xref: /netbsd-src/external/gpl3/binutils/dist/bfd/elf32-m68k.c (revision dd7241df2fae9da4ea2bd20a68f001fa86ecf909)
1 /* Motorola 68k series support for 32-bit ELF
2    Copyright (C) 1993-2024 Free Software Foundation, Inc.
3 
4    This file is part of BFD, the Binary File Descriptor library.
5 
6    This program is free software; you can redistribute it and/or modify
7    it under the terms of the GNU General Public License as published by
8    the Free Software Foundation; either version 3 of the License, or
9    (at your option) any later version.
10 
11    This program is distributed in the hope that it will be useful,
12    but WITHOUT ANY WARRANTY; without even the implied warranty of
13    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14    GNU General Public License for more details.
15 
16    You should have received a copy of the GNU General Public License
17    along with this program; if not, write to the Free Software
18    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19    MA 02110-1301, USA.  */
20 
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26 #include "elf/m68k.h"
27 #include "opcode/m68k.h"
28 #include "cpu-m68k.h"
29 #include "elf32-m68k.h"
30 
31 static bool
32 elf_m68k_discard_copies (struct elf_link_hash_entry *, void *);
33 
34 static reloc_howto_type howto_table[] =
35 {
36   HOWTO(R_68K_NONE,	  0, 0, 0, false,0, complain_overflow_dont,	bfd_elf_generic_reloc, "R_68K_NONE",	  false, 0, 0x00000000,false),
37   HOWTO(R_68K_32,	  0, 4,32, false,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_32",	  false, 0, 0xffffffff,false),
38   HOWTO(R_68K_16,	  0, 2,16, false,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_16",	  false, 0, 0x0000ffff,false),
39   HOWTO(R_68K_8,	  0, 1, 8, false,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_8",	  false, 0, 0x000000ff,false),
40   HOWTO(R_68K_PC32,	  0, 4,32, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PC32",	  false, 0, 0xffffffff,true),
41   HOWTO(R_68K_PC16,	  0, 2,16, true, 0, complain_overflow_signed,	bfd_elf_generic_reloc, "R_68K_PC16",	  false, 0, 0x0000ffff,true),
42   HOWTO(R_68K_PC8,	  0, 1, 8, true, 0, complain_overflow_signed,	bfd_elf_generic_reloc, "R_68K_PC8",	  false, 0, 0x000000ff,true),
43   HOWTO(R_68K_GOT32,	  0, 4,32, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_GOT32",	  false, 0, 0xffffffff,true),
44   HOWTO(R_68K_GOT16,	  0, 2,16, true, 0, complain_overflow_signed,	bfd_elf_generic_reloc, "R_68K_GOT16",	  false, 0, 0x0000ffff,true),
45   HOWTO(R_68K_GOT8,	  0, 1, 8, true, 0, complain_overflow_signed,	bfd_elf_generic_reloc, "R_68K_GOT8",	  false, 0, 0x000000ff,true),
46   HOWTO(R_68K_GOT32O,	  0, 4,32, false,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_GOT32O",	  false, 0, 0xffffffff,false),
47   HOWTO(R_68K_GOT16O,	  0, 2,16, false,0, complain_overflow_signed,	bfd_elf_generic_reloc, "R_68K_GOT16O",	  false, 0, 0x0000ffff,false),
48   HOWTO(R_68K_GOT8O,	  0, 1, 8, false,0, complain_overflow_signed,	bfd_elf_generic_reloc, "R_68K_GOT8O",	  false, 0, 0x000000ff,false),
49   HOWTO(R_68K_PLT32,	  0, 4,32, true, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PLT32",	  false, 0, 0xffffffff,true),
50   HOWTO(R_68K_PLT16,	  0, 2,16, true, 0, complain_overflow_signed,	bfd_elf_generic_reloc, "R_68K_PLT16",	  false, 0, 0x0000ffff,true),
51   HOWTO(R_68K_PLT8,	  0, 1, 8, true, 0, complain_overflow_signed,	bfd_elf_generic_reloc, "R_68K_PLT8",	  false, 0, 0x000000ff,true),
52   HOWTO(R_68K_PLT32O,	  0, 4,32, false,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PLT32O",	  false, 0, 0xffffffff,false),
53   HOWTO(R_68K_PLT16O,	  0, 2,16, false,0, complain_overflow_signed,	bfd_elf_generic_reloc, "R_68K_PLT16O",	  false, 0, 0x0000ffff,false),
54   HOWTO(R_68K_PLT8O,	  0, 1, 8, false,0, complain_overflow_signed,	bfd_elf_generic_reloc, "R_68K_PLT8O",	  false, 0, 0x000000ff,false),
55   HOWTO(R_68K_COPY,	  0, 0, 0, false,0, complain_overflow_dont,	bfd_elf_generic_reloc, "R_68K_COPY",	  false, 0, 0xffffffff,false),
56   HOWTO(R_68K_GLOB_DAT,	  0, 4,32, false,0, complain_overflow_dont,	bfd_elf_generic_reloc, "R_68K_GLOB_DAT",  false, 0, 0xffffffff,false),
57   HOWTO(R_68K_JMP_SLOT,	  0, 4,32, false,0, complain_overflow_dont,	bfd_elf_generic_reloc, "R_68K_JMP_SLOT",  false, 0, 0xffffffff,false),
58   HOWTO(R_68K_RELATIVE,	  0, 4,32, false,0, complain_overflow_dont,	bfd_elf_generic_reloc, "R_68K_RELATIVE",  false, 0, 0xffffffff,false),
59   /* GNU extension to record C++ vtable hierarchy.  */
60   HOWTO (R_68K_GNU_VTINHERIT,	/* type */
61 	 0,			/* rightshift */
62 	 4,			/* size */
63 	 0,			/* bitsize */
64 	 false,			/* pc_relative */
65 	 0,			/* bitpos */
66 	 complain_overflow_dont, /* complain_on_overflow */
67 	 NULL,			/* special_function */
68 	 "R_68K_GNU_VTINHERIT",	/* name */
69 	 false,			/* partial_inplace */
70 	 0,			/* src_mask */
71 	 0,			/* dst_mask */
72 	 false),
73   /* GNU extension to record C++ vtable member usage.  */
74   HOWTO (R_68K_GNU_VTENTRY,	/* type */
75 	 0,			/* rightshift */
76 	 4,			/* size */
77 	 0,			/* bitsize */
78 	 false,			/* pc_relative */
79 	 0,			/* bitpos */
80 	 complain_overflow_dont, /* complain_on_overflow */
81 	 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
82 	 "R_68K_GNU_VTENTRY",	/* name */
83 	 false,			/* partial_inplace */
84 	 0,			/* src_mask */
85 	 0,			/* dst_mask */
86 	 false),
87 
88   /* TLS general dynamic variable reference.  */
89   HOWTO (R_68K_TLS_GD32,	/* type */
90 	 0,			/* rightshift */
91 	 4,			/* size */
92 	 32,			/* bitsize */
93 	 false,			/* pc_relative */
94 	 0,			/* bitpos */
95 	 complain_overflow_bitfield, /* complain_on_overflow */
96 	 bfd_elf_generic_reloc, /* special_function */
97 	 "R_68K_TLS_GD32",	/* name */
98 	 false,			/* partial_inplace */
99 	 0,			/* src_mask */
100 	 0xffffffff,		/* dst_mask */
101 	 false),		/* pcrel_offset */
102 
103   HOWTO (R_68K_TLS_GD16,	/* type */
104 	 0,			/* rightshift */
105 	 2,			/* size */
106 	 16,			/* bitsize */
107 	 false,			/* pc_relative */
108 	 0,			/* bitpos */
109 	 complain_overflow_signed, /* complain_on_overflow */
110 	 bfd_elf_generic_reloc, /* special_function */
111 	 "R_68K_TLS_GD16",	/* name */
112 	 false,			/* partial_inplace */
113 	 0,			/* src_mask */
114 	 0x0000ffff,		/* dst_mask */
115 	 false),		/* pcrel_offset */
116 
117   HOWTO (R_68K_TLS_GD8,		/* type */
118 	 0,			/* rightshift */
119 	 1,			/* size */
120 	 8,			/* bitsize */
121 	 false,			/* pc_relative */
122 	 0,			/* bitpos */
123 	 complain_overflow_signed, /* complain_on_overflow */
124 	 bfd_elf_generic_reloc, /* special_function */
125 	 "R_68K_TLS_GD8",	/* name */
126 	 false,			/* partial_inplace */
127 	 0,			/* src_mask */
128 	 0x000000ff,		/* dst_mask */
129 	 false),		/* pcrel_offset */
130 
131   /* TLS local dynamic variable reference.  */
132   HOWTO (R_68K_TLS_LDM32,	/* type */
133 	 0,			/* rightshift */
134 	 4,			/* size */
135 	 32,			/* bitsize */
136 	 false,			/* pc_relative */
137 	 0,			/* bitpos */
138 	 complain_overflow_bitfield, /* complain_on_overflow */
139 	 bfd_elf_generic_reloc, /* special_function */
140 	 "R_68K_TLS_LDM32",	/* name */
141 	 false,			/* partial_inplace */
142 	 0,			/* src_mask */
143 	 0xffffffff,		/* dst_mask */
144 	 false),		/* pcrel_offset */
145 
146   HOWTO (R_68K_TLS_LDM16,	/* type */
147 	 0,			/* rightshift */
148 	 2,			/* size */
149 	 16,			/* bitsize */
150 	 false,			/* pc_relative */
151 	 0,			/* bitpos */
152 	 complain_overflow_signed, /* complain_on_overflow */
153 	 bfd_elf_generic_reloc, /* special_function */
154 	 "R_68K_TLS_LDM16",	/* name */
155 	 false,			/* partial_inplace */
156 	 0,			/* src_mask */
157 	 0x0000ffff,		/* dst_mask */
158 	 false),		/* pcrel_offset */
159 
160   HOWTO (R_68K_TLS_LDM8,		/* type */
161 	 0,			/* rightshift */
162 	 1,			/* size */
163 	 8,			/* bitsize */
164 	 false,			/* pc_relative */
165 	 0,			/* bitpos */
166 	 complain_overflow_signed, /* complain_on_overflow */
167 	 bfd_elf_generic_reloc, /* special_function */
168 	 "R_68K_TLS_LDM8",	/* name */
169 	 false,			/* partial_inplace */
170 	 0,			/* src_mask */
171 	 0x000000ff,		/* dst_mask */
172 	 false),		/* pcrel_offset */
173 
174   HOWTO (R_68K_TLS_LDO32,	/* type */
175 	 0,			/* rightshift */
176 	 4,			/* size */
177 	 32,			/* bitsize */
178 	 false,			/* pc_relative */
179 	 0,			/* bitpos */
180 	 complain_overflow_bitfield, /* complain_on_overflow */
181 	 bfd_elf_generic_reloc, /* special_function */
182 	 "R_68K_TLS_LDO32",	/* name */
183 	 false,			/* partial_inplace */
184 	 0,			/* src_mask */
185 	 0xffffffff,		/* dst_mask */
186 	 false),		/* pcrel_offset */
187 
188   HOWTO (R_68K_TLS_LDO16,	/* type */
189 	 0,			/* rightshift */
190 	 2,			/* size */
191 	 16,			/* bitsize */
192 	 false,			/* pc_relative */
193 	 0,			/* bitpos */
194 	 complain_overflow_signed, /* complain_on_overflow */
195 	 bfd_elf_generic_reloc, /* special_function */
196 	 "R_68K_TLS_LDO16",	/* name */
197 	 false,			/* partial_inplace */
198 	 0,			/* src_mask */
199 	 0x0000ffff,		/* dst_mask */
200 	 false),		/* pcrel_offset */
201 
202   HOWTO (R_68K_TLS_LDO8,		/* type */
203 	 0,			/* rightshift */
204 	 1,			/* size */
205 	 8,			/* bitsize */
206 	 false,			/* pc_relative */
207 	 0,			/* bitpos */
208 	 complain_overflow_signed, /* complain_on_overflow */
209 	 bfd_elf_generic_reloc, /* special_function */
210 	 "R_68K_TLS_LDO8",	/* name */
211 	 false,			/* partial_inplace */
212 	 0,			/* src_mask */
213 	 0x000000ff,		/* dst_mask */
214 	 false),		/* pcrel_offset */
215 
216   /* TLS initial execution variable reference.  */
217   HOWTO (R_68K_TLS_IE32,	/* type */
218 	 0,			/* rightshift */
219 	 4,			/* size */
220 	 32,			/* bitsize */
221 	 false,			/* pc_relative */
222 	 0,			/* bitpos */
223 	 complain_overflow_bitfield, /* complain_on_overflow */
224 	 bfd_elf_generic_reloc, /* special_function */
225 	 "R_68K_TLS_IE32",	/* name */
226 	 false,			/* partial_inplace */
227 	 0,			/* src_mask */
228 	 0xffffffff,		/* dst_mask */
229 	 false),		/* pcrel_offset */
230 
231   HOWTO (R_68K_TLS_IE16,	/* type */
232 	 0,			/* rightshift */
233 	 2,			/* size */
234 	 16,			/* bitsize */
235 	 false,			/* pc_relative */
236 	 0,			/* bitpos */
237 	 complain_overflow_signed, /* complain_on_overflow */
238 	 bfd_elf_generic_reloc, /* special_function */
239 	 "R_68K_TLS_IE16",	/* name */
240 	 false,			/* partial_inplace */
241 	 0,			/* src_mask */
242 	 0x0000ffff,		/* dst_mask */
243 	 false),		/* pcrel_offset */
244 
245   HOWTO (R_68K_TLS_IE8,		/* type */
246 	 0,			/* rightshift */
247 	 1,			/* size */
248 	 8,			/* bitsize */
249 	 false,			/* pc_relative */
250 	 0,			/* bitpos */
251 	 complain_overflow_signed, /* complain_on_overflow */
252 	 bfd_elf_generic_reloc, /* special_function */
253 	 "R_68K_TLS_IE8",	/* name */
254 	 false,			/* partial_inplace */
255 	 0,			/* src_mask */
256 	 0x000000ff,		/* dst_mask */
257 	 false),		/* pcrel_offset */
258 
259   /* TLS local execution variable reference.  */
260   HOWTO (R_68K_TLS_LE32,	/* type */
261 	 0,			/* rightshift */
262 	 4,			/* size */
263 	 32,			/* bitsize */
264 	 false,			/* pc_relative */
265 	 0,			/* bitpos */
266 	 complain_overflow_bitfield, /* complain_on_overflow */
267 	 bfd_elf_generic_reloc, /* special_function */
268 	 "R_68K_TLS_LE32",	/* name */
269 	 false,			/* partial_inplace */
270 	 0,			/* src_mask */
271 	 0xffffffff,		/* dst_mask */
272 	 false),		/* pcrel_offset */
273 
274   HOWTO (R_68K_TLS_LE16,	/* type */
275 	 0,			/* rightshift */
276 	 2,			/* size */
277 	 16,			/* bitsize */
278 	 false,			/* pc_relative */
279 	 0,			/* bitpos */
280 	 complain_overflow_signed, /* complain_on_overflow */
281 	 bfd_elf_generic_reloc, /* special_function */
282 	 "R_68K_TLS_LE16",	/* name */
283 	 false,			/* partial_inplace */
284 	 0,			/* src_mask */
285 	 0x0000ffff,		/* dst_mask */
286 	 false),		/* pcrel_offset */
287 
288   HOWTO (R_68K_TLS_LE8,		/* type */
289 	 0,			/* rightshift */
290 	 1,			/* size */
291 	 8,			/* bitsize */
292 	 false,			/* pc_relative */
293 	 0,			/* bitpos */
294 	 complain_overflow_signed, /* complain_on_overflow */
295 	 bfd_elf_generic_reloc, /* special_function */
296 	 "R_68K_TLS_LE8",	/* name */
297 	 false,			/* partial_inplace */
298 	 0,			/* src_mask */
299 	 0x000000ff,		/* dst_mask */
300 	 false),		/* pcrel_offset */
301 
302   /* TLS GD/LD dynamic relocations.  */
303   HOWTO (R_68K_TLS_DTPMOD32,	/* type */
304 	 0,			/* rightshift */
305 	 4,			/* size */
306 	 32,			/* bitsize */
307 	 false,			/* pc_relative */
308 	 0,			/* bitpos */
309 	 complain_overflow_dont, /* complain_on_overflow */
310 	 bfd_elf_generic_reloc, /* special_function */
311 	 "R_68K_TLS_DTPMOD32",	/* name */
312 	 false,			/* partial_inplace */
313 	 0,			/* src_mask */
314 	 0xffffffff,		/* dst_mask */
315 	 false),		/* pcrel_offset */
316 
317   HOWTO (R_68K_TLS_DTPREL32,	/* type */
318 	 0,			/* rightshift */
319 	 4,			/* size */
320 	 32,			/* bitsize */
321 	 false,			/* pc_relative */
322 	 0,			/* bitpos */
323 	 complain_overflow_dont, /* complain_on_overflow */
324 	 bfd_elf_generic_reloc, /* special_function */
325 	 "R_68K_TLS_DTPREL32",	/* name */
326 	 false,			/* partial_inplace */
327 	 0,			/* src_mask */
328 	 0xffffffff,		/* dst_mask */
329 	 false),		/* pcrel_offset */
330 
331   HOWTO (R_68K_TLS_TPREL32,	/* type */
332 	 0,			/* rightshift */
333 	 4,			/* size */
334 	 32,			/* bitsize */
335 	 false,			/* pc_relative */
336 	 0,			/* bitpos */
337 	 complain_overflow_dont, /* complain_on_overflow */
338 	 bfd_elf_generic_reloc, /* special_function */
339 	 "R_68K_TLS_TPREL32",	/* name */
340 	 false,			/* partial_inplace */
341 	 0,			/* src_mask */
342 	 0xffffffff,		/* dst_mask */
343 	 false),		/* pcrel_offset */
344 };
345 
346 static bool
rtype_to_howto(bfd * abfd,arelent * cache_ptr,Elf_Internal_Rela * dst)347 rtype_to_howto (bfd *abfd, arelent *cache_ptr, Elf_Internal_Rela *dst)
348 {
349   unsigned int indx = ELF32_R_TYPE (dst->r_info);
350 
351   if (indx >= (unsigned int) R_68K_max)
352     {
353       /* xgettext:c-format */
354       _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
355 			  abfd, indx);
356       bfd_set_error (bfd_error_bad_value);
357       return false;
358     }
359   cache_ptr->howto = &howto_table[indx];
360   return true;
361 }
362 
363 #define elf_info_to_howto rtype_to_howto
364 
365 static const struct
366 {
367   bfd_reloc_code_real_type bfd_val;
368   int elf_val;
369 }
370   reloc_map[] =
371 {
372   { BFD_RELOC_NONE, R_68K_NONE },
373   { BFD_RELOC_32, R_68K_32 },
374   { BFD_RELOC_16, R_68K_16 },
375   { BFD_RELOC_8, R_68K_8 },
376   { BFD_RELOC_32_PCREL, R_68K_PC32 },
377   { BFD_RELOC_16_PCREL, R_68K_PC16 },
378   { BFD_RELOC_8_PCREL, R_68K_PC8 },
379   { BFD_RELOC_32_GOT_PCREL, R_68K_GOT32 },
380   { BFD_RELOC_16_GOT_PCREL, R_68K_GOT16 },
381   { BFD_RELOC_8_GOT_PCREL, R_68K_GOT8 },
382   { BFD_RELOC_32_GOTOFF, R_68K_GOT32O },
383   { BFD_RELOC_16_GOTOFF, R_68K_GOT16O },
384   { BFD_RELOC_8_GOTOFF, R_68K_GOT8O },
385   { BFD_RELOC_32_PLT_PCREL, R_68K_PLT32 },
386   { BFD_RELOC_16_PLT_PCREL, R_68K_PLT16 },
387   { BFD_RELOC_8_PLT_PCREL, R_68K_PLT8 },
388   { BFD_RELOC_32_PLTOFF, R_68K_PLT32O },
389   { BFD_RELOC_16_PLTOFF, R_68K_PLT16O },
390   { BFD_RELOC_8_PLTOFF, R_68K_PLT8O },
391   { BFD_RELOC_NONE, R_68K_COPY },
392   { BFD_RELOC_68K_GLOB_DAT, R_68K_GLOB_DAT },
393   { BFD_RELOC_68K_JMP_SLOT, R_68K_JMP_SLOT },
394   { BFD_RELOC_68K_RELATIVE, R_68K_RELATIVE },
395   { BFD_RELOC_CTOR, R_68K_32 },
396   { BFD_RELOC_VTABLE_INHERIT, R_68K_GNU_VTINHERIT },
397   { BFD_RELOC_VTABLE_ENTRY, R_68K_GNU_VTENTRY },
398   { BFD_RELOC_68K_TLS_GD32, R_68K_TLS_GD32 },
399   { BFD_RELOC_68K_TLS_GD16, R_68K_TLS_GD16 },
400   { BFD_RELOC_68K_TLS_GD8, R_68K_TLS_GD8 },
401   { BFD_RELOC_68K_TLS_LDM32, R_68K_TLS_LDM32 },
402   { BFD_RELOC_68K_TLS_LDM16, R_68K_TLS_LDM16 },
403   { BFD_RELOC_68K_TLS_LDM8, R_68K_TLS_LDM8 },
404   { BFD_RELOC_68K_TLS_LDO32, R_68K_TLS_LDO32 },
405   { BFD_RELOC_68K_TLS_LDO16, R_68K_TLS_LDO16 },
406   { BFD_RELOC_68K_TLS_LDO8, R_68K_TLS_LDO8 },
407   { BFD_RELOC_68K_TLS_IE32, R_68K_TLS_IE32 },
408   { BFD_RELOC_68K_TLS_IE16, R_68K_TLS_IE16 },
409   { BFD_RELOC_68K_TLS_IE8, R_68K_TLS_IE8 },
410   { BFD_RELOC_68K_TLS_LE32, R_68K_TLS_LE32 },
411   { BFD_RELOC_68K_TLS_LE16, R_68K_TLS_LE16 },
412   { BFD_RELOC_68K_TLS_LE8, R_68K_TLS_LE8 },
413 };
414 
415 static reloc_howto_type *
reloc_type_lookup(bfd * abfd ATTRIBUTE_UNUSED,bfd_reloc_code_real_type code)416 reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
417 		   bfd_reloc_code_real_type code)
418 {
419   unsigned int i;
420   for (i = 0; i < sizeof (reloc_map) / sizeof (reloc_map[0]); i++)
421     {
422       if (reloc_map[i].bfd_val == code)
423 	return &howto_table[reloc_map[i].elf_val];
424     }
425   return 0;
426 }
427 
428 static reloc_howto_type *
reloc_name_lookup(bfd * abfd ATTRIBUTE_UNUSED,const char * r_name)429 reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, const char *r_name)
430 {
431   unsigned int i;
432 
433   for (i = 0; i < sizeof (howto_table) / sizeof (howto_table[0]); i++)
434     if (howto_table[i].name != NULL
435 	&& strcasecmp (howto_table[i].name, r_name) == 0)
436       return &howto_table[i];
437 
438   return NULL;
439 }
440 
441 #define bfd_elf32_bfd_reloc_type_lookup reloc_type_lookup
442 #define bfd_elf32_bfd_reloc_name_lookup reloc_name_lookup
443 #define ELF_ARCH bfd_arch_m68k
444 #define ELF_TARGET_ID M68K_ELF_DATA
445 
446 /* Functions for the m68k ELF linker.  */
447 
448 /* The name of the dynamic interpreter.  This is put in the .interp
449    section.  */
450 
451 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1"
452 
453 /* Describes one of the various PLT styles.  */
454 
455 struct elf_m68k_plt_info
456 {
457   /* The size of each PLT entry.  */
458   bfd_vma size;
459 
460   /* The template for the first PLT entry.  */
461   const bfd_byte *plt0_entry;
462 
463   /* Offsets of fields in PLT0_ENTRY that require R_68K_PC32 relocations.
464      The comments by each member indicate the value that the relocation
465      is against.  */
466   struct {
467     unsigned int got4; /* .got + 4 */
468     unsigned int got8; /* .got + 8 */
469   } plt0_relocs;
470 
471   /* The template for a symbol's PLT entry.  */
472   const bfd_byte *symbol_entry;
473 
474   /* Offsets of fields in SYMBOL_ENTRY that require R_68K_PC32 relocations.
475      The comments by each member indicate the value that the relocation
476      is against.  */
477   struct {
478     unsigned int got; /* the symbol's .got.plt entry */
479     unsigned int plt; /* .plt */
480   } symbol_relocs;
481 
482   /* The offset of the resolver stub from the start of SYMBOL_ENTRY.
483      The stub starts with "move.l #relocoffset,%d0".  */
484   bfd_vma symbol_resolve_entry;
485 };
486 
487 /* The size in bytes of an entry in the procedure linkage table.  */
488 
489 #define PLT_ENTRY_SIZE 20
490 
491 /* The first entry in a procedure linkage table looks like this.  See
492    the SVR4 ABI m68k supplement to see how this works.  */
493 
494 static const bfd_byte elf_m68k_plt0_entry[PLT_ENTRY_SIZE] =
495 {
496   0x2f, 0x3b, 0x01, 0x70, /* move.l (%pc,addr),-(%sp) */
497   0, 0, 0, 2,		  /* + (.got + 4) - . */
498   0x4e, 0xfb, 0x01, 0x71, /* jmp ([%pc,addr]) */
499   0, 0, 0, 2,		  /* + (.got + 8) - . */
500   0, 0, 0, 0		  /* pad out to 20 bytes.  */
501 };
502 
503 /* Subsequent entries in a procedure linkage table look like this.  */
504 
505 static const bfd_byte elf_m68k_plt_entry[PLT_ENTRY_SIZE] =
506 {
507   0x4e, 0xfb, 0x01, 0x71, /* jmp ([%pc,symbol@GOTPC]) */
508   0, 0, 0, 2,		  /* + (.got.plt entry) - . */
509   0x2f, 0x3c,		  /* move.l #offset,-(%sp) */
510   0, 0, 0, 0,		  /* + reloc index */
511   0x60, 0xff,		  /* bra.l .plt */
512   0, 0, 0, 0		  /* + .plt - . */
513 };
514 
515 static const struct elf_m68k_plt_info elf_m68k_plt_info =
516 {
517   PLT_ENTRY_SIZE,
518   elf_m68k_plt0_entry, { 4, 12 },
519   elf_m68k_plt_entry, { 4, 16 }, 8
520 };
521 
522 #define ISAB_PLT_ENTRY_SIZE 24
523 
524 static const bfd_byte elf_isab_plt0_entry[ISAB_PLT_ENTRY_SIZE] =
525 {
526   0x20, 0x3c,		  /* move.l #offset,%d0 */
527   0, 0, 0, 0,		  /* + (.got + 4) - . */
528   0x2f, 0x3b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l),-(%sp) */
529   0x20, 0x3c,		  /* move.l #offset,%d0 */
530   0, 0, 0, 0,		  /* + (.got + 8) - . */
531   0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
532   0x4e, 0xd0,		  /* jmp (%a0) */
533   0x4e, 0x71		  /* nop */
534 };
535 
536 /* Subsequent entries in a procedure linkage table look like this.  */
537 
538 static const bfd_byte elf_isab_plt_entry[ISAB_PLT_ENTRY_SIZE] =
539 {
540   0x20, 0x3c,		  /* move.l #offset,%d0 */
541   0, 0, 0, 0,		  /* + (.got.plt entry) - . */
542   0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
543   0x4e, 0xd0,		  /* jmp (%a0) */
544   0x2f, 0x3c,		  /* move.l #offset,-(%sp) */
545   0, 0, 0, 0,		  /* + reloc index */
546   0x60, 0xff,		  /* bra.l .plt */
547   0, 0, 0, 0		  /* + .plt - . */
548 };
549 
550 static const struct elf_m68k_plt_info elf_isab_plt_info =
551 {
552   ISAB_PLT_ENTRY_SIZE,
553   elf_isab_plt0_entry, { 2, 12 },
554   elf_isab_plt_entry, { 2, 20 }, 12
555 };
556 
557 #define ISAC_PLT_ENTRY_SIZE 24
558 
559 static const bfd_byte elf_isac_plt0_entry[ISAC_PLT_ENTRY_SIZE] =
560 {
561   0x20, 0x3c,		  /* move.l #offset,%d0 */
562   0, 0, 0, 0,		  /* replaced with .got + 4 - . */
563   0x2e, 0xbb, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l),(%sp) */
564   0x20, 0x3c,		  /* move.l #offset,%d0 */
565   0, 0, 0, 0,		  /* replaced with .got + 8 - . */
566   0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
567   0x4e, 0xd0,		  /* jmp (%a0) */
568   0x4e, 0x71		  /* nop */
569 };
570 
571 /* Subsequent entries in a procedure linkage table look like this.  */
572 
573 static const bfd_byte elf_isac_plt_entry[ISAC_PLT_ENTRY_SIZE] =
574 {
575   0x20, 0x3c,		  /* move.l #offset,%d0 */
576   0, 0, 0, 0,		  /* replaced with (.got entry) - . */
577   0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
578   0x4e, 0xd0,		  /* jmp (%a0) */
579   0x2f, 0x3c,		  /* move.l #offset,-(%sp) */
580   0, 0, 0, 0,		  /* replaced with offset into relocation table */
581   0x61, 0xff,		  /* bsr.l .plt */
582   0, 0, 0, 0		  /* replaced with .plt - . */
583 };
584 
585 static const struct elf_m68k_plt_info elf_isac_plt_info =
586 {
587   ISAC_PLT_ENTRY_SIZE,
588   elf_isac_plt0_entry, { 2, 12},
589   elf_isac_plt_entry, { 2, 20 }, 12
590 };
591 
592 #define CPU32_PLT_ENTRY_SIZE 24
593 /* Procedure linkage table entries for the cpu32 */
594 static const bfd_byte elf_cpu32_plt0_entry[CPU32_PLT_ENTRY_SIZE] =
595 {
596   0x2f, 0x3b, 0x01, 0x70, /* move.l (%pc,addr),-(%sp) */
597   0, 0, 0, 2,		  /* + (.got + 4) - . */
598   0x22, 0x7b, 0x01, 0x70, /* moveal %pc@(0xc), %a1 */
599   0, 0, 0, 2,		  /* + (.got + 8) - . */
600   0x4e, 0xd1,		  /* jmp %a1@ */
601   0, 0, 0, 0,		  /* pad out to 24 bytes.  */
602   0, 0
603 };
604 
605 static const bfd_byte elf_cpu32_plt_entry[CPU32_PLT_ENTRY_SIZE] =
606 {
607   0x22, 0x7b, 0x01, 0x70,  /* moveal %pc@(0xc), %a1 */
608   0, 0, 0, 2,		   /* + (.got.plt entry) - . */
609   0x4e, 0xd1,		   /* jmp %a1@ */
610   0x2f, 0x3c,		   /* move.l #offset,-(%sp) */
611   0, 0, 0, 0,		   /* + reloc index */
612   0x60, 0xff,		   /* bra.l .plt */
613   0, 0, 0, 0,		   /* + .plt - . */
614   0, 0
615 };
616 
617 static const struct elf_m68k_plt_info elf_cpu32_plt_info =
618 {
619   CPU32_PLT_ENTRY_SIZE,
620   elf_cpu32_plt0_entry, { 4, 12 },
621   elf_cpu32_plt_entry, { 4, 18 }, 10
622 };
623 
624 /* The m68k linker needs to keep track of the number of relocs that it
625    decides to copy in check_relocs for each symbol.  This is so that it
626    can discard PC relative relocs if it doesn't need them when linking
627    with -Bsymbolic.  We store the information in a field extending the
628    regular ELF linker hash table.  */
629 
630 /* This structure keeps track of the number of PC relative relocs we have
631    copied for a given symbol.  */
632 
633 struct elf_m68k_pcrel_relocs_copied
634 {
635   /* Next section.  */
636   struct elf_m68k_pcrel_relocs_copied *next;
637   /* A section in dynobj.  */
638   asection *section;
639   /* Number of relocs copied in this section.  */
640   bfd_size_type count;
641 };
642 
643 /* Forward declaration.  */
644 struct elf_m68k_got_entry;
645 
646 /* m68k ELF linker hash entry.  */
647 
648 struct elf_m68k_link_hash_entry
649 {
650   struct elf_link_hash_entry root;
651 
652   /* Number of PC relative relocs copied for this symbol.  */
653   struct elf_m68k_pcrel_relocs_copied *pcrel_relocs_copied;
654 
655   /* Key to got_entries.  */
656   unsigned long got_entry_key;
657 
658   /* List of GOT entries for this symbol.  This list is build during
659      offset finalization and is used within elf_m68k_finish_dynamic_symbol
660      to traverse all GOT entries for a particular symbol.
661 
662      ??? We could've used root.got.glist field instead, but having
663      a separate field is cleaner.  */
664   struct elf_m68k_got_entry *glist;
665 };
666 
667 #define elf_m68k_hash_entry(ent) ((struct elf_m68k_link_hash_entry *) (ent))
668 
669 /* Key part of GOT entry in hashtable.  */
670 struct elf_m68k_got_entry_key
671 {
672   /* BFD in which this symbol was defined.  NULL for global symbols.  */
673   const bfd *bfd;
674 
675   /* Symbol index.  Either local symbol index or h->got_entry_key.  */
676   unsigned long symndx;
677 
678   /* Type is one of R_68K_GOT{8, 16, 32}O, R_68K_TLS_GD{8, 16, 32},
679      R_68K_TLS_LDM{8, 16, 32} or R_68K_TLS_IE{8, 16, 32}.
680 
681      From perspective of hashtable key, only elf_m68k_got_reloc_type (type)
682      matters.  That is, we distinguish between, say, R_68K_GOT16O
683      and R_68K_GOT32O when allocating offsets, but they are considered to be
684      the same when searching got->entries.  */
685   enum elf_m68k_reloc_type type;
686 };
687 
688 /* Size of the GOT offset suitable for relocation.  */
689 enum elf_m68k_got_offset_size { R_8, R_16, R_32, R_LAST };
690 
691 /* Entry of the GOT.  */
692 struct elf_m68k_got_entry
693 {
694   /* GOT entries are put into a got->entries hashtable.  This is the key.  */
695   struct elf_m68k_got_entry_key key_;
696 
697   /* GOT entry data.  We need s1 before offset finalization and s2 after.  */
698   union
699   {
700     struct
701     {
702       /* Number of times this entry is referenced.  */
703       bfd_vma refcount;
704     } s1;
705 
706     struct
707     {
708       /* Offset from the start of .got section.  To calculate offset relative
709 	 to GOT pointer one should subtract got->offset from this value.  */
710       bfd_vma offset;
711 
712       /* Pointer to the next GOT entry for this global symbol.
713 	 Symbols have at most one entry in one GOT, but might
714 	 have entries in more than one GOT.
715 	 Root of this list is h->glist.
716 	 NULL for local symbols.  */
717       struct elf_m68k_got_entry *next;
718     } s2;
719   } u;
720 };
721 
722 /* Return representative type for relocation R_TYPE.
723    This is used to avoid enumerating many relocations in comparisons,
724    switches etc.  */
725 
726 static enum elf_m68k_reloc_type
elf_m68k_reloc_got_type(enum elf_m68k_reloc_type r_type)727 elf_m68k_reloc_got_type (enum elf_m68k_reloc_type r_type)
728 {
729   switch (r_type)
730     {
731       /* In most cases R_68K_GOTx relocations require the very same
732 	 handling as R_68K_GOT32O relocation.  In cases when we need
733 	 to distinguish between the two, we use explicitly compare against
734 	 r_type.  */
735     case R_68K_GOT32:
736     case R_68K_GOT16:
737     case R_68K_GOT8:
738     case R_68K_GOT32O:
739     case R_68K_GOT16O:
740     case R_68K_GOT8O:
741       return R_68K_GOT32O;
742 
743     case R_68K_TLS_GD32:
744     case R_68K_TLS_GD16:
745     case R_68K_TLS_GD8:
746       return R_68K_TLS_GD32;
747 
748     case R_68K_TLS_LDM32:
749     case R_68K_TLS_LDM16:
750     case R_68K_TLS_LDM8:
751       return R_68K_TLS_LDM32;
752 
753     case R_68K_TLS_IE32:
754     case R_68K_TLS_IE16:
755     case R_68K_TLS_IE8:
756       return R_68K_TLS_IE32;
757 
758     default:
759       BFD_ASSERT (false);
760       return 0;
761     }
762 }
763 
764 /* Return size of the GOT entry offset for relocation R_TYPE.  */
765 
766 static enum elf_m68k_got_offset_size
elf_m68k_reloc_got_offset_size(enum elf_m68k_reloc_type r_type)767 elf_m68k_reloc_got_offset_size (enum elf_m68k_reloc_type r_type)
768 {
769   switch (r_type)
770     {
771     case R_68K_GOT32: case R_68K_GOT16: case R_68K_GOT8:
772     case R_68K_GOT32O: case R_68K_TLS_GD32: case R_68K_TLS_LDM32:
773     case R_68K_TLS_IE32:
774       return R_32;
775 
776     case R_68K_GOT16O: case R_68K_TLS_GD16: case R_68K_TLS_LDM16:
777     case R_68K_TLS_IE16:
778       return R_16;
779 
780     case R_68K_GOT8O: case R_68K_TLS_GD8: case R_68K_TLS_LDM8:
781     case R_68K_TLS_IE8:
782       return R_8;
783 
784     default:
785       BFD_ASSERT (false);
786       return 0;
787     }
788 }
789 
790 /* Return number of GOT entries we need to allocate in GOT for
791    relocation R_TYPE.  */
792 
793 static bfd_vma
elf_m68k_reloc_got_n_slots(enum elf_m68k_reloc_type r_type)794 elf_m68k_reloc_got_n_slots (enum elf_m68k_reloc_type r_type)
795 {
796   switch (elf_m68k_reloc_got_type (r_type))
797     {
798     case R_68K_GOT32O:
799     case R_68K_TLS_IE32:
800       return 1;
801 
802     case R_68K_TLS_GD32:
803     case R_68K_TLS_LDM32:
804       return 2;
805 
806     default:
807       BFD_ASSERT (false);
808       return 0;
809     }
810 }
811 
812 /* Return TRUE if relocation R_TYPE is a TLS one.  */
813 
814 static bool
elf_m68k_reloc_tls_p(enum elf_m68k_reloc_type r_type)815 elf_m68k_reloc_tls_p (enum elf_m68k_reloc_type r_type)
816 {
817   switch (r_type)
818     {
819     case R_68K_TLS_GD32: case R_68K_TLS_GD16: case R_68K_TLS_GD8:
820     case R_68K_TLS_LDM32: case R_68K_TLS_LDM16: case R_68K_TLS_LDM8:
821     case R_68K_TLS_LDO32: case R_68K_TLS_LDO16: case R_68K_TLS_LDO8:
822     case R_68K_TLS_IE32: case R_68K_TLS_IE16: case R_68K_TLS_IE8:
823     case R_68K_TLS_LE32: case R_68K_TLS_LE16: case R_68K_TLS_LE8:
824     case R_68K_TLS_DTPMOD32: case R_68K_TLS_DTPREL32: case R_68K_TLS_TPREL32:
825       return true;
826 
827     default:
828       return false;
829     }
830 }
831 
832 /* Data structure representing a single GOT.  */
833 struct elf_m68k_got
834 {
835   /* Hashtable of 'struct elf_m68k_got_entry's.
836      Starting size of this table is the maximum number of
837      R_68K_GOT8O entries.  */
838   htab_t entries;
839 
840   /* Number of R_x slots in this GOT.  Some (e.g., TLS) entries require
841      several GOT slots.
842 
843      n_slots[R_8] is the count of R_8 slots in this GOT.
844      n_slots[R_16] is the cumulative count of R_8 and R_16 slots
845      in this GOT.
846      n_slots[R_32] is the cumulative count of R_8, R_16 and R_32 slots
847      in this GOT.  This is the total number of slots.  */
848   bfd_vma n_slots[R_LAST];
849 
850   /* Number of local (entry->key_.h == NULL) slots in this GOT.
851      This is only used to properly calculate size of .rela.got section;
852      see elf_m68k_partition_multi_got.  */
853   bfd_vma local_n_slots;
854 
855   /* Offset of this GOT relative to beginning of .got section.  */
856   bfd_vma offset;
857 };
858 
859 /* BFD and its GOT.  This is an entry in multi_got->bfd2got hashtable.  */
860 struct elf_m68k_bfd2got_entry
861 {
862   /* BFD.  */
863   const bfd *bfd;
864 
865   /* Assigned GOT.  Before partitioning multi-GOT each BFD has its own
866      GOT structure.  After partitioning several BFD's might [and often do]
867      share a single GOT.  */
868   struct elf_m68k_got *got;
869 };
870 
871 /* The main data structure holding all the pieces.  */
872 struct elf_m68k_multi_got
873 {
874   /* Hashtable mapping each BFD to its GOT.  If a BFD doesn't have an entry
875      here, then it doesn't need a GOT (this includes the case of a BFD
876      having an empty GOT).
877 
878      ??? This hashtable can be replaced by an array indexed by bfd->id.  */
879   htab_t bfd2got;
880 
881   /* Next symndx to assign a global symbol.
882      h->got_entry_key is initialized from this counter.  */
883   unsigned long global_symndx;
884 };
885 
886 /* m68k ELF linker hash table.  */
887 
888 struct elf_m68k_link_hash_table
889 {
890   struct elf_link_hash_table root;
891 
892   /* The PLT format used by this link, or NULL if the format has not
893      yet been chosen.  */
894   const struct elf_m68k_plt_info *plt_info;
895 
896   /* True, if GP is loaded within each function which uses it.
897      Set to TRUE when GOT negative offsets or multi-GOT is enabled.  */
898   bool local_gp_p;
899 
900   /* Switch controlling use of negative offsets to double the size of GOTs.  */
901   bool use_neg_got_offsets_p;
902 
903   /* Switch controlling generation of multiple GOTs.  */
904   bool allow_multigot_p;
905 
906   /* Multi-GOT data structure.  */
907   struct elf_m68k_multi_got multi_got_;
908 };
909 
910 /* Get the m68k ELF linker hash table from a link_info structure.  */
911 
912 #define elf_m68k_hash_table(p) \
913   ((is_elf_hash_table ((p)->hash)					\
914     && elf_hash_table_id (elf_hash_table (p)) == M68K_ELF_DATA)		\
915    ? (struct elf_m68k_link_hash_table *) (p)->hash : NULL)
916 
917 /* Shortcut to multi-GOT data.  */
918 #define elf_m68k_multi_got(INFO) (&elf_m68k_hash_table (INFO)->multi_got_)
919 
920 /* Create an entry in an m68k ELF linker hash table.  */
921 
922 static struct bfd_hash_entry *
elf_m68k_link_hash_newfunc(struct bfd_hash_entry * entry,struct bfd_hash_table * table,const char * string)923 elf_m68k_link_hash_newfunc (struct bfd_hash_entry *entry,
924 			    struct bfd_hash_table *table,
925 			    const char *string)
926 {
927   struct bfd_hash_entry *ret = entry;
928 
929   /* Allocate the structure if it has not already been allocated by a
930      subclass.  */
931   if (ret == NULL)
932     ret = bfd_hash_allocate (table,
933 			     sizeof (struct elf_m68k_link_hash_entry));
934   if (ret == NULL)
935     return ret;
936 
937   /* Call the allocation method of the superclass.  */
938   ret = _bfd_elf_link_hash_newfunc (ret, table, string);
939   if (ret != NULL)
940     {
941       elf_m68k_hash_entry (ret)->pcrel_relocs_copied = NULL;
942       elf_m68k_hash_entry (ret)->got_entry_key = 0;
943       elf_m68k_hash_entry (ret)->glist = NULL;
944     }
945 
946   return ret;
947 }
948 
949 /* Destroy an m68k ELF linker hash table.  */
950 
951 static void
elf_m68k_link_hash_table_free(bfd * obfd)952 elf_m68k_link_hash_table_free (bfd *obfd)
953 {
954   struct elf_m68k_link_hash_table *htab;
955 
956   htab = (struct elf_m68k_link_hash_table *) obfd->link.hash;
957 
958   if (htab->multi_got_.bfd2got != NULL)
959     {
960       htab_delete (htab->multi_got_.bfd2got);
961       htab->multi_got_.bfd2got = NULL;
962     }
963   _bfd_elf_link_hash_table_free (obfd);
964 }
965 
966 /* Create an m68k ELF linker hash table.  */
967 
968 static struct bfd_link_hash_table *
elf_m68k_link_hash_table_create(bfd * abfd)969 elf_m68k_link_hash_table_create (bfd *abfd)
970 {
971   struct elf_m68k_link_hash_table *ret;
972   size_t amt = sizeof (struct elf_m68k_link_hash_table);
973 
974   ret = (struct elf_m68k_link_hash_table *) bfd_zmalloc (amt);
975   if (ret == (struct elf_m68k_link_hash_table *) NULL)
976     return NULL;
977 
978   if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
979 				      elf_m68k_link_hash_newfunc,
980 				      sizeof (struct elf_m68k_link_hash_entry),
981 				      M68K_ELF_DATA))
982     {
983       free (ret);
984       return NULL;
985     }
986   ret->root.root.hash_table_free = elf_m68k_link_hash_table_free;
987 
988   ret->multi_got_.global_symndx = 1;
989 
990   return &ret->root.root;
991 }
992 
993 /* Set the right machine number.  */
994 
995 static bool
elf32_m68k_object_p(bfd * abfd)996 elf32_m68k_object_p (bfd *abfd)
997 {
998   unsigned int mach = 0;
999   unsigned features = 0;
1000   flagword eflags = elf_elfheader (abfd)->e_flags;
1001 
1002   if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
1003     features |= m68000;
1004   else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
1005     features |= cpu32;
1006   else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1007     features |= fido_a;
1008   else
1009     {
1010       switch (eflags & EF_M68K_CF_ISA_MASK)
1011 	{
1012 	case EF_M68K_CF_ISA_A_NODIV:
1013 	  features |= mcfisa_a;
1014 	  break;
1015 	case EF_M68K_CF_ISA_A:
1016 	  features |= mcfisa_a|mcfhwdiv;
1017 	  break;
1018 	case EF_M68K_CF_ISA_A_PLUS:
1019 	  features |= mcfisa_a|mcfisa_aa|mcfhwdiv|mcfusp;
1020 	  break;
1021 	case EF_M68K_CF_ISA_B_NOUSP:
1022 	  features |= mcfisa_a|mcfisa_b|mcfhwdiv;
1023 	  break;
1024 	case EF_M68K_CF_ISA_B:
1025 	  features |= mcfisa_a|mcfisa_b|mcfhwdiv|mcfusp;
1026 	  break;
1027 	case EF_M68K_CF_ISA_C:
1028 	  features |= mcfisa_a|mcfisa_c|mcfhwdiv|mcfusp;
1029 	  break;
1030 	case EF_M68K_CF_ISA_C_NODIV:
1031 	  features |= mcfisa_a|mcfisa_c|mcfusp;
1032 	  break;
1033 	}
1034       switch (eflags & EF_M68K_CF_MAC_MASK)
1035 	{
1036 	case EF_M68K_CF_MAC:
1037 	  features |= mcfmac;
1038 	  break;
1039 	case EF_M68K_CF_EMAC:
1040 	  features |= mcfemac;
1041 	  break;
1042 	}
1043       if (eflags & EF_M68K_CF_FLOAT)
1044 	features |= cfloat;
1045     }
1046 
1047   mach = bfd_m68k_features_to_mach (features);
1048   bfd_default_set_arch_mach (abfd, bfd_arch_m68k, mach);
1049 
1050   return true;
1051 }
1052 
1053 /* Somewhat reverse of elf32_m68k_object_p, this sets the e_flag
1054    field based on the machine number.  */
1055 
1056 static bool
elf_m68k_final_write_processing(bfd * abfd)1057 elf_m68k_final_write_processing (bfd *abfd)
1058 {
1059   int mach = bfd_get_mach (abfd);
1060   unsigned long e_flags = elf_elfheader (abfd)->e_flags;
1061 
1062   if (!e_flags)
1063     {
1064       unsigned int arch_mask;
1065 
1066       arch_mask = bfd_m68k_mach_to_features (mach);
1067 
1068       if (arch_mask & m68000)
1069 	e_flags = EF_M68K_M68000;
1070       else if (arch_mask & cpu32)
1071 	e_flags = EF_M68K_CPU32;
1072       else if (arch_mask & fido_a)
1073 	e_flags = EF_M68K_FIDO;
1074       else
1075 	{
1076 	  switch (arch_mask
1077 		  & (mcfisa_a | mcfisa_aa | mcfisa_b | mcfisa_c | mcfhwdiv | mcfusp))
1078 	    {
1079 	    case mcfisa_a:
1080 	      e_flags |= EF_M68K_CF_ISA_A_NODIV;
1081 	      break;
1082 	    case mcfisa_a | mcfhwdiv:
1083 	      e_flags |= EF_M68K_CF_ISA_A;
1084 	      break;
1085 	    case mcfisa_a | mcfisa_aa | mcfhwdiv | mcfusp:
1086 	      e_flags |= EF_M68K_CF_ISA_A_PLUS;
1087 	      break;
1088 	    case mcfisa_a | mcfisa_b | mcfhwdiv:
1089 	      e_flags |= EF_M68K_CF_ISA_B_NOUSP;
1090 	      break;
1091 	    case mcfisa_a | mcfisa_b | mcfhwdiv | mcfusp:
1092 	      e_flags |= EF_M68K_CF_ISA_B;
1093 	      break;
1094 	    case mcfisa_a | mcfisa_c | mcfhwdiv | mcfusp:
1095 	      e_flags |= EF_M68K_CF_ISA_C;
1096 	      break;
1097 	    case mcfisa_a | mcfisa_c | mcfusp:
1098 	      e_flags |= EF_M68K_CF_ISA_C_NODIV;
1099 	      break;
1100 	    }
1101 	  if (arch_mask & mcfmac)
1102 	    e_flags |= EF_M68K_CF_MAC;
1103 	  else if (arch_mask & mcfemac)
1104 	    e_flags |= EF_M68K_CF_EMAC;
1105 	  if (arch_mask & cfloat)
1106 	    e_flags |= EF_M68K_CF_FLOAT | EF_M68K_CFV4E;
1107 	}
1108       elf_elfheader (abfd)->e_flags = e_flags;
1109     }
1110   return _bfd_elf_final_write_processing (abfd);
1111 }
1112 
1113 /* Keep m68k-specific flags in the ELF header.  */
1114 
1115 static bool
elf32_m68k_set_private_flags(bfd * abfd,flagword flags)1116 elf32_m68k_set_private_flags (bfd *abfd, flagword flags)
1117 {
1118   elf_elfheader (abfd)->e_flags = flags;
1119   elf_flags_init (abfd) = true;
1120   return true;
1121 }
1122 
1123 /* Merge object attributes from IBFD into OBFD.  Warn if
1124    there are conflicting attributes. */
1125 static bool
m68k_elf_merge_obj_attributes(bfd * ibfd,struct bfd_link_info * info)1126 m68k_elf_merge_obj_attributes (bfd *ibfd, struct bfd_link_info *info)
1127 {
1128   bfd *obfd = info->output_bfd;
1129   obj_attribute *in_attr, *in_attrs;
1130   obj_attribute *out_attr, *out_attrs;
1131   bool ret = true;
1132 
1133   in_attrs = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
1134   out_attrs = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
1135 
1136   in_attr = &in_attrs[Tag_GNU_M68K_ABI_FP];
1137   out_attr = &out_attrs[Tag_GNU_M68K_ABI_FP];
1138 
1139   if (in_attr->i != out_attr->i)
1140     {
1141       int in_fp = in_attr->i & 3;
1142       int out_fp = out_attr->i & 3;
1143       static bfd *last_fp;
1144 
1145       if (in_fp == 0)
1146 	;
1147       else if (out_fp == 0)
1148 	{
1149 	  out_attr->type = ATTR_TYPE_FLAG_INT_VAL;
1150 	  out_attr->i ^= in_fp;
1151 	  last_fp = ibfd;
1152 	}
1153       else if (out_fp == 1 && in_fp == 2)
1154 	{
1155 	  _bfd_error_handler
1156 	    /* xgettext:c-format */
1157 	    (_("%pB uses hard float, %pB uses soft float"),
1158 	     last_fp, ibfd);
1159 	  ret = false;
1160 	}
1161       else if (out_fp == 2 && in_fp == 1)
1162 	{
1163 	  _bfd_error_handler
1164 	    /* xgettext:c-format */
1165 	    (_("%pB uses hard float, %pB uses soft float"),
1166 	     ibfd, last_fp);
1167 	  ret = false;
1168 	}
1169     }
1170 
1171   if (!ret)
1172     {
1173       out_attr->type = ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_ERROR;
1174       bfd_set_error (bfd_error_bad_value);
1175       return false;
1176     }
1177 
1178   /* Merge Tag_compatibility attributes and any common GNU ones.  */
1179   return _bfd_elf_merge_object_attributes (ibfd, info);
1180 }
1181 
1182 /* Merge backend specific data from an object file to the output
1183    object file when linking.  */
1184 static bool
elf32_m68k_merge_private_bfd_data(bfd * ibfd,struct bfd_link_info * info)1185 elf32_m68k_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
1186 {
1187   bfd *obfd = info->output_bfd;
1188   flagword out_flags;
1189   flagword in_flags;
1190   flagword out_isa;
1191   flagword in_isa;
1192   const bfd_arch_info_type *arch_info;
1193 
1194   if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1195       || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1196     /* PR 24523: For non-ELF files do not try to merge any private
1197        data, but also do not prevent the link from succeeding.  */
1198     return true;
1199 
1200   /* Get the merged machine.  This checks for incompatibility between
1201      Coldfire & non-Coldfire flags, incompability between different
1202      Coldfire ISAs, and incompability between different MAC types.  */
1203   arch_info = bfd_arch_get_compatible (ibfd, obfd, false);
1204   if (!arch_info)
1205     return false;
1206 
1207   bfd_set_arch_mach (obfd, bfd_arch_m68k, arch_info->mach);
1208 
1209   if (!m68k_elf_merge_obj_attributes (ibfd, info))
1210     return false;
1211 
1212   in_flags = elf_elfheader (ibfd)->e_flags;
1213   if (!elf_flags_init (obfd))
1214     {
1215       elf_flags_init (obfd) = true;
1216       out_flags = in_flags;
1217     }
1218   else
1219     {
1220       out_flags = elf_elfheader (obfd)->e_flags;
1221       unsigned int variant_mask;
1222 
1223       if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
1224 	variant_mask = 0;
1225       else if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
1226 	variant_mask = 0;
1227       else if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1228 	variant_mask = 0;
1229       else
1230 	variant_mask = EF_M68K_CF_ISA_MASK;
1231 
1232       in_isa = (in_flags & variant_mask);
1233       out_isa = (out_flags & variant_mask);
1234       if (in_isa > out_isa)
1235 	out_flags ^= in_isa ^ out_isa;
1236       if (((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32
1237 	   && (out_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1238 	  || ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO
1239 	      && (out_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32))
1240 	out_flags = EF_M68K_FIDO;
1241       else
1242       out_flags |= in_flags ^ in_isa;
1243     }
1244   elf_elfheader (obfd)->e_flags = out_flags;
1245 
1246   return true;
1247 }
1248 
1249 /* Display the flags field.  */
1250 
1251 static bool
elf32_m68k_print_private_bfd_data(bfd * abfd,void * ptr)1252 elf32_m68k_print_private_bfd_data (bfd *abfd, void * ptr)
1253 {
1254   FILE *file = (FILE *) ptr;
1255   flagword eflags = elf_elfheader (abfd)->e_flags;
1256 
1257   BFD_ASSERT (abfd != NULL && ptr != NULL);
1258 
1259   /* Print normal ELF private data.  */
1260   _bfd_elf_print_private_bfd_data (abfd, ptr);
1261 
1262   /* Ignore init flag - it may not be set, despite the flags field containing valid data.  */
1263 
1264   /* xgettext:c-format */
1265   fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
1266 
1267   if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
1268     fprintf (file, " [m68000]");
1269   else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
1270     fprintf (file, " [cpu32]");
1271   else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1272     fprintf (file, " [fido]");
1273   else
1274     {
1275       if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CFV4E)
1276 	fprintf (file, " [cfv4e]");
1277 
1278       if (eflags & EF_M68K_CF_ISA_MASK)
1279 	{
1280 	  char const *isa = _("unknown");
1281 	  char const *mac = _("unknown");
1282 	  char const *additional = "";
1283 
1284 	  switch (eflags & EF_M68K_CF_ISA_MASK)
1285 	    {
1286 	    case EF_M68K_CF_ISA_A_NODIV:
1287 	      isa = "A";
1288 	      additional = " [nodiv]";
1289 	      break;
1290 	    case EF_M68K_CF_ISA_A:
1291 	      isa = "A";
1292 	      break;
1293 	    case EF_M68K_CF_ISA_A_PLUS:
1294 	      isa = "A+";
1295 	      break;
1296 	    case EF_M68K_CF_ISA_B_NOUSP:
1297 	      isa = "B";
1298 	      additional = " [nousp]";
1299 	      break;
1300 	    case EF_M68K_CF_ISA_B:
1301 	      isa = "B";
1302 	      break;
1303 	    case EF_M68K_CF_ISA_C:
1304 	      isa = "C";
1305 	      break;
1306 	    case EF_M68K_CF_ISA_C_NODIV:
1307 	      isa = "C";
1308 	      additional = " [nodiv]";
1309 	      break;
1310 	    }
1311 	  fprintf (file, " [isa %s]%s", isa, additional);
1312 
1313 	  if (eflags & EF_M68K_CF_FLOAT)
1314 	    fprintf (file, " [float]");
1315 
1316 	  switch (eflags & EF_M68K_CF_MAC_MASK)
1317 	    {
1318 	    case 0:
1319 	      mac = NULL;
1320 	      break;
1321 	    case EF_M68K_CF_MAC:
1322 	      mac = "mac";
1323 	      break;
1324 	    case EF_M68K_CF_EMAC:
1325 	      mac = "emac";
1326 	      break;
1327 	    case EF_M68K_CF_EMAC_B:
1328 	      mac = "emac_b";
1329 	      break;
1330 	    }
1331 	  if (mac)
1332 	    fprintf (file, " [%s]", mac);
1333 	}
1334     }
1335 
1336   fputc ('\n', file);
1337 
1338   return true;
1339 }
1340 
1341 /* Multi-GOT support implementation design:
1342 
1343    Multi-GOT starts in check_relocs hook.  There we scan all
1344    relocations of a BFD and build a local GOT (struct elf_m68k_got)
1345    for it.  If a single BFD appears to require too many GOT slots with
1346    R_68K_GOT8O or R_68K_GOT16O relocations, we fail with notification
1347    to user.
1348    After check_relocs has been invoked for each input BFD, we have
1349    constructed a GOT for each input BFD.
1350 
1351    To minimize total number of GOTs required for a particular output BFD
1352    (as some environments support only 1 GOT per output object) we try
1353    to merge some of the GOTs to share an offset space.  Ideally [and in most
1354    cases] we end up with a single GOT.  In cases when there are too many
1355    restricted relocations (e.g., R_68K_GOT16O relocations) we end up with
1356    several GOTs, assuming the environment can handle them.
1357 
1358    Partitioning is done in elf_m68k_partition_multi_got.  We start with
1359    an empty GOT and traverse bfd2got hashtable putting got_entries from
1360    local GOTs to the new 'big' one.  We do that by constructing an
1361    intermediate GOT holding all the entries the local GOT has and the big
1362    GOT lacks.  Then we check if there is room in the big GOT to accomodate
1363    all the entries from diff.  On success we add those entries to the big
1364    GOT; on failure we start the new 'big' GOT and retry the adding of
1365    entries from the local GOT.  Note that this retry will always succeed as
1366    each local GOT doesn't overflow the limits.  After partitioning we
1367    end up with each bfd assigned one of the big GOTs.  GOT entries in the
1368    big GOTs are initialized with GOT offsets.  Note that big GOTs are
1369    positioned consequently in program space and represent a single huge GOT
1370    to the outside world.
1371 
1372    After that we get to elf_m68k_relocate_section.  There we
1373    adjust relocations of GOT pointer (_GLOBAL_OFFSET_TABLE_) and symbol
1374    relocations to refer to appropriate [assigned to current input_bfd]
1375    big GOT.
1376 
1377    Notes:
1378 
1379    GOT entry type: We have several types of GOT entries.
1380    * R_8 type is used in entries for symbols that have at least one
1381    R_68K_GOT8O or R_68K_TLS_*8 relocation.  We can have at most 0x40
1382    such entries in one GOT.
1383    * R_16 type is used in entries for symbols that have at least one
1384    R_68K_GOT16O or R_68K_TLS_*16 relocation and no R_8 relocations.
1385    We can have at most 0x4000 such entries in one GOT.
1386    * R_32 type is used in all other cases.  We can have as many
1387    such entries in one GOT as we'd like.
1388    When counting relocations we have to include the count of the smaller
1389    ranged relocations in the counts of the larger ranged ones in order
1390    to correctly detect overflow.
1391 
1392    Sorting the GOT: In each GOT starting offsets are assigned to
1393    R_8 entries, which are followed by R_16 entries, and
1394    R_32 entries go at the end.  See finalize_got_offsets for details.
1395 
1396    Negative GOT offsets: To double usable offset range of GOTs we use
1397    negative offsets.  As we assign entries with GOT offsets relative to
1398    start of .got section, the offset values are positive.  They become
1399    negative only in relocate_section where got->offset value is
1400    subtracted from them.
1401 
1402    3 special GOT entries: There are 3 special GOT entries used internally
1403    by loader.  These entries happen to be placed to .got.plt section,
1404    so we don't do anything about them in multi-GOT support.
1405 
1406    Memory management: All data except for hashtables
1407    multi_got->bfd2got and got->entries are allocated on
1408    elf_hash_table (info)->dynobj bfd (for this reason we pass 'info'
1409    to most functions), so we don't need to care to free them.  At the
1410    moment of allocation hashtables are being linked into main data
1411    structure (multi_got), all pieces of which are reachable from
1412    elf_m68k_multi_got (info).  We deallocate them in
1413    elf_m68k_link_hash_table_free.  */
1414 
1415 /* Initialize GOT.  */
1416 
1417 static void
elf_m68k_init_got(struct elf_m68k_got * got)1418 elf_m68k_init_got (struct elf_m68k_got *got)
1419 {
1420   got->entries = NULL;
1421   got->n_slots[R_8] = 0;
1422   got->n_slots[R_16] = 0;
1423   got->n_slots[R_32] = 0;
1424   got->local_n_slots = 0;
1425   got->offset = (bfd_vma) -1;
1426 }
1427 
1428 /* Destruct GOT.  */
1429 
1430 static void
elf_m68k_clear_got(struct elf_m68k_got * got)1431 elf_m68k_clear_got (struct elf_m68k_got *got)
1432 {
1433   if (got->entries != NULL)
1434     {
1435       htab_delete (got->entries);
1436       got->entries = NULL;
1437     }
1438 }
1439 
1440 /* Create and empty GOT structure.  INFO is the context where memory
1441    should be allocated.  */
1442 
1443 static struct elf_m68k_got *
elf_m68k_create_empty_got(struct bfd_link_info * info)1444 elf_m68k_create_empty_got (struct bfd_link_info *info)
1445 {
1446   struct elf_m68k_got *got;
1447 
1448   got = bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*got));
1449   if (got == NULL)
1450     return NULL;
1451 
1452   elf_m68k_init_got (got);
1453 
1454   return got;
1455 }
1456 
1457 /* Initialize KEY.  */
1458 
1459 static void
elf_m68k_init_got_entry_key(struct elf_m68k_got_entry_key * key,struct elf_link_hash_entry * h,const bfd * abfd,unsigned long symndx,enum elf_m68k_reloc_type reloc_type)1460 elf_m68k_init_got_entry_key (struct elf_m68k_got_entry_key *key,
1461 			     struct elf_link_hash_entry *h,
1462 			     const bfd *abfd, unsigned long symndx,
1463 			     enum elf_m68k_reloc_type reloc_type)
1464 {
1465   if (elf_m68k_reloc_got_type (reloc_type) == R_68K_TLS_LDM32)
1466     /* All TLS_LDM relocations share a single GOT entry.  */
1467     {
1468       key->bfd = NULL;
1469       key->symndx = 0;
1470     }
1471   else if (h != NULL)
1472     /* Global symbols are identified with their got_entry_key.  */
1473     {
1474       key->bfd = NULL;
1475       key->symndx = elf_m68k_hash_entry (h)->got_entry_key;
1476       BFD_ASSERT (key->symndx != 0);
1477     }
1478   else
1479     /* Local symbols are identified by BFD they appear in and symndx.  */
1480     {
1481       key->bfd = abfd;
1482       key->symndx = symndx;
1483     }
1484 
1485   key->type = reloc_type;
1486 }
1487 
1488 /* Calculate hash of got_entry.
1489    ??? Is it good?  */
1490 
1491 static hashval_t
elf_m68k_got_entry_hash(const void * _entry)1492 elf_m68k_got_entry_hash (const void *_entry)
1493 {
1494   const struct elf_m68k_got_entry_key *key;
1495 
1496   key = &((const struct elf_m68k_got_entry *) _entry)->key_;
1497 
1498   return (key->symndx
1499 	  + (key->bfd != NULL ? (int) key->bfd->id : -1)
1500 	  + elf_m68k_reloc_got_type (key->type));
1501 }
1502 
1503 /* Check if two got entries are equal.  */
1504 
1505 static int
elf_m68k_got_entry_eq(const void * _entry1,const void * _entry2)1506 elf_m68k_got_entry_eq (const void *_entry1, const void *_entry2)
1507 {
1508   const struct elf_m68k_got_entry_key *key1;
1509   const struct elf_m68k_got_entry_key *key2;
1510 
1511   key1 = &((const struct elf_m68k_got_entry *) _entry1)->key_;
1512   key2 = &((const struct elf_m68k_got_entry *) _entry2)->key_;
1513 
1514   return (key1->bfd == key2->bfd
1515 	  && key1->symndx == key2->symndx
1516 	  && (elf_m68k_reloc_got_type (key1->type)
1517 	      == elf_m68k_reloc_got_type (key2->type)));
1518 }
1519 
1520 /* When using negative offsets, we allocate one extra R_8, one extra R_16
1521    and one extra R_32 slots to simplify handling of 2-slot entries during
1522    offset allocation -- hence -1 for R_8 slots and -2 for R_16 slots.  */
1523 
1524 /* Maximal number of R_8 slots in a single GOT.  */
1525 #define ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT(INFO)		\
1526   (elf_m68k_hash_table (INFO)->use_neg_got_offsets_p		\
1527    ? (0x40 - 1)							\
1528    : 0x20)
1529 
1530 /* Maximal number of R_8 and R_16 slots in a single GOT.  */
1531 #define ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT(INFO)		\
1532   (elf_m68k_hash_table (INFO)->use_neg_got_offsets_p		\
1533    ? (0x4000 - 2)						\
1534    : 0x2000)
1535 
1536 /* SEARCH - simply search the hashtable, don't insert new entries or fail when
1537    the entry cannot be found.
1538    FIND_OR_CREATE - search for an existing entry, but create new if there's
1539    no such.
1540    MUST_FIND - search for an existing entry and assert that it exist.
1541    MUST_CREATE - assert that there's no such entry and create new one.  */
1542 enum elf_m68k_get_entry_howto
1543   {
1544     SEARCH,
1545     FIND_OR_CREATE,
1546     MUST_FIND,
1547     MUST_CREATE
1548   };
1549 
1550 /* Get or create (depending on HOWTO) entry with KEY in GOT.
1551    INFO is context in which memory should be allocated (can be NULL if
1552    HOWTO is SEARCH or MUST_FIND).  */
1553 
1554 static struct elf_m68k_got_entry *
elf_m68k_get_got_entry(struct elf_m68k_got * got,const struct elf_m68k_got_entry_key * key,enum elf_m68k_get_entry_howto howto,struct bfd_link_info * info)1555 elf_m68k_get_got_entry (struct elf_m68k_got *got,
1556 			const struct elf_m68k_got_entry_key *key,
1557 			enum elf_m68k_get_entry_howto howto,
1558 			struct bfd_link_info *info)
1559 {
1560   struct elf_m68k_got_entry entry_;
1561   struct elf_m68k_got_entry *entry;
1562   void **ptr;
1563 
1564   BFD_ASSERT ((info == NULL) == (howto == SEARCH || howto == MUST_FIND));
1565 
1566   if (got->entries == NULL)
1567     /* This is the first entry in ABFD.  Initialize hashtable.  */
1568     {
1569       if (howto == SEARCH)
1570 	return NULL;
1571 
1572       got->entries = htab_try_create (ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT
1573 				      (info),
1574 				      elf_m68k_got_entry_hash,
1575 				      elf_m68k_got_entry_eq, NULL);
1576       if (got->entries == NULL)
1577 	{
1578 	  bfd_set_error (bfd_error_no_memory);
1579 	  return NULL;
1580 	}
1581     }
1582 
1583   entry_.key_ = *key;
1584   ptr = htab_find_slot (got->entries, &entry_,
1585 			(howto == SEARCH || howto == MUST_FIND ? NO_INSERT
1586 			 : INSERT));
1587   if (ptr == NULL)
1588     {
1589       if (howto == SEARCH)
1590 	/* Entry not found.  */
1591 	return NULL;
1592 
1593       if (howto == MUST_FIND)
1594 	abort ();
1595 
1596       /* We're out of memory.  */
1597       bfd_set_error (bfd_error_no_memory);
1598       return NULL;
1599     }
1600 
1601   if (*ptr == NULL)
1602     /* We didn't find the entry and we're asked to create a new one.  */
1603     {
1604       if (howto == MUST_FIND)
1605 	abort ();
1606 
1607       BFD_ASSERT (howto != SEARCH);
1608 
1609       entry = bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*entry));
1610       if (entry == NULL)
1611 	return NULL;
1612 
1613       /* Initialize new entry.  */
1614       entry->key_ = *key;
1615 
1616       entry->u.s1.refcount = 0;
1617 
1618       /* Mark the entry as not initialized.  */
1619       entry->key_.type = R_68K_max;
1620 
1621       *ptr = entry;
1622     }
1623   else
1624     /* We found the entry.  */
1625     {
1626       BFD_ASSERT (howto != MUST_CREATE);
1627 
1628       entry = *ptr;
1629     }
1630 
1631   return entry;
1632 }
1633 
1634 /* Update GOT counters when merging entry of WAS type with entry of NEW type.
1635    Return the value to which ENTRY's type should be set.  */
1636 
1637 static enum elf_m68k_reloc_type
elf_m68k_update_got_entry_type(struct elf_m68k_got * got,enum elf_m68k_reloc_type was,enum elf_m68k_reloc_type new_reloc)1638 elf_m68k_update_got_entry_type (struct elf_m68k_got *got,
1639 				enum elf_m68k_reloc_type was,
1640 				enum elf_m68k_reloc_type new_reloc)
1641 {
1642   enum elf_m68k_got_offset_size was_size;
1643   enum elf_m68k_got_offset_size new_size;
1644   bfd_vma n_slots;
1645 
1646   if (was == R_68K_max)
1647     /* The type of the entry is not initialized yet.  */
1648     {
1649       /* Update all got->n_slots counters, including n_slots[R_32].  */
1650       was_size = R_LAST;
1651 
1652       was = new_reloc;
1653     }
1654   else
1655     {
1656       /* !!! We, probably, should emit an error rather then fail on assert
1657 	 in such a case.  */
1658       BFD_ASSERT (elf_m68k_reloc_got_type (was)
1659 		  == elf_m68k_reloc_got_type (new_reloc));
1660 
1661       was_size = elf_m68k_reloc_got_offset_size (was);
1662     }
1663 
1664   new_size = elf_m68k_reloc_got_offset_size (new_reloc);
1665   n_slots = elf_m68k_reloc_got_n_slots (new_reloc);
1666 
1667   while (was_size > new_size)
1668     {
1669       --was_size;
1670       got->n_slots[was_size] += n_slots;
1671     }
1672 
1673   if (new_reloc > was)
1674     /* Relocations are ordered from bigger got offset size to lesser,
1675        so choose the relocation type with lesser offset size.  */
1676     was = new_reloc;
1677 
1678   return was;
1679 }
1680 
1681 /* Add new or update existing entry to GOT.
1682    H, ABFD, TYPE and SYMNDX is data for the entry.
1683    INFO is a context where memory should be allocated.  */
1684 
1685 static struct elf_m68k_got_entry *
elf_m68k_add_entry_to_got(struct elf_m68k_got * got,struct elf_link_hash_entry * h,const bfd * abfd,enum elf_m68k_reloc_type reloc_type,unsigned long symndx,struct bfd_link_info * info)1686 elf_m68k_add_entry_to_got (struct elf_m68k_got *got,
1687 			   struct elf_link_hash_entry *h,
1688 			   const bfd *abfd,
1689 			   enum elf_m68k_reloc_type reloc_type,
1690 			   unsigned long symndx,
1691 			   struct bfd_link_info *info)
1692 {
1693   struct elf_m68k_got_entry_key key_;
1694   struct elf_m68k_got_entry *entry;
1695 
1696   if (h != NULL && elf_m68k_hash_entry (h)->got_entry_key == 0)
1697     elf_m68k_hash_entry (h)->got_entry_key
1698       = elf_m68k_multi_got (info)->global_symndx++;
1699 
1700   elf_m68k_init_got_entry_key (&key_, h, abfd, symndx, reloc_type);
1701 
1702   entry = elf_m68k_get_got_entry (got, &key_, FIND_OR_CREATE, info);
1703   if (entry == NULL)
1704     return NULL;
1705 
1706   /* Determine entry's type and update got->n_slots counters.  */
1707   entry->key_.type = elf_m68k_update_got_entry_type (got,
1708 						     entry->key_.type,
1709 						     reloc_type);
1710 
1711   /* Update refcount.  */
1712   ++entry->u.s1.refcount;
1713 
1714   if (entry->u.s1.refcount == 1)
1715     /* We see this entry for the first time.  */
1716     {
1717       if (entry->key_.bfd != NULL)
1718 	got->local_n_slots += elf_m68k_reloc_got_n_slots (entry->key_.type);
1719     }
1720 
1721   BFD_ASSERT (got->n_slots[R_32] >= got->local_n_slots);
1722 
1723   if ((got->n_slots[R_8]
1724        > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
1725       || (got->n_slots[R_16]
1726 	  > ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info)))
1727     /* This BFD has too many relocation.  */
1728     {
1729       if (got->n_slots[R_8] > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
1730 	/* xgettext:c-format */
1731 	_bfd_error_handler (_("%pB: GOT overflow: "
1732 			      "number of relocations with 8-bit "
1733 			      "offset > %d"),
1734 			    abfd,
1735 			    ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info));
1736       else
1737 	/* xgettext:c-format */
1738 	_bfd_error_handler (_("%pB: GOT overflow: "
1739 			      "number of relocations with 8- or 16-bit "
1740 			      "offset > %d"),
1741 			    abfd,
1742 			    ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info));
1743 
1744       return NULL;
1745     }
1746 
1747   return entry;
1748 }
1749 
1750 /* Compute the hash value of the bfd in a bfd2got hash entry.  */
1751 
1752 static hashval_t
elf_m68k_bfd2got_entry_hash(const void * entry)1753 elf_m68k_bfd2got_entry_hash (const void *entry)
1754 {
1755   const struct elf_m68k_bfd2got_entry *e;
1756 
1757   e = (const struct elf_m68k_bfd2got_entry *) entry;
1758 
1759   return e->bfd->id;
1760 }
1761 
1762 /* Check whether two hash entries have the same bfd.  */
1763 
1764 static int
elf_m68k_bfd2got_entry_eq(const void * entry1,const void * entry2)1765 elf_m68k_bfd2got_entry_eq (const void *entry1, const void *entry2)
1766 {
1767   const struct elf_m68k_bfd2got_entry *e1;
1768   const struct elf_m68k_bfd2got_entry *e2;
1769 
1770   e1 = (const struct elf_m68k_bfd2got_entry *) entry1;
1771   e2 = (const struct elf_m68k_bfd2got_entry *) entry2;
1772 
1773   return e1->bfd == e2->bfd;
1774 }
1775 
1776 /* Destruct a bfd2got entry.  */
1777 
1778 static void
elf_m68k_bfd2got_entry_del(void * _entry)1779 elf_m68k_bfd2got_entry_del (void *_entry)
1780 {
1781   struct elf_m68k_bfd2got_entry *entry;
1782 
1783   entry = (struct elf_m68k_bfd2got_entry *) _entry;
1784 
1785   BFD_ASSERT (entry->got != NULL);
1786   elf_m68k_clear_got (entry->got);
1787 }
1788 
1789 /* Find existing or create new (depending on HOWTO) bfd2got entry in
1790    MULTI_GOT.  ABFD is the bfd we need a GOT for.  INFO is a context where
1791    memory should be allocated.  */
1792 
1793 static struct elf_m68k_bfd2got_entry *
elf_m68k_get_bfd2got_entry(struct elf_m68k_multi_got * multi_got,const bfd * abfd,enum elf_m68k_get_entry_howto howto,struct bfd_link_info * info)1794 elf_m68k_get_bfd2got_entry (struct elf_m68k_multi_got *multi_got,
1795 			    const bfd *abfd,
1796 			    enum elf_m68k_get_entry_howto howto,
1797 			    struct bfd_link_info *info)
1798 {
1799   struct elf_m68k_bfd2got_entry entry_;
1800   void **ptr;
1801   struct elf_m68k_bfd2got_entry *entry;
1802 
1803   BFD_ASSERT ((info == NULL) == (howto == SEARCH || howto == MUST_FIND));
1804 
1805   if (multi_got->bfd2got == NULL)
1806     /* This is the first GOT.  Initialize bfd2got.  */
1807     {
1808       if (howto == SEARCH)
1809 	return NULL;
1810 
1811       multi_got->bfd2got = htab_try_create (1, elf_m68k_bfd2got_entry_hash,
1812 					    elf_m68k_bfd2got_entry_eq,
1813 					    elf_m68k_bfd2got_entry_del);
1814       if (multi_got->bfd2got == NULL)
1815 	{
1816 	  bfd_set_error (bfd_error_no_memory);
1817 	  return NULL;
1818 	}
1819     }
1820 
1821   entry_.bfd = abfd;
1822   ptr = htab_find_slot (multi_got->bfd2got, &entry_,
1823 			(howto == SEARCH || howto == MUST_FIND ? NO_INSERT
1824 			 : INSERT));
1825   if (ptr == NULL)
1826     {
1827       if (howto == SEARCH)
1828 	/* Entry not found.  */
1829 	return NULL;
1830 
1831       if (howto == MUST_FIND)
1832 	abort ();
1833 
1834       /* We're out of memory.  */
1835       bfd_set_error (bfd_error_no_memory);
1836       return NULL;
1837     }
1838 
1839   if (*ptr == NULL)
1840     /* Entry was not found.  Create new one.  */
1841     {
1842       if (howto == MUST_FIND)
1843 	abort ();
1844 
1845       BFD_ASSERT (howto != SEARCH);
1846 
1847       entry = ((struct elf_m68k_bfd2got_entry *)
1848 	       bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*entry)));
1849       if (entry == NULL)
1850 	return NULL;
1851 
1852       entry->bfd = abfd;
1853 
1854       entry->got = elf_m68k_create_empty_got (info);
1855       if (entry->got == NULL)
1856 	return NULL;
1857 
1858       *ptr = entry;
1859     }
1860   else
1861     {
1862       BFD_ASSERT (howto != MUST_CREATE);
1863 
1864       /* Return existing entry.  */
1865       entry = *ptr;
1866     }
1867 
1868   return entry;
1869 }
1870 
1871 struct elf_m68k_can_merge_gots_arg
1872 {
1873   /* A current_got that we constructing a DIFF against.  */
1874   struct elf_m68k_got *big;
1875 
1876   /* GOT holding entries not present or that should be changed in
1877      BIG.  */
1878   struct elf_m68k_got *diff;
1879 
1880   /* Context where to allocate memory.  */
1881   struct bfd_link_info *info;
1882 
1883   /* Error flag.  */
1884   bool error_p;
1885 };
1886 
1887 /* Process a single entry from the small GOT to see if it should be added
1888    or updated in the big GOT.  */
1889 
1890 static int
elf_m68k_can_merge_gots_1(void ** _entry_ptr,void * _arg)1891 elf_m68k_can_merge_gots_1 (void **_entry_ptr, void *_arg)
1892 {
1893   const struct elf_m68k_got_entry *entry1;
1894   struct elf_m68k_can_merge_gots_arg *arg;
1895   const struct elf_m68k_got_entry *entry2;
1896   enum elf_m68k_reloc_type type;
1897 
1898   entry1 = (const struct elf_m68k_got_entry *) *_entry_ptr;
1899   arg = (struct elf_m68k_can_merge_gots_arg *) _arg;
1900 
1901   entry2 = elf_m68k_get_got_entry (arg->big, &entry1->key_, SEARCH, NULL);
1902 
1903   if (entry2 != NULL)
1904     /* We found an existing entry.  Check if we should update it.  */
1905     {
1906       type = elf_m68k_update_got_entry_type (arg->diff,
1907 					     entry2->key_.type,
1908 					     entry1->key_.type);
1909 
1910       if (type == entry2->key_.type)
1911 	/* ENTRY1 doesn't update data in ENTRY2.  Skip it.
1912 	   To skip creation of difference entry we use the type,
1913 	   which we won't see in GOT entries for sure.  */
1914 	type = R_68K_max;
1915     }
1916   else
1917     /* We didn't find the entry.  Add entry1 to DIFF.  */
1918     {
1919       BFD_ASSERT (entry1->key_.type != R_68K_max);
1920 
1921       type = elf_m68k_update_got_entry_type (arg->diff,
1922 					     R_68K_max, entry1->key_.type);
1923 
1924       if (entry1->key_.bfd != NULL)
1925 	arg->diff->local_n_slots += elf_m68k_reloc_got_n_slots (type);
1926     }
1927 
1928   if (type != R_68K_max)
1929     /* Create an entry in DIFF.  */
1930     {
1931       struct elf_m68k_got_entry *entry;
1932 
1933       entry = elf_m68k_get_got_entry (arg->diff, &entry1->key_, MUST_CREATE,
1934 				      arg->info);
1935       if (entry == NULL)
1936 	{
1937 	  arg->error_p = true;
1938 	  return 0;
1939 	}
1940 
1941       entry->key_.type = type;
1942     }
1943 
1944   return 1;
1945 }
1946 
1947 /* Return TRUE if SMALL GOT can be added to BIG GOT without overflowing it.
1948    Construct DIFF GOT holding the entries which should be added or updated
1949    in BIG GOT to accumulate information from SMALL.
1950    INFO is the context where memory should be allocated.  */
1951 
1952 static bool
elf_m68k_can_merge_gots(struct elf_m68k_got * big,const struct elf_m68k_got * small,struct bfd_link_info * info,struct elf_m68k_got * diff)1953 elf_m68k_can_merge_gots (struct elf_m68k_got *big,
1954 			 const struct elf_m68k_got *small,
1955 			 struct bfd_link_info *info,
1956 			 struct elf_m68k_got *diff)
1957 {
1958   struct elf_m68k_can_merge_gots_arg arg_;
1959 
1960   BFD_ASSERT (small->offset == (bfd_vma) -1);
1961 
1962   arg_.big = big;
1963   arg_.diff = diff;
1964   arg_.info = info;
1965   arg_.error_p = false;
1966   htab_traverse_noresize (small->entries, elf_m68k_can_merge_gots_1, &arg_);
1967   if (arg_.error_p)
1968     {
1969       diff->offset = 0;
1970       return false;
1971     }
1972 
1973   /* Check for overflow.  */
1974   if ((big->n_slots[R_8] + arg_.diff->n_slots[R_8]
1975        > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
1976       || (big->n_slots[R_16] + arg_.diff->n_slots[R_16]
1977 	  > ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info)))
1978     return false;
1979 
1980   return true;
1981 }
1982 
1983 struct elf_m68k_merge_gots_arg
1984 {
1985   /* The BIG got.  */
1986   struct elf_m68k_got *big;
1987 
1988   /* Context where memory should be allocated.  */
1989   struct bfd_link_info *info;
1990 
1991   /* Error flag.  */
1992   bool error_p;
1993 };
1994 
1995 /* Process a single entry from DIFF got.  Add or update corresponding
1996    entry in the BIG got.  */
1997 
1998 static int
elf_m68k_merge_gots_1(void ** entry_ptr,void * _arg)1999 elf_m68k_merge_gots_1 (void **entry_ptr, void *_arg)
2000 {
2001   const struct elf_m68k_got_entry *from;
2002   struct elf_m68k_merge_gots_arg *arg;
2003   struct elf_m68k_got_entry *to;
2004 
2005   from = (const struct elf_m68k_got_entry *) *entry_ptr;
2006   arg = (struct elf_m68k_merge_gots_arg *) _arg;
2007 
2008   to = elf_m68k_get_got_entry (arg->big, &from->key_, FIND_OR_CREATE,
2009 			       arg->info);
2010   if (to == NULL)
2011     {
2012       arg->error_p = true;
2013       return 0;
2014     }
2015 
2016   BFD_ASSERT (to->u.s1.refcount == 0);
2017   /* All we need to merge is TYPE.  */
2018   to->key_.type = from->key_.type;
2019 
2020   return 1;
2021 }
2022 
2023 /* Merge data from DIFF to BIG.  INFO is context where memory should be
2024    allocated.  */
2025 
2026 static bool
elf_m68k_merge_gots(struct elf_m68k_got * big,struct elf_m68k_got * diff,struct bfd_link_info * info)2027 elf_m68k_merge_gots (struct elf_m68k_got *big,
2028 		     struct elf_m68k_got *diff,
2029 		     struct bfd_link_info *info)
2030 {
2031   if (diff->entries != NULL)
2032     /* DIFF is not empty.  Merge it into BIG GOT.  */
2033     {
2034       struct elf_m68k_merge_gots_arg arg_;
2035 
2036       /* Merge entries.  */
2037       arg_.big = big;
2038       arg_.info = info;
2039       arg_.error_p = false;
2040       htab_traverse_noresize (diff->entries, elf_m68k_merge_gots_1, &arg_);
2041       if (arg_.error_p)
2042 	return false;
2043 
2044       /* Merge counters.  */
2045       big->n_slots[R_8] += diff->n_slots[R_8];
2046       big->n_slots[R_16] += diff->n_slots[R_16];
2047       big->n_slots[R_32] += diff->n_slots[R_32];
2048       big->local_n_slots += diff->local_n_slots;
2049     }
2050   else
2051     /* DIFF is empty.  */
2052     {
2053       BFD_ASSERT (diff->n_slots[R_8] == 0);
2054       BFD_ASSERT (diff->n_slots[R_16] == 0);
2055       BFD_ASSERT (diff->n_slots[R_32] == 0);
2056       BFD_ASSERT (diff->local_n_slots == 0);
2057     }
2058 
2059   BFD_ASSERT (!elf_m68k_hash_table (info)->allow_multigot_p
2060 	      || ((big->n_slots[R_8]
2061 		   <= ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
2062 		  && (big->n_slots[R_16]
2063 		      <= ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info))));
2064 
2065   return true;
2066 }
2067 
2068 struct elf_m68k_finalize_got_offsets_arg
2069 {
2070   /* Ranges of the offsets for GOT entries.
2071      R_x entries receive offsets between offset1[R_x] and offset2[R_x].
2072      R_x is R_8, R_16 and R_32.  */
2073   bfd_vma *offset1;
2074   bfd_vma *offset2;
2075 
2076   /* Mapping from global symndx to global symbols.
2077      This is used to build lists of got entries for global symbols.  */
2078   struct elf_m68k_link_hash_entry **symndx2h;
2079 
2080   bfd_vma n_ldm_entries;
2081 };
2082 
2083 /* Assign ENTRY an offset.  Build list of GOT entries for global symbols
2084    along the way.  */
2085 
2086 static int
elf_m68k_finalize_got_offsets_1(void ** entry_ptr,void * _arg)2087 elf_m68k_finalize_got_offsets_1 (void **entry_ptr, void *_arg)
2088 {
2089   struct elf_m68k_got_entry *entry;
2090   struct elf_m68k_finalize_got_offsets_arg *arg;
2091 
2092   enum elf_m68k_got_offset_size got_offset_size;
2093   bfd_vma entry_size;
2094 
2095   entry = (struct elf_m68k_got_entry *) *entry_ptr;
2096   arg = (struct elf_m68k_finalize_got_offsets_arg *) _arg;
2097 
2098   /* This should be a fresh entry created in elf_m68k_can_merge_gots.  */
2099   BFD_ASSERT (entry->u.s1.refcount == 0);
2100 
2101   /* Get GOT offset size for the entry .  */
2102   got_offset_size = elf_m68k_reloc_got_offset_size (entry->key_.type);
2103 
2104   /* Calculate entry size in bytes.  */
2105   entry_size = 4 * elf_m68k_reloc_got_n_slots (entry->key_.type);
2106 
2107   /* Check if we should switch to negative range of the offsets. */
2108   if (arg->offset1[got_offset_size] + entry_size
2109       > arg->offset2[got_offset_size])
2110     {
2111       /* Verify that this is the only switch to negative range for
2112 	 got_offset_size.  If this assertion fails, then we've miscalculated
2113 	 range for got_offset_size entries in
2114 	 elf_m68k_finalize_got_offsets.  */
2115       BFD_ASSERT (arg->offset2[got_offset_size]
2116 		  != arg->offset2[-(int) got_offset_size - 1]);
2117 
2118       /* Switch.  */
2119       arg->offset1[got_offset_size] = arg->offset1[-(int) got_offset_size - 1];
2120       arg->offset2[got_offset_size] = arg->offset2[-(int) got_offset_size - 1];
2121 
2122       /* Verify that now we have enough room for the entry.  */
2123       BFD_ASSERT (arg->offset1[got_offset_size] + entry_size
2124 		  <= arg->offset2[got_offset_size]);
2125     }
2126 
2127   /* Assign offset to entry.  */
2128   entry->u.s2.offset = arg->offset1[got_offset_size];
2129   arg->offset1[got_offset_size] += entry_size;
2130 
2131   if (entry->key_.bfd == NULL)
2132     /* Hook up this entry into the list of got_entries of H.  */
2133     {
2134       struct elf_m68k_link_hash_entry *h;
2135 
2136       h = arg->symndx2h[entry->key_.symndx];
2137       if (h != NULL)
2138 	{
2139 	  entry->u.s2.next = h->glist;
2140 	  h->glist = entry;
2141 	}
2142       else
2143 	/* This should be the entry for TLS_LDM relocation then.  */
2144 	{
2145 	  BFD_ASSERT ((elf_m68k_reloc_got_type (entry->key_.type)
2146 		       == R_68K_TLS_LDM32)
2147 		      && entry->key_.symndx == 0);
2148 
2149 	  ++arg->n_ldm_entries;
2150 	}
2151     }
2152   else
2153     /* This entry is for local symbol.  */
2154     entry->u.s2.next = NULL;
2155 
2156   return 1;
2157 }
2158 
2159 /* Assign offsets within GOT.  USE_NEG_GOT_OFFSETS_P indicates if we
2160    should use negative offsets.
2161    Build list of GOT entries for global symbols along the way.
2162    SYMNDX2H is mapping from global symbol indices to actual
2163    global symbols.
2164    Return offset at which next GOT should start.  */
2165 
2166 static void
elf_m68k_finalize_got_offsets(struct elf_m68k_got * got,bool use_neg_got_offsets_p,struct elf_m68k_link_hash_entry ** symndx2h,bfd_vma * final_offset,bfd_vma * n_ldm_entries)2167 elf_m68k_finalize_got_offsets (struct elf_m68k_got *got,
2168 			       bool use_neg_got_offsets_p,
2169 			       struct elf_m68k_link_hash_entry **symndx2h,
2170 			       bfd_vma *final_offset, bfd_vma *n_ldm_entries)
2171 {
2172   struct elf_m68k_finalize_got_offsets_arg arg_;
2173   bfd_vma offset1_[2 * R_LAST];
2174   bfd_vma offset2_[2 * R_LAST];
2175   int i;
2176   bfd_vma start_offset;
2177 
2178   BFD_ASSERT (got->offset != (bfd_vma) -1);
2179 
2180   /* We set entry offsets relative to the .got section (and not the
2181      start of a particular GOT), so that we can use them in
2182      finish_dynamic_symbol without needing to know the GOT which they come
2183      from.  */
2184 
2185   /* Put offset1 in the middle of offset1_, same for offset2.  */
2186   arg_.offset1 = offset1_ + R_LAST;
2187   arg_.offset2 = offset2_ + R_LAST;
2188 
2189   start_offset = got->offset;
2190 
2191   if (use_neg_got_offsets_p)
2192     /* Setup both negative and positive ranges for R_8, R_16 and R_32.  */
2193     i = -(int) R_32 - 1;
2194   else
2195     /* Setup positives ranges for R_8, R_16 and R_32.  */
2196     i = (int) R_8;
2197 
2198   for (; i <= (int) R_32; ++i)
2199     {
2200       int j;
2201       size_t n;
2202 
2203       /* Set beginning of the range of offsets I.  */
2204       arg_.offset1[i] = start_offset;
2205 
2206       /* Calculate number of slots that require I offsets.  */
2207       j = (i >= 0) ? i : -i - 1;
2208       n = (j >= 1) ? got->n_slots[j - 1] : 0;
2209       n = got->n_slots[j] - n;
2210 
2211       if (use_neg_got_offsets_p && n != 0)
2212 	{
2213 	  if (i < 0)
2214 	    /* We first fill the positive side of the range, so we might
2215 	       end up with one empty slot at that side when we can't fit
2216 	       whole 2-slot entry.  Account for that at negative side of
2217 	       the interval with one additional entry.  */
2218 	    n = n / 2 + 1;
2219 	  else
2220 	    /* When the number of slots is odd, make positive side of the
2221 	       range one entry bigger.  */
2222 	    n = (n + 1) / 2;
2223 	}
2224 
2225       /* N is the number of slots that require I offsets.
2226 	 Calculate length of the range for I offsets.  */
2227       n = 4 * n;
2228 
2229       /* Set end of the range.  */
2230       arg_.offset2[i] = start_offset + n;
2231 
2232       start_offset = arg_.offset2[i];
2233     }
2234 
2235   if (!use_neg_got_offsets_p)
2236     /* Make sure that if we try to switch to negative offsets in
2237        elf_m68k_finalize_got_offsets_1, the assert therein will catch
2238        the bug.  */
2239     for (i = R_8; i <= R_32; ++i)
2240       arg_.offset2[-i - 1] = arg_.offset2[i];
2241 
2242   /* Setup got->offset.  offset1[R_8] is either in the middle or at the
2243      beginning of GOT depending on use_neg_got_offsets_p.  */
2244   got->offset = arg_.offset1[R_8];
2245 
2246   arg_.symndx2h = symndx2h;
2247   arg_.n_ldm_entries = 0;
2248 
2249   /* Assign offsets.  */
2250   htab_traverse (got->entries, elf_m68k_finalize_got_offsets_1, &arg_);
2251 
2252   /* Check offset ranges we have actually assigned.  */
2253   for (i = (int) R_8; i <= (int) R_32; ++i)
2254     BFD_ASSERT (arg_.offset2[i] - arg_.offset1[i] <= 4);
2255 
2256   *final_offset = start_offset;
2257   *n_ldm_entries = arg_.n_ldm_entries;
2258 }
2259 
2260 struct elf_m68k_partition_multi_got_arg
2261 {
2262   /* The GOT we are adding entries to.  Aka big got.  */
2263   struct elf_m68k_got *current_got;
2264 
2265   /* Offset to assign the next CURRENT_GOT.  */
2266   bfd_vma offset;
2267 
2268   /* Context where memory should be allocated.  */
2269   struct bfd_link_info *info;
2270 
2271   /* Total number of slots in the .got section.
2272      This is used to calculate size of the .got and .rela.got sections.  */
2273   bfd_vma n_slots;
2274 
2275   /* Difference in numbers of allocated slots in the .got section
2276      and necessary relocations in the .rela.got section.
2277      This is used to calculate size of the .rela.got section.  */
2278   bfd_vma slots_relas_diff;
2279 
2280   /* Error flag.  */
2281   bool error_p;
2282 
2283   /* Mapping from global symndx to global symbols.
2284      This is used to build lists of got entries for global symbols.  */
2285   struct elf_m68k_link_hash_entry **symndx2h;
2286 };
2287 
2288 static void
elf_m68k_partition_multi_got_2(struct elf_m68k_partition_multi_got_arg * arg)2289 elf_m68k_partition_multi_got_2 (struct elf_m68k_partition_multi_got_arg *arg)
2290 {
2291   bfd_vma n_ldm_entries;
2292 
2293   elf_m68k_finalize_got_offsets (arg->current_got,
2294 				 (elf_m68k_hash_table (arg->info)
2295 				  ->use_neg_got_offsets_p),
2296 				 arg->symndx2h,
2297 				 &arg->offset, &n_ldm_entries);
2298 
2299   arg->n_slots += arg->current_got->n_slots[R_32];
2300 
2301   if (!bfd_link_pic (arg->info))
2302     /* If we are generating a shared object, we need to
2303        output a R_68K_RELATIVE reloc so that the dynamic
2304        linker can adjust this GOT entry.  Overwise we
2305        don't need space in .rela.got for local symbols.  */
2306     arg->slots_relas_diff += arg->current_got->local_n_slots;
2307 
2308   /* @LDM relocations require a 2-slot GOT entry, but only
2309      one relocation.  Account for that.  */
2310   arg->slots_relas_diff += n_ldm_entries;
2311 
2312   BFD_ASSERT (arg->slots_relas_diff <= arg->n_slots);
2313 }
2314 
2315 
2316 /* Process a single BFD2GOT entry and either merge GOT to CURRENT_GOT
2317    or start a new CURRENT_GOT.  */
2318 
2319 static int
elf_m68k_partition_multi_got_1(void ** _entry,void * _arg)2320 elf_m68k_partition_multi_got_1 (void **_entry, void *_arg)
2321 {
2322   struct elf_m68k_bfd2got_entry *entry;
2323   struct elf_m68k_partition_multi_got_arg *arg;
2324   struct elf_m68k_got *got;
2325   struct elf_m68k_got diff_;
2326   struct elf_m68k_got *diff;
2327 
2328   entry = (struct elf_m68k_bfd2got_entry *) *_entry;
2329   arg = (struct elf_m68k_partition_multi_got_arg *) _arg;
2330 
2331   got = entry->got;
2332   BFD_ASSERT (got != NULL);
2333   BFD_ASSERT (got->offset == (bfd_vma) -1);
2334 
2335   diff = NULL;
2336 
2337   if (arg->current_got != NULL)
2338     /* Construct diff.  */
2339     {
2340       diff = &diff_;
2341       elf_m68k_init_got (diff);
2342 
2343       if (!elf_m68k_can_merge_gots (arg->current_got, got, arg->info, diff))
2344 	{
2345 	  if (diff->offset == 0)
2346 	    /* Offset set to 0 in the diff_ indicates an error.  */
2347 	    {
2348 	      arg->error_p = true;
2349 	      goto final_return;
2350 	    }
2351 
2352 	  if (elf_m68k_hash_table (arg->info)->allow_multigot_p)
2353 	    {
2354 	      elf_m68k_clear_got (diff);
2355 	      /* Schedule to finish up current_got and start new one.  */
2356 	      diff = NULL;
2357 	    }
2358 	  /* else
2359 	     Merge GOTs no matter what.  If big GOT overflows,
2360 	     we'll fail in relocate_section due to truncated relocations.
2361 
2362 	     ??? May be fail earlier?  E.g., in can_merge_gots.  */
2363 	}
2364     }
2365   else
2366     /* Diff of got against empty current_got is got itself.  */
2367     {
2368       /* Create empty current_got to put subsequent GOTs to.  */
2369       arg->current_got = elf_m68k_create_empty_got (arg->info);
2370       if (arg->current_got == NULL)
2371 	{
2372 	  arg->error_p = true;
2373 	  goto final_return;
2374 	}
2375 
2376       arg->current_got->offset = arg->offset;
2377 
2378       diff = got;
2379     }
2380 
2381   if (diff != NULL)
2382     {
2383       if (!elf_m68k_merge_gots (arg->current_got, diff, arg->info))
2384 	{
2385 	  arg->error_p = true;
2386 	  goto final_return;
2387 	}
2388 
2389       /* Now we can free GOT.  */
2390       elf_m68k_clear_got (got);
2391 
2392       entry->got = arg->current_got;
2393     }
2394   else
2395     {
2396       /* Finish up current_got.  */
2397       elf_m68k_partition_multi_got_2 (arg);
2398 
2399       /* Schedule to start a new current_got.  */
2400       arg->current_got = NULL;
2401 
2402       /* Retry.  */
2403       if (!elf_m68k_partition_multi_got_1 (_entry, _arg))
2404 	{
2405 	  BFD_ASSERT (arg->error_p);
2406 	  goto final_return;
2407 	}
2408     }
2409 
2410  final_return:
2411   if (diff != NULL)
2412     elf_m68k_clear_got (diff);
2413 
2414   return !arg->error_p;
2415 }
2416 
2417 /* Helper function to build symndx2h mapping.  */
2418 
2419 static bool
elf_m68k_init_symndx2h_1(struct elf_link_hash_entry * _h,void * _arg)2420 elf_m68k_init_symndx2h_1 (struct elf_link_hash_entry *_h,
2421 			  void *_arg)
2422 {
2423   struct elf_m68k_link_hash_entry *h;
2424 
2425   h = elf_m68k_hash_entry (_h);
2426 
2427   if (h->got_entry_key != 0)
2428     /* H has at least one entry in the GOT.  */
2429     {
2430       struct elf_m68k_partition_multi_got_arg *arg;
2431 
2432       arg = (struct elf_m68k_partition_multi_got_arg *) _arg;
2433 
2434       BFD_ASSERT (arg->symndx2h[h->got_entry_key] == NULL);
2435       arg->symndx2h[h->got_entry_key] = h;
2436     }
2437 
2438   return true;
2439 }
2440 
2441 /* Merge GOTs of some BFDs, assign offsets to GOT entries and build
2442    lists of GOT entries for global symbols.
2443    Calculate sizes of .got and .rela.got sections.  */
2444 
2445 static bool
elf_m68k_partition_multi_got(struct bfd_link_info * info)2446 elf_m68k_partition_multi_got (struct bfd_link_info *info)
2447 {
2448   struct elf_m68k_multi_got *multi_got;
2449   struct elf_m68k_partition_multi_got_arg arg_;
2450 
2451   multi_got = elf_m68k_multi_got (info);
2452 
2453   arg_.current_got = NULL;
2454   arg_.offset = 0;
2455   arg_.info = info;
2456   arg_.n_slots = 0;
2457   arg_.slots_relas_diff = 0;
2458   arg_.error_p = false;
2459 
2460   if (multi_got->bfd2got != NULL)
2461     {
2462       /* Initialize symndx2h mapping.  */
2463       {
2464 	arg_.symndx2h = bfd_zmalloc (multi_got->global_symndx
2465 				     * sizeof (*arg_.symndx2h));
2466 	if (arg_.symndx2h == NULL)
2467 	  return false;
2468 
2469 	elf_link_hash_traverse (elf_hash_table (info),
2470 				elf_m68k_init_symndx2h_1, &arg_);
2471       }
2472 
2473       /* Partition.  */
2474       htab_traverse (multi_got->bfd2got, elf_m68k_partition_multi_got_1,
2475 		     &arg_);
2476       if (arg_.error_p)
2477 	{
2478 	  free (arg_.symndx2h);
2479 	  arg_.symndx2h = NULL;
2480 
2481 	  return false;
2482 	}
2483 
2484       /* Finish up last current_got.  */
2485       elf_m68k_partition_multi_got_2 (&arg_);
2486 
2487       free (arg_.symndx2h);
2488     }
2489 
2490   if (elf_hash_table (info)->dynobj != NULL)
2491     /* Set sizes of .got and .rela.got sections.  */
2492     {
2493       asection *s;
2494 
2495       s = elf_hash_table (info)->sgot;
2496       if (s != NULL)
2497 	s->size = arg_.offset;
2498       else
2499 	BFD_ASSERT (arg_.offset == 0);
2500 
2501       BFD_ASSERT (arg_.slots_relas_diff <= arg_.n_slots);
2502       arg_.n_slots -= arg_.slots_relas_diff;
2503 
2504       s = elf_hash_table (info)->srelgot;
2505       if (s != NULL)
2506 	s->size = arg_.n_slots * sizeof (Elf32_External_Rela);
2507       else
2508 	BFD_ASSERT (arg_.n_slots == 0);
2509     }
2510   else
2511     BFD_ASSERT (multi_got->bfd2got == NULL);
2512 
2513   return true;
2514 }
2515 
2516 /* Copy any information related to dynamic linking from a pre-existing
2517    symbol to a newly created symbol.  Also called to copy flags and
2518    other back-end info to a weakdef, in which case the symbol is not
2519    newly created and plt/got refcounts and dynamic indices should not
2520    be copied.  */
2521 
2522 static void
elf_m68k_copy_indirect_symbol(struct bfd_link_info * info,struct elf_link_hash_entry * _dir,struct elf_link_hash_entry * _ind)2523 elf_m68k_copy_indirect_symbol (struct bfd_link_info *info,
2524 			       struct elf_link_hash_entry *_dir,
2525 			       struct elf_link_hash_entry *_ind)
2526 {
2527   struct elf_m68k_link_hash_entry *dir;
2528   struct elf_m68k_link_hash_entry *ind;
2529 
2530   _bfd_elf_link_hash_copy_indirect (info, _dir, _ind);
2531 
2532   if (_ind->root.type != bfd_link_hash_indirect)
2533     return;
2534 
2535   dir = elf_m68k_hash_entry (_dir);
2536   ind = elf_m68k_hash_entry (_ind);
2537 
2538   /* Any absolute non-dynamic relocations against an indirect or weak
2539      definition will be against the target symbol.  */
2540   _dir->non_got_ref |= _ind->non_got_ref;
2541 
2542   /* We might have a direct symbol already having entries in the GOTs.
2543      Update its key only in case indirect symbol has GOT entries and
2544      assert that both indirect and direct symbols don't have GOT entries
2545      at the same time.  */
2546   if (ind->got_entry_key != 0)
2547     {
2548       BFD_ASSERT (dir->got_entry_key == 0);
2549       /* Assert that GOTs aren't partitioned yet.  */
2550       BFD_ASSERT (ind->glist == NULL);
2551 
2552       dir->got_entry_key = ind->got_entry_key;
2553       ind->got_entry_key = 0;
2554     }
2555 }
2556 
2557 /* Look through the relocs for a section during the first phase, and
2558    allocate space in the global offset table or procedure linkage
2559    table.  */
2560 
2561 static bool
elf_m68k_check_relocs(bfd * abfd,struct bfd_link_info * info,asection * sec,const Elf_Internal_Rela * relocs)2562 elf_m68k_check_relocs (bfd *abfd,
2563 		       struct bfd_link_info *info,
2564 		       asection *sec,
2565 		       const Elf_Internal_Rela *relocs)
2566 {
2567   bfd *dynobj;
2568   Elf_Internal_Shdr *symtab_hdr;
2569   struct elf_link_hash_entry **sym_hashes;
2570   const Elf_Internal_Rela *rel;
2571   const Elf_Internal_Rela *rel_end;
2572   asection *sreloc;
2573   struct elf_m68k_got *got;
2574 
2575   if (bfd_link_relocatable (info))
2576     return true;
2577 
2578   dynobj = elf_hash_table (info)->dynobj;
2579   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2580   sym_hashes = elf_sym_hashes (abfd);
2581 
2582   sreloc = NULL;
2583 
2584   got = NULL;
2585 
2586   rel_end = relocs + sec->reloc_count;
2587   for (rel = relocs; rel < rel_end; rel++)
2588     {
2589       unsigned long r_symndx;
2590       struct elf_link_hash_entry *h;
2591 
2592       r_symndx = ELF32_R_SYM (rel->r_info);
2593 
2594       if (r_symndx < symtab_hdr->sh_info)
2595 	h = NULL;
2596       else
2597 	{
2598 	  h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2599 	  while (h->root.type == bfd_link_hash_indirect
2600 		 || h->root.type == bfd_link_hash_warning)
2601 	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
2602 	}
2603 
2604       switch (ELF32_R_TYPE (rel->r_info))
2605 	{
2606 	case R_68K_GOT8:
2607 	case R_68K_GOT16:
2608 	case R_68K_GOT32:
2609 	  if (h != NULL
2610 	      && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
2611 	    break;
2612 	  /* Fall through.  */
2613 
2614 	  /* Relative GOT relocations.  */
2615 	case R_68K_GOT8O:
2616 	case R_68K_GOT16O:
2617 	case R_68K_GOT32O:
2618 	  /* Fall through.  */
2619 
2620 	  /* TLS relocations.  */
2621 	case R_68K_TLS_GD8:
2622 	case R_68K_TLS_GD16:
2623 	case R_68K_TLS_GD32:
2624 	case R_68K_TLS_LDM8:
2625 	case R_68K_TLS_LDM16:
2626 	case R_68K_TLS_LDM32:
2627 	case R_68K_TLS_IE8:
2628 	case R_68K_TLS_IE16:
2629 	case R_68K_TLS_IE32:
2630 
2631 	case R_68K_TLS_TPREL32:
2632 	case R_68K_TLS_DTPREL32:
2633 
2634 	  if (ELF32_R_TYPE (rel->r_info) == R_68K_TLS_TPREL32
2635 	      && bfd_link_pic (info))
2636 	    /* Do the special chorus for libraries with static TLS.  */
2637 	    info->flags |= DF_STATIC_TLS;
2638 
2639 	  /* This symbol requires a global offset table entry.  */
2640 
2641 	  if (dynobj == NULL)
2642 	    {
2643 	      /* Create the .got section.  */
2644 	      elf_hash_table (info)->dynobj = dynobj = abfd;
2645 	      if (!_bfd_elf_create_got_section (dynobj, info))
2646 		return false;
2647 	    }
2648 
2649 	  if (got == NULL)
2650 	    {
2651 	      struct elf_m68k_bfd2got_entry *bfd2got_entry;
2652 
2653 	      bfd2got_entry
2654 		= elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
2655 					      abfd, FIND_OR_CREATE, info);
2656 	      if (bfd2got_entry == NULL)
2657 		return false;
2658 
2659 	      got = bfd2got_entry->got;
2660 	      BFD_ASSERT (got != NULL);
2661 	    }
2662 
2663 	  {
2664 	    struct elf_m68k_got_entry *got_entry;
2665 
2666 	    /* Add entry to got.  */
2667 	    got_entry = elf_m68k_add_entry_to_got (got, h, abfd,
2668 						   ELF32_R_TYPE (rel->r_info),
2669 						   r_symndx, info);
2670 	    if (got_entry == NULL)
2671 	      return false;
2672 
2673 	    if (got_entry->u.s1.refcount == 1)
2674 	      {
2675 		/* Make sure this symbol is output as a dynamic symbol.  */
2676 		if (h != NULL
2677 		    && h->dynindx == -1
2678 		    && !h->forced_local)
2679 		  {
2680 		    if (!bfd_elf_link_record_dynamic_symbol (info, h))
2681 		      return false;
2682 		  }
2683 	      }
2684 	  }
2685 
2686 	  break;
2687 
2688 	case R_68K_PLT8:
2689 	case R_68K_PLT16:
2690 	case R_68K_PLT32:
2691 	  /* This symbol requires a procedure linkage table entry.  We
2692 	     actually build the entry in adjust_dynamic_symbol,
2693 	     because this might be a case of linking PIC code which is
2694 	     never referenced by a dynamic object, in which case we
2695 	     don't need to generate a procedure linkage table entry
2696 	     after all.  */
2697 
2698 	  /* If this is a local symbol, we resolve it directly without
2699 	     creating a procedure linkage table entry.  */
2700 	  if (h == NULL)
2701 	    continue;
2702 
2703 	  h->needs_plt = 1;
2704 	  h->plt.refcount++;
2705 	  break;
2706 
2707 	case R_68K_PLT8O:
2708 	case R_68K_PLT16O:
2709 	case R_68K_PLT32O:
2710 	  /* This symbol requires a procedure linkage table entry.  */
2711 
2712 	  if (h == NULL)
2713 	    {
2714 	      /* It does not make sense to have this relocation for a
2715 		 local symbol.  FIXME: does it?  How to handle it if
2716 		 it does make sense?  */
2717 	      bfd_set_error (bfd_error_bad_value);
2718 	      return false;
2719 	    }
2720 
2721 	  /* Make sure this symbol is output as a dynamic symbol.  */
2722 	  if (h->dynindx == -1
2723 	      && !h->forced_local)
2724 	    {
2725 	      if (!bfd_elf_link_record_dynamic_symbol (info, h))
2726 		return false;
2727 	    }
2728 
2729 	  h->needs_plt = 1;
2730 	  h->plt.refcount++;
2731 	  break;
2732 
2733 	case R_68K_PC8:
2734 	case R_68K_PC16:
2735 	case R_68K_PC32:
2736 	  /* If we are creating a shared library and this is not a local
2737 	     symbol, we need to copy the reloc into the shared library.
2738 	     However when linking with -Bsymbolic and this is a global
2739 	     symbol which is defined in an object we are including in the
2740 	     link (i.e., DEF_REGULAR is set), then we can resolve the
2741 	     reloc directly.  At this point we have not seen all the input
2742 	     files, so it is possible that DEF_REGULAR is not set now but
2743 	     will be set later (it is never cleared).  We account for that
2744 	     possibility below by storing information in the
2745 	     pcrel_relocs_copied field of the hash table entry.  */
2746 	  if (!(bfd_link_pic (info)
2747 		&& (sec->flags & SEC_ALLOC) != 0
2748 		&& h != NULL
2749 		&& (!SYMBOLIC_BIND (info, h)
2750 		    || h->root.type == bfd_link_hash_defweak
2751 		    || !h->def_regular)))
2752 	    {
2753 	      if (h != NULL)
2754 		{
2755 		  /* Make sure a plt entry is created for this symbol if
2756 		     it turns out to be a function defined by a dynamic
2757 		     object.  */
2758 		  h->plt.refcount++;
2759 		}
2760 	      break;
2761 	    }
2762 	  /* Fall through.  */
2763 	case R_68K_8:
2764 	case R_68K_16:
2765 	case R_68K_32:
2766 	  /* We don't need to handle relocs into sections not going into
2767 	     the "real" output.  */
2768 	  if ((sec->flags & SEC_ALLOC) == 0)
2769 	      break;
2770 
2771 	  if (h != NULL)
2772 	    {
2773 	      /* Make sure a plt entry is created for this symbol if it
2774 		 turns out to be a function defined by a dynamic object.  */
2775 	      h->plt.refcount++;
2776 
2777 	      if (bfd_link_executable (info))
2778 		/* This symbol needs a non-GOT reference.  */
2779 		h->non_got_ref = 1;
2780 	    }
2781 
2782 	  /* If we are creating a shared library, we need to copy the
2783 	     reloc into the shared library.  */
2784 	  if (bfd_link_pic (info)
2785 	      && (h == NULL
2786 		  || !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h)))
2787 	    {
2788 	      /* When creating a shared object, we must copy these
2789 		 reloc types into the output file.  We create a reloc
2790 		 section in dynobj and make room for this reloc.  */
2791 	      if (sreloc == NULL)
2792 		{
2793 		  sreloc = _bfd_elf_make_dynamic_reloc_section
2794 		    (sec, dynobj, 2, abfd, /*rela?*/ true);
2795 
2796 		  if (sreloc == NULL)
2797 		    return false;
2798 		}
2799 
2800 	      if (sec->flags & SEC_READONLY
2801 		  /* Don't set DF_TEXTREL yet for PC relative
2802 		     relocations, they might be discarded later.  */
2803 		  && !(ELF32_R_TYPE (rel->r_info) == R_68K_PC8
2804 		       || ELF32_R_TYPE (rel->r_info) == R_68K_PC16
2805 		       || ELF32_R_TYPE (rel->r_info) == R_68K_PC32))
2806 		{
2807 		  if (bfd_link_textrel_check(info))
2808 		    (*_bfd_error_handler)
2809 		      (_("warning: dynamic relocation to `%s' in readonly section `%s'"),
2810 		      h->root.root.string, sec->name);
2811 		  info->flags |= DF_TEXTREL;
2812 		}
2813 
2814 	      sreloc->size += sizeof (Elf32_External_Rela);
2815 
2816 	      /* We count the number of PC relative relocations we have
2817 		 entered for this symbol, so that we can discard them
2818 		 again if, in the -Bsymbolic case, the symbol is later
2819 		 defined by a regular object, or, in the normal shared
2820 		 case, the symbol is forced to be local.  Note that this
2821 		 function is only called if we are using an m68kelf linker
2822 		 hash table, which means that h is really a pointer to an
2823 		 elf_m68k_link_hash_entry.  */
2824 	      if (ELF32_R_TYPE (rel->r_info) == R_68K_PC8
2825 		  || ELF32_R_TYPE (rel->r_info) == R_68K_PC16
2826 		  || ELF32_R_TYPE (rel->r_info) == R_68K_PC32)
2827 		{
2828 		  struct elf_m68k_pcrel_relocs_copied *p;
2829 		  struct elf_m68k_pcrel_relocs_copied **head;
2830 
2831 		  if (h != NULL)
2832 		    {
2833 		      struct elf_m68k_link_hash_entry *eh
2834 			= elf_m68k_hash_entry (h);
2835 		      head = &eh->pcrel_relocs_copied;
2836 		    }
2837 		  else
2838 		    {
2839 		      asection *s;
2840 		      void *vpp;
2841 		      Elf_Internal_Sym *isym;
2842 
2843 		      isym = bfd_sym_from_r_symndx (&elf_m68k_hash_table (info)->root.sym_cache,
2844 						    abfd, r_symndx);
2845 		      if (isym == NULL)
2846 			return false;
2847 
2848 		      s = bfd_section_from_elf_index (abfd, isym->st_shndx);
2849 		      if (s == NULL)
2850 			s = sec;
2851 
2852 		      vpp = &elf_section_data (s)->local_dynrel;
2853 		      head = (struct elf_m68k_pcrel_relocs_copied **) vpp;
2854 		    }
2855 
2856 		  for (p = *head; p != NULL; p = p->next)
2857 		    if (p->section == sreloc)
2858 		      break;
2859 
2860 		  if (p == NULL)
2861 		    {
2862 		      p = ((struct elf_m68k_pcrel_relocs_copied *)
2863 			   bfd_alloc (dynobj, (bfd_size_type) sizeof *p));
2864 		      if (p == NULL)
2865 			return false;
2866 		      p->next = *head;
2867 		      *head = p;
2868 		      p->section = sreloc;
2869 		      p->count = 0;
2870 		    }
2871 
2872 		  ++p->count;
2873 		}
2874 	    }
2875 
2876 	  break;
2877 
2878 	  /* This relocation describes the C++ object vtable hierarchy.
2879 	     Reconstruct it for later use during GC.  */
2880 	case R_68K_GNU_VTINHERIT:
2881 	  if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
2882 	    return false;
2883 	  break;
2884 
2885 	  /* This relocation describes which C++ vtable entries are actually
2886 	     used.  Record for later use during GC.  */
2887 	case R_68K_GNU_VTENTRY:
2888 	  if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
2889 	    return false;
2890 	  break;
2891 
2892 	default:
2893 	  break;
2894 	}
2895     }
2896 
2897   return true;
2898 }
2899 
2900 /* Return the section that should be marked against GC for a given
2901    relocation.  */
2902 
2903 static asection *
elf_m68k_gc_mark_hook(asection * sec,struct bfd_link_info * info,Elf_Internal_Rela * rel,struct elf_link_hash_entry * h,Elf_Internal_Sym * sym)2904 elf_m68k_gc_mark_hook (asection *sec,
2905 		       struct bfd_link_info *info,
2906 		       Elf_Internal_Rela *rel,
2907 		       struct elf_link_hash_entry *h,
2908 		       Elf_Internal_Sym *sym)
2909 {
2910   if (h != NULL)
2911     switch (ELF32_R_TYPE (rel->r_info))
2912       {
2913       case R_68K_GNU_VTINHERIT:
2914       case R_68K_GNU_VTENTRY:
2915 	return NULL;
2916       }
2917 
2918   return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
2919 }
2920 
2921 /* Return the type of PLT associated with OUTPUT_BFD.  */
2922 
2923 static const struct elf_m68k_plt_info *
elf_m68k_get_plt_info(bfd * output_bfd)2924 elf_m68k_get_plt_info (bfd *output_bfd)
2925 {
2926   unsigned int features;
2927 
2928   features = bfd_m68k_mach_to_features (bfd_get_mach (output_bfd));
2929   if (features & cpu32)
2930     return &elf_cpu32_plt_info;
2931   if (features & mcfisa_b)
2932     return &elf_isab_plt_info;
2933   if (features & mcfisa_c)
2934     return &elf_isac_plt_info;
2935   return &elf_m68k_plt_info;
2936 }
2937 
2938 /* This function is called after all the input files have been read,
2939    and the input sections have been assigned to output sections.
2940    It's a convenient place to determine the PLT style.  */
2941 
2942 static bool
elf_m68k_always_size_sections(bfd * output_bfd,struct bfd_link_info * info)2943 elf_m68k_always_size_sections (bfd *output_bfd, struct bfd_link_info *info)
2944 {
2945   /* Bind input BFDs to GOTs and calculate sizes of .got and .rela.got
2946      sections.  */
2947   if (!elf_m68k_partition_multi_got (info))
2948     return false;
2949 
2950   elf_m68k_hash_table (info)->plt_info = elf_m68k_get_plt_info (output_bfd);
2951   return true;
2952 }
2953 
2954 /* Adjust a symbol defined by a dynamic object and referenced by a
2955    regular object.  The current definition is in some section of the
2956    dynamic object, but we're not including those sections.  We have to
2957    change the definition to something the rest of the link can
2958    understand.  */
2959 
2960 static bool
elf_m68k_adjust_dynamic_symbol(struct bfd_link_info * info,struct elf_link_hash_entry * h)2961 elf_m68k_adjust_dynamic_symbol (struct bfd_link_info *info,
2962 				struct elf_link_hash_entry *h)
2963 {
2964   struct elf_m68k_link_hash_table *htab;
2965   bfd *dynobj;
2966   asection *s;
2967 
2968   htab = elf_m68k_hash_table (info);
2969   dynobj = htab->root.dynobj;
2970 
2971   /* Make sure we know what is going on here.  */
2972   BFD_ASSERT (dynobj != NULL
2973 	      && (h->needs_plt
2974 		  || h->type == STT_GNU_IFUNC
2975 		  || h->is_weakalias
2976 		  || (h->def_dynamic
2977 		      && h->ref_regular
2978 		      && !h->def_regular)));
2979 
2980   /* If this is a function, put it in the procedure linkage table.  We
2981      will fill in the contents of the procedure linkage table later,
2982      when we know the address of the .got section.  */
2983   if ((h->type == STT_FUNC || h->type == STT_GNU_IFUNC)
2984       || h->needs_plt)
2985     {
2986       if ((h->plt.refcount <= 0
2987 	   || SYMBOL_CALLS_LOCAL (info, h)
2988 	   || ((ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2989 		|| UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
2990 	       && h->root.type == bfd_link_hash_undefweak))
2991 	  /* We must always create the plt entry if it was referenced
2992 	     by a PLTxxO relocation.  In this case we already recorded
2993 	     it as a dynamic symbol.  */
2994 	  && h->dynindx == -1)
2995 	{
2996 	  /* This case can occur if we saw a PLTxx reloc in an input
2997 	     file, but the symbol was never referred to by a dynamic
2998 	     object, or if all references were garbage collected.  In
2999 	     such a case, we don't actually need to build a procedure
3000 	     linkage table, and we can just do a PCxx reloc instead.  */
3001 	  h->plt.offset = (bfd_vma) -1;
3002 	  h->needs_plt = 0;
3003 	  return true;
3004 	}
3005 
3006       /* Make sure this symbol is output as a dynamic symbol.  */
3007       if (h->dynindx == -1
3008 	  && !h->forced_local)
3009 	{
3010 	  if (! bfd_elf_link_record_dynamic_symbol (info, h))
3011 	    return false;
3012 	}
3013 
3014       s = htab->root.splt;
3015       BFD_ASSERT (s != NULL);
3016 
3017       /* If this is the first .plt entry, make room for the special
3018 	 first entry.  */
3019       if (s->size == 0)
3020 	s->size = htab->plt_info->size;
3021 
3022       /* If this symbol is not defined in a regular file, and we are
3023 	 not generating a shared library, then set the symbol to this
3024 	 location in the .plt.  This is required to make function
3025 	 pointers compare as equal between the normal executable and
3026 	 the shared library.  */
3027       if (!bfd_link_pic (info)
3028 	  && !h->def_regular)
3029 	{
3030 	  h->root.u.def.section = s;
3031 	  h->root.u.def.value = s->size;
3032 	}
3033 
3034       h->plt.offset = s->size;
3035 
3036       /* Make room for this entry.  */
3037       s->size += htab->plt_info->size;
3038 
3039       /* We also need to make an entry in the .got.plt section, which
3040 	 will be placed in the .got section by the linker script.  */
3041       s = htab->root.sgotplt;
3042       BFD_ASSERT (s != NULL);
3043       s->size += 4;
3044 
3045       /* We also need to make an entry in the .rela.plt section.  */
3046       s = htab->root.srelplt;
3047       BFD_ASSERT (s != NULL);
3048       s->size += sizeof (Elf32_External_Rela);
3049 
3050       return true;
3051     }
3052 
3053   /* Reinitialize the plt offset now that it is not used as a reference
3054      count any more.  */
3055   h->plt.offset = (bfd_vma) -1;
3056 
3057   /* If this is a weak symbol, and there is a real definition, the
3058      processor independent code will have arranged for us to see the
3059      real definition first, and we can just use the same value.  */
3060   if (h->is_weakalias)
3061     {
3062       struct elf_link_hash_entry *def = weakdef (h);
3063       BFD_ASSERT (def->root.type == bfd_link_hash_defined);
3064       h->root.u.def.section = def->root.u.def.section;
3065       h->root.u.def.value = def->root.u.def.value;
3066       return true;
3067     }
3068 
3069   /* This is a reference to a symbol defined by a dynamic object which
3070      is not a function.  */
3071 
3072   /* If we are creating a shared library, we must presume that the
3073      only references to the symbol are via the global offset table.
3074      For such cases we need not do anything here; the relocations will
3075      be handled correctly by relocate_section.  */
3076   if (bfd_link_pic (info))
3077     return true;
3078 
3079   /* If there are no references to this symbol that do not use the
3080      GOT, we don't need to generate a copy reloc.  */
3081   if (!h->non_got_ref)
3082     return true;
3083 
3084   /* We must allocate the symbol in our .dynbss section, which will
3085      become part of the .bss section of the executable.  There will be
3086      an entry for this symbol in the .dynsym section.  The dynamic
3087      object will contain position independent code, so all references
3088      from the dynamic object to this symbol will go through the global
3089      offset table.  The dynamic linker will use the .dynsym entry to
3090      determine the address it must put in the global offset table, so
3091      both the dynamic object and the regular object will refer to the
3092      same memory location for the variable.  */
3093 
3094   s = bfd_get_linker_section (dynobj, ".dynbss");
3095   BFD_ASSERT (s != NULL);
3096 
3097   /* We must generate a R_68K_COPY reloc to tell the dynamic linker to
3098      copy the initial value out of the dynamic object and into the
3099      runtime process image.  We need to remember the offset into the
3100      .rela.bss section we are going to use.  */
3101   if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
3102     {
3103       asection *srel;
3104 
3105       srel = bfd_get_linker_section (dynobj, ".rela.bss");
3106       BFD_ASSERT (srel != NULL);
3107       srel->size += sizeof (Elf32_External_Rela);
3108       h->needs_copy = 1;
3109     }
3110 
3111   return _bfd_elf_adjust_dynamic_copy (info, h, s);
3112 }
3113 
3114 /* Set the sizes of the dynamic sections.  */
3115 
3116 static bool
elf_m68k_size_dynamic_sections(bfd * output_bfd ATTRIBUTE_UNUSED,struct bfd_link_info * info)3117 elf_m68k_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
3118 				struct bfd_link_info *info)
3119 {
3120   bfd *dynobj;
3121   asection *s;
3122   bool relocs;
3123 
3124   dynobj = elf_hash_table (info)->dynobj;
3125   BFD_ASSERT (dynobj != NULL);
3126 
3127   if (elf_hash_table (info)->dynamic_sections_created)
3128     {
3129       /* Set the contents of the .interp section to the interpreter.  */
3130       if (bfd_link_executable (info) && !info->nointerp)
3131 	{
3132 	  s = bfd_get_linker_section (dynobj, ".interp");
3133 	  BFD_ASSERT (s != NULL);
3134 	  s->size = sizeof ELF_DYNAMIC_INTERPRETER;
3135 	  s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
3136 	}
3137     }
3138   else
3139     {
3140       /* We may have created entries in the .rela.got section.
3141 	 However, if we are not creating the dynamic sections, we will
3142 	 not actually use these entries.  Reset the size of .rela.got,
3143 	 which will cause it to get stripped from the output file
3144 	 below.  */
3145       s = elf_hash_table (info)->srelgot;
3146       if (s != NULL)
3147 	s->size = 0;
3148     }
3149 
3150   /* If this is a -Bsymbolic shared link, then we need to discard all
3151      PC relative relocs against symbols defined in a regular object.
3152      For the normal shared case we discard the PC relative relocs
3153      against symbols that have become local due to visibility changes.
3154      We allocated space for them in the check_relocs routine, but we
3155      will not fill them in in the relocate_section routine.  */
3156   if (bfd_link_pic (info))
3157     elf_link_hash_traverse (elf_hash_table (info),
3158 			    elf_m68k_discard_copies,
3159 			    info);
3160 
3161   /* The check_relocs and adjust_dynamic_symbol entry points have
3162      determined the sizes of the various dynamic sections.  Allocate
3163      memory for them.  */
3164   relocs = false;
3165   for (s = dynobj->sections; s != NULL; s = s->next)
3166     {
3167       const char *name;
3168 
3169       if ((s->flags & SEC_LINKER_CREATED) == 0)
3170 	continue;
3171 
3172       /* It's OK to base decisions on the section name, because none
3173 	 of the dynobj section names depend upon the input files.  */
3174       name = bfd_section_name (s);
3175 
3176       if (strcmp (name, ".plt") == 0)
3177 	{
3178 	  /* Remember whether there is a PLT.  */
3179 	  ;
3180 	}
3181       else if (startswith (name, ".rela"))
3182 	{
3183 	  if (s->size != 0)
3184 	    {
3185 	      relocs = true;
3186 
3187 	      /* We use the reloc_count field as a counter if we need
3188 		 to copy relocs into the output file.  */
3189 	      s->reloc_count = 0;
3190 	    }
3191 	}
3192       else if (! startswith (name, ".got")
3193 	       && strcmp (name, ".dynbss") != 0)
3194 	{
3195 	  /* It's not one of our sections, so don't allocate space.  */
3196 	  continue;
3197 	}
3198 
3199       if (s->size == 0)
3200 	{
3201 	  /* If we don't need this section, strip it from the
3202 	     output file.  This is mostly to handle .rela.bss and
3203 	     .rela.plt.  We must create both sections in
3204 	     create_dynamic_sections, because they must be created
3205 	     before the linker maps input sections to output
3206 	     sections.  The linker does that before
3207 	     adjust_dynamic_symbol is called, and it is that
3208 	     function which decides whether anything needs to go
3209 	     into these sections.  */
3210 	  s->flags |= SEC_EXCLUDE;
3211 	  continue;
3212 	}
3213 
3214       if ((s->flags & SEC_HAS_CONTENTS) == 0)
3215 	continue;
3216 
3217       /* Allocate memory for the section contents.  */
3218       /* FIXME: This should be a call to bfd_alloc not bfd_zalloc.
3219 	 Unused entries should be reclaimed before the section's contents
3220 	 are written out, but at the moment this does not happen.  Thus in
3221 	 order to prevent writing out garbage, we initialise the section's
3222 	 contents to zero.  */
3223       s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
3224       if (s->contents == NULL)
3225 	return false;
3226     }
3227 
3228   return _bfd_elf_add_dynamic_tags (output_bfd, info, relocs);
3229 }
3230 
3231 /* This function is called via elf_link_hash_traverse if we are
3232    creating a shared object.  In the -Bsymbolic case it discards the
3233    space allocated to copy PC relative relocs against symbols which
3234    are defined in regular objects.  For the normal shared case, it
3235    discards space for pc-relative relocs that have become local due to
3236    symbol visibility changes.  We allocated space for them in the
3237    check_relocs routine, but we won't fill them in in the
3238    relocate_section routine.
3239 
3240    We also check whether any of the remaining relocations apply
3241    against a readonly section, and set the DF_TEXTREL flag in this
3242    case.  */
3243 
3244 static bool
elf_m68k_discard_copies(struct elf_link_hash_entry * h,void * inf)3245 elf_m68k_discard_copies (struct elf_link_hash_entry *h,
3246 			 void * inf)
3247 {
3248   struct bfd_link_info *info = (struct bfd_link_info *) inf;
3249   struct elf_m68k_pcrel_relocs_copied *s;
3250 
3251   if (!SYMBOL_CALLS_LOCAL (info, h))
3252     {
3253       if ((info->flags & DF_TEXTREL) == 0)
3254 	{
3255 	  /* Look for relocations against read-only sections.  */
3256 	  for (s = elf_m68k_hash_entry (h)->pcrel_relocs_copied;
3257 	       s != NULL;
3258 	       s = s->next)
3259 	    if ((s->section->flags & SEC_READONLY) != 0)
3260 	      {
3261 		if (bfd_link_textrel_check(info))
3262 		  (*_bfd_error_handler)
3263 		    (_("warning: dynamic relocation to `%s' in readonly section `%s'"),
3264 		    h->root.root.string, s->section->name);
3265 		info->flags |= DF_TEXTREL;
3266 		break;
3267 	      }
3268 	}
3269 
3270       /* Make sure undefined weak symbols are output as a dynamic symbol
3271 	 in PIEs.  */
3272       if (h->non_got_ref
3273 	  && h->root.type == bfd_link_hash_undefweak
3274 	  && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3275 	  && h->dynindx == -1
3276 	  && !h->forced_local)
3277 	{
3278 	  if (! bfd_elf_link_record_dynamic_symbol (info, h))
3279 	    return false;
3280 	}
3281 
3282       return true;
3283     }
3284 
3285   for (s = elf_m68k_hash_entry (h)->pcrel_relocs_copied;
3286        s != NULL;
3287        s = s->next)
3288     s->section->size -= s->count * sizeof (Elf32_External_Rela);
3289 
3290   return true;
3291 }
3292 
3293 
3294 /* Install relocation RELA.  */
3295 
3296 static void
elf_m68k_install_rela(bfd * output_bfd,asection * srela,Elf_Internal_Rela * rela)3297 elf_m68k_install_rela (bfd *output_bfd,
3298 		       asection *srela,
3299 		       Elf_Internal_Rela *rela)
3300 {
3301   bfd_byte *loc;
3302 
3303   loc = srela->contents;
3304   loc += srela->reloc_count++ * sizeof (Elf32_External_Rela);
3305   bfd_elf32_swap_reloca_out (output_bfd, rela, loc);
3306 }
3307 
3308 /* Find the base offsets for thread-local storage in this object,
3309    for GD/LD and IE/LE respectively.  */
3310 
3311 #define DTP_OFFSET 0x8000
3312 #define TP_OFFSET  0x7000
3313 
3314 static bfd_vma
dtpoff_base(struct bfd_link_info * info)3315 dtpoff_base (struct bfd_link_info *info)
3316 {
3317   /* If tls_sec is NULL, we should have signalled an error already.  */
3318   if (elf_hash_table (info)->tls_sec == NULL)
3319     return 0;
3320   return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
3321 }
3322 
3323 static bfd_vma
tpoff_base(struct bfd_link_info * info)3324 tpoff_base (struct bfd_link_info *info)
3325 {
3326   /* If tls_sec is NULL, we should have signalled an error already.  */
3327   if (elf_hash_table (info)->tls_sec == NULL)
3328     return 0;
3329   return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
3330 }
3331 
3332 /* Output necessary relocation to handle a symbol during static link.
3333    This function is called from elf_m68k_relocate_section.  */
3334 
3335 static void
elf_m68k_init_got_entry_static(struct bfd_link_info * info,bfd * output_bfd,enum elf_m68k_reloc_type r_type,asection * sgot,bfd_vma got_entry_offset,bfd_vma relocation)3336 elf_m68k_init_got_entry_static (struct bfd_link_info *info,
3337 				bfd *output_bfd,
3338 				enum elf_m68k_reloc_type r_type,
3339 				asection *sgot,
3340 				bfd_vma got_entry_offset,
3341 				bfd_vma relocation)
3342 {
3343   switch (elf_m68k_reloc_got_type (r_type))
3344     {
3345     case R_68K_GOT32O:
3346       bfd_put_32 (output_bfd, relocation, sgot->contents + got_entry_offset);
3347       break;
3348 
3349     case R_68K_TLS_GD32:
3350       /* We know the offset within the module,
3351 	 put it into the second GOT slot.  */
3352       bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
3353 		  sgot->contents + got_entry_offset + 4);
3354       /* FALLTHRU */
3355 
3356     case R_68K_TLS_LDM32:
3357       /* Mark it as belonging to module 1, the executable.  */
3358       bfd_put_32 (output_bfd, 1, sgot->contents + got_entry_offset);
3359       break;
3360 
3361     case R_68K_TLS_IE32:
3362       bfd_put_32 (output_bfd, relocation - tpoff_base (info),
3363 		  sgot->contents + got_entry_offset);
3364       break;
3365 
3366     default:
3367       BFD_ASSERT (false);
3368     }
3369 }
3370 
3371 /* Output necessary relocation to handle a local symbol
3372    during dynamic link.
3373    This function is called either from elf_m68k_relocate_section
3374    or from elf_m68k_finish_dynamic_symbol.  */
3375 
3376 static void
elf_m68k_init_got_entry_local_shared(struct bfd_link_info * info,bfd * output_bfd,enum elf_m68k_reloc_type r_type,asection * sgot,bfd_vma got_entry_offset,bfd_vma relocation,asection * srela)3377 elf_m68k_init_got_entry_local_shared (struct bfd_link_info *info,
3378 				      bfd *output_bfd,
3379 				      enum elf_m68k_reloc_type r_type,
3380 				      asection *sgot,
3381 				      bfd_vma got_entry_offset,
3382 				      bfd_vma relocation,
3383 				      asection *srela)
3384 {
3385   Elf_Internal_Rela outrel;
3386 
3387   switch (elf_m68k_reloc_got_type (r_type))
3388     {
3389     case R_68K_GOT32O:
3390       /* Emit RELATIVE relocation to initialize GOT slot
3391 	 at run-time.  */
3392       outrel.r_info = ELF32_R_INFO (0, R_68K_RELATIVE);
3393       outrel.r_addend = relocation;
3394       break;
3395 
3396     case R_68K_TLS_GD32:
3397       /* We know the offset within the module,
3398 	 put it into the second GOT slot.  */
3399       bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
3400 		  sgot->contents + got_entry_offset + 4);
3401       /* FALLTHRU */
3402 
3403     case R_68K_TLS_LDM32:
3404       /* We don't know the module number,
3405 	 create a relocation for it.  */
3406       outrel.r_info = ELF32_R_INFO (0, R_68K_TLS_DTPMOD32);
3407       outrel.r_addend = 0;
3408       break;
3409 
3410     case R_68K_TLS_IE32:
3411       /* Emit TPREL relocation to initialize GOT slot
3412 	 at run-time.  */
3413       outrel.r_info = ELF32_R_INFO (0, R_68K_TLS_TPREL32);
3414       outrel.r_addend = relocation - elf_hash_table (info)->tls_sec->vma;
3415       break;
3416 
3417     default:
3418       BFD_ASSERT (false);
3419     }
3420 
3421   /* Offset of the GOT entry.  */
3422   outrel.r_offset = (sgot->output_section->vma
3423 		     + sgot->output_offset
3424 		     + got_entry_offset);
3425 
3426   /* Install one of the above relocations.  */
3427   elf_m68k_install_rela (output_bfd, srela, &outrel);
3428 
3429   bfd_put_32 (output_bfd, outrel.r_addend, sgot->contents + got_entry_offset);
3430 }
3431 
3432 /* Relocate an M68K ELF section.  */
3433 
3434 static int
elf_m68k_relocate_section(bfd * output_bfd,struct bfd_link_info * info,bfd * input_bfd,asection * input_section,bfd_byte * contents,Elf_Internal_Rela * relocs,Elf_Internal_Sym * local_syms,asection ** local_sections)3435 elf_m68k_relocate_section (bfd *output_bfd,
3436 			   struct bfd_link_info *info,
3437 			   bfd *input_bfd,
3438 			   asection *input_section,
3439 			   bfd_byte *contents,
3440 			   Elf_Internal_Rela *relocs,
3441 			   Elf_Internal_Sym *local_syms,
3442 			   asection **local_sections)
3443 {
3444   Elf_Internal_Shdr *symtab_hdr;
3445   struct elf_link_hash_entry **sym_hashes;
3446   asection *sgot;
3447   asection *splt;
3448   asection *sreloc;
3449   asection *srela;
3450   struct elf_m68k_got *got;
3451   Elf_Internal_Rela *rel;
3452   Elf_Internal_Rela *relend;
3453 
3454   symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3455   sym_hashes = elf_sym_hashes (input_bfd);
3456 
3457   sgot = NULL;
3458   splt = NULL;
3459   sreloc = NULL;
3460   srela = NULL;
3461 
3462   got = NULL;
3463 
3464   rel = relocs;
3465   relend = relocs + input_section->reloc_count;
3466   for (; rel < relend; rel++)
3467     {
3468       int r_type;
3469       reloc_howto_type *howto;
3470       unsigned long r_symndx;
3471       struct elf_link_hash_entry *h;
3472       Elf_Internal_Sym *sym;
3473       asection *sec;
3474       bfd_vma relocation;
3475       bool unresolved_reloc;
3476       bfd_reloc_status_type r;
3477       bool resolved_to_zero;
3478 
3479       r_type = ELF32_R_TYPE (rel->r_info);
3480       if (r_type < 0 || r_type >= (int) R_68K_max)
3481 	{
3482 	  bfd_set_error (bfd_error_bad_value);
3483 	  return false;
3484 	}
3485       howto = howto_table + r_type;
3486 
3487       r_symndx = ELF32_R_SYM (rel->r_info);
3488 
3489       h = NULL;
3490       sym = NULL;
3491       sec = NULL;
3492       unresolved_reloc = false;
3493 
3494       if (r_symndx < symtab_hdr->sh_info)
3495 	{
3496 	  sym = local_syms + r_symndx;
3497 	  sec = local_sections[r_symndx];
3498 	  relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
3499 	}
3500       else
3501 	{
3502 	  bool warned, ignored;
3503 
3504 	  RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
3505 				   r_symndx, symtab_hdr, sym_hashes,
3506 				   h, sec, relocation,
3507 				   unresolved_reloc, warned, ignored);
3508 	}
3509 
3510       if (sec != NULL && discarded_section (sec))
3511 	RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3512 					 rel, 1, relend, howto, 0, contents);
3513 
3514       if (bfd_link_relocatable (info))
3515 	continue;
3516 
3517       resolved_to_zero = (h != NULL
3518 			  && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h));
3519 
3520       switch (r_type)
3521 	{
3522 	case R_68K_GOT8:
3523 	case R_68K_GOT16:
3524 	case R_68K_GOT32:
3525 	  /* Relocation is to the address of the entry for this symbol
3526 	     in the global offset table.  */
3527 	  if (h != NULL
3528 	      && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
3529 	    {
3530 	      if (elf_m68k_hash_table (info)->local_gp_p)
3531 		{
3532 		  bfd_vma sgot_output_offset;
3533 		  bfd_vma got_offset;
3534 
3535 		  sgot = elf_hash_table (info)->sgot;
3536 
3537 		  if (sgot != NULL)
3538 		    sgot_output_offset = sgot->output_offset;
3539 		  else
3540 		    /* In this case we have a reference to
3541 		       _GLOBAL_OFFSET_TABLE_, but the GOT itself is
3542 		       empty.
3543 		       ??? Issue a warning?  */
3544 		    sgot_output_offset = 0;
3545 
3546 		  if (got == NULL)
3547 		    {
3548 		      struct elf_m68k_bfd2got_entry *bfd2got_entry;
3549 
3550 		      bfd2got_entry
3551 			= elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
3552 						      input_bfd, SEARCH, NULL);
3553 
3554 		      if (bfd2got_entry != NULL)
3555 			{
3556 			  got = bfd2got_entry->got;
3557 			  BFD_ASSERT (got != NULL);
3558 
3559 			  got_offset = got->offset;
3560 			}
3561 		      else
3562 			/* In this case we have a reference to
3563 			   _GLOBAL_OFFSET_TABLE_, but no other references
3564 			   accessing any GOT entries.
3565 			   ??? Issue a warning?  */
3566 			got_offset = 0;
3567 		    }
3568 		  else
3569 		    got_offset = got->offset;
3570 
3571 		  /* Adjust GOT pointer to point to the GOT
3572 		     assigned to input_bfd.  */
3573 		  rel->r_addend += sgot_output_offset + got_offset;
3574 		}
3575 	      else
3576 		BFD_ASSERT (got == NULL || got->offset == 0);
3577 
3578 	      break;
3579 	    }
3580 	  /* Fall through.  */
3581 	case R_68K_GOT8O:
3582 	case R_68K_GOT16O:
3583 	case R_68K_GOT32O:
3584 
3585 	case R_68K_TLS_LDM32:
3586 	case R_68K_TLS_LDM16:
3587 	case R_68K_TLS_LDM8:
3588 
3589 	case R_68K_TLS_GD8:
3590 	case R_68K_TLS_GD16:
3591 	case R_68K_TLS_GD32:
3592 
3593 	case R_68K_TLS_IE8:
3594 	case R_68K_TLS_IE16:
3595 	case R_68K_TLS_IE32:
3596 
3597 	  /* Relocation is the offset of the entry for this symbol in
3598 	     the global offset table.  */
3599 
3600 	  {
3601 	    struct elf_m68k_got_entry_key key_;
3602 	    bfd_vma *off_ptr;
3603 	    bfd_vma off;
3604 
3605 	    sgot = elf_hash_table (info)->sgot;
3606 	    BFD_ASSERT (sgot != NULL);
3607 
3608 	    if (got == NULL)
3609 	      got = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
3610 						input_bfd, MUST_FIND,
3611 						NULL)->got;
3612 
3613 	    /* Get GOT offset for this symbol.  */
3614 	    elf_m68k_init_got_entry_key (&key_, h, input_bfd, r_symndx,
3615 					 r_type);
3616 	    off_ptr = &elf_m68k_get_got_entry (got, &key_, MUST_FIND,
3617 					       NULL)->u.s2.offset;
3618 	    off = *off_ptr;
3619 
3620 	    /* The offset must always be a multiple of 4.  We use
3621 	       the least significant bit to record whether we have
3622 	       already generated the necessary reloc.  */
3623 	    if ((off & 1) != 0)
3624 	      off &= ~1;
3625 	    else
3626 	      {
3627 		if (h != NULL
3628 		    /* @TLSLDM relocations are bounded to the module, in
3629 		       which the symbol is defined -- not to the symbol
3630 		       itself.  */
3631 		    && elf_m68k_reloc_got_type (r_type) != R_68K_TLS_LDM32)
3632 		  {
3633 		    bool dyn;
3634 
3635 		    dyn = elf_hash_table (info)->dynamic_sections_created;
3636 		    if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
3637 							  bfd_link_pic (info),
3638 							  h)
3639 			|| (bfd_link_pic (info)
3640 			    && SYMBOL_REFERENCES_LOCAL (info, h))
3641 			|| ((ELF_ST_VISIBILITY (h->other)
3642 			     || resolved_to_zero)
3643 			    && h->root.type == bfd_link_hash_undefweak))
3644 		      {
3645 			/* This is actually a static link, or it is a
3646 			   -Bsymbolic link and the symbol is defined
3647 			   locally, or the symbol was forced to be local
3648 			   because of a version file.  We must initialize
3649 			   this entry in the global offset table.  Since
3650 			   the offset must always be a multiple of 4, we
3651 			   use the least significant bit to record whether
3652 			   we have initialized it already.
3653 
3654 			   When doing a dynamic link, we create a .rela.got
3655 			   relocation entry to initialize the value.  This
3656 			   is done in the finish_dynamic_symbol routine.  */
3657 
3658 			elf_m68k_init_got_entry_static (info,
3659 							output_bfd,
3660 							r_type,
3661 							sgot,
3662 							off,
3663 							relocation);
3664 
3665 			*off_ptr |= 1;
3666 		      }
3667 		    else
3668 		      unresolved_reloc = false;
3669 		  }
3670 		else if (bfd_link_pic (info)) /* && h == NULL */
3671 		  /* Process local symbol during dynamic link.  */
3672 		  {
3673 		    srela = elf_hash_table (info)->srelgot;
3674 		    BFD_ASSERT (srela != NULL);
3675 
3676 		    elf_m68k_init_got_entry_local_shared (info,
3677 							  output_bfd,
3678 							  r_type,
3679 							  sgot,
3680 							  off,
3681 							  relocation,
3682 							  srela);
3683 
3684 		    *off_ptr |= 1;
3685 		  }
3686 		else /* h == NULL && !bfd_link_pic (info) */
3687 		  {
3688 		    elf_m68k_init_got_entry_static (info,
3689 						    output_bfd,
3690 						    r_type,
3691 						    sgot,
3692 						    off,
3693 						    relocation);
3694 
3695 		    *off_ptr |= 1;
3696 		  }
3697 	      }
3698 
3699 	    /* We don't use elf_m68k_reloc_got_type in the condition below
3700 	       because this is the only place where difference between
3701 	       R_68K_GOTx and R_68K_GOTxO relocations matters.  */
3702 	    if (r_type == R_68K_GOT32O
3703 		|| r_type == R_68K_GOT16O
3704 		|| r_type == R_68K_GOT8O
3705 		|| elf_m68k_reloc_got_type (r_type) == R_68K_TLS_GD32
3706 		|| elf_m68k_reloc_got_type (r_type) == R_68K_TLS_LDM32
3707 		|| elf_m68k_reloc_got_type (r_type) == R_68K_TLS_IE32)
3708 	      {
3709 		/* GOT pointer is adjusted to point to the start/middle
3710 		   of local GOT.  Adjust the offset accordingly.  */
3711 		BFD_ASSERT (elf_m68k_hash_table (info)->use_neg_got_offsets_p
3712 			    || off >= got->offset);
3713 
3714 		if (elf_m68k_hash_table (info)->local_gp_p)
3715 		  relocation = off - got->offset;
3716 		else
3717 		  {
3718 		    BFD_ASSERT (got->offset == 0);
3719 		    relocation = sgot->output_offset + off;
3720 		  }
3721 
3722 		/* This relocation does not use the addend.  */
3723 		rel->r_addend = 0;
3724 	      }
3725 	    else
3726 	      relocation = (sgot->output_section->vma + sgot->output_offset
3727 			    + off);
3728 	  }
3729 	  break;
3730 
3731 	case R_68K_TLS_LDO32:
3732 	case R_68K_TLS_LDO16:
3733 	case R_68K_TLS_LDO8:
3734 	  relocation -= dtpoff_base (info);
3735 	  break;
3736 
3737 	case R_68K_TLS_LE32:
3738 	case R_68K_TLS_LE16:
3739 	case R_68K_TLS_LE8:
3740 	  if (bfd_link_dll (info))
3741 	    {
3742 	      _bfd_error_handler
3743 		/* xgettext:c-format */
3744 		(_("%pB(%pA+%#" PRIx64 "): "
3745 		   "%s relocation not permitted in shared object"),
3746 		 input_bfd, input_section, (uint64_t) rel->r_offset,
3747 		 howto->name);
3748 
3749 	      return false;
3750 	    }
3751 	  else
3752 	    relocation -= tpoff_base (info);
3753 
3754 	  break;
3755 
3756 	case R_68K_PLT8:
3757 	case R_68K_PLT16:
3758 	case R_68K_PLT32:
3759 	  /* Relocation is to the entry for this symbol in the
3760 	     procedure linkage table.  */
3761 
3762 	  /* Resolve a PLTxx reloc against a local symbol directly,
3763 	     without using the procedure linkage table.  */
3764 	  if (h == NULL)
3765 	    break;
3766 
3767 	  if (h->plt.offset == (bfd_vma) -1
3768 	      || !elf_hash_table (info)->dynamic_sections_created)
3769 	    {
3770 	      /* We didn't make a PLT entry for this symbol.  This
3771 		 happens when statically linking PIC code, or when
3772 		 using -Bsymbolic.  */
3773 	      break;
3774 	    }
3775 
3776 	  splt = elf_hash_table (info)->splt;
3777 	  BFD_ASSERT (splt != NULL);
3778 
3779 	  relocation = (splt->output_section->vma
3780 			+ splt->output_offset
3781 			+ h->plt.offset);
3782 	  unresolved_reloc = false;
3783 	  break;
3784 
3785 	case R_68K_PLT8O:
3786 	case R_68K_PLT16O:
3787 	case R_68K_PLT32O:
3788 	  /* Relocation is the offset of the entry for this symbol in
3789 	     the procedure linkage table.  */
3790 	  BFD_ASSERT (h != NULL && h->plt.offset != (bfd_vma) -1);
3791 
3792 	  splt = elf_hash_table (info)->splt;
3793 	  BFD_ASSERT (splt != NULL);
3794 
3795 	  relocation = h->plt.offset;
3796 	  unresolved_reloc = false;
3797 
3798 	  /* This relocation does not use the addend.  */
3799 	  rel->r_addend = 0;
3800 
3801 	  break;
3802 
3803 	case R_68K_8:
3804 	case R_68K_16:
3805 	case R_68K_32:
3806 	case R_68K_PC8:
3807 	case R_68K_PC16:
3808 	case R_68K_PC32:
3809 	  if (bfd_link_pic (info)
3810 	      && r_symndx != STN_UNDEF
3811 	      && (input_section->flags & SEC_ALLOC) != 0
3812 	      && (h == NULL
3813 		  || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3814 		      && !resolved_to_zero)
3815 		  || h->root.type != bfd_link_hash_undefweak)
3816 	      && ((r_type != R_68K_PC8
3817 		   && r_type != R_68K_PC16
3818 		   && r_type != R_68K_PC32)
3819 		  || !SYMBOL_CALLS_LOCAL (info, h)))
3820 	    {
3821 	      Elf_Internal_Rela outrel;
3822 	      bfd_byte *loc;
3823 	      bool skip, relocate;
3824 
3825 	      /* When generating a shared object, these relocations
3826 		 are copied into the output file to be resolved at run
3827 		 time.  */
3828 
3829 	      skip = false;
3830 	      relocate = false;
3831 
3832 	      outrel.r_offset =
3833 		_bfd_elf_section_offset (output_bfd, info, input_section,
3834 					 rel->r_offset);
3835 	      if (outrel.r_offset == (bfd_vma) -1)
3836 		skip = true;
3837 	      else if (outrel.r_offset == (bfd_vma) -2)
3838 		skip = true, relocate = true;
3839 	      outrel.r_offset += (input_section->output_section->vma
3840 				  + input_section->output_offset);
3841 
3842 	      if (skip)
3843 		memset (&outrel, 0, sizeof outrel);
3844 	      else if (h != NULL
3845 		       && h->dynindx != -1
3846 		       && (r_type == R_68K_PC8
3847 			   || r_type == R_68K_PC16
3848 			   || r_type == R_68K_PC32
3849 			   || !bfd_link_pic (info)
3850 			   || !SYMBOLIC_BIND (info, h)
3851 			   || !h->def_regular))
3852 		{
3853 		  outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
3854 		  outrel.r_addend = rel->r_addend;
3855 		}
3856 	      else
3857 		{
3858 		  /* This symbol is local, or marked to become local.  */
3859 		  outrel.r_addend = relocation + rel->r_addend;
3860 
3861 		  if (r_type == R_68K_32)
3862 		    {
3863 		      relocate = true;
3864 		      outrel.r_info = ELF32_R_INFO (0, R_68K_RELATIVE);
3865 		    }
3866 		  else
3867 		    {
3868 		      long indx;
3869 
3870 		      if (bfd_is_abs_section (sec))
3871 			indx = 0;
3872 		      else if (sec == NULL || sec->owner == NULL)
3873 			{
3874 			  bfd_set_error (bfd_error_bad_value);
3875 			  return false;
3876 			}
3877 		      else
3878 			{
3879 			  asection *osec;
3880 
3881 			  /* We are turning this relocation into one
3882 			     against a section symbol.  It would be
3883 			     proper to subtract the symbol's value,
3884 			     osec->vma, from the emitted reloc addend,
3885 			     but ld.so expects buggy relocs.  */
3886 			  osec = sec->output_section;
3887 			  indx = elf_section_data (osec)->dynindx;
3888 			  if (indx == 0)
3889 			    {
3890 			      struct elf_link_hash_table *htab;
3891 			      htab = elf_hash_table (info);
3892 			      osec = htab->text_index_section;
3893 			      indx = elf_section_data (osec)->dynindx;
3894 			    }
3895 			  BFD_ASSERT (indx != 0);
3896 			}
3897 
3898 		      outrel.r_info = ELF32_R_INFO (indx, r_type);
3899 		    }
3900 		}
3901 
3902 	      sreloc = elf_section_data (input_section)->sreloc;
3903 	      if (sreloc == NULL)
3904 		abort ();
3905 
3906 	      loc = sreloc->contents;
3907 	      loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
3908 	      bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3909 
3910 	      /* This reloc will be computed at runtime, so there's no
3911 		 need to do anything now, except for R_68K_32
3912 		 relocations that have been turned into
3913 		 R_68K_RELATIVE.  */
3914 	      if (!relocate)
3915 		continue;
3916 	    }
3917 
3918 	  break;
3919 
3920 	case R_68K_GNU_VTINHERIT:
3921 	case R_68K_GNU_VTENTRY:
3922 	  /* These are no-ops in the end.  */
3923 	  continue;
3924 
3925 	default:
3926 	  break;
3927 	}
3928 
3929       /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
3930 	 because such sections are not SEC_ALLOC and thus ld.so will
3931 	 not process them.  */
3932       if (unresolved_reloc
3933 	  && !((input_section->flags & SEC_DEBUGGING) != 0
3934 	       && h->def_dynamic)
3935 	  && _bfd_elf_section_offset (output_bfd, info, input_section,
3936 				      rel->r_offset) != (bfd_vma) -1)
3937 	{
3938 	  _bfd_error_handler
3939 	    /* xgettext:c-format */
3940 	    (_("%pB(%pA+%#" PRIx64 "): "
3941 	       "unresolvable %s relocation against symbol `%s'"),
3942 	     input_bfd,
3943 	     input_section,
3944 	     (uint64_t) rel->r_offset,
3945 	     howto->name,
3946 	     h->root.root.string);
3947 	  return false;
3948 	}
3949 
3950       if (r_symndx != STN_UNDEF
3951 	  && r_type != R_68K_NONE
3952 	  && (h == NULL
3953 	      || h->root.type == bfd_link_hash_defined
3954 	      || h->root.type == bfd_link_hash_defweak))
3955 	{
3956 	  char sym_type;
3957 
3958 	  sym_type = (sym != NULL) ? ELF32_ST_TYPE (sym->st_info) : h->type;
3959 
3960 	  if (elf_m68k_reloc_tls_p (r_type) != (sym_type == STT_TLS))
3961 	    {
3962 	      const char *name;
3963 
3964 	      if (h != NULL)
3965 		name = h->root.root.string;
3966 	      else
3967 		{
3968 		  name = (bfd_elf_string_from_elf_section
3969 			  (input_bfd, symtab_hdr->sh_link, sym->st_name));
3970 		  if (name == NULL || *name == '\0')
3971 		    name = bfd_section_name (sec);
3972 		}
3973 
3974 	      _bfd_error_handler
3975 		((sym_type == STT_TLS
3976 		  /* xgettext:c-format */
3977 		  ? _("%pB(%pA+%#" PRIx64 "): %s used with TLS symbol %s")
3978 		  /* xgettext:c-format */
3979 		  : _("%pB(%pA+%#" PRIx64 "): %s used with non-TLS symbol %s")),
3980 		 input_bfd,
3981 		 input_section,
3982 		 (uint64_t) rel->r_offset,
3983 		 howto->name,
3984 		 name);
3985 	    }
3986 	}
3987 
3988       r = _bfd_final_link_relocate (howto, input_bfd, input_section,
3989 				    contents, rel->r_offset,
3990 				    relocation, rel->r_addend);
3991 
3992       if (r != bfd_reloc_ok)
3993 	{
3994 	  const char *name;
3995 
3996 	  if (h != NULL)
3997 	    name = h->root.root.string;
3998 	  else
3999 	    {
4000 	      name = bfd_elf_string_from_elf_section (input_bfd,
4001 						      symtab_hdr->sh_link,
4002 						      sym->st_name);
4003 	      if (name == NULL)
4004 		return false;
4005 	      if (*name == '\0')
4006 		name = bfd_section_name (sec);
4007 	    }
4008 
4009 	  if (r == bfd_reloc_overflow)
4010 	    (*info->callbacks->reloc_overflow)
4011 	      (info, (h ? &h->root : NULL), name, howto->name,
4012 	       (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
4013 	  else
4014 	    {
4015 	      _bfd_error_handler
4016 		/* xgettext:c-format */
4017 		(_("%pB(%pA+%#" PRIx64 "): reloc against `%s': error %d"),
4018 		 input_bfd, input_section,
4019 		 (uint64_t) rel->r_offset, name, (int) r);
4020 	      return false;
4021 	    }
4022 	}
4023     }
4024 
4025   return true;
4026 }
4027 
4028 /* Install an M_68K_PC32 relocation against VALUE at offset OFFSET
4029    into section SEC.  */
4030 
4031 static void
elf_m68k_install_pc32(asection * sec,bfd_vma offset,bfd_vma value)4032 elf_m68k_install_pc32 (asection *sec, bfd_vma offset, bfd_vma value)
4033 {
4034   /* Make VALUE PC-relative.  */
4035   value -= sec->output_section->vma + offset;
4036 
4037   /* Apply any in-place addend.  */
4038   value += bfd_get_32 (sec->owner, sec->contents + offset);
4039 
4040   bfd_put_32 (sec->owner, value, sec->contents + offset);
4041 }
4042 
4043 /* Finish up dynamic symbol handling.  We set the contents of various
4044    dynamic sections here.  */
4045 
4046 static bool
elf_m68k_finish_dynamic_symbol(bfd * output_bfd,struct bfd_link_info * info,struct elf_link_hash_entry * h,Elf_Internal_Sym * sym)4047 elf_m68k_finish_dynamic_symbol (bfd *output_bfd,
4048 				struct bfd_link_info *info,
4049 				struct elf_link_hash_entry *h,
4050 				Elf_Internal_Sym *sym)
4051 {
4052   bfd *dynobj;
4053 
4054   dynobj = elf_hash_table (info)->dynobj;
4055 
4056   if (h->plt.offset != (bfd_vma) -1)
4057     {
4058       const struct elf_m68k_plt_info *plt_info;
4059       asection *splt;
4060       asection *sgot;
4061       asection *srela;
4062       bfd_vma plt_index;
4063       bfd_vma got_offset;
4064       Elf_Internal_Rela rela;
4065       bfd_byte *loc;
4066 
4067       /* This symbol has an entry in the procedure linkage table.  Set
4068 	 it up.  */
4069 
4070       BFD_ASSERT (h->dynindx != -1);
4071 
4072       plt_info = elf_m68k_hash_table (info)->plt_info;
4073       splt = elf_hash_table (info)->splt;
4074       sgot = elf_hash_table (info)->sgotplt;
4075       srela = elf_hash_table (info)->srelplt;
4076       BFD_ASSERT (splt != NULL && sgot != NULL && srela != NULL);
4077 
4078       /* Get the index in the procedure linkage table which
4079 	 corresponds to this symbol.  This is the index of this symbol
4080 	 in all the symbols for which we are making plt entries.  The
4081 	 first entry in the procedure linkage table is reserved.  */
4082       plt_index = (h->plt.offset / plt_info->size) - 1;
4083 
4084       /* Get the offset into the .got table of the entry that
4085 	 corresponds to this function.  Each .got entry is 4 bytes.
4086 	 The first three are reserved.  */
4087       got_offset = (plt_index + 3) * 4;
4088 
4089       memcpy (splt->contents + h->plt.offset,
4090 	      plt_info->symbol_entry,
4091 	      plt_info->size);
4092 
4093       elf_m68k_install_pc32 (splt, h->plt.offset + plt_info->symbol_relocs.got,
4094 			     (sgot->output_section->vma
4095 			      + sgot->output_offset
4096 			      + got_offset));
4097 
4098       bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rela),
4099 		  splt->contents
4100 		  + h->plt.offset
4101 		  + plt_info->symbol_resolve_entry + 2);
4102 
4103       elf_m68k_install_pc32 (splt, h->plt.offset + plt_info->symbol_relocs.plt,
4104 			     splt->output_section->vma);
4105 
4106       /* Fill in the entry in the global offset table.  */
4107       bfd_put_32 (output_bfd,
4108 		  (splt->output_section->vma
4109 		   + splt->output_offset
4110 		   + h->plt.offset
4111 		   + plt_info->symbol_resolve_entry),
4112 		  sgot->contents + got_offset);
4113 
4114       /* Fill in the entry in the .rela.plt section.  */
4115       rela.r_offset = (sgot->output_section->vma
4116 		       + sgot->output_offset
4117 		       + got_offset);
4118       rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_JMP_SLOT);
4119       rela.r_addend = 0;
4120       loc = srela->contents + plt_index * sizeof (Elf32_External_Rela);
4121       bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4122 
4123       if (!h->def_regular)
4124 	{
4125 	  /* Mark the symbol as undefined, rather than as defined in
4126 	     the .plt section.  Leave the value alone.  */
4127 	  sym->st_shndx = SHN_UNDEF;
4128 	}
4129     }
4130 
4131   if (elf_m68k_hash_entry (h)->glist != NULL)
4132     {
4133       asection *sgot;
4134       asection *srela;
4135       struct elf_m68k_got_entry *got_entry;
4136 
4137       /* This symbol has an entry in the global offset table.  Set it
4138 	 up.  */
4139 
4140       sgot = elf_hash_table (info)->sgot;
4141       srela = elf_hash_table (info)->srelgot;
4142       BFD_ASSERT (sgot != NULL && srela != NULL);
4143 
4144       got_entry = elf_m68k_hash_entry (h)->glist;
4145 
4146       while (got_entry != NULL)
4147 	{
4148 	  enum elf_m68k_reloc_type r_type;
4149 	  bfd_vma got_entry_offset;
4150 
4151 	  r_type = got_entry->key_.type;
4152 	  got_entry_offset = got_entry->u.s2.offset &~ (bfd_vma) 1;
4153 
4154 	  /* If this is a -Bsymbolic link, and the symbol is defined
4155 	     locally, we just want to emit a RELATIVE reloc.  Likewise if
4156 	     the symbol was forced to be local because of a version file.
4157 	     The entry in the global offset table already have been
4158 	     initialized in the relocate_section function.  */
4159 	  if (bfd_link_pic (info)
4160 	      && SYMBOL_REFERENCES_LOCAL (info, h))
4161 	    {
4162 	      bfd_vma relocation;
4163 
4164 	      relocation = bfd_get_signed_32 (output_bfd,
4165 					      (sgot->contents
4166 					       + got_entry_offset));
4167 
4168 	      /* Undo TP bias.  */
4169 	      switch (elf_m68k_reloc_got_type (r_type))
4170 		{
4171 		case R_68K_GOT32O:
4172 		case R_68K_TLS_LDM32:
4173 		  break;
4174 
4175 		case R_68K_TLS_GD32:
4176 		  /* The value for this relocation is actually put in
4177 		     the second GOT slot.  */
4178 		  relocation = bfd_get_signed_32 (output_bfd,
4179 						  (sgot->contents
4180 						   + got_entry_offset + 4));
4181 		  relocation += dtpoff_base (info);
4182 		  break;
4183 
4184 		case R_68K_TLS_IE32:
4185 		  relocation += tpoff_base (info);
4186 		  break;
4187 
4188 		default:
4189 		  BFD_ASSERT (false);
4190 		}
4191 
4192 	      elf_m68k_init_got_entry_local_shared (info,
4193 						    output_bfd,
4194 						    r_type,
4195 						    sgot,
4196 						    got_entry_offset,
4197 						    relocation,
4198 						    srela);
4199 	    }
4200 	  else
4201 	    {
4202 	      Elf_Internal_Rela rela;
4203 
4204 	      /* Put zeros to GOT slots that will be initialized
4205 		 at run-time.  */
4206 	      {
4207 		bfd_vma n_slots;
4208 
4209 		n_slots = elf_m68k_reloc_got_n_slots (got_entry->key_.type);
4210 		while (n_slots--)
4211 		  bfd_put_32 (output_bfd, (bfd_vma) 0,
4212 			      (sgot->contents + got_entry_offset
4213 			       + 4 * n_slots));
4214 	      }
4215 
4216 	      rela.r_addend = 0;
4217 	      rela.r_offset = (sgot->output_section->vma
4218 			       + sgot->output_offset
4219 			       + got_entry_offset);
4220 
4221 	      switch (elf_m68k_reloc_got_type (r_type))
4222 		{
4223 		case R_68K_GOT32O:
4224 		  rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_GLOB_DAT);
4225 		  elf_m68k_install_rela (output_bfd, srela, &rela);
4226 		  break;
4227 
4228 		case R_68K_TLS_GD32:
4229 		  rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_TLS_DTPMOD32);
4230 		  elf_m68k_install_rela (output_bfd, srela, &rela);
4231 
4232 		  rela.r_offset += 4;
4233 		  rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_TLS_DTPREL32);
4234 		  elf_m68k_install_rela (output_bfd, srela, &rela);
4235 		  break;
4236 
4237 		case R_68K_TLS_IE32:
4238 		  rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_TLS_TPREL32);
4239 		  elf_m68k_install_rela (output_bfd, srela, &rela);
4240 		  break;
4241 
4242 		default:
4243 		  BFD_ASSERT (false);
4244 		  break;
4245 		}
4246 	    }
4247 
4248 	  got_entry = got_entry->u.s2.next;
4249 	}
4250     }
4251 
4252   if (h->needs_copy)
4253     {
4254       asection *s;
4255       Elf_Internal_Rela rela;
4256       bfd_byte *loc;
4257 
4258       /* This symbol needs a copy reloc.  Set it up.  */
4259 
4260       BFD_ASSERT (h->dynindx != -1
4261 		  && (h->root.type == bfd_link_hash_defined
4262 		      || h->root.type == bfd_link_hash_defweak));
4263 
4264       s = bfd_get_linker_section (dynobj, ".rela.bss");
4265       BFD_ASSERT (s != NULL);
4266 
4267       rela.r_offset = (h->root.u.def.value
4268 		       + h->root.u.def.section->output_section->vma
4269 		       + h->root.u.def.section->output_offset);
4270       rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_COPY);
4271       rela.r_addend = 0;
4272       loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
4273       bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4274     }
4275 
4276   return true;
4277 }
4278 
4279 /* Finish up the dynamic sections.  */
4280 
4281 static bool
elf_m68k_finish_dynamic_sections(bfd * output_bfd,struct bfd_link_info * info)4282 elf_m68k_finish_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
4283 {
4284   bfd *dynobj;
4285   asection *sgot;
4286   asection *sdyn;
4287 
4288   dynobj = elf_hash_table (info)->dynobj;
4289 
4290   sgot = elf_hash_table (info)->sgotplt;
4291   BFD_ASSERT (sgot != NULL);
4292   sdyn = bfd_get_linker_section (dynobj, ".dynamic");
4293 
4294   if (elf_hash_table (info)->dynamic_sections_created)
4295     {
4296       asection *splt;
4297       Elf32_External_Dyn *dyncon, *dynconend;
4298 
4299       splt = elf_hash_table (info)->splt;
4300       BFD_ASSERT (splt != NULL && sdyn != NULL);
4301 
4302       dyncon = (Elf32_External_Dyn *) sdyn->contents;
4303       dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4304       for (; dyncon < dynconend; dyncon++)
4305 	{
4306 	  Elf_Internal_Dyn dyn;
4307 	  asection *s;
4308 
4309 	  bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4310 
4311 	  switch (dyn.d_tag)
4312 	    {
4313 	    default:
4314 	      break;
4315 
4316 	    case DT_PLTGOT:
4317 	      s = elf_hash_table (info)->sgotplt;
4318 	      goto get_vma;
4319 	    case DT_JMPREL:
4320 	      s = elf_hash_table (info)->srelplt;
4321 	    get_vma:
4322 	      dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4323 	      bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4324 	      break;
4325 
4326 	    case DT_PLTRELSZ:
4327 	      s = elf_hash_table (info)->srelplt;
4328 	      dyn.d_un.d_val = s->size;
4329 	      bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4330 	      break;
4331 	    }
4332 	}
4333 
4334       /* Fill in the first entry in the procedure linkage table.  */
4335       if (splt->size > 0)
4336 	{
4337 	  const struct elf_m68k_plt_info *plt_info;
4338 
4339 	  plt_info = elf_m68k_hash_table (info)->plt_info;
4340 	  memcpy (splt->contents, plt_info->plt0_entry, plt_info->size);
4341 
4342 	  elf_m68k_install_pc32 (splt, plt_info->plt0_relocs.got4,
4343 				 (sgot->output_section->vma
4344 				  + sgot->output_offset
4345 				  + 4));
4346 
4347 	  elf_m68k_install_pc32 (splt, plt_info->plt0_relocs.got8,
4348 				 (sgot->output_section->vma
4349 				  + sgot->output_offset
4350 				  + 8));
4351 
4352 	  elf_section_data (splt->output_section)->this_hdr.sh_entsize
4353 	    = plt_info->size;
4354 	}
4355     }
4356 
4357   /* Fill in the first three entries in the global offset table.  */
4358   if (sgot->size > 0)
4359     {
4360       if (sdyn == NULL)
4361 	bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
4362       else
4363 	bfd_put_32 (output_bfd,
4364 		    sdyn->output_section->vma + sdyn->output_offset,
4365 		    sgot->contents);
4366       bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
4367       bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
4368     }
4369 
4370   elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
4371 
4372   return true;
4373 }
4374 
4375 /* Given a .data section and a .emreloc in-memory section, store
4376    relocation information into the .emreloc section which can be
4377    used at runtime to relocate the section.  This is called by the
4378    linker when the --embedded-relocs switch is used.  This is called
4379    after the add_symbols entry point has been called for all the
4380    objects, and before the final_link entry point is called.  */
4381 
4382 bool
bfd_m68k_elf32_create_embedded_relocs(bfd * abfd,struct bfd_link_info * info,asection * datasec,asection * relsec,char ** errmsg)4383 bfd_m68k_elf32_create_embedded_relocs (bfd *abfd, struct bfd_link_info *info,
4384 				       asection *datasec, asection *relsec,
4385 				       char **errmsg)
4386 {
4387   Elf_Internal_Shdr *symtab_hdr;
4388   Elf_Internal_Sym *isymbuf = NULL;
4389   Elf_Internal_Rela *internal_relocs = NULL;
4390   Elf_Internal_Rela *irel, *irelend;
4391   bfd_byte *p;
4392   bfd_size_type amt;
4393 
4394   BFD_ASSERT (! bfd_link_relocatable (info));
4395 
4396   *errmsg = NULL;
4397 
4398   if (datasec->reloc_count == 0)
4399     return true;
4400 
4401   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
4402 
4403   /* Get a copy of the native relocations.  */
4404   internal_relocs = (_bfd_elf_link_read_relocs
4405 		     (abfd, datasec, NULL, (Elf_Internal_Rela *) NULL,
4406 		      info->keep_memory));
4407   if (internal_relocs == NULL)
4408     goto error_return;
4409 
4410   amt = (bfd_size_type) datasec->reloc_count * 12;
4411   relsec->contents = (bfd_byte *) bfd_alloc (abfd, amt);
4412   if (relsec->contents == NULL)
4413     goto error_return;
4414 
4415   p = relsec->contents;
4416 
4417   irelend = internal_relocs + datasec->reloc_count;
4418   for (irel = internal_relocs; irel < irelend; irel++, p += 12)
4419     {
4420       asection *targetsec;
4421 
4422       /* We are going to write a four byte longword into the runtime
4423        reloc section.  The longword will be the address in the data
4424        section which must be relocated.  It is followed by the name
4425        of the target section NUL-padded or truncated to 8
4426        characters.  */
4427 
4428       /* We can only relocate absolute longword relocs at run time.  */
4429       if (ELF32_R_TYPE (irel->r_info) != (int) R_68K_32)
4430 	{
4431 	  *errmsg = _("unsupported relocation type");
4432 	  bfd_set_error (bfd_error_bad_value);
4433 	  goto error_return;
4434 	}
4435 
4436       /* Get the target section referred to by the reloc.  */
4437       if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info)
4438 	{
4439 	  /* A local symbol.  */
4440 	  Elf_Internal_Sym *isym;
4441 
4442 	  /* Read this BFD's local symbols if we haven't done so already.  */
4443 	  if (isymbuf == NULL)
4444 	    {
4445 	      isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
4446 	      if (isymbuf == NULL)
4447 		isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
4448 						symtab_hdr->sh_info, 0,
4449 						NULL, NULL, NULL);
4450 	      if (isymbuf == NULL)
4451 		goto error_return;
4452 	    }
4453 
4454 	  isym = isymbuf + ELF32_R_SYM (irel->r_info);
4455 	  targetsec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4456 	}
4457       else
4458 	{
4459 	  unsigned long indx;
4460 	  struct elf_link_hash_entry *h;
4461 
4462 	  /* An external symbol.  */
4463 	  indx = ELF32_R_SYM (irel->r_info) - symtab_hdr->sh_info;
4464 	  h = elf_sym_hashes (abfd)[indx];
4465 	  BFD_ASSERT (h != NULL);
4466 	  if (h->root.type == bfd_link_hash_defined
4467 	      || h->root.type == bfd_link_hash_defweak)
4468 	    targetsec = h->root.u.def.section;
4469 	  else
4470 	    targetsec = NULL;
4471 	}
4472 
4473       bfd_put_32 (abfd, irel->r_offset + datasec->output_offset, p);
4474       memset (p + 4, 0, 8);
4475       if (targetsec != NULL)
4476 	strncpy ((char *) p + 4, targetsec->output_section->name, 8);
4477     }
4478 
4479   if (symtab_hdr->contents != (unsigned char *) isymbuf)
4480     free (isymbuf);
4481   if (elf_section_data (datasec)->relocs != internal_relocs)
4482     free (internal_relocs);
4483   return true;
4484 
4485  error_return:
4486   if (symtab_hdr->contents != (unsigned char *) isymbuf)
4487     free (isymbuf);
4488   if (elf_section_data (datasec)->relocs != internal_relocs)
4489     free (internal_relocs);
4490   return false;
4491 }
4492 
4493 /* Set target options.  */
4494 
4495 void
bfd_elf_m68k_set_target_options(struct bfd_link_info * info,int got_handling)4496 bfd_elf_m68k_set_target_options (struct bfd_link_info *info, int got_handling)
4497 {
4498   struct elf_m68k_link_hash_table *htab;
4499   bool use_neg_got_offsets_p;
4500   bool allow_multigot_p;
4501   bool local_gp_p;
4502 
4503   switch (got_handling)
4504     {
4505     case 0:
4506       /* --got=single.  */
4507       local_gp_p = false;
4508       use_neg_got_offsets_p = false;
4509       allow_multigot_p = false;
4510       break;
4511 
4512     case 1:
4513       /* --got=negative.  */
4514       local_gp_p = true;
4515       use_neg_got_offsets_p = true;
4516       allow_multigot_p = false;
4517       break;
4518 
4519     case 2:
4520       /* --got=multigot.  */
4521       local_gp_p = true;
4522       use_neg_got_offsets_p = true;
4523       allow_multigot_p = true;
4524       break;
4525 
4526     default:
4527       BFD_ASSERT (false);
4528       return;
4529     }
4530 
4531   htab = elf_m68k_hash_table (info);
4532   if (htab != NULL)
4533     {
4534       htab->local_gp_p = local_gp_p;
4535       htab->use_neg_got_offsets_p = use_neg_got_offsets_p;
4536       htab->allow_multigot_p = allow_multigot_p;
4537     }
4538 }
4539 
4540 static enum elf_reloc_type_class
elf32_m68k_reloc_type_class(const struct bfd_link_info * info ATTRIBUTE_UNUSED,const asection * rel_sec ATTRIBUTE_UNUSED,const Elf_Internal_Rela * rela)4541 elf32_m68k_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
4542 			     const asection *rel_sec ATTRIBUTE_UNUSED,
4543 			     const Elf_Internal_Rela *rela)
4544 {
4545   switch ((int) ELF32_R_TYPE (rela->r_info))
4546     {
4547     case R_68K_RELATIVE:
4548       return reloc_class_relative;
4549     case R_68K_JMP_SLOT:
4550       return reloc_class_plt;
4551     case R_68K_COPY:
4552       return reloc_class_copy;
4553     default:
4554       return reloc_class_normal;
4555     }
4556 }
4557 
4558 /* Return address for Ith PLT stub in section PLT, for relocation REL
4559    or (bfd_vma) -1 if it should not be included.  */
4560 
4561 static bfd_vma
elf_m68k_plt_sym_val(bfd_vma i,const asection * plt,const arelent * rel ATTRIBUTE_UNUSED)4562 elf_m68k_plt_sym_val (bfd_vma i, const asection *plt,
4563 		      const arelent *rel ATTRIBUTE_UNUSED)
4564 {
4565   return plt->vma + (i + 1) * elf_m68k_get_plt_info (plt->owner)->size;
4566 }
4567 
4568 /* Support for core dump NOTE sections.  */
4569 
4570 static bool
elf_m68k_grok_prstatus(bfd * abfd,Elf_Internal_Note * note)4571 elf_m68k_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
4572 {
4573   int offset;
4574   size_t size;
4575 
4576   switch (note->descsz)
4577     {
4578     default:
4579       return false;
4580 
4581     case 154:		/* Linux/m68k */
4582       /* pr_cursig */
4583       elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
4584 
4585       /* pr_pid */
4586       elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 22);
4587 
4588       /* pr_reg */
4589       offset = 70;
4590       size = 80;
4591 
4592       break;
4593     }
4594 
4595   /* Make a ".reg/999" section.  */
4596   return _bfd_elfcore_make_pseudosection (abfd, ".reg",
4597 					  size, note->descpos + offset);
4598 }
4599 
4600 static bool
elf_m68k_grok_psinfo(bfd * abfd,Elf_Internal_Note * note)4601 elf_m68k_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
4602 {
4603   switch (note->descsz)
4604     {
4605     default:
4606       return false;
4607 
4608     case 124:		/* Linux/m68k elf_prpsinfo.  */
4609       elf_tdata (abfd)->core->pid
4610 	= bfd_get_32 (abfd, note->descdata + 12);
4611       elf_tdata (abfd)->core->program
4612 	= _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
4613       elf_tdata (abfd)->core->command
4614 	= _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
4615     }
4616 
4617   /* Note that for some reason, a spurious space is tacked
4618      onto the end of the args in some (at least one anyway)
4619      implementations, so strip it off if it exists.  */
4620   {
4621     char *command = elf_tdata (abfd)->core->command;
4622     int n = strlen (command);
4623 
4624     if (n > 0 && command[n - 1] == ' ')
4625       command[n - 1] = '\0';
4626   }
4627 
4628   return true;
4629 }
4630 
4631 #define TARGET_BIG_SYM			m68k_elf32_vec
4632 #define TARGET_BIG_NAME			"elf32-m68k"
4633 #define ELF_MACHINE_CODE		EM_68K
4634 #define ELF_MAXPAGESIZE			0x2000
4635 #define elf_backend_create_dynamic_sections \
4636 					_bfd_elf_create_dynamic_sections
4637 #define bfd_elf32_bfd_link_hash_table_create \
4638 					elf_m68k_link_hash_table_create
4639 #define bfd_elf32_bfd_final_link	bfd_elf_final_link
4640 
4641 #define elf_backend_check_relocs	elf_m68k_check_relocs
4642 #define elf_backend_always_size_sections \
4643 					elf_m68k_always_size_sections
4644 #define elf_backend_adjust_dynamic_symbol \
4645 					elf_m68k_adjust_dynamic_symbol
4646 #define elf_backend_size_dynamic_sections \
4647 					elf_m68k_size_dynamic_sections
4648 #define elf_backend_final_write_processing	elf_m68k_final_write_processing
4649 #define elf_backend_init_index_section	_bfd_elf_init_1_index_section
4650 #define elf_backend_relocate_section	elf_m68k_relocate_section
4651 #define elf_backend_finish_dynamic_symbol \
4652 					elf_m68k_finish_dynamic_symbol
4653 #define elf_backend_finish_dynamic_sections \
4654 					elf_m68k_finish_dynamic_sections
4655 #define elf_backend_gc_mark_hook	elf_m68k_gc_mark_hook
4656 #define elf_backend_copy_indirect_symbol elf_m68k_copy_indirect_symbol
4657 #define bfd_elf32_bfd_merge_private_bfd_data \
4658 					elf32_m68k_merge_private_bfd_data
4659 #define bfd_elf32_bfd_set_private_flags \
4660 					elf32_m68k_set_private_flags
4661 #define bfd_elf32_bfd_print_private_bfd_data \
4662 					elf32_m68k_print_private_bfd_data
4663 #define elf_backend_reloc_type_class	elf32_m68k_reloc_type_class
4664 #define elf_backend_plt_sym_val		elf_m68k_plt_sym_val
4665 #define elf_backend_object_p		elf32_m68k_object_p
4666 #define elf_backend_grok_prstatus	elf_m68k_grok_prstatus
4667 #define elf_backend_grok_psinfo		elf_m68k_grok_psinfo
4668 
4669 #define elf_backend_can_gc_sections 1
4670 #define elf_backend_can_refcount 1
4671 #define elf_backend_want_got_plt 1
4672 #define elf_backend_plt_readonly 1
4673 #define elf_backend_want_plt_sym 0
4674 #define elf_backend_got_header_size	12
4675 #define elf_backend_rela_normal		1
4676 #define elf_backend_dtrel_excludes_plt	1
4677 
4678 #define elf_backend_linux_prpsinfo32_ugid16	true
4679 
4680 #include "elf32-target.h"
4681