xref: /netbsd-src/external/gpl3/binutils/dist/gas/doc/c-i386.texi (revision cb63e24e8d6aae7ddac1859a9015f48b1d8bd90e)
1@c Copyright (C) 1991-2024 Free Software Foundation, Inc.
2@c This is part of the GAS manual.
3@c For copying conditions, see the file as.texinfo.
4@c man end
5
6@ifset GENERIC
7@page
8@node i386-Dependent
9@chapter 80386 Dependent Features
10@end ifset
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter 80386 Dependent Features
14@end ifclear
15
16@cindex i386 support
17@cindex i80386 support
18@cindex x86-64 support
19
20The i386 version @code{@value{AS}} supports both the original Intel 386
21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22extending the Intel architecture to 64-bits.
23
24@menu
25* i386-Options::                Options
26* i386-Directives::             X86 specific directives
27* i386-Syntax::                 Syntactical considerations
28* i386-Mnemonics::              Instruction Naming
29* i386-Regs::                   Register Naming
30* i386-Prefixes::               Instruction Prefixes
31* i386-Memory::                 Memory References
32* i386-Jumps::                  Handling of Jump Instructions
33* i386-Float::                  Floating Point
34* i386-SIMD::                   Intel's MMX and AMD's 3DNow! SIMD Operations
35* i386-LWP::                    AMD's Lightweight Profiling Instructions
36* i386-BMI::                    Bit Manipulation Instruction
37* i386-TBM::                    AMD's Trailing Bit Manipulation Instructions
38* i386-16bit::                  Writing 16-bit Code
39* i386-Arch::                   Specifying an x86 CPU architecture
40* i386-ISA::                    AMD64 ISA vs. Intel64 ISA
41* i386-Bugs::                   AT&T Syntax bugs
42* i386-Notes::                  Notes
43@end menu
44
45@node i386-Options
46@section Options
47
48@cindex options for i386
49@cindex options for x86-64
50@cindex i386 options
51@cindex x86-64 options
52
53The i386 version of @code{@value{AS}} has a few machine
54dependent options:
55
56@c man begin OPTIONS
57@table @gcctabopt
58@cindex @samp{--32} option, i386
59@cindex @samp{--32} option, x86-64
60@cindex @samp{--x32} option, i386
61@cindex @samp{--x32} option, x86-64
62@cindex @samp{--64} option, i386
63@cindex @samp{--64} option, x86-64
64@item --32 | --x32 | --64
65Select the word size, either 32 bits or 64 bits.  @samp{--32}
66implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
67imply AMD x86-64 architecture with 32-bit or 64-bit word-size
68respectively.
69
70These options are only available with the ELF object file format, and
71require that the necessary BFD support has been included (on a 32-bit
72platform you have to add --enable-64-bit-bfd to configure enable 64-bit
73usage and use x86-64 as target platform).
74
75@item -n
76By default, x86 GAS replaces multiple nop instructions used for
77alignment within code sections with multi-byte nop instructions such
78as leal 0(%esi,1),%esi.  This switch disables the optimization if a single
79byte nop (0x90) is explicitly specified as the fill byte for alignment.
80
81@cindex @samp{--divide} option, i386
82@item --divide
83On SVR4-derived platforms, the character @samp{/} is treated as a comment
84character, which means that it cannot be used in expressions.  The
85@samp{--divide} option turns @samp{/} into a normal character.  This does
86not disable @samp{/} at the beginning of a line starting a comment, or
87affect using @samp{#} for starting a comment.
88
89@cindex @samp{-march=} option, i386
90@cindex @samp{-march=} option, x86-64
91@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
92This option specifies the target processor.  The assembler will
93issue an error message if an attempt is made to assemble an instruction
94which will not execute on the target processor.  The following
95processor names are recognized:
96@code{i8086},
97@code{i186},
98@code{i286},
99@code{i386},
100@code{i486},
101@code{i586},
102@code{i686},
103@code{pentium},
104@code{pentiumpro},
105@code{pentiumii},
106@code{pentiumiii},
107@code{pentium4},
108@code{prescott},
109@code{nocona},
110@code{core},
111@code{core2},
112@code{corei7},
113@code{iamcu},
114@code{k6},
115@code{k6_2},
116@code{athlon},
117@code{opteron},
118@code{k8},
119@code{amdfam10},
120@code{bdver1},
121@code{bdver2},
122@code{bdver3},
123@code{bdver4},
124@code{znver1},
125@code{znver2},
126@code{znver3},
127@code{znver4},
128@code{znver5},
129@code{btver1},
130@code{btver2},
131@code{generic32} and
132@code{generic64}.
133
134In addition to the basic instruction set, the assembler can be told to
135accept various extension mnemonics.  For example,
136@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
137@var{vmx}.  The following extensions are currently supported:
138@code{8087},
139@code{287},
140@code{387},
141@code{687},
142@code{cmov},
143@code{fxsr},
144@code{mmx},
145@code{sse},
146@code{sse2},
147@code{sse3},
148@code{sse4a},
149@code{ssse3},
150@code{sse4.1},
151@code{sse4.2},
152@code{sse4},
153@code{avx},
154@code{avx2},
155@code{lahf_sahf},
156@code{monitor},
157@code{adx},
158@code{rdseed},
159@code{prfchw},
160@code{smap},
161@code{mpx},
162@code{sha},
163@code{rdpid},
164@code{ptwrite},
165@code{cet},
166@code{gfni},
167@code{vaes},
168@code{vpclmulqdq},
169@code{prefetchwt1},
170@code{clflushopt},
171@code{se1},
172@code{clwb},
173@code{movdiri},
174@code{movdir64b},
175@code{enqcmd},
176@code{serialize},
177@code{tsxldtrk},
178@code{kl},
179@code{widekl},
180@code{hreset},
181@code{avx512f},
182@code{avx512cd},
183@code{avx512er},
184@code{avx512pf},
185@code{avx512vl},
186@code{avx512bw},
187@code{avx512dq},
188@code{avx512ifma},
189@code{avx512vbmi},
190@code{avx512_4fmaps},
191@code{avx512_4vnniw},
192@code{avx512_vpopcntdq},
193@code{avx512_vbmi2},
194@code{avx512_vnni},
195@code{avx512_bitalg},
196@code{avx512_vp2intersect},
197@code{tdx},
198@code{avx512_bf16},
199@code{avx_vnni},
200@code{avx512_fp16},
201@code{prefetchi},
202@code{avx_ifma},
203@code{avx_vnni_int8},
204@code{cmpccxadd},
205@code{wrmsrns},
206@code{msrlist},
207@code{avx_ne_convert},
208@code{rao_int},
209@code{fred},
210@code{lkgs},
211@code{avx_vnni_int16},
212@code{sha512},
213@code{sm3},
214@code{sm4},
215@code{pbndkb},
216@code{avx10.1},
217@code{avx10.1/512},
218@code{avx10.1/256},
219@code{avx10.1/128},
220@code{user_msr},
221@code{apx_f},
222@code{amx_int8},
223@code{amx_bf16},
224@code{amx_fp16},
225@code{amx_complex},
226@code{amx_tile},
227@code{vmx},
228@code{vmfunc},
229@code{smx},
230@code{xsave},
231@code{xsaveopt},
232@code{xsavec},
233@code{xsaves},
234@code{aes},
235@code{pclmul},
236@code{fsgsbase},
237@code{rdrnd},
238@code{f16c},
239@code{bmi2},
240@code{fma},
241@code{movbe},
242@code{ept},
243@code{lzcnt},
244@code{popcnt},
245@code{hle},
246@code{rtm},
247@code{tsx},
248@code{invpcid},
249@code{clflush},
250@code{mwaitx},
251@code{clzero},
252@code{wbnoinvd},
253@code{pconfig},
254@code{waitpkg},
255@code{uintr},
256@code{cldemote},
257@code{rdpru},
258@code{mcommit},
259@code{sev_es},
260@code{lwp},
261@code{fma4},
262@code{xop},
263@code{cx16},
264@code{syscall},
265@code{rdtscp},
266@code{3dnow},
267@code{3dnowa},
268@code{sse4a},
269@code{sse5},
270@code{snp},
271@code{invlpgb},
272@code{tlbsync},
273@code{svme} and
274@code{padlock}.
275Note that these extension mnemonics can be prefixed with @code{no} to revoke
276the respective (and any dependent) functionality.  Note further that the
277suffixes permitted on @code{-march=avx10.<N>} enforce a vector length
278restriction, i.e. despite these otherwise being "enabling" options, using
279these suffixes will disable all insns with wider vector or mask register
280operands.
281
282When the @code{.arch} directive is used with @option{-march}, the
283@code{.arch} directive will take precedent.
284
285@cindex @samp{-mtune=} option, i386
286@cindex @samp{-mtune=} option, x86-64
287@item -mtune=@var{CPU}
288This option specifies a processor to optimize for. When used in
289conjunction with the @option{-march} option, only instructions
290of the processor specified by the @option{-march} option will be
291generated.
292
293Valid @var{CPU} values are identical to the processor list of
294@option{-march=@var{CPU}}.
295
296@cindex @samp{-msse2avx} option, i386
297@cindex @samp{-msse2avx} option, x86-64
298@item -msse2avx
299This option specifies that the assembler should encode SSE instructions
300with VEX prefix.
301
302@cindex @samp{-muse-unaligned-vector-move} option, i386
303@cindex @samp{-muse-unaligned-vector-move} option, x86-64
304@item -muse-unaligned-vector-move
305This option specifies that the assembler should encode aligned vector
306move as unaligned vector move.
307
308@cindex @samp{-msse-check=} option, i386
309@cindex @samp{-msse-check=} option, x86-64
310@item -msse-check=@var{none}
311@itemx -msse-check=@var{warning}
312@itemx -msse-check=@var{error}
313These options control if the assembler should check SSE instructions.
314@option{-msse-check=@var{none}} will make the assembler not to check SSE
315instructions,  which is the default.  @option{-msse-check=@var{warning}}
316will make the assembler issue a warning for any SSE instruction.
317@option{-msse-check=@var{error}} will make the assembler issue an error
318for any SSE instruction.
319
320@cindex @samp{-mavxscalar=} option, i386
321@cindex @samp{-mavxscalar=} option, x86-64
322@item -mavxscalar=@var{128}
323@itemx -mavxscalar=@var{256}
324These options control how the assembler should encode scalar AVX
325instructions.  @option{-mavxscalar=@var{128}} will encode scalar
326AVX instructions with 128bit vector length, which is the default.
327@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
328with 256bit vector length.
329
330WARNING: Don't use this for production code - due to CPU errata the
331resulting code may not work on certain models.
332
333@cindex @samp{-mvexwig=} option, i386
334@cindex @samp{-mvexwig=} option, x86-64
335@item -mvexwig=@var{0}
336@itemx -mvexwig=@var{1}
337These options control how the assembler should encode VEX.W-ignored (WIG)
338VEX instructions.  @option{-mvexwig=@var{0}} will encode WIG VEX
339instructions with vex.w = 0, which is the default.
340@option{-mvexwig=@var{1}} will encode WIG EVEX instructions with
341vex.w = 1.
342
343WARNING: Don't use this for production code - due to CPU errata the
344resulting code may not work on certain models.
345
346@cindex @samp{-mevexlig=} option, i386
347@cindex @samp{-mevexlig=} option, x86-64
348@item -mevexlig=@var{128}
349@itemx -mevexlig=@var{256}
350@itemx -mevexlig=@var{512}
351These options control how the assembler should encode length-ignored
352(LIG) EVEX instructions.  @option{-mevexlig=@var{128}} will encode LIG
353EVEX instructions with 128bit vector length, which is the default.
354@option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
355encode LIG EVEX instructions with 256bit and 512bit vector length,
356respectively.
357
358@cindex @samp{-mevexwig=} option, i386
359@cindex @samp{-mevexwig=} option, x86-64
360@item -mevexwig=@var{0}
361@itemx -mevexwig=@var{1}
362These options control how the assembler should encode w-ignored (WIG)
363EVEX instructions.  @option{-mevexwig=@var{0}} will encode WIG
364EVEX instructions with evex.w = 0, which is the default.
365@option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
366evex.w = 1.
367
368@cindex @samp{-mmnemonic=} option, i386
369@cindex @samp{-mmnemonic=} option, x86-64
370@item -mmnemonic=@var{att}
371@itemx -mmnemonic=@var{intel}
372This option specifies instruction mnemonic for matching instructions.
373The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
374take precedent.
375
376@cindex @samp{-msyntax=} option, i386
377@cindex @samp{-msyntax=} option, x86-64
378@item -msyntax=@var{att}
379@itemx -msyntax=@var{intel}
380This option specifies instruction syntax when processing instructions.
381The @code{.att_syntax} and @code{.intel_syntax} directives will
382take precedent.
383
384@cindex @samp{-mnaked-reg} option, i386
385@cindex @samp{-mnaked-reg} option, x86-64
386@item -mnaked-reg
387This option specifies that registers don't require a @samp{%} prefix.
388The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
389
390@cindex @samp{-madd-bnd-prefix} option, i386
391@cindex @samp{-madd-bnd-prefix} option, x86-64
392@item -madd-bnd-prefix
393This option forces the assembler to add BND prefix to all branches, even
394if such prefix was not explicitly specified in the source code.
395
396@cindex @samp{-mshared} option, i386
397@cindex @samp{-mshared} option, x86-64
398@item -mno-shared
399On ELF target, the assembler normally optimizes out non-PLT relocations
400against defined non-weak global branch targets with default visibility.
401The @samp{-mshared} option tells the assembler to generate code which
402may go into a shared library where all non-weak global branch targets
403with default visibility can be preempted.  The resulting code is
404slightly bigger.  This option only affects the handling of branch
405instructions.
406
407@cindex @samp{-mbig-obj} option, i386
408@cindex @samp{-mbig-obj} option, x86-64
409@item -mbig-obj
410On PE/COFF target this option forces the use of big object file
411format, which allows more than 32768 sections.
412
413@cindex @samp{-momit-lock-prefix=} option, i386
414@cindex @samp{-momit-lock-prefix=} option, x86-64
415@item -momit-lock-prefix=@var{no}
416@itemx -momit-lock-prefix=@var{yes}
417These options control how the assembler should encode lock prefix.
418This option is intended as a workaround for processors, that fail on
419lock prefix. This option can only be safely used with single-core,
420single-thread computers
421@option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
422@option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
423which is the default.
424
425@cindex @samp{-mfence-as-lock-add=} option, i386
426@cindex @samp{-mfence-as-lock-add=} option, x86-64
427@item -mfence-as-lock-add=@var{no}
428@itemx -mfence-as-lock-add=@var{yes}
429These options control how the assembler should encode lfence, mfence and
430sfence.
431@option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
432sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
433@samp{lock addl $0x0, (%esp)} in 32-bit mode.
434@option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
435sfence as usual, which is the default.
436
437@cindex @samp{-mrelax-relocations=} option, i386
438@cindex @samp{-mrelax-relocations=} option, x86-64
439@item -mrelax-relocations=@var{no}
440@itemx -mrelax-relocations=@var{yes}
441These options control whether the assembler should generate relax
442relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
443R_X86_64_REX_GOTPCRELX, in 64-bit mode.
444@option{-mrelax-relocations=@var{yes}} will generate relax relocations.
445@option{-mrelax-relocations=@var{no}} will not generate relax
446relocations.  The default can be controlled by a configure option
447@option{--enable-x86-relax-relocations}.
448
449@cindex @samp{-malign-branch-boundary=} option, i386
450@cindex @samp{-malign-branch-boundary=} option, x86-64
451@item -malign-branch-boundary=@var{NUM}
452This option controls how the assembler should align branches with segment
453prefixes or NOP.  @var{NUM} must be a power of 2.  It should be 0 or
454no less than 16.  Branches will be aligned within @var{NUM} byte
455boundary.  @option{-malign-branch-boundary=0}, which is the default,
456doesn't align branches.
457
458@cindex @samp{-malign-branch=} option, i386
459@cindex @samp{-malign-branch=} option, x86-64
460@item -malign-branch=@var{TYPE}[+@var{TYPE}...]
461This option specifies types of branches to align. @var{TYPE} is
462combination of @samp{jcc}, which aligns conditional jumps,
463@samp{fused}, which aligns fused conditional jumps, @samp{jmp},
464which aligns unconditional jumps, @samp{call} which aligns calls,
465@samp{ret}, which aligns rets, @samp{indirect}, which aligns indirect
466jumps and calls.  The default is @option{-malign-branch=jcc+fused+jmp}.
467
468@cindex @samp{-malign-branch-prefix-size=} option, i386
469@cindex @samp{-malign-branch-prefix-size=} option, x86-64
470@item -malign-branch-prefix-size=@var{NUM}
471This option specifies the maximum number of prefixes on an instruction
472to align branches.  @var{NUM} should be between 0 and 5.  The default
473@var{NUM} is 5.
474
475@cindex @samp{-mbranches-within-32B-boundaries} option, i386
476@cindex @samp{-mbranches-within-32B-boundaries} option, x86-64
477@item -mbranches-within-32B-boundaries
478This option aligns conditional jumps, fused conditional jumps and
479unconditional jumps within 32 byte boundary with up to 5 segment prefixes
480on an instruction.  It is equivalent to
481@option{-malign-branch-boundary=32}
482@option{-malign-branch=jcc+fused+jmp}
483@option{-malign-branch-prefix-size=5}.
484The default doesn't align branches.
485
486@cindex @samp{-mlfence-after-load=} option, i386
487@cindex @samp{-mlfence-after-load=} option, x86-64
488@item -mlfence-after-load=@var{no}
489@itemx -mlfence-after-load=@var{yes}
490These options control whether the assembler should generate lfence
491after load instructions.  @option{-mlfence-after-load=@var{yes}} will
492generate lfence.  @option{-mlfence-after-load=@var{no}} will not generate
493lfence, which is the default.
494
495@cindex @samp{-mlfence-before-indirect-branch=} option, i386
496@cindex @samp{-mlfence-before-indirect-branch=} option, x86-64
497@item -mlfence-before-indirect-branch=@var{none}
498@item -mlfence-before-indirect-branch=@var{all}
499@item -mlfence-before-indirect-branch=@var{register}
500@itemx -mlfence-before-indirect-branch=@var{memory}
501These options control whether the assembler should generate lfence
502before indirect near branch instructions.
503@option{-mlfence-before-indirect-branch=@var{all}} will generate lfence
504before indirect near branch via register and issue a warning before
505indirect near branch via memory.
506It also implicitly sets @option{-mlfence-before-ret=@var{shl}} when
507there's no explicit @option{-mlfence-before-ret=}.
508@option{-mlfence-before-indirect-branch=@var{register}} will generate
509lfence before indirect near branch via register.
510@option{-mlfence-before-indirect-branch=@var{memory}} will issue a
511warning before indirect near branch via memory.
512@option{-mlfence-before-indirect-branch=@var{none}} will not generate
513lfence nor issue warning, which is the default.  Note that lfence won't
514be generated before indirect near branch via register with
515@option{-mlfence-after-load=@var{yes}} since lfence will be generated
516after loading branch target register.
517
518@cindex @samp{-mlfence-before-ret=} option, i386
519@cindex @samp{-mlfence-before-ret=} option, x86-64
520@item -mlfence-before-ret=@var{none}
521@item -mlfence-before-ret=@var{shl}
522@item -mlfence-before-ret=@var{or}
523@item -mlfence-before-ret=@var{yes}
524@itemx -mlfence-before-ret=@var{not}
525These options control whether the assembler should generate lfence
526before ret.  @option{-mlfence-before-ret=@var{or}} will generate
527generate or instruction with lfence.
528@option{-mlfence-before-ret=@var{shl/yes}} will generate shl instruction
529with lfence. @option{-mlfence-before-ret=@var{not}} will generate not
530instruction with lfence. @option{-mlfence-before-ret=@var{none}} will not
531generate lfence, which is the default.
532
533@cindex @samp{-mx86-used-note=} option, i386
534@cindex @samp{-mx86-used-note=} option, x86-64
535@item -mx86-used-note=@var{no}
536@itemx -mx86-used-note=@var{yes}
537These options control whether the assembler should generate
538GNU_PROPERTY_X86_ISA_1_USED and GNU_PROPERTY_X86_FEATURE_2_USED
539GNU property notes.  The default can be controlled by the
540@option{--enable-x86-used-note} configure option.
541
542@cindex @samp{-mevexrcig=} option, i386
543@cindex @samp{-mevexrcig=} option, x86-64
544@item -mevexrcig=@var{rne}
545@itemx -mevexrcig=@var{rd}
546@itemx -mevexrcig=@var{ru}
547@itemx -mevexrcig=@var{rz}
548These options control how the assembler should encode SAE-only
549EVEX instructions.  @option{-mevexrcig=@var{rne}} will encode RC bits
550of EVEX instruction with 00, which is the default.
551@option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
552and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
553with 01, 10 and 11 RC bits, respectively.
554
555@cindex @samp{-mamd64} option, x86-64
556@cindex @samp{-mintel64} option, x86-64
557@item -mamd64
558@itemx -mintel64
559This option specifies that the assembler should accept only AMD64 or
560Intel64 ISA in 64-bit mode.  The default is to accept common, Intel64
561only and AMD64 ISAs.
562
563@cindex @samp{-O0} option, i386
564@cindex @samp{-O0} option, x86-64
565@cindex @samp{-O} option, i386
566@cindex @samp{-O} option, x86-64
567@cindex @samp{-O1} option, i386
568@cindex @samp{-O1} option, x86-64
569@cindex @samp{-O2} option, i386
570@cindex @samp{-O2} option, x86-64
571@cindex @samp{-Os} option, i386
572@cindex @samp{-Os} option, x86-64
573@item -O0 | -O | -O1 | -O2 | -Os
574Optimize instruction encoding with smaller instruction size.  @samp{-O}
575and @samp{-O1} encode 64-bit register load instructions with 64-bit
576immediate as 32-bit register load instructions with 31-bit or 32-bits
577immediates, encode 64-bit register clearing instructions with 32-bit
578register clearing instructions, encode 256-bit/512-bit VEX/EVEX vector
579register clearing instructions with 128-bit VEX vector register
580clearing instructions, encode 128-bit/256-bit EVEX vector
581register load/store instructions with VEX vector register load/store
582instructions, and encode 128-bit/256-bit EVEX packed integer logical
583instructions with 128-bit/256-bit VEX packed integer logical.
584
585@samp{-O2} includes @samp{-O1} optimization plus encodes
586256-bit/512-bit EVEX vector register clearing instructions with 128-bit
587EVEX vector register clearing instructions.  In 64-bit mode VEX encoded
588instructions with commutative source operands will also have their
589source operands swapped if this allows using the 2-byte VEX prefix form
590instead of the 3-byte one.  Certain forms of AND as well as OR with the
591same (register) operand specified twice will also be changed to TEST.
592
593@samp{-Os} includes @samp{-O2} optimization plus encodes 16-bit, 32-bit
594and 64-bit register tests with immediate as 8-bit register test with
595immediate.  @samp{-O0} turns off this optimization.
596
597@end table
598@c man end
599
600@node i386-Directives
601@section x86 specific Directives
602
603@cindex machine directives, x86
604@cindex x86 machine directives
605@table @code
606
607@cindex @code{lcomm} directive, COFF
608@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
609Reserve @var{length} (an absolute expression) bytes for a local common
610denoted by @var{symbol}.  The section and value of @var{symbol} are
611those of the new local common.  The addresses are allocated in the bss
612section, so that at run-time the bytes start off zeroed.  Since
613@var{symbol} is not declared global, it is normally not visible to
614@code{@value{LD}}.  The optional third parameter, @var{alignment},
615specifies the desired alignment of the symbol in the bss section.
616
617This directive is only available for COFF based x86 targets.
618
619@cindex @code{largecomm} directive, ELF
620@item .largecomm @var{symbol} , @var{length}[, @var{alignment}]
621This directive behaves in the same way as the @code{comm} directive
622except that the data is placed into the @var{.lbss} section instead of
623the @var{.bss} section @ref{Comm}.
624
625The directive is intended to be used for data which requires a large
626amount of space, and it is only available for ELF based x86_64
627targets.
628
629@cindex @code{value} directive
630@item .value @var{expression} [, @var{expression}]
631This directive behaves in the same way as the @code{.short} directive,
632taking a series of comma separated expressions and storing them as
633two-byte wide values into the current section.
634
635@cindex @code{insn} directive
636@item .insn [@var{prefix}[,...]] [@var{encoding}] @var{major-opcode}[@code{+r}|@code{/@var{extension}}] [,@var{operand}[,...]]
637This directive allows composing instructions which @code{@value{AS}}
638may not know about yet, or which it has no way of expressing (which
639can be the case for certain alternative encodings).  It assumes certain
640basic structure in how operands are encoded, and it also only
641recognizes - with a few extensions as per below - operands otherwise
642valid for instructions.  Therefore there is no guarantee that
643everything can be expressed (e.g. the original Intel Xeon Phi's MVEX
644encodings cannot be expressed).
645
646@itemize @bullet
647@item
648@var{prefix} expresses one or more opcode prefixes in the usual way.
649Legacy encoding prefixes altering meaning (0x66, 0xF2, 0xF3) may be
650specified as high byte of <major-opcode> (perhaps already including an
651encoding space prefix).  Note that there can only be one such prefix.
652Segment overrides are better specified in the respective memory
653operand, as long as there is one.
654
655@item
656@var{encoding} is used to specify VEX, XOP, or EVEX encodings. The
657syntax tries to resemble that used in documentation:
658@itemize @bullet
659@item @code{VEX}[@code{.@var{len}}][@code{.@var{prefix}}][@code{.@var{space}}][@code{.@var{w}}]
660@item @code{EVEX}[@code{.@var{len}}][@code{.@var{prefix}}][@code{.@var{space}}][@code{.@var{w}}]
661@item @code{XOP}@var{space}[@code{.@var{len}}][@code{.@var{prefix}}][@code{.@var{w}}]
662@end itemize
663
664Here
665@itemize @bullet
666@item @var{len} can be @code{LIG}, @code{128}, @code{256}, or (EVEX
667only) @code{512} as well as @code{L0} / @code{L1} for VEX / XOP and
668@code{L0}...@code{L3} for EVEX
669@item @var{prefix} can be @code{NP}, @code{66}, @code{F3}, or @code{F2}
670@item @var{space} can be
671@itemize @bullet
672@item @code{0f}, @code{0f38}, @code{0f3a}, or @code{M0}...@code{M31}
673for VEX
674@item @code{08}...@code{1f} for XOP
675@item @code{0f}, @code{0f38}, @code{0f3a}, or @code{M0}...@code{M15}
676for EVEX
677@end itemize
678@item @var{w} can be @code{WIG}, @code{W0}, or @code{W1}
679@end itemize
680
681Defaults:
682@itemize @bullet
683@item Omitted @var{len} means "infer from operand size" if there is at
684least one sized vector operand, or @code{LIG} otherwise. (Obviously
685@var{len} has to be omitted when there's EVEX rounding control
686specified later in the operands.)
687@item Omitted @var{prefix} means @code{NP}.
688@item Omitted @var{space} (VEX/EVEX only) implies encoding space is
689taken from @var{major-opcode}.
690@item Omitted @var{w} means "infer from GPR operand size" in 64-bit
691code if there is at least one GPR(-like) operand, or @code{WIG}
692otherwise.
693@end itemize
694
695@item
696@var{major-opcode} is an absolute expression specifying the instruction
697opcode.  Legacy encoding prefixes altering encoding space (0x0f,
6980x0f38, 0x0f3a) have to be specified as high byte(s) here.
699"Degenerate" ModR/M bytes, as present in e.g. certain FPU opcodes or
700sub-spaces like that of major opcode 0x0f01, generally want encoding as
701immediate operand (such opcodes wouldn't normally have non-immediate
702operands); in some cases it may be possible to also encode these as low
703byte of the major opcode, but there are potential ambiguities.  Also
704note that after stripping encoding prefixes, the residual has to fit in
705two bytes (16 bits).  @code{+r} can be suffixed to the major opcode
706expression to specify register-only encoding forms not using a ModR/M
707byte.  @code{/@var{extension}} can alternatively be suffixed to the
708major opcode expression to specify an extension opcode, encoded in bits
7093-5 of the ModR/M byte.
710
711@item
712@var{operand} is an instruction operand expressed the usual way.
713Register operands are primarily used to express register numbers as
714encoded in ModR/M byte and REX/VEX/XOP/EVEX prefixes.  In certain
715cases the register type (really: size) is also used to derive other
716encoding attributes, if these aren't specified explicitly.  Note that
717there is no consistency checking among operands, so entirely bogus
718mixes of operands are possible.  Note further that only operands
719actually encoded in the instruction should be specified.  Operands like
720@samp{%cl} in shift/rotate instructions have to be omitted, or else
721they'll be encoded as an ordinary (register) operand.  Operand order
722may also not match that of the actual instruction (see below).
723@end itemize
724
725Encoding of operands: While for a memory operand (of which there can be
726only one) it is clear how to encode it in the resulting ModR/M byte,
727register operands are encoded strictly in this order (operand counts do
728not include immediate ones in the enumeration below, and if there was an
729extension opcode specified it counts as a register operand; VEX.vvvv
730is meant to cover XOP and EVEX as well):
731
732@itemize @bullet
733@item VEX.vvvv for 1-register-operand VEX/XOP/EVEX insns,
734@item ModR/M.rm, ModR/M.reg for 2-operand insns,
735@item ModR/M.rm, VEX.vvvv, ModR/M.reg for 3-operand insns, and
736@item Imm@{4,5@}, ModR/M.rm, VEX.vvvv, ModR/M.reg for 4-operand insns,
737@end itemize
738
739obviously with the ModR/M.rm slot skipped when there is a memory
740operand, and obviously with the ModR/M.reg slot skipped when there is
741an extension opcode.  For Intel syntax of course the opposite order
742applies.  With @code{+r} (and hence no ModR/M) there can only be a
743single register operand for legacy encodings.  VEX and alike can have
744two register operands, where the second (first in Intel syntax) would
745go into VEX.vvvv.
746
747Immediate operands (including immediate-like displacements, i.e. when
748not part of ModR/M addressing) are emitted in the order specified,
749regardless of AT&T or Intel syntax.  Since it may not be possible to
750infer the size of such immediates, they can be suffixed by
751@code{@{:s@var{n}@}} or @code{@{:u@var{n}@}}, representing signed /
752unsigned immediates of the given number of bits respectively.  When
753emitting such operands, the number of bits will be rounded up to the
754smallest suitable of 8, 16, 32, or 64.  Immediates wider than 32 bits
755are permitted in 64-bit code only.
756
757For EVEX encoding memory operands with a displacement need to know
758Disp8 scaling size in order to use an 8-bit displacement.  For many
759instructions this can be inferred from the types of other operands
760specified.  In Intel syntax @samp{DWORD PTR} and alike can be used to
761specify the respective size.  In AT&T syntax the memory operands can
762be suffixed by @code{@{:d@var{n}@}} to specify the size (in bytes).
763This can be combined with an embedded broadcast specifier:
764@samp{8(%eax)@{1to8:d8@}}.
765
766@c FIXME: Document other x86 specific directives ?  Eg: .code16gcc,
767
768@end table
769
770@node i386-Syntax
771@section i386 Syntactical Considerations
772@menu
773* i386-Variations::           AT&T Syntax versus Intel Syntax
774* i386-Chars::                Special Characters
775@end menu
776
777@node i386-Variations
778@subsection AT&T Syntax versus Intel Syntax
779
780@cindex i386 intel_syntax pseudo op
781@cindex intel_syntax pseudo op, i386
782@cindex i386 att_syntax pseudo op
783@cindex att_syntax pseudo op, i386
784@cindex i386 syntax compatibility
785@cindex syntax compatibility, i386
786@cindex x86-64 intel_syntax pseudo op
787@cindex intel_syntax pseudo op, x86-64
788@cindex x86-64 att_syntax pseudo op
789@cindex att_syntax pseudo op, x86-64
790@cindex x86-64 syntax compatibility
791@cindex syntax compatibility, x86-64
792
793@code{@value{AS}} now supports assembly using Intel assembler syntax.
794@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
795back to the usual AT&T mode for compatibility with the output of
796@code{@value{GCC}}.  Either of these directives may have an optional
797argument, @code{prefix}, or @code{noprefix} specifying whether registers
798require a @samp{%} prefix.  AT&T System V/386 assembler syntax is quite
799different from Intel syntax.  We mention these differences because
800almost all 80386 documents use Intel syntax.  Notable differences
801between the two syntaxes are:
802
803@cindex immediate operands, i386
804@cindex i386 immediate operands
805@cindex register operands, i386
806@cindex i386 register operands
807@cindex jump/call operands, i386
808@cindex i386 jump/call operands
809@cindex operand delimiters, i386
810
811@cindex immediate operands, x86-64
812@cindex x86-64 immediate operands
813@cindex register operands, x86-64
814@cindex x86-64 register operands
815@cindex jump/call operands, x86-64
816@cindex x86-64 jump/call operands
817@cindex operand delimiters, x86-64
818@itemize @bullet
819@item
820AT&T immediate operands are preceded by @samp{$}; Intel immediate
821operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
822AT&T register operands are preceded by @samp{%}; Intel register operands
823are undelimited.  AT&T absolute (as opposed to PC relative) jump/call
824operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
825
826@cindex i386 source, destination operands
827@cindex source, destination operands; i386
828@cindex x86-64 source, destination operands
829@cindex source, destination operands; x86-64
830@item
831AT&T and Intel syntax use the opposite order for source and destination
832operands.  Intel @samp{add eax, 4} is @samp{addl $4, %eax}.  The
833@samp{source, dest} convention is maintained for compatibility with
834previous Unix assemblers.  Note that @samp{bound}, @samp{invlpga}, and
835instructions with 2 immediate operands, such as the @samp{enter}
836instruction, do @emph{not} have reversed order.  @ref{i386-Bugs}.
837
838@cindex mnemonic suffixes, i386
839@cindex sizes operands, i386
840@cindex i386 size suffixes
841@cindex mnemonic suffixes, x86-64
842@cindex sizes operands, x86-64
843@cindex x86-64 size suffixes
844@item
845In AT&T syntax the size of memory operands is determined from the last
846character of the instruction mnemonic.  Mnemonic suffixes of @samp{b},
847@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
848(32-bit) and quadruple word (64-bit) memory references.  Mnemonic suffixes
849of @samp{x}, @samp{y} and @samp{z} specify xmm (128-bit vector), ymm
850(256-bit vector) and zmm (512-bit vector) memory references, only when there's
851no other way to disambiguate an instruction.  Intel syntax accomplishes this by
852prefixing memory operands (@emph{not} the instruction mnemonics) with
853@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr}, @samp{qword ptr},
854@samp{xmmword ptr}, @samp{ymmword ptr} and @samp{zmmword ptr}.  Thus, Intel
855syntax @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
856syntax.  In Intel syntax, @samp{fword ptr}, @samp{tbyte ptr} and
857@samp{oword ptr} specify 48-bit, 80-bit and 128-bit memory references.
858
859In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
860instruction with the 64-bit displacement or immediate operand.
861
862@cindex return instructions, i386
863@cindex i386 jump, call, return
864@cindex return instructions, x86-64
865@cindex x86-64 jump, call, return
866@item
867Immediate form long jumps and calls are
868@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
869Intel syntax is
870@samp{call/jmp far @var{section}:@var{offset}}.  Also, the far return
871instruction
872is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
873@samp{ret far @var{stack-adjust}}.
874
875@cindex sections, i386
876@cindex i386 sections
877@cindex sections, x86-64
878@cindex x86-64 sections
879@item
880The AT&T assembler does not provide support for multiple section
881programs.  Unix style systems expect all programs to be single sections.
882@end itemize
883
884@node i386-Chars
885@subsection Special Characters
886
887@cindex line comment character, i386
888@cindex i386 line comment character
889The presence of a @samp{#} appearing anywhere on a line indicates the
890start of a comment that extends to the end of that line.
891
892If a @samp{#} appears as the first character of a line then the whole
893line is treated as a comment, but in this case the line can also be a
894logical line number directive (@pxref{Comments}) or a preprocessor
895control command (@pxref{Preprocessing}).
896
897If the @option{--divide} command-line option has not been specified
898then the @samp{/} character appearing anywhere on a line also
899introduces a line comment.
900
901@cindex line separator, i386
902@cindex statement separator, i386
903@cindex i386 line separator
904The @samp{;} character can be used to separate statements on the same
905line.
906
907@node i386-Mnemonics
908@section i386-Mnemonics
909@subsection Instruction Naming
910
911@cindex i386 instruction naming
912@cindex instruction naming, i386
913@cindex x86-64 instruction naming
914@cindex instruction naming, x86-64
915
916Instruction mnemonics are suffixed with one character modifiers which
917specify the size of operands.  The letters @samp{b}, @samp{w}, @samp{l}
918and @samp{q} specify byte, word, long and quadruple word operands.  If
919no suffix is specified by an instruction then @code{@value{AS}} tries to
920fill in the missing suffix based on the destination register operand
921(the last one by convention).  Thus, @samp{mov %ax, %bx} is equivalent
922to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
923@samp{movw $1, bx}.  Note that this is incompatible with the AT&T Unix
924assembler which assumes that a missing mnemonic suffix implies long
925operand size.  (This incompatibility does not affect compiler output
926since compilers always explicitly specify the mnemonic suffix.)
927
928When there is no sizing suffix and no (suitable) register operands to
929deduce the size of memory operands, with a few exceptions and where long
930operand size is possible in the first place, operand size will default
931to long in 32- and 64-bit modes.  Similarly it will default to short in
93216-bit mode. Noteworthy exceptions are
933
934@itemize @bullet
935@item
936Instructions with an implicit on-stack operand as well as branches,
937which default to quad in 64-bit mode.
938
939@item
940Sign- and zero-extending moves, which default to byte size source
941operands.
942
943@item
944Floating point insns with integer operands, which default to short (for
945perhaps historical reasons).
946
947@item
948CRC32 with a 64-bit destination, which defaults to a quad source
949operand.
950
951@end itemize
952
953@cindex encoding options, i386
954@cindex encoding options, x86-64
955
956Different encoding options can be specified via pseudo prefixes:
957
958@itemize @bullet
959@item
960@samp{@{disp8@}} -- prefer 8-bit displacement.
961
962@item
963@samp{@{disp32@}} -- prefer 32-bit displacement.
964
965@item
966@samp{@{disp16@}} -- prefer 16-bit displacement.
967
968@item
969@samp{@{load@}} -- prefer load-form instruction.
970
971@item
972@samp{@{store@}} -- prefer store-form instruction.
973
974@item
975@samp{@{vex@}} --  encode with VEX prefix.
976
977@item
978@samp{@{vex3@}} -- encode with 3-byte VEX prefix.
979
980@item
981@samp{@{evex@}} --  encode with EVEX prefix.
982
983@item
984@samp{@{rex@}} -- prefer REX prefix for integer and legacy vector
985instructions (x86-64 only).  Note that this differs from the @samp{rex}
986prefix which generates REX prefix unconditionally.
987
988@item
989@samp{@{rex2@}} -- prefer REX2 prefix for integer and legacy vector
990instructions (APX_F only).
991
992@item
993@samp{@{nooptimize@}} -- disable instruction size optimization.
994@end itemize
995
996Mnemonics of Intel VNNI/IFMA instructions are encoded with the EVEX prefix
997by default.  The pseudo @samp{@{vex@}} prefix can be used to encode
998mnemonics of Intel VNNI/IFMA instructions with the VEX prefix.
999
1000@cindex conversion instructions, i386
1001@cindex i386 conversion instructions
1002@cindex conversion instructions, x86-64
1003@cindex x86-64 conversion instructions
1004The Intel-syntax conversion instructions
1005
1006@itemize @bullet
1007@item
1008@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
1009
1010@item
1011@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
1012
1013@item
1014@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
1015
1016@item
1017@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
1018
1019@item
1020@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
1021(x86-64 only),
1022
1023@item
1024@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
1025@samp{%rdx:%rax} (x86-64 only),
1026@end itemize
1027
1028@noindent
1029are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
1030@samp{cqto} in AT&T naming.  @code{@value{AS}} accepts either naming for these
1031instructions.
1032
1033@cindex extension instructions, i386
1034@cindex i386 extension instructions
1035@cindex extension instructions, x86-64
1036@cindex x86-64 extension instructions
1037The Intel-syntax extension instructions
1038
1039@itemize @bullet
1040@item
1041@samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg16}.
1042
1043@item
1044@samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg32}.
1045
1046@item
1047@samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg64}
1048(x86-64 only).
1049
1050@item
1051@samp{movsx} --- sign-extend @samp{reg16/mem16} to @samp{reg32}
1052
1053@item
1054@samp{movsx} --- sign-extend @samp{reg16/mem16} to @samp{reg64}
1055(x86-64 only).
1056
1057@item
1058@samp{movsxd} --- sign-extend @samp{reg32/mem32} to @samp{reg64}
1059(x86-64 only).
1060
1061@item
1062@samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg16}.
1063
1064@item
1065@samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg32}.
1066
1067@item
1068@samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg64}
1069(x86-64 only).
1070
1071@item
1072@samp{movzx} --- zero-extend @samp{reg16/mem16} to @samp{reg32}
1073
1074@item
1075@samp{movzx} --- zero-extend @samp{reg16/mem16} to @samp{reg64}
1076(x86-64 only).
1077@end itemize
1078
1079@noindent
1080are called @samp{movsbw/movsxb/movsx}, @samp{movsbl/movsxb/movsx},
1081@samp{movsbq/movsxb/movsx}, @samp{movswl/movsxw}, @samp{movswq/movsxw},
1082@samp{movslq/movsxl}, @samp{movzbw/movzxb/movzx},
1083@samp{movzbl/movzxb/movzx}, @samp{movzbq/movzxb/movzx},
1084@samp{movzwl/movzxw} and @samp{movzwq/movzxw} in AT&T syntax.
1085
1086@cindex jump instructions, i386
1087@cindex call instructions, i386
1088@cindex jump instructions, x86-64
1089@cindex call instructions, x86-64
1090Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
1091AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
1092convention.
1093
1094@subsection AT&T Mnemonic versus Intel Mnemonic
1095
1096@cindex i386 mnemonic compatibility
1097@cindex mnemonic compatibility, i386
1098
1099@code{@value{AS}} supports assembly using Intel mnemonic.
1100@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
1101@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
1102syntax for compatibility with the output of @code{@value{GCC}}.
1103Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
1104@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
1105@samp{fsubr} and @samp{fsubrp},  are implemented in AT&T System V/386
1106assembler with different mnemonics from those in Intel IA32 specification.
1107@code{@value{GCC}} generates those instructions with AT&T mnemonic.
1108
1109@itemize @bullet
1110@item @samp{movslq} with AT&T mnemonic only accepts 64-bit destination
1111register.  @samp{movsxd} should be used to encode 16-bit or 32-bit
1112destination register with both AT&T and Intel mnemonics.
1113@end itemize
1114
1115@node i386-Regs
1116@section Register Naming
1117
1118@cindex i386 registers
1119@cindex registers, i386
1120@cindex x86-64 registers
1121@cindex registers, x86-64
1122Register operands are always prefixed with @samp{%}.  The 80386 registers
1123consist of
1124
1125@itemize @bullet
1126@item
1127the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
1128@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
1129frame pointer), and @samp{%esp} (the stack pointer).
1130
1131@item
1132the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
1133@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
1134
1135@item
1136the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
1137@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
1138are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
1139@samp{%cx}, and @samp{%dx})
1140
1141@item
1142the 6 section registers @samp{%cs} (code section), @samp{%ds}
1143(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
1144and @samp{%gs}.
1145
1146@item
1147the 5 processor control registers @samp{%cr0}, @samp{%cr2},
1148@samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
1149
1150@item
1151the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
1152@samp{%db3}, @samp{%db6}, and @samp{%db7}.
1153
1154@item
1155the 2 test registers @samp{%tr6} and @samp{%tr7}.
1156
1157@item
1158the 8 floating point register stack @samp{%st} or equivalently
1159@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
1160@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
1161These registers are overloaded by 8 MMX registers @samp{%mm0},
1162@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
1163@samp{%mm6} and @samp{%mm7}.
1164
1165@item
1166the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
1167@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
1168@end itemize
1169
1170The AMD x86-64 architecture extends the register set by:
1171
1172@itemize @bullet
1173@item
1174enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
1175accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
1176@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
1177pointer)
1178
1179@item
1180the 8 extended registers @samp{%r8}--@samp{%r15}.
1181
1182@item
1183the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
1184
1185@item
1186the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
1187
1188@item
1189the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
1190
1191@item
1192the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
1193
1194@item
1195the 8 debug registers: @samp{%db8}--@samp{%db15}.
1196
1197@item
1198the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
1199@end itemize
1200
1201With the AVX extensions more registers were made available:
1202
1203@itemize @bullet
1204
1205@item
1206the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
1207available in 32-bit mode).  The bottom 128 bits are overlaid with the
1208@samp{xmm0}--@samp{xmm15} registers.
1209
1210@end itemize
1211
1212The AVX512 extensions added the following registers:
1213
1214@itemize @bullet
1215
1216@item
1217the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
1218available in 32-bit mode).  The bottom 128 bits are overlaid with the
1219@samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
1220overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
1221
1222@item
1223the 8 mask registers @samp{%k0}--@samp{%k7}.
1224
1225@end itemize
1226
1227@node i386-Prefixes
1228@section Instruction Prefixes
1229
1230@cindex i386 instruction prefixes
1231@cindex instruction prefixes, i386
1232@cindex prefixes, i386
1233Instruction prefixes are used to modify the following instruction.  They
1234are used to repeat string instructions, to provide section overrides, to
1235perform bus lock operations, and to change operand and address sizes.
1236(Most instructions that normally operate on 32-bit operands will use
123716-bit operands if the instruction has an ``operand size'' prefix.)
1238Instruction prefixes are best written on the same line as the instruction
1239they act upon. For example, the @samp{scas} (scan string) instruction is
1240repeated with:
1241
1242@smallexample
1243        repne scas %es:(%edi),%al
1244@end smallexample
1245
1246You may also place prefixes on the lines immediately preceding the
1247instruction, but this circumvents checks that @code{@value{AS}} does
1248with prefixes, and will not work with all prefixes.
1249
1250Here is a list of instruction prefixes:
1251
1252@cindex section override prefixes, i386
1253@itemize @bullet
1254@item
1255Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
1256@samp{fs}, @samp{gs}.  These are automatically added by specifying
1257using the @var{section}:@var{memory-operand} form for memory references.
1258
1259@cindex size prefixes, i386
1260@item
1261Operand/Address size prefixes @samp{data16} and @samp{addr16}
1262change 32-bit operands/addresses into 16-bit operands/addresses,
1263while @samp{data32} and @samp{addr32} change 16-bit ones (in a
1264@code{.code16} section) into 32-bit operands/addresses.  These prefixes
1265@emph{must} appear on the same line of code as the instruction they
1266modify. For example, in a 16-bit @code{.code16} section, you might
1267write:
1268
1269@smallexample
1270        addr32 jmpl *(%ebx)
1271@end smallexample
1272
1273@cindex bus lock prefixes, i386
1274@cindex inhibiting interrupts, i386
1275@item
1276The bus lock prefix @samp{lock} inhibits interrupts during execution of
1277the instruction it precedes.  (This is only valid with certain
1278instructions; see a 80386 manual for details).
1279
1280@cindex coprocessor wait, i386
1281@item
1282The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
1283complete the current instruction.  This should never be needed for the
128480386/80387 combination.
1285
1286@cindex repeat prefixes, i386
1287@item
1288The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
1289to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
1290times if the current address size is 16-bits).
1291@cindex REX prefixes, i386
1292@item
1293The @samp{rex} family of prefixes is used by x86-64 to encode
1294extensions to i386 instruction set.  The @samp{rex} prefix has four
1295bits --- an operand size overwrite (@code{64}) used to change operand size
1296from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
1297register set.
1298
1299You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
1300instruction emits @samp{rex} prefix with all the bits set.  By omitting
1301the @code{64}, @code{x}, @code{y} or @code{z} you may write other
1302prefixes as well.  Normally, there is no need to write the prefixes
1303explicitly, since gas will automatically generate them based on the
1304instruction operands.
1305@end itemize
1306
1307@node i386-Memory
1308@section Memory References
1309
1310@cindex i386 memory references
1311@cindex memory references, i386
1312@cindex x86-64 memory references
1313@cindex memory references, x86-64
1314An Intel syntax indirect memory reference of the form
1315
1316@smallexample
1317@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
1318@end smallexample
1319
1320@noindent
1321is translated into the AT&T syntax
1322
1323@smallexample
1324@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
1325@end smallexample
1326
1327@noindent
1328where @var{base} and @var{index} are the optional 32-bit base and
1329index registers, @var{disp} is the optional displacement, and
1330@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
1331to calculate the address of the operand.  If no @var{scale} is
1332specified, @var{scale} is taken to be 1.  @var{section} specifies the
1333optional section register for the memory operand, and may override the
1334default section register (see a 80386 manual for section register
1335defaults). Note that section overrides in AT&T syntax @emph{must}
1336be preceded by a @samp{%}.  If you specify a section override which
1337coincides with the default section register, @code{@value{AS}} does @emph{not}
1338output any section register override prefixes to assemble the given
1339instruction.  Thus, section overrides can be specified to emphasize which
1340section register is used for a given memory operand.
1341
1342Here are some examples of Intel and AT&T style memory references:
1343
1344@table @asis
1345@item AT&T: @samp{-4(%ebp)}, Intel:  @samp{[ebp - 4]}
1346@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
1347missing, and the default section is used (@samp{%ss} for addressing with
1348@samp{%ebp} as the base register).  @var{index}, @var{scale} are both missing.
1349
1350@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
1351@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
1352@samp{foo}.  All other fields are missing.  The section register here
1353defaults to @samp{%ds}.
1354
1355@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
1356This uses the value pointed to by @samp{foo} as a memory operand.
1357Note that @var{base} and @var{index} are both missing, but there is only
1358@emph{one} @samp{,}.  This is a syntactic exception.
1359
1360@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
1361This selects the contents of the variable @samp{foo} with section
1362register @var{section} being @samp{%gs}.
1363@end table
1364
1365Absolute (as opposed to PC relative) call and jump operands must be
1366prefixed with @samp{*}.  If no @samp{*} is specified, @code{@value{AS}}
1367always chooses PC relative addressing for jump/call labels.
1368
1369Any instruction that has a memory operand, but no register operand,
1370@emph{must} specify its size (byte, word, long, or quadruple) with an
1371instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
1372respectively).
1373
1374The x86-64 architecture adds an RIP (instruction pointer relative)
1375addressing.  This addressing mode is specified by using @samp{rip} as a
1376base register.  Only constant offsets are valid. For example:
1377
1378@table @asis
1379@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
1380Points to the address 1234 bytes past the end of the current
1381instruction.
1382
1383@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
1384Points to the @code{symbol} in RIP relative way, this is shorter than
1385the default absolute addressing.
1386@end table
1387
1388Other addressing modes remain unchanged in x86-64 architecture, except
1389registers used are 64-bit instead of 32-bit.
1390
1391@node i386-Jumps
1392@section Handling of Jump Instructions
1393
1394@cindex jump optimization, i386
1395@cindex i386 jump optimization
1396@cindex jump optimization, x86-64
1397@cindex x86-64 jump optimization
1398Jump instructions are always optimized to use the smallest possible
1399displacements.  This is accomplished by using byte (8-bit) displacement
1400jumps whenever the target is sufficiently close.  If a byte displacement
1401is insufficient a long displacement is used.  We do not support
1402word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
1403instruction with the @samp{data16} instruction prefix), since the 80386
1404insists upon masking @samp{%eip} to 16 bits after the word displacement
1405is added. (See also @pxref{i386-Arch})
1406
1407Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
1408@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
1409displacements, so that if you use these instructions (@code{@value{GCC}} does
1410not use them) you may get an error message (and incorrect code).  The AT&T
141180386 assembler tries to get around this problem by expanding @samp{jcxz foo}
1412to
1413
1414@smallexample
1415         jcxz cx_zero
1416         jmp cx_nonzero
1417cx_zero: jmp foo
1418cx_nonzero:
1419@end smallexample
1420
1421@node i386-Float
1422@section Floating Point
1423
1424@cindex i386 floating point
1425@cindex floating point, i386
1426@cindex x86-64 floating point
1427@cindex floating point, x86-64
1428All 80387 floating point types except packed BCD are supported.
1429(BCD support may be added without much difficulty).  These data
1430types are 16-, 32-, and 64- bit integers, and single (32-bit),
1431double (64-bit), and extended (80-bit) precision floating point.
1432Each supported type has an instruction mnemonic suffix and a constructor
1433associated with it.  Instruction mnemonic suffixes specify the operand's
1434data type.  Constructors build these data types into memory.
1435
1436@cindex @code{float} directive, i386
1437@cindex @code{single} directive, i386
1438@cindex @code{double} directive, i386
1439@cindex @code{tfloat} directive, i386
1440@cindex @code{hfloat} directive, i386
1441@cindex @code{bfloat16} directive, i386
1442@cindex @code{float} directive, x86-64
1443@cindex @code{single} directive, x86-64
1444@cindex @code{double} directive, x86-64
1445@cindex @code{tfloat} directive, x86-64
1446@cindex @code{hfloat} directive, x86-64
1447@cindex @code{bfloat16} directive, x86-64
1448@itemize @bullet
1449@item
1450Floating point constructors are @samp{.float} or @samp{.single},
1451@samp{.double}, @samp{.tfloat}, @samp{.hfloat}, and @samp{.bfloat16} for 32-,
145264-, 80-, and 16-bit (two flavors) formats respectively.  The former three
1453correspond to instruction mnemonic suffixes @samp{s}, @samp{l}, and @samp{t}.
1454@samp{t} stands for 80-bit (ten byte) real.  The 80387 only supports this
1455format via the @samp{fldt} (load 80-bit real to stack top) and @samp{fstpt}
1456(store 80-bit real and pop stack) instructions.
1457
1458@cindex @code{word} directive, i386
1459@cindex @code{long} directive, i386
1460@cindex @code{int} directive, i386
1461@cindex @code{quad} directive, i386
1462@cindex @code{word} directive, x86-64
1463@cindex @code{long} directive, x86-64
1464@cindex @code{int} directive, x86-64
1465@cindex @code{quad} directive, x86-64
1466@item
1467Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1468@samp{.quad} for the 16-, 32-, and 64-bit integer formats.  The
1469corresponding instruction mnemonic suffixes are @samp{s} (short),
1470@samp{l} (long), and @samp{q} (quad).  As with the 80-bit real format,
1471the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1472quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1473stack) instructions.
1474@end itemize
1475
1476Register to register operations should not use instruction mnemonic suffixes.
1477@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1478wrote @samp{fst %st, %st(1)}, since all register to register operations
1479use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1480which converts @samp{%st} from 80-bit to 64-bit floating point format,
1481then stores the result in the 4 byte location @samp{mem})
1482
1483@node i386-SIMD
1484@section Intel's MMX and AMD's 3DNow! SIMD Operations
1485
1486@cindex MMX, i386
1487@cindex 3DNow!, i386
1488@cindex SIMD, i386
1489@cindex MMX, x86-64
1490@cindex 3DNow!, x86-64
1491@cindex SIMD, x86-64
1492
1493@code{@value{AS}} supports Intel's MMX instruction set (SIMD
1494instructions for integer data), available on Intel's Pentium MMX
1495processors and Pentium II processors, AMD's K6 and K6-2 processors,
1496Cyrix' M2 processor, and probably others.  It also supports AMD's 3DNow!@:
1497instruction set (SIMD instructions for 32-bit floating point data)
1498available on AMD's K6-2 processor and possibly others in the future.
1499
1500Currently, @code{@value{AS}} does not support Intel's floating point
1501SIMD, Katmai (KNI).
1502
1503The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1504@samp{%mm1}, ... @samp{%mm7}.  They contain eight 8-bit integers, four
150516-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1506floating point values.  The MMX registers cannot be used at the same time
1507as the floating point stack.
1508
1509See Intel and AMD documentation, keeping in mind that the operand order in
1510instructions is reversed from the Intel syntax.
1511
1512@node i386-LWP
1513@section AMD's Lightweight Profiling Instructions
1514
1515@cindex LWP, i386
1516@cindex LWP, x86-64
1517
1518@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1519instruction set, available on AMD's Family 15h (Orochi) processors.
1520
1521LWP enables applications to collect and manage performance data, and
1522react to performance events.  The collection of performance data
1523requires no context switches.  LWP runs in the context of a thread and
1524so several counters can be used independently across multiple threads.
1525LWP can be used in both 64-bit and legacy 32-bit modes.
1526
1527For detailed information on the LWP instruction set, see the
1528@cite{AMD Lightweight Profiling Specification} available at
1529@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1530
1531@node i386-BMI
1532@section Bit Manipulation Instructions
1533
1534@cindex BMI, i386
1535@cindex BMI, x86-64
1536
1537@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1538
1539BMI instructions provide several instructions implementing individual
1540bit manipulation operations such as isolation, masking, setting, or
1541resetting.
1542
1543@c Need to add a specification citation here when available.
1544
1545@node i386-TBM
1546@section AMD's Trailing Bit Manipulation Instructions
1547
1548@cindex TBM, i386
1549@cindex TBM, x86-64
1550
1551@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1552instruction set, available on AMD's BDVER2 processors (Trinity and
1553Viperfish).
1554
1555TBM instructions provide instructions implementing individual bit
1556manipulation operations such as isolating, masking, setting, resetting,
1557complementing, and operations on trailing zeros and ones.
1558
1559@c Need to add a specification citation here when available.
1560
1561@node i386-16bit
1562@section Writing 16-bit Code
1563
1564@cindex i386 16-bit code
1565@cindex 16-bit code, i386
1566@cindex real-mode code, i386
1567@cindex @code{code16gcc} directive, i386
1568@cindex @code{code16} directive, i386
1569@cindex @code{code32} directive, i386
1570@cindex @code{code64} directive, i386
1571@cindex @code{code64} directive, x86-64
1572While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1573or 64-bit x86-64 code depending on the default configuration,
1574it also supports writing code to run in real mode or in 16-bit protected
1575mode code segments.  To do this, put a @samp{.code16} or
1576@samp{.code16gcc} directive before the assembly language instructions to
1577be run in 16-bit mode.  You can switch @code{@value{AS}} to writing
157832-bit code with the @samp{.code32} directive or 64-bit code with the
1579@samp{.code64} directive.
1580
1581@samp{.code16gcc} provides experimental support for generating 16-bit
1582code from gcc, and differs from @samp{.code16} in that @samp{call},
1583@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1584@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1585default to 32-bit size.  This is so that the stack pointer is
1586manipulated in the same way over function calls, allowing access to
1587function parameters at the same stack offsets as in 32-bit mode.
1588@samp{.code16gcc} also automatically adds address size prefixes where
1589necessary to use the 32-bit addressing modes that gcc generates.
1590
1591The code which @code{@value{AS}} generates in 16-bit mode will not
1592necessarily run on a 16-bit pre-80386 processor.  To write code that
1593runs on such a processor, you must refrain from using @emph{any} 32-bit
1594constructs which require @code{@value{AS}} to output address or operand
1595size prefixes.
1596
1597Note that writing 16-bit code instructions by explicitly specifying a
1598prefix or an instruction mnemonic suffix within a 32-bit code section
1599generates different machine instructions than those generated for a
160016-bit code segment.  In a 32-bit code section, the following code
1601generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1602value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1603
1604@smallexample
1605        pushw $4
1606@end smallexample
1607
1608The same code in a 16-bit code section would generate the machine
1609opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
1610is correct since the processor default operand size is assumed to be 16
1611bits in a 16-bit code section.
1612
1613@node i386-Arch
1614@section Specifying CPU Architecture
1615
1616@cindex arch directive, i386
1617@cindex i386 arch directive
1618@cindex arch directive, x86-64
1619@cindex x86-64 arch directive
1620
1621@code{@value{AS}} may be told to assemble for a particular CPU
1622(sub-)architecture with the @code{.arch @var{cpu_type}} directive.  This
1623directive enables a warning when gas detects an instruction that is not
1624supported on the CPU specified.  The choices for @var{cpu_type} are:
1625
1626@multitable @columnfractions .20 .20 .20 .20
1627@item @samp{default} @tab @samp{push} @tab @samp{pop}
1628@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1629@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
1630@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
1631@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
1632@item @samp{corei7} @tab @samp{iamcu}
1633@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
1634@item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
1635@item @samp{bdver4} @tab @samp{znver1} @tab @samp{znver2} @tab @samp{znver3}
1636@item @samp{znver4} @tab @samp{znver5} @tab @samp{btver1} @tab @samp{btver2}
1637@item @samp{generic32}
1638@item @samp{generic64} @tab @samp{.cmov} @tab @samp{.fxsr} @tab @samp{.mmx}
1639@item @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3} @tab @samp{.sse4a}
1640@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
1641@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1642@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1643@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
1644@item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
1645@item @samp{.lzcnt} @tab @samp{.popcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc}
1646@item @samp{.monitor} @tab @samp{.hle} @tab @samp{.rtm} @tab @samp{.tsx}
1647@item @samp{.lahf_sahf} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1648@item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1649@item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1650@item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
1651@item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
1652@item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
1653@item @samp{.avx512_vpopcntdq} @tab @samp{.avx512_vbmi2} @tab @samp{.avx512_vnni}
1654@item @samp{.avx512_bitalg} @tab @samp{.avx512_bf16} @tab @samp{.avx512_vp2intersect}
1655@item @samp{.tdx} @tab @samp{.avx_vnni} @tab @samp{.avx512_fp16} @tab @samp{.avx10.1}
1656@item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite} @tab @samp{.ibt}
1657@item @samp{.prefetchi} @tab @samp{.avx_ifma} @tab @samp{.avx_vnni_int8}
1658@item @samp{.cmpccxadd} @tab @samp{.wrmsrns} @tab @samp{.msrlist}
1659@item @samp{.avx_ne_convert} @tab @samp{.rao_int} @tab @samp{.fred} @tab @samp{.lkgs}
1660@item @samp{.avx_vnni_int16} @tab @samp{.sha512} @tab @samp{.sm3} @tab @samp{.sm4}
1661@item @samp{.pbndkb} @tab @samp{.user_msr}
1662@item @samp{.wbnoinvd} @tab @samp{.pconfig} @tab @samp{.waitpkg} @tab @samp{.cldemote}
1663@item @samp{.shstk} @tab @samp{.gfni} @tab @samp{.vaes} @tab @samp{.vpclmulqdq}
1664@item @samp{.movdiri} @tab @samp{.movdir64b} @tab @samp{.enqcmd} @tab @samp{.tsxldtrk}
1665@item @samp{.amx_int8} @tab @samp{.amx_bf16} @tab @samp{.amx_fp16}
1666@item @samp{.amx_complex} @tab @samp{.amx_tile}
1667@item @samp{.kl} @tab @samp{.widekl} @tab @samp{.uintr} @tab @samp{.hreset}
1668@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
1669@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme}
1670@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
1671@item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx} @tab @samp{.rdpru}
1672@item @samp{.mcommit} @tab @samp{.sev_es} @tab @samp{.snp} @tab @samp{.invlpgb}
1673@item @samp{.tlbsync} @tab @samp{.apx_f}
1674@end multitable
1675
1676Apart from the warning, there are only two other effects on
1677@code{@value{AS}} operation;  Firstly, if you specify a CPU other than
1678@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1679will automatically use a two byte opcode sequence.  The larger three
1680byte opcode sequence is used on the 486 (and when no architecture is
1681specified) because it executes faster on the 486.  Note that you can
1682explicitly request the two byte opcode by writing @samp{sarl %eax}.
1683Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1684@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1685conditional jumps will be promoted when necessary to a two instruction
1686sequence consisting of a conditional jump of the opposite sense around
1687an unconditional jump to the target.
1688
1689Note that the sub-architecture specifiers (starting with a dot) can be prefixed
1690with @code{no} to revoke the respective (and any dependent) functionality.
1691Note further that @samp{.avx10.<N>} can be suffixed with a vector length
1692restriction (@samp{/256} or @samp{/128}, with @samp{/512} simply restoring the
1693default).  Despite these otherwise being "enabling" specifiers, using these
1694suffixes will disable all insns with wider vector or mask register operands.
1695On SVR4-derived platforms, the separator character @samp{/} can be replaced by
1696@samp{:}.
1697
1698Following the CPU architecture (but not a sub-architecture, which are those
1699starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1700control automatic promotion of conditional jumps. @samp{jumps} is the
1701default, and enables jump promotion;  All external jumps will be of the long
1702variety, and file-local jumps will be promoted as necessary.
1703(@pxref{i386-Jumps})  @samp{nojumps} leaves external conditional jumps as
1704byte offset jumps, and warns about file-local conditional jumps that
1705@code{@value{AS}} promotes.
1706Unconditional jumps are treated as for @samp{jumps}.
1707
1708For example
1709
1710@smallexample
1711 .arch i8086,nojumps
1712@end smallexample
1713
1714@node i386-ISA
1715@section AMD64 ISA vs. Intel64 ISA
1716
1717There are some discrepancies between AMD64 and Intel64 ISAs.
1718
1719@itemize @bullet
1720@item For @samp{movsxd} with 16-bit destination register, AMD64
1721supports 32-bit source operand and Intel64 supports 16-bit source
1722operand.
1723
1724@item For far branches (with explicit memory operand), both ISAs support
172532- and 16-bit operand size.  Intel64 additionally supports 64-bit
1726operand size, encoded as @samp{ljmpq} and @samp{lcallq} in AT&T syntax
1727and with an explicit @samp{tbyte ptr} operand size specifier in Intel
1728syntax.
1729
1730@item @samp{lfs}, @samp{lgs}, and @samp{lss} similarly allow for 16-
1731and 32-bit operand size (32- and 48-bit memory operand) in both ISAs,
1732while Intel64 additionally supports 64-bit operand size (80-bit memory
1733operands).
1734
1735@end itemize
1736
1737@node i386-Bugs
1738@section AT&T Syntax bugs
1739
1740The UnixWare assembler, and probably other AT&T derived ix86 Unix
1741assemblers, generate floating point instructions with reversed source
1742and destination registers in certain cases.  Unfortunately, gcc and
1743possibly many other programs use this reversed syntax, so we're stuck
1744with it.
1745
1746For example
1747
1748@smallexample
1749        fsub %st,%st(3)
1750@end smallexample
1751@noindent
1752results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1753than the expected @samp{%st(3) - %st}.  This happens with all the
1754non-commutative arithmetic floating point operations with two register
1755operands where the source register is @samp{%st} and the destination
1756register is @samp{%st(i)}.
1757
1758@node i386-Notes
1759@section Notes
1760
1761@cindex i386 @code{mul}, @code{imul} instructions
1762@cindex @code{mul} instruction, i386
1763@cindex @code{imul} instruction, i386
1764@cindex @code{mul} instruction, x86-64
1765@cindex @code{imul} instruction, x86-64
1766There is some trickery concerning the @samp{mul} and @samp{imul}
1767instructions that deserves mention.  The 16-, 32-, 64- and 128-bit expanding
1768multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1769for @samp{imul}) can be output only in the one operand form.  Thus,
1770@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1771the expanding multiply would clobber the @samp{%edx} register, and this
1772would confuse @code{@value{GCC}} output.  Use @samp{imul %ebx} to get the
177364-bit product in @samp{%edx:%eax}.
1774
1775We have added a two operand form of @samp{imul} when the first operand
1776is an immediate mode expression and the second operand is a register.
1777This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1778example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1779$69, %eax, %eax}.
1780
1781