount of space, and it is only available for ELF based x86_64 627targets. 628 629@cindex @code{value} directive 630@item .value @var{expression} [, @var{expression}] 631This directive behaves in the same way as the @code{.short} directive, 632taking a series of comma separated expressions and storing them as 633two-byte wide values into the current section. 634 635@cindex @code{insn} directive 636@item .insn [@var{prefix}[,...]] [@var{encoding}] @var{major-opcode}[@code{+r}|@code{/@var{extension}}] [,@var{operand}[,...]] 637This directive allows composing instructions which @code{@value{AS}} 638may not know about yet, or which it has no way of expressing (which 639can be the case for certain alternative encodings). It assumes certain 640basic structure in how operands are encoded, and it also only 641recognizes - with a few extensions as per below - operands otherwise 642valid for instructions. Therefore there is no guarantee that 643everything can be expressed (e.g. the original Intel Xeon Phi's MVEX 644encodings cannot be expressed). 645 646@itemize @bullet 647@item 648@var{prefix} expresses one or more opcode prefixes in the usual way. 649Legacy encoding prefixes altering meaning (0x66, 0xF2, 0xF3) may be 650specified as high byte of <major-opcode> (perhaps already including an 651encoding space prefix). Note that there can only be one such prefix. 652Segment overrides are better specified in the respective memory 653operand, as long as there is one. 654 655@item 656@var{encoding} is used to specify VEX, XOP, or EVEX encodings. The 657syntax tries to resemble that used in documentation: 658@itemize @bullet 659@item @code{VEX}[@code{.@var{len}}][@code{.@var{prefix}}][@code{.@var{space}}][@code{.@var{w}}] 660@item @code{EVEX}[@code{.@var{len}}][@code{.@var{prefix}}][@code{.@var{space}}][@code{.@var{w}}] 661@item @code{XOP}@var{space}[@code{.@var{len}}][@code{.@var{prefix}}][@code{.@var{w}}] 662@end itemize 663 664Here 665@itemize @bullet 666@item @var{len} can be @code{LIG}, @code{128}, @code{256}, or (EVEX 667only) @code{512} as well as @code{L0} / @code{L1} for VEX / XOP and 668@code{L0}...@code{L3} for EVEX 669@item @var{prefix} can be @code{NP}, @code{66}, @code{F3}, or @code{F2} 670@item @var{space} can be 671@itemize @bullet 672@item @code{0f}, @code{0f38}, @code{0f3a}, or @code{M0}...@code{M31} 673for VEX 674@item @code{08}...@code{1f} for XOP 675@item @code{0f}, @code{0f38}, @code{0f3a}, or @code{M0}...@code{M15} 676for EVEX 677@end itemize 678@item @var{w} can be @code{WIG}, @code{W0}, or @code{W1} 679@end itemize 680 681Defaults: 682@itemize @bullet 683@item Omitted @var{len} means "infer from operand size" if there is at 684least one sized vector operand, or @code{LIG} otherwise. (Obviously 685@var{len} has to be omitted when there's EVEX rounding control 686specified later in the operands.) 687@item Omitted @var{prefix} means @code{NP}. 688@item Omitted @var{space} (VEX/EVEX only) implies encoding space is 689taken from @var{major-opcode}. 690@item Omitted @var{w} means "infer from GPR operand size" in 64-bit 691code if there is at least one GPR(-like) operand, or @code{WIG} 692otherwise. 693@end itemize 694 695@item 696@var{major-opcode} is an absolute expression specifying the instruction 697opcode. Legacy encoding prefixes altering encoding space (0x0f, 6980x0f38, 0x0f3a) have to be specified as high byte(s) here. 699"Degenerate" ModR/M bytes, as present in e.g. certain FPU opcodes or 700sub-spaces like that of major opcode 0x0f01, generally want encoding as 701immediate operand (such opcodes wouldn't normally have non-immediate 702operands); in some cases it may be possible to also encode these as low 703byte of the major opcode, but there are potential ambiguities. Also 704note that after stripping encoding prefixes, the residual has to fit in 705two bytes (16 bits). @code{+r} can be suffixed to the major opcode 706expression to specify register-only encoding forms not using a ModR/M 707byte. @code{/@var{extension}} can alternatively be suffixed to the 708major opcode expression to specify an extension opcode, encoded in bits 7093-5 of the ModR/M byte. 710 711@item 712@var{operand} is an instruction operand expressed the usual way. 713Register operands are primarily used to express register numbers as 714encoded in ModR/M byte and REX/VEX/XOP/EVEX prefixes. In certain 715cases the register type (really: size) is also used to derive other 716encoding attributes, if these aren't specified explicitly. Note that 717there is no consistency checking among operands, so entirely bogus 718mixes of operands are possible. Note further that only operands 719actually encoded in the instruction should be specified. Operands like 720@samp{%cl} in shift/rotate instructions have to be omitted, or else 721they'll be encoded as an ordinary (register) operand. Operand order 722may also not match that of the actual instruction (see below). 723@end itemize 724 725Encoding of operands: While for a memory operand (of which there can be 726only one) it is clear how to encode it in the resulting ModR/M byte, 727register operands are encoded strictly in this order (operand counts do 728not include immediate ones in the enumeration below, and if there was an 729extension opcode specified it counts as a register operand; VEX.vvvv 730is meant to cover XOP and EVEX as well): 731 732@itemize @bullet 733@item VEX.vvvv for 1-register-operand VEX/XOP/EVEX insns, 734@item ModR/M.rm, ModR/M.reg for 2-operand insns, 735@item ModR/M.rm, VEX.vvvv, ModR/M.reg for 3-operand insns, and 736@item Imm@{4,5@}, ModR/M.rm, VEX.vvvv, ModR/M.reg for 4-operand insns, 737@end itemize 738 739obviously with the ModR/M.rm slot skipped when there is a memory 740operand, and obviously with the ModR/M.reg slot skipped when there is 741an extension opcode. For Intel syntax of course the opposite order 742applies. With @code{+r} (and hence no ModR/M) there can only be a 743single register operand for legacy encodings. VEX and alike can have 744two register operands, where the second (first in Intel syntax) would 745go into VEX.vvvv. 746 747Immediate operands (including immediate-like displacements, i.e. when 748not part of ModR/M addressing) are emitted in the order specified, 749regardless of AT&T or Intel syntax. Since it may not be possible to 750infer the size of such immediates, they can be suffixed by 751@code{@{:s@var{n}@}} or @code{@{:u@var{n}@}}, representing signed / 752unsigned immediates of the given number of bits respectively. When 753emitting such operands, the number of bits will be rounded up to the 754smallest suitable of 8, 16, 32, or 64. Immediates wider than 32 bits 755are permitted in 64-bit code only. 756 757For EVEX encoding memory operands with a displacement need to know 758Disp8 scaling size in order to use an 8-bit displacement. For many 759instructions this can be inferred from the types of other operands 760specified. In Intel syntax @samp{DWORD PTR} and alike can be used to 761specify the respective size. In AT&T syntax the memory operands can 762be suffixed by @code{@{:d@var{n}@}} to specify the size (in bytes). 763This can be combined with an embedded broadcast specifier: 764@samp{8(%eax)@{1to8:d8@}}. 765 766@c FIXME: Document other x86 specific directives ? Eg: .code16gcc, 767 768@end table 769 770@node i386-Syntax 771@section i386 Syntactical Considerations 772@menu 773* i386-Variations:: AT&T Syntax versus Intel Syntax 774* i386-Chars:: Special Characters 775@end menu 776 777@node i386-Variations 778@subsection AT&T Syntax versus Intel Syntax 779 780@cindex i386 intel_syntax pseudo op 781@cindex intel_syntax pseudo op, i386 782@cindex i386 att_syntax pseudo op 783@cindex att_syntax pseudo op, i386 784@cindex i386 syntax compatibility 785@cindex syntax compatibility, i386 786@cindex x86-64 intel_syntax pseudo op 787@cindex intel_syntax pseudo op, x86-64 788@cindex x86-64 att_syntax pseudo op 789@cindex att_syntax pseudo op, x86-64 790@cindex x86-64 syntax compatibility 791@cindex syntax compatibility, x86-64 792 793@code{@value{AS}} now supports assembly using Intel assembler syntax. 794@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches 795back to the usual AT&T mode for compatibility with the output of 796@code{@value{GCC}}. Either of these directives may have an optional 797argument, @code{prefix}, or @code{noprefix} specifying whether registers 798require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite 799different from Intel syntax. We mention these differences because 800almost all 80386 documents use Intel syntax. Notable differences 801between the two syntaxes are: 802 803@cindex immediate operands, i386 804@cindex i386 immediate operands 805@cindex register operands, i386 806@cindex i386 register operands 807@cindex jump/call operands, i386 808@cindex i386 jump/call operands 809@cindex operand delimiters, i386 810 811@cindex immediate operands, x86-64 812@cindex x86-64 immediate operands 813@cindex register operands, x86-64 814@cindex x86-64 register operands 815@cindex jump/call operands, x86-64 816@cindex x86-64 jump/call operands 817@cindex operand delimiters, x86-64 818@itemize @bullet 819@item 820AT&T immediate operands are preceded by @samp{$}; Intel immediate 821operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}). 822AT&T register operands are preceded by @samp{%}; Intel register operands 823are undelimited. AT&T absolute (as opposed to PC relative) jump/call 824operands are prefixed by @samp{*}; they are undelimited in Intel syntax. 825 826@cindex i386 source, destination operands 827@cindex source, destination operands; i386 828@cindex x86-64 source, destination operands 829@cindex source, destination operands; x86-64 830@item 831AT&T and Intel syntax use the opposite order for source and destination 832operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The 833@samp{source, dest} convention is maintained for compatibility with 834previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and 835instructions with 2 immediate operands, such as the @samp{enter} 836instruction, do @emph{not} have reversed order. @ref{i386-Bugs}. 837 838@cindex mnemonic suffixes, i386 839@cindex sizes operands, i386 840@cindex i386 size suffixes 841@cindex mnemonic suffixes, x86-64 842@cindex sizes operands, x86-64 843@cindex x86-64 size suffixes 844@item 845In AT&T syntax the size of memory operands is determined from the last 846character of the instruction mnemonic. Mnemonic suffixes of @samp{b}, 847@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long 848(32-bit) and quadruple word (64-bit) memory references. Mnemonic suffixes 849of @samp{x}, @samp{y} and @samp{z} specify xmm (128-bit vector), ymm 850(256-bit vector) and zmm (512-bit vector) memory references, only when there's 851no other way to disambiguate an instruction. Intel syntax accomplishes this by 852prefixing memory operands (@emph{not} the instruction mnemonics) with 853@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr}, @samp{qword ptr}, 854@samp{xmmword ptr}, @samp{ymmword ptr} and @samp{zmmword ptr}. Thus, Intel 855syntax @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T 856syntax. In Intel syntax, @samp{fword ptr}, @samp{tbyte ptr} and 857@samp{oword ptr} specify 48-bit, 80-bit and 128-bit memory references. 858 859In 64-bit code, @samp{movabs} can be used to encode the @samp{mov} 860instruction with the 64-bit displacement or immediate operand. 861 862@cindex return instructions, i386 863@cindex i386 jump, call, return 864@cindex return instructions, x86-64 865@cindex x86-64 jump, call, return 866@item 867Immediate form long jumps and calls are 868@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the 869Intel syntax is 870@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return 871instruction 872is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is 873@samp{ret far @var{stack-adjust}}. 874 875@cindex sections, i386 876@cindex i386 sections 877@cindex sections, x86-64 878@cindex x86-64 sections 879@item 880The AT&T assembler does not provide support for multiple section 881programs. Unix style systems expect all programs to be single sections. 882@end itemize 883 884@node i386-Chars 885@subsection Special Characters 886 887@cindex line comment character, i386 888@cindex i386 line comment character 889The presence of a @samp{#} appearing anywhere on a line indicates the 890start of a comment that extends to the end of that line. 891 892If a @samp{#} appears as the first character of a line then the whole 893line is treated as a comment, but in this case the line can also be a 894logical line number directive (@pxref{Comments}) or a preprocessor 895control command (@pxref{Preprocessing}). 896 897If the @option{--divide} command-line option has not been specified 898then the @samp{/} character appearing anywhere on a line also 899introduces a line comment. 900 901@cindex line separator, i386 902@cindex statement separator, i386 903@cindex i386 line separator 904The @samp{;} character can be used to separate statements on the same 905line. 906 907@node i386-Mnemonics 908@section i386-Mnemonics 909@subsection Instruction Naming 910 911@cindex i386 instruction naming 912@cindex instruction naming, i386 913@cindex x86-64 instruction naming 914@cindex instruction naming, x86-64 915 916Instruction mnemonics are suffixed with one character modifiers which 917specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l} 918and @samp{q} specify byte, word, long and quadruple word operands. If 919no suffix is specified by an instruction then @code{@value{AS}} tries to 920fill in the missing suffix based on the destination register operand 921(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent 922to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to 923@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix 924assembler which assumes that a missing mnemonic suffix implies long 925operand size. (This incompatibility does not affect compiler output 926since compilers always explicitly specify the mnemonic suffix.) 927 928When there is no sizing suffix and no (suitable) register operands to 929deduce the size of memory operands, with a few exceptions and where long 930operand size is possible in the first place, operand size will default 931to long in 32- and 64-bit modes. Similarly it will default to short in 93216-bit mode. Noteworthy exceptions are 933 934@itemize @bullet 935@item 936Instructions with an implicit on-stack operand as well as branches, 937which default to quad in 64-bit mode. 938 939@item 940Sign- and zero-extending moves, which default to byte size source 941operands. 942 943@item 944Floating point insns with integer operands, which default to short (for 945perhaps historical reasons). 946 947@item 948CRC32 with a 64-bit destination, which defaults to a quad source 949operand. 950 951@end itemize 952 953@cindex encoding options, i386 954@cindex encoding options, x86-64 955 956Different encoding options can be specified via pseudo prefixes: 957 958@itemize @bullet 959@item 960@samp{@{disp8@}} -- prefer 8-bit displacement. 961 962@item 963@samp{@{disp32@}} -- prefer 32-bit displacement. 964 965@item 966@samp{@{disp16@}} -- prefer 16-bit displacement. 967 968@item 969@samp{@{load@}} -- prefer load-form instruction. 970 971@item 972@samp{@{store@}} -- prefer store-form instruction. 973 974@item 975@samp{@{vex@}} -- encode with VEX prefix. 976 977@item 978@samp{@{vex3@}} -- encode with 3-byte VEX prefix. 979 980@item 981@samp{@{evex@}} -- encode with EVEX prefix. 982 983@item 984@samp{@{rex@}} -- prefer REX prefix for integer and legacy vector 985instructions (x86-64 only). Note that this differs from the @samp{rex} 986prefix which generates REX prefix unconditionally. 987 988@item 989@samp{@{rex2@}} -- prefer REX2 prefix for integer and legacy vector 990instructions (APX_F only). 991 992@item 993@samp{@{nooptimize@}} -- disable instruction size optimization. 994@end itemize 995 996Mnemonics of Intel VNNI/IFMA instructions are encoded with the EVEX prefix 997by default. The pseudo @samp{@{vex@}} prefix can be used to encode 998mnemonics of Intel VNNI/IFMA instructions with the VEX prefix. 999 1000@cindex conversion instructions, i386 1001@cindex i386 conversion instructions 1002@cindex conversion instructions, x86-64 1003@cindex x86-64 conversion instructions 1004The Intel-syntax conversion instructions 1005 1006@itemize @bullet 1007@item 1008@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax}, 1009 1010@item 1011@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax}, 1012 1013@item 1014@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax}, 1015 1016@item 1017@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax}, 1018 1019@item 1020@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax} 1021(x86-64 only), 1022 1023@item 1024@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in 1025@samp{%rdx:%rax} (x86-64 only), 1026@end itemize 1027 1028@noindent 1029are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and 1030@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these 1031instructions. 1032 1033@cindex extension instructions, i386 1034@cindex i386 extension instructions 1035@cindex extension instructions, x86-64 1036@cindex x86-64 extension instructions 1037The Intel-syntax extension instructions 1038 1039@itemize @bullet 1040@item 1041@samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg16}. 1042 1043@item 1044@samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg32}. 1045 1046@item 1047@samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg64} 1048(x86-64 only). 1049 1050@item 1051@samp{movsx} --- sign-extend @samp{reg16/mem16} to @samp{reg32} 1052 1053@item 1054@samp{movsx} --- sign-extend @samp{reg16/mem16} to @samp{reg64} 1055(x86-64 only). 1056 1057@item 1058@samp{movsxd} --- sign-extend @samp{reg32/mem32} to @samp{reg64} 1059(x86-64 only). 1060 1061@item 1062@samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg16}. 1063 1064@item 1065@samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg32}. 1066 1067@item 1068@samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg64} 1069(x86-64 only). 1070 1071@item 1072@samp{movzx} --- zero-extend @samp{reg16/mem16} to @samp{reg32} 1073 1074@item 1075@samp{movzx} --- zero-extend @samp{reg16/mem16} to @samp{reg64} 1076(x86-64 only). 1077@end itemize 1078 1079@noindent 1080are called @samp{movsbw/movsxb/movsx}, @samp{movsbl/movsxb/movsx}, 1081@samp{movsbq/movsxb/movsx}, @samp{movswl/movsxw}, @samp{movswq/movsxw}, 1082@samp{movslq/movsxl}, @samp{movzbw/movzxb/movzx}, 1083@samp{movzbl/movzxb/movzx}, @samp{movzbq/movzxb/movzx}, 1084@samp{movzwl/movzxw} and @samp{movzwq/movzxw} in AT&T syntax. 1085 1086@cindex jump instructions, i386 1087@cindex call instructions, i386 1088@cindex jump instructions, x86-64 1089@cindex call instructions, x86-64 1090Far call/jump instructions are @samp{lcall} and @samp{ljmp} in 1091AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel 1092convention. 1093 1094@subsection AT&T Mnemonic versus Intel Mnemonic 1095 1096@cindex i386 mnemonic compatibility 1097@cindex mnemonic compatibility, i386 1098 1099@code{@value{AS}} supports assembly using Intel mnemonic. 1100@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and 1101@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T 1102syntax for compatibility with the output of @code{@value{GCC}}. 1103Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp}, 1104@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp}, 1105@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386 1106assembler with different mnemonics from those in Intel IA32 specification. 1107@code{@value{GCC}} generates those instructions with AT&T mnemonic. 1108 1109@itemize @bullet 1110@item @samp{movslq} with AT&T mnemonic only accepts 64-bit destination 1111register. @samp{movsxd} should be used to encode 16-bit or 32-bit 1112destination register with both AT&T and Intel mnemonics. 1113@end itemize 1114 1115@node i386-Regs 1116@section Register Naming 1117 1118@cindex i386 registers 1119@cindex registers, i386 1120@cindex x86-64 registers 1121@cindex registers, x86-64 1122Register operands are always prefixed with @samp{%}. The 80386 registers 1123consist of 1124 1125@itemize @bullet 1126@item 1127the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx}, 1128@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the 1129frame pointer), and @samp{%esp} (the stack pointer). 1130 1131@item 1132the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx}, 1133@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}. 1134 1135@item 1136the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh}, 1137@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These 1138are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx}, 1139@samp{%cx}, and @samp{%dx}) 1140 1141@item 1142the 6 section registers @samp{%cs} (code section), @samp{%ds} 1143(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs}, 1144and @samp{%gs}. 1145 1146@item 1147the 5 processor control registers @samp{%cr0}, @samp{%cr2}, 1148@samp{%cr3}, @samp{%cr4}, and @samp{%cr8}. 1149 1150@item 1151the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2}, 1152@samp{%db3}, @samp{%db6}, and @samp{%db7}. 1153 1154@item 1155the 2 test registers @samp{%tr6} and @samp{%tr7}. 1156 1157@item 1158the 8 floating point register stack @samp{%st} or equivalently 1159@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)}, 1160@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}. 1161These registers are overloaded by 8 MMX registers @samp{%mm0}, 1162@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5}, 1163@samp{%mm6} and @samp{%mm7}. 1164 1165@item 1166the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2}, 1167@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}. 1168@end itemize 1169 1170The AMD x86-64 architecture extends the register set by: 1171 1172@itemize @bullet 1173@item 1174enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the 1175accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi}, 1176@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack 1177pointer) 1178 1179@item 1180the 8 extended registers @samp{%r8}--@samp{%r15}. 1181 1182@item 1183the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}. 1184 1185@item 1186the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}. 1187 1188@item 1189the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}. 1190 1191@item 1192the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}. 1193 1194@item 1195the 8 debug registers: @samp{%db8}--@samp{%db15}. 1196 1197@item 1198the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}. 1199@end itemize 1200 1201With the AVX extensions more registers were made available: 1202 1203@itemize @bullet 1204 1205@item 1206the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8 1207available in 32-bit mode). The bottom 128 bits are overlaid with the 1208@samp{xmm0}--@samp{xmm15} registers. 1209 1210@end itemize 1211 1212The AVX512 extensions added the following registers: 1213 1214@itemize @bullet 1215 1216@item 1217the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8 1218available in 32-bit mode). The bottom 128 bits are overlaid with the 1219@samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are 1220overlaid with the @samp{%ymm0}--@samp{%ymm31} registers. 1221 1222@item 1223the 8 mask registers @samp{%k0}--@samp{%k7}. 1224 1225@end itemize 1226 1227@node i386-Prefixes 1228@section Instruction Prefixes 1229 1230@cindex i386 instruction prefixes 1231@cindex instruction prefixes, i386 1232@cindex prefixes, i386 1233Instruction prefixes are used to modify the following instruction. They 1234are used to repeat string instructions, to provide section overrides, to 1235perform bus lock operations, and to change operand and address sizes. 1236(Most instructions that normally operate on 32-bit operands will use 123716-bit operands if the instruction has an ``operand size'' prefix.) 1238Instruction prefixes are best written on the same line as the instruction 1239they act upon. For example, the @samp{scas} (scan string) instruction is 1240repeated with: 1241 1242@smallexample 1243 repne scas %es:(%edi),%al 1244@end smallexample 1245 1246You may also place prefixes on the lines immediately preceding the 1247instruction, but this circumvents checks that @code{@value{AS}} does 1248with prefixes, and will not work with all prefixes. 1249 1250Here is a list of instruction prefixes: 1251 1252@cindex section override prefixes, i386 1253@itemize @bullet 1254@item 1255Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es}, 1256@samp{fs}, @samp{gs}. These are automatically added by specifying 1257using the @var{section}:@var{memory-operand} form for memory references. 1258 1259@cindex size prefixes, i386 1260@item 1261Operand/Address size prefixes @samp{data16} and @samp{addr16} 1262change 32-bit operands/addresses into 16-bit operands/addresses, 1263while @samp{data32} and @samp{addr32} change 16-bit ones (in a 1264@code{.code16} section) into 32-bit operands/addresses. These prefixes 1265@emph{must} appear on the same line of code as the instruction they 1266modify. For example, in a 16-bit @code{.code16} section, you might 1267write: 1268 1269@smallexample 1270 addr32 jmpl *(%ebx) 1271@end smallexample 1272 1273@cindex bus lock prefixes, i386 1274@cindex inhibiting interrupts, i386 1275@item 1276The bus lock prefix @samp{lock} inhibits interrupts during execution of 1277the instruction it precedes. (This is only valid with certain 1278instructions; see a 80386 manual for details). 1279 1280@cindex coprocessor wait, i386 1281@item 1282The wait for coprocessor prefix @samp{wait} waits for the coprocessor to 1283complete the current instruction. This should never be needed for the 128480386/80387 combination. 1285 1286@cindex repeat prefixes, i386 1287@item 1288The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added 1289to string instructions to make them repeat @samp{%ecx} times (@samp{%cx} 1290times if the current address size is 16-bits). 1291@cindex REX prefixes, i386 1292@item 1293The @samp{rex} family of prefixes is used by x86-64 to encode 1294extensions to i386 instruction set. The @samp{rex} prefix has four 1295bits --- an operand size overwrite (@code{64}) used to change operand size 1296from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the 1297register set. 1298 1299You may write the @samp{rex} prefixes directly. The @samp{rex64xyz} 1300instruction emits @samp{rex} prefix with all the bits set. By omitting 1301the @code{64}, @code{x}, @code{y} or @code{z} you may write other 1302prefixes as well. Normally, there is no need to write the prefixes 1303explicitly, since gas will automatically generate them based on the 1304instruction operands. 1305@end itemize 1306 1307@node i386-Memory 1308@section Memory References 1309 1310@cindex i386 memory references 1311@cindex memory references, i386 1312@cindex x86-64 memory references 1313@cindex memory references, x86-64 1314An Intel syntax indirect memory reference of the form 1315 1316@smallexample 1317@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}] 1318@end smallexample 1319 1320@noindent 1321is translated into the AT&T syntax 1322 1323@smallexample 1324@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale}) 1325@end smallexample 1326 1327@noindent 1328where @var{base} and @var{index} are the optional 32-bit base and 1329index registers, @var{disp} is the optional displacement, and 1330@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index} 1331to calculate the address of the operand. If no @var{scale} is 1332specified, @var{scale} is taken to be 1. @var{section} specifies the 1333optional section register for the memory operand, and may override the 1334default section register (see a 80386 manual for section register 1335defaults). Note that section overrides in AT&T syntax @emph{must} 1336be preceded by a @samp{%}. If you specify a section override which 1337coincides with the default section register, @code{@value{AS}} does @emph{not} 1338output any section register override prefixes to assemble the given 1339instruction. Thus, section overrides can be specified to emphasize which 1340section register is used for a given memory operand. 1341 1342Here are some examples of Intel and AT&T style memory references: 1343 1344@table @asis 1345@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]} 1346@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is 1347missing, and the default section is used (@samp{%ss} for addressing with 1348@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing. 1349 1350@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]} 1351@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is 1352@samp{foo}. All other fields are missing. The section register here 1353defaults to @samp{%ds}. 1354 1355@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]} 1356This uses the value pointed to by @samp{foo} as a memory operand. 1357Note that @var{base} and @var{index} are both missing, but there is only 1358@emph{one} @samp{,}. This is a syntactic exception. 1359 1360@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo} 1361This selects the contents of the variable @samp{foo} with section 1362register @var{section} being @samp{%gs}. 1363@end table 1364 1365Absolute (as opposed to PC relative) call and jump operands must be 1366prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}} 1367always chooses PC relative addressing for jump/call labels. 1368 1369Any instruction that has a memory operand, but no register operand, 1370@emph{must} specify its size (byte, word, long, or quadruple) with an 1371instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q}, 1372respectively). 1373 1374The x86-64 architecture adds an RIP (instruction pointer relative) 1375addressing. This addressing mode is specified by using @samp{rip} as a 1376base register. Only constant offsets are valid. For example: 1377 1378@table @asis 1379@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]} 1380Points to the address 1234 bytes past the end of the current 1381instruction. 1382 1383@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]} 1384Points to the @code{symbol} in RIP relative way, this is shorter than 1385the default absolute addressing. 1386@end table 1387 1388Other addressing modes remain unchanged in x86-64 architecture, except 1389registers used are 64-bit instead of 32-bit. 1390 1391@node i386-Jumps 1392@section Handling of Jump Instructions 1393 1394@cindex jump optimization, i386 1395@cindex i386 jump optimization 1396@cindex jump optimization, x86-64 1397@cindex x86-64 jump optimization 1398Jump instructions are always optimized to use the smallest possible 1399displacements. This is accomplished by using byte (8-bit) displacement 1400jumps whenever the target is sufficiently close. If a byte displacement 1401is insufficient a long displacement is used. We do not support 1402word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump 1403instruction with the @samp{data16} instruction prefix), since the 80386 1404insists upon masking @samp{%eip} to 16 bits after the word displacement 1405is added. (See also @pxref{i386-Arch}) 1406 1407Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz}, 1408@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte 1409displacements, so that if you use these instructions (@code{@value{GCC}} does 1410not use them) you may get an error message (and incorrect code). The AT&T 141180386 assembler tries to get around this problem by expanding @samp{jcxz foo} 1412to 1413 1414@smallexample 1415 jcxz cx_zero 1416 jmp cx_nonzero 1417cx_zero: jmp foo 1418cx_nonzero: 1419@end smallexample 1420 1421@node i386-Float 1422@section Floating Point 1423 1424@cindex i386 floating point 1425@cindex floating point, i386 1426@cindex x86-64 floating point 1427@cindex floating point, x86-64 1428All 80387 floating point types except packed BCD are supported. 1429(BCD support may be added without much difficulty). These data 1430types are 16-, 32-, and 64- bit integers, and single (32-bit), 1431double (64-bit), and extended (80-bit) precision floating point. 1432Each supported type has an instruction mnemonic suffix and a constructor 1433associated with it. Instruction mnemonic suffixes specify the operand's 1434data type. Constructors build these data types into memory. 1435 1436@cindex @code{float} directive, i386 1437@cindex @code{single} directive, i386 1438@cindex @code{double} directive, i386 1439@cindex @code{tfloat} directive, i386 1440@cindex @code{hfloat} directive, i386 1441@cindex @code{bfloat16} directive, i386 1442@cindex @code{float} directive, x86-64 1443@cindex @code{single} directive, x86-64 1444@cindex @code{double} directive, x86-64 1445@cindex @code{tfloat} directive, x86-64 1446@cindex @code{hfloat} directive, x86-64 1447@cindex @code{bfloat16} directive, x86-64 1448@itemize @bullet 1449@item 1450Floating point constructors are @samp{.float} or @samp{.single}, 1451@samp{.double}, @samp{.tfloat}, @samp{.hfloat}, and @samp{.bfloat16} for 32-, 145264-, 80-, and 16-bit (two flavors) formats respectively. The former three 1453correspond to instruction mnemonic suffixes @samp{s}, @samp{l}, and @samp{t}. 1454@samp{t} stands for 80-bit (ten byte) real. The 80387 only supports this 1455format via the @samp{fldt} (load 80-bit real to stack top) and @samp{fstpt} 1456(store 80-bit real and pop stack) instructions. 1457 1458@cindex @code{word} directive, i386 1459@cindex @code{long} directive, i386 1460@cindex @code{int} directive, i386 1461@cindex @code{quad} directive, i386 1462@cindex @code{word} directive, x86-64 1463@cindex @code{long} directive, x86-64 1464@cindex @code{int} directive, x86-64 1465@cindex @code{quad} directive, x86-64 1466@item 1467Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and 1468@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The 1469corresponding instruction mnemonic suffixes are @samp{s} (short), 1470@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format, 1471the 64-bit @samp{q} format is only present in the @samp{fildq} (load 1472quad integer to stack top) and @samp{fistpq} (store quad integer and pop 1473stack) instructions. 1474@end itemize 1475 1476Register to register operations should not use instruction mnemonic suffixes. 1477@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you 1478wrote @samp{fst %st, %st(1)}, since all register to register operations 1479use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem}, 1480which converts @samp{%st} from 80-bit to 64-bit floating point format, 1481then stores the result in the 4 byte location @samp{mem}) 1482 1483@node i386-SIMD 1484@section Intel's MMX and AMD's 3DNow! SIMD Operations 1485 1486@cindex MMX, i386 1487@cindex 3DNow!, i386 1488@cindex SIMD, i386 1489@cindex MMX, x86-64 1490@cindex 3DNow!, x86-64 1491@cindex SIMD, x86-64 1492 1493@code{@value{AS}} supports Intel's MMX instruction set (SIMD 1494instructions for integer data), available on Intel's Pentium MMX 1495processors and Pentium II processors, AMD's K6 and K6-2 processors, 1496Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@: 1497instruction set (SIMD instructions for 32-bit floating point data) 1498available on AMD's K6-2 processor and possibly others in the future. 1499 1500Currently, @code{@value{AS}} does not support Intel's floating point 1501SIMD, Katmai (KNI). 1502 1503The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0}, 1504@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four 150516-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit 1506floating point values. The MMX registers cannot be used at the same time 1507as the floating point stack. 1508 1509See Intel and AMD documentation, keeping in mind that the operand order in 1510instructions is reversed from the Intel syntax. 1511 1512@node i386-LWP 1513@section AMD's Lightweight Profiling Instructions 1514 1515@cindex LWP, i386 1516@cindex LWP, x86-64 1517 1518@code{@value{AS}} supports AMD's Lightweight Profiling (LWP) 1519instruction set, available on AMD's Family 15h (Orochi) processors. 1520 1521LWP enables applications to collect and manage performance data, and 1522react to performance events. The collection of performance data 1523requires no context switches. LWP runs in the context of a thread and 1524so several counters can be used independently across multiple threads. 1525LWP can be used in both 64-bit and legacy 32-bit modes. 1526 1527For detailed information on the LWP instruction set, see the 1528@cite{AMD Lightweight Profiling Specification} available at 1529@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}. 1530 1531@node i386-BMI 1532@section Bit Manipulation Instructions 1533 1534@cindex BMI, i386 1535@cindex BMI, x86-64 1536 1537@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set. 1538 1539BMI instructions provide several instructions implementing individual 1540bit manipulation operations such as isolation, masking, setting, or 1541resetting. 1542 1543@c Need to add a specification citation here when available. 1544 1545@node i386-TBM 1546@section AMD's Trailing Bit Manipulation Instructions 1547 1548@cindex TBM, i386 1549@cindex TBM, x86-64 1550 1551@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM) 1552instruction set, available on AMD's BDVER2 processors (Trinity and 1553Viperfish). 1554 1555TBM instructions provide instructions implementing individual bit 1556manipulation operations such as isolating, masking, setting, resetting, 1557complementing, and operations on trailing zeros and ones. 1558 1559@c Need to add a specification citation here when available. 1560 1561@node i386-16bit 1562@section Writing 16-bit Code 1563 1564@cindex i386 16-bit code 1565@cindex 16-bit code, i386 1566@cindex real-mode code, i386 1567@cindex @code{code16gcc} directive, i386 1568@cindex @code{code16} directive, i386 1569@cindex @code{code32} directive, i386 1570@cindex @code{code64} directive, i386 1571@cindex @code{code64} directive, x86-64 1572While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code 1573or 64-bit x86-64 code depending on the default configuration, 1574it also supports writing code to run in real mode or in 16-bit protected 1575mode code segments. To do this, put a @samp{.code16} or 1576@samp{.code16gcc} directive before the assembly language instructions to 1577be run in 16-bit mode. You can switch @code{@value{AS}} to writing 157832-bit code with the @samp{.code32} directive or 64-bit code with the 1579@samp{.code64} directive. 1580 1581@samp{.code16gcc} provides experimental support for generating 16-bit 1582code from gcc, and differs from @samp{.code16} in that @samp{call}, 1583@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop}, 1584@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions 1585default to 32-bit size. This is so that the stack pointer is 1586manipulated in the same way over function calls, allowing access to 1587function parameters at the same stack offsets as in 32-bit mode. 1588@samp{.code16gcc} also automatically adds address size prefixes where 1589necessary to use the 32-bit addressing modes that gcc generates. 1590 1591The code which @code{@value{AS}} generates in 16-bit mode will not 1592necessarily run on a 16-bit pre-80386 processor. To write code that 1593runs on such a processor, you must refrain from using @emph{any} 32-bit 1594constructs which require @code{@value{AS}} to output address or operand 1595size prefixes. 1596 1597Note that writing 16-bit code instructions by explicitly specifying a 1598prefix or an instruction mnemonic suffix within a 32-bit code section 1599generates different machine instructions than those generated for a 160016-bit code segment. In a 32-bit code section, the following code 1601generates the machine opcode bytes @samp{66 6a 04}, which pushes the 1602value @samp{4} onto the stack, decrementing @samp{%esp} by 2. 1603 1604@smallexample 1605 pushw $4 1606@end smallexample 1607 1608The same code in a 16-bit code section would generate the machine 1609opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which 1610is correct since the processor default operand size is assumed to be 16 1611bits in a 16-bit code section. 1612 1613@node i386-Arch 1614@section Specifying CPU Architecture 1615 1616@cindex arch directive, i386 1617@cindex i386 arch directive 1618@cindex arch directive, x86-64 1619@cindex x86-64 arch directive 1620 1621@code{@value{AS}} may be told to assemble for a particular CPU 1622(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This 1623directive enables a warning when gas detects an instruction that is not 1624supported on the CPU specified. The choices for @var{cpu_type} are: 1625 1626@multitable @columnfractions .20 .20 .20 .20 1627@item @samp{default} @tab @samp{push} @tab @samp{pop} 1628@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386} 1629@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium} 1630@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4} 1631@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2} 1632@item @samp{corei7} @tab @samp{iamcu} 1633@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8} 1634@item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3} 1635@item @samp{bdver4} @tab @samp{znver1} @tab @samp{znver2} @tab @samp{znver3} 1636@item @samp{znver4} @tab @samp{znver5} @tab @samp{btver1} @tab @samp{btver2} 1637@item @samp{generic32} 1638@item @samp{generic64} @tab @samp{.cmov} @tab @samp{.fxsr} @tab @samp{.mmx} 1639@item @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3} @tab @samp{.sse4a} 1640@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4} 1641@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept} 1642@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt} 1643@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase} 1644@item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2} 1645@item @samp{.lzcnt} @tab @samp{.popcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} 1646@item @samp{.monitor} @tab @samp{.hle} @tab @samp{.rtm} @tab @samp{.tsx} 1647@item @samp{.lahf_sahf} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw} 1648@item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1} 1649@item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1} 1650@item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf} 1651@item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma} 1652@item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw} 1653@item @samp{.avx512_vpopcntdq} @tab @samp{.avx512_vbmi2} @tab @samp{.avx512_vnni} 1654@item @samp{.avx512_bitalg} @tab @samp{.avx512_bf16} @tab @samp{.avx512_vp2intersect} 1655@item @samp{.tdx} @tab @samp{.avx_vnni} @tab @samp{.avx512_fp16} @tab @samp{.avx10.1} 1656@item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite} @tab @samp{.ibt} 1657@item @samp{.prefetchi} @tab @samp{.avx_ifma} @tab @samp{.avx_vnni_int8} 1658@item @samp{.cmpccxadd} @tab @samp{.wrmsrns} @tab @samp{.msrlist} 1659@item @samp{.avx_ne_convert} @tab @samp{.rao_int} @tab @samp{.fred} @tab @samp{.lkgs} 1660@item @samp{.avx_vnni_int16} @tab @samp{.sha512} @tab @samp{.sm3} @tab @samp{.sm4} 1661@item @samp{.pbndkb} @tab @samp{.user_msr} 1662@item @samp{.wbnoinvd} @tab @samp{.pconfig} @tab @samp{.waitpkg} @tab @samp{.cldemote} 1663@item @samp{.shstk} @tab @samp{.gfni} @tab @samp{.vaes} @tab @samp{.vpclmulqdq} 1664@item @samp{.movdiri} @tab @samp{.movdir64b} @tab @samp{.enqcmd} @tab @samp{.tsxldtrk} 1665@item @samp{.amx_int8} @tab @samp{.amx_bf16} @tab @samp{.amx_fp16} 1666@item @samp{.amx_complex} @tab @samp{.amx_tile} 1667@item @samp{.kl} @tab @samp{.widekl} @tab @samp{.uintr} @tab @samp{.hreset} 1668@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5} 1669@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} 1670@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16} 1671@item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx} @tab @samp{.rdpru} 1672@item @samp{.mcommit} @tab @samp{.sev_es} @tab @samp{.snp} @tab @samp{.invlpgb} 1673@item @samp{.tlbsync} @tab @samp{.apx_f} 1674@end multitable 1675 1676Apart from the warning, there are only two other effects on 1677@code{@value{AS}} operation; Firstly, if you specify a CPU other than 1678@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax} 1679will automatically use a two byte opcode sequence. The larger three 1680byte opcode sequence is used on the 486 (and when no architecture is 1681specified) because it executes faster on the 486. Note that you can 1682explicitly request the two byte opcode by writing @samp{sarl %eax}. 1683Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286}, 1684@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset 1685conditional jumps will be promoted when necessary to a two instruction 1686sequence consisting of a conditional jump of the opposite sense around 1687an unconditional jump to the target. 1688 1689Note that the sub-architecture specifiers (starting with a dot) can be prefixed 1690with @code{no} to revoke the respective (and any dependent) functionality. 1691Note further that @samp{.avx10.<N>} can be suffixed with a vector length 1692restriction (@samp{/256} or @samp{/128}, with @samp{/512} simply restoring the 1693default). Despite these otherwise being "enabling" specifiers, using these 1694suffixes will disable all insns with wider vector or mask register operands. 1695On SVR4-derived platforms, the separator character @samp{/} can be replaced by 1696@samp{:}. 1697 1698Following the CPU architecture (but not a sub-architecture, which are those 1699starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to 1700control automatic promotion of conditional jumps. @samp{jumps} is the 1701default, and enables jump promotion; All external jumps will be of the long 1702variety, and file-local jumps will be promoted as necessary. 1703(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as 1704byte offset jumps, and warns about file-local conditional jumps that 1705@code{@value{AS}} promotes. 1706Unconditional jumps are treated as for @samp{jumps}. 1707 1708For example 1709 1710@smallexample 1711 .arch i8086,nojumps 1712@end smallexample 1713 1714@node i386-ISA 1715@section AMD64 ISA vs. Intel64 ISA 1716 1717There are some discrepancies between AMD64 and Intel64 ISAs. 1718 1719@itemize @bullet 1720@item For @samp{movsxd} with 16-bit destination register, AMD64 1721supports 32-bit source operand and Intel64 supports 16-bit source 1722operand. 1723 1724@item For far branches (with explicit memory operand), both ISAs support 172532- and 16-bit operand size. Intel64 additionally supports 64-bit 1726operand size, encoded as @samp{ljmpq} and @samp{lcallq} in AT&T syntax 1727and with an explicit @samp{tbyte ptr} operand size specifier in Intel 1728syntax. 1729 1730@item @samp{lfs}, @samp{lgs}, and @samp{lss} similarly allow for 16- 1731and 32-bit operand size (32- and 48-bit memory operand) in both ISAs, 1732while Intel64 additionally supports 64-bit operand size (80-bit memory 1733operands). 1734 1735@end itemize 1736 1737@node i386-Bugs 1738@section AT&T Syntax bugs 1739 1740The UnixWare assembler, and probably other AT&T derived ix86 Unix 1741assemblers, generate floating point instructions with reversed source 1742and destination registers in certain cases. Unfortunately, gcc and 1743possibly many other programs use this reversed syntax, so we're stuck 1744with it. 1745 1746For example 1747 1748@smallexample 1749 fsub %st,%st(3) 1750@end smallexample 1751@noindent 1752results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather 1753than the expected @samp{%st(3) - %st}. This happens with all the 1754non-commutative arithmetic floating point operations with two register 1755operands where the source register is @samp{%st} and the destination 1756register is @samp{%st(i)}. 1757 1758@node i386-Notes 1759@section Notes 1760 1761@cindex i386 @code{mul}, @code{imul} instructions 1762@cindex @code{mul} instruction, i386 1763@cindex @code{imul} instruction, i386 1764@cindex @code{mul} instruction, x86-64 1765@cindex @code{imul} instruction, x86-64 1766There is some trickery concerning the @samp{mul} and @samp{imul} 1767instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding 1768multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5 1769for @samp{imul}) can be output only in the one operand form. Thus, 1770@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply; 1771the expanding multiply would clobber the @samp{%edx} register, and this 1772would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the 177364-bit product in @samp{%edx:%eax}. 1774 1775We have added a two operand form of @samp{imul} when the first operand 1776is an immediate mode expression and the second operand is a register. 1777This is just a shorthand, so that, multiplying @samp{%eax} by 69, for 1778example, can be done with @samp{imul $69, %eax} rather than @samp{imul 1779$69, %eax, %eax}. 1780 1781