xref: /netbsd-src/external/gpl3/binutils/dist/bfd/elf32-m68k.c (revision 5dd36a3bc8bf2a9dec29ceb6349550414570c447)
1 /* Motorola 68k series support for 32-bit ELF
2    Copyright (C) 1993-2018 Free Software Foundation, Inc.
3 
4    This file is part of BFD, the Binary File Descriptor library.
5 
6    This program is free software; you can redistribute it and/or modify
7    it under the terms of the GNU General Public License as published by
8    the Free Software Foundation; either version 3 of the License, or
9    (at your option) any later version.
10 
11    This program is distributed in the hope that it will be useful,
12    but WITHOUT ANY WARRANTY; without even the implied warranty of
13    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14    GNU General Public License for more details.
15 
16    You should have received a copy of the GNU General Public License
17    along with this program; if not, write to the Free Software
18    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19    MA 02110-1301, USA.  */
20 
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26 #include "elf/m68k.h"
27 #include "opcode/m68k.h"
28 
29 static bfd_boolean
30 elf_m68k_discard_copies (struct elf_link_hash_entry *, void *);
31 
32 static reloc_howto_type howto_table[] =
33 {
34   HOWTO(R_68K_NONE,	  0, 3, 0, FALSE,0, complain_overflow_dont,	bfd_elf_generic_reloc, "R_68K_NONE",	  FALSE, 0, 0x00000000,FALSE),
35   HOWTO(R_68K_32,	  0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_32",	  FALSE, 0, 0xffffffff,FALSE),
36   HOWTO(R_68K_16,	  0, 1,16, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_16",	  FALSE, 0, 0x0000ffff,FALSE),
37   HOWTO(R_68K_8,	  0, 0, 8, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_8",	  FALSE, 0, 0x000000ff,FALSE),
38   HOWTO(R_68K_PC32,	  0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PC32",	  FALSE, 0, 0xffffffff,TRUE),
39   HOWTO(R_68K_PC16,	  0, 1,16, TRUE, 0, complain_overflow_signed,	bfd_elf_generic_reloc, "R_68K_PC16",	  FALSE, 0, 0x0000ffff,TRUE),
40   HOWTO(R_68K_PC8,	  0, 0, 8, TRUE, 0, complain_overflow_signed,	bfd_elf_generic_reloc, "R_68K_PC8",	  FALSE, 0, 0x000000ff,TRUE),
41   HOWTO(R_68K_GOT32,	  0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_GOT32",	  FALSE, 0, 0xffffffff,TRUE),
42   HOWTO(R_68K_GOT16,	  0, 1,16, TRUE, 0, complain_overflow_signed,	bfd_elf_generic_reloc, "R_68K_GOT16",	  FALSE, 0, 0x0000ffff,TRUE),
43   HOWTO(R_68K_GOT8,	  0, 0, 8, TRUE, 0, complain_overflow_signed,	bfd_elf_generic_reloc, "R_68K_GOT8",	  FALSE, 0, 0x000000ff,TRUE),
44   HOWTO(R_68K_GOT32O,	  0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_GOT32O",	  FALSE, 0, 0xffffffff,FALSE),
45   HOWTO(R_68K_GOT16O,	  0, 1,16, FALSE,0, complain_overflow_signed,	bfd_elf_generic_reloc, "R_68K_GOT16O",	  FALSE, 0, 0x0000ffff,FALSE),
46   HOWTO(R_68K_GOT8O,	  0, 0, 8, FALSE,0, complain_overflow_signed,	bfd_elf_generic_reloc, "R_68K_GOT8O",	  FALSE, 0, 0x000000ff,FALSE),
47   HOWTO(R_68K_PLT32,	  0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PLT32",	  FALSE, 0, 0xffffffff,TRUE),
48   HOWTO(R_68K_PLT16,	  0, 1,16, TRUE, 0, complain_overflow_signed,	bfd_elf_generic_reloc, "R_68K_PLT16",	  FALSE, 0, 0x0000ffff,TRUE),
49   HOWTO(R_68K_PLT8,	  0, 0, 8, TRUE, 0, complain_overflow_signed,	bfd_elf_generic_reloc, "R_68K_PLT8",	  FALSE, 0, 0x000000ff,TRUE),
50   HOWTO(R_68K_PLT32O,	  0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PLT32O",	  FALSE, 0, 0xffffffff,FALSE),
51   HOWTO(R_68K_PLT16O,	  0, 1,16, FALSE,0, complain_overflow_signed,	bfd_elf_generic_reloc, "R_68K_PLT16O",	  FALSE, 0, 0x0000ffff,FALSE),
52   HOWTO(R_68K_PLT8O,	  0, 0, 8, FALSE,0, complain_overflow_signed,	bfd_elf_generic_reloc, "R_68K_PLT8O",	  FALSE, 0, 0x000000ff,FALSE),
53   HOWTO(R_68K_COPY,	  0, 0, 0, FALSE,0, complain_overflow_dont,	bfd_elf_generic_reloc, "R_68K_COPY",	  FALSE, 0, 0xffffffff,FALSE),
54   HOWTO(R_68K_GLOB_DAT,	  0, 2,32, FALSE,0, complain_overflow_dont,	bfd_elf_generic_reloc, "R_68K_GLOB_DAT",  FALSE, 0, 0xffffffff,FALSE),
55   HOWTO(R_68K_JMP_SLOT,	  0, 2,32, FALSE,0, complain_overflow_dont,	bfd_elf_generic_reloc, "R_68K_JMP_SLOT",  FALSE, 0, 0xffffffff,FALSE),
56   HOWTO(R_68K_RELATIVE,	  0, 2,32, FALSE,0, complain_overflow_dont,	bfd_elf_generic_reloc, "R_68K_RELATIVE",  FALSE, 0, 0xffffffff,FALSE),
57   /* GNU extension to record C++ vtable hierarchy.  */
58   HOWTO (R_68K_GNU_VTINHERIT,	/* type */
59 	 0,			/* rightshift */
60 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
61 	 0,			/* bitsize */
62 	 FALSE,			/* pc_relative */
63 	 0,			/* bitpos */
64 	 complain_overflow_dont, /* complain_on_overflow */
65 	 NULL,			/* special_function */
66 	 "R_68K_GNU_VTINHERIT",	/* name */
67 	 FALSE,			/* partial_inplace */
68 	 0,			/* src_mask */
69 	 0,			/* dst_mask */
70 	 FALSE),
71   /* GNU extension to record C++ vtable member usage.  */
72   HOWTO (R_68K_GNU_VTENTRY,	/* type */
73 	 0,			/* rightshift */
74 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
75 	 0,			/* bitsize */
76 	 FALSE,			/* pc_relative */
77 	 0,			/* bitpos */
78 	 complain_overflow_dont, /* complain_on_overflow */
79 	 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
80 	 "R_68K_GNU_VTENTRY",	/* name */
81 	 FALSE,			/* partial_inplace */
82 	 0,			/* src_mask */
83 	 0,			/* dst_mask */
84 	 FALSE),
85 
86   /* TLS general dynamic variable reference.  */
87   HOWTO (R_68K_TLS_GD32,	/* type */
88 	 0,			/* rightshift */
89 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
90 	 32,			/* bitsize */
91 	 FALSE,			/* pc_relative */
92 	 0,			/* bitpos */
93 	 complain_overflow_bitfield, /* complain_on_overflow */
94 	 bfd_elf_generic_reloc, /* special_function */
95 	 "R_68K_TLS_GD32",	/* name */
96 	 FALSE,			/* partial_inplace */
97 	 0,			/* src_mask */
98 	 0xffffffff,		/* dst_mask */
99 	 FALSE),		/* pcrel_offset */
100 
101   HOWTO (R_68K_TLS_GD16,	/* type */
102 	 0,			/* rightshift */
103 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
104 	 16,			/* bitsize */
105 	 FALSE,			/* pc_relative */
106 	 0,			/* bitpos */
107 	 complain_overflow_signed, /* complain_on_overflow */
108 	 bfd_elf_generic_reloc, /* special_function */
109 	 "R_68K_TLS_GD16",	/* name */
110 	 FALSE,			/* partial_inplace */
111 	 0,			/* src_mask */
112 	 0x0000ffff,		/* dst_mask */
113 	 FALSE),		/* pcrel_offset */
114 
115   HOWTO (R_68K_TLS_GD8,		/* type */
116 	 0,			/* rightshift */
117 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
118 	 8,			/* bitsize */
119 	 FALSE,			/* pc_relative */
120 	 0,			/* bitpos */
121 	 complain_overflow_signed, /* complain_on_overflow */
122 	 bfd_elf_generic_reloc, /* special_function */
123 	 "R_68K_TLS_GD8",	/* name */
124 	 FALSE,			/* partial_inplace */
125 	 0,			/* src_mask */
126 	 0x000000ff,		/* dst_mask */
127 	 FALSE),		/* pcrel_offset */
128 
129   /* TLS local dynamic variable reference.  */
130   HOWTO (R_68K_TLS_LDM32,	/* type */
131 	 0,			/* rightshift */
132 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
133 	 32,			/* bitsize */
134 	 FALSE,			/* pc_relative */
135 	 0,			/* bitpos */
136 	 complain_overflow_bitfield, /* complain_on_overflow */
137 	 bfd_elf_generic_reloc, /* special_function */
138 	 "R_68K_TLS_LDM32",	/* name */
139 	 FALSE,			/* partial_inplace */
140 	 0,			/* src_mask */
141 	 0xffffffff,		/* dst_mask */
142 	 FALSE),		/* pcrel_offset */
143 
144   HOWTO (R_68K_TLS_LDM16,	/* type */
145 	 0,			/* rightshift */
146 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
147 	 16,			/* bitsize */
148 	 FALSE,			/* pc_relative */
149 	 0,			/* bitpos */
150 	 complain_overflow_signed, /* complain_on_overflow */
151 	 bfd_elf_generic_reloc, /* special_function */
152 	 "R_68K_TLS_LDM16",	/* name */
153 	 FALSE,			/* partial_inplace */
154 	 0,			/* src_mask */
155 	 0x0000ffff,		/* dst_mask */
156 	 FALSE),		/* pcrel_offset */
157 
158   HOWTO (R_68K_TLS_LDM8,		/* type */
159 	 0,			/* rightshift */
160 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
161 	 8,			/* bitsize */
162 	 FALSE,			/* pc_relative */
163 	 0,			/* bitpos */
164 	 complain_overflow_signed, /* complain_on_overflow */
165 	 bfd_elf_generic_reloc, /* special_function */
166 	 "R_68K_TLS_LDM8",	/* name */
167 	 FALSE,			/* partial_inplace */
168 	 0,			/* src_mask */
169 	 0x000000ff,		/* dst_mask */
170 	 FALSE),		/* pcrel_offset */
171 
172   HOWTO (R_68K_TLS_LDO32,	/* type */
173 	 0,			/* rightshift */
174 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
175 	 32,			/* bitsize */
176 	 FALSE,			/* pc_relative */
177 	 0,			/* bitpos */
178 	 complain_overflow_bitfield, /* complain_on_overflow */
179 	 bfd_elf_generic_reloc, /* special_function */
180 	 "R_68K_TLS_LDO32",	/* name */
181 	 FALSE,			/* partial_inplace */
182 	 0,			/* src_mask */
183 	 0xffffffff,		/* dst_mask */
184 	 FALSE),		/* pcrel_offset */
185 
186   HOWTO (R_68K_TLS_LDO16,	/* type */
187 	 0,			/* rightshift */
188 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
189 	 16,			/* bitsize */
190 	 FALSE,			/* pc_relative */
191 	 0,			/* bitpos */
192 	 complain_overflow_signed, /* complain_on_overflow */
193 	 bfd_elf_generic_reloc, /* special_function */
194 	 "R_68K_TLS_LDO16",	/* name */
195 	 FALSE,			/* partial_inplace */
196 	 0,			/* src_mask */
197 	 0x0000ffff,		/* dst_mask */
198 	 FALSE),		/* pcrel_offset */
199 
200   HOWTO (R_68K_TLS_LDO8,		/* type */
201 	 0,			/* rightshift */
202 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
203 	 8,			/* bitsize */
204 	 FALSE,			/* pc_relative */
205 	 0,			/* bitpos */
206 	 complain_overflow_signed, /* complain_on_overflow */
207 	 bfd_elf_generic_reloc, /* special_function */
208 	 "R_68K_TLS_LDO8",	/* name */
209 	 FALSE,			/* partial_inplace */
210 	 0,			/* src_mask */
211 	 0x000000ff,		/* dst_mask */
212 	 FALSE),		/* pcrel_offset */
213 
214   /* TLS initial execution variable reference.  */
215   HOWTO (R_68K_TLS_IE32,	/* type */
216 	 0,			/* rightshift */
217 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
218 	 32,			/* bitsize */
219 	 FALSE,			/* pc_relative */
220 	 0,			/* bitpos */
221 	 complain_overflow_bitfield, /* complain_on_overflow */
222 	 bfd_elf_generic_reloc, /* special_function */
223 	 "R_68K_TLS_IE32",	/* name */
224 	 FALSE,			/* partial_inplace */
225 	 0,			/* src_mask */
226 	 0xffffffff,		/* dst_mask */
227 	 FALSE),		/* pcrel_offset */
228 
229   HOWTO (R_68K_TLS_IE16,	/* type */
230 	 0,			/* rightshift */
231 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
232 	 16,			/* bitsize */
233 	 FALSE,			/* pc_relative */
234 	 0,			/* bitpos */
235 	 complain_overflow_signed, /* complain_on_overflow */
236 	 bfd_elf_generic_reloc, /* special_function */
237 	 "R_68K_TLS_IE16",	/* name */
238 	 FALSE,			/* partial_inplace */
239 	 0,			/* src_mask */
240 	 0x0000ffff,		/* dst_mask */
241 	 FALSE),		/* pcrel_offset */
242 
243   HOWTO (R_68K_TLS_IE8,		/* type */
244 	 0,			/* rightshift */
245 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
246 	 8,			/* bitsize */
247 	 FALSE,			/* pc_relative */
248 	 0,			/* bitpos */
249 	 complain_overflow_signed, /* complain_on_overflow */
250 	 bfd_elf_generic_reloc, /* special_function */
251 	 "R_68K_TLS_IE8",	/* name */
252 	 FALSE,			/* partial_inplace */
253 	 0,			/* src_mask */
254 	 0x000000ff,		/* dst_mask */
255 	 FALSE),		/* pcrel_offset */
256 
257   /* TLS local execution variable reference.  */
258   HOWTO (R_68K_TLS_LE32,	/* type */
259 	 0,			/* rightshift */
260 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
261 	 32,			/* bitsize */
262 	 FALSE,			/* pc_relative */
263 	 0,			/* bitpos */
264 	 complain_overflow_bitfield, /* complain_on_overflow */
265 	 bfd_elf_generic_reloc, /* special_function */
266 	 "R_68K_TLS_LE32",	/* name */
267 	 FALSE,			/* partial_inplace */
268 	 0,			/* src_mask */
269 	 0xffffffff,		/* dst_mask */
270 	 FALSE),		/* pcrel_offset */
271 
272   HOWTO (R_68K_TLS_LE16,	/* type */
273 	 0,			/* rightshift */
274 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
275 	 16,			/* bitsize */
276 	 FALSE,			/* pc_relative */
277 	 0,			/* bitpos */
278 	 complain_overflow_signed, /* complain_on_overflow */
279 	 bfd_elf_generic_reloc, /* special_function */
280 	 "R_68K_TLS_LE16",	/* name */
281 	 FALSE,			/* partial_inplace */
282 	 0,			/* src_mask */
283 	 0x0000ffff,		/* dst_mask */
284 	 FALSE),		/* pcrel_offset */
285 
286   HOWTO (R_68K_TLS_LE8,		/* type */
287 	 0,			/* rightshift */
288 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
289 	 8,			/* bitsize */
290 	 FALSE,			/* pc_relative */
291 	 0,			/* bitpos */
292 	 complain_overflow_signed, /* complain_on_overflow */
293 	 bfd_elf_generic_reloc, /* special_function */
294 	 "R_68K_TLS_LE8",	/* name */
295 	 FALSE,			/* partial_inplace */
296 	 0,			/* src_mask */
297 	 0x000000ff,		/* dst_mask */
298 	 FALSE),		/* pcrel_offset */
299 
300   /* TLS GD/LD dynamic relocations.  */
301   HOWTO (R_68K_TLS_DTPMOD32,	/* type */
302 	 0,			/* rightshift */
303 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
304 	 32,			/* bitsize */
305 	 FALSE,			/* pc_relative */
306 	 0,			/* bitpos */
307 	 complain_overflow_dont, /* complain_on_overflow */
308 	 bfd_elf_generic_reloc, /* special_function */
309 	 "R_68K_TLS_DTPMOD32",	/* name */
310 	 FALSE,			/* partial_inplace */
311 	 0,			/* src_mask */
312 	 0xffffffff,		/* dst_mask */
313 	 FALSE),		/* pcrel_offset */
314 
315   HOWTO (R_68K_TLS_DTPREL32,	/* type */
316 	 0,			/* rightshift */
317 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
318 	 32,			/* bitsize */
319 	 FALSE,			/* pc_relative */
320 	 0,			/* bitpos */
321 	 complain_overflow_dont, /* complain_on_overflow */
322 	 bfd_elf_generic_reloc, /* special_function */
323 	 "R_68K_TLS_DTPREL32",	/* name */
324 	 FALSE,			/* partial_inplace */
325 	 0,			/* src_mask */
326 	 0xffffffff,		/* dst_mask */
327 	 FALSE),		/* pcrel_offset */
328 
329   HOWTO (R_68K_TLS_TPREL32,	/* type */
330 	 0,			/* rightshift */
331 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
332 	 32,			/* bitsize */
333 	 FALSE,			/* pc_relative */
334 	 0,			/* bitpos */
335 	 complain_overflow_dont, /* complain_on_overflow */
336 	 bfd_elf_generic_reloc, /* special_function */
337 	 "R_68K_TLS_TPREL32",	/* name */
338 	 FALSE,			/* partial_inplace */
339 	 0,			/* src_mask */
340 	 0xffffffff,		/* dst_mask */
341 	 FALSE),		/* pcrel_offset */
342 };
343 
344 static bfd_boolean
345 rtype_to_howto (bfd *abfd, arelent *cache_ptr, Elf_Internal_Rela *dst)
346 {
347   unsigned int indx = ELF32_R_TYPE (dst->r_info);
348 
349   if (indx >= (unsigned int) R_68K_max)
350     {
351       /* xgettext:c-format */
352       _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
353 			  abfd, indx);
354       bfd_set_error (bfd_error_bad_value);
355       return FALSE;
356     }
357   cache_ptr->howto = &howto_table[indx];
358   return TRUE;
359 }
360 
361 #define elf_info_to_howto rtype_to_howto
362 
363 static const struct
364 {
365   bfd_reloc_code_real_type bfd_val;
366   int elf_val;
367 }
368   reloc_map[] =
369 {
370   { BFD_RELOC_NONE, R_68K_NONE },
371   { BFD_RELOC_32, R_68K_32 },
372   { BFD_RELOC_16, R_68K_16 },
373   { BFD_RELOC_8, R_68K_8 },
374   { BFD_RELOC_32_PCREL, R_68K_PC32 },
375   { BFD_RELOC_16_PCREL, R_68K_PC16 },
376   { BFD_RELOC_8_PCREL, R_68K_PC8 },
377   { BFD_RELOC_32_GOT_PCREL, R_68K_GOT32 },
378   { BFD_RELOC_16_GOT_PCREL, R_68K_GOT16 },
379   { BFD_RELOC_8_GOT_PCREL, R_68K_GOT8 },
380   { BFD_RELOC_32_GOTOFF, R_68K_GOT32O },
381   { BFD_RELOC_16_GOTOFF, R_68K_GOT16O },
382   { BFD_RELOC_8_GOTOFF, R_68K_GOT8O },
383   { BFD_RELOC_32_PLT_PCREL, R_68K_PLT32 },
384   { BFD_RELOC_16_PLT_PCREL, R_68K_PLT16 },
385   { BFD_RELOC_8_PLT_PCREL, R_68K_PLT8 },
386   { BFD_RELOC_32_PLTOFF, R_68K_PLT32O },
387   { BFD_RELOC_16_PLTOFF, R_68K_PLT16O },
388   { BFD_RELOC_8_PLTOFF, R_68K_PLT8O },
389   { BFD_RELOC_NONE, R_68K_COPY },
390   { BFD_RELOC_68K_GLOB_DAT, R_68K_GLOB_DAT },
391   { BFD_RELOC_68K_JMP_SLOT, R_68K_JMP_SLOT },
392   { BFD_RELOC_68K_RELATIVE, R_68K_RELATIVE },
393   { BFD_RELOC_CTOR, R_68K_32 },
394   { BFD_RELOC_VTABLE_INHERIT, R_68K_GNU_VTINHERIT },
395   { BFD_RELOC_VTABLE_ENTRY, R_68K_GNU_VTENTRY },
396   { BFD_RELOC_68K_TLS_GD32, R_68K_TLS_GD32 },
397   { BFD_RELOC_68K_TLS_GD16, R_68K_TLS_GD16 },
398   { BFD_RELOC_68K_TLS_GD8, R_68K_TLS_GD8 },
399   { BFD_RELOC_68K_TLS_LDM32, R_68K_TLS_LDM32 },
400   { BFD_RELOC_68K_TLS_LDM16, R_68K_TLS_LDM16 },
401   { BFD_RELOC_68K_TLS_LDM8, R_68K_TLS_LDM8 },
402   { BFD_RELOC_68K_TLS_LDO32, R_68K_TLS_LDO32 },
403   { BFD_RELOC_68K_TLS_LDO16, R_68K_TLS_LDO16 },
404   { BFD_RELOC_68K_TLS_LDO8, R_68K_TLS_LDO8 },
405   { BFD_RELOC_68K_TLS_IE32, R_68K_TLS_IE32 },
406   { BFD_RELOC_68K_TLS_IE16, R_68K_TLS_IE16 },
407   { BFD_RELOC_68K_TLS_IE8, R_68K_TLS_IE8 },
408   { BFD_RELOC_68K_TLS_LE32, R_68K_TLS_LE32 },
409   { BFD_RELOC_68K_TLS_LE16, R_68K_TLS_LE16 },
410   { BFD_RELOC_68K_TLS_LE8, R_68K_TLS_LE8 },
411 };
412 
413 static reloc_howto_type *
414 reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
415 		   bfd_reloc_code_real_type code)
416 {
417   unsigned int i;
418   for (i = 0; i < sizeof (reloc_map) / sizeof (reloc_map[0]); i++)
419     {
420       if (reloc_map[i].bfd_val == code)
421 	return &howto_table[reloc_map[i].elf_val];
422     }
423   return 0;
424 }
425 
426 static reloc_howto_type *
427 reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, const char *r_name)
428 {
429   unsigned int i;
430 
431   for (i = 0; i < sizeof (howto_table) / sizeof (howto_table[0]); i++)
432     if (howto_table[i].name != NULL
433 	&& strcasecmp (howto_table[i].name, r_name) == 0)
434       return &howto_table[i];
435 
436   return NULL;
437 }
438 
439 #define bfd_elf32_bfd_reloc_type_lookup reloc_type_lookup
440 #define bfd_elf32_bfd_reloc_name_lookup reloc_name_lookup
441 #define ELF_ARCH bfd_arch_m68k
442 #define ELF_TARGET_ID M68K_ELF_DATA
443 
444 /* Functions for the m68k ELF linker.  */
445 
446 /* The name of the dynamic interpreter.  This is put in the .interp
447    section.  */
448 
449 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1"
450 
451 /* Describes one of the various PLT styles.  */
452 
453 struct elf_m68k_plt_info
454 {
455   /* The size of each PLT entry.  */
456   bfd_vma size;
457 
458   /* The template for the first PLT entry.  */
459   const bfd_byte *plt0_entry;
460 
461   /* Offsets of fields in PLT0_ENTRY that require R_68K_PC32 relocations.
462      The comments by each member indicate the value that the relocation
463      is against.  */
464   struct {
465     unsigned int got4; /* .got + 4 */
466     unsigned int got8; /* .got + 8 */
467   } plt0_relocs;
468 
469   /* The template for a symbol's PLT entry.  */
470   const bfd_byte *symbol_entry;
471 
472   /* Offsets of fields in SYMBOL_ENTRY that require R_68K_PC32 relocations.
473      The comments by each member indicate the value that the relocation
474      is against.  */
475   struct {
476     unsigned int got; /* the symbol's .got.plt entry */
477     unsigned int plt; /* .plt */
478   } symbol_relocs;
479 
480   /* The offset of the resolver stub from the start of SYMBOL_ENTRY.
481      The stub starts with "move.l #relocoffset,%d0".  */
482   bfd_vma symbol_resolve_entry;
483 };
484 
485 /* The size in bytes of an entry in the procedure linkage table.  */
486 
487 #define PLT_ENTRY_SIZE 20
488 
489 /* The first entry in a procedure linkage table looks like this.  See
490    the SVR4 ABI m68k supplement to see how this works.  */
491 
492 static const bfd_byte elf_m68k_plt0_entry[PLT_ENTRY_SIZE] =
493 {
494   0x2f, 0x3b, 0x01, 0x70, /* move.l (%pc,addr),-(%sp) */
495   0, 0, 0, 2,		  /* + (.got + 4) - . */
496   0x4e, 0xfb, 0x01, 0x71, /* jmp ([%pc,addr]) */
497   0, 0, 0, 2,		  /* + (.got + 8) - . */
498   0, 0, 0, 0		  /* pad out to 20 bytes.  */
499 };
500 
501 /* Subsequent entries in a procedure linkage table look like this.  */
502 
503 static const bfd_byte elf_m68k_plt_entry[PLT_ENTRY_SIZE] =
504 {
505   0x4e, 0xfb, 0x01, 0x71, /* jmp ([%pc,symbol@GOTPC]) */
506   0, 0, 0, 2,		  /* + (.got.plt entry) - . */
507   0x2f, 0x3c,		  /* move.l #offset,-(%sp) */
508   0, 0, 0, 0,		  /* + reloc index */
509   0x60, 0xff,		  /* bra.l .plt */
510   0, 0, 0, 0		  /* + .plt - . */
511 };
512 
513 static const struct elf_m68k_plt_info elf_m68k_plt_info =
514 {
515   PLT_ENTRY_SIZE,
516   elf_m68k_plt0_entry, { 4, 12 },
517   elf_m68k_plt_entry, { 4, 16 }, 8
518 };
519 
520 #define ISAB_PLT_ENTRY_SIZE 24
521 
522 static const bfd_byte elf_isab_plt0_entry[ISAB_PLT_ENTRY_SIZE] =
523 {
524   0x20, 0x3c,		  /* move.l #offset,%d0 */
525   0, 0, 0, 0,		  /* + (.got + 4) - . */
526   0x2f, 0x3b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l),-(%sp) */
527   0x20, 0x3c,		  /* move.l #offset,%d0 */
528   0, 0, 0, 0,		  /* + (.got + 8) - . */
529   0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
530   0x4e, 0xd0,		  /* jmp (%a0) */
531   0x4e, 0x71		  /* nop */
532 };
533 
534 /* Subsequent entries in a procedure linkage table look like this.  */
535 
536 static const bfd_byte elf_isab_plt_entry[ISAB_PLT_ENTRY_SIZE] =
537 {
538   0x20, 0x3c,		  /* move.l #offset,%d0 */
539   0, 0, 0, 0,		  /* + (.got.plt entry) - . */
540   0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
541   0x4e, 0xd0,		  /* jmp (%a0) */
542   0x2f, 0x3c,		  /* move.l #offset,-(%sp) */
543   0, 0, 0, 0,		  /* + reloc index */
544   0x60, 0xff,		  /* bra.l .plt */
545   0, 0, 0, 0		  /* + .plt - . */
546 };
547 
548 static const struct elf_m68k_plt_info elf_isab_plt_info =
549 {
550   ISAB_PLT_ENTRY_SIZE,
551   elf_isab_plt0_entry, { 2, 12 },
552   elf_isab_plt_entry, { 2, 20 }, 12
553 };
554 
555 #define ISAC_PLT_ENTRY_SIZE 24
556 
557 static const bfd_byte elf_isac_plt0_entry[ISAC_PLT_ENTRY_SIZE] =
558 {
559   0x20, 0x3c,		  /* move.l #offset,%d0 */
560   0, 0, 0, 0,		  /* replaced with .got + 4 - . */
561   0x2e, 0xbb, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l),(%sp) */
562   0x20, 0x3c,		  /* move.l #offset,%d0 */
563   0, 0, 0, 0,		  /* replaced with .got + 8 - . */
564   0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
565   0x4e, 0xd0,		  /* jmp (%a0) */
566   0x4e, 0x71		  /* nop */
567 };
568 
569 /* Subsequent entries in a procedure linkage table look like this.  */
570 
571 static const bfd_byte elf_isac_plt_entry[ISAC_PLT_ENTRY_SIZE] =
572 {
573   0x20, 0x3c,		  /* move.l #offset,%d0 */
574   0, 0, 0, 0,		  /* replaced with (.got entry) - . */
575   0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
576   0x4e, 0xd0,		  /* jmp (%a0) */
577   0x2f, 0x3c,		  /* move.l #offset,-(%sp) */
578   0, 0, 0, 0,		  /* replaced with offset into relocation table */
579   0x61, 0xff,		  /* bsr.l .plt */
580   0, 0, 0, 0		  /* replaced with .plt - . */
581 };
582 
583 static const struct elf_m68k_plt_info elf_isac_plt_info =
584 {
585   ISAC_PLT_ENTRY_SIZE,
586   elf_isac_plt0_entry, { 2, 12},
587   elf_isac_plt_entry, { 2, 20 }, 12
588 };
589 
590 #define CPU32_PLT_ENTRY_SIZE 24
591 /* Procedure linkage table entries for the cpu32 */
592 static const bfd_byte elf_cpu32_plt0_entry[CPU32_PLT_ENTRY_SIZE] =
593 {
594   0x2f, 0x3b, 0x01, 0x70, /* move.l (%pc,addr),-(%sp) */
595   0, 0, 0, 2,		  /* + (.got + 4) - . */
596   0x22, 0x7b, 0x01, 0x70, /* moveal %pc@(0xc), %a1 */
597   0, 0, 0, 2,		  /* + (.got + 8) - . */
598   0x4e, 0xd1,		  /* jmp %a1@ */
599   0, 0, 0, 0,		  /* pad out to 24 bytes.  */
600   0, 0
601 };
602 
603 static const bfd_byte elf_cpu32_plt_entry[CPU32_PLT_ENTRY_SIZE] =
604 {
605   0x22, 0x7b, 0x01, 0x70,  /* moveal %pc@(0xc), %a1 */
606   0, 0, 0, 2,		   /* + (.got.plt entry) - . */
607   0x4e, 0xd1,		   /* jmp %a1@ */
608   0x2f, 0x3c,		   /* move.l #offset,-(%sp) */
609   0, 0, 0, 0,		   /* + reloc index */
610   0x60, 0xff,		   /* bra.l .plt */
611   0, 0, 0, 0,		   /* + .plt - . */
612   0, 0
613 };
614 
615 static const struct elf_m68k_plt_info elf_cpu32_plt_info =
616 {
617   CPU32_PLT_ENTRY_SIZE,
618   elf_cpu32_plt0_entry, { 4, 12 },
619   elf_cpu32_plt_entry, { 4, 18 }, 10
620 };
621 
622 /* The m68k linker needs to keep track of the number of relocs that it
623    decides to copy in check_relocs for each symbol.  This is so that it
624    can discard PC relative relocs if it doesn't need them when linking
625    with -Bsymbolic.  We store the information in a field extending the
626    regular ELF linker hash table.  */
627 
628 /* This structure keeps track of the number of PC relative relocs we have
629    copied for a given symbol.  */
630 
631 struct elf_m68k_pcrel_relocs_copied
632 {
633   /* Next section.  */
634   struct elf_m68k_pcrel_relocs_copied *next;
635   /* A section in dynobj.  */
636   asection *section;
637   /* Number of relocs copied in this section.  */
638   bfd_size_type count;
639 };
640 
641 /* Forward declaration.  */
642 struct elf_m68k_got_entry;
643 
644 /* m68k ELF linker hash entry.  */
645 
646 struct elf_m68k_link_hash_entry
647 {
648   struct elf_link_hash_entry root;
649 
650   /* Number of PC relative relocs copied for this symbol.  */
651   struct elf_m68k_pcrel_relocs_copied *pcrel_relocs_copied;
652 
653   /* Key to got_entries.  */
654   unsigned long got_entry_key;
655 
656   /* List of GOT entries for this symbol.  This list is build during
657      offset finalization and is used within elf_m68k_finish_dynamic_symbol
658      to traverse all GOT entries for a particular symbol.
659 
660      ??? We could've used root.got.glist field instead, but having
661      a separate field is cleaner.  */
662   struct elf_m68k_got_entry *glist;
663 };
664 
665 #define elf_m68k_hash_entry(ent) ((struct elf_m68k_link_hash_entry *) (ent))
666 
667 /* Key part of GOT entry in hashtable.  */
668 struct elf_m68k_got_entry_key
669 {
670   /* BFD in which this symbol was defined.  NULL for global symbols.  */
671   const bfd *bfd;
672 
673   /* Symbol index.  Either local symbol index or h->got_entry_key.  */
674   unsigned long symndx;
675 
676   /* Type is one of R_68K_GOT{8, 16, 32}O, R_68K_TLS_GD{8, 16, 32},
677      R_68K_TLS_LDM{8, 16, 32} or R_68K_TLS_IE{8, 16, 32}.
678 
679      From perspective of hashtable key, only elf_m68k_got_reloc_type (type)
680      matters.  That is, we distinguish between, say, R_68K_GOT16O
681      and R_68K_GOT32O when allocating offsets, but they are considered to be
682      the same when searching got->entries.  */
683   enum elf_m68k_reloc_type type;
684 };
685 
686 /* Size of the GOT offset suitable for relocation.  */
687 enum elf_m68k_got_offset_size { R_8, R_16, R_32, R_LAST };
688 
689 /* Entry of the GOT.  */
690 struct elf_m68k_got_entry
691 {
692   /* GOT entries are put into a got->entries hashtable.  This is the key.  */
693   struct elf_m68k_got_entry_key key_;
694 
695   /* GOT entry data.  We need s1 before offset finalization and s2 after.  */
696   union
697   {
698     struct
699     {
700       /* Number of times this entry is referenced.  */
701       bfd_vma refcount;
702     } s1;
703 
704     struct
705     {
706       /* Offset from the start of .got section.  To calculate offset relative
707 	 to GOT pointer one should subtract got->offset from this value.  */
708       bfd_vma offset;
709 
710       /* Pointer to the next GOT entry for this global symbol.
711 	 Symbols have at most one entry in one GOT, but might
712 	 have entries in more than one GOT.
713 	 Root of this list is h->glist.
714 	 NULL for local symbols.  */
715       struct elf_m68k_got_entry *next;
716     } s2;
717   } u;
718 };
719 
720 /* Return representative type for relocation R_TYPE.
721    This is used to avoid enumerating many relocations in comparisons,
722    switches etc.  */
723 
724 static enum elf_m68k_reloc_type
725 elf_m68k_reloc_got_type (enum elf_m68k_reloc_type r_type)
726 {
727   switch (r_type)
728     {
729       /* In most cases R_68K_GOTx relocations require the very same
730 	 handling as R_68K_GOT32O relocation.  In cases when we need
731 	 to distinguish between the two, we use explicitly compare against
732 	 r_type.  */
733     case R_68K_GOT32:
734     case R_68K_GOT16:
735     case R_68K_GOT8:
736     case R_68K_GOT32O:
737     case R_68K_GOT16O:
738     case R_68K_GOT8O:
739       return R_68K_GOT32O;
740 
741     case R_68K_TLS_GD32:
742     case R_68K_TLS_GD16:
743     case R_68K_TLS_GD8:
744       return R_68K_TLS_GD32;
745 
746     case R_68K_TLS_LDM32:
747     case R_68K_TLS_LDM16:
748     case R_68K_TLS_LDM8:
749       return R_68K_TLS_LDM32;
750 
751     case R_68K_TLS_IE32:
752     case R_68K_TLS_IE16:
753     case R_68K_TLS_IE8:
754       return R_68K_TLS_IE32;
755 
756     default:
757       BFD_ASSERT (FALSE);
758       return 0;
759     }
760 }
761 
762 /* Return size of the GOT entry offset for relocation R_TYPE.  */
763 
764 static enum elf_m68k_got_offset_size
765 elf_m68k_reloc_got_offset_size (enum elf_m68k_reloc_type r_type)
766 {
767   switch (r_type)
768     {
769     case R_68K_GOT32: case R_68K_GOT16: case R_68K_GOT8:
770     case R_68K_GOT32O: case R_68K_TLS_GD32: case R_68K_TLS_LDM32:
771     case R_68K_TLS_IE32:
772       return R_32;
773 
774     case R_68K_GOT16O: case R_68K_TLS_GD16: case R_68K_TLS_LDM16:
775     case R_68K_TLS_IE16:
776       return R_16;
777 
778     case R_68K_GOT8O: case R_68K_TLS_GD8: case R_68K_TLS_LDM8:
779     case R_68K_TLS_IE8:
780       return R_8;
781 
782     default:
783       BFD_ASSERT (FALSE);
784       return 0;
785     }
786 }
787 
788 /* Return number of GOT entries we need to allocate in GOT for
789    relocation R_TYPE.  */
790 
791 static bfd_vma
792 elf_m68k_reloc_got_n_slots (enum elf_m68k_reloc_type r_type)
793 {
794   switch (elf_m68k_reloc_got_type (r_type))
795     {
796     case R_68K_GOT32O:
797     case R_68K_TLS_IE32:
798       return 1;
799 
800     case R_68K_TLS_GD32:
801     case R_68K_TLS_LDM32:
802       return 2;
803 
804     default:
805       BFD_ASSERT (FALSE);
806       return 0;
807     }
808 }
809 
810 /* Return TRUE if relocation R_TYPE is a TLS one.  */
811 
812 static bfd_boolean
813 elf_m68k_reloc_tls_p (enum elf_m68k_reloc_type r_type)
814 {
815   switch (r_type)
816     {
817     case R_68K_TLS_GD32: case R_68K_TLS_GD16: case R_68K_TLS_GD8:
818     case R_68K_TLS_LDM32: case R_68K_TLS_LDM16: case R_68K_TLS_LDM8:
819     case R_68K_TLS_LDO32: case R_68K_TLS_LDO16: case R_68K_TLS_LDO8:
820     case R_68K_TLS_IE32: case R_68K_TLS_IE16: case R_68K_TLS_IE8:
821     case R_68K_TLS_LE32: case R_68K_TLS_LE16: case R_68K_TLS_LE8:
822     case R_68K_TLS_DTPMOD32: case R_68K_TLS_DTPREL32: case R_68K_TLS_TPREL32:
823       return TRUE;
824 
825     default:
826       return FALSE;
827     }
828 }
829 
830 /* Data structure representing a single GOT.  */
831 struct elf_m68k_got
832 {
833   /* Hashtable of 'struct elf_m68k_got_entry's.
834      Starting size of this table is the maximum number of
835      R_68K_GOT8O entries.  */
836   htab_t entries;
837 
838   /* Number of R_x slots in this GOT.  Some (e.g., TLS) entries require
839      several GOT slots.
840 
841      n_slots[R_8] is the count of R_8 slots in this GOT.
842      n_slots[R_16] is the cumulative count of R_8 and R_16 slots
843      in this GOT.
844      n_slots[R_32] is the cumulative count of R_8, R_16 and R_32 slots
845      in this GOT.  This is the total number of slots.  */
846   bfd_vma n_slots[R_LAST];
847 
848   /* Number of local (entry->key_.h == NULL) slots in this GOT.
849      This is only used to properly calculate size of .rela.got section;
850      see elf_m68k_partition_multi_got.  */
851   bfd_vma local_n_slots;
852 
853   /* Offset of this GOT relative to beginning of .got section.  */
854   bfd_vma offset;
855 };
856 
857 /* BFD and its GOT.  This is an entry in multi_got->bfd2got hashtable.  */
858 struct elf_m68k_bfd2got_entry
859 {
860   /* BFD.  */
861   const bfd *bfd;
862 
863   /* Assigned GOT.  Before partitioning multi-GOT each BFD has its own
864      GOT structure.  After partitioning several BFD's might [and often do]
865      share a single GOT.  */
866   struct elf_m68k_got *got;
867 };
868 
869 /* The main data structure holding all the pieces.  */
870 struct elf_m68k_multi_got
871 {
872   /* Hashtable mapping each BFD to its GOT.  If a BFD doesn't have an entry
873      here, then it doesn't need a GOT (this includes the case of a BFD
874      having an empty GOT).
875 
876      ??? This hashtable can be replaced by an array indexed by bfd->id.  */
877   htab_t bfd2got;
878 
879   /* Next symndx to assign a global symbol.
880      h->got_entry_key is initialized from this counter.  */
881   unsigned long global_symndx;
882 };
883 
884 /* m68k ELF linker hash table.  */
885 
886 struct elf_m68k_link_hash_table
887 {
888   struct elf_link_hash_table root;
889 
890   /* Small local sym cache.  */
891   struct sym_cache sym_cache;
892 
893   /* The PLT format used by this link, or NULL if the format has not
894      yet been chosen.  */
895   const struct elf_m68k_plt_info *plt_info;
896 
897   /* True, if GP is loaded within each function which uses it.
898      Set to TRUE when GOT negative offsets or multi-GOT is enabled.  */
899   bfd_boolean local_gp_p;
900 
901   /* Switch controlling use of negative offsets to double the size of GOTs.  */
902   bfd_boolean use_neg_got_offsets_p;
903 
904   /* Switch controlling generation of multiple GOTs.  */
905   bfd_boolean allow_multigot_p;
906 
907   /* Multi-GOT data structure.  */
908   struct elf_m68k_multi_got multi_got_;
909 };
910 
911 /* Get the m68k ELF linker hash table from a link_info structure.  */
912 
913 #define elf_m68k_hash_table(p) \
914   (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
915   == M68K_ELF_DATA ? ((struct elf_m68k_link_hash_table *) ((p)->hash)) : NULL)
916 
917 /* Shortcut to multi-GOT data.  */
918 #define elf_m68k_multi_got(INFO) (&elf_m68k_hash_table (INFO)->multi_got_)
919 
920 /* Create an entry in an m68k ELF linker hash table.  */
921 
922 static struct bfd_hash_entry *
923 elf_m68k_link_hash_newfunc (struct bfd_hash_entry *entry,
924 			    struct bfd_hash_table *table,
925 			    const char *string)
926 {
927   struct bfd_hash_entry *ret = entry;
928 
929   /* Allocate the structure if it has not already been allocated by a
930      subclass.  */
931   if (ret == NULL)
932     ret = bfd_hash_allocate (table,
933 			     sizeof (struct elf_m68k_link_hash_entry));
934   if (ret == NULL)
935     return ret;
936 
937   /* Call the allocation method of the superclass.  */
938   ret = _bfd_elf_link_hash_newfunc (ret, table, string);
939   if (ret != NULL)
940     {
941       elf_m68k_hash_entry (ret)->pcrel_relocs_copied = NULL;
942       elf_m68k_hash_entry (ret)->got_entry_key = 0;
943       elf_m68k_hash_entry (ret)->glist = NULL;
944     }
945 
946   return ret;
947 }
948 
949 /* Destroy an m68k ELF linker hash table.  */
950 
951 static void
952 elf_m68k_link_hash_table_free (bfd *obfd)
953 {
954   struct elf_m68k_link_hash_table *htab;
955 
956   htab = (struct elf_m68k_link_hash_table *) obfd->link.hash;
957 
958   if (htab->multi_got_.bfd2got != NULL)
959     {
960       htab_delete (htab->multi_got_.bfd2got);
961       htab->multi_got_.bfd2got = NULL;
962     }
963   _bfd_elf_link_hash_table_free (obfd);
964 }
965 
966 /* Create an m68k ELF linker hash table.  */
967 
968 static struct bfd_link_hash_table *
969 elf_m68k_link_hash_table_create (bfd *abfd)
970 {
971   struct elf_m68k_link_hash_table *ret;
972   bfd_size_type amt = sizeof (struct elf_m68k_link_hash_table);
973 
974   ret = (struct elf_m68k_link_hash_table *) bfd_zmalloc (amt);
975   if (ret == (struct elf_m68k_link_hash_table *) NULL)
976     return NULL;
977 
978   if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
979 				      elf_m68k_link_hash_newfunc,
980 				      sizeof (struct elf_m68k_link_hash_entry),
981 				      M68K_ELF_DATA))
982     {
983       free (ret);
984       return NULL;
985     }
986   ret->root.root.hash_table_free = elf_m68k_link_hash_table_free;
987 
988   ret->multi_got_.global_symndx = 1;
989 
990   return &ret->root.root;
991 }
992 
993 /* Set the right machine number.  */
994 
995 static bfd_boolean
996 elf32_m68k_object_p (bfd *abfd)
997 {
998   unsigned int mach = 0;
999   unsigned features = 0;
1000   flagword eflags = elf_elfheader (abfd)->e_flags;
1001 
1002   if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
1003     features |= m68000;
1004   else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
1005     features |= cpu32;
1006   else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1007     features |= fido_a;
1008   else
1009     {
1010       switch (eflags & EF_M68K_CF_ISA_MASK)
1011 	{
1012 	case EF_M68K_CF_ISA_A_NODIV:
1013 	  features |= mcfisa_a;
1014 	  break;
1015 	case EF_M68K_CF_ISA_A:
1016 	  features |= mcfisa_a|mcfhwdiv;
1017 	  break;
1018 	case EF_M68K_CF_ISA_A_PLUS:
1019 	  features |= mcfisa_a|mcfisa_aa|mcfhwdiv|mcfusp;
1020 	  break;
1021 	case EF_M68K_CF_ISA_B_NOUSP:
1022 	  features |= mcfisa_a|mcfisa_b|mcfhwdiv;
1023 	  break;
1024 	case EF_M68K_CF_ISA_B:
1025 	  features |= mcfisa_a|mcfisa_b|mcfhwdiv|mcfusp;
1026 	  break;
1027 	case EF_M68K_CF_ISA_C:
1028 	  features |= mcfisa_a|mcfisa_c|mcfhwdiv|mcfusp;
1029 	  break;
1030 	case EF_M68K_CF_ISA_C_NODIV:
1031 	  features |= mcfisa_a|mcfisa_c|mcfusp;
1032 	  break;
1033 	}
1034       switch (eflags & EF_M68K_CF_MAC_MASK)
1035 	{
1036 	case EF_M68K_CF_MAC:
1037 	  features |= mcfmac;
1038 	  break;
1039 	case EF_M68K_CF_EMAC:
1040 	  features |= mcfemac;
1041 	  break;
1042 	}
1043       if (eflags & EF_M68K_CF_FLOAT)
1044 	features |= cfloat;
1045     }
1046 
1047   mach = bfd_m68k_features_to_mach (features);
1048   bfd_default_set_arch_mach (abfd, bfd_arch_m68k, mach);
1049 
1050   return TRUE;
1051 }
1052 
1053 /* Somewhat reverse of elf32_m68k_object_p, this sets the e_flag
1054    field based on the machine number.  */
1055 
1056 static void
1057 elf_m68k_final_write_processing (bfd *abfd,
1058 				 bfd_boolean linker ATTRIBUTE_UNUSED)
1059 {
1060   int mach = bfd_get_mach (abfd);
1061   unsigned long e_flags = elf_elfheader (abfd)->e_flags;
1062 
1063   if (!e_flags)
1064     {
1065       unsigned int arch_mask;
1066 
1067       arch_mask = bfd_m68k_mach_to_features (mach);
1068 
1069       if (arch_mask & m68000)
1070 	e_flags = EF_M68K_M68000;
1071       else if (arch_mask & cpu32)
1072 	e_flags = EF_M68K_CPU32;
1073       else if (arch_mask & fido_a)
1074 	e_flags = EF_M68K_FIDO;
1075       else
1076 	{
1077 	  switch (arch_mask
1078 		  & (mcfisa_a | mcfisa_aa | mcfisa_b | mcfisa_c | mcfhwdiv | mcfusp))
1079 	    {
1080 	    case mcfisa_a:
1081 	      e_flags |= EF_M68K_CF_ISA_A_NODIV;
1082 	      break;
1083 	    case mcfisa_a | mcfhwdiv:
1084 	      e_flags |= EF_M68K_CF_ISA_A;
1085 	      break;
1086 	    case mcfisa_a | mcfisa_aa | mcfhwdiv | mcfusp:
1087 	      e_flags |= EF_M68K_CF_ISA_A_PLUS;
1088 	      break;
1089 	    case mcfisa_a | mcfisa_b | mcfhwdiv:
1090 	      e_flags |= EF_M68K_CF_ISA_B_NOUSP;
1091 	      break;
1092 	    case mcfisa_a | mcfisa_b | mcfhwdiv | mcfusp:
1093 	      e_flags |= EF_M68K_CF_ISA_B;
1094 	      break;
1095 	    case mcfisa_a | mcfisa_c | mcfhwdiv | mcfusp:
1096 	      e_flags |= EF_M68K_CF_ISA_C;
1097 	      break;
1098 	    case mcfisa_a | mcfisa_c | mcfusp:
1099 	      e_flags |= EF_M68K_CF_ISA_C_NODIV;
1100 	      break;
1101 	    }
1102 	  if (arch_mask & mcfmac)
1103 	    e_flags |= EF_M68K_CF_MAC;
1104 	  else if (arch_mask & mcfemac)
1105 	    e_flags |= EF_M68K_CF_EMAC;
1106 	  if (arch_mask & cfloat)
1107 	    e_flags |= EF_M68K_CF_FLOAT | EF_M68K_CFV4E;
1108 	}
1109       elf_elfheader (abfd)->e_flags = e_flags;
1110     }
1111 }
1112 
1113 /* Keep m68k-specific flags in the ELF header.  */
1114 
1115 static bfd_boolean
1116 elf32_m68k_set_private_flags (bfd *abfd, flagword flags)
1117 {
1118   elf_elfheader (abfd)->e_flags = flags;
1119   elf_flags_init (abfd) = TRUE;
1120   return TRUE;
1121 }
1122 
1123 /* Merge backend specific data from an object file to the output
1124    object file when linking.  */
1125 static bfd_boolean
1126 elf32_m68k_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
1127 {
1128   bfd *obfd = info->output_bfd;
1129   flagword out_flags;
1130   flagword in_flags;
1131   flagword out_isa;
1132   flagword in_isa;
1133   const bfd_arch_info_type *arch_info;
1134 
1135   if (   bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1136       || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1137     return FALSE;
1138 
1139   /* Get the merged machine.  This checks for incompatibility between
1140      Coldfire & non-Coldfire flags, incompability between different
1141      Coldfire ISAs, and incompability between different MAC types.  */
1142   arch_info = bfd_arch_get_compatible (ibfd, obfd, FALSE);
1143   if (!arch_info)
1144     return FALSE;
1145 
1146   bfd_set_arch_mach (obfd, bfd_arch_m68k, arch_info->mach);
1147 
1148   in_flags = elf_elfheader (ibfd)->e_flags;
1149   if (!elf_flags_init (obfd))
1150     {
1151       elf_flags_init (obfd) = TRUE;
1152       out_flags = in_flags;
1153     }
1154   else
1155     {
1156       out_flags = elf_elfheader (obfd)->e_flags;
1157       unsigned int variant_mask;
1158 
1159       if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
1160 	variant_mask = 0;
1161       else if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
1162 	variant_mask = 0;
1163       else if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1164 	variant_mask = 0;
1165       else
1166 	variant_mask = EF_M68K_CF_ISA_MASK;
1167 
1168       in_isa = (in_flags & variant_mask);
1169       out_isa = (out_flags & variant_mask);
1170       if (in_isa > out_isa)
1171 	out_flags ^= in_isa ^ out_isa;
1172       if (((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32
1173 	   && (out_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1174 	  || ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO
1175 	      && (out_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32))
1176 	out_flags = EF_M68K_FIDO;
1177       else
1178       out_flags |= in_flags ^ in_isa;
1179     }
1180   elf_elfheader (obfd)->e_flags = out_flags;
1181 
1182   return TRUE;
1183 }
1184 
1185 /* Display the flags field.  */
1186 
1187 static bfd_boolean
1188 elf32_m68k_print_private_bfd_data (bfd *abfd, void * ptr)
1189 {
1190   FILE *file = (FILE *) ptr;
1191   flagword eflags = elf_elfheader (abfd)->e_flags;
1192 
1193   BFD_ASSERT (abfd != NULL && ptr != NULL);
1194 
1195   /* Print normal ELF private data.  */
1196   _bfd_elf_print_private_bfd_data (abfd, ptr);
1197 
1198   /* Ignore init flag - it may not be set, despite the flags field containing valid data.  */
1199 
1200   /* xgettext:c-format */
1201   fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
1202 
1203   if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
1204     fprintf (file, " [m68000]");
1205   else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
1206     fprintf (file, " [cpu32]");
1207   else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1208     fprintf (file, " [fido]");
1209   else
1210     {
1211       if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CFV4E)
1212 	fprintf (file, " [cfv4e]");
1213 
1214       if (eflags & EF_M68K_CF_ISA_MASK)
1215 	{
1216 	  char const *isa = _("unknown");
1217 	  char const *mac = _("unknown");
1218 	  char const *additional = "";
1219 
1220 	  switch (eflags & EF_M68K_CF_ISA_MASK)
1221 	    {
1222 	    case EF_M68K_CF_ISA_A_NODIV:
1223 	      isa = "A";
1224 	      additional = " [nodiv]";
1225 	      break;
1226 	    case EF_M68K_CF_ISA_A:
1227 	      isa = "A";
1228 	      break;
1229 	    case EF_M68K_CF_ISA_A_PLUS:
1230 	      isa = "A+";
1231 	      break;
1232 	    case EF_M68K_CF_ISA_B_NOUSP:
1233 	      isa = "B";
1234 	      additional = " [nousp]";
1235 	      break;
1236 	    case EF_M68K_CF_ISA_B:
1237 	      isa = "B";
1238 	      break;
1239 	    case EF_M68K_CF_ISA_C:
1240 	      isa = "C";
1241 	      break;
1242 	    case EF_M68K_CF_ISA_C_NODIV:
1243 	      isa = "C";
1244 	      additional = " [nodiv]";
1245 	      break;
1246 	    }
1247 	  fprintf (file, " [isa %s]%s", isa, additional);
1248 
1249 	  if (eflags & EF_M68K_CF_FLOAT)
1250 	    fprintf (file, " [float]");
1251 
1252 	  switch (eflags & EF_M68K_CF_MAC_MASK)
1253 	    {
1254 	    case 0:
1255 	      mac = NULL;
1256 	      break;
1257 	    case EF_M68K_CF_MAC:
1258 	      mac = "mac";
1259 	      break;
1260 	    case EF_M68K_CF_EMAC:
1261 	      mac = "emac";
1262 	      break;
1263 	    case EF_M68K_CF_EMAC_B:
1264 	      mac = "emac_b";
1265 	      break;
1266 	    }
1267 	  if (mac)
1268 	    fprintf (file, " [%s]", mac);
1269 	}
1270     }
1271 
1272   fputc ('\n', file);
1273 
1274   return TRUE;
1275 }
1276 
1277 /* Multi-GOT support implementation design:
1278 
1279    Multi-GOT starts in check_relocs hook.  There we scan all
1280    relocations of a BFD and build a local GOT (struct elf_m68k_got)
1281    for it.  If a single BFD appears to require too many GOT slots with
1282    R_68K_GOT8O or R_68K_GOT16O relocations, we fail with notification
1283    to user.
1284    After check_relocs has been invoked for each input BFD, we have
1285    constructed a GOT for each input BFD.
1286 
1287    To minimize total number of GOTs required for a particular output BFD
1288    (as some environments support only 1 GOT per output object) we try
1289    to merge some of the GOTs to share an offset space.  Ideally [and in most
1290    cases] we end up with a single GOT.  In cases when there are too many
1291    restricted relocations (e.g., R_68K_GOT16O relocations) we end up with
1292    several GOTs, assuming the environment can handle them.
1293 
1294    Partitioning is done in elf_m68k_partition_multi_got.  We start with
1295    an empty GOT and traverse bfd2got hashtable putting got_entries from
1296    local GOTs to the new 'big' one.  We do that by constructing an
1297    intermediate GOT holding all the entries the local GOT has and the big
1298    GOT lacks.  Then we check if there is room in the big GOT to accomodate
1299    all the entries from diff.  On success we add those entries to the big
1300    GOT; on failure we start the new 'big' GOT and retry the adding of
1301    entries from the local GOT.  Note that this retry will always succeed as
1302    each local GOT doesn't overflow the limits.  After partitioning we
1303    end up with each bfd assigned one of the big GOTs.  GOT entries in the
1304    big GOTs are initialized with GOT offsets.  Note that big GOTs are
1305    positioned consequently in program space and represent a single huge GOT
1306    to the outside world.
1307 
1308    After that we get to elf_m68k_relocate_section.  There we
1309    adjust relocations of GOT pointer (_GLOBAL_OFFSET_TABLE_) and symbol
1310    relocations to refer to appropriate [assigned to current input_bfd]
1311    big GOT.
1312 
1313    Notes:
1314 
1315    GOT entry type: We have several types of GOT entries.
1316    * R_8 type is used in entries for symbols that have at least one
1317    R_68K_GOT8O or R_68K_TLS_*8 relocation.  We can have at most 0x40
1318    such entries in one GOT.
1319    * R_16 type is used in entries for symbols that have at least one
1320    R_68K_GOT16O or R_68K_TLS_*16 relocation and no R_8 relocations.
1321    We can have at most 0x4000 such entries in one GOT.
1322    * R_32 type is used in all other cases.  We can have as many
1323    such entries in one GOT as we'd like.
1324    When counting relocations we have to include the count of the smaller
1325    ranged relocations in the counts of the larger ranged ones in order
1326    to correctly detect overflow.
1327 
1328    Sorting the GOT: In each GOT starting offsets are assigned to
1329    R_8 entries, which are followed by R_16 entries, and
1330    R_32 entries go at the end.  See finalize_got_offsets for details.
1331 
1332    Negative GOT offsets: To double usable offset range of GOTs we use
1333    negative offsets.  As we assign entries with GOT offsets relative to
1334    start of .got section, the offset values are positive.  They become
1335    negative only in relocate_section where got->offset value is
1336    subtracted from them.
1337 
1338    3 special GOT entries: There are 3 special GOT entries used internally
1339    by loader.  These entries happen to be placed to .got.plt section,
1340    so we don't do anything about them in multi-GOT support.
1341 
1342    Memory management: All data except for hashtables
1343    multi_got->bfd2got and got->entries are allocated on
1344    elf_hash_table (info)->dynobj bfd (for this reason we pass 'info'
1345    to most functions), so we don't need to care to free them.  At the
1346    moment of allocation hashtables are being linked into main data
1347    structure (multi_got), all pieces of which are reachable from
1348    elf_m68k_multi_got (info).  We deallocate them in
1349    elf_m68k_link_hash_table_free.  */
1350 
1351 /* Initialize GOT.  */
1352 
1353 static void
1354 elf_m68k_init_got (struct elf_m68k_got *got)
1355 {
1356   got->entries = NULL;
1357   got->n_slots[R_8] = 0;
1358   got->n_slots[R_16] = 0;
1359   got->n_slots[R_32] = 0;
1360   got->local_n_slots = 0;
1361   got->offset = (bfd_vma) -1;
1362 }
1363 
1364 /* Destruct GOT.  */
1365 
1366 static void
1367 elf_m68k_clear_got (struct elf_m68k_got *got)
1368 {
1369   if (got->entries != NULL)
1370     {
1371       htab_delete (got->entries);
1372       got->entries = NULL;
1373     }
1374 }
1375 
1376 /* Create and empty GOT structure.  INFO is the context where memory
1377    should be allocated.  */
1378 
1379 static struct elf_m68k_got *
1380 elf_m68k_create_empty_got (struct bfd_link_info *info)
1381 {
1382   struct elf_m68k_got *got;
1383 
1384   got = bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*got));
1385   if (got == NULL)
1386     return NULL;
1387 
1388   elf_m68k_init_got (got);
1389 
1390   return got;
1391 }
1392 
1393 /* Initialize KEY.  */
1394 
1395 static void
1396 elf_m68k_init_got_entry_key (struct elf_m68k_got_entry_key *key,
1397 			     struct elf_link_hash_entry *h,
1398 			     const bfd *abfd, unsigned long symndx,
1399 			     enum elf_m68k_reloc_type reloc_type)
1400 {
1401   if (elf_m68k_reloc_got_type (reloc_type) == R_68K_TLS_LDM32)
1402     /* All TLS_LDM relocations share a single GOT entry.  */
1403     {
1404       key->bfd = NULL;
1405       key->symndx = 0;
1406     }
1407   else if (h != NULL)
1408     /* Global symbols are identified with their got_entry_key.  */
1409     {
1410       key->bfd = NULL;
1411       key->symndx = elf_m68k_hash_entry (h)->got_entry_key;
1412       BFD_ASSERT (key->symndx != 0);
1413     }
1414   else
1415     /* Local symbols are identified by BFD they appear in and symndx.  */
1416     {
1417       key->bfd = abfd;
1418       key->symndx = symndx;
1419     }
1420 
1421   key->type = reloc_type;
1422 }
1423 
1424 /* Calculate hash of got_entry.
1425    ??? Is it good?  */
1426 
1427 static hashval_t
1428 elf_m68k_got_entry_hash (const void *_entry)
1429 {
1430   const struct elf_m68k_got_entry_key *key;
1431 
1432   key = &((const struct elf_m68k_got_entry *) _entry)->key_;
1433 
1434   return (key->symndx
1435 	  + (key->bfd != NULL ? (int) key->bfd->id : -1)
1436 	  + elf_m68k_reloc_got_type (key->type));
1437 }
1438 
1439 /* Check if two got entries are equal.  */
1440 
1441 static int
1442 elf_m68k_got_entry_eq (const void *_entry1, const void *_entry2)
1443 {
1444   const struct elf_m68k_got_entry_key *key1;
1445   const struct elf_m68k_got_entry_key *key2;
1446 
1447   key1 = &((const struct elf_m68k_got_entry *) _entry1)->key_;
1448   key2 = &((const struct elf_m68k_got_entry *) _entry2)->key_;
1449 
1450   return (key1->bfd == key2->bfd
1451 	  && key1->symndx == key2->symndx
1452 	  && (elf_m68k_reloc_got_type (key1->type)
1453 	      == elf_m68k_reloc_got_type (key2->type)));
1454 }
1455 
1456 /* When using negative offsets, we allocate one extra R_8, one extra R_16
1457    and one extra R_32 slots to simplify handling of 2-slot entries during
1458    offset allocation -- hence -1 for R_8 slots and -2 for R_16 slots.  */
1459 
1460 /* Maximal number of R_8 slots in a single GOT.  */
1461 #define ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT(INFO)		\
1462   (elf_m68k_hash_table (INFO)->use_neg_got_offsets_p		\
1463    ? (0x40 - 1)							\
1464    : 0x20)
1465 
1466 /* Maximal number of R_8 and R_16 slots in a single GOT.  */
1467 #define ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT(INFO)		\
1468   (elf_m68k_hash_table (INFO)->use_neg_got_offsets_p		\
1469    ? (0x4000 - 2)						\
1470    : 0x2000)
1471 
1472 /* SEARCH - simply search the hashtable, don't insert new entries or fail when
1473    the entry cannot be found.
1474    FIND_OR_CREATE - search for an existing entry, but create new if there's
1475    no such.
1476    MUST_FIND - search for an existing entry and assert that it exist.
1477    MUST_CREATE - assert that there's no such entry and create new one.  */
1478 enum elf_m68k_get_entry_howto
1479   {
1480     SEARCH,
1481     FIND_OR_CREATE,
1482     MUST_FIND,
1483     MUST_CREATE
1484   };
1485 
1486 /* Get or create (depending on HOWTO) entry with KEY in GOT.
1487    INFO is context in which memory should be allocated (can be NULL if
1488    HOWTO is SEARCH or MUST_FIND).  */
1489 
1490 static struct elf_m68k_got_entry *
1491 elf_m68k_get_got_entry (struct elf_m68k_got *got,
1492 			const struct elf_m68k_got_entry_key *key,
1493 			enum elf_m68k_get_entry_howto howto,
1494 			struct bfd_link_info *info)
1495 {
1496   struct elf_m68k_got_entry entry_;
1497   struct elf_m68k_got_entry *entry;
1498   void **ptr;
1499 
1500   BFD_ASSERT ((info == NULL) == (howto == SEARCH || howto == MUST_FIND));
1501 
1502   if (got->entries == NULL)
1503     /* This is the first entry in ABFD.  Initialize hashtable.  */
1504     {
1505       if (howto == SEARCH)
1506 	return NULL;
1507 
1508       got->entries = htab_try_create (ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT
1509 				      (info),
1510 				      elf_m68k_got_entry_hash,
1511 				      elf_m68k_got_entry_eq, NULL);
1512       if (got->entries == NULL)
1513 	{
1514 	  bfd_set_error (bfd_error_no_memory);
1515 	  return NULL;
1516 	}
1517     }
1518 
1519   entry_.key_ = *key;
1520   ptr = htab_find_slot (got->entries, &entry_, (howto != SEARCH
1521 						? INSERT : NO_INSERT));
1522   if (ptr == NULL)
1523     {
1524       if (howto == SEARCH)
1525 	/* Entry not found.  */
1526 	return NULL;
1527 
1528       /* We're out of memory.  */
1529       bfd_set_error (bfd_error_no_memory);
1530       return NULL;
1531     }
1532 
1533   if (*ptr == NULL)
1534     /* We didn't find the entry and we're asked to create a new one.  */
1535     {
1536       BFD_ASSERT (howto != MUST_FIND && howto != SEARCH);
1537 
1538       entry = bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*entry));
1539       if (entry == NULL)
1540 	return NULL;
1541 
1542       /* Initialize new entry.  */
1543       entry->key_ = *key;
1544 
1545       entry->u.s1.refcount = 0;
1546 
1547       /* Mark the entry as not initialized.  */
1548       entry->key_.type = R_68K_max;
1549 
1550       *ptr = entry;
1551     }
1552   else
1553     /* We found the entry.  */
1554     {
1555       BFD_ASSERT (howto != MUST_CREATE);
1556 
1557       entry = *ptr;
1558     }
1559 
1560   return entry;
1561 }
1562 
1563 /* Update GOT counters when merging entry of WAS type with entry of NEW type.
1564    Return the value to which ENTRY's type should be set.  */
1565 
1566 static enum elf_m68k_reloc_type
1567 elf_m68k_update_got_entry_type (struct elf_m68k_got *got,
1568 				enum elf_m68k_reloc_type was,
1569 				enum elf_m68k_reloc_type new_reloc)
1570 {
1571   enum elf_m68k_got_offset_size was_size;
1572   enum elf_m68k_got_offset_size new_size;
1573   bfd_vma n_slots;
1574 
1575   if (was == R_68K_max)
1576     /* The type of the entry is not initialized yet.  */
1577     {
1578       /* Update all got->n_slots counters, including n_slots[R_32].  */
1579       was_size = R_LAST;
1580 
1581       was = new_reloc;
1582     }
1583   else
1584     {
1585       /* !!! We, probably, should emit an error rather then fail on assert
1586 	 in such a case.  */
1587       BFD_ASSERT (elf_m68k_reloc_got_type (was)
1588 		  == elf_m68k_reloc_got_type (new_reloc));
1589 
1590       was_size = elf_m68k_reloc_got_offset_size (was);
1591     }
1592 
1593   new_size = elf_m68k_reloc_got_offset_size (new_reloc);
1594   n_slots = elf_m68k_reloc_got_n_slots (new_reloc);
1595 
1596   while (was_size > new_size)
1597     {
1598       --was_size;
1599       got->n_slots[was_size] += n_slots;
1600     }
1601 
1602   if (new_reloc > was)
1603     /* Relocations are ordered from bigger got offset size to lesser,
1604        so choose the relocation type with lesser offset size.  */
1605     was = new_reloc;
1606 
1607   return was;
1608 }
1609 
1610 /* Add new or update existing entry to GOT.
1611    H, ABFD, TYPE and SYMNDX is data for the entry.
1612    INFO is a context where memory should be allocated.  */
1613 
1614 static struct elf_m68k_got_entry *
1615 elf_m68k_add_entry_to_got (struct elf_m68k_got *got,
1616 			   struct elf_link_hash_entry *h,
1617 			   const bfd *abfd,
1618 			   enum elf_m68k_reloc_type reloc_type,
1619 			   unsigned long symndx,
1620 			   struct bfd_link_info *info)
1621 {
1622   struct elf_m68k_got_entry_key key_;
1623   struct elf_m68k_got_entry *entry;
1624 
1625   if (h != NULL && elf_m68k_hash_entry (h)->got_entry_key == 0)
1626     elf_m68k_hash_entry (h)->got_entry_key
1627       = elf_m68k_multi_got (info)->global_symndx++;
1628 
1629   elf_m68k_init_got_entry_key (&key_, h, abfd, symndx, reloc_type);
1630 
1631   entry = elf_m68k_get_got_entry (got, &key_, FIND_OR_CREATE, info);
1632   if (entry == NULL)
1633     return NULL;
1634 
1635   /* Determine entry's type and update got->n_slots counters.  */
1636   entry->key_.type = elf_m68k_update_got_entry_type (got,
1637 						     entry->key_.type,
1638 						     reloc_type);
1639 
1640   /* Update refcount.  */
1641   ++entry->u.s1.refcount;
1642 
1643   if (entry->u.s1.refcount == 1)
1644     /* We see this entry for the first time.  */
1645     {
1646       if (entry->key_.bfd != NULL)
1647 	got->local_n_slots += elf_m68k_reloc_got_n_slots (entry->key_.type);
1648     }
1649 
1650   BFD_ASSERT (got->n_slots[R_32] >= got->local_n_slots);
1651 
1652   if ((got->n_slots[R_8]
1653        > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
1654       || (got->n_slots[R_16]
1655 	  > ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info)))
1656     /* This BFD has too many relocation.  */
1657     {
1658       if (got->n_slots[R_8] > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
1659 	/* xgettext:c-format */
1660 	_bfd_error_handler (_("%pB: GOT overflow: "
1661 			      "number of relocations with 8-bit "
1662 			      "offset > %d"),
1663 			    abfd,
1664 			    ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info));
1665       else
1666 	/* xgettext:c-format */
1667 	_bfd_error_handler (_("%pB: GOT overflow: "
1668 			      "number of relocations with 8- or 16-bit "
1669 			      "offset > %d"),
1670 			    abfd,
1671 			    ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info));
1672 
1673       return NULL;
1674     }
1675 
1676   return entry;
1677 }
1678 
1679 /* Compute the hash value of the bfd in a bfd2got hash entry.  */
1680 
1681 static hashval_t
1682 elf_m68k_bfd2got_entry_hash (const void *entry)
1683 {
1684   const struct elf_m68k_bfd2got_entry *e;
1685 
1686   e = (const struct elf_m68k_bfd2got_entry *) entry;
1687 
1688   return e->bfd->id;
1689 }
1690 
1691 /* Check whether two hash entries have the same bfd.  */
1692 
1693 static int
1694 elf_m68k_bfd2got_entry_eq (const void *entry1, const void *entry2)
1695 {
1696   const struct elf_m68k_bfd2got_entry *e1;
1697   const struct elf_m68k_bfd2got_entry *e2;
1698 
1699   e1 = (const struct elf_m68k_bfd2got_entry *) entry1;
1700   e2 = (const struct elf_m68k_bfd2got_entry *) entry2;
1701 
1702   return e1->bfd == e2->bfd;
1703 }
1704 
1705 /* Destruct a bfd2got entry.  */
1706 
1707 static void
1708 elf_m68k_bfd2got_entry_del (void *_entry)
1709 {
1710   struct elf_m68k_bfd2got_entry *entry;
1711 
1712   entry = (struct elf_m68k_bfd2got_entry *) _entry;
1713 
1714   BFD_ASSERT (entry->got != NULL);
1715   elf_m68k_clear_got (entry->got);
1716 }
1717 
1718 /* Find existing or create new (depending on HOWTO) bfd2got entry in
1719    MULTI_GOT.  ABFD is the bfd we need a GOT for.  INFO is a context where
1720    memory should be allocated.  */
1721 
1722 static struct elf_m68k_bfd2got_entry *
1723 elf_m68k_get_bfd2got_entry (struct elf_m68k_multi_got *multi_got,
1724 			    const bfd *abfd,
1725 			    enum elf_m68k_get_entry_howto howto,
1726 			    struct bfd_link_info *info)
1727 {
1728   struct elf_m68k_bfd2got_entry entry_;
1729   void **ptr;
1730   struct elf_m68k_bfd2got_entry *entry;
1731 
1732   BFD_ASSERT ((info == NULL) == (howto == SEARCH || howto == MUST_FIND));
1733 
1734   if (multi_got->bfd2got == NULL)
1735     /* This is the first GOT.  Initialize bfd2got.  */
1736     {
1737       if (howto == SEARCH)
1738 	return NULL;
1739 
1740       multi_got->bfd2got = htab_try_create (1, elf_m68k_bfd2got_entry_hash,
1741 					    elf_m68k_bfd2got_entry_eq,
1742 					    elf_m68k_bfd2got_entry_del);
1743       if (multi_got->bfd2got == NULL)
1744 	{
1745 	  bfd_set_error (bfd_error_no_memory);
1746 	  return NULL;
1747 	}
1748     }
1749 
1750   entry_.bfd = abfd;
1751   ptr = htab_find_slot (multi_got->bfd2got, &entry_, (howto != SEARCH
1752 						      ? INSERT : NO_INSERT));
1753   if (ptr == NULL)
1754     {
1755       if (howto == SEARCH)
1756 	/* Entry not found.  */
1757 	return NULL;
1758 
1759       /* We're out of memory.  */
1760       bfd_set_error (bfd_error_no_memory);
1761       return NULL;
1762     }
1763 
1764   if (*ptr == NULL)
1765     /* Entry was not found.  Create new one.  */
1766     {
1767       BFD_ASSERT (howto != MUST_FIND && howto != SEARCH);
1768 
1769       entry = ((struct elf_m68k_bfd2got_entry *)
1770 	       bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*entry)));
1771       if (entry == NULL)
1772 	return NULL;
1773 
1774       entry->bfd = abfd;
1775 
1776       entry->got = elf_m68k_create_empty_got (info);
1777       if (entry->got == NULL)
1778 	return NULL;
1779 
1780       *ptr = entry;
1781     }
1782   else
1783     {
1784       BFD_ASSERT (howto != MUST_CREATE);
1785 
1786       /* Return existing entry.  */
1787       entry = *ptr;
1788     }
1789 
1790   return entry;
1791 }
1792 
1793 struct elf_m68k_can_merge_gots_arg
1794 {
1795   /* A current_got that we constructing a DIFF against.  */
1796   struct elf_m68k_got *big;
1797 
1798   /* GOT holding entries not present or that should be changed in
1799      BIG.  */
1800   struct elf_m68k_got *diff;
1801 
1802   /* Context where to allocate memory.  */
1803   struct bfd_link_info *info;
1804 
1805   /* Error flag.  */
1806   bfd_boolean error_p;
1807 };
1808 
1809 /* Process a single entry from the small GOT to see if it should be added
1810    or updated in the big GOT.  */
1811 
1812 static int
1813 elf_m68k_can_merge_gots_1 (void **_entry_ptr, void *_arg)
1814 {
1815   const struct elf_m68k_got_entry *entry1;
1816   struct elf_m68k_can_merge_gots_arg *arg;
1817   const struct elf_m68k_got_entry *entry2;
1818   enum elf_m68k_reloc_type type;
1819 
1820   entry1 = (const struct elf_m68k_got_entry *) *_entry_ptr;
1821   arg = (struct elf_m68k_can_merge_gots_arg *) _arg;
1822 
1823   entry2 = elf_m68k_get_got_entry (arg->big, &entry1->key_, SEARCH, NULL);
1824 
1825   if (entry2 != NULL)
1826     /* We found an existing entry.  Check if we should update it.  */
1827     {
1828       type = elf_m68k_update_got_entry_type (arg->diff,
1829 					     entry2->key_.type,
1830 					     entry1->key_.type);
1831 
1832       if (type == entry2->key_.type)
1833 	/* ENTRY1 doesn't update data in ENTRY2.  Skip it.
1834 	   To skip creation of difference entry we use the type,
1835 	   which we won't see in GOT entries for sure.  */
1836 	type = R_68K_max;
1837     }
1838   else
1839     /* We didn't find the entry.  Add entry1 to DIFF.  */
1840     {
1841       BFD_ASSERT (entry1->key_.type != R_68K_max);
1842 
1843       type = elf_m68k_update_got_entry_type (arg->diff,
1844 					     R_68K_max, entry1->key_.type);
1845 
1846       if (entry1->key_.bfd != NULL)
1847 	arg->diff->local_n_slots += elf_m68k_reloc_got_n_slots (type);
1848     }
1849 
1850   if (type != R_68K_max)
1851     /* Create an entry in DIFF.  */
1852     {
1853       struct elf_m68k_got_entry *entry;
1854 
1855       entry = elf_m68k_get_got_entry (arg->diff, &entry1->key_, MUST_CREATE,
1856 				      arg->info);
1857       if (entry == NULL)
1858 	{
1859 	  arg->error_p = TRUE;
1860 	  return 0;
1861 	}
1862 
1863       entry->key_.type = type;
1864     }
1865 
1866   return 1;
1867 }
1868 
1869 /* Return TRUE if SMALL GOT can be added to BIG GOT without overflowing it.
1870    Construct DIFF GOT holding the entries which should be added or updated
1871    in BIG GOT to accumulate information from SMALL.
1872    INFO is the context where memory should be allocated.  */
1873 
1874 static bfd_boolean
1875 elf_m68k_can_merge_gots (struct elf_m68k_got *big,
1876 			 const struct elf_m68k_got *small,
1877 			 struct bfd_link_info *info,
1878 			 struct elf_m68k_got *diff)
1879 {
1880   struct elf_m68k_can_merge_gots_arg arg_;
1881 
1882   BFD_ASSERT (small->offset == (bfd_vma) -1);
1883 
1884   arg_.big = big;
1885   arg_.diff = diff;
1886   arg_.info = info;
1887   arg_.error_p = FALSE;
1888   htab_traverse_noresize (small->entries, elf_m68k_can_merge_gots_1, &arg_);
1889   if (arg_.error_p)
1890     {
1891       diff->offset = 0;
1892       return FALSE;
1893     }
1894 
1895   /* Check for overflow.  */
1896   if ((big->n_slots[R_8] + arg_.diff->n_slots[R_8]
1897        > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
1898       || (big->n_slots[R_16] + arg_.diff->n_slots[R_16]
1899 	  > ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info)))
1900     return FALSE;
1901 
1902   return TRUE;
1903 }
1904 
1905 struct elf_m68k_merge_gots_arg
1906 {
1907   /* The BIG got.  */
1908   struct elf_m68k_got *big;
1909 
1910   /* Context where memory should be allocated.  */
1911   struct bfd_link_info *info;
1912 
1913   /* Error flag.  */
1914   bfd_boolean error_p;
1915 };
1916 
1917 /* Process a single entry from DIFF got.  Add or update corresponding
1918    entry in the BIG got.  */
1919 
1920 static int
1921 elf_m68k_merge_gots_1 (void **entry_ptr, void *_arg)
1922 {
1923   const struct elf_m68k_got_entry *from;
1924   struct elf_m68k_merge_gots_arg *arg;
1925   struct elf_m68k_got_entry *to;
1926 
1927   from = (const struct elf_m68k_got_entry *) *entry_ptr;
1928   arg = (struct elf_m68k_merge_gots_arg *) _arg;
1929 
1930   to = elf_m68k_get_got_entry (arg->big, &from->key_, FIND_OR_CREATE,
1931 			       arg->info);
1932   if (to == NULL)
1933     {
1934       arg->error_p = TRUE;
1935       return 0;
1936     }
1937 
1938   BFD_ASSERT (to->u.s1.refcount == 0);
1939   /* All we need to merge is TYPE.  */
1940   to->key_.type = from->key_.type;
1941 
1942   return 1;
1943 }
1944 
1945 /* Merge data from DIFF to BIG.  INFO is context where memory should be
1946    allocated.  */
1947 
1948 static bfd_boolean
1949 elf_m68k_merge_gots (struct elf_m68k_got *big,
1950 		     struct elf_m68k_got *diff,
1951 		     struct bfd_link_info *info)
1952 {
1953   if (diff->entries != NULL)
1954     /* DIFF is not empty.  Merge it into BIG GOT.  */
1955     {
1956       struct elf_m68k_merge_gots_arg arg_;
1957 
1958       /* Merge entries.  */
1959       arg_.big = big;
1960       arg_.info = info;
1961       arg_.error_p = FALSE;
1962       htab_traverse_noresize (diff->entries, elf_m68k_merge_gots_1, &arg_);
1963       if (arg_.error_p)
1964 	return FALSE;
1965 
1966       /* Merge counters.  */
1967       big->n_slots[R_8] += diff->n_slots[R_8];
1968       big->n_slots[R_16] += diff->n_slots[R_16];
1969       big->n_slots[R_32] += diff->n_slots[R_32];
1970       big->local_n_slots += diff->local_n_slots;
1971     }
1972   else
1973     /* DIFF is empty.  */
1974     {
1975       BFD_ASSERT (diff->n_slots[R_8] == 0);
1976       BFD_ASSERT (diff->n_slots[R_16] == 0);
1977       BFD_ASSERT (diff->n_slots[R_32] == 0);
1978       BFD_ASSERT (diff->local_n_slots == 0);
1979     }
1980 
1981   BFD_ASSERT (!elf_m68k_hash_table (info)->allow_multigot_p
1982 	      || ((big->n_slots[R_8]
1983 		   <= ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
1984 		  && (big->n_slots[R_16]
1985 		      <= ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info))));
1986 
1987   return TRUE;
1988 }
1989 
1990 struct elf_m68k_finalize_got_offsets_arg
1991 {
1992   /* Ranges of the offsets for GOT entries.
1993      R_x entries receive offsets between offset1[R_x] and offset2[R_x].
1994      R_x is R_8, R_16 and R_32.  */
1995   bfd_vma *offset1;
1996   bfd_vma *offset2;
1997 
1998   /* Mapping from global symndx to global symbols.
1999      This is used to build lists of got entries for global symbols.  */
2000   struct elf_m68k_link_hash_entry **symndx2h;
2001 
2002   bfd_vma n_ldm_entries;
2003 };
2004 
2005 /* Assign ENTRY an offset.  Build list of GOT entries for global symbols
2006    along the way.  */
2007 
2008 static int
2009 elf_m68k_finalize_got_offsets_1 (void **entry_ptr, void *_arg)
2010 {
2011   struct elf_m68k_got_entry *entry;
2012   struct elf_m68k_finalize_got_offsets_arg *arg;
2013 
2014   enum elf_m68k_got_offset_size got_offset_size;
2015   bfd_vma entry_size;
2016 
2017   entry = (struct elf_m68k_got_entry *) *entry_ptr;
2018   arg = (struct elf_m68k_finalize_got_offsets_arg *) _arg;
2019 
2020   /* This should be a fresh entry created in elf_m68k_can_merge_gots.  */
2021   BFD_ASSERT (entry->u.s1.refcount == 0);
2022 
2023   /* Get GOT offset size for the entry .  */
2024   got_offset_size = elf_m68k_reloc_got_offset_size (entry->key_.type);
2025 
2026   /* Calculate entry size in bytes.  */
2027   entry_size = 4 * elf_m68k_reloc_got_n_slots (entry->key_.type);
2028 
2029   /* Check if we should switch to negative range of the offsets. */
2030   if (arg->offset1[got_offset_size] + entry_size
2031       > arg->offset2[got_offset_size])
2032     {
2033       /* Verify that this is the only switch to negative range for
2034 	 got_offset_size.  If this assertion fails, then we've miscalculated
2035 	 range for got_offset_size entries in
2036 	 elf_m68k_finalize_got_offsets.  */
2037       BFD_ASSERT (arg->offset2[got_offset_size]
2038 		  != arg->offset2[-(int) got_offset_size - 1]);
2039 
2040       /* Switch.  */
2041       arg->offset1[got_offset_size] = arg->offset1[-(int) got_offset_size - 1];
2042       arg->offset2[got_offset_size] = arg->offset2[-(int) got_offset_size - 1];
2043 
2044       /* Verify that now we have enough room for the entry.  */
2045       BFD_ASSERT (arg->offset1[got_offset_size] + entry_size
2046 		  <= arg->offset2[got_offset_size]);
2047     }
2048 
2049   /* Assign offset to entry.  */
2050   entry->u.s2.offset = arg->offset1[got_offset_size];
2051   arg->offset1[got_offset_size] += entry_size;
2052 
2053   if (entry->key_.bfd == NULL)
2054     /* Hook up this entry into the list of got_entries of H.  */
2055     {
2056       struct elf_m68k_link_hash_entry *h;
2057 
2058       h = arg->symndx2h[entry->key_.symndx];
2059       if (h != NULL)
2060 	{
2061 	  entry->u.s2.next = h->glist;
2062 	  h->glist = entry;
2063 	}
2064       else
2065 	/* This should be the entry for TLS_LDM relocation then.  */
2066 	{
2067 	  BFD_ASSERT ((elf_m68k_reloc_got_type (entry->key_.type)
2068 		       == R_68K_TLS_LDM32)
2069 		      && entry->key_.symndx == 0);
2070 
2071 	  ++arg->n_ldm_entries;
2072 	}
2073     }
2074   else
2075     /* This entry is for local symbol.  */
2076     entry->u.s2.next = NULL;
2077 
2078   return 1;
2079 }
2080 
2081 /* Assign offsets within GOT.  USE_NEG_GOT_OFFSETS_P indicates if we
2082    should use negative offsets.
2083    Build list of GOT entries for global symbols along the way.
2084    SYMNDX2H is mapping from global symbol indices to actual
2085    global symbols.
2086    Return offset at which next GOT should start.  */
2087 
2088 static void
2089 elf_m68k_finalize_got_offsets (struct elf_m68k_got *got,
2090 			       bfd_boolean use_neg_got_offsets_p,
2091 			       struct elf_m68k_link_hash_entry **symndx2h,
2092 			       bfd_vma *final_offset, bfd_vma *n_ldm_entries)
2093 {
2094   struct elf_m68k_finalize_got_offsets_arg arg_;
2095   bfd_vma offset1_[2 * R_LAST];
2096   bfd_vma offset2_[2 * R_LAST];
2097   int i;
2098   bfd_vma start_offset;
2099 
2100   BFD_ASSERT (got->offset != (bfd_vma) -1);
2101 
2102   /* We set entry offsets relative to the .got section (and not the
2103      start of a particular GOT), so that we can use them in
2104      finish_dynamic_symbol without needing to know the GOT which they come
2105      from.  */
2106 
2107   /* Put offset1 in the middle of offset1_, same for offset2.  */
2108   arg_.offset1 = offset1_ + R_LAST;
2109   arg_.offset2 = offset2_ + R_LAST;
2110 
2111   start_offset = got->offset;
2112 
2113   if (use_neg_got_offsets_p)
2114     /* Setup both negative and positive ranges for R_8, R_16 and R_32.  */
2115     i = -(int) R_32 - 1;
2116   else
2117     /* Setup positives ranges for R_8, R_16 and R_32.  */
2118     i = (int) R_8;
2119 
2120   for (; i <= (int) R_32; ++i)
2121     {
2122       int j;
2123       size_t n;
2124 
2125       /* Set beginning of the range of offsets I.  */
2126       arg_.offset1[i] = start_offset;
2127 
2128       /* Calculate number of slots that require I offsets.  */
2129       j = (i >= 0) ? i : -i - 1;
2130       n = (j >= 1) ? got->n_slots[j - 1] : 0;
2131       n = got->n_slots[j] - n;
2132 
2133       if (use_neg_got_offsets_p && n != 0)
2134 	{
2135 	  if (i < 0)
2136 	    /* We first fill the positive side of the range, so we might
2137 	       end up with one empty slot at that side when we can't fit
2138 	       whole 2-slot entry.  Account for that at negative side of
2139 	       the interval with one additional entry.  */
2140 	    n = n / 2 + 1;
2141 	  else
2142 	    /* When the number of slots is odd, make positive side of the
2143 	       range one entry bigger.  */
2144 	    n = (n + 1) / 2;
2145 	}
2146 
2147       /* N is the number of slots that require I offsets.
2148 	 Calculate length of the range for I offsets.  */
2149       n = 4 * n;
2150 
2151       /* Set end of the range.  */
2152       arg_.offset2[i] = start_offset + n;
2153 
2154       start_offset = arg_.offset2[i];
2155     }
2156 
2157   if (!use_neg_got_offsets_p)
2158     /* Make sure that if we try to switch to negative offsets in
2159        elf_m68k_finalize_got_offsets_1, the assert therein will catch
2160        the bug.  */
2161     for (i = R_8; i <= R_32; ++i)
2162       arg_.offset2[-i - 1] = arg_.offset2[i];
2163 
2164   /* Setup got->offset.  offset1[R_8] is either in the middle or at the
2165      beginning of GOT depending on use_neg_got_offsets_p.  */
2166   got->offset = arg_.offset1[R_8];
2167 
2168   arg_.symndx2h = symndx2h;
2169   arg_.n_ldm_entries = 0;
2170 
2171   /* Assign offsets.  */
2172   htab_traverse (got->entries, elf_m68k_finalize_got_offsets_1, &arg_);
2173 
2174   /* Check offset ranges we have actually assigned.  */
2175   for (i = (int) R_8; i <= (int) R_32; ++i)
2176     BFD_ASSERT (arg_.offset2[i] - arg_.offset1[i] <= 4);
2177 
2178   *final_offset = start_offset;
2179   *n_ldm_entries = arg_.n_ldm_entries;
2180 }
2181 
2182 struct elf_m68k_partition_multi_got_arg
2183 {
2184   /* The GOT we are adding entries to.  Aka big got.  */
2185   struct elf_m68k_got *current_got;
2186 
2187   /* Offset to assign the next CURRENT_GOT.  */
2188   bfd_vma offset;
2189 
2190   /* Context where memory should be allocated.  */
2191   struct bfd_link_info *info;
2192 
2193   /* Total number of slots in the .got section.
2194      This is used to calculate size of the .got and .rela.got sections.  */
2195   bfd_vma n_slots;
2196 
2197   /* Difference in numbers of allocated slots in the .got section
2198      and necessary relocations in the .rela.got section.
2199      This is used to calculate size of the .rela.got section.  */
2200   bfd_vma slots_relas_diff;
2201 
2202   /* Error flag.  */
2203   bfd_boolean error_p;
2204 
2205   /* Mapping from global symndx to global symbols.
2206      This is used to build lists of got entries for global symbols.  */
2207   struct elf_m68k_link_hash_entry **symndx2h;
2208 };
2209 
2210 static void
2211 elf_m68k_partition_multi_got_2 (struct elf_m68k_partition_multi_got_arg *arg)
2212 {
2213   bfd_vma n_ldm_entries;
2214 
2215   elf_m68k_finalize_got_offsets (arg->current_got,
2216 				 (elf_m68k_hash_table (arg->info)
2217 				  ->use_neg_got_offsets_p),
2218 				 arg->symndx2h,
2219 				 &arg->offset, &n_ldm_entries);
2220 
2221   arg->n_slots += arg->current_got->n_slots[R_32];
2222 
2223   if (!bfd_link_pic (arg->info))
2224     /* If we are generating a shared object, we need to
2225        output a R_68K_RELATIVE reloc so that the dynamic
2226        linker can adjust this GOT entry.  Overwise we
2227        don't need space in .rela.got for local symbols.  */
2228     arg->slots_relas_diff += arg->current_got->local_n_slots;
2229 
2230   /* @LDM relocations require a 2-slot GOT entry, but only
2231      one relocation.  Account for that.  */
2232   arg->slots_relas_diff += n_ldm_entries;
2233 
2234   BFD_ASSERT (arg->slots_relas_diff <= arg->n_slots);
2235 }
2236 
2237 
2238 /* Process a single BFD2GOT entry and either merge GOT to CURRENT_GOT
2239    or start a new CURRENT_GOT.  */
2240 
2241 static int
2242 elf_m68k_partition_multi_got_1 (void **_entry, void *_arg)
2243 {
2244   struct elf_m68k_bfd2got_entry *entry;
2245   struct elf_m68k_partition_multi_got_arg *arg;
2246   struct elf_m68k_got *got;
2247   struct elf_m68k_got diff_;
2248   struct elf_m68k_got *diff;
2249 
2250   entry = (struct elf_m68k_bfd2got_entry *) *_entry;
2251   arg = (struct elf_m68k_partition_multi_got_arg *) _arg;
2252 
2253   got = entry->got;
2254   BFD_ASSERT (got != NULL);
2255   BFD_ASSERT (got->offset == (bfd_vma) -1);
2256 
2257   diff = NULL;
2258 
2259   if (arg->current_got != NULL)
2260     /* Construct diff.  */
2261     {
2262       diff = &diff_;
2263       elf_m68k_init_got (diff);
2264 
2265       if (!elf_m68k_can_merge_gots (arg->current_got, got, arg->info, diff))
2266 	{
2267 	  if (diff->offset == 0)
2268 	    /* Offset set to 0 in the diff_ indicates an error.  */
2269 	    {
2270 	      arg->error_p = TRUE;
2271 	      goto final_return;
2272 	    }
2273 
2274 	  if (elf_m68k_hash_table (arg->info)->allow_multigot_p)
2275 	    {
2276 	      elf_m68k_clear_got (diff);
2277 	      /* Schedule to finish up current_got and start new one.  */
2278 	      diff = NULL;
2279 	    }
2280 	  /* else
2281 	     Merge GOTs no matter what.  If big GOT overflows,
2282 	     we'll fail in relocate_section due to truncated relocations.
2283 
2284 	     ??? May be fail earlier?  E.g., in can_merge_gots.  */
2285 	}
2286     }
2287   else
2288     /* Diff of got against empty current_got is got itself.  */
2289     {
2290       /* Create empty current_got to put subsequent GOTs to.  */
2291       arg->current_got = elf_m68k_create_empty_got (arg->info);
2292       if (arg->current_got == NULL)
2293 	{
2294 	  arg->error_p = TRUE;
2295 	  goto final_return;
2296 	}
2297 
2298       arg->current_got->offset = arg->offset;
2299 
2300       diff = got;
2301     }
2302 
2303   if (diff != NULL)
2304     {
2305       if (!elf_m68k_merge_gots (arg->current_got, diff, arg->info))
2306 	{
2307 	  arg->error_p = TRUE;
2308 	  goto final_return;
2309 	}
2310 
2311       /* Now we can free GOT.  */
2312       elf_m68k_clear_got (got);
2313 
2314       entry->got = arg->current_got;
2315     }
2316   else
2317     {
2318       /* Finish up current_got.  */
2319       elf_m68k_partition_multi_got_2 (arg);
2320 
2321       /* Schedule to start a new current_got.  */
2322       arg->current_got = NULL;
2323 
2324       /* Retry.  */
2325       if (!elf_m68k_partition_multi_got_1 (_entry, _arg))
2326 	{
2327 	  BFD_ASSERT (arg->error_p);
2328 	  goto final_return;
2329 	}
2330     }
2331 
2332  final_return:
2333   if (diff != NULL)
2334     elf_m68k_clear_got (diff);
2335 
2336   return !arg->error_p;
2337 }
2338 
2339 /* Helper function to build symndx2h mapping.  */
2340 
2341 static bfd_boolean
2342 elf_m68k_init_symndx2h_1 (struct elf_link_hash_entry *_h,
2343 			  void *_arg)
2344 {
2345   struct elf_m68k_link_hash_entry *h;
2346 
2347   h = elf_m68k_hash_entry (_h);
2348 
2349   if (h->got_entry_key != 0)
2350     /* H has at least one entry in the GOT.  */
2351     {
2352       struct elf_m68k_partition_multi_got_arg *arg;
2353 
2354       arg = (struct elf_m68k_partition_multi_got_arg *) _arg;
2355 
2356       BFD_ASSERT (arg->symndx2h[h->got_entry_key] == NULL);
2357       arg->symndx2h[h->got_entry_key] = h;
2358     }
2359 
2360   return TRUE;
2361 }
2362 
2363 /* Merge GOTs of some BFDs, assign offsets to GOT entries and build
2364    lists of GOT entries for global symbols.
2365    Calculate sizes of .got and .rela.got sections.  */
2366 
2367 static bfd_boolean
2368 elf_m68k_partition_multi_got (struct bfd_link_info *info)
2369 {
2370   struct elf_m68k_multi_got *multi_got;
2371   struct elf_m68k_partition_multi_got_arg arg_;
2372 
2373   multi_got = elf_m68k_multi_got (info);
2374 
2375   arg_.current_got = NULL;
2376   arg_.offset = 0;
2377   arg_.info = info;
2378   arg_.n_slots = 0;
2379   arg_.slots_relas_diff = 0;
2380   arg_.error_p = FALSE;
2381 
2382   if (multi_got->bfd2got != NULL)
2383     {
2384       /* Initialize symndx2h mapping.  */
2385       {
2386 	arg_.symndx2h = bfd_zmalloc (multi_got->global_symndx
2387 				     * sizeof (*arg_.symndx2h));
2388 	if (arg_.symndx2h == NULL)
2389 	  return FALSE;
2390 
2391 	elf_link_hash_traverse (elf_hash_table (info),
2392 				elf_m68k_init_symndx2h_1, &arg_);
2393       }
2394 
2395       /* Partition.  */
2396       htab_traverse (multi_got->bfd2got, elf_m68k_partition_multi_got_1,
2397 		     &arg_);
2398       if (arg_.error_p)
2399 	{
2400 	  free (arg_.symndx2h);
2401 	  arg_.symndx2h = NULL;
2402 
2403 	  return FALSE;
2404 	}
2405 
2406       /* Finish up last current_got.  */
2407       elf_m68k_partition_multi_got_2 (&arg_);
2408 
2409       free (arg_.symndx2h);
2410     }
2411 
2412   if (elf_hash_table (info)->dynobj != NULL)
2413     /* Set sizes of .got and .rela.got sections.  */
2414     {
2415       asection *s;
2416 
2417       s = elf_hash_table (info)->sgot;
2418       if (s != NULL)
2419 	s->size = arg_.offset;
2420       else
2421 	BFD_ASSERT (arg_.offset == 0);
2422 
2423       BFD_ASSERT (arg_.slots_relas_diff <= arg_.n_slots);
2424       arg_.n_slots -= arg_.slots_relas_diff;
2425 
2426       s = elf_hash_table (info)->srelgot;
2427       if (s != NULL)
2428 	s->size = arg_.n_slots * sizeof (Elf32_External_Rela);
2429       else
2430 	BFD_ASSERT (arg_.n_slots == 0);
2431     }
2432   else
2433     BFD_ASSERT (multi_got->bfd2got == NULL);
2434 
2435   return TRUE;
2436 }
2437 
2438 /* Copy any information related to dynamic linking from a pre-existing
2439    symbol to a newly created symbol.  Also called to copy flags and
2440    other back-end info to a weakdef, in which case the symbol is not
2441    newly created and plt/got refcounts and dynamic indices should not
2442    be copied.  */
2443 
2444 static void
2445 elf_m68k_copy_indirect_symbol (struct bfd_link_info *info,
2446 			       struct elf_link_hash_entry *_dir,
2447 			       struct elf_link_hash_entry *_ind)
2448 {
2449   struct elf_m68k_link_hash_entry *dir;
2450   struct elf_m68k_link_hash_entry *ind;
2451 
2452   _bfd_elf_link_hash_copy_indirect (info, _dir, _ind);
2453 
2454   if (_ind->root.type != bfd_link_hash_indirect)
2455     return;
2456 
2457   dir = elf_m68k_hash_entry (_dir);
2458   ind = elf_m68k_hash_entry (_ind);
2459 
2460   /* Any absolute non-dynamic relocations against an indirect or weak
2461      definition will be against the target symbol.  */
2462   _dir->non_got_ref |= _ind->non_got_ref;
2463 
2464   /* We might have a direct symbol already having entries in the GOTs.
2465      Update its key only in case indirect symbol has GOT entries and
2466      assert that both indirect and direct symbols don't have GOT entries
2467      at the same time.  */
2468   if (ind->got_entry_key != 0)
2469     {
2470       BFD_ASSERT (dir->got_entry_key == 0);
2471       /* Assert that GOTs aren't partitioned yet.  */
2472       BFD_ASSERT (ind->glist == NULL);
2473 
2474       dir->got_entry_key = ind->got_entry_key;
2475       ind->got_entry_key = 0;
2476     }
2477 }
2478 
2479 /* Look through the relocs for a section during the first phase, and
2480    allocate space in the global offset table or procedure linkage
2481    table.  */
2482 
2483 static bfd_boolean
2484 elf_m68k_check_relocs (bfd *abfd,
2485 		       struct bfd_link_info *info,
2486 		       asection *sec,
2487 		       const Elf_Internal_Rela *relocs)
2488 {
2489   bfd *dynobj;
2490   Elf_Internal_Shdr *symtab_hdr;
2491   struct elf_link_hash_entry **sym_hashes;
2492   const Elf_Internal_Rela *rel;
2493   const Elf_Internal_Rela *rel_end;
2494   asection *sreloc;
2495   struct elf_m68k_got *got;
2496 
2497   if (bfd_link_relocatable (info))
2498     return TRUE;
2499 
2500   dynobj = elf_hash_table (info)->dynobj;
2501   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2502   sym_hashes = elf_sym_hashes (abfd);
2503 
2504   sreloc = NULL;
2505 
2506   got = NULL;
2507 
2508   rel_end = relocs + sec->reloc_count;
2509   for (rel = relocs; rel < rel_end; rel++)
2510     {
2511       unsigned long r_symndx;
2512       struct elf_link_hash_entry *h;
2513 
2514       r_symndx = ELF32_R_SYM (rel->r_info);
2515 
2516       if (r_symndx < symtab_hdr->sh_info)
2517 	h = NULL;
2518       else
2519 	{
2520 	  h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2521 	  while (h->root.type == bfd_link_hash_indirect
2522 		 || h->root.type == bfd_link_hash_warning)
2523 	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
2524 	}
2525 
2526       switch (ELF32_R_TYPE (rel->r_info))
2527 	{
2528 	case R_68K_GOT8:
2529 	case R_68K_GOT16:
2530 	case R_68K_GOT32:
2531 	  if (h != NULL
2532 	      && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
2533 	    break;
2534 	  /* Fall through.  */
2535 
2536 	  /* Relative GOT relocations.  */
2537 	case R_68K_GOT8O:
2538 	case R_68K_GOT16O:
2539 	case R_68K_GOT32O:
2540 	  /* Fall through.  */
2541 
2542 	  /* TLS relocations.  */
2543 	case R_68K_TLS_GD8:
2544 	case R_68K_TLS_GD16:
2545 	case R_68K_TLS_GD32:
2546 	case R_68K_TLS_LDM8:
2547 	case R_68K_TLS_LDM16:
2548 	case R_68K_TLS_LDM32:
2549 	case R_68K_TLS_IE8:
2550 	case R_68K_TLS_IE16:
2551 	case R_68K_TLS_IE32:
2552 
2553 	case R_68K_TLS_TPREL32:
2554 	case R_68K_TLS_DTPREL32:
2555 
2556 	  if (ELF32_R_TYPE (rel->r_info) == R_68K_TLS_TPREL32
2557 	      && bfd_link_pic (info))
2558 	    /* Do the special chorus for libraries with static TLS.  */
2559 	    info->flags |= DF_STATIC_TLS;
2560 
2561 	  /* This symbol requires a global offset table entry.  */
2562 
2563 	  if (dynobj == NULL)
2564 	    {
2565 	      /* Create the .got section.  */
2566 	      elf_hash_table (info)->dynobj = dynobj = abfd;
2567 	      if (!_bfd_elf_create_got_section (dynobj, info))
2568 		return FALSE;
2569 	    }
2570 
2571 	  if (got == NULL)
2572 	    {
2573 	      struct elf_m68k_bfd2got_entry *bfd2got_entry;
2574 
2575 	      bfd2got_entry
2576 		= elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
2577 					      abfd, FIND_OR_CREATE, info);
2578 	      if (bfd2got_entry == NULL)
2579 		return FALSE;
2580 
2581 	      got = bfd2got_entry->got;
2582 	      BFD_ASSERT (got != NULL);
2583 	    }
2584 
2585 	  {
2586 	    struct elf_m68k_got_entry *got_entry;
2587 
2588 	    /* Add entry to got.  */
2589 	    got_entry = elf_m68k_add_entry_to_got (got, h, abfd,
2590 						   ELF32_R_TYPE (rel->r_info),
2591 						   r_symndx, info);
2592 	    if (got_entry == NULL)
2593 	      return FALSE;
2594 
2595 	    if (got_entry->u.s1.refcount == 1)
2596 	      {
2597 		/* Make sure this symbol is output as a dynamic symbol.  */
2598 		if (h != NULL
2599 		    && h->dynindx == -1
2600 		    && !h->forced_local)
2601 		  {
2602 		    if (!bfd_elf_link_record_dynamic_symbol (info, h))
2603 		      return FALSE;
2604 		  }
2605 	      }
2606 	  }
2607 
2608 	  break;
2609 
2610 	case R_68K_PLT8:
2611 	case R_68K_PLT16:
2612 	case R_68K_PLT32:
2613 	  /* This symbol requires a procedure linkage table entry.  We
2614 	     actually build the entry in adjust_dynamic_symbol,
2615 	     because this might be a case of linking PIC code which is
2616 	     never referenced by a dynamic object, in which case we
2617 	     don't need to generate a procedure linkage table entry
2618 	     after all.  */
2619 
2620 	  /* If this is a local symbol, we resolve it directly without
2621 	     creating a procedure linkage table entry.  */
2622 	  if (h == NULL)
2623 	    continue;
2624 
2625 	  h->needs_plt = 1;
2626 	  h->plt.refcount++;
2627 	  break;
2628 
2629 	case R_68K_PLT8O:
2630 	case R_68K_PLT16O:
2631 	case R_68K_PLT32O:
2632 	  /* This symbol requires a procedure linkage table entry.  */
2633 
2634 	  if (h == NULL)
2635 	    {
2636 	      /* It does not make sense to have this relocation for a
2637 		 local symbol.  FIXME: does it?  How to handle it if
2638 		 it does make sense?  */
2639 	      bfd_set_error (bfd_error_bad_value);
2640 	      return FALSE;
2641 	    }
2642 
2643 	  /* Make sure this symbol is output as a dynamic symbol.  */
2644 	  if (h->dynindx == -1
2645 	      && !h->forced_local)
2646 	    {
2647 	      if (!bfd_elf_link_record_dynamic_symbol (info, h))
2648 		return FALSE;
2649 	    }
2650 
2651 	  h->needs_plt = 1;
2652 	  h->plt.refcount++;
2653 	  break;
2654 
2655 	case R_68K_PC8:
2656 	case R_68K_PC16:
2657 	case R_68K_PC32:
2658 	  /* If we are creating a shared library and this is not a local
2659 	     symbol, we need to copy the reloc into the shared library.
2660 	     However when linking with -Bsymbolic and this is a global
2661 	     symbol which is defined in an object we are including in the
2662 	     link (i.e., DEF_REGULAR is set), then we can resolve the
2663 	     reloc directly.  At this point we have not seen all the input
2664 	     files, so it is possible that DEF_REGULAR is not set now but
2665 	     will be set later (it is never cleared).  We account for that
2666 	     possibility below by storing information in the
2667 	     pcrel_relocs_copied field of the hash table entry.  */
2668 	  if (!(bfd_link_pic (info)
2669 		&& (sec->flags & SEC_ALLOC) != 0
2670 		&& h != NULL
2671 		&& (!SYMBOLIC_BIND (info, h)
2672 		    || h->root.type == bfd_link_hash_defweak
2673 		    || !h->def_regular)))
2674 	    {
2675 	      if (h != NULL)
2676 		{
2677 		  /* Make sure a plt entry is created for this symbol if
2678 		     it turns out to be a function defined by a dynamic
2679 		     object.  */
2680 		  h->plt.refcount++;
2681 		}
2682 	      break;
2683 	    }
2684 	  /* Fall through.  */
2685 	case R_68K_8:
2686 	case R_68K_16:
2687 	case R_68K_32:
2688 	  /* We don't need to handle relocs into sections not going into
2689 	     the "real" output.  */
2690 	  if ((sec->flags & SEC_ALLOC) == 0)
2691 	      break;
2692 
2693 	  if (h != NULL)
2694 	    {
2695 	      /* Make sure a plt entry is created for this symbol if it
2696 		 turns out to be a function defined by a dynamic object.  */
2697 	      h->plt.refcount++;
2698 
2699 	      if (bfd_link_executable (info))
2700 		/* This symbol needs a non-GOT reference.  */
2701 		h->non_got_ref = 1;
2702 	    }
2703 
2704 	  /* If we are creating a shared library, we need to copy the
2705 	     reloc into the shared library.  */
2706 	  if (bfd_link_pic (info)
2707 	      && (h == NULL
2708 		  || !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h)))
2709 	    {
2710 	      /* When creating a shared object, we must copy these
2711 		 reloc types into the output file.  We create a reloc
2712 		 section in dynobj and make room for this reloc.  */
2713 	      if (sreloc == NULL)
2714 		{
2715 		  sreloc = _bfd_elf_make_dynamic_reloc_section
2716 		    (sec, dynobj, 2, abfd, /*rela?*/ TRUE);
2717 
2718 		  if (sreloc == NULL)
2719 		    return FALSE;
2720 		}
2721 
2722 	      if (sec->flags & SEC_READONLY
2723 		  /* Don't set DF_TEXTREL yet for PC relative
2724 		     relocations, they might be discarded later.  */
2725 		  && !(ELF32_R_TYPE (rel->r_info) == R_68K_PC8
2726 		       || ELF32_R_TYPE (rel->r_info) == R_68K_PC16
2727 		       || ELF32_R_TYPE (rel->r_info) == R_68K_PC32))
2728 		{
2729 		  if (info->warn_shared_textrel)
2730 		    (*_bfd_error_handler)
2731 		      (_("warning: dynamic relocation to `%s' in readonly section `%s'"),
2732 		      h->root.root.string, sec->name);
2733 		  info->flags |= DF_TEXTREL;
2734 		}
2735 
2736 	      sreloc->size += sizeof (Elf32_External_Rela);
2737 
2738 	      /* We count the number of PC relative relocations we have
2739 		 entered for this symbol, so that we can discard them
2740 		 again if, in the -Bsymbolic case, the symbol is later
2741 		 defined by a regular object, or, in the normal shared
2742 		 case, the symbol is forced to be local.  Note that this
2743 		 function is only called if we are using an m68kelf linker
2744 		 hash table, which means that h is really a pointer to an
2745 		 elf_m68k_link_hash_entry.  */
2746 	      if (ELF32_R_TYPE (rel->r_info) == R_68K_PC8
2747 		  || ELF32_R_TYPE (rel->r_info) == R_68K_PC16
2748 		  || ELF32_R_TYPE (rel->r_info) == R_68K_PC32)
2749 		{
2750 		  struct elf_m68k_pcrel_relocs_copied *p;
2751 		  struct elf_m68k_pcrel_relocs_copied **head;
2752 
2753 		  if (h != NULL)
2754 		    {
2755 		      struct elf_m68k_link_hash_entry *eh
2756 			= elf_m68k_hash_entry (h);
2757 		      head = &eh->pcrel_relocs_copied;
2758 		    }
2759 		  else
2760 		    {
2761 		      asection *s;
2762 		      void *vpp;
2763 		      Elf_Internal_Sym *isym;
2764 
2765 		      isym = bfd_sym_from_r_symndx (&elf_m68k_hash_table (info)->sym_cache,
2766 						    abfd, r_symndx);
2767 		      if (isym == NULL)
2768 			return FALSE;
2769 
2770 		      s = bfd_section_from_elf_index (abfd, isym->st_shndx);
2771 		      if (s == NULL)
2772 			s = sec;
2773 
2774 		      vpp = &elf_section_data (s)->local_dynrel;
2775 		      head = (struct elf_m68k_pcrel_relocs_copied **) vpp;
2776 		    }
2777 
2778 		  for (p = *head; p != NULL; p = p->next)
2779 		    if (p->section == sreloc)
2780 		      break;
2781 
2782 		  if (p == NULL)
2783 		    {
2784 		      p = ((struct elf_m68k_pcrel_relocs_copied *)
2785 			   bfd_alloc (dynobj, (bfd_size_type) sizeof *p));
2786 		      if (p == NULL)
2787 			return FALSE;
2788 		      p->next = *head;
2789 		      *head = p;
2790 		      p->section = sreloc;
2791 		      p->count = 0;
2792 		    }
2793 
2794 		  ++p->count;
2795 		}
2796 	    }
2797 
2798 	  break;
2799 
2800 	  /* This relocation describes the C++ object vtable hierarchy.
2801 	     Reconstruct it for later use during GC.  */
2802 	case R_68K_GNU_VTINHERIT:
2803 	  if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
2804 	    return FALSE;
2805 	  break;
2806 
2807 	  /* This relocation describes which C++ vtable entries are actually
2808 	     used.  Record for later use during GC.  */
2809 	case R_68K_GNU_VTENTRY:
2810 	  BFD_ASSERT (h != NULL);
2811 	  if (h != NULL
2812 	      && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
2813 	    return FALSE;
2814 	  break;
2815 
2816 	default:
2817 	  break;
2818 	}
2819     }
2820 
2821   return TRUE;
2822 }
2823 
2824 /* Return the section that should be marked against GC for a given
2825    relocation.  */
2826 
2827 static asection *
2828 elf_m68k_gc_mark_hook (asection *sec,
2829 		       struct bfd_link_info *info,
2830 		       Elf_Internal_Rela *rel,
2831 		       struct elf_link_hash_entry *h,
2832 		       Elf_Internal_Sym *sym)
2833 {
2834   if (h != NULL)
2835     switch (ELF32_R_TYPE (rel->r_info))
2836       {
2837       case R_68K_GNU_VTINHERIT:
2838       case R_68K_GNU_VTENTRY:
2839 	return NULL;
2840       }
2841 
2842   return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
2843 }
2844 
2845 /* Return the type of PLT associated with OUTPUT_BFD.  */
2846 
2847 static const struct elf_m68k_plt_info *
2848 elf_m68k_get_plt_info (bfd *output_bfd)
2849 {
2850   unsigned int features;
2851 
2852   features = bfd_m68k_mach_to_features (bfd_get_mach (output_bfd));
2853   if (features & cpu32)
2854     return &elf_cpu32_plt_info;
2855   if (features & mcfisa_b)
2856     return &elf_isab_plt_info;
2857   if (features & mcfisa_c)
2858     return &elf_isac_plt_info;
2859   return &elf_m68k_plt_info;
2860 }
2861 
2862 /* This function is called after all the input files have been read,
2863    and the input sections have been assigned to output sections.
2864    It's a convenient place to determine the PLT style.  */
2865 
2866 static bfd_boolean
2867 elf_m68k_always_size_sections (bfd *output_bfd, struct bfd_link_info *info)
2868 {
2869   /* Bind input BFDs to GOTs and calculate sizes of .got and .rela.got
2870      sections.  */
2871   if (!elf_m68k_partition_multi_got (info))
2872     return FALSE;
2873 
2874   elf_m68k_hash_table (info)->plt_info = elf_m68k_get_plt_info (output_bfd);
2875   return TRUE;
2876 }
2877 
2878 /* Adjust a symbol defined by a dynamic object and referenced by a
2879    regular object.  The current definition is in some section of the
2880    dynamic object, but we're not including those sections.  We have to
2881    change the definition to something the rest of the link can
2882    understand.  */
2883 
2884 static bfd_boolean
2885 elf_m68k_adjust_dynamic_symbol (struct bfd_link_info *info,
2886 				struct elf_link_hash_entry *h)
2887 {
2888   struct elf_m68k_link_hash_table *htab;
2889   bfd *dynobj;
2890   asection *s;
2891 
2892   htab = elf_m68k_hash_table (info);
2893   dynobj = htab->root.dynobj;
2894 
2895   /* Make sure we know what is going on here.  */
2896   BFD_ASSERT (dynobj != NULL
2897 	      && (h->needs_plt
2898 		  || h->type == STT_GNU_IFUNC
2899 		  || h->is_weakalias
2900 		  || (h->def_dynamic
2901 		      && h->ref_regular
2902 		      && !h->def_regular)));
2903 
2904   /* If this is a function, put it in the procedure linkage table.  We
2905      will fill in the contents of the procedure linkage table later,
2906      when we know the address of the .got section.  */
2907   if ((h->type == STT_FUNC || h->type == STT_GNU_IFUNC)
2908       || h->needs_plt)
2909     {
2910       if ((h->plt.refcount <= 0
2911 	   || SYMBOL_CALLS_LOCAL (info, h)
2912 	   || ((ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2913 		|| UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
2914 	       && h->root.type == bfd_link_hash_undefweak))
2915 	  /* We must always create the plt entry if it was referenced
2916 	     by a PLTxxO relocation.  In this case we already recorded
2917 	     it as a dynamic symbol.  */
2918 	  && h->dynindx == -1)
2919 	{
2920 	  /* This case can occur if we saw a PLTxx reloc in an input
2921 	     file, but the symbol was never referred to by a dynamic
2922 	     object, or if all references were garbage collected.  In
2923 	     such a case, we don't actually need to build a procedure
2924 	     linkage table, and we can just do a PCxx reloc instead.  */
2925 	  h->plt.offset = (bfd_vma) -1;
2926 	  h->needs_plt = 0;
2927 	  return TRUE;
2928 	}
2929 
2930       /* Make sure this symbol is output as a dynamic symbol.  */
2931       if (h->dynindx == -1
2932 	  && !h->forced_local)
2933 	{
2934 	  if (! bfd_elf_link_record_dynamic_symbol (info, h))
2935 	    return FALSE;
2936 	}
2937 
2938       s = htab->root.splt;
2939       BFD_ASSERT (s != NULL);
2940 
2941       /* If this is the first .plt entry, make room for the special
2942 	 first entry.  */
2943       if (s->size == 0)
2944 	s->size = htab->plt_info->size;
2945 
2946       /* If this symbol is not defined in a regular file, and we are
2947 	 not generating a shared library, then set the symbol to this
2948 	 location in the .plt.  This is required to make function
2949 	 pointers compare as equal between the normal executable and
2950 	 the shared library.  */
2951       if (!bfd_link_pic (info)
2952 	  && !h->def_regular)
2953 	{
2954 	  h->root.u.def.section = s;
2955 	  h->root.u.def.value = s->size;
2956 	}
2957 
2958       h->plt.offset = s->size;
2959 
2960       /* Make room for this entry.  */
2961       s->size += htab->plt_info->size;
2962 
2963       /* We also need to make an entry in the .got.plt section, which
2964 	 will be placed in the .got section by the linker script.  */
2965       s = htab->root.sgotplt;
2966       BFD_ASSERT (s != NULL);
2967       s->size += 4;
2968 
2969       /* We also need to make an entry in the .rela.plt section.  */
2970       s = htab->root.srelplt;
2971       BFD_ASSERT (s != NULL);
2972       s->size += sizeof (Elf32_External_Rela);
2973 
2974       return TRUE;
2975     }
2976 
2977   /* Reinitialize the plt offset now that it is not used as a reference
2978      count any more.  */
2979   h->plt.offset = (bfd_vma) -1;
2980 
2981   /* If this is a weak symbol, and there is a real definition, the
2982      processor independent code will have arranged for us to see the
2983      real definition first, and we can just use the same value.  */
2984   if (h->is_weakalias)
2985     {
2986       struct elf_link_hash_entry *def = weakdef (h);
2987       BFD_ASSERT (def->root.type == bfd_link_hash_defined);
2988       h->root.u.def.section = def->root.u.def.section;
2989       h->root.u.def.value = def->root.u.def.value;
2990       return TRUE;
2991     }
2992 
2993   /* This is a reference to a symbol defined by a dynamic object which
2994      is not a function.  */
2995 
2996   /* If we are creating a shared library, we must presume that the
2997      only references to the symbol are via the global offset table.
2998      For such cases we need not do anything here; the relocations will
2999      be handled correctly by relocate_section.  */
3000   if (bfd_link_pic (info))
3001     return TRUE;
3002 
3003   /* If there are no references to this symbol that do not use the
3004      GOT, we don't need to generate a copy reloc.  */
3005   if (!h->non_got_ref)
3006     return TRUE;
3007 
3008   /* We must allocate the symbol in our .dynbss section, which will
3009      become part of the .bss section of the executable.  There will be
3010      an entry for this symbol in the .dynsym section.  The dynamic
3011      object will contain position independent code, so all references
3012      from the dynamic object to this symbol will go through the global
3013      offset table.  The dynamic linker will use the .dynsym entry to
3014      determine the address it must put in the global offset table, so
3015      both the dynamic object and the regular object will refer to the
3016      same memory location for the variable.  */
3017 
3018   s = bfd_get_linker_section (dynobj, ".dynbss");
3019   BFD_ASSERT (s != NULL);
3020 
3021   /* We must generate a R_68K_COPY reloc to tell the dynamic linker to
3022      copy the initial value out of the dynamic object and into the
3023      runtime process image.  We need to remember the offset into the
3024      .rela.bss section we are going to use.  */
3025   if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
3026     {
3027       asection *srel;
3028 
3029       srel = bfd_get_linker_section (dynobj, ".rela.bss");
3030       BFD_ASSERT (srel != NULL);
3031       srel->size += sizeof (Elf32_External_Rela);
3032       h->needs_copy = 1;
3033     }
3034 
3035   return _bfd_elf_adjust_dynamic_copy (info, h, s);
3036 }
3037 
3038 /* Set the sizes of the dynamic sections.  */
3039 
3040 static bfd_boolean
3041 elf_m68k_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
3042 				struct bfd_link_info *info)
3043 {
3044   bfd *dynobj;
3045   asection *s;
3046   bfd_boolean plt;
3047   bfd_boolean relocs;
3048 
3049   dynobj = elf_hash_table (info)->dynobj;
3050   BFD_ASSERT (dynobj != NULL);
3051 
3052   if (elf_hash_table (info)->dynamic_sections_created)
3053     {
3054       /* Set the contents of the .interp section to the interpreter.  */
3055       if (bfd_link_executable (info) && !info->nointerp)
3056 	{
3057 	  s = bfd_get_linker_section (dynobj, ".interp");
3058 	  BFD_ASSERT (s != NULL);
3059 	  s->size = sizeof ELF_DYNAMIC_INTERPRETER;
3060 	  s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
3061 	}
3062     }
3063   else
3064     {
3065       /* We may have created entries in the .rela.got section.
3066 	 However, if we are not creating the dynamic sections, we will
3067 	 not actually use these entries.  Reset the size of .rela.got,
3068 	 which will cause it to get stripped from the output file
3069 	 below.  */
3070       s = elf_hash_table (info)->srelgot;
3071       if (s != NULL)
3072 	s->size = 0;
3073     }
3074 
3075   /* If this is a -Bsymbolic shared link, then we need to discard all
3076      PC relative relocs against symbols defined in a regular object.
3077      For the normal shared case we discard the PC relative relocs
3078      against symbols that have become local due to visibility changes.
3079      We allocated space for them in the check_relocs routine, but we
3080      will not fill them in in the relocate_section routine.  */
3081   if (bfd_link_pic (info))
3082     elf_link_hash_traverse (elf_hash_table (info),
3083 			    elf_m68k_discard_copies,
3084 			    info);
3085 
3086   /* The check_relocs and adjust_dynamic_symbol entry points have
3087      determined the sizes of the various dynamic sections.  Allocate
3088      memory for them.  */
3089   plt = FALSE;
3090   relocs = FALSE;
3091   for (s = dynobj->sections; s != NULL; s = s->next)
3092     {
3093       const char *name;
3094 
3095       if ((s->flags & SEC_LINKER_CREATED) == 0)
3096 	continue;
3097 
3098       /* It's OK to base decisions on the section name, because none
3099 	 of the dynobj section names depend upon the input files.  */
3100       name = bfd_get_section_name (dynobj, s);
3101 
3102       if (strcmp (name, ".plt") == 0)
3103 	{
3104 	  /* Remember whether there is a PLT.  */
3105 	  plt = s->size != 0;
3106 	}
3107       else if (CONST_STRNEQ (name, ".rela"))
3108 	{
3109 	  if (s->size != 0)
3110 	    {
3111 	      relocs = TRUE;
3112 
3113 	      /* We use the reloc_count field as a counter if we need
3114 		 to copy relocs into the output file.  */
3115 	      s->reloc_count = 0;
3116 	    }
3117 	}
3118       else if (! CONST_STRNEQ (name, ".got")
3119 	       && strcmp (name, ".dynbss") != 0)
3120 	{
3121 	  /* It's not one of our sections, so don't allocate space.  */
3122 	  continue;
3123 	}
3124 
3125       if (s->size == 0)
3126 	{
3127 	  /* If we don't need this section, strip it from the
3128 	     output file.  This is mostly to handle .rela.bss and
3129 	     .rela.plt.  We must create both sections in
3130 	     create_dynamic_sections, because they must be created
3131 	     before the linker maps input sections to output
3132 	     sections.  The linker does that before
3133 	     adjust_dynamic_symbol is called, and it is that
3134 	     function which decides whether anything needs to go
3135 	     into these sections.  */
3136 	  s->flags |= SEC_EXCLUDE;
3137 	  continue;
3138 	}
3139 
3140       if ((s->flags & SEC_HAS_CONTENTS) == 0)
3141 	continue;
3142 
3143       /* Allocate memory for the section contents.  */
3144       /* FIXME: This should be a call to bfd_alloc not bfd_zalloc.
3145 	 Unused entries should be reclaimed before the section's contents
3146 	 are written out, but at the moment this does not happen.  Thus in
3147 	 order to prevent writing out garbage, we initialise the section's
3148 	 contents to zero.  */
3149       s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
3150       if (s->contents == NULL)
3151 	return FALSE;
3152     }
3153 
3154   if (elf_hash_table (info)->dynamic_sections_created)
3155     {
3156       /* Add some entries to the .dynamic section.  We fill in the
3157 	 values later, in elf_m68k_finish_dynamic_sections, but we
3158 	 must add the entries now so that we get the correct size for
3159 	 the .dynamic section.  The DT_DEBUG entry is filled in by the
3160 	 dynamic linker and used by the debugger.  */
3161 #define add_dynamic_entry(TAG, VAL) \
3162   _bfd_elf_add_dynamic_entry (info, TAG, VAL)
3163 
3164       if (bfd_link_executable (info))
3165 	{
3166 	  if (!add_dynamic_entry (DT_DEBUG, 0))
3167 	    return FALSE;
3168 	}
3169 
3170       if (plt)
3171 	{
3172 	  if (!add_dynamic_entry (DT_PLTGOT, 0)
3173 	      || !add_dynamic_entry (DT_PLTRELSZ, 0)
3174 	      || !add_dynamic_entry (DT_PLTREL, DT_RELA)
3175 	      || !add_dynamic_entry (DT_JMPREL, 0))
3176 	    return FALSE;
3177 	}
3178 
3179       if (relocs)
3180 	{
3181 	  if (!add_dynamic_entry (DT_RELA, 0)
3182 	      || !add_dynamic_entry (DT_RELASZ, 0)
3183 	      || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
3184 	    return FALSE;
3185 	}
3186 
3187       if ((info->flags & DF_TEXTREL) != 0)
3188 	{
3189 	  if (!add_dynamic_entry (DT_TEXTREL, 0))
3190 	    return FALSE;
3191 	}
3192     }
3193 #undef add_dynamic_entry
3194 
3195   return TRUE;
3196 }
3197 
3198 /* This function is called via elf_link_hash_traverse if we are
3199    creating a shared object.  In the -Bsymbolic case it discards the
3200    space allocated to copy PC relative relocs against symbols which
3201    are defined in regular objects.  For the normal shared case, it
3202    discards space for pc-relative relocs that have become local due to
3203    symbol visibility changes.  We allocated space for them in the
3204    check_relocs routine, but we won't fill them in in the
3205    relocate_section routine.
3206 
3207    We also check whether any of the remaining relocations apply
3208    against a readonly section, and set the DF_TEXTREL flag in this
3209    case.  */
3210 
3211 static bfd_boolean
3212 elf_m68k_discard_copies (struct elf_link_hash_entry *h,
3213 			 void * inf)
3214 {
3215   struct bfd_link_info *info = (struct bfd_link_info *) inf;
3216   struct elf_m68k_pcrel_relocs_copied *s;
3217 
3218   if (!SYMBOL_CALLS_LOCAL (info, h))
3219     {
3220       if ((info->flags & DF_TEXTREL) == 0)
3221 	{
3222 	  /* Look for relocations against read-only sections.  */
3223 	  for (s = elf_m68k_hash_entry (h)->pcrel_relocs_copied;
3224 	       s != NULL;
3225 	       s = s->next)
3226 	    if ((s->section->flags & SEC_READONLY) != 0)
3227 	      {
3228 		if (info->warn_shared_textrel)
3229 		  (*_bfd_error_handler)
3230 		    (_("warning: dynamic relocation to `%s' in readonly section `%s'"),
3231 		    h->root.root.string, s->section->name);
3232 		info->flags |= DF_TEXTREL;
3233 		break;
3234 	      }
3235 	}
3236 
3237       /* Make sure undefined weak symbols are output as a dynamic symbol
3238 	 in PIEs.  */
3239       if (h->non_got_ref
3240 	  && h->root.type == bfd_link_hash_undefweak
3241 	  && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3242 	  && h->dynindx == -1
3243 	  && !h->forced_local)
3244 	{
3245 	  if (! bfd_elf_link_record_dynamic_symbol (info, h))
3246 	    return FALSE;
3247 	}
3248 
3249       return TRUE;
3250     }
3251 
3252   for (s = elf_m68k_hash_entry (h)->pcrel_relocs_copied;
3253        s != NULL;
3254        s = s->next)
3255     s->section->size -= s->count * sizeof (Elf32_External_Rela);
3256 
3257   return TRUE;
3258 }
3259 
3260 
3261 /* Install relocation RELA.  */
3262 
3263 static void
3264 elf_m68k_install_rela (bfd *output_bfd,
3265 		       asection *srela,
3266 		       Elf_Internal_Rela *rela)
3267 {
3268   bfd_byte *loc;
3269 
3270   loc = srela->contents;
3271   loc += srela->reloc_count++ * sizeof (Elf32_External_Rela);
3272   bfd_elf32_swap_reloca_out (output_bfd, rela, loc);
3273 }
3274 
3275 /* Find the base offsets for thread-local storage in this object,
3276    for GD/LD and IE/LE respectively.  */
3277 
3278 #define DTP_OFFSET 0x8000
3279 #define TP_OFFSET  0x7000
3280 
3281 static bfd_vma
3282 dtpoff_base (struct bfd_link_info *info)
3283 {
3284   /* If tls_sec is NULL, we should have signalled an error already.  */
3285   if (elf_hash_table (info)->tls_sec == NULL)
3286     return 0;
3287   return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
3288 }
3289 
3290 static bfd_vma
3291 tpoff_base (struct bfd_link_info *info)
3292 {
3293   /* If tls_sec is NULL, we should have signalled an error already.  */
3294   if (elf_hash_table (info)->tls_sec == NULL)
3295     return 0;
3296   return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
3297 }
3298 
3299 /* Output necessary relocation to handle a symbol during static link.
3300    This function is called from elf_m68k_relocate_section.  */
3301 
3302 static void
3303 elf_m68k_init_got_entry_static (struct bfd_link_info *info,
3304 				bfd *output_bfd,
3305 				enum elf_m68k_reloc_type r_type,
3306 				asection *sgot,
3307 				bfd_vma got_entry_offset,
3308 				bfd_vma relocation)
3309 {
3310   switch (elf_m68k_reloc_got_type (r_type))
3311     {
3312     case R_68K_GOT32O:
3313       bfd_put_32 (output_bfd, relocation, sgot->contents + got_entry_offset);
3314       break;
3315 
3316     case R_68K_TLS_GD32:
3317       /* We know the offset within the module,
3318 	 put it into the second GOT slot.  */
3319       bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
3320 		  sgot->contents + got_entry_offset + 4);
3321       /* FALLTHRU */
3322 
3323     case R_68K_TLS_LDM32:
3324       /* Mark it as belonging to module 1, the executable.  */
3325       bfd_put_32 (output_bfd, 1, sgot->contents + got_entry_offset);
3326       break;
3327 
3328     case R_68K_TLS_IE32:
3329       bfd_put_32 (output_bfd, relocation - tpoff_base (info),
3330 		  sgot->contents + got_entry_offset);
3331       break;
3332 
3333     default:
3334       BFD_ASSERT (FALSE);
3335     }
3336 }
3337 
3338 /* Output necessary relocation to handle a local symbol
3339    during dynamic link.
3340    This function is called either from elf_m68k_relocate_section
3341    or from elf_m68k_finish_dynamic_symbol.  */
3342 
3343 static void
3344 elf_m68k_init_got_entry_local_shared (struct bfd_link_info *info,
3345 				      bfd *output_bfd,
3346 				      enum elf_m68k_reloc_type r_type,
3347 				      asection *sgot,
3348 				      bfd_vma got_entry_offset,
3349 				      bfd_vma relocation,
3350 				      asection *srela)
3351 {
3352   Elf_Internal_Rela outrel;
3353 
3354   switch (elf_m68k_reloc_got_type (r_type))
3355     {
3356     case R_68K_GOT32O:
3357       /* Emit RELATIVE relocation to initialize GOT slot
3358 	 at run-time.  */
3359       outrel.r_info = ELF32_R_INFO (0, R_68K_RELATIVE);
3360       outrel.r_addend = relocation;
3361       break;
3362 
3363     case R_68K_TLS_GD32:
3364       /* We know the offset within the module,
3365 	 put it into the second GOT slot.  */
3366       bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
3367 		  sgot->contents + got_entry_offset + 4);
3368       /* FALLTHRU */
3369 
3370     case R_68K_TLS_LDM32:
3371       /* We don't know the module number,
3372 	 create a relocation for it.  */
3373       outrel.r_info = ELF32_R_INFO (0, R_68K_TLS_DTPMOD32);
3374       outrel.r_addend = 0;
3375       break;
3376 
3377     case R_68K_TLS_IE32:
3378       /* Emit TPREL relocation to initialize GOT slot
3379 	 at run-time.  */
3380       outrel.r_info = ELF32_R_INFO (0, R_68K_TLS_TPREL32);
3381       outrel.r_addend = relocation - elf_hash_table (info)->tls_sec->vma;
3382       break;
3383 
3384     default:
3385       BFD_ASSERT (FALSE);
3386     }
3387 
3388   /* Offset of the GOT entry.  */
3389   outrel.r_offset = (sgot->output_section->vma
3390 		     + sgot->output_offset
3391 		     + got_entry_offset);
3392 
3393   /* Install one of the above relocations.  */
3394   elf_m68k_install_rela (output_bfd, srela, &outrel);
3395 
3396   bfd_put_32 (output_bfd, outrel.r_addend, sgot->contents + got_entry_offset);
3397 }
3398 
3399 /* Relocate an M68K ELF section.  */
3400 
3401 static bfd_boolean
3402 elf_m68k_relocate_section (bfd *output_bfd,
3403 			   struct bfd_link_info *info,
3404 			   bfd *input_bfd,
3405 			   asection *input_section,
3406 			   bfd_byte *contents,
3407 			   Elf_Internal_Rela *relocs,
3408 			   Elf_Internal_Sym *local_syms,
3409 			   asection **local_sections)
3410 {
3411   Elf_Internal_Shdr *symtab_hdr;
3412   struct elf_link_hash_entry **sym_hashes;
3413   asection *sgot;
3414   asection *splt;
3415   asection *sreloc;
3416   asection *srela;
3417   struct elf_m68k_got *got;
3418   Elf_Internal_Rela *rel;
3419   Elf_Internal_Rela *relend;
3420 
3421   symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3422   sym_hashes = elf_sym_hashes (input_bfd);
3423 
3424   sgot = NULL;
3425   splt = NULL;
3426   sreloc = NULL;
3427   srela = NULL;
3428 
3429   got = NULL;
3430 
3431   rel = relocs;
3432   relend = relocs + input_section->reloc_count;
3433   for (; rel < relend; rel++)
3434     {
3435       int r_type;
3436       reloc_howto_type *howto;
3437       unsigned long r_symndx;
3438       struct elf_link_hash_entry *h;
3439       Elf_Internal_Sym *sym;
3440       asection *sec;
3441       bfd_vma relocation;
3442       bfd_boolean unresolved_reloc;
3443       bfd_reloc_status_type r;
3444       bfd_boolean resolved_to_zero;
3445 
3446       r_type = ELF32_R_TYPE (rel->r_info);
3447       if (r_type < 0 || r_type >= (int) R_68K_max)
3448 	{
3449 	  bfd_set_error (bfd_error_bad_value);
3450 	  return FALSE;
3451 	}
3452       howto = howto_table + r_type;
3453 
3454       r_symndx = ELF32_R_SYM (rel->r_info);
3455 
3456       h = NULL;
3457       sym = NULL;
3458       sec = NULL;
3459       unresolved_reloc = FALSE;
3460 
3461       if (r_symndx < symtab_hdr->sh_info)
3462 	{
3463 	  sym = local_syms + r_symndx;
3464 	  sec = local_sections[r_symndx];
3465 	  relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
3466 	}
3467       else
3468 	{
3469 	  bfd_boolean warned, ignored;
3470 
3471 	  RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
3472 				   r_symndx, symtab_hdr, sym_hashes,
3473 				   h, sec, relocation,
3474 				   unresolved_reloc, warned, ignored);
3475 	}
3476 
3477       if (sec != NULL && discarded_section (sec))
3478 	RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3479 					 rel, 1, relend, howto, 0, contents);
3480 
3481       if (bfd_link_relocatable (info))
3482 	continue;
3483 
3484       resolved_to_zero = (h != NULL
3485 			  && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h));
3486 
3487       switch (r_type)
3488 	{
3489 	case R_68K_GOT8:
3490 	case R_68K_GOT16:
3491 	case R_68K_GOT32:
3492 	  /* Relocation is to the address of the entry for this symbol
3493 	     in the global offset table.  */
3494 	  if (h != NULL
3495 	      && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
3496 	    {
3497 	      if (elf_m68k_hash_table (info)->local_gp_p)
3498 		{
3499 		  bfd_vma sgot_output_offset;
3500 		  bfd_vma got_offset;
3501 
3502 		  sgot = elf_hash_table (info)->sgot;
3503 
3504 		  if (sgot != NULL)
3505 		    sgot_output_offset = sgot->output_offset;
3506 		  else
3507 		    /* In this case we have a reference to
3508 		       _GLOBAL_OFFSET_TABLE_, but the GOT itself is
3509 		       empty.
3510 		       ??? Issue a warning?  */
3511 		    sgot_output_offset = 0;
3512 
3513 		  if (got == NULL)
3514 		    {
3515 		      struct elf_m68k_bfd2got_entry *bfd2got_entry;
3516 
3517 		      bfd2got_entry
3518 			= elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
3519 						      input_bfd, SEARCH, NULL);
3520 
3521 		      if (bfd2got_entry != NULL)
3522 			{
3523 			  got = bfd2got_entry->got;
3524 			  BFD_ASSERT (got != NULL);
3525 
3526 			  got_offset = got->offset;
3527 			}
3528 		      else
3529 			/* In this case we have a reference to
3530 			   _GLOBAL_OFFSET_TABLE_, but no other references
3531 			   accessing any GOT entries.
3532 			   ??? Issue a warning?  */
3533 			got_offset = 0;
3534 		    }
3535 		  else
3536 		    got_offset = got->offset;
3537 
3538 		  /* Adjust GOT pointer to point to the GOT
3539 		     assigned to input_bfd.  */
3540 		  rel->r_addend += sgot_output_offset + got_offset;
3541 		}
3542 	      else
3543 		BFD_ASSERT (got == NULL || got->offset == 0);
3544 
3545 	      break;
3546 	    }
3547 	  /* Fall through.  */
3548 	case R_68K_GOT8O:
3549 	case R_68K_GOT16O:
3550 	case R_68K_GOT32O:
3551 
3552 	case R_68K_TLS_LDM32:
3553 	case R_68K_TLS_LDM16:
3554 	case R_68K_TLS_LDM8:
3555 
3556 	case R_68K_TLS_GD8:
3557 	case R_68K_TLS_GD16:
3558 	case R_68K_TLS_GD32:
3559 
3560 	case R_68K_TLS_IE8:
3561 	case R_68K_TLS_IE16:
3562 	case R_68K_TLS_IE32:
3563 
3564 	  /* Relocation is the offset of the entry for this symbol in
3565 	     the global offset table.  */
3566 
3567 	  {
3568 	    struct elf_m68k_got_entry_key key_;
3569 	    bfd_vma *off_ptr;
3570 	    bfd_vma off;
3571 
3572 	    sgot = elf_hash_table (info)->sgot;
3573 	    BFD_ASSERT (sgot != NULL);
3574 
3575 	    if (got == NULL)
3576 	      {
3577 		got = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
3578 						  input_bfd, MUST_FIND,
3579 						  NULL)->got;
3580 		BFD_ASSERT (got != NULL);
3581 	      }
3582 
3583 	    /* Get GOT offset for this symbol.  */
3584 	    elf_m68k_init_got_entry_key (&key_, h, input_bfd, r_symndx,
3585 					 r_type);
3586 	    off_ptr = &elf_m68k_get_got_entry (got, &key_, MUST_FIND,
3587 					       NULL)->u.s2.offset;
3588 	    off = *off_ptr;
3589 
3590 	    /* The offset must always be a multiple of 4.  We use
3591 	       the least significant bit to record whether we have
3592 	       already generated the necessary reloc.  */
3593 	    if ((off & 1) != 0)
3594 	      off &= ~1;
3595 	    else
3596 	      {
3597 		if (h != NULL
3598 		    /* @TLSLDM relocations are bounded to the module, in
3599 		       which the symbol is defined -- not to the symbol
3600 		       itself.  */
3601 		    && elf_m68k_reloc_got_type (r_type) != R_68K_TLS_LDM32)
3602 		  {
3603 		    bfd_boolean dyn;
3604 
3605 		    dyn = elf_hash_table (info)->dynamic_sections_created;
3606 		    if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
3607 							  bfd_link_pic (info),
3608 							  h)
3609 			|| (bfd_link_pic (info)
3610 			    && SYMBOL_REFERENCES_LOCAL (info, h))
3611 			|| ((ELF_ST_VISIBILITY (h->other)
3612 			     || resolved_to_zero)
3613 			    && h->root.type == bfd_link_hash_undefweak))
3614 		      {
3615 			/* This is actually a static link, or it is a
3616 			   -Bsymbolic link and the symbol is defined
3617 			   locally, or the symbol was forced to be local
3618 			   because of a version file.  We must initialize
3619 			   this entry in the global offset table.  Since
3620 			   the offset must always be a multiple of 4, we
3621 			   use the least significant bit to record whether
3622 			   we have initialized it already.
3623 
3624 			   When doing a dynamic link, we create a .rela.got
3625 			   relocation entry to initialize the value.  This
3626 			   is done in the finish_dynamic_symbol routine.  */
3627 
3628 			elf_m68k_init_got_entry_static (info,
3629 							output_bfd,
3630 							r_type,
3631 							sgot,
3632 							off,
3633 							relocation);
3634 
3635 			*off_ptr |= 1;
3636 		      }
3637 		    else
3638 		      unresolved_reloc = FALSE;
3639 		  }
3640 		else if (bfd_link_pic (info)) /* && h == NULL */
3641 		  /* Process local symbol during dynamic link.  */
3642 		  {
3643 		    srela = elf_hash_table (info)->srelgot;
3644 		    BFD_ASSERT (srela != NULL);
3645 
3646 		    elf_m68k_init_got_entry_local_shared (info,
3647 							  output_bfd,
3648 							  r_type,
3649 							  sgot,
3650 							  off,
3651 							  relocation,
3652 							  srela);
3653 
3654 		    *off_ptr |= 1;
3655 		  }
3656 		else /* h == NULL && !bfd_link_pic (info) */
3657 		  {
3658 		    elf_m68k_init_got_entry_static (info,
3659 						    output_bfd,
3660 						    r_type,
3661 						    sgot,
3662 						    off,
3663 						    relocation);
3664 
3665 		    *off_ptr |= 1;
3666 		  }
3667 	      }
3668 
3669 	    /* We don't use elf_m68k_reloc_got_type in the condition below
3670 	       because this is the only place where difference between
3671 	       R_68K_GOTx and R_68K_GOTxO relocations matters.  */
3672 	    if (r_type == R_68K_GOT32O
3673 		|| r_type == R_68K_GOT16O
3674 		|| r_type == R_68K_GOT8O
3675 		|| elf_m68k_reloc_got_type (r_type) == R_68K_TLS_GD32
3676 		|| elf_m68k_reloc_got_type (r_type) == R_68K_TLS_LDM32
3677 		|| elf_m68k_reloc_got_type (r_type) == R_68K_TLS_IE32)
3678 	      {
3679 		/* GOT pointer is adjusted to point to the start/middle
3680 		   of local GOT.  Adjust the offset accordingly.  */
3681 		BFD_ASSERT (elf_m68k_hash_table (info)->use_neg_got_offsets_p
3682 			    || off >= got->offset);
3683 
3684 		if (elf_m68k_hash_table (info)->local_gp_p)
3685 		  relocation = off - got->offset;
3686 		else
3687 		  {
3688 		    BFD_ASSERT (got->offset == 0);
3689 		    relocation = sgot->output_offset + off;
3690 		  }
3691 
3692 		/* This relocation does not use the addend.  */
3693 		rel->r_addend = 0;
3694 	      }
3695 	    else
3696 	      relocation = (sgot->output_section->vma + sgot->output_offset
3697 			    + off);
3698 	  }
3699 	  break;
3700 
3701 	case R_68K_TLS_LDO32:
3702 	case R_68K_TLS_LDO16:
3703 	case R_68K_TLS_LDO8:
3704 	  relocation -= dtpoff_base (info);
3705 	  break;
3706 
3707 	case R_68K_TLS_LE32:
3708 	case R_68K_TLS_LE16:
3709 	case R_68K_TLS_LE8:
3710 	  if (bfd_link_dll (info))
3711 	    {
3712 	      _bfd_error_handler
3713 		/* xgettext:c-format */
3714 		(_("%pB(%pA+%#" PRIx64 "): "
3715 		   "%s relocation not permitted in shared object"),
3716 		 input_bfd, input_section, (uint64_t) rel->r_offset,
3717 		 howto->name);
3718 
3719 	      return FALSE;
3720 	    }
3721 	  else
3722 	    relocation -= tpoff_base (info);
3723 
3724 	  break;
3725 
3726 	case R_68K_PLT8:
3727 	case R_68K_PLT16:
3728 	case R_68K_PLT32:
3729 	  /* Relocation is to the entry for this symbol in the
3730 	     procedure linkage table.  */
3731 
3732 	  /* Resolve a PLTxx reloc against a local symbol directly,
3733 	     without using the procedure linkage table.  */
3734 	  if (h == NULL)
3735 	    break;
3736 
3737 	  if (h->plt.offset == (bfd_vma) -1
3738 	      || !elf_hash_table (info)->dynamic_sections_created)
3739 	    {
3740 	      /* We didn't make a PLT entry for this symbol.  This
3741 		 happens when statically linking PIC code, or when
3742 		 using -Bsymbolic.  */
3743 	      break;
3744 	    }
3745 
3746 	  splt = elf_hash_table (info)->splt;
3747 	  BFD_ASSERT (splt != NULL);
3748 
3749 	  relocation = (splt->output_section->vma
3750 			+ splt->output_offset
3751 			+ h->plt.offset);
3752 	  unresolved_reloc = FALSE;
3753 	  break;
3754 
3755 	case R_68K_PLT8O:
3756 	case R_68K_PLT16O:
3757 	case R_68K_PLT32O:
3758 	  /* Relocation is the offset of the entry for this symbol in
3759 	     the procedure linkage table.  */
3760 	  BFD_ASSERT (h != NULL && h->plt.offset != (bfd_vma) -1);
3761 
3762 	  splt = elf_hash_table (info)->splt;
3763 	  BFD_ASSERT (splt != NULL);
3764 
3765 	  relocation = h->plt.offset;
3766 	  unresolved_reloc = FALSE;
3767 
3768 	  /* This relocation does not use the addend.  */
3769 	  rel->r_addend = 0;
3770 
3771 	  break;
3772 
3773 	case R_68K_8:
3774 	case R_68K_16:
3775 	case R_68K_32:
3776 	case R_68K_PC8:
3777 	case R_68K_PC16:
3778 	case R_68K_PC32:
3779 	  if (bfd_link_pic (info)
3780 	      && r_symndx != STN_UNDEF
3781 	      && (input_section->flags & SEC_ALLOC) != 0
3782 	      && (h == NULL
3783 		  || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3784 		      && !resolved_to_zero)
3785 		  || h->root.type != bfd_link_hash_undefweak)
3786 	      && ((r_type != R_68K_PC8
3787 		   && r_type != R_68K_PC16
3788 		   && r_type != R_68K_PC32)
3789 		  || !SYMBOL_CALLS_LOCAL (info, h)))
3790 	    {
3791 	      Elf_Internal_Rela outrel;
3792 	      bfd_byte *loc;
3793 	      bfd_boolean skip, relocate;
3794 
3795 	      /* When generating a shared object, these relocations
3796 		 are copied into the output file to be resolved at run
3797 		 time.  */
3798 
3799 	      skip = FALSE;
3800 	      relocate = FALSE;
3801 
3802 	      outrel.r_offset =
3803 		_bfd_elf_section_offset (output_bfd, info, input_section,
3804 					 rel->r_offset);
3805 	      if (outrel.r_offset == (bfd_vma) -1)
3806 		skip = TRUE;
3807 	      else if (outrel.r_offset == (bfd_vma) -2)
3808 		skip = TRUE, relocate = TRUE;
3809 	      outrel.r_offset += (input_section->output_section->vma
3810 				  + input_section->output_offset);
3811 
3812 	      if (skip)
3813 		memset (&outrel, 0, sizeof outrel);
3814 	      else if (h != NULL
3815 		       && h->dynindx != -1
3816 		       && (r_type == R_68K_PC8
3817 			   || r_type == R_68K_PC16
3818 			   || r_type == R_68K_PC32
3819 			   || !bfd_link_pic (info)
3820 			   || !SYMBOLIC_BIND (info, h)
3821 			   || !h->def_regular))
3822 		{
3823 		  outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
3824 		  outrel.r_addend = rel->r_addend;
3825 		}
3826 	      else
3827 		{
3828 		  /* This symbol is local, or marked to become local.  */
3829 		  outrel.r_addend = relocation + rel->r_addend;
3830 
3831 		  if (r_type == R_68K_32)
3832 		    {
3833 		      relocate = TRUE;
3834 		      outrel.r_info = ELF32_R_INFO (0, R_68K_RELATIVE);
3835 		    }
3836 		  else
3837 		    {
3838 		      long indx;
3839 
3840 		      if (bfd_is_abs_section (sec))
3841 			indx = 0;
3842 		      else if (sec == NULL || sec->owner == NULL)
3843 			{
3844 			  bfd_set_error (bfd_error_bad_value);
3845 			  return FALSE;
3846 			}
3847 		      else
3848 			{
3849 			  asection *osec;
3850 
3851 			  /* We are turning this relocation into one
3852 			     against a section symbol.  It would be
3853 			     proper to subtract the symbol's value,
3854 			     osec->vma, from the emitted reloc addend,
3855 			     but ld.so expects buggy relocs.  */
3856 			  osec = sec->output_section;
3857 			  indx = elf_section_data (osec)->dynindx;
3858 			  if (indx == 0)
3859 			    {
3860 			      struct elf_link_hash_table *htab;
3861 			      htab = elf_hash_table (info);
3862 			      osec = htab->text_index_section;
3863 			      indx = elf_section_data (osec)->dynindx;
3864 			    }
3865 			  BFD_ASSERT (indx != 0);
3866 			}
3867 
3868 		      outrel.r_info = ELF32_R_INFO (indx, r_type);
3869 		    }
3870 		}
3871 
3872 	      sreloc = elf_section_data (input_section)->sreloc;
3873 	      if (sreloc == NULL)
3874 		abort ();
3875 
3876 	      loc = sreloc->contents;
3877 	      loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
3878 	      bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3879 
3880 	      /* This reloc will be computed at runtime, so there's no
3881 		 need to do anything now, except for R_68K_32
3882 		 relocations that have been turned into
3883 		 R_68K_RELATIVE.  */
3884 	      if (!relocate)
3885 		continue;
3886 	    }
3887 
3888 	  break;
3889 
3890 	case R_68K_GNU_VTINHERIT:
3891 	case R_68K_GNU_VTENTRY:
3892 	  /* These are no-ops in the end.  */
3893 	  continue;
3894 
3895 	default:
3896 	  break;
3897 	}
3898 
3899       /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
3900 	 because such sections are not SEC_ALLOC and thus ld.so will
3901 	 not process them.  */
3902       if (unresolved_reloc
3903 	  && !((input_section->flags & SEC_DEBUGGING) != 0
3904 	       && h->def_dynamic)
3905 	  && _bfd_elf_section_offset (output_bfd, info, input_section,
3906 				      rel->r_offset) != (bfd_vma) -1)
3907 	{
3908 	  _bfd_error_handler
3909 	    /* xgettext:c-format */
3910 	    (_("%pB(%pA+%#" PRIx64 "): "
3911 	       "unresolvable %s relocation against symbol `%s'"),
3912 	     input_bfd,
3913 	     input_section,
3914 	     (uint64_t) rel->r_offset,
3915 	     howto->name,
3916 	     h->root.root.string);
3917 	  return FALSE;
3918 	}
3919 
3920       if (r_symndx != STN_UNDEF
3921 	  && r_type != R_68K_NONE
3922 	  && (h == NULL
3923 	      || h->root.type == bfd_link_hash_defined
3924 	      || h->root.type == bfd_link_hash_defweak))
3925 	{
3926 	  char sym_type;
3927 
3928 	  sym_type = (sym != NULL) ? ELF32_ST_TYPE (sym->st_info) : h->type;
3929 
3930 	  if (elf_m68k_reloc_tls_p (r_type) != (sym_type == STT_TLS))
3931 	    {
3932 	      const char *name;
3933 
3934 	      if (h != NULL)
3935 		name = h->root.root.string;
3936 	      else
3937 		{
3938 		  name = (bfd_elf_string_from_elf_section
3939 			  (input_bfd, symtab_hdr->sh_link, sym->st_name));
3940 		  if (name == NULL || *name == '\0')
3941 		    name = bfd_section_name (input_bfd, sec);
3942 		}
3943 
3944 	      _bfd_error_handler
3945 		((sym_type == STT_TLS
3946 		  /* xgettext:c-format */
3947 		  ? _("%pB(%pA+%#" PRIx64 "): %s used with TLS symbol %s")
3948 		  /* xgettext:c-format */
3949 		  : _("%pB(%pA+%#" PRIx64 "): %s used with non-TLS symbol %s")),
3950 		 input_bfd,
3951 		 input_section,
3952 		 (uint64_t) rel->r_offset,
3953 		 howto->name,
3954 		 name);
3955 	    }
3956 	}
3957 
3958       r = _bfd_final_link_relocate (howto, input_bfd, input_section,
3959 				    contents, rel->r_offset,
3960 				    relocation, rel->r_addend);
3961 
3962       if (r != bfd_reloc_ok)
3963 	{
3964 	  const char *name;
3965 
3966 	  if (h != NULL)
3967 	    name = h->root.root.string;
3968 	  else
3969 	    {
3970 	      name = bfd_elf_string_from_elf_section (input_bfd,
3971 						      symtab_hdr->sh_link,
3972 						      sym->st_name);
3973 	      if (name == NULL)
3974 		return FALSE;
3975 	      if (*name == '\0')
3976 		name = bfd_section_name (input_bfd, sec);
3977 	    }
3978 
3979 	  if (r == bfd_reloc_overflow)
3980 	    (*info->callbacks->reloc_overflow)
3981 	      (info, (h ? &h->root : NULL), name, howto->name,
3982 	       (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
3983 	  else
3984 	    {
3985 	      _bfd_error_handler
3986 		/* xgettext:c-format */
3987 		(_("%pB(%pA+%#" PRIx64 "): reloc against `%s': error %d"),
3988 		 input_bfd, input_section,
3989 		 (uint64_t) rel->r_offset, name, (int) r);
3990 	      return FALSE;
3991 	    }
3992 	}
3993     }
3994 
3995   return TRUE;
3996 }
3997 
3998 /* Install an M_68K_PC32 relocation against VALUE at offset OFFSET
3999    into section SEC.  */
4000 
4001 static void
4002 elf_m68k_install_pc32 (asection *sec, bfd_vma offset, bfd_vma value)
4003 {
4004   /* Make VALUE PC-relative.  */
4005   value -= sec->output_section->vma + offset;
4006 
4007   /* Apply any in-place addend.  */
4008   value += bfd_get_32 (sec->owner, sec->contents + offset);
4009 
4010   bfd_put_32 (sec->owner, value, sec->contents + offset);
4011 }
4012 
4013 /* Finish up dynamic symbol handling.  We set the contents of various
4014    dynamic sections here.  */
4015 
4016 static bfd_boolean
4017 elf_m68k_finish_dynamic_symbol (bfd *output_bfd,
4018 				struct bfd_link_info *info,
4019 				struct elf_link_hash_entry *h,
4020 				Elf_Internal_Sym *sym)
4021 {
4022   bfd *dynobj;
4023 
4024   dynobj = elf_hash_table (info)->dynobj;
4025 
4026   if (h->plt.offset != (bfd_vma) -1)
4027     {
4028       const struct elf_m68k_plt_info *plt_info;
4029       asection *splt;
4030       asection *sgot;
4031       asection *srela;
4032       bfd_vma plt_index;
4033       bfd_vma got_offset;
4034       Elf_Internal_Rela rela;
4035       bfd_byte *loc;
4036 
4037       /* This symbol has an entry in the procedure linkage table.  Set
4038 	 it up.  */
4039 
4040       BFD_ASSERT (h->dynindx != -1);
4041 
4042       plt_info = elf_m68k_hash_table (info)->plt_info;
4043       splt = elf_hash_table (info)->splt;
4044       sgot = elf_hash_table (info)->sgotplt;
4045       srela = elf_hash_table (info)->srelplt;
4046       BFD_ASSERT (splt != NULL && sgot != NULL && srela != NULL);
4047 
4048       /* Get the index in the procedure linkage table which
4049 	 corresponds to this symbol.  This is the index of this symbol
4050 	 in all the symbols for which we are making plt entries.  The
4051 	 first entry in the procedure linkage table is reserved.  */
4052       plt_index = (h->plt.offset / plt_info->size) - 1;
4053 
4054       /* Get the offset into the .got table of the entry that
4055 	 corresponds to this function.  Each .got entry is 4 bytes.
4056 	 The first three are reserved.  */
4057       got_offset = (plt_index + 3) * 4;
4058 
4059       memcpy (splt->contents + h->plt.offset,
4060 	      plt_info->symbol_entry,
4061 	      plt_info->size);
4062 
4063       elf_m68k_install_pc32 (splt, h->plt.offset + plt_info->symbol_relocs.got,
4064 			     (sgot->output_section->vma
4065 			      + sgot->output_offset
4066 			      + got_offset));
4067 
4068       bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rela),
4069 		  splt->contents
4070 		  + h->plt.offset
4071 		  + plt_info->symbol_resolve_entry + 2);
4072 
4073       elf_m68k_install_pc32 (splt, h->plt.offset + plt_info->symbol_relocs.plt,
4074 			     splt->output_section->vma);
4075 
4076       /* Fill in the entry in the global offset table.  */
4077       bfd_put_32 (output_bfd,
4078 		  (splt->output_section->vma
4079 		   + splt->output_offset
4080 		   + h->plt.offset
4081 		   + plt_info->symbol_resolve_entry),
4082 		  sgot->contents + got_offset);
4083 
4084       /* Fill in the entry in the .rela.plt section.  */
4085       rela.r_offset = (sgot->output_section->vma
4086 		       + sgot->output_offset
4087 		       + got_offset);
4088       rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_JMP_SLOT);
4089       rela.r_addend = 0;
4090       loc = srela->contents + plt_index * sizeof (Elf32_External_Rela);
4091       bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4092 
4093       if (!h->def_regular)
4094 	{
4095 	  /* Mark the symbol as undefined, rather than as defined in
4096 	     the .plt section.  Leave the value alone.  */
4097 	  sym->st_shndx = SHN_UNDEF;
4098 	}
4099     }
4100 
4101   if (elf_m68k_hash_entry (h)->glist != NULL)
4102     {
4103       asection *sgot;
4104       asection *srela;
4105       struct elf_m68k_got_entry *got_entry;
4106 
4107       /* This symbol has an entry in the global offset table.  Set it
4108 	 up.  */
4109 
4110       sgot = elf_hash_table (info)->sgot;
4111       srela = elf_hash_table (info)->srelgot;
4112       BFD_ASSERT (sgot != NULL && srela != NULL);
4113 
4114       got_entry = elf_m68k_hash_entry (h)->glist;
4115 
4116       while (got_entry != NULL)
4117 	{
4118 	  enum elf_m68k_reloc_type r_type;
4119 	  bfd_vma got_entry_offset;
4120 
4121 	  r_type = got_entry->key_.type;
4122 	  got_entry_offset = got_entry->u.s2.offset &~ (bfd_vma) 1;
4123 
4124 	  /* If this is a -Bsymbolic link, and the symbol is defined
4125 	     locally, we just want to emit a RELATIVE reloc.  Likewise if
4126 	     the symbol was forced to be local because of a version file.
4127 	     The entry in the global offset table already have been
4128 	     initialized in the relocate_section function.  */
4129 	  if (bfd_link_pic (info)
4130 	      && SYMBOL_REFERENCES_LOCAL (info, h))
4131 	    {
4132 	      bfd_vma relocation;
4133 
4134 	      relocation = bfd_get_signed_32 (output_bfd,
4135 					      (sgot->contents
4136 					       + got_entry_offset));
4137 
4138 	      /* Undo TP bias.  */
4139 	      switch (elf_m68k_reloc_got_type (r_type))
4140 		{
4141 		case R_68K_GOT32O:
4142 		case R_68K_TLS_LDM32:
4143 		  break;
4144 
4145 		case R_68K_TLS_GD32:
4146 		  /* The value for this relocation is actually put in
4147 		     the second GOT slot.  */
4148 		  relocation = bfd_get_signed_32 (output_bfd,
4149 						  (sgot->contents
4150 						   + got_entry_offset + 4));
4151 		  relocation += dtpoff_base (info);
4152 		  break;
4153 
4154 		case R_68K_TLS_IE32:
4155 		  relocation += tpoff_base (info);
4156 		  break;
4157 
4158 		default:
4159 		  BFD_ASSERT (FALSE);
4160 		}
4161 
4162 	      elf_m68k_init_got_entry_local_shared (info,
4163 						    output_bfd,
4164 						    r_type,
4165 						    sgot,
4166 						    got_entry_offset,
4167 						    relocation,
4168 						    srela);
4169 	    }
4170 	  else
4171 	    {
4172 	      Elf_Internal_Rela rela;
4173 
4174 	      /* Put zeros to GOT slots that will be initialized
4175 		 at run-time.  */
4176 	      {
4177 		bfd_vma n_slots;
4178 
4179 		n_slots = elf_m68k_reloc_got_n_slots (got_entry->key_.type);
4180 		while (n_slots--)
4181 		  bfd_put_32 (output_bfd, (bfd_vma) 0,
4182 			      (sgot->contents + got_entry_offset
4183 			       + 4 * n_slots));
4184 	      }
4185 
4186 	      rela.r_addend = 0;
4187 	      rela.r_offset = (sgot->output_section->vma
4188 			       + sgot->output_offset
4189 			       + got_entry_offset);
4190 
4191 	      switch (elf_m68k_reloc_got_type (r_type))
4192 		{
4193 		case R_68K_GOT32O:
4194 		  rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_GLOB_DAT);
4195 		  elf_m68k_install_rela (output_bfd, srela, &rela);
4196 		  break;
4197 
4198 		case R_68K_TLS_GD32:
4199 		  rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_TLS_DTPMOD32);
4200 		  elf_m68k_install_rela (output_bfd, srela, &rela);
4201 
4202 		  rela.r_offset += 4;
4203 		  rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_TLS_DTPREL32);
4204 		  elf_m68k_install_rela (output_bfd, srela, &rela);
4205 		  break;
4206 
4207 		case R_68K_TLS_IE32:
4208 		  rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_TLS_TPREL32);
4209 		  elf_m68k_install_rela (output_bfd, srela, &rela);
4210 		  break;
4211 
4212 		default:
4213 		  BFD_ASSERT (FALSE);
4214 		  break;
4215 		}
4216 	    }
4217 
4218 	  got_entry = got_entry->u.s2.next;
4219 	}
4220     }
4221 
4222   if (h->needs_copy)
4223     {
4224       asection *s;
4225       Elf_Internal_Rela rela;
4226       bfd_byte *loc;
4227 
4228       /* This symbol needs a copy reloc.  Set it up.  */
4229 
4230       BFD_ASSERT (h->dynindx != -1
4231 		  && (h->root.type == bfd_link_hash_defined
4232 		      || h->root.type == bfd_link_hash_defweak));
4233 
4234       s = bfd_get_linker_section (dynobj, ".rela.bss");
4235       BFD_ASSERT (s != NULL);
4236 
4237       rela.r_offset = (h->root.u.def.value
4238 		       + h->root.u.def.section->output_section->vma
4239 		       + h->root.u.def.section->output_offset);
4240       rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_COPY);
4241       rela.r_addend = 0;
4242       loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
4243       bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4244     }
4245 
4246   return TRUE;
4247 }
4248 
4249 /* Finish up the dynamic sections.  */
4250 
4251 static bfd_boolean
4252 elf_m68k_finish_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
4253 {
4254   bfd *dynobj;
4255   asection *sgot;
4256   asection *sdyn;
4257 
4258   dynobj = elf_hash_table (info)->dynobj;
4259 
4260   sgot = elf_hash_table (info)->sgotplt;
4261   BFD_ASSERT (sgot != NULL);
4262   sdyn = bfd_get_linker_section (dynobj, ".dynamic");
4263 
4264   if (elf_hash_table (info)->dynamic_sections_created)
4265     {
4266       asection *splt;
4267       Elf32_External_Dyn *dyncon, *dynconend;
4268 
4269       splt = elf_hash_table (info)->splt;
4270       BFD_ASSERT (splt != NULL && sdyn != NULL);
4271 
4272       dyncon = (Elf32_External_Dyn *) sdyn->contents;
4273       dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4274       for (; dyncon < dynconend; dyncon++)
4275 	{
4276 	  Elf_Internal_Dyn dyn;
4277 	  asection *s;
4278 
4279 	  bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4280 
4281 	  switch (dyn.d_tag)
4282 	    {
4283 	    default:
4284 	      break;
4285 
4286 	    case DT_PLTGOT:
4287 	      s = elf_hash_table (info)->sgotplt;
4288 	      goto get_vma;
4289 	    case DT_JMPREL:
4290 	      s = elf_hash_table (info)->srelplt;
4291 	    get_vma:
4292 	      dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4293 	      bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4294 	      break;
4295 
4296 	    case DT_PLTRELSZ:
4297 	      s = elf_hash_table (info)->srelplt;
4298 	      dyn.d_un.d_val = s->size;
4299 	      bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4300 	      break;
4301 	    }
4302 	}
4303 
4304       /* Fill in the first entry in the procedure linkage table.  */
4305       if (splt->size > 0)
4306 	{
4307 	  const struct elf_m68k_plt_info *plt_info;
4308 
4309 	  plt_info = elf_m68k_hash_table (info)->plt_info;
4310 	  memcpy (splt->contents, plt_info->plt0_entry, plt_info->size);
4311 
4312 	  elf_m68k_install_pc32 (splt, plt_info->plt0_relocs.got4,
4313 				 (sgot->output_section->vma
4314 				  + sgot->output_offset
4315 				  + 4));
4316 
4317 	  elf_m68k_install_pc32 (splt, plt_info->plt0_relocs.got8,
4318 				 (sgot->output_section->vma
4319 				  + sgot->output_offset
4320 				  + 8));
4321 
4322 	  elf_section_data (splt->output_section)->this_hdr.sh_entsize
4323 	    = plt_info->size;
4324 	}
4325     }
4326 
4327   /* Fill in the first three entries in the global offset table.  */
4328   if (sgot->size > 0)
4329     {
4330       if (sdyn == NULL)
4331 	bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
4332       else
4333 	bfd_put_32 (output_bfd,
4334 		    sdyn->output_section->vma + sdyn->output_offset,
4335 		    sgot->contents);
4336       bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
4337       bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
4338     }
4339 
4340   elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
4341 
4342   return TRUE;
4343 }
4344 
4345 /* Given a .data section and a .emreloc in-memory section, store
4346    relocation information into the .emreloc section which can be
4347    used at runtime to relocate the section.  This is called by the
4348    linker when the --embedded-relocs switch is used.  This is called
4349    after the add_symbols entry point has been called for all the
4350    objects, and before the final_link entry point is called.  */
4351 
4352 bfd_boolean
4353 bfd_m68k_elf32_create_embedded_relocs (bfd *abfd, struct bfd_link_info *info,
4354 				       asection *datasec, asection *relsec,
4355 				       char **errmsg)
4356 {
4357   Elf_Internal_Shdr *symtab_hdr;
4358   Elf_Internal_Sym *isymbuf = NULL;
4359   Elf_Internal_Rela *internal_relocs = NULL;
4360   Elf_Internal_Rela *irel, *irelend;
4361   bfd_byte *p;
4362   bfd_size_type amt;
4363 
4364   BFD_ASSERT (! bfd_link_relocatable (info));
4365 
4366   *errmsg = NULL;
4367 
4368   if (datasec->reloc_count == 0)
4369     return TRUE;
4370 
4371   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
4372 
4373   /* Get a copy of the native relocations.  */
4374   internal_relocs = (_bfd_elf_link_read_relocs
4375 		     (abfd, datasec, NULL, (Elf_Internal_Rela *) NULL,
4376 		      info->keep_memory));
4377   if (internal_relocs == NULL)
4378     goto error_return;
4379 
4380   amt = (bfd_size_type) datasec->reloc_count * 12;
4381   relsec->contents = (bfd_byte *) bfd_alloc (abfd, amt);
4382   if (relsec->contents == NULL)
4383     goto error_return;
4384 
4385   p = relsec->contents;
4386 
4387   irelend = internal_relocs + datasec->reloc_count;
4388   for (irel = internal_relocs; irel < irelend; irel++, p += 12)
4389     {
4390       asection *targetsec;
4391 
4392       /* We are going to write a four byte longword into the runtime
4393        reloc section.  The longword will be the address in the data
4394        section which must be relocated.  It is followed by the name
4395        of the target section NUL-padded or truncated to 8
4396        characters.  */
4397 
4398       /* We can only relocate absolute longword relocs at run time.  */
4399       if (ELF32_R_TYPE (irel->r_info) != (int) R_68K_32)
4400 	{
4401 	  *errmsg = _("unsupported relocation type");
4402 	  bfd_set_error (bfd_error_bad_value);
4403 	  goto error_return;
4404 	}
4405 
4406       /* Get the target section referred to by the reloc.  */
4407       if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info)
4408 	{
4409 	  /* A local symbol.  */
4410 	  Elf_Internal_Sym *isym;
4411 
4412 	  /* Read this BFD's local symbols if we haven't done so already.  */
4413 	  if (isymbuf == NULL)
4414 	    {
4415 	      isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
4416 	      if (isymbuf == NULL)
4417 		isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
4418 						symtab_hdr->sh_info, 0,
4419 						NULL, NULL, NULL);
4420 	      if (isymbuf == NULL)
4421 		goto error_return;
4422 	    }
4423 
4424 	  isym = isymbuf + ELF32_R_SYM (irel->r_info);
4425 	  targetsec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4426 	}
4427       else
4428 	{
4429 	  unsigned long indx;
4430 	  struct elf_link_hash_entry *h;
4431 
4432 	  /* An external symbol.  */
4433 	  indx = ELF32_R_SYM (irel->r_info) - symtab_hdr->sh_info;
4434 	  h = elf_sym_hashes (abfd)[indx];
4435 	  BFD_ASSERT (h != NULL);
4436 	  if (h->root.type == bfd_link_hash_defined
4437 	      || h->root.type == bfd_link_hash_defweak)
4438 	    targetsec = h->root.u.def.section;
4439 	  else
4440 	    targetsec = NULL;
4441 	}
4442 
4443       bfd_put_32 (abfd, irel->r_offset + datasec->output_offset, p);
4444       memset (p + 4, 0, 8);
4445       if (targetsec != NULL)
4446 	strncpy ((char *) p + 4, targetsec->output_section->name, 8);
4447     }
4448 
4449   if (isymbuf != NULL && symtab_hdr->contents != (unsigned char *) isymbuf)
4450     free (isymbuf);
4451   if (internal_relocs != NULL
4452       && elf_section_data (datasec)->relocs != internal_relocs)
4453     free (internal_relocs);
4454   return TRUE;
4455 
4456 error_return:
4457   if (isymbuf != NULL && symtab_hdr->contents != (unsigned char *) isymbuf)
4458     free (isymbuf);
4459   if (internal_relocs != NULL
4460       && elf_section_data (datasec)->relocs != internal_relocs)
4461     free (internal_relocs);
4462   return FALSE;
4463 }
4464 
4465 /* Set target options.  */
4466 
4467 void
4468 bfd_elf_m68k_set_target_options (struct bfd_link_info *info, int got_handling)
4469 {
4470   struct elf_m68k_link_hash_table *htab;
4471   bfd_boolean use_neg_got_offsets_p;
4472   bfd_boolean allow_multigot_p;
4473   bfd_boolean local_gp_p;
4474 
4475   switch (got_handling)
4476     {
4477     case 0:
4478       /* --got=single.  */
4479       local_gp_p = FALSE;
4480       use_neg_got_offsets_p = FALSE;
4481       allow_multigot_p = FALSE;
4482       break;
4483 
4484     case 1:
4485       /* --got=negative.  */
4486       local_gp_p = TRUE;
4487       use_neg_got_offsets_p = TRUE;
4488       allow_multigot_p = FALSE;
4489       break;
4490 
4491     case 2:
4492       /* --got=multigot.  */
4493       local_gp_p = TRUE;
4494       use_neg_got_offsets_p = TRUE;
4495       allow_multigot_p = TRUE;
4496       break;
4497 
4498     default:
4499       BFD_ASSERT (FALSE);
4500       return;
4501     }
4502 
4503   htab = elf_m68k_hash_table (info);
4504   if (htab != NULL)
4505     {
4506       htab->local_gp_p = local_gp_p;
4507       htab->use_neg_got_offsets_p = use_neg_got_offsets_p;
4508       htab->allow_multigot_p = allow_multigot_p;
4509     }
4510 }
4511 
4512 static enum elf_reloc_type_class
4513 elf32_m68k_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
4514 			     const asection *rel_sec ATTRIBUTE_UNUSED,
4515 			     const Elf_Internal_Rela *rela)
4516 {
4517   switch ((int) ELF32_R_TYPE (rela->r_info))
4518     {
4519     case R_68K_RELATIVE:
4520       return reloc_class_relative;
4521     case R_68K_JMP_SLOT:
4522       return reloc_class_plt;
4523     case R_68K_COPY:
4524       return reloc_class_copy;
4525     default:
4526       return reloc_class_normal;
4527     }
4528 }
4529 
4530 /* Return address for Ith PLT stub in section PLT, for relocation REL
4531    or (bfd_vma) -1 if it should not be included.  */
4532 
4533 static bfd_vma
4534 elf_m68k_plt_sym_val (bfd_vma i, const asection *plt,
4535 		      const arelent *rel ATTRIBUTE_UNUSED)
4536 {
4537   return plt->vma + (i + 1) * elf_m68k_get_plt_info (plt->owner)->size;
4538 }
4539 
4540 /* Support for core dump NOTE sections.  */
4541 
4542 static bfd_boolean
4543 elf_m68k_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
4544 {
4545   int offset;
4546   size_t size;
4547 
4548   switch (note->descsz)
4549     {
4550     default:
4551       return FALSE;
4552 
4553     case 154:		/* Linux/m68k */
4554       /* pr_cursig */
4555       elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
4556 
4557       /* pr_pid */
4558       elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 22);
4559 
4560       /* pr_reg */
4561       offset = 70;
4562       size = 80;
4563 
4564       break;
4565     }
4566 
4567   /* Make a ".reg/999" section.  */
4568   return _bfd_elfcore_make_pseudosection (abfd, ".reg",
4569 					  size, note->descpos + offset);
4570 }
4571 
4572 static bfd_boolean
4573 elf_m68k_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
4574 {
4575   switch (note->descsz)
4576     {
4577     default:
4578       return FALSE;
4579 
4580     case 124:		/* Linux/m68k elf_prpsinfo.  */
4581       elf_tdata (abfd)->core->pid
4582 	= bfd_get_32 (abfd, note->descdata + 12);
4583       elf_tdata (abfd)->core->program
4584 	= _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
4585       elf_tdata (abfd)->core->command
4586 	= _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
4587     }
4588 
4589   /* Note that for some reason, a spurious space is tacked
4590      onto the end of the args in some (at least one anyway)
4591      implementations, so strip it off if it exists.  */
4592   {
4593     char *command = elf_tdata (abfd)->core->command;
4594     int n = strlen (command);
4595 
4596     if (n > 0 && command[n - 1] == ' ')
4597       command[n - 1] = '\0';
4598   }
4599 
4600   return TRUE;
4601 }
4602 
4603 #define TARGET_BIG_SYM			m68k_elf32_vec
4604 #define TARGET_BIG_NAME			"elf32-m68k"
4605 #define ELF_MACHINE_CODE		EM_68K
4606 #define ELF_MAXPAGESIZE			0x2000
4607 #define elf_backend_create_dynamic_sections \
4608 					_bfd_elf_create_dynamic_sections
4609 #define bfd_elf32_bfd_link_hash_table_create \
4610 					elf_m68k_link_hash_table_create
4611 #define bfd_elf32_bfd_final_link	bfd_elf_final_link
4612 
4613 #define elf_backend_check_relocs	elf_m68k_check_relocs
4614 #define elf_backend_always_size_sections \
4615 					elf_m68k_always_size_sections
4616 #define elf_backend_adjust_dynamic_symbol \
4617 					elf_m68k_adjust_dynamic_symbol
4618 #define elf_backend_size_dynamic_sections \
4619 					elf_m68k_size_dynamic_sections
4620 #define elf_backend_final_write_processing	elf_m68k_final_write_processing
4621 #define elf_backend_init_index_section	_bfd_elf_init_1_index_section
4622 #define elf_backend_relocate_section	elf_m68k_relocate_section
4623 #define elf_backend_finish_dynamic_symbol \
4624 					elf_m68k_finish_dynamic_symbol
4625 #define elf_backend_finish_dynamic_sections \
4626 					elf_m68k_finish_dynamic_sections
4627 #define elf_backend_gc_mark_hook	elf_m68k_gc_mark_hook
4628 #define elf_backend_copy_indirect_symbol elf_m68k_copy_indirect_symbol
4629 #define bfd_elf32_bfd_merge_private_bfd_data \
4630 					elf32_m68k_merge_private_bfd_data
4631 #define bfd_elf32_bfd_set_private_flags \
4632 					elf32_m68k_set_private_flags
4633 #define bfd_elf32_bfd_print_private_bfd_data \
4634 					elf32_m68k_print_private_bfd_data
4635 #define elf_backend_reloc_type_class	elf32_m68k_reloc_type_class
4636 #define elf_backend_plt_sym_val		elf_m68k_plt_sym_val
4637 #define elf_backend_object_p		elf32_m68k_object_p
4638 #define elf_backend_grok_prstatus	elf_m68k_grok_prstatus
4639 #define elf_backend_grok_psinfo		elf_m68k_grok_psinfo
4640 
4641 #define elf_backend_can_gc_sections 1
4642 #define elf_backend_can_refcount 1
4643 #define elf_backend_want_got_plt 1
4644 #define elf_backend_plt_readonly 1
4645 #define elf_backend_want_plt_sym 0
4646 #define elf_backend_got_header_size	12
4647 #define elf_backend_rela_normal		1
4648 #define elf_backend_dtrel_excludes_plt	1
4649 
4650 #define elf_backend_linux_prpsinfo32_ugid16	TRUE
4651 
4652 #include "elf32-target.h"
4653