1 /* Motorola 68k series support for 32-bit ELF 2 Copyright (C) 1993-2018 Free Software Foundation, Inc. 3 4 This file is part of BFD, the Binary File Descriptor library. 5 6 This program is free software; you can redistribute it and/or modify 7 it under the terms of the GNU General Public License as published by 8 the Free Software Foundation; either version 3 of the License, or 9 (at your option) any later version. 10 11 This program is distributed in the hope that it will be useful, 12 but WITHOUT ANY WARRANTY; without even the implied warranty of 13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 GNU General Public License for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with this program; if not, write to the Free Software 18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, 19 MA 02110-1301, USA. */ 20 21 #include "sysdep.h" 22 #include "bfd.h" 23 #include "bfdlink.h" 24 #include "libbfd.h" 25 #include "elf-bfd.h" 26 #include "elf/m68k.h" 27 #include "opcode/m68k.h" 28 29 static bfd_boolean 30 elf_m68k_discard_copies (struct elf_link_hash_entry *, void *); 31 32 static reloc_howto_type howto_table[] = 33 { 34 HOWTO(R_68K_NONE, 0, 3, 0, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_NONE", FALSE, 0, 0x00000000,FALSE), 35 HOWTO(R_68K_32, 0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_32", FALSE, 0, 0xffffffff,FALSE), 36 HOWTO(R_68K_16, 0, 1,16, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_16", FALSE, 0, 0x0000ffff,FALSE), 37 HOWTO(R_68K_8, 0, 0, 8, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_8", FALSE, 0, 0x000000ff,FALSE), 38 HOWTO(R_68K_PC32, 0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PC32", FALSE, 0, 0xffffffff,TRUE), 39 HOWTO(R_68K_PC16, 0, 1,16, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PC16", FALSE, 0, 0x0000ffff,TRUE), 40 HOWTO(R_68K_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PC8", FALSE, 0, 0x000000ff,TRUE), 41 HOWTO(R_68K_GOT32, 0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_GOT32", FALSE, 0, 0xffffffff,TRUE), 42 HOWTO(R_68K_GOT16, 0, 1,16, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT16", FALSE, 0, 0x0000ffff,TRUE), 43 HOWTO(R_68K_GOT8, 0, 0, 8, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT8", FALSE, 0, 0x000000ff,TRUE), 44 HOWTO(R_68K_GOT32O, 0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_GOT32O", FALSE, 0, 0xffffffff,FALSE), 45 HOWTO(R_68K_GOT16O, 0, 1,16, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT16O", FALSE, 0, 0x0000ffff,FALSE), 46 HOWTO(R_68K_GOT8O, 0, 0, 8, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT8O", FALSE, 0, 0x000000ff,FALSE), 47 HOWTO(R_68K_PLT32, 0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PLT32", FALSE, 0, 0xffffffff,TRUE), 48 HOWTO(R_68K_PLT16, 0, 1,16, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT16", FALSE, 0, 0x0000ffff,TRUE), 49 HOWTO(R_68K_PLT8, 0, 0, 8, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT8", FALSE, 0, 0x000000ff,TRUE), 50 HOWTO(R_68K_PLT32O, 0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PLT32O", FALSE, 0, 0xffffffff,FALSE), 51 HOWTO(R_68K_PLT16O, 0, 1,16, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT16O", FALSE, 0, 0x0000ffff,FALSE), 52 HOWTO(R_68K_PLT8O, 0, 0, 8, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT8O", FALSE, 0, 0x000000ff,FALSE), 53 HOWTO(R_68K_COPY, 0, 0, 0, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_COPY", FALSE, 0, 0xffffffff,FALSE), 54 HOWTO(R_68K_GLOB_DAT, 0, 2,32, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_GLOB_DAT", FALSE, 0, 0xffffffff,FALSE), 55 HOWTO(R_68K_JMP_SLOT, 0, 2,32, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_JMP_SLOT", FALSE, 0, 0xffffffff,FALSE), 56 HOWTO(R_68K_RELATIVE, 0, 2,32, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_RELATIVE", FALSE, 0, 0xffffffff,FALSE), 57 /* GNU extension to record C++ vtable hierarchy. */ 58 HOWTO (R_68K_GNU_VTINHERIT, /* type */ 59 0, /* rightshift */ 60 2, /* size (0 = byte, 1 = short, 2 = long) */ 61 0, /* bitsize */ 62 FALSE, /* pc_relative */ 63 0, /* bitpos */ 64 complain_overflow_dont, /* complain_on_overflow */ 65 NULL, /* special_function */ 66 "R_68K_GNU_VTINHERIT", /* name */ 67 FALSE, /* partial_inplace */ 68 0, /* src_mask */ 69 0, /* dst_mask */ 70 FALSE), 71 /* GNU extension to record C++ vtable member usage. */ 72 HOWTO (R_68K_GNU_VTENTRY, /* type */ 73 0, /* rightshift */ 74 2, /* size (0 = byte, 1 = short, 2 = long) */ 75 0, /* bitsize */ 76 FALSE, /* pc_relative */ 77 0, /* bitpos */ 78 complain_overflow_dont, /* complain_on_overflow */ 79 _bfd_elf_rel_vtable_reloc_fn, /* special_function */ 80 "R_68K_GNU_VTENTRY", /* name */ 81 FALSE, /* partial_inplace */ 82 0, /* src_mask */ 83 0, /* dst_mask */ 84 FALSE), 85 86 /* TLS general dynamic variable reference. */ 87 HOWTO (R_68K_TLS_GD32, /* type */ 88 0, /* rightshift */ 89 2, /* size (0 = byte, 1 = short, 2 = long) */ 90 32, /* bitsize */ 91 FALSE, /* pc_relative */ 92 0, /* bitpos */ 93 complain_overflow_bitfield, /* complain_on_overflow */ 94 bfd_elf_generic_reloc, /* special_function */ 95 "R_68K_TLS_GD32", /* name */ 96 FALSE, /* partial_inplace */ 97 0, /* src_mask */ 98 0xffffffff, /* dst_mask */ 99 FALSE), /* pcrel_offset */ 100 101 HOWTO (R_68K_TLS_GD16, /* type */ 102 0, /* rightshift */ 103 1, /* size (0 = byte, 1 = short, 2 = long) */ 104 16, /* bitsize */ 105 FALSE, /* pc_relative */ 106 0, /* bitpos */ 107 complain_overflow_signed, /* complain_on_overflow */ 108 bfd_elf_generic_reloc, /* special_function */ 109 "R_68K_TLS_GD16", /* name */ 110 FALSE, /* partial_inplace */ 111 0, /* src_mask */ 112 0x0000ffff, /* dst_mask */ 113 FALSE), /* pcrel_offset */ 114 115 HOWTO (R_68K_TLS_GD8, /* type */ 116 0, /* rightshift */ 117 0, /* size (0 = byte, 1 = short, 2 = long) */ 118 8, /* bitsize */ 119 FALSE, /* pc_relative */ 120 0, /* bitpos */ 121 complain_overflow_signed, /* complain_on_overflow */ 122 bfd_elf_generic_reloc, /* special_function */ 123 "R_68K_TLS_GD8", /* name */ 124 FALSE, /* partial_inplace */ 125 0, /* src_mask */ 126 0x000000ff, /* dst_mask */ 127 FALSE), /* pcrel_offset */ 128 129 /* TLS local dynamic variable reference. */ 130 HOWTO (R_68K_TLS_LDM32, /* type */ 131 0, /* rightshift */ 132 2, /* size (0 = byte, 1 = short, 2 = long) */ 133 32, /* bitsize */ 134 FALSE, /* pc_relative */ 135 0, /* bitpos */ 136 complain_overflow_bitfield, /* complain_on_overflow */ 137 bfd_elf_generic_reloc, /* special_function */ 138 "R_68K_TLS_LDM32", /* name */ 139 FALSE, /* partial_inplace */ 140 0, /* src_mask */ 141 0xffffffff, /* dst_mask */ 142 FALSE), /* pcrel_offset */ 143 144 HOWTO (R_68K_TLS_LDM16, /* type */ 145 0, /* rightshift */ 146 1, /* size (0 = byte, 1 = short, 2 = long) */ 147 16, /* bitsize */ 148 FALSE, /* pc_relative */ 149 0, /* bitpos */ 150 complain_overflow_signed, /* complain_on_overflow */ 151 bfd_elf_generic_reloc, /* special_function */ 152 "R_68K_TLS_LDM16", /* name */ 153 FALSE, /* partial_inplace */ 154 0, /* src_mask */ 155 0x0000ffff, /* dst_mask */ 156 FALSE), /* pcrel_offset */ 157 158 HOWTO (R_68K_TLS_LDM8, /* type */ 159 0, /* rightshift */ 160 0, /* size (0 = byte, 1 = short, 2 = long) */ 161 8, /* bitsize */ 162 FALSE, /* pc_relative */ 163 0, /* bitpos */ 164 complain_overflow_signed, /* complain_on_overflow */ 165 bfd_elf_generic_reloc, /* special_function */ 166 "R_68K_TLS_LDM8", /* name */ 167 FALSE, /* partial_inplace */ 168 0, /* src_mask */ 169 0x000000ff, /* dst_mask */ 170 FALSE), /* pcrel_offset */ 171 172 HOWTO (R_68K_TLS_LDO32, /* type */ 173 0, /* rightshift */ 174 2, /* size (0 = byte, 1 = short, 2 = long) */ 175 32, /* bitsize */ 176 FALSE, /* pc_relative */ 177 0, /* bitpos */ 178 complain_overflow_bitfield, /* complain_on_overflow */ 179 bfd_elf_generic_reloc, /* special_function */ 180 "R_68K_TLS_LDO32", /* name */ 181 FALSE, /* partial_inplace */ 182 0, /* src_mask */ 183 0xffffffff, /* dst_mask */ 184 FALSE), /* pcrel_offset */ 185 186 HOWTO (R_68K_TLS_LDO16, /* type */ 187 0, /* rightshift */ 188 1, /* size (0 = byte, 1 = short, 2 = long) */ 189 16, /* bitsize */ 190 FALSE, /* pc_relative */ 191 0, /* bitpos */ 192 complain_overflow_signed, /* complain_on_overflow */ 193 bfd_elf_generic_reloc, /* special_function */ 194 "R_68K_TLS_LDO16", /* name */ 195 FALSE, /* partial_inplace */ 196 0, /* src_mask */ 197 0x0000ffff, /* dst_mask */ 198 FALSE), /* pcrel_offset */ 199 200 HOWTO (R_68K_TLS_LDO8, /* type */ 201 0, /* rightshift */ 202 0, /* size (0 = byte, 1 = short, 2 = long) */ 203 8, /* bitsize */ 204 FALSE, /* pc_relative */ 205 0, /* bitpos */ 206 complain_overflow_signed, /* complain_on_overflow */ 207 bfd_elf_generic_reloc, /* special_function */ 208 "R_68K_TLS_LDO8", /* name */ 209 FALSE, /* partial_inplace */ 210 0, /* src_mask */ 211 0x000000ff, /* dst_mask */ 212 FALSE), /* pcrel_offset */ 213 214 /* TLS initial execution variable reference. */ 215 HOWTO (R_68K_TLS_IE32, /* type */ 216 0, /* rightshift */ 217 2, /* size (0 = byte, 1 = short, 2 = long) */ 218 32, /* bitsize */ 219 FALSE, /* pc_relative */ 220 0, /* bitpos */ 221 complain_overflow_bitfield, /* complain_on_overflow */ 222 bfd_elf_generic_reloc, /* special_function */ 223 "R_68K_TLS_IE32", /* name */ 224 FALSE, /* partial_inplace */ 225 0, /* src_mask */ 226 0xffffffff, /* dst_mask */ 227 FALSE), /* pcrel_offset */ 228 229 HOWTO (R_68K_TLS_IE16, /* type */ 230 0, /* rightshift */ 231 1, /* size (0 = byte, 1 = short, 2 = long) */ 232 16, /* bitsize */ 233 FALSE, /* pc_relative */ 234 0, /* bitpos */ 235 complain_overflow_signed, /* complain_on_overflow */ 236 bfd_elf_generic_reloc, /* special_function */ 237 "R_68K_TLS_IE16", /* name */ 238 FALSE, /* partial_inplace */ 239 0, /* src_mask */ 240 0x0000ffff, /* dst_mask */ 241 FALSE), /* pcrel_offset */ 242 243 HOWTO (R_68K_TLS_IE8, /* type */ 244 0, /* rightshift */ 245 0, /* size (0 = byte, 1 = short, 2 = long) */ 246 8, /* bitsize */ 247 FALSE, /* pc_relative */ 248 0, /* bitpos */ 249 complain_overflow_signed, /* complain_on_overflow */ 250 bfd_elf_generic_reloc, /* special_function */ 251 "R_68K_TLS_IE8", /* name */ 252 FALSE, /* partial_inplace */ 253 0, /* src_mask */ 254 0x000000ff, /* dst_mask */ 255 FALSE), /* pcrel_offset */ 256 257 /* TLS local execution variable reference. */ 258 HOWTO (R_68K_TLS_LE32, /* type */ 259 0, /* rightshift */ 260 2, /* size (0 = byte, 1 = short, 2 = long) */ 261 32, /* bitsize */ 262 FALSE, /* pc_relative */ 263 0, /* bitpos */ 264 complain_overflow_bitfield, /* complain_on_overflow */ 265 bfd_elf_generic_reloc, /* special_function */ 266 "R_68K_TLS_LE32", /* name */ 267 FALSE, /* partial_inplace */ 268 0, /* src_mask */ 269 0xffffffff, /* dst_mask */ 270 FALSE), /* pcrel_offset */ 271 272 HOWTO (R_68K_TLS_LE16, /* type */ 273 0, /* rightshift */ 274 1, /* size (0 = byte, 1 = short, 2 = long) */ 275 16, /* bitsize */ 276 FALSE, /* pc_relative */ 277 0, /* bitpos */ 278 complain_overflow_signed, /* complain_on_overflow */ 279 bfd_elf_generic_reloc, /* special_function */ 280 "R_68K_TLS_LE16", /* name */ 281 FALSE, /* partial_inplace */ 282 0, /* src_mask */ 283 0x0000ffff, /* dst_mask */ 284 FALSE), /* pcrel_offset */ 285 286 HOWTO (R_68K_TLS_LE8, /* type */ 287 0, /* rightshift */ 288 0, /* size (0 = byte, 1 = short, 2 = long) */ 289 8, /* bitsize */ 290 FALSE, /* pc_relative */ 291 0, /* bitpos */ 292 complain_overflow_signed, /* complain_on_overflow */ 293 bfd_elf_generic_reloc, /* special_function */ 294 "R_68K_TLS_LE8", /* name */ 295 FALSE, /* partial_inplace */ 296 0, /* src_mask */ 297 0x000000ff, /* dst_mask */ 298 FALSE), /* pcrel_offset */ 299 300 /* TLS GD/LD dynamic relocations. */ 301 HOWTO (R_68K_TLS_DTPMOD32, /* type */ 302 0, /* rightshift */ 303 2, /* size (0 = byte, 1 = short, 2 = long) */ 304 32, /* bitsize */ 305 FALSE, /* pc_relative */ 306 0, /* bitpos */ 307 complain_overflow_dont, /* complain_on_overflow */ 308 bfd_elf_generic_reloc, /* special_function */ 309 "R_68K_TLS_DTPMOD32", /* name */ 310 FALSE, /* partial_inplace */ 311 0, /* src_mask */ 312 0xffffffff, /* dst_mask */ 313 FALSE), /* pcrel_offset */ 314 315 HOWTO (R_68K_TLS_DTPREL32, /* type */ 316 0, /* rightshift */ 317 2, /* size (0 = byte, 1 = short, 2 = long) */ 318 32, /* bitsize */ 319 FALSE, /* pc_relative */ 320 0, /* bitpos */ 321 complain_overflow_dont, /* complain_on_overflow */ 322 bfd_elf_generic_reloc, /* special_function */ 323 "R_68K_TLS_DTPREL32", /* name */ 324 FALSE, /* partial_inplace */ 325 0, /* src_mask */ 326 0xffffffff, /* dst_mask */ 327 FALSE), /* pcrel_offset */ 328 329 HOWTO (R_68K_TLS_TPREL32, /* type */ 330 0, /* rightshift */ 331 2, /* size (0 = byte, 1 = short, 2 = long) */ 332 32, /* bitsize */ 333 FALSE, /* pc_relative */ 334 0, /* bitpos */ 335 complain_overflow_dont, /* complain_on_overflow */ 336 bfd_elf_generic_reloc, /* special_function */ 337 "R_68K_TLS_TPREL32", /* name */ 338 FALSE, /* partial_inplace */ 339 0, /* src_mask */ 340 0xffffffff, /* dst_mask */ 341 FALSE), /* pcrel_offset */ 342 }; 343 344 static bfd_boolean 345 rtype_to_howto (bfd *abfd, arelent *cache_ptr, Elf_Internal_Rela *dst) 346 { 347 unsigned int indx = ELF32_R_TYPE (dst->r_info); 348 349 if (indx >= (unsigned int) R_68K_max) 350 { 351 /* xgettext:c-format */ 352 _bfd_error_handler (_("%pB: unsupported relocation type %#x"), 353 abfd, indx); 354 bfd_set_error (bfd_error_bad_value); 355 return FALSE; 356 } 357 cache_ptr->howto = &howto_table[indx]; 358 return TRUE; 359 } 360 361 #define elf_info_to_howto rtype_to_howto 362 363 static const struct 364 { 365 bfd_reloc_code_real_type bfd_val; 366 int elf_val; 367 } 368 reloc_map[] = 369 { 370 { BFD_RELOC_NONE, R_68K_NONE }, 371 { BFD_RELOC_32, R_68K_32 }, 372 { BFD_RELOC_16, R_68K_16 }, 373 { BFD_RELOC_8, R_68K_8 }, 374 { BFD_RELOC_32_PCREL, R_68K_PC32 }, 375 { BFD_RELOC_16_PCREL, R_68K_PC16 }, 376 { BFD_RELOC_8_PCREL, R_68K_PC8 }, 377 { BFD_RELOC_32_GOT_PCREL, R_68K_GOT32 }, 378 { BFD_RELOC_16_GOT_PCREL, R_68K_GOT16 }, 379 { BFD_RELOC_8_GOT_PCREL, R_68K_GOT8 }, 380 { BFD_RELOC_32_GOTOFF, R_68K_GOT32O }, 381 { BFD_RELOC_16_GOTOFF, R_68K_GOT16O }, 382 { BFD_RELOC_8_GOTOFF, R_68K_GOT8O }, 383 { BFD_RELOC_32_PLT_PCREL, R_68K_PLT32 }, 384 { BFD_RELOC_16_PLT_PCREL, R_68K_PLT16 }, 385 { BFD_RELOC_8_PLT_PCREL, R_68K_PLT8 }, 386 { BFD_RELOC_32_PLTOFF, R_68K_PLT32O }, 387 { BFD_RELOC_16_PLTOFF, R_68K_PLT16O }, 388 { BFD_RELOC_8_PLTOFF, R_68K_PLT8O }, 389 { BFD_RELOC_NONE, R_68K_COPY }, 390 { BFD_RELOC_68K_GLOB_DAT, R_68K_GLOB_DAT }, 391 { BFD_RELOC_68K_JMP_SLOT, R_68K_JMP_SLOT }, 392 { BFD_RELOC_68K_RELATIVE, R_68K_RELATIVE }, 393 { BFD_RELOC_CTOR, R_68K_32 }, 394 { BFD_RELOC_VTABLE_INHERIT, R_68K_GNU_VTINHERIT }, 395 { BFD_RELOC_VTABLE_ENTRY, R_68K_GNU_VTENTRY }, 396 { BFD_RELOC_68K_TLS_GD32, R_68K_TLS_GD32 }, 397 { BFD_RELOC_68K_TLS_GD16, R_68K_TLS_GD16 }, 398 { BFD_RELOC_68K_TLS_GD8, R_68K_TLS_GD8 }, 399 { BFD_RELOC_68K_TLS_LDM32, R_68K_TLS_LDM32 }, 400 { BFD_RELOC_68K_TLS_LDM16, R_68K_TLS_LDM16 }, 401 { BFD_RELOC_68K_TLS_LDM8, R_68K_TLS_LDM8 }, 402 { BFD_RELOC_68K_TLS_LDO32, R_68K_TLS_LDO32 }, 403 { BFD_RELOC_68K_TLS_LDO16, R_68K_TLS_LDO16 }, 404 { BFD_RELOC_68K_TLS_LDO8, R_68K_TLS_LDO8 }, 405 { BFD_RELOC_68K_TLS_IE32, R_68K_TLS_IE32 }, 406 { BFD_RELOC_68K_TLS_IE16, R_68K_TLS_IE16 }, 407 { BFD_RELOC_68K_TLS_IE8, R_68K_TLS_IE8 }, 408 { BFD_RELOC_68K_TLS_LE32, R_68K_TLS_LE32 }, 409 { BFD_RELOC_68K_TLS_LE16, R_68K_TLS_LE16 }, 410 { BFD_RELOC_68K_TLS_LE8, R_68K_TLS_LE8 }, 411 }; 412 413 static reloc_howto_type * 414 reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED, 415 bfd_reloc_code_real_type code) 416 { 417 unsigned int i; 418 for (i = 0; i < sizeof (reloc_map) / sizeof (reloc_map[0]); i++) 419 { 420 if (reloc_map[i].bfd_val == code) 421 return &howto_table[reloc_map[i].elf_val]; 422 } 423 return 0; 424 } 425 426 static reloc_howto_type * 427 reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, const char *r_name) 428 { 429 unsigned int i; 430 431 for (i = 0; i < sizeof (howto_table) / sizeof (howto_table[0]); i++) 432 if (howto_table[i].name != NULL 433 && strcasecmp (howto_table[i].name, r_name) == 0) 434 return &howto_table[i]; 435 436 return NULL; 437 } 438 439 #define bfd_elf32_bfd_reloc_type_lookup reloc_type_lookup 440 #define bfd_elf32_bfd_reloc_name_lookup reloc_name_lookup 441 #define ELF_ARCH bfd_arch_m68k 442 #define ELF_TARGET_ID M68K_ELF_DATA 443 444 /* Functions for the m68k ELF linker. */ 445 446 /* The name of the dynamic interpreter. This is put in the .interp 447 section. */ 448 449 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1" 450 451 /* Describes one of the various PLT styles. */ 452 453 struct elf_m68k_plt_info 454 { 455 /* The size of each PLT entry. */ 456 bfd_vma size; 457 458 /* The template for the first PLT entry. */ 459 const bfd_byte *plt0_entry; 460 461 /* Offsets of fields in PLT0_ENTRY that require R_68K_PC32 relocations. 462 The comments by each member indicate the value that the relocation 463 is against. */ 464 struct { 465 unsigned int got4; /* .got + 4 */ 466 unsigned int got8; /* .got + 8 */ 467 } plt0_relocs; 468 469 /* The template for a symbol's PLT entry. */ 470 const bfd_byte *symbol_entry; 471 472 /* Offsets of fields in SYMBOL_ENTRY that require R_68K_PC32 relocations. 473 The comments by each member indicate the value that the relocation 474 is against. */ 475 struct { 476 unsigned int got; /* the symbol's .got.plt entry */ 477 unsigned int plt; /* .plt */ 478 } symbol_relocs; 479 480 /* The offset of the resolver stub from the start of SYMBOL_ENTRY. 481 The stub starts with "move.l #relocoffset,%d0". */ 482 bfd_vma symbol_resolve_entry; 483 }; 484 485 /* The size in bytes of an entry in the procedure linkage table. */ 486 487 #define PLT_ENTRY_SIZE 20 488 489 /* The first entry in a procedure linkage table looks like this. See 490 the SVR4 ABI m68k supplement to see how this works. */ 491 492 static const bfd_byte elf_m68k_plt0_entry[PLT_ENTRY_SIZE] = 493 { 494 0x2f, 0x3b, 0x01, 0x70, /* move.l (%pc,addr),-(%sp) */ 495 0, 0, 0, 2, /* + (.got + 4) - . */ 496 0x4e, 0xfb, 0x01, 0x71, /* jmp ([%pc,addr]) */ 497 0, 0, 0, 2, /* + (.got + 8) - . */ 498 0, 0, 0, 0 /* pad out to 20 bytes. */ 499 }; 500 501 /* Subsequent entries in a procedure linkage table look like this. */ 502 503 static const bfd_byte elf_m68k_plt_entry[PLT_ENTRY_SIZE] = 504 { 505 0x4e, 0xfb, 0x01, 0x71, /* jmp ([%pc,symbol@GOTPC]) */ 506 0, 0, 0, 2, /* + (.got.plt entry) - . */ 507 0x2f, 0x3c, /* move.l #offset,-(%sp) */ 508 0, 0, 0, 0, /* + reloc index */ 509 0x60, 0xff, /* bra.l .plt */ 510 0, 0, 0, 0 /* + .plt - . */ 511 }; 512 513 static const struct elf_m68k_plt_info elf_m68k_plt_info = 514 { 515 PLT_ENTRY_SIZE, 516 elf_m68k_plt0_entry, { 4, 12 }, 517 elf_m68k_plt_entry, { 4, 16 }, 8 518 }; 519 520 #define ISAB_PLT_ENTRY_SIZE 24 521 522 static const bfd_byte elf_isab_plt0_entry[ISAB_PLT_ENTRY_SIZE] = 523 { 524 0x20, 0x3c, /* move.l #offset,%d0 */ 525 0, 0, 0, 0, /* + (.got + 4) - . */ 526 0x2f, 0x3b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l),-(%sp) */ 527 0x20, 0x3c, /* move.l #offset,%d0 */ 528 0, 0, 0, 0, /* + (.got + 8) - . */ 529 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */ 530 0x4e, 0xd0, /* jmp (%a0) */ 531 0x4e, 0x71 /* nop */ 532 }; 533 534 /* Subsequent entries in a procedure linkage table look like this. */ 535 536 static const bfd_byte elf_isab_plt_entry[ISAB_PLT_ENTRY_SIZE] = 537 { 538 0x20, 0x3c, /* move.l #offset,%d0 */ 539 0, 0, 0, 0, /* + (.got.plt entry) - . */ 540 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */ 541 0x4e, 0xd0, /* jmp (%a0) */ 542 0x2f, 0x3c, /* move.l #offset,-(%sp) */ 543 0, 0, 0, 0, /* + reloc index */ 544 0x60, 0xff, /* bra.l .plt */ 545 0, 0, 0, 0 /* + .plt - . */ 546 }; 547 548 static const struct elf_m68k_plt_info elf_isab_plt_info = 549 { 550 ISAB_PLT_ENTRY_SIZE, 551 elf_isab_plt0_entry, { 2, 12 }, 552 elf_isab_plt_entry, { 2, 20 }, 12 553 }; 554 555 #define ISAC_PLT_ENTRY_SIZE 24 556 557 static const bfd_byte elf_isac_plt0_entry[ISAC_PLT_ENTRY_SIZE] = 558 { 559 0x20, 0x3c, /* move.l #offset,%d0 */ 560 0, 0, 0, 0, /* replaced with .got + 4 - . */ 561 0x2e, 0xbb, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l),(%sp) */ 562 0x20, 0x3c, /* move.l #offset,%d0 */ 563 0, 0, 0, 0, /* replaced with .got + 8 - . */ 564 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */ 565 0x4e, 0xd0, /* jmp (%a0) */ 566 0x4e, 0x71 /* nop */ 567 }; 568 569 /* Subsequent entries in a procedure linkage table look like this. */ 570 571 static const bfd_byte elf_isac_plt_entry[ISAC_PLT_ENTRY_SIZE] = 572 { 573 0x20, 0x3c, /* move.l #offset,%d0 */ 574 0, 0, 0, 0, /* replaced with (.got entry) - . */ 575 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */ 576 0x4e, 0xd0, /* jmp (%a0) */ 577 0x2f, 0x3c, /* move.l #offset,-(%sp) */ 578 0, 0, 0, 0, /* replaced with offset into relocation table */ 579 0x61, 0xff, /* bsr.l .plt */ 580 0, 0, 0, 0 /* replaced with .plt - . */ 581 }; 582 583 static const struct elf_m68k_plt_info elf_isac_plt_info = 584 { 585 ISAC_PLT_ENTRY_SIZE, 586 elf_isac_plt0_entry, { 2, 12}, 587 elf_isac_plt_entry, { 2, 20 }, 12 588 }; 589 590 #define CPU32_PLT_ENTRY_SIZE 24 591 /* Procedure linkage table entries for the cpu32 */ 592 static const bfd_byte elf_cpu32_plt0_entry[CPU32_PLT_ENTRY_SIZE] = 593 { 594 0x2f, 0x3b, 0x01, 0x70, /* move.l (%pc,addr),-(%sp) */ 595 0, 0, 0, 2, /* + (.got + 4) - . */ 596 0x22, 0x7b, 0x01, 0x70, /* moveal %pc@(0xc), %a1 */ 597 0, 0, 0, 2, /* + (.got + 8) - . */ 598 0x4e, 0xd1, /* jmp %a1@ */ 599 0, 0, 0, 0, /* pad out to 24 bytes. */ 600 0, 0 601 }; 602 603 static const bfd_byte elf_cpu32_plt_entry[CPU32_PLT_ENTRY_SIZE] = 604 { 605 0x22, 0x7b, 0x01, 0x70, /* moveal %pc@(0xc), %a1 */ 606 0, 0, 0, 2, /* + (.got.plt entry) - . */ 607 0x4e, 0xd1, /* jmp %a1@ */ 608 0x2f, 0x3c, /* move.l #offset,-(%sp) */ 609 0, 0, 0, 0, /* + reloc index */ 610 0x60, 0xff, /* bra.l .plt */ 611 0, 0, 0, 0, /* + .plt - . */ 612 0, 0 613 }; 614 615 static const struct elf_m68k_plt_info elf_cpu32_plt_info = 616 { 617 CPU32_PLT_ENTRY_SIZE, 618 elf_cpu32_plt0_entry, { 4, 12 }, 619 elf_cpu32_plt_entry, { 4, 18 }, 10 620 }; 621 622 /* The m68k linker needs to keep track of the number of relocs that it 623 decides to copy in check_relocs for each symbol. This is so that it 624 can discard PC relative relocs if it doesn't need them when linking 625 with -Bsymbolic. We store the information in a field extending the 626 regular ELF linker hash table. */ 627 628 /* This structure keeps track of the number of PC relative relocs we have 629 copied for a given symbol. */ 630 631 struct elf_m68k_pcrel_relocs_copied 632 { 633 /* Next section. */ 634 struct elf_m68k_pcrel_relocs_copied *next; 635 /* A section in dynobj. */ 636 asection *section; 637 /* Number of relocs copied in this section. */ 638 bfd_size_type count; 639 }; 640 641 /* Forward declaration. */ 642 struct elf_m68k_got_entry; 643 644 /* m68k ELF linker hash entry. */ 645 646 struct elf_m68k_link_hash_entry 647 { 648 struct elf_link_hash_entry root; 649 650 /* Number of PC relative relocs copied for this symbol. */ 651 struct elf_m68k_pcrel_relocs_copied *pcrel_relocs_copied; 652 653 /* Key to got_entries. */ 654 unsigned long got_entry_key; 655 656 /* List of GOT entries for this symbol. This list is build during 657 offset finalization and is used within elf_m68k_finish_dynamic_symbol 658 to traverse all GOT entries for a particular symbol. 659 660 ??? We could've used root.got.glist field instead, but having 661 a separate field is cleaner. */ 662 struct elf_m68k_got_entry *glist; 663 }; 664 665 #define elf_m68k_hash_entry(ent) ((struct elf_m68k_link_hash_entry *) (ent)) 666 667 /* Key part of GOT entry in hashtable. */ 668 struct elf_m68k_got_entry_key 669 { 670 /* BFD in which this symbol was defined. NULL for global symbols. */ 671 const bfd *bfd; 672 673 /* Symbol index. Either local symbol index or h->got_entry_key. */ 674 unsigned long symndx; 675 676 /* Type is one of R_68K_GOT{8, 16, 32}O, R_68K_TLS_GD{8, 16, 32}, 677 R_68K_TLS_LDM{8, 16, 32} or R_68K_TLS_IE{8, 16, 32}. 678 679 From perspective of hashtable key, only elf_m68k_got_reloc_type (type) 680 matters. That is, we distinguish between, say, R_68K_GOT16O 681 and R_68K_GOT32O when allocating offsets, but they are considered to be 682 the same when searching got->entries. */ 683 enum elf_m68k_reloc_type type; 684 }; 685 686 /* Size of the GOT offset suitable for relocation. */ 687 enum elf_m68k_got_offset_size { R_8, R_16, R_32, R_LAST }; 688 689 /* Entry of the GOT. */ 690 struct elf_m68k_got_entry 691 { 692 /* GOT entries are put into a got->entries hashtable. This is the key. */ 693 struct elf_m68k_got_entry_key key_; 694 695 /* GOT entry data. We need s1 before offset finalization and s2 after. */ 696 union 697 { 698 struct 699 { 700 /* Number of times this entry is referenced. */ 701 bfd_vma refcount; 702 } s1; 703 704 struct 705 { 706 /* Offset from the start of .got section. To calculate offset relative 707 to GOT pointer one should subtract got->offset from this value. */ 708 bfd_vma offset; 709 710 /* Pointer to the next GOT entry for this global symbol. 711 Symbols have at most one entry in one GOT, but might 712 have entries in more than one GOT. 713 Root of this list is h->glist. 714 NULL for local symbols. */ 715 struct elf_m68k_got_entry *next; 716 } s2; 717 } u; 718 }; 719 720 /* Return representative type for relocation R_TYPE. 721 This is used to avoid enumerating many relocations in comparisons, 722 switches etc. */ 723 724 static enum elf_m68k_reloc_type 725 elf_m68k_reloc_got_type (enum elf_m68k_reloc_type r_type) 726 { 727 switch (r_type) 728 { 729 /* In most cases R_68K_GOTx relocations require the very same 730 handling as R_68K_GOT32O relocation. In cases when we need 731 to distinguish between the two, we use explicitly compare against 732 r_type. */ 733 case R_68K_GOT32: 734 case R_68K_GOT16: 735 case R_68K_GOT8: 736 case R_68K_GOT32O: 737 case R_68K_GOT16O: 738 case R_68K_GOT8O: 739 return R_68K_GOT32O; 740 741 case R_68K_TLS_GD32: 742 case R_68K_TLS_GD16: 743 case R_68K_TLS_GD8: 744 return R_68K_TLS_GD32; 745 746 case R_68K_TLS_LDM32: 747 case R_68K_TLS_LDM16: 748 case R_68K_TLS_LDM8: 749 return R_68K_TLS_LDM32; 750 751 case R_68K_TLS_IE32: 752 case R_68K_TLS_IE16: 753 case R_68K_TLS_IE8: 754 return R_68K_TLS_IE32; 755 756 default: 757 BFD_ASSERT (FALSE); 758 return 0; 759 } 760 } 761 762 /* Return size of the GOT entry offset for relocation R_TYPE. */ 763 764 static enum elf_m68k_got_offset_size 765 elf_m68k_reloc_got_offset_size (enum elf_m68k_reloc_type r_type) 766 { 767 switch (r_type) 768 { 769 case R_68K_GOT32: case R_68K_GOT16: case R_68K_GOT8: 770 case R_68K_GOT32O: case R_68K_TLS_GD32: case R_68K_TLS_LDM32: 771 case R_68K_TLS_IE32: 772 return R_32; 773 774 case R_68K_GOT16O: case R_68K_TLS_GD16: case R_68K_TLS_LDM16: 775 case R_68K_TLS_IE16: 776 return R_16; 777 778 case R_68K_GOT8O: case R_68K_TLS_GD8: case R_68K_TLS_LDM8: 779 case R_68K_TLS_IE8: 780 return R_8; 781 782 default: 783 BFD_ASSERT (FALSE); 784 return 0; 785 } 786 } 787 788 /* Return number of GOT entries we need to allocate in GOT for 789 relocation R_TYPE. */ 790 791 static bfd_vma 792 elf_m68k_reloc_got_n_slots (enum elf_m68k_reloc_type r_type) 793 { 794 switch (elf_m68k_reloc_got_type (r_type)) 795 { 796 case R_68K_GOT32O: 797 case R_68K_TLS_IE32: 798 return 1; 799 800 case R_68K_TLS_GD32: 801 case R_68K_TLS_LDM32: 802 return 2; 803 804 default: 805 BFD_ASSERT (FALSE); 806 return 0; 807 } 808 } 809 810 /* Return TRUE if relocation R_TYPE is a TLS one. */ 811 812 static bfd_boolean 813 elf_m68k_reloc_tls_p (enum elf_m68k_reloc_type r_type) 814 { 815 switch (r_type) 816 { 817 case R_68K_TLS_GD32: case R_68K_TLS_GD16: case R_68K_TLS_GD8: 818 case R_68K_TLS_LDM32: case R_68K_TLS_LDM16: case R_68K_TLS_LDM8: 819 case R_68K_TLS_LDO32: case R_68K_TLS_LDO16: case R_68K_TLS_LDO8: 820 case R_68K_TLS_IE32: case R_68K_TLS_IE16: case R_68K_TLS_IE8: 821 case R_68K_TLS_LE32: case R_68K_TLS_LE16: case R_68K_TLS_LE8: 822 case R_68K_TLS_DTPMOD32: case R_68K_TLS_DTPREL32: case R_68K_TLS_TPREL32: 823 return TRUE; 824 825 default: 826 return FALSE; 827 } 828 } 829 830 /* Data structure representing a single GOT. */ 831 struct elf_m68k_got 832 { 833 /* Hashtable of 'struct elf_m68k_got_entry's. 834 Starting size of this table is the maximum number of 835 R_68K_GOT8O entries. */ 836 htab_t entries; 837 838 /* Number of R_x slots in this GOT. Some (e.g., TLS) entries require 839 several GOT slots. 840 841 n_slots[R_8] is the count of R_8 slots in this GOT. 842 n_slots[R_16] is the cumulative count of R_8 and R_16 slots 843 in this GOT. 844 n_slots[R_32] is the cumulative count of R_8, R_16 and R_32 slots 845 in this GOT. This is the total number of slots. */ 846 bfd_vma n_slots[R_LAST]; 847 848 /* Number of local (entry->key_.h == NULL) slots in this GOT. 849 This is only used to properly calculate size of .rela.got section; 850 see elf_m68k_partition_multi_got. */ 851 bfd_vma local_n_slots; 852 853 /* Offset of this GOT relative to beginning of .got section. */ 854 bfd_vma offset; 855 }; 856 857 /* BFD and its GOT. This is an entry in multi_got->bfd2got hashtable. */ 858 struct elf_m68k_bfd2got_entry 859 { 860 /* BFD. */ 861 const bfd *bfd; 862 863 /* Assigned GOT. Before partitioning multi-GOT each BFD has its own 864 GOT structure. After partitioning several BFD's might [and often do] 865 share a single GOT. */ 866 struct elf_m68k_got *got; 867 }; 868 869 /* The main data structure holding all the pieces. */ 870 struct elf_m68k_multi_got 871 { 872 /* Hashtable mapping each BFD to its GOT. If a BFD doesn't have an entry 873 here, then it doesn't need a GOT (this includes the case of a BFD 874 having an empty GOT). 875 876 ??? This hashtable can be replaced by an array indexed by bfd->id. */ 877 htab_t bfd2got; 878 879 /* Next symndx to assign a global symbol. 880 h->got_entry_key is initialized from this counter. */ 881 unsigned long global_symndx; 882 }; 883 884 /* m68k ELF linker hash table. */ 885 886 struct elf_m68k_link_hash_table 887 { 888 struct elf_link_hash_table root; 889 890 /* Small local sym cache. */ 891 struct sym_cache sym_cache; 892 893 /* The PLT format used by this link, or NULL if the format has not 894 yet been chosen. */ 895 const struct elf_m68k_plt_info *plt_info; 896 897 /* True, if GP is loaded within each function which uses it. 898 Set to TRUE when GOT negative offsets or multi-GOT is enabled. */ 899 bfd_boolean local_gp_p; 900 901 /* Switch controlling use of negative offsets to double the size of GOTs. */ 902 bfd_boolean use_neg_got_offsets_p; 903 904 /* Switch controlling generation of multiple GOTs. */ 905 bfd_boolean allow_multigot_p; 906 907 /* Multi-GOT data structure. */ 908 struct elf_m68k_multi_got multi_got_; 909 }; 910 911 /* Get the m68k ELF linker hash table from a link_info structure. */ 912 913 #define elf_m68k_hash_table(p) \ 914 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \ 915 == M68K_ELF_DATA ? ((struct elf_m68k_link_hash_table *) ((p)->hash)) : NULL) 916 917 /* Shortcut to multi-GOT data. */ 918 #define elf_m68k_multi_got(INFO) (&elf_m68k_hash_table (INFO)->multi_got_) 919 920 /* Create an entry in an m68k ELF linker hash table. */ 921 922 static struct bfd_hash_entry * 923 elf_m68k_link_hash_newfunc (struct bfd_hash_entry *entry, 924 struct bfd_hash_table *table, 925 const char *string) 926 { 927 struct bfd_hash_entry *ret = entry; 928 929 /* Allocate the structure if it has not already been allocated by a 930 subclass. */ 931 if (ret == NULL) 932 ret = bfd_hash_allocate (table, 933 sizeof (struct elf_m68k_link_hash_entry)); 934 if (ret == NULL) 935 return ret; 936 937 /* Call the allocation method of the superclass. */ 938 ret = _bfd_elf_link_hash_newfunc (ret, table, string); 939 if (ret != NULL) 940 { 941 elf_m68k_hash_entry (ret)->pcrel_relocs_copied = NULL; 942 elf_m68k_hash_entry (ret)->got_entry_key = 0; 943 elf_m68k_hash_entry (ret)->glist = NULL; 944 } 945 946 return ret; 947 } 948 949 /* Destroy an m68k ELF linker hash table. */ 950 951 static void 952 elf_m68k_link_hash_table_free (bfd *obfd) 953 { 954 struct elf_m68k_link_hash_table *htab; 955 956 htab = (struct elf_m68k_link_hash_table *) obfd->link.hash; 957 958 if (htab->multi_got_.bfd2got != NULL) 959 { 960 htab_delete (htab->multi_got_.bfd2got); 961 htab->multi_got_.bfd2got = NULL; 962 } 963 _bfd_elf_link_hash_table_free (obfd); 964 } 965 966 /* Create an m68k ELF linker hash table. */ 967 968 static struct bfd_link_hash_table * 969 elf_m68k_link_hash_table_create (bfd *abfd) 970 { 971 struct elf_m68k_link_hash_table *ret; 972 bfd_size_type amt = sizeof (struct elf_m68k_link_hash_table); 973 974 ret = (struct elf_m68k_link_hash_table *) bfd_zmalloc (amt); 975 if (ret == (struct elf_m68k_link_hash_table *) NULL) 976 return NULL; 977 978 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd, 979 elf_m68k_link_hash_newfunc, 980 sizeof (struct elf_m68k_link_hash_entry), 981 M68K_ELF_DATA)) 982 { 983 free (ret); 984 return NULL; 985 } 986 ret->root.root.hash_table_free = elf_m68k_link_hash_table_free; 987 988 ret->multi_got_.global_symndx = 1; 989 990 return &ret->root.root; 991 } 992 993 /* Set the right machine number. */ 994 995 static bfd_boolean 996 elf32_m68k_object_p (bfd *abfd) 997 { 998 unsigned int mach = 0; 999 unsigned features = 0; 1000 flagword eflags = elf_elfheader (abfd)->e_flags; 1001 1002 if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_M68000) 1003 features |= m68000; 1004 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32) 1005 features |= cpu32; 1006 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO) 1007 features |= fido_a; 1008 else 1009 { 1010 switch (eflags & EF_M68K_CF_ISA_MASK) 1011 { 1012 case EF_M68K_CF_ISA_A_NODIV: 1013 features |= mcfisa_a; 1014 break; 1015 case EF_M68K_CF_ISA_A: 1016 features |= mcfisa_a|mcfhwdiv; 1017 break; 1018 case EF_M68K_CF_ISA_A_PLUS: 1019 features |= mcfisa_a|mcfisa_aa|mcfhwdiv|mcfusp; 1020 break; 1021 case EF_M68K_CF_ISA_B_NOUSP: 1022 features |= mcfisa_a|mcfisa_b|mcfhwdiv; 1023 break; 1024 case EF_M68K_CF_ISA_B: 1025 features |= mcfisa_a|mcfisa_b|mcfhwdiv|mcfusp; 1026 break; 1027 case EF_M68K_CF_ISA_C: 1028 features |= mcfisa_a|mcfisa_c|mcfhwdiv|mcfusp; 1029 break; 1030 case EF_M68K_CF_ISA_C_NODIV: 1031 features |= mcfisa_a|mcfisa_c|mcfusp; 1032 break; 1033 } 1034 switch (eflags & EF_M68K_CF_MAC_MASK) 1035 { 1036 case EF_M68K_CF_MAC: 1037 features |= mcfmac; 1038 break; 1039 case EF_M68K_CF_EMAC: 1040 features |= mcfemac; 1041 break; 1042 } 1043 if (eflags & EF_M68K_CF_FLOAT) 1044 features |= cfloat; 1045 } 1046 1047 mach = bfd_m68k_features_to_mach (features); 1048 bfd_default_set_arch_mach (abfd, bfd_arch_m68k, mach); 1049 1050 return TRUE; 1051 } 1052 1053 /* Somewhat reverse of elf32_m68k_object_p, this sets the e_flag 1054 field based on the machine number. */ 1055 1056 static void 1057 elf_m68k_final_write_processing (bfd *abfd, 1058 bfd_boolean linker ATTRIBUTE_UNUSED) 1059 { 1060 int mach = bfd_get_mach (abfd); 1061 unsigned long e_flags = elf_elfheader (abfd)->e_flags; 1062 1063 if (!e_flags) 1064 { 1065 unsigned int arch_mask; 1066 1067 arch_mask = bfd_m68k_mach_to_features (mach); 1068 1069 if (arch_mask & m68000) 1070 e_flags = EF_M68K_M68000; 1071 else if (arch_mask & cpu32) 1072 e_flags = EF_M68K_CPU32; 1073 else if (arch_mask & fido_a) 1074 e_flags = EF_M68K_FIDO; 1075 else 1076 { 1077 switch (arch_mask 1078 & (mcfisa_a | mcfisa_aa | mcfisa_b | mcfisa_c | mcfhwdiv | mcfusp)) 1079 { 1080 case mcfisa_a: 1081 e_flags |= EF_M68K_CF_ISA_A_NODIV; 1082 break; 1083 case mcfisa_a | mcfhwdiv: 1084 e_flags |= EF_M68K_CF_ISA_A; 1085 break; 1086 case mcfisa_a | mcfisa_aa | mcfhwdiv | mcfusp: 1087 e_flags |= EF_M68K_CF_ISA_A_PLUS; 1088 break; 1089 case mcfisa_a | mcfisa_b | mcfhwdiv: 1090 e_flags |= EF_M68K_CF_ISA_B_NOUSP; 1091 break; 1092 case mcfisa_a | mcfisa_b | mcfhwdiv | mcfusp: 1093 e_flags |= EF_M68K_CF_ISA_B; 1094 break; 1095 case mcfisa_a | mcfisa_c | mcfhwdiv | mcfusp: 1096 e_flags |= EF_M68K_CF_ISA_C; 1097 break; 1098 case mcfisa_a | mcfisa_c | mcfusp: 1099 e_flags |= EF_M68K_CF_ISA_C_NODIV; 1100 break; 1101 } 1102 if (arch_mask & mcfmac) 1103 e_flags |= EF_M68K_CF_MAC; 1104 else if (arch_mask & mcfemac) 1105 e_flags |= EF_M68K_CF_EMAC; 1106 if (arch_mask & cfloat) 1107 e_flags |= EF_M68K_CF_FLOAT | EF_M68K_CFV4E; 1108 } 1109 elf_elfheader (abfd)->e_flags = e_flags; 1110 } 1111 } 1112 1113 /* Keep m68k-specific flags in the ELF header. */ 1114 1115 static bfd_boolean 1116 elf32_m68k_set_private_flags (bfd *abfd, flagword flags) 1117 { 1118 elf_elfheader (abfd)->e_flags = flags; 1119 elf_flags_init (abfd) = TRUE; 1120 return TRUE; 1121 } 1122 1123 /* Merge backend specific data from an object file to the output 1124 object file when linking. */ 1125 static bfd_boolean 1126 elf32_m68k_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info) 1127 { 1128 bfd *obfd = info->output_bfd; 1129 flagword out_flags; 1130 flagword in_flags; 1131 flagword out_isa; 1132 flagword in_isa; 1133 const bfd_arch_info_type *arch_info; 1134 1135 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour 1136 || bfd_get_flavour (obfd) != bfd_target_elf_flavour) 1137 return FALSE; 1138 1139 /* Get the merged machine. This checks for incompatibility between 1140 Coldfire & non-Coldfire flags, incompability between different 1141 Coldfire ISAs, and incompability between different MAC types. */ 1142 arch_info = bfd_arch_get_compatible (ibfd, obfd, FALSE); 1143 if (!arch_info) 1144 return FALSE; 1145 1146 bfd_set_arch_mach (obfd, bfd_arch_m68k, arch_info->mach); 1147 1148 in_flags = elf_elfheader (ibfd)->e_flags; 1149 if (!elf_flags_init (obfd)) 1150 { 1151 elf_flags_init (obfd) = TRUE; 1152 out_flags = in_flags; 1153 } 1154 else 1155 { 1156 out_flags = elf_elfheader (obfd)->e_flags; 1157 unsigned int variant_mask; 1158 1159 if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_M68000) 1160 variant_mask = 0; 1161 else if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32) 1162 variant_mask = 0; 1163 else if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO) 1164 variant_mask = 0; 1165 else 1166 variant_mask = EF_M68K_CF_ISA_MASK; 1167 1168 in_isa = (in_flags & variant_mask); 1169 out_isa = (out_flags & variant_mask); 1170 if (in_isa > out_isa) 1171 out_flags ^= in_isa ^ out_isa; 1172 if (((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32 1173 && (out_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO) 1174 || ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO 1175 && (out_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)) 1176 out_flags = EF_M68K_FIDO; 1177 else 1178 out_flags |= in_flags ^ in_isa; 1179 } 1180 elf_elfheader (obfd)->e_flags = out_flags; 1181 1182 return TRUE; 1183 } 1184 1185 /* Display the flags field. */ 1186 1187 static bfd_boolean 1188 elf32_m68k_print_private_bfd_data (bfd *abfd, void * ptr) 1189 { 1190 FILE *file = (FILE *) ptr; 1191 flagword eflags = elf_elfheader (abfd)->e_flags; 1192 1193 BFD_ASSERT (abfd != NULL && ptr != NULL); 1194 1195 /* Print normal ELF private data. */ 1196 _bfd_elf_print_private_bfd_data (abfd, ptr); 1197 1198 /* Ignore init flag - it may not be set, despite the flags field containing valid data. */ 1199 1200 /* xgettext:c-format */ 1201 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags); 1202 1203 if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_M68000) 1204 fprintf (file, " [m68000]"); 1205 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32) 1206 fprintf (file, " [cpu32]"); 1207 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO) 1208 fprintf (file, " [fido]"); 1209 else 1210 { 1211 if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CFV4E) 1212 fprintf (file, " [cfv4e]"); 1213 1214 if (eflags & EF_M68K_CF_ISA_MASK) 1215 { 1216 char const *isa = _("unknown"); 1217 char const *mac = _("unknown"); 1218 char const *additional = ""; 1219 1220 switch (eflags & EF_M68K_CF_ISA_MASK) 1221 { 1222 case EF_M68K_CF_ISA_A_NODIV: 1223 isa = "A"; 1224 additional = " [nodiv]"; 1225 break; 1226 case EF_M68K_CF_ISA_A: 1227 isa = "A"; 1228 break; 1229 case EF_M68K_CF_ISA_A_PLUS: 1230 isa = "A+"; 1231 break; 1232 case EF_M68K_CF_ISA_B_NOUSP: 1233 isa = "B"; 1234 additional = " [nousp]"; 1235 break; 1236 case EF_M68K_CF_ISA_B: 1237 isa = "B"; 1238 break; 1239 case EF_M68K_CF_ISA_C: 1240 isa = "C"; 1241 break; 1242 case EF_M68K_CF_ISA_C_NODIV: 1243 isa = "C"; 1244 additional = " [nodiv]"; 1245 break; 1246 } 1247 fprintf (file, " [isa %s]%s", isa, additional); 1248 1249 if (eflags & EF_M68K_CF_FLOAT) 1250 fprintf (file, " [float]"); 1251 1252 switch (eflags & EF_M68K_CF_MAC_MASK) 1253 { 1254 case 0: 1255 mac = NULL; 1256 break; 1257 case EF_M68K_CF_MAC: 1258 mac = "mac"; 1259 break; 1260 case EF_M68K_CF_EMAC: 1261 mac = "emac"; 1262 break; 1263 case EF_M68K_CF_EMAC_B: 1264 mac = "emac_b"; 1265 break; 1266 } 1267 if (mac) 1268 fprintf (file, " [%s]", mac); 1269 } 1270 } 1271 1272 fputc ('\n', file); 1273 1274 return TRUE; 1275 } 1276 1277 /* Multi-GOT support implementation design: 1278 1279 Multi-GOT starts in check_relocs hook. There we scan all 1280 relocations of a BFD and build a local GOT (struct elf_m68k_got) 1281 for it. If a single BFD appears to require too many GOT slots with 1282 R_68K_GOT8O or R_68K_GOT16O relocations, we fail with notification 1283 to user. 1284 After check_relocs has been invoked for each input BFD, we have 1285 constructed a GOT for each input BFD. 1286 1287 To minimize total number of GOTs required for a particular output BFD 1288 (as some environments support only 1 GOT per output object) we try 1289 to merge some of the GOTs to share an offset space. Ideally [and in most 1290 cases] we end up with a single GOT. In cases when there are too many 1291 restricted relocations (e.g., R_68K_GOT16O relocations) we end up with 1292 several GOTs, assuming the environment can handle them. 1293 1294 Partitioning is done in elf_m68k_partition_multi_got. We start with 1295 an empty GOT and traverse bfd2got hashtable putting got_entries from 1296 local GOTs to the new 'big' one. We do that by constructing an 1297 intermediate GOT holding all the entries the local GOT has and the big 1298 GOT lacks. Then we check if there is room in the big GOT to accomodate 1299 all the entries from diff. On success we add those entries to the big 1300 GOT; on failure we start the new 'big' GOT and retry the adding of 1301 entries from the local GOT. Note that this retry will always succeed as 1302 each local GOT doesn't overflow the limits. After partitioning we 1303 end up with each bfd assigned one of the big GOTs. GOT entries in the 1304 big GOTs are initialized with GOT offsets. Note that big GOTs are 1305 positioned consequently in program space and represent a single huge GOT 1306 to the outside world. 1307 1308 After that we get to elf_m68k_relocate_section. There we 1309 adjust relocations of GOT pointer (_GLOBAL_OFFSET_TABLE_) and symbol 1310 relocations to refer to appropriate [assigned to current input_bfd] 1311 big GOT. 1312 1313 Notes: 1314 1315 GOT entry type: We have several types of GOT entries. 1316 * R_8 type is used in entries for symbols that have at least one 1317 R_68K_GOT8O or R_68K_TLS_*8 relocation. We can have at most 0x40 1318 such entries in one GOT. 1319 * R_16 type is used in entries for symbols that have at least one 1320 R_68K_GOT16O or R_68K_TLS_*16 relocation and no R_8 relocations. 1321 We can have at most 0x4000 such entries in one GOT. 1322 * R_32 type is used in all other cases. We can have as many 1323 such entries in one GOT as we'd like. 1324 When counting relocations we have to include the count of the smaller 1325 ranged relocations in the counts of the larger ranged ones in order 1326 to correctly detect overflow. 1327 1328 Sorting the GOT: In each GOT starting offsets are assigned to 1329 R_8 entries, which are followed by R_16 entries, and 1330 R_32 entries go at the end. See finalize_got_offsets for details. 1331 1332 Negative GOT offsets: To double usable offset range of GOTs we use 1333 negative offsets. As we assign entries with GOT offsets relative to 1334 start of .got section, the offset values are positive. They become 1335 negative only in relocate_section where got->offset value is 1336 subtracted from them. 1337 1338 3 special GOT entries: There are 3 special GOT entries used internally 1339 by loader. These entries happen to be placed to .got.plt section, 1340 so we don't do anything about them in multi-GOT support. 1341 1342 Memory management: All data except for hashtables 1343 multi_got->bfd2got and got->entries are allocated on 1344 elf_hash_table (info)->dynobj bfd (for this reason we pass 'info' 1345 to most functions), so we don't need to care to free them. At the 1346 moment of allocation hashtables are being linked into main data 1347 structure (multi_got), all pieces of which are reachable from 1348 elf_m68k_multi_got (info). We deallocate them in 1349 elf_m68k_link_hash_table_free. */ 1350 1351 /* Initialize GOT. */ 1352 1353 static void 1354 elf_m68k_init_got (struct elf_m68k_got *got) 1355 { 1356 got->entries = NULL; 1357 got->n_slots[R_8] = 0; 1358 got->n_slots[R_16] = 0; 1359 got->n_slots[R_32] = 0; 1360 got->local_n_slots = 0; 1361 got->offset = (bfd_vma) -1; 1362 } 1363 1364 /* Destruct GOT. */ 1365 1366 static void 1367 elf_m68k_clear_got (struct elf_m68k_got *got) 1368 { 1369 if (got->entries != NULL) 1370 { 1371 htab_delete (got->entries); 1372 got->entries = NULL; 1373 } 1374 } 1375 1376 /* Create and empty GOT structure. INFO is the context where memory 1377 should be allocated. */ 1378 1379 static struct elf_m68k_got * 1380 elf_m68k_create_empty_got (struct bfd_link_info *info) 1381 { 1382 struct elf_m68k_got *got; 1383 1384 got = bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*got)); 1385 if (got == NULL) 1386 return NULL; 1387 1388 elf_m68k_init_got (got); 1389 1390 return got; 1391 } 1392 1393 /* Initialize KEY. */ 1394 1395 static void 1396 elf_m68k_init_got_entry_key (struct elf_m68k_got_entry_key *key, 1397 struct elf_link_hash_entry *h, 1398 const bfd *abfd, unsigned long symndx, 1399 enum elf_m68k_reloc_type reloc_type) 1400 { 1401 if (elf_m68k_reloc_got_type (reloc_type) == R_68K_TLS_LDM32) 1402 /* All TLS_LDM relocations share a single GOT entry. */ 1403 { 1404 key->bfd = NULL; 1405 key->symndx = 0; 1406 } 1407 else if (h != NULL) 1408 /* Global symbols are identified with their got_entry_key. */ 1409 { 1410 key->bfd = NULL; 1411 key->symndx = elf_m68k_hash_entry (h)->got_entry_key; 1412 BFD_ASSERT (key->symndx != 0); 1413 } 1414 else 1415 /* Local symbols are identified by BFD they appear in and symndx. */ 1416 { 1417 key->bfd = abfd; 1418 key->symndx = symndx; 1419 } 1420 1421 key->type = reloc_type; 1422 } 1423 1424 /* Calculate hash of got_entry. 1425 ??? Is it good? */ 1426 1427 static hashval_t 1428 elf_m68k_got_entry_hash (const void *_entry) 1429 { 1430 const struct elf_m68k_got_entry_key *key; 1431 1432 key = &((const struct elf_m68k_got_entry *) _entry)->key_; 1433 1434 return (key->symndx 1435 + (key->bfd != NULL ? (int) key->bfd->id : -1) 1436 + elf_m68k_reloc_got_type (key->type)); 1437 } 1438 1439 /* Check if two got entries are equal. */ 1440 1441 static int 1442 elf_m68k_got_entry_eq (const void *_entry1, const void *_entry2) 1443 { 1444 const struct elf_m68k_got_entry_key *key1; 1445 const struct elf_m68k_got_entry_key *key2; 1446 1447 key1 = &((const struct elf_m68k_got_entry *) _entry1)->key_; 1448 key2 = &((const struct elf_m68k_got_entry *) _entry2)->key_; 1449 1450 return (key1->bfd == key2->bfd 1451 && key1->symndx == key2->symndx 1452 && (elf_m68k_reloc_got_type (key1->type) 1453 == elf_m68k_reloc_got_type (key2->type))); 1454 } 1455 1456 /* When using negative offsets, we allocate one extra R_8, one extra R_16 1457 and one extra R_32 slots to simplify handling of 2-slot entries during 1458 offset allocation -- hence -1 for R_8 slots and -2 for R_16 slots. */ 1459 1460 /* Maximal number of R_8 slots in a single GOT. */ 1461 #define ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT(INFO) \ 1462 (elf_m68k_hash_table (INFO)->use_neg_got_offsets_p \ 1463 ? (0x40 - 1) \ 1464 : 0x20) 1465 1466 /* Maximal number of R_8 and R_16 slots in a single GOT. */ 1467 #define ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT(INFO) \ 1468 (elf_m68k_hash_table (INFO)->use_neg_got_offsets_p \ 1469 ? (0x4000 - 2) \ 1470 : 0x2000) 1471 1472 /* SEARCH - simply search the hashtable, don't insert new entries or fail when 1473 the entry cannot be found. 1474 FIND_OR_CREATE - search for an existing entry, but create new if there's 1475 no such. 1476 MUST_FIND - search for an existing entry and assert that it exist. 1477 MUST_CREATE - assert that there's no such entry and create new one. */ 1478 enum elf_m68k_get_entry_howto 1479 { 1480 SEARCH, 1481 FIND_OR_CREATE, 1482 MUST_FIND, 1483 MUST_CREATE 1484 }; 1485 1486 /* Get or create (depending on HOWTO) entry with KEY in GOT. 1487 INFO is context in which memory should be allocated (can be NULL if 1488 HOWTO is SEARCH or MUST_FIND). */ 1489 1490 static struct elf_m68k_got_entry * 1491 elf_m68k_get_got_entry (struct elf_m68k_got *got, 1492 const struct elf_m68k_got_entry_key *key, 1493 enum elf_m68k_get_entry_howto howto, 1494 struct bfd_link_info *info) 1495 { 1496 struct elf_m68k_got_entry entry_; 1497 struct elf_m68k_got_entry *entry; 1498 void **ptr; 1499 1500 BFD_ASSERT ((info == NULL) == (howto == SEARCH || howto == MUST_FIND)); 1501 1502 if (got->entries == NULL) 1503 /* This is the first entry in ABFD. Initialize hashtable. */ 1504 { 1505 if (howto == SEARCH) 1506 return NULL; 1507 1508 got->entries = htab_try_create (ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT 1509 (info), 1510 elf_m68k_got_entry_hash, 1511 elf_m68k_got_entry_eq, NULL); 1512 if (got->entries == NULL) 1513 { 1514 bfd_set_error (bfd_error_no_memory); 1515 return NULL; 1516 } 1517 } 1518 1519 entry_.key_ = *key; 1520 ptr = htab_find_slot (got->entries, &entry_, (howto != SEARCH 1521 ? INSERT : NO_INSERT)); 1522 if (ptr == NULL) 1523 { 1524 if (howto == SEARCH) 1525 /* Entry not found. */ 1526 return NULL; 1527 1528 /* We're out of memory. */ 1529 bfd_set_error (bfd_error_no_memory); 1530 return NULL; 1531 } 1532 1533 if (*ptr == NULL) 1534 /* We didn't find the entry and we're asked to create a new one. */ 1535 { 1536 BFD_ASSERT (howto != MUST_FIND && howto != SEARCH); 1537 1538 entry = bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*entry)); 1539 if (entry == NULL) 1540 return NULL; 1541 1542 /* Initialize new entry. */ 1543 entry->key_ = *key; 1544 1545 entry->u.s1.refcount = 0; 1546 1547 /* Mark the entry as not initialized. */ 1548 entry->key_.type = R_68K_max; 1549 1550 *ptr = entry; 1551 } 1552 else 1553 /* We found the entry. */ 1554 { 1555 BFD_ASSERT (howto != MUST_CREATE); 1556 1557 entry = *ptr; 1558 } 1559 1560 return entry; 1561 } 1562 1563 /* Update GOT counters when merging entry of WAS type with entry of NEW type. 1564 Return the value to which ENTRY's type should be set. */ 1565 1566 static enum elf_m68k_reloc_type 1567 elf_m68k_update_got_entry_type (struct elf_m68k_got *got, 1568 enum elf_m68k_reloc_type was, 1569 enum elf_m68k_reloc_type new_reloc) 1570 { 1571 enum elf_m68k_got_offset_size was_size; 1572 enum elf_m68k_got_offset_size new_size; 1573 bfd_vma n_slots; 1574 1575 if (was == R_68K_max) 1576 /* The type of the entry is not initialized yet. */ 1577 { 1578 /* Update all got->n_slots counters, including n_slots[R_32]. */ 1579 was_size = R_LAST; 1580 1581 was = new_reloc; 1582 } 1583 else 1584 { 1585 /* !!! We, probably, should emit an error rather then fail on assert 1586 in such a case. */ 1587 BFD_ASSERT (elf_m68k_reloc_got_type (was) 1588 == elf_m68k_reloc_got_type (new_reloc)); 1589 1590 was_size = elf_m68k_reloc_got_offset_size (was); 1591 } 1592 1593 new_size = elf_m68k_reloc_got_offset_size (new_reloc); 1594 n_slots = elf_m68k_reloc_got_n_slots (new_reloc); 1595 1596 while (was_size > new_size) 1597 { 1598 --was_size; 1599 got->n_slots[was_size] += n_slots; 1600 } 1601 1602 if (new_reloc > was) 1603 /* Relocations are ordered from bigger got offset size to lesser, 1604 so choose the relocation type with lesser offset size. */ 1605 was = new_reloc; 1606 1607 return was; 1608 } 1609 1610 /* Add new or update existing entry to GOT. 1611 H, ABFD, TYPE and SYMNDX is data for the entry. 1612 INFO is a context where memory should be allocated. */ 1613 1614 static struct elf_m68k_got_entry * 1615 elf_m68k_add_entry_to_got (struct elf_m68k_got *got, 1616 struct elf_link_hash_entry *h, 1617 const bfd *abfd, 1618 enum elf_m68k_reloc_type reloc_type, 1619 unsigned long symndx, 1620 struct bfd_link_info *info) 1621 { 1622 struct elf_m68k_got_entry_key key_; 1623 struct elf_m68k_got_entry *entry; 1624 1625 if (h != NULL && elf_m68k_hash_entry (h)->got_entry_key == 0) 1626 elf_m68k_hash_entry (h)->got_entry_key 1627 = elf_m68k_multi_got (info)->global_symndx++; 1628 1629 elf_m68k_init_got_entry_key (&key_, h, abfd, symndx, reloc_type); 1630 1631 entry = elf_m68k_get_got_entry (got, &key_, FIND_OR_CREATE, info); 1632 if (entry == NULL) 1633 return NULL; 1634 1635 /* Determine entry's type and update got->n_slots counters. */ 1636 entry->key_.type = elf_m68k_update_got_entry_type (got, 1637 entry->key_.type, 1638 reloc_type); 1639 1640 /* Update refcount. */ 1641 ++entry->u.s1.refcount; 1642 1643 if (entry->u.s1.refcount == 1) 1644 /* We see this entry for the first time. */ 1645 { 1646 if (entry->key_.bfd != NULL) 1647 got->local_n_slots += elf_m68k_reloc_got_n_slots (entry->key_.type); 1648 } 1649 1650 BFD_ASSERT (got->n_slots[R_32] >= got->local_n_slots); 1651 1652 if ((got->n_slots[R_8] 1653 > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info)) 1654 || (got->n_slots[R_16] 1655 > ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info))) 1656 /* This BFD has too many relocation. */ 1657 { 1658 if (got->n_slots[R_8] > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info)) 1659 /* xgettext:c-format */ 1660 _bfd_error_handler (_("%pB: GOT overflow: " 1661 "number of relocations with 8-bit " 1662 "offset > %d"), 1663 abfd, 1664 ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info)); 1665 else 1666 /* xgettext:c-format */ 1667 _bfd_error_handler (_("%pB: GOT overflow: " 1668 "number of relocations with 8- or 16-bit " 1669 "offset > %d"), 1670 abfd, 1671 ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info)); 1672 1673 return NULL; 1674 } 1675 1676 return entry; 1677 } 1678 1679 /* Compute the hash value of the bfd in a bfd2got hash entry. */ 1680 1681 static hashval_t 1682 elf_m68k_bfd2got_entry_hash (const void *entry) 1683 { 1684 const struct elf_m68k_bfd2got_entry *e; 1685 1686 e = (const struct elf_m68k_bfd2got_entry *) entry; 1687 1688 return e->bfd->id; 1689 } 1690 1691 /* Check whether two hash entries have the same bfd. */ 1692 1693 static int 1694 elf_m68k_bfd2got_entry_eq (const void *entry1, const void *entry2) 1695 { 1696 const struct elf_m68k_bfd2got_entry *e1; 1697 const struct elf_m68k_bfd2got_entry *e2; 1698 1699 e1 = (const struct elf_m68k_bfd2got_entry *) entry1; 1700 e2 = (const struct elf_m68k_bfd2got_entry *) entry2; 1701 1702 return e1->bfd == e2->bfd; 1703 } 1704 1705 /* Destruct a bfd2got entry. */ 1706 1707 static void 1708 elf_m68k_bfd2got_entry_del (void *_entry) 1709 { 1710 struct elf_m68k_bfd2got_entry *entry; 1711 1712 entry = (struct elf_m68k_bfd2got_entry *) _entry; 1713 1714 BFD_ASSERT (entry->got != NULL); 1715 elf_m68k_clear_got (entry->got); 1716 } 1717 1718 /* Find existing or create new (depending on HOWTO) bfd2got entry in 1719 MULTI_GOT. ABFD is the bfd we need a GOT for. INFO is a context where 1720 memory should be allocated. */ 1721 1722 static struct elf_m68k_bfd2got_entry * 1723 elf_m68k_get_bfd2got_entry (struct elf_m68k_multi_got *multi_got, 1724 const bfd *abfd, 1725 enum elf_m68k_get_entry_howto howto, 1726 struct bfd_link_info *info) 1727 { 1728 struct elf_m68k_bfd2got_entry entry_; 1729 void **ptr; 1730 struct elf_m68k_bfd2got_entry *entry; 1731 1732 BFD_ASSERT ((info == NULL) == (howto == SEARCH || howto == MUST_FIND)); 1733 1734 if (multi_got->bfd2got == NULL) 1735 /* This is the first GOT. Initialize bfd2got. */ 1736 { 1737 if (howto == SEARCH) 1738 return NULL; 1739 1740 multi_got->bfd2got = htab_try_create (1, elf_m68k_bfd2got_entry_hash, 1741 elf_m68k_bfd2got_entry_eq, 1742 elf_m68k_bfd2got_entry_del); 1743 if (multi_got->bfd2got == NULL) 1744 { 1745 bfd_set_error (bfd_error_no_memory); 1746 return NULL; 1747 } 1748 } 1749 1750 entry_.bfd = abfd; 1751 ptr = htab_find_slot (multi_got->bfd2got, &entry_, (howto != SEARCH 1752 ? INSERT : NO_INSERT)); 1753 if (ptr == NULL) 1754 { 1755 if (howto == SEARCH) 1756 /* Entry not found. */ 1757 return NULL; 1758 1759 /* We're out of memory. */ 1760 bfd_set_error (bfd_error_no_memory); 1761 return NULL; 1762 } 1763 1764 if (*ptr == NULL) 1765 /* Entry was not found. Create new one. */ 1766 { 1767 BFD_ASSERT (howto != MUST_FIND && howto != SEARCH); 1768 1769 entry = ((struct elf_m68k_bfd2got_entry *) 1770 bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*entry))); 1771 if (entry == NULL) 1772 return NULL; 1773 1774 entry->bfd = abfd; 1775 1776 entry->got = elf_m68k_create_empty_got (info); 1777 if (entry->got == NULL) 1778 return NULL; 1779 1780 *ptr = entry; 1781 } 1782 else 1783 { 1784 BFD_ASSERT (howto != MUST_CREATE); 1785 1786 /* Return existing entry. */ 1787 entry = *ptr; 1788 } 1789 1790 return entry; 1791 } 1792 1793 struct elf_m68k_can_merge_gots_arg 1794 { 1795 /* A current_got that we constructing a DIFF against. */ 1796 struct elf_m68k_got *big; 1797 1798 /* GOT holding entries not present or that should be changed in 1799 BIG. */ 1800 struct elf_m68k_got *diff; 1801 1802 /* Context where to allocate memory. */ 1803 struct bfd_link_info *info; 1804 1805 /* Error flag. */ 1806 bfd_boolean error_p; 1807 }; 1808 1809 /* Process a single entry from the small GOT to see if it should be added 1810 or updated in the big GOT. */ 1811 1812 static int 1813 elf_m68k_can_merge_gots_1 (void **_entry_ptr, void *_arg) 1814 { 1815 const struct elf_m68k_got_entry *entry1; 1816 struct elf_m68k_can_merge_gots_arg *arg; 1817 const struct elf_m68k_got_entry *entry2; 1818 enum elf_m68k_reloc_type type; 1819 1820 entry1 = (const struct elf_m68k_got_entry *) *_entry_ptr; 1821 arg = (struct elf_m68k_can_merge_gots_arg *) _arg; 1822 1823 entry2 = elf_m68k_get_got_entry (arg->big, &entry1->key_, SEARCH, NULL); 1824 1825 if (entry2 != NULL) 1826 /* We found an existing entry. Check if we should update it. */ 1827 { 1828 type = elf_m68k_update_got_entry_type (arg->diff, 1829 entry2->key_.type, 1830 entry1->key_.type); 1831 1832 if (type == entry2->key_.type) 1833 /* ENTRY1 doesn't update data in ENTRY2. Skip it. 1834 To skip creation of difference entry we use the type, 1835 which we won't see in GOT entries for sure. */ 1836 type = R_68K_max; 1837 } 1838 else 1839 /* We didn't find the entry. Add entry1 to DIFF. */ 1840 { 1841 BFD_ASSERT (entry1->key_.type != R_68K_max); 1842 1843 type = elf_m68k_update_got_entry_type (arg->diff, 1844 R_68K_max, entry1->key_.type); 1845 1846 if (entry1->key_.bfd != NULL) 1847 arg->diff->local_n_slots += elf_m68k_reloc_got_n_slots (type); 1848 } 1849 1850 if (type != R_68K_max) 1851 /* Create an entry in DIFF. */ 1852 { 1853 struct elf_m68k_got_entry *entry; 1854 1855 entry = elf_m68k_get_got_entry (arg->diff, &entry1->key_, MUST_CREATE, 1856 arg->info); 1857 if (entry == NULL) 1858 { 1859 arg->error_p = TRUE; 1860 return 0; 1861 } 1862 1863 entry->key_.type = type; 1864 } 1865 1866 return 1; 1867 } 1868 1869 /* Return TRUE if SMALL GOT can be added to BIG GOT without overflowing it. 1870 Construct DIFF GOT holding the entries which should be added or updated 1871 in BIG GOT to accumulate information from SMALL. 1872 INFO is the context where memory should be allocated. */ 1873 1874 static bfd_boolean 1875 elf_m68k_can_merge_gots (struct elf_m68k_got *big, 1876 const struct elf_m68k_got *small, 1877 struct bfd_link_info *info, 1878 struct elf_m68k_got *diff) 1879 { 1880 struct elf_m68k_can_merge_gots_arg arg_; 1881 1882 BFD_ASSERT (small->offset == (bfd_vma) -1); 1883 1884 arg_.big = big; 1885 arg_.diff = diff; 1886 arg_.info = info; 1887 arg_.error_p = FALSE; 1888 htab_traverse_noresize (small->entries, elf_m68k_can_merge_gots_1, &arg_); 1889 if (arg_.error_p) 1890 { 1891 diff->offset = 0; 1892 return FALSE; 1893 } 1894 1895 /* Check for overflow. */ 1896 if ((big->n_slots[R_8] + arg_.diff->n_slots[R_8] 1897 > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info)) 1898 || (big->n_slots[R_16] + arg_.diff->n_slots[R_16] 1899 > ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info))) 1900 return FALSE; 1901 1902 return TRUE; 1903 } 1904 1905 struct elf_m68k_merge_gots_arg 1906 { 1907 /* The BIG got. */ 1908 struct elf_m68k_got *big; 1909 1910 /* Context where memory should be allocated. */ 1911 struct bfd_link_info *info; 1912 1913 /* Error flag. */ 1914 bfd_boolean error_p; 1915 }; 1916 1917 /* Process a single entry from DIFF got. Add or update corresponding 1918 entry in the BIG got. */ 1919 1920 static int 1921 elf_m68k_merge_gots_1 (void **entry_ptr, void *_arg) 1922 { 1923 const struct elf_m68k_got_entry *from; 1924 struct elf_m68k_merge_gots_arg *arg; 1925 struct elf_m68k_got_entry *to; 1926 1927 from = (const struct elf_m68k_got_entry *) *entry_ptr; 1928 arg = (struct elf_m68k_merge_gots_arg *) _arg; 1929 1930 to = elf_m68k_get_got_entry (arg->big, &from->key_, FIND_OR_CREATE, 1931 arg->info); 1932 if (to == NULL) 1933 { 1934 arg->error_p = TRUE; 1935 return 0; 1936 } 1937 1938 BFD_ASSERT (to->u.s1.refcount == 0); 1939 /* All we need to merge is TYPE. */ 1940 to->key_.type = from->key_.type; 1941 1942 return 1; 1943 } 1944 1945 /* Merge data from DIFF to BIG. INFO is context where memory should be 1946 allocated. */ 1947 1948 static bfd_boolean 1949 elf_m68k_merge_gots (struct elf_m68k_got *big, 1950 struct elf_m68k_got *diff, 1951 struct bfd_link_info *info) 1952 { 1953 if (diff->entries != NULL) 1954 /* DIFF is not empty. Merge it into BIG GOT. */ 1955 { 1956 struct elf_m68k_merge_gots_arg arg_; 1957 1958 /* Merge entries. */ 1959 arg_.big = big; 1960 arg_.info = info; 1961 arg_.error_p = FALSE; 1962 htab_traverse_noresize (diff->entries, elf_m68k_merge_gots_1, &arg_); 1963 if (arg_.error_p) 1964 return FALSE; 1965 1966 /* Merge counters. */ 1967 big->n_slots[R_8] += diff->n_slots[R_8]; 1968 big->n_slots[R_16] += diff->n_slots[R_16]; 1969 big->n_slots[R_32] += diff->n_slots[R_32]; 1970 big->local_n_slots += diff->local_n_slots; 1971 } 1972 else 1973 /* DIFF is empty. */ 1974 { 1975 BFD_ASSERT (diff->n_slots[R_8] == 0); 1976 BFD_ASSERT (diff->n_slots[R_16] == 0); 1977 BFD_ASSERT (diff->n_slots[R_32] == 0); 1978 BFD_ASSERT (diff->local_n_slots == 0); 1979 } 1980 1981 BFD_ASSERT (!elf_m68k_hash_table (info)->allow_multigot_p 1982 || ((big->n_slots[R_8] 1983 <= ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info)) 1984 && (big->n_slots[R_16] 1985 <= ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info)))); 1986 1987 return TRUE; 1988 } 1989 1990 struct elf_m68k_finalize_got_offsets_arg 1991 { 1992 /* Ranges of the offsets for GOT entries. 1993 R_x entries receive offsets between offset1[R_x] and offset2[R_x]. 1994 R_x is R_8, R_16 and R_32. */ 1995 bfd_vma *offset1; 1996 bfd_vma *offset2; 1997 1998 /* Mapping from global symndx to global symbols. 1999 This is used to build lists of got entries for global symbols. */ 2000 struct elf_m68k_link_hash_entry **symndx2h; 2001 2002 bfd_vma n_ldm_entries; 2003 }; 2004 2005 /* Assign ENTRY an offset. Build list of GOT entries for global symbols 2006 along the way. */ 2007 2008 static int 2009 elf_m68k_finalize_got_offsets_1 (void **entry_ptr, void *_arg) 2010 { 2011 struct elf_m68k_got_entry *entry; 2012 struct elf_m68k_finalize_got_offsets_arg *arg; 2013 2014 enum elf_m68k_got_offset_size got_offset_size; 2015 bfd_vma entry_size; 2016 2017 entry = (struct elf_m68k_got_entry *) *entry_ptr; 2018 arg = (struct elf_m68k_finalize_got_offsets_arg *) _arg; 2019 2020 /* This should be a fresh entry created in elf_m68k_can_merge_gots. */ 2021 BFD_ASSERT (entry->u.s1.refcount == 0); 2022 2023 /* Get GOT offset size for the entry . */ 2024 got_offset_size = elf_m68k_reloc_got_offset_size (entry->key_.type); 2025 2026 /* Calculate entry size in bytes. */ 2027 entry_size = 4 * elf_m68k_reloc_got_n_slots (entry->key_.type); 2028 2029 /* Check if we should switch to negative range of the offsets. */ 2030 if (arg->offset1[got_offset_size] + entry_size 2031 > arg->offset2[got_offset_size]) 2032 { 2033 /* Verify that this is the only switch to negative range for 2034 got_offset_size. If this assertion fails, then we've miscalculated 2035 range for got_offset_size entries in 2036 elf_m68k_finalize_got_offsets. */ 2037 BFD_ASSERT (arg->offset2[got_offset_size] 2038 != arg->offset2[-(int) got_offset_size - 1]); 2039 2040 /* Switch. */ 2041 arg->offset1[got_offset_size] = arg->offset1[-(int) got_offset_size - 1]; 2042 arg->offset2[got_offset_size] = arg->offset2[-(int) got_offset_size - 1]; 2043 2044 /* Verify that now we have enough room for the entry. */ 2045 BFD_ASSERT (arg->offset1[got_offset_size] + entry_size 2046 <= arg->offset2[got_offset_size]); 2047 } 2048 2049 /* Assign offset to entry. */ 2050 entry->u.s2.offset = arg->offset1[got_offset_size]; 2051 arg->offset1[got_offset_size] += entry_size; 2052 2053 if (entry->key_.bfd == NULL) 2054 /* Hook up this entry into the list of got_entries of H. */ 2055 { 2056 struct elf_m68k_link_hash_entry *h; 2057 2058 h = arg->symndx2h[entry->key_.symndx]; 2059 if (h != NULL) 2060 { 2061 entry->u.s2.next = h->glist; 2062 h->glist = entry; 2063 } 2064 else 2065 /* This should be the entry for TLS_LDM relocation then. */ 2066 { 2067 BFD_ASSERT ((elf_m68k_reloc_got_type (entry->key_.type) 2068 == R_68K_TLS_LDM32) 2069 && entry->key_.symndx == 0); 2070 2071 ++arg->n_ldm_entries; 2072 } 2073 } 2074 else 2075 /* This entry is for local symbol. */ 2076 entry->u.s2.next = NULL; 2077 2078 return 1; 2079 } 2080 2081 /* Assign offsets within GOT. USE_NEG_GOT_OFFSETS_P indicates if we 2082 should use negative offsets. 2083 Build list of GOT entries for global symbols along the way. 2084 SYMNDX2H is mapping from global symbol indices to actual 2085 global symbols. 2086 Return offset at which next GOT should start. */ 2087 2088 static void 2089 elf_m68k_finalize_got_offsets (struct elf_m68k_got *got, 2090 bfd_boolean use_neg_got_offsets_p, 2091 struct elf_m68k_link_hash_entry **symndx2h, 2092 bfd_vma *final_offset, bfd_vma *n_ldm_entries) 2093 { 2094 struct elf_m68k_finalize_got_offsets_arg arg_; 2095 bfd_vma offset1_[2 * R_LAST]; 2096 bfd_vma offset2_[2 * R_LAST]; 2097 int i; 2098 bfd_vma start_offset; 2099 2100 BFD_ASSERT (got->offset != (bfd_vma) -1); 2101 2102 /* We set entry offsets relative to the .got section (and not the 2103 start of a particular GOT), so that we can use them in 2104 finish_dynamic_symbol without needing to know the GOT which they come 2105 from. */ 2106 2107 /* Put offset1 in the middle of offset1_, same for offset2. */ 2108 arg_.offset1 = offset1_ + R_LAST; 2109 arg_.offset2 = offset2_ + R_LAST; 2110 2111 start_offset = got->offset; 2112 2113 if (use_neg_got_offsets_p) 2114 /* Setup both negative and positive ranges for R_8, R_16 and R_32. */ 2115 i = -(int) R_32 - 1; 2116 else 2117 /* Setup positives ranges for R_8, R_16 and R_32. */ 2118 i = (int) R_8; 2119 2120 for (; i <= (int) R_32; ++i) 2121 { 2122 int j; 2123 size_t n; 2124 2125 /* Set beginning of the range of offsets I. */ 2126 arg_.offset1[i] = start_offset; 2127 2128 /* Calculate number of slots that require I offsets. */ 2129 j = (i >= 0) ? i : -i - 1; 2130 n = (j >= 1) ? got->n_slots[j - 1] : 0; 2131 n = got->n_slots[j] - n; 2132 2133 if (use_neg_got_offsets_p && n != 0) 2134 { 2135 if (i < 0) 2136 /* We first fill the positive side of the range, so we might 2137 end up with one empty slot at that side when we can't fit 2138 whole 2-slot entry. Account for that at negative side of 2139 the interval with one additional entry. */ 2140 n = n / 2 + 1; 2141 else 2142 /* When the number of slots is odd, make positive side of the 2143 range one entry bigger. */ 2144 n = (n + 1) / 2; 2145 } 2146 2147 /* N is the number of slots that require I offsets. 2148 Calculate length of the range for I offsets. */ 2149 n = 4 * n; 2150 2151 /* Set end of the range. */ 2152 arg_.offset2[i] = start_offset + n; 2153 2154 start_offset = arg_.offset2[i]; 2155 } 2156 2157 if (!use_neg_got_offsets_p) 2158 /* Make sure that if we try to switch to negative offsets in 2159 elf_m68k_finalize_got_offsets_1, the assert therein will catch 2160 the bug. */ 2161 for (i = R_8; i <= R_32; ++i) 2162 arg_.offset2[-i - 1] = arg_.offset2[i]; 2163 2164 /* Setup got->offset. offset1[R_8] is either in the middle or at the 2165 beginning of GOT depending on use_neg_got_offsets_p. */ 2166 got->offset = arg_.offset1[R_8]; 2167 2168 arg_.symndx2h = symndx2h; 2169 arg_.n_ldm_entries = 0; 2170 2171 /* Assign offsets. */ 2172 htab_traverse (got->entries, elf_m68k_finalize_got_offsets_1, &arg_); 2173 2174 /* Check offset ranges we have actually assigned. */ 2175 for (i = (int) R_8; i <= (int) R_32; ++i) 2176 BFD_ASSERT (arg_.offset2[i] - arg_.offset1[i] <= 4); 2177 2178 *final_offset = start_offset; 2179 *n_ldm_entries = arg_.n_ldm_entries; 2180 } 2181 2182 struct elf_m68k_partition_multi_got_arg 2183 { 2184 /* The GOT we are adding entries to. Aka big got. */ 2185 struct elf_m68k_got *current_got; 2186 2187 /* Offset to assign the next CURRENT_GOT. */ 2188 bfd_vma offset; 2189 2190 /* Context where memory should be allocated. */ 2191 struct bfd_link_info *info; 2192 2193 /* Total number of slots in the .got section. 2194 This is used to calculate size of the .got and .rela.got sections. */ 2195 bfd_vma n_slots; 2196 2197 /* Difference in numbers of allocated slots in the .got section 2198 and necessary relocations in the .rela.got section. 2199 This is used to calculate size of the .rela.got section. */ 2200 bfd_vma slots_relas_diff; 2201 2202 /* Error flag. */ 2203 bfd_boolean error_p; 2204 2205 /* Mapping from global symndx to global symbols. 2206 This is used to build lists of got entries for global symbols. */ 2207 struct elf_m68k_link_hash_entry **symndx2h; 2208 }; 2209 2210 static void 2211 elf_m68k_partition_multi_got_2 (struct elf_m68k_partition_multi_got_arg *arg) 2212 { 2213 bfd_vma n_ldm_entries; 2214 2215 elf_m68k_finalize_got_offsets (arg->current_got, 2216 (elf_m68k_hash_table (arg->info) 2217 ->use_neg_got_offsets_p), 2218 arg->symndx2h, 2219 &arg->offset, &n_ldm_entries); 2220 2221 arg->n_slots += arg->current_got->n_slots[R_32]; 2222 2223 if (!bfd_link_pic (arg->info)) 2224 /* If we are generating a shared object, we need to 2225 output a R_68K_RELATIVE reloc so that the dynamic 2226 linker can adjust this GOT entry. Overwise we 2227 don't need space in .rela.got for local symbols. */ 2228 arg->slots_relas_diff += arg->current_got->local_n_slots; 2229 2230 /* @LDM relocations require a 2-slot GOT entry, but only 2231 one relocation. Account for that. */ 2232 arg->slots_relas_diff += n_ldm_entries; 2233 2234 BFD_ASSERT (arg->slots_relas_diff <= arg->n_slots); 2235 } 2236 2237 2238 /* Process a single BFD2GOT entry and either merge GOT to CURRENT_GOT 2239 or start a new CURRENT_GOT. */ 2240 2241 static int 2242 elf_m68k_partition_multi_got_1 (void **_entry, void *_arg) 2243 { 2244 struct elf_m68k_bfd2got_entry *entry; 2245 struct elf_m68k_partition_multi_got_arg *arg; 2246 struct elf_m68k_got *got; 2247 struct elf_m68k_got diff_; 2248 struct elf_m68k_got *diff; 2249 2250 entry = (struct elf_m68k_bfd2got_entry *) *_entry; 2251 arg = (struct elf_m68k_partition_multi_got_arg *) _arg; 2252 2253 got = entry->got; 2254 BFD_ASSERT (got != NULL); 2255 BFD_ASSERT (got->offset == (bfd_vma) -1); 2256 2257 diff = NULL; 2258 2259 if (arg->current_got != NULL) 2260 /* Construct diff. */ 2261 { 2262 diff = &diff_; 2263 elf_m68k_init_got (diff); 2264 2265 if (!elf_m68k_can_merge_gots (arg->current_got, got, arg->info, diff)) 2266 { 2267 if (diff->offset == 0) 2268 /* Offset set to 0 in the diff_ indicates an error. */ 2269 { 2270 arg->error_p = TRUE; 2271 goto final_return; 2272 } 2273 2274 if (elf_m68k_hash_table (arg->info)->allow_multigot_p) 2275 { 2276 elf_m68k_clear_got (diff); 2277 /* Schedule to finish up current_got and start new one. */ 2278 diff = NULL; 2279 } 2280 /* else 2281 Merge GOTs no matter what. If big GOT overflows, 2282 we'll fail in relocate_section due to truncated relocations. 2283 2284 ??? May be fail earlier? E.g., in can_merge_gots. */ 2285 } 2286 } 2287 else 2288 /* Diff of got against empty current_got is got itself. */ 2289 { 2290 /* Create empty current_got to put subsequent GOTs to. */ 2291 arg->current_got = elf_m68k_create_empty_got (arg->info); 2292 if (arg->current_got == NULL) 2293 { 2294 arg->error_p = TRUE; 2295 goto final_return; 2296 } 2297 2298 arg->current_got->offset = arg->offset; 2299 2300 diff = got; 2301 } 2302 2303 if (diff != NULL) 2304 { 2305 if (!elf_m68k_merge_gots (arg->current_got, diff, arg->info)) 2306 { 2307 arg->error_p = TRUE; 2308 goto final_return; 2309 } 2310 2311 /* Now we can free GOT. */ 2312 elf_m68k_clear_got (got); 2313 2314 entry->got = arg->current_got; 2315 } 2316 else 2317 { 2318 /* Finish up current_got. */ 2319 elf_m68k_partition_multi_got_2 (arg); 2320 2321 /* Schedule to start a new current_got. */ 2322 arg->current_got = NULL; 2323 2324 /* Retry. */ 2325 if (!elf_m68k_partition_multi_got_1 (_entry, _arg)) 2326 { 2327 BFD_ASSERT (arg->error_p); 2328 goto final_return; 2329 } 2330 } 2331 2332 final_return: 2333 if (diff != NULL) 2334 elf_m68k_clear_got (diff); 2335 2336 return !arg->error_p; 2337 } 2338 2339 /* Helper function to build symndx2h mapping. */ 2340 2341 static bfd_boolean 2342 elf_m68k_init_symndx2h_1 (struct elf_link_hash_entry *_h, 2343 void *_arg) 2344 { 2345 struct elf_m68k_link_hash_entry *h; 2346 2347 h = elf_m68k_hash_entry (_h); 2348 2349 if (h->got_entry_key != 0) 2350 /* H has at least one entry in the GOT. */ 2351 { 2352 struct elf_m68k_partition_multi_got_arg *arg; 2353 2354 arg = (struct elf_m68k_partition_multi_got_arg *) _arg; 2355 2356 BFD_ASSERT (arg->symndx2h[h->got_entry_key] == NULL); 2357 arg->symndx2h[h->got_entry_key] = h; 2358 } 2359 2360 return TRUE; 2361 } 2362 2363 /* Merge GOTs of some BFDs, assign offsets to GOT entries and build 2364 lists of GOT entries for global symbols. 2365 Calculate sizes of .got and .rela.got sections. */ 2366 2367 static bfd_boolean 2368 elf_m68k_partition_multi_got (struct bfd_link_info *info) 2369 { 2370 struct elf_m68k_multi_got *multi_got; 2371 struct elf_m68k_partition_multi_got_arg arg_; 2372 2373 multi_got = elf_m68k_multi_got (info); 2374 2375 arg_.current_got = NULL; 2376 arg_.offset = 0; 2377 arg_.info = info; 2378 arg_.n_slots = 0; 2379 arg_.slots_relas_diff = 0; 2380 arg_.error_p = FALSE; 2381 2382 if (multi_got->bfd2got != NULL) 2383 { 2384 /* Initialize symndx2h mapping. */ 2385 { 2386 arg_.symndx2h = bfd_zmalloc (multi_got->global_symndx 2387 * sizeof (*arg_.symndx2h)); 2388 if (arg_.symndx2h == NULL) 2389 return FALSE; 2390 2391 elf_link_hash_traverse (elf_hash_table (info), 2392 elf_m68k_init_symndx2h_1, &arg_); 2393 } 2394 2395 /* Partition. */ 2396 htab_traverse (multi_got->bfd2got, elf_m68k_partition_multi_got_1, 2397 &arg_); 2398 if (arg_.error_p) 2399 { 2400 free (arg_.symndx2h); 2401 arg_.symndx2h = NULL; 2402 2403 return FALSE; 2404 } 2405 2406 /* Finish up last current_got. */ 2407 elf_m68k_partition_multi_got_2 (&arg_); 2408 2409 free (arg_.symndx2h); 2410 } 2411 2412 if (elf_hash_table (info)->dynobj != NULL) 2413 /* Set sizes of .got and .rela.got sections. */ 2414 { 2415 asection *s; 2416 2417 s = elf_hash_table (info)->sgot; 2418 if (s != NULL) 2419 s->size = arg_.offset; 2420 else 2421 BFD_ASSERT (arg_.offset == 0); 2422 2423 BFD_ASSERT (arg_.slots_relas_diff <= arg_.n_slots); 2424 arg_.n_slots -= arg_.slots_relas_diff; 2425 2426 s = elf_hash_table (info)->srelgot; 2427 if (s != NULL) 2428 s->size = arg_.n_slots * sizeof (Elf32_External_Rela); 2429 else 2430 BFD_ASSERT (arg_.n_slots == 0); 2431 } 2432 else 2433 BFD_ASSERT (multi_got->bfd2got == NULL); 2434 2435 return TRUE; 2436 } 2437 2438 /* Copy any information related to dynamic linking from a pre-existing 2439 symbol to a newly created symbol. Also called to copy flags and 2440 other back-end info to a weakdef, in which case the symbol is not 2441 newly created and plt/got refcounts and dynamic indices should not 2442 be copied. */ 2443 2444 static void 2445 elf_m68k_copy_indirect_symbol (struct bfd_link_info *info, 2446 struct elf_link_hash_entry *_dir, 2447 struct elf_link_hash_entry *_ind) 2448 { 2449 struct elf_m68k_link_hash_entry *dir; 2450 struct elf_m68k_link_hash_entry *ind; 2451 2452 _bfd_elf_link_hash_copy_indirect (info, _dir, _ind); 2453 2454 if (_ind->root.type != bfd_link_hash_indirect) 2455 return; 2456 2457 dir = elf_m68k_hash_entry (_dir); 2458 ind = elf_m68k_hash_entry (_ind); 2459 2460 /* Any absolute non-dynamic relocations against an indirect or weak 2461 definition will be against the target symbol. */ 2462 _dir->non_got_ref |= _ind->non_got_ref; 2463 2464 /* We might have a direct symbol already having entries in the GOTs. 2465 Update its key only in case indirect symbol has GOT entries and 2466 assert that both indirect and direct symbols don't have GOT entries 2467 at the same time. */ 2468 if (ind->got_entry_key != 0) 2469 { 2470 BFD_ASSERT (dir->got_entry_key == 0); 2471 /* Assert that GOTs aren't partitioned yet. */ 2472 BFD_ASSERT (ind->glist == NULL); 2473 2474 dir->got_entry_key = ind->got_entry_key; 2475 ind->got_entry_key = 0; 2476 } 2477 } 2478 2479 /* Look through the relocs for a section during the first phase, and 2480 allocate space in the global offset table or procedure linkage 2481 table. */ 2482 2483 static bfd_boolean 2484 elf_m68k_check_relocs (bfd *abfd, 2485 struct bfd_link_info *info, 2486 asection *sec, 2487 const Elf_Internal_Rela *relocs) 2488 { 2489 bfd *dynobj; 2490 Elf_Internal_Shdr *symtab_hdr; 2491 struct elf_link_hash_entry **sym_hashes; 2492 const Elf_Internal_Rela *rel; 2493 const Elf_Internal_Rela *rel_end; 2494 asection *sreloc; 2495 struct elf_m68k_got *got; 2496 2497 if (bfd_link_relocatable (info)) 2498 return TRUE; 2499 2500 dynobj = elf_hash_table (info)->dynobj; 2501 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 2502 sym_hashes = elf_sym_hashes (abfd); 2503 2504 sreloc = NULL; 2505 2506 got = NULL; 2507 2508 rel_end = relocs + sec->reloc_count; 2509 for (rel = relocs; rel < rel_end; rel++) 2510 { 2511 unsigned long r_symndx; 2512 struct elf_link_hash_entry *h; 2513 2514 r_symndx = ELF32_R_SYM (rel->r_info); 2515 2516 if (r_symndx < symtab_hdr->sh_info) 2517 h = NULL; 2518 else 2519 { 2520 h = sym_hashes[r_symndx - symtab_hdr->sh_info]; 2521 while (h->root.type == bfd_link_hash_indirect 2522 || h->root.type == bfd_link_hash_warning) 2523 h = (struct elf_link_hash_entry *) h->root.u.i.link; 2524 } 2525 2526 switch (ELF32_R_TYPE (rel->r_info)) 2527 { 2528 case R_68K_GOT8: 2529 case R_68K_GOT16: 2530 case R_68K_GOT32: 2531 if (h != NULL 2532 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0) 2533 break; 2534 /* Fall through. */ 2535 2536 /* Relative GOT relocations. */ 2537 case R_68K_GOT8O: 2538 case R_68K_GOT16O: 2539 case R_68K_GOT32O: 2540 /* Fall through. */ 2541 2542 /* TLS relocations. */ 2543 case R_68K_TLS_GD8: 2544 case R_68K_TLS_GD16: 2545 case R_68K_TLS_GD32: 2546 case R_68K_TLS_LDM8: 2547 case R_68K_TLS_LDM16: 2548 case R_68K_TLS_LDM32: 2549 case R_68K_TLS_IE8: 2550 case R_68K_TLS_IE16: 2551 case R_68K_TLS_IE32: 2552 2553 case R_68K_TLS_TPREL32: 2554 case R_68K_TLS_DTPREL32: 2555 2556 if (ELF32_R_TYPE (rel->r_info) == R_68K_TLS_TPREL32 2557 && bfd_link_pic (info)) 2558 /* Do the special chorus for libraries with static TLS. */ 2559 info->flags |= DF_STATIC_TLS; 2560 2561 /* This symbol requires a global offset table entry. */ 2562 2563 if (dynobj == NULL) 2564 { 2565 /* Create the .got section. */ 2566 elf_hash_table (info)->dynobj = dynobj = abfd; 2567 if (!_bfd_elf_create_got_section (dynobj, info)) 2568 return FALSE; 2569 } 2570 2571 if (got == NULL) 2572 { 2573 struct elf_m68k_bfd2got_entry *bfd2got_entry; 2574 2575 bfd2got_entry 2576 = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info), 2577 abfd, FIND_OR_CREATE, info); 2578 if (bfd2got_entry == NULL) 2579 return FALSE; 2580 2581 got = bfd2got_entry->got; 2582 BFD_ASSERT (got != NULL); 2583 } 2584 2585 { 2586 struct elf_m68k_got_entry *got_entry; 2587 2588 /* Add entry to got. */ 2589 got_entry = elf_m68k_add_entry_to_got (got, h, abfd, 2590 ELF32_R_TYPE (rel->r_info), 2591 r_symndx, info); 2592 if (got_entry == NULL) 2593 return FALSE; 2594 2595 if (got_entry->u.s1.refcount == 1) 2596 { 2597 /* Make sure this symbol is output as a dynamic symbol. */ 2598 if (h != NULL 2599 && h->dynindx == -1 2600 && !h->forced_local) 2601 { 2602 if (!bfd_elf_link_record_dynamic_symbol (info, h)) 2603 return FALSE; 2604 } 2605 } 2606 } 2607 2608 break; 2609 2610 case R_68K_PLT8: 2611 case R_68K_PLT16: 2612 case R_68K_PLT32: 2613 /* This symbol requires a procedure linkage table entry. We 2614 actually build the entry in adjust_dynamic_symbol, 2615 because this might be a case of linking PIC code which is 2616 never referenced by a dynamic object, in which case we 2617 don't need to generate a procedure linkage table entry 2618 after all. */ 2619 2620 /* If this is a local symbol, we resolve it directly without 2621 creating a procedure linkage table entry. */ 2622 if (h == NULL) 2623 continue; 2624 2625 h->needs_plt = 1; 2626 h->plt.refcount++; 2627 break; 2628 2629 case R_68K_PLT8O: 2630 case R_68K_PLT16O: 2631 case R_68K_PLT32O: 2632 /* This symbol requires a procedure linkage table entry. */ 2633 2634 if (h == NULL) 2635 { 2636 /* It does not make sense to have this relocation for a 2637 local symbol. FIXME: does it? How to handle it if 2638 it does make sense? */ 2639 bfd_set_error (bfd_error_bad_value); 2640 return FALSE; 2641 } 2642 2643 /* Make sure this symbol is output as a dynamic symbol. */ 2644 if (h->dynindx == -1 2645 && !h->forced_local) 2646 { 2647 if (!bfd_elf_link_record_dynamic_symbol (info, h)) 2648 return FALSE; 2649 } 2650 2651 h->needs_plt = 1; 2652 h->plt.refcount++; 2653 break; 2654 2655 case R_68K_PC8: 2656 case R_68K_PC16: 2657 case R_68K_PC32: 2658 /* If we are creating a shared library and this is not a local 2659 symbol, we need to copy the reloc into the shared library. 2660 However when linking with -Bsymbolic and this is a global 2661 symbol which is defined in an object we are including in the 2662 link (i.e., DEF_REGULAR is set), then we can resolve the 2663 reloc directly. At this point we have not seen all the input 2664 files, so it is possible that DEF_REGULAR is not set now but 2665 will be set later (it is never cleared). We account for that 2666 possibility below by storing information in the 2667 pcrel_relocs_copied field of the hash table entry. */ 2668 if (!(bfd_link_pic (info) 2669 && (sec->flags & SEC_ALLOC) != 0 2670 && h != NULL 2671 && (!SYMBOLIC_BIND (info, h) 2672 || h->root.type == bfd_link_hash_defweak 2673 || !h->def_regular))) 2674 { 2675 if (h != NULL) 2676 { 2677 /* Make sure a plt entry is created for this symbol if 2678 it turns out to be a function defined by a dynamic 2679 object. */ 2680 h->plt.refcount++; 2681 } 2682 break; 2683 } 2684 /* Fall through. */ 2685 case R_68K_8: 2686 case R_68K_16: 2687 case R_68K_32: 2688 /* We don't need to handle relocs into sections not going into 2689 the "real" output. */ 2690 if ((sec->flags & SEC_ALLOC) == 0) 2691 break; 2692 2693 if (h != NULL) 2694 { 2695 /* Make sure a plt entry is created for this symbol if it 2696 turns out to be a function defined by a dynamic object. */ 2697 h->plt.refcount++; 2698 2699 if (bfd_link_executable (info)) 2700 /* This symbol needs a non-GOT reference. */ 2701 h->non_got_ref = 1; 2702 } 2703 2704 /* If we are creating a shared library, we need to copy the 2705 reloc into the shared library. */ 2706 if (bfd_link_pic (info) 2707 && (h == NULL 2708 || !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))) 2709 { 2710 /* When creating a shared object, we must copy these 2711 reloc types into the output file. We create a reloc 2712 section in dynobj and make room for this reloc. */ 2713 if (sreloc == NULL) 2714 { 2715 sreloc = _bfd_elf_make_dynamic_reloc_section 2716 (sec, dynobj, 2, abfd, /*rela?*/ TRUE); 2717 2718 if (sreloc == NULL) 2719 return FALSE; 2720 } 2721 2722 if (sec->flags & SEC_READONLY 2723 /* Don't set DF_TEXTREL yet for PC relative 2724 relocations, they might be discarded later. */ 2725 && !(ELF32_R_TYPE (rel->r_info) == R_68K_PC8 2726 || ELF32_R_TYPE (rel->r_info) == R_68K_PC16 2727 || ELF32_R_TYPE (rel->r_info) == R_68K_PC32)) 2728 { 2729 if (info->warn_shared_textrel) 2730 (*_bfd_error_handler) 2731 (_("warning: dynamic relocation to `%s' in readonly section `%s'"), 2732 h->root.root.string, sec->name); 2733 info->flags |= DF_TEXTREL; 2734 } 2735 2736 sreloc->size += sizeof (Elf32_External_Rela); 2737 2738 /* We count the number of PC relative relocations we have 2739 entered for this symbol, so that we can discard them 2740 again if, in the -Bsymbolic case, the symbol is later 2741 defined by a regular object, or, in the normal shared 2742 case, the symbol is forced to be local. Note that this 2743 function is only called if we are using an m68kelf linker 2744 hash table, which means that h is really a pointer to an 2745 elf_m68k_link_hash_entry. */ 2746 if (ELF32_R_TYPE (rel->r_info) == R_68K_PC8 2747 || ELF32_R_TYPE (rel->r_info) == R_68K_PC16 2748 || ELF32_R_TYPE (rel->r_info) == R_68K_PC32) 2749 { 2750 struct elf_m68k_pcrel_relocs_copied *p; 2751 struct elf_m68k_pcrel_relocs_copied **head; 2752 2753 if (h != NULL) 2754 { 2755 struct elf_m68k_link_hash_entry *eh 2756 = elf_m68k_hash_entry (h); 2757 head = &eh->pcrel_relocs_copied; 2758 } 2759 else 2760 { 2761 asection *s; 2762 void *vpp; 2763 Elf_Internal_Sym *isym; 2764 2765 isym = bfd_sym_from_r_symndx (&elf_m68k_hash_table (info)->sym_cache, 2766 abfd, r_symndx); 2767 if (isym == NULL) 2768 return FALSE; 2769 2770 s = bfd_section_from_elf_index (abfd, isym->st_shndx); 2771 if (s == NULL) 2772 s = sec; 2773 2774 vpp = &elf_section_data (s)->local_dynrel; 2775 head = (struct elf_m68k_pcrel_relocs_copied **) vpp; 2776 } 2777 2778 for (p = *head; p != NULL; p = p->next) 2779 if (p->section == sreloc) 2780 break; 2781 2782 if (p == NULL) 2783 { 2784 p = ((struct elf_m68k_pcrel_relocs_copied *) 2785 bfd_alloc (dynobj, (bfd_size_type) sizeof *p)); 2786 if (p == NULL) 2787 return FALSE; 2788 p->next = *head; 2789 *head = p; 2790 p->section = sreloc; 2791 p->count = 0; 2792 } 2793 2794 ++p->count; 2795 } 2796 } 2797 2798 break; 2799 2800 /* This relocation describes the C++ object vtable hierarchy. 2801 Reconstruct it for later use during GC. */ 2802 case R_68K_GNU_VTINHERIT: 2803 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) 2804 return FALSE; 2805 break; 2806 2807 /* This relocation describes which C++ vtable entries are actually 2808 used. Record for later use during GC. */ 2809 case R_68K_GNU_VTENTRY: 2810 BFD_ASSERT (h != NULL); 2811 if (h != NULL 2812 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend)) 2813 return FALSE; 2814 break; 2815 2816 default: 2817 break; 2818 } 2819 } 2820 2821 return TRUE; 2822 } 2823 2824 /* Return the section that should be marked against GC for a given 2825 relocation. */ 2826 2827 static asection * 2828 elf_m68k_gc_mark_hook (asection *sec, 2829 struct bfd_link_info *info, 2830 Elf_Internal_Rela *rel, 2831 struct elf_link_hash_entry *h, 2832 Elf_Internal_Sym *sym) 2833 { 2834 if (h != NULL) 2835 switch (ELF32_R_TYPE (rel->r_info)) 2836 { 2837 case R_68K_GNU_VTINHERIT: 2838 case R_68K_GNU_VTENTRY: 2839 return NULL; 2840 } 2841 2842 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym); 2843 } 2844 2845 /* Return the type of PLT associated with OUTPUT_BFD. */ 2846 2847 static const struct elf_m68k_plt_info * 2848 elf_m68k_get_plt_info (bfd *output_bfd) 2849 { 2850 unsigned int features; 2851 2852 features = bfd_m68k_mach_to_features (bfd_get_mach (output_bfd)); 2853 if (features & cpu32) 2854 return &elf_cpu32_plt_info; 2855 if (features & mcfisa_b) 2856 return &elf_isab_plt_info; 2857 if (features & mcfisa_c) 2858 return &elf_isac_plt_info; 2859 return &elf_m68k_plt_info; 2860 } 2861 2862 /* This function is called after all the input files have been read, 2863 and the input sections have been assigned to output sections. 2864 It's a convenient place to determine the PLT style. */ 2865 2866 static bfd_boolean 2867 elf_m68k_always_size_sections (bfd *output_bfd, struct bfd_link_info *info) 2868 { 2869 /* Bind input BFDs to GOTs and calculate sizes of .got and .rela.got 2870 sections. */ 2871 if (!elf_m68k_partition_multi_got (info)) 2872 return FALSE; 2873 2874 elf_m68k_hash_table (info)->plt_info = elf_m68k_get_plt_info (output_bfd); 2875 return TRUE; 2876 } 2877 2878 /* Adjust a symbol defined by a dynamic object and referenced by a 2879 regular object. The current definition is in some section of the 2880 dynamic object, but we're not including those sections. We have to 2881 change the definition to something the rest of the link can 2882 understand. */ 2883 2884 static bfd_boolean 2885 elf_m68k_adjust_dynamic_symbol (struct bfd_link_info *info, 2886 struct elf_link_hash_entry *h) 2887 { 2888 struct elf_m68k_link_hash_table *htab; 2889 bfd *dynobj; 2890 asection *s; 2891 2892 htab = elf_m68k_hash_table (info); 2893 dynobj = htab->root.dynobj; 2894 2895 /* Make sure we know what is going on here. */ 2896 BFD_ASSERT (dynobj != NULL 2897 && (h->needs_plt 2898 || h->type == STT_GNU_IFUNC 2899 || h->is_weakalias 2900 || (h->def_dynamic 2901 && h->ref_regular 2902 && !h->def_regular))); 2903 2904 /* If this is a function, put it in the procedure linkage table. We 2905 will fill in the contents of the procedure linkage table later, 2906 when we know the address of the .got section. */ 2907 if ((h->type == STT_FUNC || h->type == STT_GNU_IFUNC) 2908 || h->needs_plt) 2909 { 2910 if ((h->plt.refcount <= 0 2911 || SYMBOL_CALLS_LOCAL (info, h) 2912 || ((ELF_ST_VISIBILITY (h->other) != STV_DEFAULT 2913 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h)) 2914 && h->root.type == bfd_link_hash_undefweak)) 2915 /* We must always create the plt entry if it was referenced 2916 by a PLTxxO relocation. In this case we already recorded 2917 it as a dynamic symbol. */ 2918 && h->dynindx == -1) 2919 { 2920 /* This case can occur if we saw a PLTxx reloc in an input 2921 file, but the symbol was never referred to by a dynamic 2922 object, or if all references were garbage collected. In 2923 such a case, we don't actually need to build a procedure 2924 linkage table, and we can just do a PCxx reloc instead. */ 2925 h->plt.offset = (bfd_vma) -1; 2926 h->needs_plt = 0; 2927 return TRUE; 2928 } 2929 2930 /* Make sure this symbol is output as a dynamic symbol. */ 2931 if (h->dynindx == -1 2932 && !h->forced_local) 2933 { 2934 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 2935 return FALSE; 2936 } 2937 2938 s = htab->root.splt; 2939 BFD_ASSERT (s != NULL); 2940 2941 /* If this is the first .plt entry, make room for the special 2942 first entry. */ 2943 if (s->size == 0) 2944 s->size = htab->plt_info->size; 2945 2946 /* If this symbol is not defined in a regular file, and we are 2947 not generating a shared library, then set the symbol to this 2948 location in the .plt. This is required to make function 2949 pointers compare as equal between the normal executable and 2950 the shared library. */ 2951 if (!bfd_link_pic (info) 2952 && !h->def_regular) 2953 { 2954 h->root.u.def.section = s; 2955 h->root.u.def.value = s->size; 2956 } 2957 2958 h->plt.offset = s->size; 2959 2960 /* Make room for this entry. */ 2961 s->size += htab->plt_info->size; 2962 2963 /* We also need to make an entry in the .got.plt section, which 2964 will be placed in the .got section by the linker script. */ 2965 s = htab->root.sgotplt; 2966 BFD_ASSERT (s != NULL); 2967 s->size += 4; 2968 2969 /* We also need to make an entry in the .rela.plt section. */ 2970 s = htab->root.srelplt; 2971 BFD_ASSERT (s != NULL); 2972 s->size += sizeof (Elf32_External_Rela); 2973 2974 return TRUE; 2975 } 2976 2977 /* Reinitialize the plt offset now that it is not used as a reference 2978 count any more. */ 2979 h->plt.offset = (bfd_vma) -1; 2980 2981 /* If this is a weak symbol, and there is a real definition, the 2982 processor independent code will have arranged for us to see the 2983 real definition first, and we can just use the same value. */ 2984 if (h->is_weakalias) 2985 { 2986 struct elf_link_hash_entry *def = weakdef (h); 2987 BFD_ASSERT (def->root.type == bfd_link_hash_defined); 2988 h->root.u.def.section = def->root.u.def.section; 2989 h->root.u.def.value = def->root.u.def.value; 2990 return TRUE; 2991 } 2992 2993 /* This is a reference to a symbol defined by a dynamic object which 2994 is not a function. */ 2995 2996 /* If we are creating a shared library, we must presume that the 2997 only references to the symbol are via the global offset table. 2998 For such cases we need not do anything here; the relocations will 2999 be handled correctly by relocate_section. */ 3000 if (bfd_link_pic (info)) 3001 return TRUE; 3002 3003 /* If there are no references to this symbol that do not use the 3004 GOT, we don't need to generate a copy reloc. */ 3005 if (!h->non_got_ref) 3006 return TRUE; 3007 3008 /* We must allocate the symbol in our .dynbss section, which will 3009 become part of the .bss section of the executable. There will be 3010 an entry for this symbol in the .dynsym section. The dynamic 3011 object will contain position independent code, so all references 3012 from the dynamic object to this symbol will go through the global 3013 offset table. The dynamic linker will use the .dynsym entry to 3014 determine the address it must put in the global offset table, so 3015 both the dynamic object and the regular object will refer to the 3016 same memory location for the variable. */ 3017 3018 s = bfd_get_linker_section (dynobj, ".dynbss"); 3019 BFD_ASSERT (s != NULL); 3020 3021 /* We must generate a R_68K_COPY reloc to tell the dynamic linker to 3022 copy the initial value out of the dynamic object and into the 3023 runtime process image. We need to remember the offset into the 3024 .rela.bss section we are going to use. */ 3025 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0) 3026 { 3027 asection *srel; 3028 3029 srel = bfd_get_linker_section (dynobj, ".rela.bss"); 3030 BFD_ASSERT (srel != NULL); 3031 srel->size += sizeof (Elf32_External_Rela); 3032 h->needs_copy = 1; 3033 } 3034 3035 return _bfd_elf_adjust_dynamic_copy (info, h, s); 3036 } 3037 3038 /* Set the sizes of the dynamic sections. */ 3039 3040 static bfd_boolean 3041 elf_m68k_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED, 3042 struct bfd_link_info *info) 3043 { 3044 bfd *dynobj; 3045 asection *s; 3046 bfd_boolean plt; 3047 bfd_boolean relocs; 3048 3049 dynobj = elf_hash_table (info)->dynobj; 3050 BFD_ASSERT (dynobj != NULL); 3051 3052 if (elf_hash_table (info)->dynamic_sections_created) 3053 { 3054 /* Set the contents of the .interp section to the interpreter. */ 3055 if (bfd_link_executable (info) && !info->nointerp) 3056 { 3057 s = bfd_get_linker_section (dynobj, ".interp"); 3058 BFD_ASSERT (s != NULL); 3059 s->size = sizeof ELF_DYNAMIC_INTERPRETER; 3060 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER; 3061 } 3062 } 3063 else 3064 { 3065 /* We may have created entries in the .rela.got section. 3066 However, if we are not creating the dynamic sections, we will 3067 not actually use these entries. Reset the size of .rela.got, 3068 which will cause it to get stripped from the output file 3069 below. */ 3070 s = elf_hash_table (info)->srelgot; 3071 if (s != NULL) 3072 s->size = 0; 3073 } 3074 3075 /* If this is a -Bsymbolic shared link, then we need to discard all 3076 PC relative relocs against symbols defined in a regular object. 3077 For the normal shared case we discard the PC relative relocs 3078 against symbols that have become local due to visibility changes. 3079 We allocated space for them in the check_relocs routine, but we 3080 will not fill them in in the relocate_section routine. */ 3081 if (bfd_link_pic (info)) 3082 elf_link_hash_traverse (elf_hash_table (info), 3083 elf_m68k_discard_copies, 3084 info); 3085 3086 /* The check_relocs and adjust_dynamic_symbol entry points have 3087 determined the sizes of the various dynamic sections. Allocate 3088 memory for them. */ 3089 plt = FALSE; 3090 relocs = FALSE; 3091 for (s = dynobj->sections; s != NULL; s = s->next) 3092 { 3093 const char *name; 3094 3095 if ((s->flags & SEC_LINKER_CREATED) == 0) 3096 continue; 3097 3098 /* It's OK to base decisions on the section name, because none 3099 of the dynobj section names depend upon the input files. */ 3100 name = bfd_get_section_name (dynobj, s); 3101 3102 if (strcmp (name, ".plt") == 0) 3103 { 3104 /* Remember whether there is a PLT. */ 3105 plt = s->size != 0; 3106 } 3107 else if (CONST_STRNEQ (name, ".rela")) 3108 { 3109 if (s->size != 0) 3110 { 3111 relocs = TRUE; 3112 3113 /* We use the reloc_count field as a counter if we need 3114 to copy relocs into the output file. */ 3115 s->reloc_count = 0; 3116 } 3117 } 3118 else if (! CONST_STRNEQ (name, ".got") 3119 && strcmp (name, ".dynbss") != 0) 3120 { 3121 /* It's not one of our sections, so don't allocate space. */ 3122 continue; 3123 } 3124 3125 if (s->size == 0) 3126 { 3127 /* If we don't need this section, strip it from the 3128 output file. This is mostly to handle .rela.bss and 3129 .rela.plt. We must create both sections in 3130 create_dynamic_sections, because they must be created 3131 before the linker maps input sections to output 3132 sections. The linker does that before 3133 adjust_dynamic_symbol is called, and it is that 3134 function which decides whether anything needs to go 3135 into these sections. */ 3136 s->flags |= SEC_EXCLUDE; 3137 continue; 3138 } 3139 3140 if ((s->flags & SEC_HAS_CONTENTS) == 0) 3141 continue; 3142 3143 /* Allocate memory for the section contents. */ 3144 /* FIXME: This should be a call to bfd_alloc not bfd_zalloc. 3145 Unused entries should be reclaimed before the section's contents 3146 are written out, but at the moment this does not happen. Thus in 3147 order to prevent writing out garbage, we initialise the section's 3148 contents to zero. */ 3149 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size); 3150 if (s->contents == NULL) 3151 return FALSE; 3152 } 3153 3154 if (elf_hash_table (info)->dynamic_sections_created) 3155 { 3156 /* Add some entries to the .dynamic section. We fill in the 3157 values later, in elf_m68k_finish_dynamic_sections, but we 3158 must add the entries now so that we get the correct size for 3159 the .dynamic section. The DT_DEBUG entry is filled in by the 3160 dynamic linker and used by the debugger. */ 3161 #define add_dynamic_entry(TAG, VAL) \ 3162 _bfd_elf_add_dynamic_entry (info, TAG, VAL) 3163 3164 if (bfd_link_executable (info)) 3165 { 3166 if (!add_dynamic_entry (DT_DEBUG, 0)) 3167 return FALSE; 3168 } 3169 3170 if (plt) 3171 { 3172 if (!add_dynamic_entry (DT_PLTGOT, 0) 3173 || !add_dynamic_entry (DT_PLTRELSZ, 0) 3174 || !add_dynamic_entry (DT_PLTREL, DT_RELA) 3175 || !add_dynamic_entry (DT_JMPREL, 0)) 3176 return FALSE; 3177 } 3178 3179 if (relocs) 3180 { 3181 if (!add_dynamic_entry (DT_RELA, 0) 3182 || !add_dynamic_entry (DT_RELASZ, 0) 3183 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela))) 3184 return FALSE; 3185 } 3186 3187 if ((info->flags & DF_TEXTREL) != 0) 3188 { 3189 if (!add_dynamic_entry (DT_TEXTREL, 0)) 3190 return FALSE; 3191 } 3192 } 3193 #undef add_dynamic_entry 3194 3195 return TRUE; 3196 } 3197 3198 /* This function is called via elf_link_hash_traverse if we are 3199 creating a shared object. In the -Bsymbolic case it discards the 3200 space allocated to copy PC relative relocs against symbols which 3201 are defined in regular objects. For the normal shared case, it 3202 discards space for pc-relative relocs that have become local due to 3203 symbol visibility changes. We allocated space for them in the 3204 check_relocs routine, but we won't fill them in in the 3205 relocate_section routine. 3206 3207 We also check whether any of the remaining relocations apply 3208 against a readonly section, and set the DF_TEXTREL flag in this 3209 case. */ 3210 3211 static bfd_boolean 3212 elf_m68k_discard_copies (struct elf_link_hash_entry *h, 3213 void * inf) 3214 { 3215 struct bfd_link_info *info = (struct bfd_link_info *) inf; 3216 struct elf_m68k_pcrel_relocs_copied *s; 3217 3218 if (!SYMBOL_CALLS_LOCAL (info, h)) 3219 { 3220 if ((info->flags & DF_TEXTREL) == 0) 3221 { 3222 /* Look for relocations against read-only sections. */ 3223 for (s = elf_m68k_hash_entry (h)->pcrel_relocs_copied; 3224 s != NULL; 3225 s = s->next) 3226 if ((s->section->flags & SEC_READONLY) != 0) 3227 { 3228 if (info->warn_shared_textrel) 3229 (*_bfd_error_handler) 3230 (_("warning: dynamic relocation to `%s' in readonly section `%s'"), 3231 h->root.root.string, s->section->name); 3232 info->flags |= DF_TEXTREL; 3233 break; 3234 } 3235 } 3236 3237 /* Make sure undefined weak symbols are output as a dynamic symbol 3238 in PIEs. */ 3239 if (h->non_got_ref 3240 && h->root.type == bfd_link_hash_undefweak 3241 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT 3242 && h->dynindx == -1 3243 && !h->forced_local) 3244 { 3245 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 3246 return FALSE; 3247 } 3248 3249 return TRUE; 3250 } 3251 3252 for (s = elf_m68k_hash_entry (h)->pcrel_relocs_copied; 3253 s != NULL; 3254 s = s->next) 3255 s->section->size -= s->count * sizeof (Elf32_External_Rela); 3256 3257 return TRUE; 3258 } 3259 3260 3261 /* Install relocation RELA. */ 3262 3263 static void 3264 elf_m68k_install_rela (bfd *output_bfd, 3265 asection *srela, 3266 Elf_Internal_Rela *rela) 3267 { 3268 bfd_byte *loc; 3269 3270 loc = srela->contents; 3271 loc += srela->reloc_count++ * sizeof (Elf32_External_Rela); 3272 bfd_elf32_swap_reloca_out (output_bfd, rela, loc); 3273 } 3274 3275 /* Find the base offsets for thread-local storage in this object, 3276 for GD/LD and IE/LE respectively. */ 3277 3278 #define DTP_OFFSET 0x8000 3279 #define TP_OFFSET 0x7000 3280 3281 static bfd_vma 3282 dtpoff_base (struct bfd_link_info *info) 3283 { 3284 /* If tls_sec is NULL, we should have signalled an error already. */ 3285 if (elf_hash_table (info)->tls_sec == NULL) 3286 return 0; 3287 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET; 3288 } 3289 3290 static bfd_vma 3291 tpoff_base (struct bfd_link_info *info) 3292 { 3293 /* If tls_sec is NULL, we should have signalled an error already. */ 3294 if (elf_hash_table (info)->tls_sec == NULL) 3295 return 0; 3296 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET; 3297 } 3298 3299 /* Output necessary relocation to handle a symbol during static link. 3300 This function is called from elf_m68k_relocate_section. */ 3301 3302 static void 3303 elf_m68k_init_got_entry_static (struct bfd_link_info *info, 3304 bfd *output_bfd, 3305 enum elf_m68k_reloc_type r_type, 3306 asection *sgot, 3307 bfd_vma got_entry_offset, 3308 bfd_vma relocation) 3309 { 3310 switch (elf_m68k_reloc_got_type (r_type)) 3311 { 3312 case R_68K_GOT32O: 3313 bfd_put_32 (output_bfd, relocation, sgot->contents + got_entry_offset); 3314 break; 3315 3316 case R_68K_TLS_GD32: 3317 /* We know the offset within the module, 3318 put it into the second GOT slot. */ 3319 bfd_put_32 (output_bfd, relocation - dtpoff_base (info), 3320 sgot->contents + got_entry_offset + 4); 3321 /* FALLTHRU */ 3322 3323 case R_68K_TLS_LDM32: 3324 /* Mark it as belonging to module 1, the executable. */ 3325 bfd_put_32 (output_bfd, 1, sgot->contents + got_entry_offset); 3326 break; 3327 3328 case R_68K_TLS_IE32: 3329 bfd_put_32 (output_bfd, relocation - tpoff_base (info), 3330 sgot->contents + got_entry_offset); 3331 break; 3332 3333 default: 3334 BFD_ASSERT (FALSE); 3335 } 3336 } 3337 3338 /* Output necessary relocation to handle a local symbol 3339 during dynamic link. 3340 This function is called either from elf_m68k_relocate_section 3341 or from elf_m68k_finish_dynamic_symbol. */ 3342 3343 static void 3344 elf_m68k_init_got_entry_local_shared (struct bfd_link_info *info, 3345 bfd *output_bfd, 3346 enum elf_m68k_reloc_type r_type, 3347 asection *sgot, 3348 bfd_vma got_entry_offset, 3349 bfd_vma relocation, 3350 asection *srela) 3351 { 3352 Elf_Internal_Rela outrel; 3353 3354 switch (elf_m68k_reloc_got_type (r_type)) 3355 { 3356 case R_68K_GOT32O: 3357 /* Emit RELATIVE relocation to initialize GOT slot 3358 at run-time. */ 3359 outrel.r_info = ELF32_R_INFO (0, R_68K_RELATIVE); 3360 outrel.r_addend = relocation; 3361 break; 3362 3363 case R_68K_TLS_GD32: 3364 /* We know the offset within the module, 3365 put it into the second GOT slot. */ 3366 bfd_put_32 (output_bfd, relocation - dtpoff_base (info), 3367 sgot->contents + got_entry_offset + 4); 3368 /* FALLTHRU */ 3369 3370 case R_68K_TLS_LDM32: 3371 /* We don't know the module number, 3372 create a relocation for it. */ 3373 outrel.r_info = ELF32_R_INFO (0, R_68K_TLS_DTPMOD32); 3374 outrel.r_addend = 0; 3375 break; 3376 3377 case R_68K_TLS_IE32: 3378 /* Emit TPREL relocation to initialize GOT slot 3379 at run-time. */ 3380 outrel.r_info = ELF32_R_INFO (0, R_68K_TLS_TPREL32); 3381 outrel.r_addend = relocation - elf_hash_table (info)->tls_sec->vma; 3382 break; 3383 3384 default: 3385 BFD_ASSERT (FALSE); 3386 } 3387 3388 /* Offset of the GOT entry. */ 3389 outrel.r_offset = (sgot->output_section->vma 3390 + sgot->output_offset 3391 + got_entry_offset); 3392 3393 /* Install one of the above relocations. */ 3394 elf_m68k_install_rela (output_bfd, srela, &outrel); 3395 3396 bfd_put_32 (output_bfd, outrel.r_addend, sgot->contents + got_entry_offset); 3397 } 3398 3399 /* Relocate an M68K ELF section. */ 3400 3401 static bfd_boolean 3402 elf_m68k_relocate_section (bfd *output_bfd, 3403 struct bfd_link_info *info, 3404 bfd *input_bfd, 3405 asection *input_section, 3406 bfd_byte *contents, 3407 Elf_Internal_Rela *relocs, 3408 Elf_Internal_Sym *local_syms, 3409 asection **local_sections) 3410 { 3411 Elf_Internal_Shdr *symtab_hdr; 3412 struct elf_link_hash_entry **sym_hashes; 3413 asection *sgot; 3414 asection *splt; 3415 asection *sreloc; 3416 asection *srela; 3417 struct elf_m68k_got *got; 3418 Elf_Internal_Rela *rel; 3419 Elf_Internal_Rela *relend; 3420 3421 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; 3422 sym_hashes = elf_sym_hashes (input_bfd); 3423 3424 sgot = NULL; 3425 splt = NULL; 3426 sreloc = NULL; 3427 srela = NULL; 3428 3429 got = NULL; 3430 3431 rel = relocs; 3432 relend = relocs + input_section->reloc_count; 3433 for (; rel < relend; rel++) 3434 { 3435 int r_type; 3436 reloc_howto_type *howto; 3437 unsigned long r_symndx; 3438 struct elf_link_hash_entry *h; 3439 Elf_Internal_Sym *sym; 3440 asection *sec; 3441 bfd_vma relocation; 3442 bfd_boolean unresolved_reloc; 3443 bfd_reloc_status_type r; 3444 bfd_boolean resolved_to_zero; 3445 3446 r_type = ELF32_R_TYPE (rel->r_info); 3447 if (r_type < 0 || r_type >= (int) R_68K_max) 3448 { 3449 bfd_set_error (bfd_error_bad_value); 3450 return FALSE; 3451 } 3452 howto = howto_table + r_type; 3453 3454 r_symndx = ELF32_R_SYM (rel->r_info); 3455 3456 h = NULL; 3457 sym = NULL; 3458 sec = NULL; 3459 unresolved_reloc = FALSE; 3460 3461 if (r_symndx < symtab_hdr->sh_info) 3462 { 3463 sym = local_syms + r_symndx; 3464 sec = local_sections[r_symndx]; 3465 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); 3466 } 3467 else 3468 { 3469 bfd_boolean warned, ignored; 3470 3471 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel, 3472 r_symndx, symtab_hdr, sym_hashes, 3473 h, sec, relocation, 3474 unresolved_reloc, warned, ignored); 3475 } 3476 3477 if (sec != NULL && discarded_section (sec)) 3478 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section, 3479 rel, 1, relend, howto, 0, contents); 3480 3481 if (bfd_link_relocatable (info)) 3482 continue; 3483 3484 resolved_to_zero = (h != NULL 3485 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h)); 3486 3487 switch (r_type) 3488 { 3489 case R_68K_GOT8: 3490 case R_68K_GOT16: 3491 case R_68K_GOT32: 3492 /* Relocation is to the address of the entry for this symbol 3493 in the global offset table. */ 3494 if (h != NULL 3495 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0) 3496 { 3497 if (elf_m68k_hash_table (info)->local_gp_p) 3498 { 3499 bfd_vma sgot_output_offset; 3500 bfd_vma got_offset; 3501 3502 sgot = elf_hash_table (info)->sgot; 3503 3504 if (sgot != NULL) 3505 sgot_output_offset = sgot->output_offset; 3506 else 3507 /* In this case we have a reference to 3508 _GLOBAL_OFFSET_TABLE_, but the GOT itself is 3509 empty. 3510 ??? Issue a warning? */ 3511 sgot_output_offset = 0; 3512 3513 if (got == NULL) 3514 { 3515 struct elf_m68k_bfd2got_entry *bfd2got_entry; 3516 3517 bfd2got_entry 3518 = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info), 3519 input_bfd, SEARCH, NULL); 3520 3521 if (bfd2got_entry != NULL) 3522 { 3523 got = bfd2got_entry->got; 3524 BFD_ASSERT (got != NULL); 3525 3526 got_offset = got->offset; 3527 } 3528 else 3529 /* In this case we have a reference to 3530 _GLOBAL_OFFSET_TABLE_, but no other references 3531 accessing any GOT entries. 3532 ??? Issue a warning? */ 3533 got_offset = 0; 3534 } 3535 else 3536 got_offset = got->offset; 3537 3538 /* Adjust GOT pointer to point to the GOT 3539 assigned to input_bfd. */ 3540 rel->r_addend += sgot_output_offset + got_offset; 3541 } 3542 else 3543 BFD_ASSERT (got == NULL || got->offset == 0); 3544 3545 break; 3546 } 3547 /* Fall through. */ 3548 case R_68K_GOT8O: 3549 case R_68K_GOT16O: 3550 case R_68K_GOT32O: 3551 3552 case R_68K_TLS_LDM32: 3553 case R_68K_TLS_LDM16: 3554 case R_68K_TLS_LDM8: 3555 3556 case R_68K_TLS_GD8: 3557 case R_68K_TLS_GD16: 3558 case R_68K_TLS_GD32: 3559 3560 case R_68K_TLS_IE8: 3561 case R_68K_TLS_IE16: 3562 case R_68K_TLS_IE32: 3563 3564 /* Relocation is the offset of the entry for this symbol in 3565 the global offset table. */ 3566 3567 { 3568 struct elf_m68k_got_entry_key key_; 3569 bfd_vma *off_ptr; 3570 bfd_vma off; 3571 3572 sgot = elf_hash_table (info)->sgot; 3573 BFD_ASSERT (sgot != NULL); 3574 3575 if (got == NULL) 3576 { 3577 got = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info), 3578 input_bfd, MUST_FIND, 3579 NULL)->got; 3580 BFD_ASSERT (got != NULL); 3581 } 3582 3583 /* Get GOT offset for this symbol. */ 3584 elf_m68k_init_got_entry_key (&key_, h, input_bfd, r_symndx, 3585 r_type); 3586 off_ptr = &elf_m68k_get_got_entry (got, &key_, MUST_FIND, 3587 NULL)->u.s2.offset; 3588 off = *off_ptr; 3589 3590 /* The offset must always be a multiple of 4. We use 3591 the least significant bit to record whether we have 3592 already generated the necessary reloc. */ 3593 if ((off & 1) != 0) 3594 off &= ~1; 3595 else 3596 { 3597 if (h != NULL 3598 /* @TLSLDM relocations are bounded to the module, in 3599 which the symbol is defined -- not to the symbol 3600 itself. */ 3601 && elf_m68k_reloc_got_type (r_type) != R_68K_TLS_LDM32) 3602 { 3603 bfd_boolean dyn; 3604 3605 dyn = elf_hash_table (info)->dynamic_sections_created; 3606 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 3607 bfd_link_pic (info), 3608 h) 3609 || (bfd_link_pic (info) 3610 && SYMBOL_REFERENCES_LOCAL (info, h)) 3611 || ((ELF_ST_VISIBILITY (h->other) 3612 || resolved_to_zero) 3613 && h->root.type == bfd_link_hash_undefweak)) 3614 { 3615 /* This is actually a static link, or it is a 3616 -Bsymbolic link and the symbol is defined 3617 locally, or the symbol was forced to be local 3618 because of a version file. We must initialize 3619 this entry in the global offset table. Since 3620 the offset must always be a multiple of 4, we 3621 use the least significant bit to record whether 3622 we have initialized it already. 3623 3624 When doing a dynamic link, we create a .rela.got 3625 relocation entry to initialize the value. This 3626 is done in the finish_dynamic_symbol routine. */ 3627 3628 elf_m68k_init_got_entry_static (info, 3629 output_bfd, 3630 r_type, 3631 sgot, 3632 off, 3633 relocation); 3634 3635 *off_ptr |= 1; 3636 } 3637 else 3638 unresolved_reloc = FALSE; 3639 } 3640 else if (bfd_link_pic (info)) /* && h == NULL */ 3641 /* Process local symbol during dynamic link. */ 3642 { 3643 srela = elf_hash_table (info)->srelgot; 3644 BFD_ASSERT (srela != NULL); 3645 3646 elf_m68k_init_got_entry_local_shared (info, 3647 output_bfd, 3648 r_type, 3649 sgot, 3650 off, 3651 relocation, 3652 srela); 3653 3654 *off_ptr |= 1; 3655 } 3656 else /* h == NULL && !bfd_link_pic (info) */ 3657 { 3658 elf_m68k_init_got_entry_static (info, 3659 output_bfd, 3660 r_type, 3661 sgot, 3662 off, 3663 relocation); 3664 3665 *off_ptr |= 1; 3666 } 3667 } 3668 3669 /* We don't use elf_m68k_reloc_got_type in the condition below 3670 because this is the only place where difference between 3671 R_68K_GOTx and R_68K_GOTxO relocations matters. */ 3672 if (r_type == R_68K_GOT32O 3673 || r_type == R_68K_GOT16O 3674 || r_type == R_68K_GOT8O 3675 || elf_m68k_reloc_got_type (r_type) == R_68K_TLS_GD32 3676 || elf_m68k_reloc_got_type (r_type) == R_68K_TLS_LDM32 3677 || elf_m68k_reloc_got_type (r_type) == R_68K_TLS_IE32) 3678 { 3679 /* GOT pointer is adjusted to point to the start/middle 3680 of local GOT. Adjust the offset accordingly. */ 3681 BFD_ASSERT (elf_m68k_hash_table (info)->use_neg_got_offsets_p 3682 || off >= got->offset); 3683 3684 if (elf_m68k_hash_table (info)->local_gp_p) 3685 relocation = off - got->offset; 3686 else 3687 { 3688 BFD_ASSERT (got->offset == 0); 3689 relocation = sgot->output_offset + off; 3690 } 3691 3692 /* This relocation does not use the addend. */ 3693 rel->r_addend = 0; 3694 } 3695 else 3696 relocation = (sgot->output_section->vma + sgot->output_offset 3697 + off); 3698 } 3699 break; 3700 3701 case R_68K_TLS_LDO32: 3702 case R_68K_TLS_LDO16: 3703 case R_68K_TLS_LDO8: 3704 relocation -= dtpoff_base (info); 3705 break; 3706 3707 case R_68K_TLS_LE32: 3708 case R_68K_TLS_LE16: 3709 case R_68K_TLS_LE8: 3710 if (bfd_link_dll (info)) 3711 { 3712 _bfd_error_handler 3713 /* xgettext:c-format */ 3714 (_("%pB(%pA+%#" PRIx64 "): " 3715 "%s relocation not permitted in shared object"), 3716 input_bfd, input_section, (uint64_t) rel->r_offset, 3717 howto->name); 3718 3719 return FALSE; 3720 } 3721 else 3722 relocation -= tpoff_base (info); 3723 3724 break; 3725 3726 case R_68K_PLT8: 3727 case R_68K_PLT16: 3728 case R_68K_PLT32: 3729 /* Relocation is to the entry for this symbol in the 3730 procedure linkage table. */ 3731 3732 /* Resolve a PLTxx reloc against a local symbol directly, 3733 without using the procedure linkage table. */ 3734 if (h == NULL) 3735 break; 3736 3737 if (h->plt.offset == (bfd_vma) -1 3738 || !elf_hash_table (info)->dynamic_sections_created) 3739 { 3740 /* We didn't make a PLT entry for this symbol. This 3741 happens when statically linking PIC code, or when 3742 using -Bsymbolic. */ 3743 break; 3744 } 3745 3746 splt = elf_hash_table (info)->splt; 3747 BFD_ASSERT (splt != NULL); 3748 3749 relocation = (splt->output_section->vma 3750 + splt->output_offset 3751 + h->plt.offset); 3752 unresolved_reloc = FALSE; 3753 break; 3754 3755 case R_68K_PLT8O: 3756 case R_68K_PLT16O: 3757 case R_68K_PLT32O: 3758 /* Relocation is the offset of the entry for this symbol in 3759 the procedure linkage table. */ 3760 BFD_ASSERT (h != NULL && h->plt.offset != (bfd_vma) -1); 3761 3762 splt = elf_hash_table (info)->splt; 3763 BFD_ASSERT (splt != NULL); 3764 3765 relocation = h->plt.offset; 3766 unresolved_reloc = FALSE; 3767 3768 /* This relocation does not use the addend. */ 3769 rel->r_addend = 0; 3770 3771 break; 3772 3773 case R_68K_8: 3774 case R_68K_16: 3775 case R_68K_32: 3776 case R_68K_PC8: 3777 case R_68K_PC16: 3778 case R_68K_PC32: 3779 if (bfd_link_pic (info) 3780 && r_symndx != STN_UNDEF 3781 && (input_section->flags & SEC_ALLOC) != 0 3782 && (h == NULL 3783 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT 3784 && !resolved_to_zero) 3785 || h->root.type != bfd_link_hash_undefweak) 3786 && ((r_type != R_68K_PC8 3787 && r_type != R_68K_PC16 3788 && r_type != R_68K_PC32) 3789 || !SYMBOL_CALLS_LOCAL (info, h))) 3790 { 3791 Elf_Internal_Rela outrel; 3792 bfd_byte *loc; 3793 bfd_boolean skip, relocate; 3794 3795 /* When generating a shared object, these relocations 3796 are copied into the output file to be resolved at run 3797 time. */ 3798 3799 skip = FALSE; 3800 relocate = FALSE; 3801 3802 outrel.r_offset = 3803 _bfd_elf_section_offset (output_bfd, info, input_section, 3804 rel->r_offset); 3805 if (outrel.r_offset == (bfd_vma) -1) 3806 skip = TRUE; 3807 else if (outrel.r_offset == (bfd_vma) -2) 3808 skip = TRUE, relocate = TRUE; 3809 outrel.r_offset += (input_section->output_section->vma 3810 + input_section->output_offset); 3811 3812 if (skip) 3813 memset (&outrel, 0, sizeof outrel); 3814 else if (h != NULL 3815 && h->dynindx != -1 3816 && (r_type == R_68K_PC8 3817 || r_type == R_68K_PC16 3818 || r_type == R_68K_PC32 3819 || !bfd_link_pic (info) 3820 || !SYMBOLIC_BIND (info, h) 3821 || !h->def_regular)) 3822 { 3823 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type); 3824 outrel.r_addend = rel->r_addend; 3825 } 3826 else 3827 { 3828 /* This symbol is local, or marked to become local. */ 3829 outrel.r_addend = relocation + rel->r_addend; 3830 3831 if (r_type == R_68K_32) 3832 { 3833 relocate = TRUE; 3834 outrel.r_info = ELF32_R_INFO (0, R_68K_RELATIVE); 3835 } 3836 else 3837 { 3838 long indx; 3839 3840 if (bfd_is_abs_section (sec)) 3841 indx = 0; 3842 else if (sec == NULL || sec->owner == NULL) 3843 { 3844 bfd_set_error (bfd_error_bad_value); 3845 return FALSE; 3846 } 3847 else 3848 { 3849 asection *osec; 3850 3851 /* We are turning this relocation into one 3852 against a section symbol. It would be 3853 proper to subtract the symbol's value, 3854 osec->vma, from the emitted reloc addend, 3855 but ld.so expects buggy relocs. */ 3856 osec = sec->output_section; 3857 indx = elf_section_data (osec)->dynindx; 3858 if (indx == 0) 3859 { 3860 struct elf_link_hash_table *htab; 3861 htab = elf_hash_table (info); 3862 osec = htab->text_index_section; 3863 indx = elf_section_data (osec)->dynindx; 3864 } 3865 BFD_ASSERT (indx != 0); 3866 } 3867 3868 outrel.r_info = ELF32_R_INFO (indx, r_type); 3869 } 3870 } 3871 3872 sreloc = elf_section_data (input_section)->sreloc; 3873 if (sreloc == NULL) 3874 abort (); 3875 3876 loc = sreloc->contents; 3877 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela); 3878 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); 3879 3880 /* This reloc will be computed at runtime, so there's no 3881 need to do anything now, except for R_68K_32 3882 relocations that have been turned into 3883 R_68K_RELATIVE. */ 3884 if (!relocate) 3885 continue; 3886 } 3887 3888 break; 3889 3890 case R_68K_GNU_VTINHERIT: 3891 case R_68K_GNU_VTENTRY: 3892 /* These are no-ops in the end. */ 3893 continue; 3894 3895 default: 3896 break; 3897 } 3898 3899 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections 3900 because such sections are not SEC_ALLOC and thus ld.so will 3901 not process them. */ 3902 if (unresolved_reloc 3903 && !((input_section->flags & SEC_DEBUGGING) != 0 3904 && h->def_dynamic) 3905 && _bfd_elf_section_offset (output_bfd, info, input_section, 3906 rel->r_offset) != (bfd_vma) -1) 3907 { 3908 _bfd_error_handler 3909 /* xgettext:c-format */ 3910 (_("%pB(%pA+%#" PRIx64 "): " 3911 "unresolvable %s relocation against symbol `%s'"), 3912 input_bfd, 3913 input_section, 3914 (uint64_t) rel->r_offset, 3915 howto->name, 3916 h->root.root.string); 3917 return FALSE; 3918 } 3919 3920 if (r_symndx != STN_UNDEF 3921 && r_type != R_68K_NONE 3922 && (h == NULL 3923 || h->root.type == bfd_link_hash_defined 3924 || h->root.type == bfd_link_hash_defweak)) 3925 { 3926 char sym_type; 3927 3928 sym_type = (sym != NULL) ? ELF32_ST_TYPE (sym->st_info) : h->type; 3929 3930 if (elf_m68k_reloc_tls_p (r_type) != (sym_type == STT_TLS)) 3931 { 3932 const char *name; 3933 3934 if (h != NULL) 3935 name = h->root.root.string; 3936 else 3937 { 3938 name = (bfd_elf_string_from_elf_section 3939 (input_bfd, symtab_hdr->sh_link, sym->st_name)); 3940 if (name == NULL || *name == '\0') 3941 name = bfd_section_name (input_bfd, sec); 3942 } 3943 3944 _bfd_error_handler 3945 ((sym_type == STT_TLS 3946 /* xgettext:c-format */ 3947 ? _("%pB(%pA+%#" PRIx64 "): %s used with TLS symbol %s") 3948 /* xgettext:c-format */ 3949 : _("%pB(%pA+%#" PRIx64 "): %s used with non-TLS symbol %s")), 3950 input_bfd, 3951 input_section, 3952 (uint64_t) rel->r_offset, 3953 howto->name, 3954 name); 3955 } 3956 } 3957 3958 r = _bfd_final_link_relocate (howto, input_bfd, input_section, 3959 contents, rel->r_offset, 3960 relocation, rel->r_addend); 3961 3962 if (r != bfd_reloc_ok) 3963 { 3964 const char *name; 3965 3966 if (h != NULL) 3967 name = h->root.root.string; 3968 else 3969 { 3970 name = bfd_elf_string_from_elf_section (input_bfd, 3971 symtab_hdr->sh_link, 3972 sym->st_name); 3973 if (name == NULL) 3974 return FALSE; 3975 if (*name == '\0') 3976 name = bfd_section_name (input_bfd, sec); 3977 } 3978 3979 if (r == bfd_reloc_overflow) 3980 (*info->callbacks->reloc_overflow) 3981 (info, (h ? &h->root : NULL), name, howto->name, 3982 (bfd_vma) 0, input_bfd, input_section, rel->r_offset); 3983 else 3984 { 3985 _bfd_error_handler 3986 /* xgettext:c-format */ 3987 (_("%pB(%pA+%#" PRIx64 "): reloc against `%s': error %d"), 3988 input_bfd, input_section, 3989 (uint64_t) rel->r_offset, name, (int) r); 3990 return FALSE; 3991 } 3992 } 3993 } 3994 3995 return TRUE; 3996 } 3997 3998 /* Install an M_68K_PC32 relocation against VALUE at offset OFFSET 3999 into section SEC. */ 4000 4001 static void 4002 elf_m68k_install_pc32 (asection *sec, bfd_vma offset, bfd_vma value) 4003 { 4004 /* Make VALUE PC-relative. */ 4005 value -= sec->output_section->vma + offset; 4006 4007 /* Apply any in-place addend. */ 4008 value += bfd_get_32 (sec->owner, sec->contents + offset); 4009 4010 bfd_put_32 (sec->owner, value, sec->contents + offset); 4011 } 4012 4013 /* Finish up dynamic symbol handling. We set the contents of various 4014 dynamic sections here. */ 4015 4016 static bfd_boolean 4017 elf_m68k_finish_dynamic_symbol (bfd *output_bfd, 4018 struct bfd_link_info *info, 4019 struct elf_link_hash_entry *h, 4020 Elf_Internal_Sym *sym) 4021 { 4022 bfd *dynobj; 4023 4024 dynobj = elf_hash_table (info)->dynobj; 4025 4026 if (h->plt.offset != (bfd_vma) -1) 4027 { 4028 const struct elf_m68k_plt_info *plt_info; 4029 asection *splt; 4030 asection *sgot; 4031 asection *srela; 4032 bfd_vma plt_index; 4033 bfd_vma got_offset; 4034 Elf_Internal_Rela rela; 4035 bfd_byte *loc; 4036 4037 /* This symbol has an entry in the procedure linkage table. Set 4038 it up. */ 4039 4040 BFD_ASSERT (h->dynindx != -1); 4041 4042 plt_info = elf_m68k_hash_table (info)->plt_info; 4043 splt = elf_hash_table (info)->splt; 4044 sgot = elf_hash_table (info)->sgotplt; 4045 srela = elf_hash_table (info)->srelplt; 4046 BFD_ASSERT (splt != NULL && sgot != NULL && srela != NULL); 4047 4048 /* Get the index in the procedure linkage table which 4049 corresponds to this symbol. This is the index of this symbol 4050 in all the symbols for which we are making plt entries. The 4051 first entry in the procedure linkage table is reserved. */ 4052 plt_index = (h->plt.offset / plt_info->size) - 1; 4053 4054 /* Get the offset into the .got table of the entry that 4055 corresponds to this function. Each .got entry is 4 bytes. 4056 The first three are reserved. */ 4057 got_offset = (plt_index + 3) * 4; 4058 4059 memcpy (splt->contents + h->plt.offset, 4060 plt_info->symbol_entry, 4061 plt_info->size); 4062 4063 elf_m68k_install_pc32 (splt, h->plt.offset + plt_info->symbol_relocs.got, 4064 (sgot->output_section->vma 4065 + sgot->output_offset 4066 + got_offset)); 4067 4068 bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rela), 4069 splt->contents 4070 + h->plt.offset 4071 + plt_info->symbol_resolve_entry + 2); 4072 4073 elf_m68k_install_pc32 (splt, h->plt.offset + plt_info->symbol_relocs.plt, 4074 splt->output_section->vma); 4075 4076 /* Fill in the entry in the global offset table. */ 4077 bfd_put_32 (output_bfd, 4078 (splt->output_section->vma 4079 + splt->output_offset 4080 + h->plt.offset 4081 + plt_info->symbol_resolve_entry), 4082 sgot->contents + got_offset); 4083 4084 /* Fill in the entry in the .rela.plt section. */ 4085 rela.r_offset = (sgot->output_section->vma 4086 + sgot->output_offset 4087 + got_offset); 4088 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_JMP_SLOT); 4089 rela.r_addend = 0; 4090 loc = srela->contents + plt_index * sizeof (Elf32_External_Rela); 4091 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); 4092 4093 if (!h->def_regular) 4094 { 4095 /* Mark the symbol as undefined, rather than as defined in 4096 the .plt section. Leave the value alone. */ 4097 sym->st_shndx = SHN_UNDEF; 4098 } 4099 } 4100 4101 if (elf_m68k_hash_entry (h)->glist != NULL) 4102 { 4103 asection *sgot; 4104 asection *srela; 4105 struct elf_m68k_got_entry *got_entry; 4106 4107 /* This symbol has an entry in the global offset table. Set it 4108 up. */ 4109 4110 sgot = elf_hash_table (info)->sgot; 4111 srela = elf_hash_table (info)->srelgot; 4112 BFD_ASSERT (sgot != NULL && srela != NULL); 4113 4114 got_entry = elf_m68k_hash_entry (h)->glist; 4115 4116 while (got_entry != NULL) 4117 { 4118 enum elf_m68k_reloc_type r_type; 4119 bfd_vma got_entry_offset; 4120 4121 r_type = got_entry->key_.type; 4122 got_entry_offset = got_entry->u.s2.offset &~ (bfd_vma) 1; 4123 4124 /* If this is a -Bsymbolic link, and the symbol is defined 4125 locally, we just want to emit a RELATIVE reloc. Likewise if 4126 the symbol was forced to be local because of a version file. 4127 The entry in the global offset table already have been 4128 initialized in the relocate_section function. */ 4129 if (bfd_link_pic (info) 4130 && SYMBOL_REFERENCES_LOCAL (info, h)) 4131 { 4132 bfd_vma relocation; 4133 4134 relocation = bfd_get_signed_32 (output_bfd, 4135 (sgot->contents 4136 + got_entry_offset)); 4137 4138 /* Undo TP bias. */ 4139 switch (elf_m68k_reloc_got_type (r_type)) 4140 { 4141 case R_68K_GOT32O: 4142 case R_68K_TLS_LDM32: 4143 break; 4144 4145 case R_68K_TLS_GD32: 4146 /* The value for this relocation is actually put in 4147 the second GOT slot. */ 4148 relocation = bfd_get_signed_32 (output_bfd, 4149 (sgot->contents 4150 + got_entry_offset + 4)); 4151 relocation += dtpoff_base (info); 4152 break; 4153 4154 case R_68K_TLS_IE32: 4155 relocation += tpoff_base (info); 4156 break; 4157 4158 default: 4159 BFD_ASSERT (FALSE); 4160 } 4161 4162 elf_m68k_init_got_entry_local_shared (info, 4163 output_bfd, 4164 r_type, 4165 sgot, 4166 got_entry_offset, 4167 relocation, 4168 srela); 4169 } 4170 else 4171 { 4172 Elf_Internal_Rela rela; 4173 4174 /* Put zeros to GOT slots that will be initialized 4175 at run-time. */ 4176 { 4177 bfd_vma n_slots; 4178 4179 n_slots = elf_m68k_reloc_got_n_slots (got_entry->key_.type); 4180 while (n_slots--) 4181 bfd_put_32 (output_bfd, (bfd_vma) 0, 4182 (sgot->contents + got_entry_offset 4183 + 4 * n_slots)); 4184 } 4185 4186 rela.r_addend = 0; 4187 rela.r_offset = (sgot->output_section->vma 4188 + sgot->output_offset 4189 + got_entry_offset); 4190 4191 switch (elf_m68k_reloc_got_type (r_type)) 4192 { 4193 case R_68K_GOT32O: 4194 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_GLOB_DAT); 4195 elf_m68k_install_rela (output_bfd, srela, &rela); 4196 break; 4197 4198 case R_68K_TLS_GD32: 4199 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_TLS_DTPMOD32); 4200 elf_m68k_install_rela (output_bfd, srela, &rela); 4201 4202 rela.r_offset += 4; 4203 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_TLS_DTPREL32); 4204 elf_m68k_install_rela (output_bfd, srela, &rela); 4205 break; 4206 4207 case R_68K_TLS_IE32: 4208 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_TLS_TPREL32); 4209 elf_m68k_install_rela (output_bfd, srela, &rela); 4210 break; 4211 4212 default: 4213 BFD_ASSERT (FALSE); 4214 break; 4215 } 4216 } 4217 4218 got_entry = got_entry->u.s2.next; 4219 } 4220 } 4221 4222 if (h->needs_copy) 4223 { 4224 asection *s; 4225 Elf_Internal_Rela rela; 4226 bfd_byte *loc; 4227 4228 /* This symbol needs a copy reloc. Set it up. */ 4229 4230 BFD_ASSERT (h->dynindx != -1 4231 && (h->root.type == bfd_link_hash_defined 4232 || h->root.type == bfd_link_hash_defweak)); 4233 4234 s = bfd_get_linker_section (dynobj, ".rela.bss"); 4235 BFD_ASSERT (s != NULL); 4236 4237 rela.r_offset = (h->root.u.def.value 4238 + h->root.u.def.section->output_section->vma 4239 + h->root.u.def.section->output_offset); 4240 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_COPY); 4241 rela.r_addend = 0; 4242 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela); 4243 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); 4244 } 4245 4246 return TRUE; 4247 } 4248 4249 /* Finish up the dynamic sections. */ 4250 4251 static bfd_boolean 4252 elf_m68k_finish_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info) 4253 { 4254 bfd *dynobj; 4255 asection *sgot; 4256 asection *sdyn; 4257 4258 dynobj = elf_hash_table (info)->dynobj; 4259 4260 sgot = elf_hash_table (info)->sgotplt; 4261 BFD_ASSERT (sgot != NULL); 4262 sdyn = bfd_get_linker_section (dynobj, ".dynamic"); 4263 4264 if (elf_hash_table (info)->dynamic_sections_created) 4265 { 4266 asection *splt; 4267 Elf32_External_Dyn *dyncon, *dynconend; 4268 4269 splt = elf_hash_table (info)->splt; 4270 BFD_ASSERT (splt != NULL && sdyn != NULL); 4271 4272 dyncon = (Elf32_External_Dyn *) sdyn->contents; 4273 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size); 4274 for (; dyncon < dynconend; dyncon++) 4275 { 4276 Elf_Internal_Dyn dyn; 4277 asection *s; 4278 4279 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn); 4280 4281 switch (dyn.d_tag) 4282 { 4283 default: 4284 break; 4285 4286 case DT_PLTGOT: 4287 s = elf_hash_table (info)->sgotplt; 4288 goto get_vma; 4289 case DT_JMPREL: 4290 s = elf_hash_table (info)->srelplt; 4291 get_vma: 4292 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; 4293 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); 4294 break; 4295 4296 case DT_PLTRELSZ: 4297 s = elf_hash_table (info)->srelplt; 4298 dyn.d_un.d_val = s->size; 4299 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); 4300 break; 4301 } 4302 } 4303 4304 /* Fill in the first entry in the procedure linkage table. */ 4305 if (splt->size > 0) 4306 { 4307 const struct elf_m68k_plt_info *plt_info; 4308 4309 plt_info = elf_m68k_hash_table (info)->plt_info; 4310 memcpy (splt->contents, plt_info->plt0_entry, plt_info->size); 4311 4312 elf_m68k_install_pc32 (splt, plt_info->plt0_relocs.got4, 4313 (sgot->output_section->vma 4314 + sgot->output_offset 4315 + 4)); 4316 4317 elf_m68k_install_pc32 (splt, plt_info->plt0_relocs.got8, 4318 (sgot->output_section->vma 4319 + sgot->output_offset 4320 + 8)); 4321 4322 elf_section_data (splt->output_section)->this_hdr.sh_entsize 4323 = plt_info->size; 4324 } 4325 } 4326 4327 /* Fill in the first three entries in the global offset table. */ 4328 if (sgot->size > 0) 4329 { 4330 if (sdyn == NULL) 4331 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents); 4332 else 4333 bfd_put_32 (output_bfd, 4334 sdyn->output_section->vma + sdyn->output_offset, 4335 sgot->contents); 4336 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4); 4337 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8); 4338 } 4339 4340 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4; 4341 4342 return TRUE; 4343 } 4344 4345 /* Given a .data section and a .emreloc in-memory section, store 4346 relocation information into the .emreloc section which can be 4347 used at runtime to relocate the section. This is called by the 4348 linker when the --embedded-relocs switch is used. This is called 4349 after the add_symbols entry point has been called for all the 4350 objects, and before the final_link entry point is called. */ 4351 4352 bfd_boolean 4353 bfd_m68k_elf32_create_embedded_relocs (bfd *abfd, struct bfd_link_info *info, 4354 asection *datasec, asection *relsec, 4355 char **errmsg) 4356 { 4357 Elf_Internal_Shdr *symtab_hdr; 4358 Elf_Internal_Sym *isymbuf = NULL; 4359 Elf_Internal_Rela *internal_relocs = NULL; 4360 Elf_Internal_Rela *irel, *irelend; 4361 bfd_byte *p; 4362 bfd_size_type amt; 4363 4364 BFD_ASSERT (! bfd_link_relocatable (info)); 4365 4366 *errmsg = NULL; 4367 4368 if (datasec->reloc_count == 0) 4369 return TRUE; 4370 4371 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 4372 4373 /* Get a copy of the native relocations. */ 4374 internal_relocs = (_bfd_elf_link_read_relocs 4375 (abfd, datasec, NULL, (Elf_Internal_Rela *) NULL, 4376 info->keep_memory)); 4377 if (internal_relocs == NULL) 4378 goto error_return; 4379 4380 amt = (bfd_size_type) datasec->reloc_count * 12; 4381 relsec->contents = (bfd_byte *) bfd_alloc (abfd, amt); 4382 if (relsec->contents == NULL) 4383 goto error_return; 4384 4385 p = relsec->contents; 4386 4387 irelend = internal_relocs + datasec->reloc_count; 4388 for (irel = internal_relocs; irel < irelend; irel++, p += 12) 4389 { 4390 asection *targetsec; 4391 4392 /* We are going to write a four byte longword into the runtime 4393 reloc section. The longword will be the address in the data 4394 section which must be relocated. It is followed by the name 4395 of the target section NUL-padded or truncated to 8 4396 characters. */ 4397 4398 /* We can only relocate absolute longword relocs at run time. */ 4399 if (ELF32_R_TYPE (irel->r_info) != (int) R_68K_32) 4400 { 4401 *errmsg = _("unsupported relocation type"); 4402 bfd_set_error (bfd_error_bad_value); 4403 goto error_return; 4404 } 4405 4406 /* Get the target section referred to by the reloc. */ 4407 if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info) 4408 { 4409 /* A local symbol. */ 4410 Elf_Internal_Sym *isym; 4411 4412 /* Read this BFD's local symbols if we haven't done so already. */ 4413 if (isymbuf == NULL) 4414 { 4415 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; 4416 if (isymbuf == NULL) 4417 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr, 4418 symtab_hdr->sh_info, 0, 4419 NULL, NULL, NULL); 4420 if (isymbuf == NULL) 4421 goto error_return; 4422 } 4423 4424 isym = isymbuf + ELF32_R_SYM (irel->r_info); 4425 targetsec = bfd_section_from_elf_index (abfd, isym->st_shndx); 4426 } 4427 else 4428 { 4429 unsigned long indx; 4430 struct elf_link_hash_entry *h; 4431 4432 /* An external symbol. */ 4433 indx = ELF32_R_SYM (irel->r_info) - symtab_hdr->sh_info; 4434 h = elf_sym_hashes (abfd)[indx]; 4435 BFD_ASSERT (h != NULL); 4436 if (h->root.type == bfd_link_hash_defined 4437 || h->root.type == bfd_link_hash_defweak) 4438 targetsec = h->root.u.def.section; 4439 else 4440 targetsec = NULL; 4441 } 4442 4443 bfd_put_32 (abfd, irel->r_offset + datasec->output_offset, p); 4444 memset (p + 4, 0, 8); 4445 if (targetsec != NULL) 4446 strncpy ((char *) p + 4, targetsec->output_section->name, 8); 4447 } 4448 4449 if (isymbuf != NULL && symtab_hdr->contents != (unsigned char *) isymbuf) 4450 free (isymbuf); 4451 if (internal_relocs != NULL 4452 && elf_section_data (datasec)->relocs != internal_relocs) 4453 free (internal_relocs); 4454 return TRUE; 4455 4456 error_return: 4457 if (isymbuf != NULL && symtab_hdr->contents != (unsigned char *) isymbuf) 4458 free (isymbuf); 4459 if (internal_relocs != NULL 4460 && elf_section_data (datasec)->relocs != internal_relocs) 4461 free (internal_relocs); 4462 return FALSE; 4463 } 4464 4465 /* Set target options. */ 4466 4467 void 4468 bfd_elf_m68k_set_target_options (struct bfd_link_info *info, int got_handling) 4469 { 4470 struct elf_m68k_link_hash_table *htab; 4471 bfd_boolean use_neg_got_offsets_p; 4472 bfd_boolean allow_multigot_p; 4473 bfd_boolean local_gp_p; 4474 4475 switch (got_handling) 4476 { 4477 case 0: 4478 /* --got=single. */ 4479 local_gp_p = FALSE; 4480 use_neg_got_offsets_p = FALSE; 4481 allow_multigot_p = FALSE; 4482 break; 4483 4484 case 1: 4485 /* --got=negative. */ 4486 local_gp_p = TRUE; 4487 use_neg_got_offsets_p = TRUE; 4488 allow_multigot_p = FALSE; 4489 break; 4490 4491 case 2: 4492 /* --got=multigot. */ 4493 local_gp_p = TRUE; 4494 use_neg_got_offsets_p = TRUE; 4495 allow_multigot_p = TRUE; 4496 break; 4497 4498 default: 4499 BFD_ASSERT (FALSE); 4500 return; 4501 } 4502 4503 htab = elf_m68k_hash_table (info); 4504 if (htab != NULL) 4505 { 4506 htab->local_gp_p = local_gp_p; 4507 htab->use_neg_got_offsets_p = use_neg_got_offsets_p; 4508 htab->allow_multigot_p = allow_multigot_p; 4509 } 4510 } 4511 4512 static enum elf_reloc_type_class 4513 elf32_m68k_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED, 4514 const asection *rel_sec ATTRIBUTE_UNUSED, 4515 const Elf_Internal_Rela *rela) 4516 { 4517 switch ((int) ELF32_R_TYPE (rela->r_info)) 4518 { 4519 case R_68K_RELATIVE: 4520 return reloc_class_relative; 4521 case R_68K_JMP_SLOT: 4522 return reloc_class_plt; 4523 case R_68K_COPY: 4524 return reloc_class_copy; 4525 default: 4526 return reloc_class_normal; 4527 } 4528 } 4529 4530 /* Return address for Ith PLT stub in section PLT, for relocation REL 4531 or (bfd_vma) -1 if it should not be included. */ 4532 4533 static bfd_vma 4534 elf_m68k_plt_sym_val (bfd_vma i, const asection *plt, 4535 const arelent *rel ATTRIBUTE_UNUSED) 4536 { 4537 return plt->vma + (i + 1) * elf_m68k_get_plt_info (plt->owner)->size; 4538 } 4539 4540 /* Support for core dump NOTE sections. */ 4541 4542 static bfd_boolean 4543 elf_m68k_grok_prstatus (bfd *abfd, Elf_Internal_Note *note) 4544 { 4545 int offset; 4546 size_t size; 4547 4548 switch (note->descsz) 4549 { 4550 default: 4551 return FALSE; 4552 4553 case 154: /* Linux/m68k */ 4554 /* pr_cursig */ 4555 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12); 4556 4557 /* pr_pid */ 4558 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 22); 4559 4560 /* pr_reg */ 4561 offset = 70; 4562 size = 80; 4563 4564 break; 4565 } 4566 4567 /* Make a ".reg/999" section. */ 4568 return _bfd_elfcore_make_pseudosection (abfd, ".reg", 4569 size, note->descpos + offset); 4570 } 4571 4572 static bfd_boolean 4573 elf_m68k_grok_psinfo (bfd *abfd, Elf_Internal_Note *note) 4574 { 4575 switch (note->descsz) 4576 { 4577 default: 4578 return FALSE; 4579 4580 case 124: /* Linux/m68k elf_prpsinfo. */ 4581 elf_tdata (abfd)->core->pid 4582 = bfd_get_32 (abfd, note->descdata + 12); 4583 elf_tdata (abfd)->core->program 4584 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16); 4585 elf_tdata (abfd)->core->command 4586 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80); 4587 } 4588 4589 /* Note that for some reason, a spurious space is tacked 4590 onto the end of the args in some (at least one anyway) 4591 implementations, so strip it off if it exists. */ 4592 { 4593 char *command = elf_tdata (abfd)->core->command; 4594 int n = strlen (command); 4595 4596 if (n > 0 && command[n - 1] == ' ') 4597 command[n - 1] = '\0'; 4598 } 4599 4600 return TRUE; 4601 } 4602 4603 #define TARGET_BIG_SYM m68k_elf32_vec 4604 #define TARGET_BIG_NAME "elf32-m68k" 4605 #define ELF_MACHINE_CODE EM_68K 4606 #define ELF_MAXPAGESIZE 0x2000 4607 #define elf_backend_create_dynamic_sections \ 4608 _bfd_elf_create_dynamic_sections 4609 #define bfd_elf32_bfd_link_hash_table_create \ 4610 elf_m68k_link_hash_table_create 4611 #define bfd_elf32_bfd_final_link bfd_elf_final_link 4612 4613 #define elf_backend_check_relocs elf_m68k_check_relocs 4614 #define elf_backend_always_size_sections \ 4615 elf_m68k_always_size_sections 4616 #define elf_backend_adjust_dynamic_symbol \ 4617 elf_m68k_adjust_dynamic_symbol 4618 #define elf_backend_size_dynamic_sections \ 4619 elf_m68k_size_dynamic_sections 4620 #define elf_backend_final_write_processing elf_m68k_final_write_processing 4621 #define elf_backend_init_index_section _bfd_elf_init_1_index_section 4622 #define elf_backend_relocate_section elf_m68k_relocate_section 4623 #define elf_backend_finish_dynamic_symbol \ 4624 elf_m68k_finish_dynamic_symbol 4625 #define elf_backend_finish_dynamic_sections \ 4626 elf_m68k_finish_dynamic_sections 4627 #define elf_backend_gc_mark_hook elf_m68k_gc_mark_hook 4628 #define elf_backend_copy_indirect_symbol elf_m68k_copy_indirect_symbol 4629 #define bfd_elf32_bfd_merge_private_bfd_data \ 4630 elf32_m68k_merge_private_bfd_data 4631 #define bfd_elf32_bfd_set_private_flags \ 4632 elf32_m68k_set_private_flags 4633 #define bfd_elf32_bfd_print_private_bfd_data \ 4634 elf32_m68k_print_private_bfd_data 4635 #define elf_backend_reloc_type_class elf32_m68k_reloc_type_class 4636 #define elf_backend_plt_sym_val elf_m68k_plt_sym_val 4637 #define elf_backend_object_p elf32_m68k_object_p 4638 #define elf_backend_grok_prstatus elf_m68k_grok_prstatus 4639 #define elf_backend_grok_psinfo elf_m68k_grok_psinfo 4640 4641 #define elf_backend_can_gc_sections 1 4642 #define elf_backend_can_refcount 1 4643 #define elf_backend_want_got_plt 1 4644 #define elf_backend_plt_readonly 1 4645 #define elf_backend_want_plt_sym 0 4646 #define elf_backend_got_header_size 12 4647 #define elf_backend_rela_normal 1 4648 #define elf_backend_dtrel_excludes_plt 1 4649 4650 #define elf_backend_linux_prpsinfo32_ugid16 TRUE 4651 4652 #include "elf32-target.h" 4653