1@c Copyright (C) 1991-2015 Free Software Foundation, Inc. 2@c This is part of the GAS manual. 3@c For copying conditions, see the file as.texinfo. 4@c man end 5 6@ifset GENERIC 7@page 8@node i386-Dependent 9@chapter 80386 Dependent Features 10@end ifset 11@ifclear GENERIC 12@node Machine Dependencies 13@chapter 80386 Dependent Features 14@end ifclear 15 16@cindex i386 support 17@cindex i80386 support 18@cindex x86-64 support 19 20The i386 version @code{@value{AS}} supports both the original Intel 386 21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture 22extending the Intel architecture to 64-bits. 23 24@menu 25* i386-Options:: Options 26* i386-Directives:: X86 specific directives 27* i386-Syntax:: Syntactical considerations 28* i386-Mnemonics:: Instruction Naming 29* i386-Regs:: Register Naming 30* i386-Prefixes:: Instruction Prefixes 31* i386-Memory:: Memory References 32* i386-Jumps:: Handling of Jump Instructions 33* i386-Float:: Floating Point 34* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations 35* i386-LWP:: AMD's Lightweight Profiling Instructions 36* i386-BMI:: Bit Manipulation Instruction 37* i386-TBM:: AMD's Trailing Bit Manipulation Instructions 38* i386-16bit:: Writing 16-bit Code 39* i386-Arch:: Specifying an x86 CPU architecture 40* i386-Bugs:: AT&T Syntax bugs 41* i386-Notes:: Notes 42@end menu 43 44@node i386-Options 45@section Options 46 47@cindex options for i386 48@cindex options for x86-64 49@cindex i386 options 50@cindex x86-64 options 51 52The i386 version of @code{@value{AS}} has a few machine 53dependent options: 54 55@c man begin OPTIONS 56@table @gcctabopt 57@cindex @samp{--32} option, i386 58@cindex @samp{--32} option, x86-64 59@cindex @samp{--x32} option, i386 60@cindex @samp{--x32} option, x86-64 61@cindex @samp{--64} option, i386 62@cindex @samp{--64} option, x86-64 63@item --32 | --x32 | --64 64Select the word size, either 32 bits or 64 bits. @samp{--32} 65implies Intel i386 architecture, while @samp{--x32} and @samp{--64} 66imply AMD x86-64 architecture with 32-bit or 64-bit word-size 67respectively. 68 69These options are only available with the ELF object file format, and 70require that the necessary BFD support has been included (on a 32-bit 71platform you have to add --enable-64-bit-bfd to configure enable 64-bit 72usage and use x86-64 as target platform). 73 74@item -n 75By default, x86 GAS replaces multiple nop instructions used for 76alignment within code sections with multi-byte nop instructions such 77as leal 0(%esi,1),%esi. This switch disables the optimization. 78 79@cindex @samp{--divide} option, i386 80@item --divide 81On SVR4-derived platforms, the character @samp{/} is treated as a comment 82character, which means that it cannot be used in expressions. The 83@samp{--divide} option turns @samp{/} into a normal character. This does 84not disable @samp{/} at the beginning of a line starting a comment, or 85affect using @samp{#} for starting a comment. 86 87@cindex @samp{-march=} option, i386 88@cindex @samp{-march=} option, x86-64 89@item -march=@var{CPU}[+@var{EXTENSION}@dots{}] 90This option specifies the target processor. The assembler will 91issue an error message if an attempt is made to assemble an instruction 92which will not execute on the target processor. The following 93processor names are recognized: 94@code{i8086}, 95@code{i186}, 96@code{i286}, 97@code{i386}, 98@code{i486}, 99@code{i586}, 100@code{i686}, 101@code{pentium}, 102@code{pentiumpro}, 103@code{pentiumii}, 104@code{pentiumiii}, 105@code{pentium4}, 106@code{prescott}, 107@code{nocona}, 108@code{core}, 109@code{core2}, 110@code{corei7}, 111@code{l1om}, 112@code{k1om}, 113@code{iamcu}, 114@code{k6}, 115@code{k6_2}, 116@code{athlon}, 117@code{opteron}, 118@code{k8}, 119@code{amdfam10}, 120@code{bdver1}, 121@code{bdver2}, 122@code{bdver3}, 123@code{bdver4}, 124@code{znver1}, 125@code{btver1}, 126@code{btver2}, 127@code{generic32} and 128@code{generic64}. 129 130In addition to the basic instruction set, the assembler can be told to 131accept various extension mnemonics. For example, 132@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and 133@var{vmx}. The following extensions are currently supported: 134@code{8087}, 135@code{287}, 136@code{387}, 137@code{no87}, 138@code{mmx}, 139@code{nommx}, 140@code{sse}, 141@code{sse2}, 142@code{sse3}, 143@code{ssse3}, 144@code{sse4.1}, 145@code{sse4.2}, 146@code{sse4}, 147@code{nosse}, 148@code{avx}, 149@code{avx2}, 150@code{adx}, 151@code{rdseed}, 152@code{prfchw}, 153@code{smap}, 154@code{mpx}, 155@code{sha}, 156@code{prefetchwt1}, 157@code{clflushopt}, 158@code{se1}, 159@code{clwb}, 160@code{pcommit}, 161@code{avx512f}, 162@code{avx512cd}, 163@code{avx512er}, 164@code{avx512pf}, 165@code{avx512vl}, 166@code{avx512bw}, 167@code{avx512dq}, 168@code{avx512ifma}, 169@code{avx512vbmi}, 170@code{noavx}, 171@code{vmx}, 172@code{vmfunc}, 173@code{smx}, 174@code{xsave}, 175@code{xsaveopt}, 176@code{xsavec}, 177@code{xsaves}, 178@code{aes}, 179@code{pclmul}, 180@code{fsgsbase}, 181@code{rdrnd}, 182@code{f16c}, 183@code{bmi2}, 184@code{fma}, 185@code{movbe}, 186@code{ept}, 187@code{lzcnt}, 188@code{hle}, 189@code{rtm}, 190@code{invpcid}, 191@code{clflush}, 192@code{mwaitx}, 193@code{clzero}, 194@code{lwp}, 195@code{fma4}, 196@code{xop}, 197@code{cx16}, 198@code{syscall}, 199@code{rdtscp}, 200@code{3dnow}, 201@code{3dnowa}, 202@code{sse4a}, 203@code{sse5}, 204@code{svme}, 205@code{abm} and 206@code{padlock}. 207Note that rather than extending a basic instruction set, the extension 208mnemonics starting with @code{no} revoke the respective functionality. 209 210When the @code{.arch} directive is used with @option{-march}, the 211@code{.arch} directive will take precedent. 212 213@cindex @samp{-mtune=} option, i386 214@cindex @samp{-mtune=} option, x86-64 215@item -mtune=@var{CPU} 216This option specifies a processor to optimize for. When used in 217conjunction with the @option{-march} option, only instructions 218of the processor specified by the @option{-march} option will be 219generated. 220 221Valid @var{CPU} values are identical to the processor list of 222@option{-march=@var{CPU}}. 223 224@cindex @samp{-msse2avx} option, i386 225@cindex @samp{-msse2avx} option, x86-64 226@item -msse2avx 227This option specifies that the assembler should encode SSE instructions 228with VEX prefix. 229 230@cindex @samp{-msse-check=} option, i386 231@cindex @samp{-msse-check=} option, x86-64 232@item -msse-check=@var{none} 233@itemx -msse-check=@var{warning} 234@itemx -msse-check=@var{error} 235These options control if the assembler should check SSE instructions. 236@option{-msse-check=@var{none}} will make the assembler not to check SSE 237instructions, which is the default. @option{-msse-check=@var{warning}} 238will make the assembler issue a warning for any SSE instruction. 239@option{-msse-check=@var{error}} will make the assembler issue an error 240for any SSE instruction. 241 242@cindex @samp{-mavxscalar=} option, i386 243@cindex @samp{-mavxscalar=} option, x86-64 244@item -mavxscalar=@var{128} 245@itemx -mavxscalar=@var{256} 246These options control how the assembler should encode scalar AVX 247instructions. @option{-mavxscalar=@var{128}} will encode scalar 248AVX instructions with 128bit vector length, which is the default. 249@option{-mavxscalar=@var{256}} will encode scalar AVX instructions 250with 256bit vector length. 251 252@cindex @samp{-mevexlig=} option, i386 253@cindex @samp{-mevexlig=} option, x86-64 254@item -mevexlig=@var{128} 255@itemx -mevexlig=@var{256} 256@itemx -mevexlig=@var{512} 257These options control how the assembler should encode length-ignored 258(LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG 259EVEX instructions with 128bit vector length, which is the default. 260@option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will 261encode LIG EVEX instructions with 256bit and 512bit vector length, 262respectively. 263 264@cindex @samp{-mevexwig=} option, i386 265@cindex @samp{-mevexwig=} option, x86-64 266@item -mevexwig=@var{0} 267@itemx -mevexwig=@var{1} 268These options control how the assembler should encode w-ignored (WIG) 269EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG 270EVEX instructions with evex.w = 0, which is the default. 271@option{-mevexwig=@var{1}} will encode WIG EVEX instructions with 272evex.w = 1. 273 274@cindex @samp{-mmnemonic=} option, i386 275@cindex @samp{-mmnemonic=} option, x86-64 276@item -mmnemonic=@var{att} 277@itemx -mmnemonic=@var{intel} 278This option specifies instruction mnemonic for matching instructions. 279The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will 280take precedent. 281 282@cindex @samp{-msyntax=} option, i386 283@cindex @samp{-msyntax=} option, x86-64 284@item -msyntax=@var{att} 285@itemx -msyntax=@var{intel} 286This option specifies instruction syntax when processing instructions. 287The @code{.att_syntax} and @code{.intel_syntax} directives will 288take precedent. 289 290@cindex @samp{-mnaked-reg} option, i386 291@cindex @samp{-mnaked-reg} option, x86-64 292@item -mnaked-reg 293This opetion specifies that registers don't require a @samp{%} prefix. 294The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent. 295 296@cindex @samp{-madd-bnd-prefix} option, i386 297@cindex @samp{-madd-bnd-prefix} option, x86-64 298@item -madd-bnd-prefix 299This option forces the assembler to add BND prefix to all branches, even 300if such prefix was not explicitly specified in the source code. 301 302@cindex @samp{-mshared} option, i386 303@cindex @samp{-mshared} option, x86-64 304@item -mno-shared 305On ELF target, the assembler normally optimizes out non-PLT relocations 306against defined non-weak global branch targets with default visibility. 307The @samp{-mshared} option tells the assembler to generate code which 308may go into a shared library where all non-weak global branch targets 309with default visibility can be preempted. The resulting code is 310slightly bigger. This option only affects the handling of branch 311instructions. 312 313@cindex @samp{-mbig-obj} option, x86-64 314@item -mbig-obj 315On x86-64 PE/COFF target this option forces the use of big object file 316format, which allows more than 32768 sections. 317 318@cindex @samp{-momit-lock-prefix=} option, i386 319@cindex @samp{-momit-lock-prefix=} option, x86-64 320@item -momit-lock-prefix=@var{no} 321@itemx -momit-lock-prefix=@var{yes} 322These options control how the assembler should encode lock prefix. 323This option is intended as a workaround for processors, that fail on 324lock prefix. This option can only be safely used with single-core, 325single-thread computers 326@option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes. 327@option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual, 328which is the default. 329 330@cindex @samp{-mevexrcig=} option, i386 331@cindex @samp{-mevexrcig=} option, x86-64 332@item -mevexrcig=@var{rne} 333@itemx -mevexrcig=@var{rd} 334@itemx -mevexrcig=@var{ru} 335@itemx -mevexrcig=@var{rz} 336These options control how the assembler should encode SAE-only 337EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits 338of EVEX instruction with 00, which is the default. 339@option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}} 340and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions 341with 01, 10 and 11 RC bits, respectively. 342 343@cindex @samp{-mamd64} option, x86-64 344@cindex @samp{-mintel64} option, x86-64 345@item -mamd64 346@itemx -mintel64 347This option specifies that the assembler should accept only AMD64 or 348Intel64 ISA in 64-bit mode. The default is to accept both. 349 350@end table 351@c man end 352 353@node i386-Directives 354@section x86 specific Directives 355 356@cindex machine directives, x86 357@cindex x86 machine directives 358@table @code 359 360@cindex @code{lcomm} directive, COFF 361@item .lcomm @var{symbol} , @var{length}[, @var{alignment}] 362Reserve @var{length} (an absolute expression) bytes for a local common 363denoted by @var{symbol}. The section and value of @var{symbol} are 364those of the new local common. The addresses are allocated in the bss 365section, so that at run-time the bytes start off zeroed. Since 366@var{symbol} is not declared global, it is normally not visible to 367@code{@value{LD}}. The optional third parameter, @var{alignment}, 368specifies the desired alignment of the symbol in the bss section. 369 370This directive is only available for COFF based x86 targets. 371 372@c FIXME: Document other x86 specific directives ? Eg: .code16gcc, 373@c .largecomm 374 375@end table 376 377@node i386-Syntax 378@section i386 Syntactical Considerations 379@menu 380* i386-Variations:: AT&T Syntax versus Intel Syntax 381* i386-Chars:: Special Characters 382@end menu 383 384@node i386-Variations 385@subsection AT&T Syntax versus Intel Syntax 386 387@cindex i386 intel_syntax pseudo op 388@cindex intel_syntax pseudo op, i386 389@cindex i386 att_syntax pseudo op 390@cindex att_syntax pseudo op, i386 391@cindex i386 syntax compatibility 392@cindex syntax compatibility, i386 393@cindex x86-64 intel_syntax pseudo op 394@cindex intel_syntax pseudo op, x86-64 395@cindex x86-64 att_syntax pseudo op 396@cindex att_syntax pseudo op, x86-64 397@cindex x86-64 syntax compatibility 398@cindex syntax compatibility, x86-64 399 400@code{@value{AS}} now supports assembly using Intel assembler syntax. 401@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches 402back to the usual AT&T mode for compatibility with the output of 403@code{@value{GCC}}. Either of these directives may have an optional 404argument, @code{prefix}, or @code{noprefix} specifying whether registers 405require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite 406different from Intel syntax. We mention these differences because 407almost all 80386 documents use Intel syntax. Notable differences 408between the two syntaxes are: 409 410@cindex immediate operands, i386 411@cindex i386 immediate operands 412@cindex register operands, i386 413@cindex i386 register operands 414@cindex jump/call operands, i386 415@cindex i386 jump/call operands 416@cindex operand delimiters, i386 417 418@cindex immediate operands, x86-64 419@cindex x86-64 immediate operands 420@cindex register operands, x86-64 421@cindex x86-64 register operands 422@cindex jump/call operands, x86-64 423@cindex x86-64 jump/call operands 424@cindex operand delimiters, x86-64 425@itemize @bullet 426@item 427AT&T immediate operands are preceded by @samp{$}; Intel immediate 428operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}). 429AT&T register operands are preceded by @samp{%}; Intel register operands 430are undelimited. AT&T absolute (as opposed to PC relative) jump/call 431operands are prefixed by @samp{*}; they are undelimited in Intel syntax. 432 433@cindex i386 source, destination operands 434@cindex source, destination operands; i386 435@cindex x86-64 source, destination operands 436@cindex source, destination operands; x86-64 437@item 438AT&T and Intel syntax use the opposite order for source and destination 439operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The 440@samp{source, dest} convention is maintained for compatibility with 441previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and 442instructions with 2 immediate operands, such as the @samp{enter} 443instruction, do @emph{not} have reversed order. @ref{i386-Bugs}. 444 445@cindex mnemonic suffixes, i386 446@cindex sizes operands, i386 447@cindex i386 size suffixes 448@cindex mnemonic suffixes, x86-64 449@cindex sizes operands, x86-64 450@cindex x86-64 size suffixes 451@item 452In AT&T syntax the size of memory operands is determined from the last 453character of the instruction mnemonic. Mnemonic suffixes of @samp{b}, 454@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long 455(32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes 456this by prefixing memory operands (@emph{not} the instruction mnemonics) with 457@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus, 458Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T 459syntax. 460 461In 64-bit code, @samp{movabs} can be used to encode the @samp{mov} 462instruction with the 64-bit displacement or immediate operand. 463 464@cindex return instructions, i386 465@cindex i386 jump, call, return 466@cindex return instructions, x86-64 467@cindex x86-64 jump, call, return 468@item 469Immediate form long jumps and calls are 470@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the 471Intel syntax is 472@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return 473instruction 474is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is 475@samp{ret far @var{stack-adjust}}. 476 477@cindex sections, i386 478@cindex i386 sections 479@cindex sections, x86-64 480@cindex x86-64 sections 481@item 482The AT&T assembler does not provide support for multiple section 483programs. Unix style systems expect all programs to be single sections. 484@end itemize 485 486@node i386-Chars 487@subsection Special Characters 488 489@cindex line comment character, i386 490@cindex i386 line comment character 491The presence of a @samp{#} appearing anywhere on a line indicates the 492start of a comment that extends to the end of that line. 493 494If a @samp{#} appears as the first character of a line then the whole 495line is treated as a comment, but in this case the line can also be a 496logical line number directive (@pxref{Comments}) or a preprocessor 497control command (@pxref{Preprocessing}). 498 499If the @option{--divide} command line option has not been specified 500then the @samp{/} character appearing anywhere on a line also 501introduces a line comment. 502 503@cindex line separator, i386 504@cindex statement separator, i386 505@cindex i386 line separator 506The @samp{;} character can be used to separate statements on the same 507line. 508 509@node i386-Mnemonics 510@section i386-Mnemonics 511@subsection Instruction Naming 512 513@cindex i386 instruction naming 514@cindex instruction naming, i386 515@cindex x86-64 instruction naming 516@cindex instruction naming, x86-64 517 518Instruction mnemonics are suffixed with one character modifiers which 519specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l} 520and @samp{q} specify byte, word, long and quadruple word operands. If 521no suffix is specified by an instruction then @code{@value{AS}} tries to 522fill in the missing suffix based on the destination register operand 523(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent 524to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to 525@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix 526assembler which assumes that a missing mnemonic suffix implies long 527operand size. (This incompatibility does not affect compiler output 528since compilers always explicitly specify the mnemonic suffix.) 529 530Almost all instructions have the same names in AT&T and Intel format. 531There are a few exceptions. The sign extend and zero extend 532instructions need two sizes to specify them. They need a size to 533sign/zero extend @emph{from} and a size to zero extend @emph{to}. This 534is accomplished by using two instruction mnemonic suffixes in AT&T 535syntax. Base names for sign extend and zero extend are 536@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx} 537and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes 538are tacked on to this base name, the @emph{from} suffix before the 539@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for 540``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes, 541thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word), 542@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word), 543@samp{wq} (from word to quadruple word), and @samp{lq} (from long to 544quadruple word). 545 546@cindex encoding options, i386 547@cindex encoding options, x86-64 548 549Different encoding options can be specified via optional mnemonic 550suffix. @samp{.s} suffix swaps 2 register operands in encoding when 551moving from one register to another. @samp{.d8} or @samp{.d32} suffix 552prefers 8bit or 32bit displacement in encoding. 553 554@cindex conversion instructions, i386 555@cindex i386 conversion instructions 556@cindex conversion instructions, x86-64 557@cindex x86-64 conversion instructions 558The Intel-syntax conversion instructions 559 560@itemize @bullet 561@item 562@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax}, 563 564@item 565@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax}, 566 567@item 568@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax}, 569 570@item 571@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax}, 572 573@item 574@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax} 575(x86-64 only), 576 577@item 578@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in 579@samp{%rdx:%rax} (x86-64 only), 580@end itemize 581 582@noindent 583are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and 584@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these 585instructions. 586 587@cindex jump instructions, i386 588@cindex call instructions, i386 589@cindex jump instructions, x86-64 590@cindex call instructions, x86-64 591Far call/jump instructions are @samp{lcall} and @samp{ljmp} in 592AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel 593convention. 594 595@subsection AT&T Mnemonic versus Intel Mnemonic 596 597@cindex i386 mnemonic compatibility 598@cindex mnemonic compatibility, i386 599 600@code{@value{AS}} supports assembly using Intel mnemonic. 601@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and 602@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T 603syntax for compatibility with the output of @code{@value{GCC}}. 604Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp}, 605@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp}, 606@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386 607assembler with different mnemonics from those in Intel IA32 specification. 608@code{@value{GCC}} generates those instructions with AT&T mnemonic. 609 610@node i386-Regs 611@section Register Naming 612 613@cindex i386 registers 614@cindex registers, i386 615@cindex x86-64 registers 616@cindex registers, x86-64 617Register operands are always prefixed with @samp{%}. The 80386 registers 618consist of 619 620@itemize @bullet 621@item 622the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx}, 623@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the 624frame pointer), and @samp{%esp} (the stack pointer). 625 626@item 627the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx}, 628@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}. 629 630@item 631the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh}, 632@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These 633are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx}, 634@samp{%cx}, and @samp{%dx}) 635 636@item 637the 6 section registers @samp{%cs} (code section), @samp{%ds} 638(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs}, 639and @samp{%gs}. 640 641@item 642the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and 643@samp{%cr3}. 644 645@item 646the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2}, 647@samp{%db3}, @samp{%db6}, and @samp{%db7}. 648 649@item 650the 2 test registers @samp{%tr6} and @samp{%tr7}. 651 652@item 653the 8 floating point register stack @samp{%st} or equivalently 654@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)}, 655@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}. 656These registers are overloaded by 8 MMX registers @samp{%mm0}, 657@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5}, 658@samp{%mm6} and @samp{%mm7}. 659 660@item 661the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2}, 662@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}. 663@end itemize 664 665The AMD x86-64 architecture extends the register set by: 666 667@itemize @bullet 668@item 669enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the 670accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi}, 671@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack 672pointer) 673 674@item 675the 8 extended registers @samp{%r8}--@samp{%r15}. 676 677@item 678the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d} 679 680@item 681the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w} 682 683@item 684the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b} 685 686@item 687the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}. 688 689@item 690the 8 debug registers: @samp{%db8}--@samp{%db15}. 691 692@item 693the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}. 694@end itemize 695 696@node i386-Prefixes 697@section Instruction Prefixes 698 699@cindex i386 instruction prefixes 700@cindex instruction prefixes, i386 701@cindex prefixes, i386 702Instruction prefixes are used to modify the following instruction. They 703are used to repeat string instructions, to provide section overrides, to 704perform bus lock operations, and to change operand and address sizes. 705(Most instructions that normally operate on 32-bit operands will use 70616-bit operands if the instruction has an ``operand size'' prefix.) 707Instruction prefixes are best written on the same line as the instruction 708they act upon. For example, the @samp{scas} (scan string) instruction is 709repeated with: 710 711@smallexample 712 repne scas %es:(%edi),%al 713@end smallexample 714 715You may also place prefixes on the lines immediately preceding the 716instruction, but this circumvents checks that @code{@value{AS}} does 717with prefixes, and will not work with all prefixes. 718 719Here is a list of instruction prefixes: 720 721@cindex section override prefixes, i386 722@itemize @bullet 723@item 724Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es}, 725@samp{fs}, @samp{gs}. These are automatically added by specifying 726using the @var{section}:@var{memory-operand} form for memory references. 727 728@cindex size prefixes, i386 729@item 730Operand/Address size prefixes @samp{data16} and @samp{addr16} 731change 32-bit operands/addresses into 16-bit operands/addresses, 732while @samp{data32} and @samp{addr32} change 16-bit ones (in a 733@code{.code16} section) into 32-bit operands/addresses. These prefixes 734@emph{must} appear on the same line of code as the instruction they 735modify. For example, in a 16-bit @code{.code16} section, you might 736write: 737 738@smallexample 739 addr32 jmpl *(%ebx) 740@end smallexample 741 742@cindex bus lock prefixes, i386 743@cindex inhibiting interrupts, i386 744@item 745The bus lock prefix @samp{lock} inhibits interrupts during execution of 746the instruction it precedes. (This is only valid with certain 747instructions; see a 80386 manual for details). 748 749@cindex coprocessor wait, i386 750@item 751The wait for coprocessor prefix @samp{wait} waits for the coprocessor to 752complete the current instruction. This should never be needed for the 75380386/80387 combination. 754 755@cindex repeat prefixes, i386 756@item 757The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added 758to string instructions to make them repeat @samp{%ecx} times (@samp{%cx} 759times if the current address size is 16-bits). 760@cindex REX prefixes, i386 761@item 762The @samp{rex} family of prefixes is used by x86-64 to encode 763extensions to i386 instruction set. The @samp{rex} prefix has four 764bits --- an operand size overwrite (@code{64}) used to change operand size 765from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the 766register set. 767 768You may write the @samp{rex} prefixes directly. The @samp{rex64xyz} 769instruction emits @samp{rex} prefix with all the bits set. By omitting 770the @code{64}, @code{x}, @code{y} or @code{z} you may write other 771prefixes as well. Normally, there is no need to write the prefixes 772explicitly, since gas will automatically generate them based on the 773instruction operands. 774@end itemize 775 776@node i386-Memory 777@section Memory References 778 779@cindex i386 memory references 780@cindex memory references, i386 781@cindex x86-64 memory references 782@cindex memory references, x86-64 783An Intel syntax indirect memory reference of the form 784 785@smallexample 786@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}] 787@end smallexample 788 789@noindent 790is translated into the AT&T syntax 791 792@smallexample 793@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale}) 794@end smallexample 795 796@noindent 797where @var{base} and @var{index} are the optional 32-bit base and 798index registers, @var{disp} is the optional displacement, and 799@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index} 800to calculate the address of the operand. If no @var{scale} is 801specified, @var{scale} is taken to be 1. @var{section} specifies the 802optional section register for the memory operand, and may override the 803default section register (see a 80386 manual for section register 804defaults). Note that section overrides in AT&T syntax @emph{must} 805be preceded by a @samp{%}. If you specify a section override which 806coincides with the default section register, @code{@value{AS}} does @emph{not} 807output any section register override prefixes to assemble the given 808instruction. Thus, section overrides can be specified to emphasize which 809section register is used for a given memory operand. 810 811Here are some examples of Intel and AT&T style memory references: 812 813@table @asis 814@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]} 815@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is 816missing, and the default section is used (@samp{%ss} for addressing with 817@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing. 818 819@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]} 820@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is 821@samp{foo}. All other fields are missing. The section register here 822defaults to @samp{%ds}. 823 824@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]} 825This uses the value pointed to by @samp{foo} as a memory operand. 826Note that @var{base} and @var{index} are both missing, but there is only 827@emph{one} @samp{,}. This is a syntactic exception. 828 829@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo} 830This selects the contents of the variable @samp{foo} with section 831register @var{section} being @samp{%gs}. 832@end table 833 834Absolute (as opposed to PC relative) call and jump operands must be 835prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}} 836always chooses PC relative addressing for jump/call labels. 837 838Any instruction that has a memory operand, but no register operand, 839@emph{must} specify its size (byte, word, long, or quadruple) with an 840instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q}, 841respectively). 842 843The x86-64 architecture adds an RIP (instruction pointer relative) 844addressing. This addressing mode is specified by using @samp{rip} as a 845base register. Only constant offsets are valid. For example: 846 847@table @asis 848@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]} 849Points to the address 1234 bytes past the end of the current 850instruction. 851 852@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]} 853Points to the @code{symbol} in RIP relative way, this is shorter than 854the default absolute addressing. 855@end table 856 857Other addressing modes remain unchanged in x86-64 architecture, except 858registers used are 64-bit instead of 32-bit. 859 860@node i386-Jumps 861@section Handling of Jump Instructions 862 863@cindex jump optimization, i386 864@cindex i386 jump optimization 865@cindex jump optimization, x86-64 866@cindex x86-64 jump optimization 867Jump instructions are always optimized to use the smallest possible 868displacements. This is accomplished by using byte (8-bit) displacement 869jumps whenever the target is sufficiently close. If a byte displacement 870is insufficient a long displacement is used. We do not support 871word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump 872instruction with the @samp{data16} instruction prefix), since the 80386 873insists upon masking @samp{%eip} to 16 bits after the word displacement 874is added. (See also @pxref{i386-Arch}) 875 876Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz}, 877@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte 878displacements, so that if you use these instructions (@code{@value{GCC}} does 879not use them) you may get an error message (and incorrect code). The AT&T 88080386 assembler tries to get around this problem by expanding @samp{jcxz foo} 881to 882 883@smallexample 884 jcxz cx_zero 885 jmp cx_nonzero 886cx_zero: jmp foo 887cx_nonzero: 888@end smallexample 889 890@node i386-Float 891@section Floating Point 892 893@cindex i386 floating point 894@cindex floating point, i386 895@cindex x86-64 floating point 896@cindex floating point, x86-64 897All 80387 floating point types except packed BCD are supported. 898(BCD support may be added without much difficulty). These data 899types are 16-, 32-, and 64- bit integers, and single (32-bit), 900double (64-bit), and extended (80-bit) precision floating point. 901Each supported type has an instruction mnemonic suffix and a constructor 902associated with it. Instruction mnemonic suffixes specify the operand's 903data type. Constructors build these data types into memory. 904 905@cindex @code{float} directive, i386 906@cindex @code{single} directive, i386 907@cindex @code{double} directive, i386 908@cindex @code{tfloat} directive, i386 909@cindex @code{float} directive, x86-64 910@cindex @code{single} directive, x86-64 911@cindex @code{double} directive, x86-64 912@cindex @code{tfloat} directive, x86-64 913@itemize @bullet 914@item 915Floating point constructors are @samp{.float} or @samp{.single}, 916@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats. 917These correspond to instruction mnemonic suffixes @samp{s}, @samp{l}, 918and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387 919only supports this format via the @samp{fldt} (load 80-bit real to stack 920top) and @samp{fstpt} (store 80-bit real and pop stack) instructions. 921 922@cindex @code{word} directive, i386 923@cindex @code{long} directive, i386 924@cindex @code{int} directive, i386 925@cindex @code{quad} directive, i386 926@cindex @code{word} directive, x86-64 927@cindex @code{long} directive, x86-64 928@cindex @code{int} directive, x86-64 929@cindex @code{quad} directive, x86-64 930@item 931Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and 932@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The 933corresponding instruction mnemonic suffixes are @samp{s} (single), 934@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format, 935the 64-bit @samp{q} format is only present in the @samp{fildq} (load 936quad integer to stack top) and @samp{fistpq} (store quad integer and pop 937stack) instructions. 938@end itemize 939 940Register to register operations should not use instruction mnemonic suffixes. 941@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you 942wrote @samp{fst %st, %st(1)}, since all register to register operations 943use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem}, 944which converts @samp{%st} from 80-bit to 64-bit floating point format, 945then stores the result in the 4 byte location @samp{mem}) 946 947@node i386-SIMD 948@section Intel's MMX and AMD's 3DNow! SIMD Operations 949 950@cindex MMX, i386 951@cindex 3DNow!, i386 952@cindex SIMD, i386 953@cindex MMX, x86-64 954@cindex 3DNow!, x86-64 955@cindex SIMD, x86-64 956 957@code{@value{AS}} supports Intel's MMX instruction set (SIMD 958instructions for integer data), available on Intel's Pentium MMX 959processors and Pentium II processors, AMD's K6 and K6-2 processors, 960Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@: 961instruction set (SIMD instructions for 32-bit floating point data) 962available on AMD's K6-2 processor and possibly others in the future. 963 964Currently, @code{@value{AS}} does not support Intel's floating point 965SIMD, Katmai (KNI). 966 967The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0}, 968@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four 96916-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit 970floating point values. The MMX registers cannot be used at the same time 971as the floating point stack. 972 973See Intel and AMD documentation, keeping in mind that the operand order in 974instructions is reversed from the Intel syntax. 975 976@node i386-LWP 977@section AMD's Lightweight Profiling Instructions 978 979@cindex LWP, i386 980@cindex LWP, x86-64 981 982@code{@value{AS}} supports AMD's Lightweight Profiling (LWP) 983instruction set, available on AMD's Family 15h (Orochi) processors. 984 985LWP enables applications to collect and manage performance data, and 986react to performance events. The collection of performance data 987requires no context switches. LWP runs in the context of a thread and 988so several counters can be used independently across multiple threads. 989LWP can be used in both 64-bit and legacy 32-bit modes. 990 991For detailed information on the LWP instruction set, see the 992@cite{AMD Lightweight Profiling Specification} available at 993@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}. 994 995@node i386-BMI 996@section Bit Manipulation Instructions 997 998@cindex BMI, i386 999@cindex BMI, x86-64 1000 1001@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set. 1002 1003BMI instructions provide several instructions implementing individual 1004bit manipulation operations such as isolation, masking, setting, or 1005resetting. 1006 1007@c Need to add a specification citation here when available. 1008 1009@node i386-TBM 1010@section AMD's Trailing Bit Manipulation Instructions 1011 1012@cindex TBM, i386 1013@cindex TBM, x86-64 1014 1015@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM) 1016instruction set, available on AMD's BDVER2 processors (Trinity and 1017Viperfish). 1018 1019TBM instructions provide instructions implementing individual bit 1020manipulation operations such as isolating, masking, setting, resetting, 1021complementing, and operations on trailing zeros and ones. 1022 1023@c Need to add a specification citation here when available. 1024 1025@node i386-16bit 1026@section Writing 16-bit Code 1027 1028@cindex i386 16-bit code 1029@cindex 16-bit code, i386 1030@cindex real-mode code, i386 1031@cindex @code{code16gcc} directive, i386 1032@cindex @code{code16} directive, i386 1033@cindex @code{code32} directive, i386 1034@cindex @code{code64} directive, i386 1035@cindex @code{code64} directive, x86-64 1036While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code 1037or 64-bit x86-64 code depending on the default configuration, 1038it also supports writing code to run in real mode or in 16-bit protected 1039mode code segments. To do this, put a @samp{.code16} or 1040@samp{.code16gcc} directive before the assembly language instructions to 1041be run in 16-bit mode. You can switch @code{@value{AS}} to writing 104232-bit code with the @samp{.code32} directive or 64-bit code with the 1043@samp{.code64} directive. 1044 1045@samp{.code16gcc} provides experimental support for generating 16-bit 1046code from gcc, and differs from @samp{.code16} in that @samp{call}, 1047@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop}, 1048@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions 1049default to 32-bit size. This is so that the stack pointer is 1050manipulated in the same way over function calls, allowing access to 1051function parameters at the same stack offsets as in 32-bit mode. 1052@samp{.code16gcc} also automatically adds address size prefixes where 1053necessary to use the 32-bit addressing modes that gcc generates. 1054 1055The code which @code{@value{AS}} generates in 16-bit mode will not 1056necessarily run on a 16-bit pre-80386 processor. To write code that 1057runs on such a processor, you must refrain from using @emph{any} 32-bit 1058constructs which require @code{@value{AS}} to output address or operand 1059size prefixes. 1060 1061Note that writing 16-bit code instructions by explicitly specifying a 1062prefix or an instruction mnemonic suffix within a 32-bit code section 1063generates different machine instructions than those generated for a 106416-bit code segment. In a 32-bit code section, the following code 1065generates the machine opcode bytes @samp{66 6a 04}, which pushes the 1066value @samp{4} onto the stack, decrementing @samp{%esp} by 2. 1067 1068@smallexample 1069 pushw $4 1070@end smallexample 1071 1072The same code in a 16-bit code section would generate the machine 1073opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which 1074is correct since the processor default operand size is assumed to be 16 1075bits in a 16-bit code section. 1076 1077@node i386-Arch 1078@section Specifying CPU Architecture 1079 1080@cindex arch directive, i386 1081@cindex i386 arch directive 1082@cindex arch directive, x86-64 1083@cindex x86-64 arch directive 1084 1085@code{@value{AS}} may be told to assemble for a particular CPU 1086(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This 1087directive enables a warning when gas detects an instruction that is not 1088supported on the CPU specified. The choices for @var{cpu_type} are: 1089 1090@multitable @columnfractions .20 .20 .20 .20 1091@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386} 1092@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium} 1093@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4} 1094@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2} 1095@item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @samp{iamcu} 1096@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8} 1097@item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3} 1098@item @samp{bdver4} @tab @samp{znver1} @tab @samp{btver1} @tab @samp{btver2} 1099@item @samp{generic32} @tab @samp{generic64} 1100@item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3} 1101@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4} 1102@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept} 1103@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt} 1104@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase} 1105@item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2} 1106@item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle} 1107@item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw} 1108@item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1} 1109@item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1} 1110@item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf} 1111@item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma} 1112@item @samp{.avx512vbmi} @tab @samp{.clwb} @tab @samp{.pcommit} 1113@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5} 1114@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm} 1115@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16} 1116@item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx} 1117@end multitable 1118 1119Apart from the warning, there are only two other effects on 1120@code{@value{AS}} operation; Firstly, if you specify a CPU other than 1121@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax} 1122will automatically use a two byte opcode sequence. The larger three 1123byte opcode sequence is used on the 486 (and when no architecture is 1124specified) because it executes faster on the 486. Note that you can 1125explicitly request the two byte opcode by writing @samp{sarl %eax}. 1126Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286}, 1127@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset 1128conditional jumps will be promoted when necessary to a two instruction 1129sequence consisting of a conditional jump of the opposite sense around 1130an unconditional jump to the target. 1131 1132Following the CPU architecture (but not a sub-architecture, which are those 1133starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to 1134control automatic promotion of conditional jumps. @samp{jumps} is the 1135default, and enables jump promotion; All external jumps will be of the long 1136variety, and file-local jumps will be promoted as necessary. 1137(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as 1138byte offset jumps, and warns about file-local conditional jumps that 1139@code{@value{AS}} promotes. 1140Unconditional jumps are treated as for @samp{jumps}. 1141 1142For example 1143 1144@smallexample 1145 .arch i8086,nojumps 1146@end smallexample 1147 1148@node i386-Bugs 1149@section AT&T Syntax bugs 1150 1151The UnixWare assembler, and probably other AT&T derived ix86 Unix 1152assemblers, generate floating point instructions with reversed source 1153and destination registers in certain cases. Unfortunately, gcc and 1154possibly many other programs use this reversed syntax, so we're stuck 1155with it. 1156 1157For example 1158 1159@smallexample 1160 fsub %st,%st(3) 1161@end smallexample 1162@noindent 1163results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather 1164than the expected @samp{%st(3) - %st}. This happens with all the 1165non-commutative arithmetic floating point operations with two register 1166operands where the source register is @samp{%st} and the destination 1167register is @samp{%st(i)}. 1168 1169@node i386-Notes 1170@section Notes 1171 1172@cindex i386 @code{mul}, @code{imul} instructions 1173@cindex @code{mul} instruction, i386 1174@cindex @code{imul} instruction, i386 1175@cindex @code{mul} instruction, x86-64 1176@cindex @code{imul} instruction, x86-64 1177There is some trickery concerning the @samp{mul} and @samp{imul} 1178instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding 1179multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5 1180for @samp{imul}) can be output only in the one operand form. Thus, 1181@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply; 1182the expanding multiply would clobber the @samp{%edx} register, and this 1183would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the 118464-bit product in @samp{%edx:%eax}. 1185 1186We have added a two operand form of @samp{imul} when the first operand 1187is an immediate mode expression and the second operand is a register. 1188This is just a shorthand, so that, multiplying @samp{%eax} by 69, for 1189example, can be done with @samp{imul $69, %eax} rather than @samp{imul 1190$69, %eax, %eax}. 1191 1192