xref: /netbsd-src/external/gpl3/binutils/dist/bfd/elf-m10300.c (revision 49d8c9ecf4abd21261269266ef64939f71b3cd09)
1 /* Matsushita 10300 specific support for 32-bit ELF
2    Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
3    2006, 2007, 2008, 2009, 2010, 2011, 2012 Free Software Foundation, Inc.
4 
5    This file is part of BFD, the Binary File Descriptor library.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program; if not, write to the Free Software
19    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20    MA 02110-1301, USA.  */
21 
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26 #include "elf/mn10300.h"
27 #include "libiberty.h"
28 
29 /* The mn10300 linker needs to keep track of the number of relocs that
30    it decides to copy in check_relocs for each symbol.  This is so
31    that it can discard PC relative relocs if it doesn't need them when
32    linking with -Bsymbolic.  We store the information in a field
33    extending the regular ELF linker hash table.  */
34 
35 struct elf32_mn10300_link_hash_entry
36 {
37   /* The basic elf link hash table entry.  */
38   struct elf_link_hash_entry root;
39 
40   /* For function symbols, the number of times this function is
41      called directly (ie by name).  */
42   unsigned int direct_calls;
43 
44   /* For function symbols, the size of this function's stack
45      (if <= 255 bytes).  We stuff this into "call" instructions
46      to this target when it's valid and profitable to do so.
47 
48      This does not include stack allocated by movm!  */
49   unsigned char stack_size;
50 
51   /* For function symbols, arguments (if any) for movm instruction
52      in the prologue.  We stuff this value into "call" instructions
53      to the target when it's valid and profitable to do so.  */
54   unsigned char movm_args;
55 
56   /* For function symbols, the amount of stack space that would be allocated
57      by the movm instruction.  This is redundant with movm_args, but we
58      add it to the hash table to avoid computing it over and over.  */
59   unsigned char movm_stack_size;
60 
61 /* When set, convert all "call" instructions to this target into "calls"
62    instructions.  */
63 #define MN10300_CONVERT_CALL_TO_CALLS 0x1
64 
65 /* Used to mark functions which have had redundant parts of their
66    prologue deleted.  */
67 #define MN10300_DELETED_PROLOGUE_BYTES 0x2
68   unsigned char flags;
69 
70   /* Calculated value.  */
71   bfd_vma value;
72 
73 #define GOT_UNKNOWN	0
74 #define GOT_NORMAL	1
75 #define GOT_TLS_GD	2
76 #define GOT_TLS_LD	3
77 #define GOT_TLS_IE	4
78   /* Used to distinguish GOT entries for TLS types from normal GOT entries.  */
79   unsigned char tls_type;
80 };
81 
82 /* We derive a hash table from the main elf linker hash table so
83    we can store state variables and a secondary hash table without
84    resorting to global variables.  */
85 struct elf32_mn10300_link_hash_table
86 {
87   /* The main hash table.  */
88   struct elf_link_hash_table root;
89 
90   /* A hash table for static functions.  We could derive a new hash table
91      instead of using the full elf32_mn10300_link_hash_table if we wanted
92      to save some memory.  */
93   struct elf32_mn10300_link_hash_table *static_hash_table;
94 
95   /* Random linker state flags.  */
96 #define MN10300_HASH_ENTRIES_INITIALIZED 0x1
97   char flags;
98   struct
99   {
100     bfd_signed_vma  refcount;
101     bfd_vma         offset;
102     char            got_allocated;
103     char            rel_emitted;
104   } tls_ldm_got;
105 };
106 
107 #define elf_mn10300_hash_entry(ent) ((struct elf32_mn10300_link_hash_entry *)(ent))
108 
109 struct elf_mn10300_obj_tdata
110 {
111   struct elf_obj_tdata root;
112 
113   /* tls_type for each local got entry.  */
114   char * local_got_tls_type;
115 };
116 
117 #define elf_mn10300_tdata(abfd) \
118   ((struct elf_mn10300_obj_tdata *) (abfd)->tdata.any)
119 
120 #define elf_mn10300_local_got_tls_type(abfd) \
121   (elf_mn10300_tdata (abfd)->local_got_tls_type)
122 
123 #ifndef streq
124 #define streq(a, b) (strcmp ((a),(b)) == 0)
125 #endif
126 
127 /* For MN10300 linker hash table.  */
128 
129 /* Get the MN10300 ELF linker hash table from a link_info structure.  */
130 
131 #define elf32_mn10300_hash_table(p) \
132   (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
133   == MN10300_ELF_DATA ? ((struct elf32_mn10300_link_hash_table *) ((p)->hash)) : NULL)
134 
135 #define elf32_mn10300_link_hash_traverse(table, func, info)		\
136   (elf_link_hash_traverse						\
137    (&(table)->root,							\
138     (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func),	\
139     (info)))
140 
141 static reloc_howto_type elf_mn10300_howto_table[] =
142 {
143   /* Dummy relocation.  Does nothing.  */
144   HOWTO (R_MN10300_NONE,
145 	 0,
146 	 2,
147 	 16,
148 	 FALSE,
149 	 0,
150 	 complain_overflow_bitfield,
151 	 bfd_elf_generic_reloc,
152 	 "R_MN10300_NONE",
153 	 FALSE,
154 	 0,
155 	 0,
156 	 FALSE),
157   /* Standard 32 bit reloc.  */
158   HOWTO (R_MN10300_32,
159 	 0,
160 	 2,
161 	 32,
162 	 FALSE,
163 	 0,
164 	 complain_overflow_bitfield,
165 	 bfd_elf_generic_reloc,
166 	 "R_MN10300_32",
167 	 FALSE,
168 	 0xffffffff,
169 	 0xffffffff,
170 	 FALSE),
171   /* Standard 16 bit reloc.  */
172   HOWTO (R_MN10300_16,
173 	 0,
174 	 1,
175 	 16,
176 	 FALSE,
177 	 0,
178 	 complain_overflow_bitfield,
179 	 bfd_elf_generic_reloc,
180 	 "R_MN10300_16",
181 	 FALSE,
182 	 0xffff,
183 	 0xffff,
184 	 FALSE),
185   /* Standard 8 bit reloc.  */
186   HOWTO (R_MN10300_8,
187 	 0,
188 	 0,
189 	 8,
190 	 FALSE,
191 	 0,
192 	 complain_overflow_bitfield,
193 	 bfd_elf_generic_reloc,
194 	 "R_MN10300_8",
195 	 FALSE,
196 	 0xff,
197 	 0xff,
198 	 FALSE),
199   /* Standard 32bit pc-relative reloc.  */
200   HOWTO (R_MN10300_PCREL32,
201 	 0,
202 	 2,
203 	 32,
204 	 TRUE,
205 	 0,
206 	 complain_overflow_bitfield,
207 	 bfd_elf_generic_reloc,
208 	 "R_MN10300_PCREL32",
209 	 FALSE,
210 	 0xffffffff,
211 	 0xffffffff,
212 	 TRUE),
213   /* Standard 16bit pc-relative reloc.  */
214   HOWTO (R_MN10300_PCREL16,
215 	 0,
216 	 1,
217 	 16,
218 	 TRUE,
219 	 0,
220 	 complain_overflow_bitfield,
221 	 bfd_elf_generic_reloc,
222 	 "R_MN10300_PCREL16",
223 	 FALSE,
224 	 0xffff,
225 	 0xffff,
226 	 TRUE),
227   /* Standard 8 pc-relative reloc.  */
228   HOWTO (R_MN10300_PCREL8,
229 	 0,
230 	 0,
231 	 8,
232 	 TRUE,
233 	 0,
234 	 complain_overflow_bitfield,
235 	 bfd_elf_generic_reloc,
236 	 "R_MN10300_PCREL8",
237 	 FALSE,
238 	 0xff,
239 	 0xff,
240 	 TRUE),
241 
242   /* GNU extension to record C++ vtable hierarchy.  */
243   HOWTO (R_MN10300_GNU_VTINHERIT, /* type */
244 	 0,			/* rightshift */
245 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
246 	 0,			/* bitsize */
247 	 FALSE,			/* pc_relative */
248 	 0,			/* bitpos */
249 	 complain_overflow_dont, /* complain_on_overflow */
250 	 NULL,			/* special_function */
251 	 "R_MN10300_GNU_VTINHERIT", /* name */
252 	 FALSE,			/* partial_inplace */
253 	 0,			/* src_mask */
254 	 0,			/* dst_mask */
255 	 FALSE),		/* pcrel_offset */
256 
257   /* GNU extension to record C++ vtable member usage */
258   HOWTO (R_MN10300_GNU_VTENTRY,	/* type */
259 	 0,			/* rightshift */
260 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
261 	 0,			/* bitsize */
262 	 FALSE,			/* pc_relative */
263 	 0,			/* bitpos */
264 	 complain_overflow_dont, /* complain_on_overflow */
265 	 NULL,			/* special_function */
266 	 "R_MN10300_GNU_VTENTRY", /* name */
267 	 FALSE,			/* partial_inplace */
268 	 0,			/* src_mask */
269 	 0,			/* dst_mask */
270 	 FALSE),		/* pcrel_offset */
271 
272   /* Standard 24 bit reloc.  */
273   HOWTO (R_MN10300_24,
274 	 0,
275 	 2,
276 	 24,
277 	 FALSE,
278 	 0,
279 	 complain_overflow_bitfield,
280 	 bfd_elf_generic_reloc,
281 	 "R_MN10300_24",
282 	 FALSE,
283 	 0xffffff,
284 	 0xffffff,
285 	 FALSE),
286   HOWTO (R_MN10300_GOTPC32,	/* type */
287 	 0,			/* rightshift */
288 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
289 	 32,			/* bitsize */
290 	 TRUE,			/* pc_relative */
291 	 0,			/* bitpos */
292 	 complain_overflow_bitfield, /* complain_on_overflow */
293 	 bfd_elf_generic_reloc, /* */
294 	 "R_MN10300_GOTPC32",	/* name */
295 	 FALSE,			/* partial_inplace */
296 	 0xffffffff,		/* src_mask */
297 	 0xffffffff,		/* dst_mask */
298 	 TRUE),			/* pcrel_offset */
299 
300   HOWTO (R_MN10300_GOTPC16,	/* type */
301 	 0,			/* rightshift */
302 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
303 	 16,			/* bitsize */
304 	 TRUE,			/* pc_relative */
305 	 0,			/* bitpos */
306 	 complain_overflow_bitfield, /* complain_on_overflow */
307 	 bfd_elf_generic_reloc, /* */
308 	 "R_MN10300_GOTPC16",	/* name */
309 	 FALSE,			/* partial_inplace */
310 	 0xffff,		/* src_mask */
311 	 0xffff,		/* dst_mask */
312 	 TRUE),			/* pcrel_offset */
313 
314   HOWTO (R_MN10300_GOTOFF32,	/* type */
315 	 0,			/* rightshift */
316 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
317 	 32,			/* bitsize */
318 	 FALSE,			/* pc_relative */
319 	 0,			/* bitpos */
320 	 complain_overflow_bitfield, /* complain_on_overflow */
321 	 bfd_elf_generic_reloc, /* */
322 	 "R_MN10300_GOTOFF32",	/* name */
323 	 FALSE,			/* partial_inplace */
324 	 0xffffffff,		/* src_mask */
325 	 0xffffffff,		/* dst_mask */
326 	 FALSE),		/* pcrel_offset */
327 
328   HOWTO (R_MN10300_GOTOFF24,	/* type */
329 	 0,			/* rightshift */
330 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
331 	 24,			/* bitsize */
332 	 FALSE,			/* pc_relative */
333 	 0,			/* bitpos */
334 	 complain_overflow_bitfield, /* complain_on_overflow */
335 	 bfd_elf_generic_reloc, /* */
336 	 "R_MN10300_GOTOFF24",	/* name */
337 	 FALSE,			/* partial_inplace */
338 	 0xffffff,		/* src_mask */
339 	 0xffffff,		/* dst_mask */
340 	 FALSE),		/* pcrel_offset */
341 
342   HOWTO (R_MN10300_GOTOFF16,	/* type */
343 	 0,			/* rightshift */
344 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
345 	 16,			/* bitsize */
346 	 FALSE,			/* pc_relative */
347 	 0,			/* bitpos */
348 	 complain_overflow_bitfield, /* complain_on_overflow */
349 	 bfd_elf_generic_reloc, /* */
350 	 "R_MN10300_GOTOFF16",	/* name */
351 	 FALSE,			/* partial_inplace */
352 	 0xffff,		/* src_mask */
353 	 0xffff,		/* dst_mask */
354 	 FALSE),		/* pcrel_offset */
355 
356   HOWTO (R_MN10300_PLT32,	/* type */
357 	 0,			/* rightshift */
358 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
359 	 32,			/* bitsize */
360 	 TRUE,			/* pc_relative */
361 	 0,			/* bitpos */
362 	 complain_overflow_bitfield, /* complain_on_overflow */
363 	 bfd_elf_generic_reloc, /* */
364 	 "R_MN10300_PLT32",	/* name */
365 	 FALSE,			/* partial_inplace */
366 	 0xffffffff,		/* src_mask */
367 	 0xffffffff,		/* dst_mask */
368 	 TRUE),			/* pcrel_offset */
369 
370   HOWTO (R_MN10300_PLT16,	/* type */
371 	 0,			/* rightshift */
372 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
373 	 16,			/* bitsize */
374 	 TRUE,			/* pc_relative */
375 	 0,			/* bitpos */
376 	 complain_overflow_bitfield, /* complain_on_overflow */
377 	 bfd_elf_generic_reloc, /* */
378 	 "R_MN10300_PLT16",	/* name */
379 	 FALSE,			/* partial_inplace */
380 	 0xffff,		/* src_mask */
381 	 0xffff,		/* dst_mask */
382 	 TRUE),			/* pcrel_offset */
383 
384   HOWTO (R_MN10300_GOT32,	/* type */
385 	 0,			/* rightshift */
386 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
387 	 32,			/* bitsize */
388 	 FALSE,			/* pc_relative */
389 	 0,			/* bitpos */
390 	 complain_overflow_bitfield, /* complain_on_overflow */
391 	 bfd_elf_generic_reloc, /* */
392 	 "R_MN10300_GOT32",	/* name */
393 	 FALSE,			/* partial_inplace */
394 	 0xffffffff,		/* src_mask */
395 	 0xffffffff,		/* dst_mask */
396 	 FALSE),		/* pcrel_offset */
397 
398   HOWTO (R_MN10300_GOT24,	/* type */
399 	 0,			/* rightshift */
400 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
401 	 24,			/* bitsize */
402 	 FALSE,			/* pc_relative */
403 	 0,			/* bitpos */
404 	 complain_overflow_bitfield, /* complain_on_overflow */
405 	 bfd_elf_generic_reloc, /* */
406 	 "R_MN10300_GOT24",	/* name */
407 	 FALSE,			/* partial_inplace */
408 	 0xffffffff,		/* src_mask */
409 	 0xffffffff,		/* dst_mask */
410 	 FALSE),		/* pcrel_offset */
411 
412   HOWTO (R_MN10300_GOT16,	/* type */
413 	 0,			/* rightshift */
414 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
415 	 16,			/* bitsize */
416 	 FALSE,			/* pc_relative */
417 	 0,			/* bitpos */
418 	 complain_overflow_bitfield, /* complain_on_overflow */
419 	 bfd_elf_generic_reloc, /* */
420 	 "R_MN10300_GOT16",	/* name */
421 	 FALSE,			/* partial_inplace */
422 	 0xffffffff,		/* src_mask */
423 	 0xffffffff,		/* dst_mask */
424 	 FALSE),		/* pcrel_offset */
425 
426   HOWTO (R_MN10300_COPY,	/* type */
427 	 0,			/* rightshift */
428 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
429 	 32,			/* bitsize */
430 	 FALSE,			/* pc_relative */
431 	 0,			/* bitpos */
432 	 complain_overflow_bitfield, /* complain_on_overflow */
433 	 bfd_elf_generic_reloc, /* */
434 	 "R_MN10300_COPY",		/* name */
435 	 FALSE,			/* partial_inplace */
436 	 0xffffffff,		/* src_mask */
437 	 0xffffffff,		/* dst_mask */
438 	 FALSE),		/* pcrel_offset */
439 
440   HOWTO (R_MN10300_GLOB_DAT,	/* type */
441 	 0,			/* rightshift */
442 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
443 	 32,			/* bitsize */
444 	 FALSE,			/* pc_relative */
445 	 0,			/* bitpos */
446 	 complain_overflow_bitfield, /* complain_on_overflow */
447 	 bfd_elf_generic_reloc, /* */
448 	 "R_MN10300_GLOB_DAT",	/* name */
449 	 FALSE,			/* partial_inplace */
450 	 0xffffffff,		/* src_mask */
451 	 0xffffffff,		/* dst_mask */
452 	 FALSE),		/* pcrel_offset */
453 
454   HOWTO (R_MN10300_JMP_SLOT,	/* type */
455 	 0,			/* rightshift */
456 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
457 	 32,			/* bitsize */
458 	 FALSE,			/* pc_relative */
459 	 0,			/* bitpos */
460 	 complain_overflow_bitfield, /* complain_on_overflow */
461 	 bfd_elf_generic_reloc, /* */
462 	 "R_MN10300_JMP_SLOT",	/* name */
463 	 FALSE,			/* partial_inplace */
464 	 0xffffffff,		/* src_mask */
465 	 0xffffffff,		/* dst_mask */
466 	 FALSE),		/* pcrel_offset */
467 
468   HOWTO (R_MN10300_RELATIVE,	/* type */
469 	 0,			/* rightshift */
470 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
471 	 32,			/* bitsize */
472 	 FALSE,			/* pc_relative */
473 	 0,			/* bitpos */
474 	 complain_overflow_bitfield, /* complain_on_overflow */
475 	 bfd_elf_generic_reloc, /* */
476 	 "R_MN10300_RELATIVE",	/* name */
477 	 FALSE,			/* partial_inplace */
478 	 0xffffffff,		/* src_mask */
479 	 0xffffffff,		/* dst_mask */
480 	 FALSE),		/* pcrel_offset */
481 
482   HOWTO (R_MN10300_TLS_GD,	/* type */
483 	 0,			/* rightshift */
484 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
485 	 32,			/* bitsize */
486 	 FALSE,			/* pc_relative */
487 	 0,			/* bitpos */
488 	 complain_overflow_bitfield, /* complain_on_overflow */
489 	 bfd_elf_generic_reloc, /* */
490 	 "R_MN10300_TLS_GD",	/* name */
491 	 FALSE,			/* partial_inplace */
492 	 0xffffffff,		/* src_mask */
493 	 0xffffffff,		/* dst_mask */
494 	 FALSE),		/* pcrel_offset */
495 
496   HOWTO (R_MN10300_TLS_LD,	/* type */
497 	 0,			/* rightshift */
498 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
499 	 32,			/* bitsize */
500 	 FALSE,			/* pc_relative */
501 	 0,			/* bitpos */
502 	 complain_overflow_bitfield, /* complain_on_overflow */
503 	 bfd_elf_generic_reloc, /* */
504 	 "R_MN10300_TLS_LD",	/* name */
505 	 FALSE,			/* partial_inplace */
506 	 0xffffffff,		/* src_mask */
507 	 0xffffffff,		/* dst_mask */
508 	 FALSE),		/* pcrel_offset */
509 
510   HOWTO (R_MN10300_TLS_LDO,	/* type */
511 	 0,			/* rightshift */
512 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
513 	 32,			/* bitsize */
514 	 FALSE,			/* pc_relative */
515 	 0,			/* bitpos */
516 	 complain_overflow_bitfield, /* complain_on_overflow */
517 	 bfd_elf_generic_reloc, /* */
518 	 "R_MN10300_TLS_LDO",	/* name */
519 	 FALSE,			/* partial_inplace */
520 	 0xffffffff,		/* src_mask */
521 	 0xffffffff,		/* dst_mask */
522 	 FALSE),		/* pcrel_offset */
523 
524   HOWTO (R_MN10300_TLS_GOTIE,	/* type */
525 	 0,			/* rightshift */
526 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
527 	 32,			/* bitsize */
528 	 FALSE,			/* pc_relative */
529 	 0,			/* bitpos */
530 	 complain_overflow_bitfield, /* complain_on_overflow */
531 	 bfd_elf_generic_reloc, /* */
532 	 "R_MN10300_TLS_GOTIE",	/* name */
533 	 FALSE,			/* partial_inplace */
534 	 0xffffffff,		/* src_mask */
535 	 0xffffffff,		/* dst_mask */
536 	 FALSE),		/* pcrel_offset */
537 
538   HOWTO (R_MN10300_TLS_IE,	/* type */
539 	 0,			/* rightshift */
540 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
541 	 32,			/* bitsize */
542 	 FALSE,			/* pc_relative */
543 	 0,			/* bitpos */
544 	 complain_overflow_bitfield, /* complain_on_overflow */
545 	 bfd_elf_generic_reloc, /* */
546 	 "R_MN10300_TLS_IE",	/* name */
547 	 FALSE,			/* partial_inplace */
548 	 0xffffffff,		/* src_mask */
549 	 0xffffffff,		/* dst_mask */
550 	 FALSE),		/* pcrel_offset */
551 
552   HOWTO (R_MN10300_TLS_LE,	/* type */
553 	 0,			/* rightshift */
554 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
555 	 32,			/* bitsize */
556 	 FALSE,			/* pc_relative */
557 	 0,			/* bitpos */
558 	 complain_overflow_bitfield, /* complain_on_overflow */
559 	 bfd_elf_generic_reloc, /* */
560 	 "R_MN10300_TLS_LE",	/* name */
561 	 FALSE,			/* partial_inplace */
562 	 0xffffffff,		/* src_mask */
563 	 0xffffffff,		/* dst_mask */
564 	 FALSE),		/* pcrel_offset */
565 
566   HOWTO (R_MN10300_TLS_DTPMOD,	/* type */
567 	 0,			/* rightshift */
568 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
569 	 32,			/* bitsize */
570 	 FALSE,			/* pc_relative */
571 	 0,			/* bitpos */
572 	 complain_overflow_bitfield, /* complain_on_overflow */
573 	 bfd_elf_generic_reloc, /* */
574 	 "R_MN10300_TLS_DTPMOD",	/* name */
575 	 FALSE,			/* partial_inplace */
576 	 0xffffffff,		/* src_mask */
577 	 0xffffffff,		/* dst_mask */
578 	 FALSE),		/* pcrel_offset */
579 
580   HOWTO (R_MN10300_TLS_DTPOFF,	/* type */
581 	 0,			/* rightshift */
582 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
583 	 32,			/* bitsize */
584 	 FALSE,			/* pc_relative */
585 	 0,			/* bitpos */
586 	 complain_overflow_bitfield, /* complain_on_overflow */
587 	 bfd_elf_generic_reloc, /* */
588 	 "R_MN10300_TLS_DTPOFF",	/* name */
589 	 FALSE,			/* partial_inplace */
590 	 0xffffffff,		/* src_mask */
591 	 0xffffffff,		/* dst_mask */
592 	 FALSE),		/* pcrel_offset */
593 
594   HOWTO (R_MN10300_TLS_TPOFF,	/* type */
595 	 0,			/* rightshift */
596 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
597 	 32,			/* bitsize */
598 	 FALSE,			/* pc_relative */
599 	 0,			/* bitpos */
600 	 complain_overflow_bitfield, /* complain_on_overflow */
601 	 bfd_elf_generic_reloc, /* */
602 	 "R_MN10300_TLS_TPOFF",	/* name */
603 	 FALSE,			/* partial_inplace */
604 	 0xffffffff,		/* src_mask */
605 	 0xffffffff,		/* dst_mask */
606 	 FALSE),		/* pcrel_offset */
607 
608   HOWTO (R_MN10300_SYM_DIFF,	/* type */
609 	 0,			/* rightshift */
610 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
611 	 32,			/* bitsize */
612 	 FALSE,			/* pc_relative */
613 	 0,			/* bitpos */
614 	 complain_overflow_dont,/* complain_on_overflow */
615 	 NULL, 			/* special handler.  */
616 	 "R_MN10300_SYM_DIFF",	/* name */
617 	 FALSE,			/* partial_inplace */
618 	 0xffffffff,		/* src_mask */
619 	 0xffffffff,		/* dst_mask */
620 	 FALSE),		/* pcrel_offset */
621 
622   HOWTO (R_MN10300_ALIGN,	/* type */
623 	 0,			/* rightshift */
624 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
625 	 32,			/* bitsize */
626 	 FALSE,			/* pc_relative */
627 	 0,			/* bitpos */
628 	 complain_overflow_dont,/* complain_on_overflow */
629 	 NULL, 			/* special handler.  */
630 	 "R_MN10300_ALIGN",	/* name */
631 	 FALSE,			/* partial_inplace */
632 	 0,			/* src_mask */
633 	 0,			/* dst_mask */
634 	 FALSE)			/* pcrel_offset */
635 };
636 
637 struct mn10300_reloc_map
638 {
639   bfd_reloc_code_real_type bfd_reloc_val;
640   unsigned char elf_reloc_val;
641 };
642 
643 static const struct mn10300_reloc_map mn10300_reloc_map[] =
644 {
645   { BFD_RELOC_NONE, R_MN10300_NONE, },
646   { BFD_RELOC_32, R_MN10300_32, },
647   { BFD_RELOC_16, R_MN10300_16, },
648   { BFD_RELOC_8, R_MN10300_8, },
649   { BFD_RELOC_32_PCREL, R_MN10300_PCREL32, },
650   { BFD_RELOC_16_PCREL, R_MN10300_PCREL16, },
651   { BFD_RELOC_8_PCREL, R_MN10300_PCREL8, },
652   { BFD_RELOC_24, R_MN10300_24, },
653   { BFD_RELOC_VTABLE_INHERIT, R_MN10300_GNU_VTINHERIT },
654   { BFD_RELOC_VTABLE_ENTRY, R_MN10300_GNU_VTENTRY },
655   { BFD_RELOC_32_GOT_PCREL, R_MN10300_GOTPC32 },
656   { BFD_RELOC_16_GOT_PCREL, R_MN10300_GOTPC16 },
657   { BFD_RELOC_32_GOTOFF, R_MN10300_GOTOFF32 },
658   { BFD_RELOC_MN10300_GOTOFF24, R_MN10300_GOTOFF24 },
659   { BFD_RELOC_16_GOTOFF, R_MN10300_GOTOFF16 },
660   { BFD_RELOC_32_PLT_PCREL, R_MN10300_PLT32 },
661   { BFD_RELOC_16_PLT_PCREL, R_MN10300_PLT16 },
662   { BFD_RELOC_MN10300_GOT32, R_MN10300_GOT32 },
663   { BFD_RELOC_MN10300_GOT24, R_MN10300_GOT24 },
664   { BFD_RELOC_MN10300_GOT16, R_MN10300_GOT16 },
665   { BFD_RELOC_MN10300_COPY, R_MN10300_COPY },
666   { BFD_RELOC_MN10300_GLOB_DAT, R_MN10300_GLOB_DAT },
667   { BFD_RELOC_MN10300_JMP_SLOT, R_MN10300_JMP_SLOT },
668   { BFD_RELOC_MN10300_RELATIVE, R_MN10300_RELATIVE },
669   { BFD_RELOC_MN10300_TLS_GD, R_MN10300_TLS_GD },
670   { BFD_RELOC_MN10300_TLS_LD, R_MN10300_TLS_LD },
671   { BFD_RELOC_MN10300_TLS_LDO, R_MN10300_TLS_LDO },
672   { BFD_RELOC_MN10300_TLS_GOTIE, R_MN10300_TLS_GOTIE },
673   { BFD_RELOC_MN10300_TLS_IE, R_MN10300_TLS_IE },
674   { BFD_RELOC_MN10300_TLS_LE, R_MN10300_TLS_LE },
675   { BFD_RELOC_MN10300_TLS_DTPMOD, R_MN10300_TLS_DTPMOD },
676   { BFD_RELOC_MN10300_TLS_DTPOFF, R_MN10300_TLS_DTPOFF },
677   { BFD_RELOC_MN10300_TLS_TPOFF, R_MN10300_TLS_TPOFF },
678   { BFD_RELOC_MN10300_SYM_DIFF, R_MN10300_SYM_DIFF },
679   { BFD_RELOC_MN10300_ALIGN, R_MN10300_ALIGN }
680 };
681 
682 /* Create the GOT section.  */
683 
684 static bfd_boolean
685 _bfd_mn10300_elf_create_got_section (bfd * abfd,
686 				     struct bfd_link_info * info)
687 {
688   flagword   flags;
689   flagword   pltflags;
690   asection * s;
691   struct elf_link_hash_entry * h;
692   const struct elf_backend_data * bed = get_elf_backend_data (abfd);
693   struct elf_link_hash_table *htab;
694   int ptralign;
695 
696   /* This function may be called more than once.  */
697   htab = elf_hash_table (info);
698   if (htab->sgot != NULL)
699     return TRUE;
700 
701   switch (bed->s->arch_size)
702     {
703     case 32:
704       ptralign = 2;
705       break;
706 
707     case 64:
708       ptralign = 3;
709       break;
710 
711     default:
712       bfd_set_error (bfd_error_bad_value);
713       return FALSE;
714     }
715 
716   flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
717 	   | SEC_LINKER_CREATED);
718 
719   pltflags = flags;
720   pltflags |= SEC_CODE;
721   if (bed->plt_not_loaded)
722     pltflags &= ~ (SEC_LOAD | SEC_HAS_CONTENTS);
723   if (bed->plt_readonly)
724     pltflags |= SEC_READONLY;
725 
726   s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
727   htab->splt = s;
728   if (s == NULL
729       || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
730     return FALSE;
731 
732   /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
733      .plt section.  */
734   if (bed->want_plt_sym)
735     {
736       h = _bfd_elf_define_linkage_sym (abfd, info, s,
737 				       "_PROCEDURE_LINKAGE_TABLE_");
738       htab->hplt = h;
739       if (h == NULL)
740 	return FALSE;
741     }
742 
743   s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
744   htab->sgot = s;
745   if (s == NULL
746       || ! bfd_set_section_alignment (abfd, s, ptralign))
747     return FALSE;
748 
749   if (bed->want_got_plt)
750     {
751       s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
752       htab->sgotplt = s;
753       if (s == NULL
754 	  || ! bfd_set_section_alignment (abfd, s, ptralign))
755 	return FALSE;
756     }
757 
758   /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
759      (or .got.plt) section.  We don't do this in the linker script
760      because we don't want to define the symbol if we are not creating
761      a global offset table.  */
762   h = _bfd_elf_define_linkage_sym (abfd, info, s, "_GLOBAL_OFFSET_TABLE_");
763   htab->hgot = h;
764   if (h == NULL)
765     return FALSE;
766 
767   /* The first bit of the global offset table is the header.  */
768   s->size += bed->got_header_size;
769 
770   return TRUE;
771 }
772 
773 static reloc_howto_type *
774 bfd_elf32_bfd_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
775 				 bfd_reloc_code_real_type code)
776 {
777   unsigned int i;
778 
779   for (i = ARRAY_SIZE (mn10300_reloc_map); i--;)
780     if (mn10300_reloc_map[i].bfd_reloc_val == code)
781       return &elf_mn10300_howto_table[mn10300_reloc_map[i].elf_reloc_val];
782 
783   return NULL;
784 }
785 
786 static reloc_howto_type *
787 bfd_elf32_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
788 				 const char *r_name)
789 {
790   unsigned int i;
791 
792   for (i = ARRAY_SIZE (elf_mn10300_howto_table); i--;)
793     if (elf_mn10300_howto_table[i].name != NULL
794 	&& strcasecmp (elf_mn10300_howto_table[i].name, r_name) == 0)
795       return elf_mn10300_howto_table + i;
796 
797   return NULL;
798 }
799 
800 /* Set the howto pointer for an MN10300 ELF reloc.  */
801 
802 static void
803 mn10300_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
804 		       arelent *cache_ptr,
805 		       Elf_Internal_Rela *dst)
806 {
807   unsigned int r_type;
808 
809   r_type = ELF32_R_TYPE (dst->r_info);
810   BFD_ASSERT (r_type < (unsigned int) R_MN10300_MAX);
811   cache_ptr->howto = elf_mn10300_howto_table + r_type;
812 }
813 
814 static int
815 elf_mn10300_tls_transition (struct bfd_link_info *        info,
816 			    int                           r_type,
817 			    struct elf_link_hash_entry *  h,
818 			    asection *                    sec,
819 			    bfd_boolean                   counting)
820 {
821   bfd_boolean is_local;
822 
823   if (r_type == R_MN10300_TLS_GD
824       && h != NULL
825       && elf_mn10300_hash_entry (h)->tls_type == GOT_TLS_IE)
826     return R_MN10300_TLS_GOTIE;
827 
828   if (info->shared)
829     return r_type;
830 
831   if (! (sec->flags & SEC_CODE))
832     return r_type;
833 
834   if (! counting && h != NULL && ! elf_hash_table (info)->dynamic_sections_created)
835     is_local = TRUE;
836   else
837     is_local = SYMBOL_CALLS_LOCAL (info, h);
838 
839   /* For the main program, these are the transitions we do.  */
840   switch (r_type)
841     {
842     case R_MN10300_TLS_GD: return is_local ? R_MN10300_TLS_LE : R_MN10300_TLS_GOTIE;
843     case R_MN10300_TLS_LD: return R_MN10300_NONE;
844     case R_MN10300_TLS_LDO: return R_MN10300_TLS_LE;
845     case R_MN10300_TLS_IE:
846     case R_MN10300_TLS_GOTIE: return is_local ? R_MN10300_TLS_LE : r_type;
847     }
848 
849   return r_type;
850 }
851 
852 /* Return the relocation value for @tpoff relocation
853    if STT_TLS virtual address is ADDRESS.  */
854 
855 static bfd_vma
856 dtpoff (struct bfd_link_info * info, bfd_vma address)
857 {
858   struct elf_link_hash_table *htab = elf_hash_table (info);
859 
860   /* If tls_sec is NULL, we should have signalled an error already.  */
861   if (htab->tls_sec == NULL)
862     return 0;
863   return address - htab->tls_sec->vma;
864 }
865 
866 /* Return the relocation value for @tpoff relocation
867    if STT_TLS virtual address is ADDRESS.  */
868 
869 static bfd_vma
870 tpoff (struct bfd_link_info * info, bfd_vma address)
871 {
872   struct elf_link_hash_table *htab = elf_hash_table (info);
873 
874   /* If tls_sec is NULL, we should have signalled an error already.  */
875   if (htab->tls_sec == NULL)
876     return 0;
877   return address - (htab->tls_size + htab->tls_sec->vma);
878 }
879 
880 /* Returns nonzero if there's a R_MN10300_PLT32 reloc that we now need
881    to skip, after this one.  The actual value is the offset between
882    this reloc and the PLT reloc.  */
883 
884 static int
885 mn10300_do_tls_transition (bfd *         input_bfd,
886 			   unsigned int  r_type,
887 			   unsigned int  tls_r_type,
888 			   bfd_byte *    contents,
889 			   bfd_vma       offset)
890 {
891   bfd_byte *op = contents + offset;
892   int gotreg = 0;
893 
894 #define TLS_PAIR(r1,r2) ((r1) * R_MN10300_MAX + (r2))
895 
896   /* This is common to all GD/LD transitions, so break it out.  */
897   if (r_type == R_MN10300_TLS_GD
898       || r_type == R_MN10300_TLS_LD)
899     {
900       op -= 2;
901       /* mov imm,d0.  */
902       BFD_ASSERT (bfd_get_8 (input_bfd, op) == 0xFC);
903       BFD_ASSERT (bfd_get_8 (input_bfd, op + 1) == 0xCC);
904       /* add aN,d0.  */
905       BFD_ASSERT (bfd_get_8 (input_bfd, op + 6) == 0xF1);
906       gotreg = (bfd_get_8 (input_bfd, op + 7) & 0x0c) >> 2;
907       /* Call.  */
908       BFD_ASSERT (bfd_get_8 (input_bfd, op + 8) == 0xDD);
909     }
910 
911   switch (TLS_PAIR (r_type, tls_r_type))
912     {
913     case TLS_PAIR (R_MN10300_TLS_GD, R_MN10300_TLS_GOTIE):
914       {
915 	/* Keep track of which register we put GOTptr in.  */
916 	/* mov (_x@indntpoff,a2),a0.  */
917 	memcpy (op, "\xFC\x20\x00\x00\x00\x00", 6);
918 	op[1] |= gotreg;
919 	/* add e2,a0.  */
920 	memcpy (op+6, "\xF9\x78\x28", 3);
921 	/* or  0x00000000, d0 - six byte nop.  */
922 	memcpy (op+9, "\xFC\xE4\x00\x00\x00\x00", 6);
923       }
924       return 7;
925 
926     case TLS_PAIR (R_MN10300_TLS_GD, R_MN10300_TLS_LE):
927       {
928 	/* Register is *always* a0.  */
929 	/* mov _x@tpoff,a0.  */
930 	memcpy (op, "\xFC\xDC\x00\x00\x00\x00", 6);
931 	/* add e2,a0.  */
932 	memcpy (op+6, "\xF9\x78\x28", 3);
933 	/* or  0x00000000, d0 - six byte nop.  */
934 	memcpy (op+9, "\xFC\xE4\x00\x00\x00\x00", 6);
935       }
936       return 7;
937     case TLS_PAIR (R_MN10300_TLS_LD, R_MN10300_NONE):
938       {
939 	/* Register is *always* a0.  */
940 	/* mov e2,a0.  */
941 	memcpy (op, "\xF5\x88", 2);
942 	/* or  0x00000000, d0 - six byte nop.  */
943 	memcpy (op+2, "\xFC\xE4\x00\x00\x00\x00", 6);
944 	/* or  0x00000000, e2 - seven byte nop.  */
945 	memcpy (op+8, "\xFE\x19\x22\x00\x00\x00\x00", 7);
946       }
947       return 7;
948 
949     case TLS_PAIR (R_MN10300_TLS_LDO, R_MN10300_TLS_LE):
950       /* No changes needed, just the reloc change.  */
951       return 0;
952 
953     /*  These are a little tricky, because we have to detect which
954 	opcode is being used (they're different sizes, with the reloc
955 	at different offsets within the opcode) and convert each
956 	accordingly, copying the operands as needed.  The conversions
957 	we do are as follows (IE,GOTIE,LE):
958 
959 	           1111 1100  1010 01Dn  [-- abs32 --]  MOV (x@indntpoff),Dn
960 	           1111 1100  0000 DnAm  [-- abs32 --]  MOV (x@gotntpoff,Am),Dn
961 	           1111 1100  1100 11Dn  [-- abs32 --]  MOV x@tpoff,Dn
962 
963 	           1111 1100  1010 00An  [-- abs32 --]  MOV (x@indntpoff),An
964 	           1111 1100  0010 AnAm  [-- abs32 --]  MOV (x@gotntpoff,Am),An
965 	           1111 1100  1101 11An  [-- abs32 --]  MOV x@tpoff,An
966 
967 	1111 1110  0000 1110  Rnnn Xxxx  [-- abs32 --]  MOV (x@indntpoff),Rn
968 	1111 1110  0000 1010  Rnnn Rmmm  [-- abs32 --]  MOV (x@indntpoff,Rm),Rn
969 	1111 1110  0000 1000  Rnnn Xxxx  [-- abs32 --]  MOV x@tpoff,Rn
970 
971 	Since the GOT pointer is always $a2, we assume the last
972 	normally won't happen, but let's be paranoid and plan for the
973 	day that GCC optimizes it somewhow.  */
974 
975     case TLS_PAIR (R_MN10300_TLS_IE, R_MN10300_TLS_LE):
976       if (op[-2] == 0xFC)
977 	{
978 	  op -= 2;
979 	  if ((op[1] & 0xFC) == 0xA4) /* Dn */
980 	    {
981 	      op[1] &= 0x03; /* Leaves Dn.  */
982 	      op[1] |= 0xCC;
983 	    }
984 	  else /* An */
985 	    {
986 	      op[1] &= 0x03; /* Leaves An. */
987 	      op[1] |= 0xDC;
988 	    }
989 	}
990       else if (op[-3] == 0xFE)
991 	op[-2] = 0x08;
992       else
993 	abort ();
994       break;
995 
996     case TLS_PAIR (R_MN10300_TLS_GOTIE, R_MN10300_TLS_LE):
997       if (op[-2] == 0xFC)
998 	{
999 	  op -= 2;
1000 	  if ((op[1] & 0xF0) == 0x00) /* Dn */
1001 	    {
1002 	      op[1] &= 0x0C; /* Leaves Dn.  */
1003 	      op[1] >>= 2;
1004 	      op[1] |= 0xCC;
1005 	    }
1006 	  else /* An */
1007 	    {
1008 	      op[1] &= 0x0C; /* Leaves An.  */
1009 	      op[1] >>= 2;
1010 	      op[1] |= 0xDC;
1011 	    }
1012 	}
1013       else if (op[-3] == 0xFE)
1014 	op[-2] = 0x08;
1015       else
1016 	abort ();
1017       break;
1018 
1019     default:
1020       (*_bfd_error_handler)
1021 	(_("%s: Unsupported transition from %s to %s"),
1022 	 bfd_get_filename (input_bfd),
1023 	 elf_mn10300_howto_table[r_type].name,
1024 	 elf_mn10300_howto_table[tls_r_type].name);
1025       break;
1026     }
1027 #undef TLS_PAIR
1028   return 0;
1029 }
1030 
1031 /* Look through the relocs for a section during the first phase.
1032    Since we don't do .gots or .plts, we just need to consider the
1033    virtual table relocs for gc.  */
1034 
1035 static bfd_boolean
1036 mn10300_elf_check_relocs (bfd *abfd,
1037 			  struct bfd_link_info *info,
1038 			  asection *sec,
1039 			  const Elf_Internal_Rela *relocs)
1040 {
1041   struct elf32_mn10300_link_hash_table * htab = elf32_mn10300_hash_table (info);
1042   bfd_boolean sym_diff_reloc_seen;
1043   Elf_Internal_Shdr *symtab_hdr;
1044   Elf_Internal_Sym * isymbuf = NULL;
1045   struct elf_link_hash_entry **sym_hashes;
1046   const Elf_Internal_Rela *rel;
1047   const Elf_Internal_Rela *rel_end;
1048   bfd *      dynobj;
1049   bfd_vma *  local_got_offsets;
1050   asection * sgot;
1051   asection * srelgot;
1052   asection * sreloc;
1053   bfd_boolean result = FALSE;
1054 
1055   sgot    = NULL;
1056   srelgot = NULL;
1057   sreloc  = NULL;
1058 
1059   if (info->relocatable)
1060     return TRUE;
1061 
1062   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1063   isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
1064   sym_hashes = elf_sym_hashes (abfd);
1065 
1066   dynobj = elf_hash_table (info)->dynobj;
1067   local_got_offsets = elf_local_got_offsets (abfd);
1068   rel_end = relocs + sec->reloc_count;
1069   sym_diff_reloc_seen = FALSE;
1070 
1071   for (rel = relocs; rel < rel_end; rel++)
1072     {
1073       struct elf_link_hash_entry *h;
1074       unsigned long r_symndx;
1075       unsigned int r_type;
1076       int tls_type = GOT_NORMAL;
1077 
1078       r_symndx = ELF32_R_SYM (rel->r_info);
1079       if (r_symndx < symtab_hdr->sh_info)
1080 	h = NULL;
1081       else
1082 	{
1083 	  h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1084 	  while (h->root.type == bfd_link_hash_indirect
1085 		 || h->root.type == bfd_link_hash_warning)
1086 	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
1087 	}
1088 
1089       r_type = ELF32_R_TYPE (rel->r_info);
1090       r_type = elf_mn10300_tls_transition (info, r_type, h, sec, TRUE);
1091 
1092       /* Some relocs require a global offset table.  */
1093       if (dynobj == NULL)
1094 	{
1095 	  switch (r_type)
1096 	    {
1097 	    case R_MN10300_GOT32:
1098 	    case R_MN10300_GOT24:
1099 	    case R_MN10300_GOT16:
1100 	    case R_MN10300_GOTOFF32:
1101 	    case R_MN10300_GOTOFF24:
1102 	    case R_MN10300_GOTOFF16:
1103 	    case R_MN10300_GOTPC32:
1104 	    case R_MN10300_GOTPC16:
1105 	    case R_MN10300_TLS_GD:
1106 	    case R_MN10300_TLS_LD:
1107 	    case R_MN10300_TLS_GOTIE:
1108 	    case R_MN10300_TLS_IE:
1109 	      elf_hash_table (info)->dynobj = dynobj = abfd;
1110 	      if (! _bfd_mn10300_elf_create_got_section (dynobj, info))
1111 		goto fail;
1112 	      break;
1113 
1114 	    default:
1115 	      break;
1116 	    }
1117 	}
1118 
1119       switch (r_type)
1120 	{
1121 	/* This relocation describes the C++ object vtable hierarchy.
1122 	   Reconstruct it for later use during GC.  */
1123 	case R_MN10300_GNU_VTINHERIT:
1124 	  if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1125 	    goto fail;
1126 	  break;
1127 
1128 	/* This relocation describes which C++ vtable entries are actually
1129 	   used.  Record for later use during GC.  */
1130 	case R_MN10300_GNU_VTENTRY:
1131 	  BFD_ASSERT (h != NULL);
1132 	  if (h != NULL
1133 	      && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1134 	    goto fail;
1135 	  break;
1136 
1137 	case R_MN10300_TLS_LD:
1138 	  htab->tls_ldm_got.refcount ++;
1139 	  tls_type = GOT_TLS_LD;
1140 
1141 	  if (htab->tls_ldm_got.got_allocated)
1142 	    break;
1143 	  goto create_got;
1144 
1145 	case R_MN10300_TLS_IE:
1146 	case R_MN10300_TLS_GOTIE:
1147 	  if (info->shared)
1148 	    info->flags |= DF_STATIC_TLS;
1149 	  /* Fall through */
1150 
1151 	case R_MN10300_TLS_GD:
1152 	case R_MN10300_GOT32:
1153 	case R_MN10300_GOT24:
1154 	case R_MN10300_GOT16:
1155 	create_got:
1156 	  /* This symbol requires a global offset table entry.  */
1157 
1158 	  switch (r_type)
1159 	    {
1160 	    case R_MN10300_TLS_IE:
1161 	    case R_MN10300_TLS_GOTIE: tls_type = GOT_TLS_IE; break;
1162 	    case R_MN10300_TLS_GD:    tls_type = GOT_TLS_GD; break;
1163 	    default:                  tls_type = GOT_NORMAL; break;
1164 	    }
1165 
1166 	  if (sgot == NULL)
1167 	    {
1168 	      sgot = htab->root.sgot;
1169 	      BFD_ASSERT (sgot != NULL);
1170 	    }
1171 
1172 	  if (srelgot == NULL
1173 	      && (h != NULL || info->shared))
1174 	    {
1175 	      srelgot = bfd_get_linker_section (dynobj, ".rela.got");
1176 	      if (srelgot == NULL)
1177 		{
1178 		  flagword flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
1179 				    | SEC_IN_MEMORY | SEC_LINKER_CREATED
1180 				    | SEC_READONLY);
1181 		  srelgot = bfd_make_section_anyway_with_flags (dynobj,
1182 								".rela.got",
1183 								flags);
1184 		  if (srelgot == NULL
1185 		      || ! bfd_set_section_alignment (dynobj, srelgot, 2))
1186 		    goto fail;
1187 		}
1188 	    }
1189 
1190 	  if (r_type == R_MN10300_TLS_LD)
1191 	    {
1192 	      htab->tls_ldm_got.offset = sgot->size;
1193 	      htab->tls_ldm_got.got_allocated ++;
1194 	    }
1195 	  else if (h != NULL)
1196 	    {
1197 	      if (elf_mn10300_hash_entry (h)->tls_type != tls_type
1198 		  && elf_mn10300_hash_entry (h)->tls_type != GOT_UNKNOWN)
1199 		{
1200 		  if (tls_type == GOT_TLS_IE
1201 		      && elf_mn10300_hash_entry (h)->tls_type == GOT_TLS_GD)
1202 		    /* No change - this is ok.  */;
1203 		  else if (tls_type == GOT_TLS_GD
1204 		      && elf_mn10300_hash_entry (h)->tls_type == GOT_TLS_IE)
1205 		    /* Transition GD->IE.  */
1206 		    tls_type = GOT_TLS_IE;
1207 		  else
1208 		    (*_bfd_error_handler)
1209 		      (_("%B: %s' accessed both as normal and thread local symbol"),
1210 		       abfd, h ? h->root.root.string : "<local>");
1211 		}
1212 
1213 	      elf_mn10300_hash_entry (h)->tls_type = tls_type;
1214 
1215 	      if (h->got.offset != (bfd_vma) -1)
1216 		/* We have already allocated space in the .got.  */
1217 		break;
1218 
1219 	      h->got.offset = sgot->size;
1220 
1221 	      if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
1222 		  /* Make sure this symbol is output as a dynamic symbol.  */
1223 		  && h->dynindx == -1)
1224 		{
1225 		  if (! bfd_elf_link_record_dynamic_symbol (info, h))
1226 		    goto fail;
1227 		}
1228 
1229 	      srelgot->size += sizeof (Elf32_External_Rela);
1230 	      if (r_type == R_MN10300_TLS_GD)
1231 		srelgot->size += sizeof (Elf32_External_Rela);
1232 	    }
1233 	  else
1234 	    {
1235 	      /* This is a global offset table entry for a local
1236 		 symbol.  */
1237 	      if (local_got_offsets == NULL)
1238 		{
1239 		  size_t       size;
1240 		  unsigned int i;
1241 
1242 		  size = symtab_hdr->sh_info * (sizeof (bfd_vma) + sizeof (char));
1243 		  local_got_offsets = bfd_alloc (abfd, size);
1244 
1245 		  if (local_got_offsets == NULL)
1246 		    goto fail;
1247 
1248 		  elf_local_got_offsets (abfd) = local_got_offsets;
1249 		  elf_mn10300_local_got_tls_type (abfd)
1250 		      = (char *) (local_got_offsets + symtab_hdr->sh_info);
1251 
1252 		  for (i = 0; i < symtab_hdr->sh_info; i++)
1253 		    local_got_offsets[i] = (bfd_vma) -1;
1254 		}
1255 
1256 	      if (local_got_offsets[r_symndx] != (bfd_vma) -1)
1257 		/* We have already allocated space in the .got.  */
1258 		break;
1259 
1260 	      local_got_offsets[r_symndx] = sgot->size;
1261 
1262 	      if (info->shared)
1263 		{
1264 		  /* If we are generating a shared object, we need to
1265 		     output a R_MN10300_RELATIVE reloc so that the dynamic
1266 		     linker can adjust this GOT entry.  */
1267 		  srelgot->size += sizeof (Elf32_External_Rela);
1268 
1269 		  if (r_type == R_MN10300_TLS_GD)
1270 		    /* And a R_MN10300_TLS_DTPOFF reloc as well.  */
1271 		    srelgot->size += sizeof (Elf32_External_Rela);
1272 		}
1273 
1274 	      elf_mn10300_local_got_tls_type (abfd) [r_symndx] = tls_type;
1275 	    }
1276 
1277 	  sgot->size += 4;
1278 	  if (r_type == R_MN10300_TLS_GD
1279 	      || r_type == R_MN10300_TLS_LD)
1280 	    sgot->size += 4;
1281 
1282 	  goto need_shared_relocs;
1283 
1284 	case R_MN10300_PLT32:
1285 	case R_MN10300_PLT16:
1286 	  /* This symbol requires a procedure linkage table entry.  We
1287 	     actually build the entry in adjust_dynamic_symbol,
1288 	     because this might be a case of linking PIC code which is
1289 	     never referenced by a dynamic object, in which case we
1290 	     don't need to generate a procedure linkage table entry
1291 	     after all.  */
1292 
1293 	  /* If this is a local symbol, we resolve it directly without
1294 	     creating a procedure linkage table entry.  */
1295 	  if (h == NULL)
1296 	    continue;
1297 
1298 	  if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
1299 	      || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
1300 	    break;
1301 
1302 	  h->needs_plt = 1;
1303 	  break;
1304 
1305 	case R_MN10300_24:
1306 	case R_MN10300_16:
1307 	case R_MN10300_8:
1308 	case R_MN10300_PCREL32:
1309 	case R_MN10300_PCREL16:
1310 	case R_MN10300_PCREL8:
1311 	  if (h != NULL)
1312 	    h->non_got_ref = 1;
1313 	  break;
1314 
1315 	case R_MN10300_SYM_DIFF:
1316 	  sym_diff_reloc_seen = TRUE;
1317 	  break;
1318 
1319 	case R_MN10300_32:
1320 	  if (h != NULL)
1321 	    h->non_got_ref = 1;
1322 
1323 	need_shared_relocs:
1324 	  /* If we are creating a shared library, then we
1325 	     need to copy the reloc into the shared library.  */
1326 	  if (info->shared
1327 	      && (sec->flags & SEC_ALLOC) != 0
1328 	      /* Do not generate a dynamic reloc for a
1329 		 reloc associated with a SYM_DIFF operation.  */
1330 	      && ! sym_diff_reloc_seen)
1331 	    {
1332 	      asection * sym_section = NULL;
1333 
1334 	      /* Find the section containing the
1335 		 symbol involved in the relocation.  */
1336 	      if (h == NULL)
1337 		{
1338 		  Elf_Internal_Sym * isym;
1339 
1340 		  if (isymbuf == NULL)
1341 		    isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
1342 						    symtab_hdr->sh_info, 0,
1343 						    NULL, NULL, NULL);
1344 		  if (isymbuf)
1345 		    {
1346 		      isym = isymbuf + r_symndx;
1347 		      /* All we care about is whether this local symbol is absolute.  */
1348 		      if (isym->st_shndx == SHN_ABS)
1349 			sym_section = bfd_abs_section_ptr;
1350 		    }
1351 		}
1352 	      else
1353 		{
1354 		  if (h->root.type == bfd_link_hash_defined
1355 		      || h->root.type == bfd_link_hash_defweak)
1356 		    sym_section = h->root.u.def.section;
1357 		}
1358 
1359 	      /* If the symbol is absolute then the relocation can
1360 		 be resolved during linking and there is no need for
1361 		 a dynamic reloc.  */
1362 	      if (sym_section != bfd_abs_section_ptr)
1363 		{
1364 		  /* When creating a shared object, we must copy these
1365 		     reloc types into the output file.  We create a reloc
1366 		     section in dynobj and make room for this reloc.  */
1367 		  if (sreloc == NULL)
1368 		    {
1369 		      sreloc = _bfd_elf_make_dynamic_reloc_section
1370 			(sec, dynobj, 2, abfd, /*rela?*/ TRUE);
1371 		      if (sreloc == NULL)
1372 			goto fail;
1373 		    }
1374 
1375 		  sreloc->size += sizeof (Elf32_External_Rela);
1376 		}
1377 	    }
1378 
1379 	  break;
1380 	}
1381 
1382       if (ELF32_R_TYPE (rel->r_info) != R_MN10300_SYM_DIFF)
1383 	sym_diff_reloc_seen = FALSE;
1384     }
1385 
1386   result = TRUE;
1387  fail:
1388   if (isymbuf != NULL)
1389     free (isymbuf);
1390 
1391   return result;
1392 }
1393 
1394 /* Return the section that should be marked against GC for a given
1395    relocation.  */
1396 
1397 static asection *
1398 mn10300_elf_gc_mark_hook (asection *sec,
1399 			  struct bfd_link_info *info,
1400 			  Elf_Internal_Rela *rel,
1401 			  struct elf_link_hash_entry *h,
1402 			  Elf_Internal_Sym *sym)
1403 {
1404   if (h != NULL)
1405     switch (ELF32_R_TYPE (rel->r_info))
1406       {
1407       case R_MN10300_GNU_VTINHERIT:
1408       case R_MN10300_GNU_VTENTRY:
1409 	return NULL;
1410       }
1411 
1412   return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1413 }
1414 
1415 /* Perform a relocation as part of a final link.  */
1416 
1417 static bfd_reloc_status_type
1418 mn10300_elf_final_link_relocate (reloc_howto_type *howto,
1419 				 bfd *input_bfd,
1420 				 bfd *output_bfd ATTRIBUTE_UNUSED,
1421 				 asection *input_section,
1422 				 bfd_byte *contents,
1423 				 bfd_vma offset,
1424 				 bfd_vma value,
1425 				 bfd_vma addend,
1426 				 struct elf_link_hash_entry * h,
1427 				 unsigned long symndx,
1428 				 struct bfd_link_info *info,
1429 				 asection *sym_sec ATTRIBUTE_UNUSED,
1430 				 int is_local ATTRIBUTE_UNUSED)
1431 {
1432   struct elf32_mn10300_link_hash_table * htab = elf32_mn10300_hash_table (info);
1433   static asection *  sym_diff_section;
1434   static bfd_vma     sym_diff_value;
1435   bfd_boolean is_sym_diff_reloc;
1436   unsigned long r_type = howto->type;
1437   bfd_byte * hit_data = contents + offset;
1438   bfd *      dynobj;
1439   asection * sgot;
1440   asection * splt;
1441   asection * sreloc;
1442 
1443   dynobj = elf_hash_table (info)->dynobj;
1444   sgot   = NULL;
1445   splt   = NULL;
1446   sreloc = NULL;
1447 
1448   switch (r_type)
1449     {
1450     case R_MN10300_24:
1451     case R_MN10300_16:
1452     case R_MN10300_8:
1453     case R_MN10300_PCREL8:
1454     case R_MN10300_PCREL16:
1455     case R_MN10300_PCREL32:
1456     case R_MN10300_GOTOFF32:
1457     case R_MN10300_GOTOFF24:
1458     case R_MN10300_GOTOFF16:
1459       if (info->shared
1460 	  && (input_section->flags & SEC_ALLOC) != 0
1461 	  && h != NULL
1462 	  && ! SYMBOL_REFERENCES_LOCAL (info, h))
1463 	return bfd_reloc_dangerous;
1464     case R_MN10300_GOT32:
1465       /* Issue 2052223:
1466 	 Taking the address of a protected function in a shared library
1467 	 is illegal.  Issue an error message here.  */
1468       if (info->shared
1469 	  && (input_section->flags & SEC_ALLOC) != 0
1470 	  && h != NULL
1471 	  && ELF_ST_VISIBILITY (h->other) == STV_PROTECTED
1472 	  && (h->type == STT_FUNC || h->type == STT_GNU_IFUNC)
1473 	  && ! SYMBOL_REFERENCES_LOCAL (info, h))
1474 	return bfd_reloc_dangerous;
1475     }
1476 
1477   is_sym_diff_reloc = FALSE;
1478   if (sym_diff_section != NULL)
1479     {
1480       BFD_ASSERT (sym_diff_section == input_section);
1481 
1482       switch (r_type)
1483 	{
1484 	case R_MN10300_32:
1485 	case R_MN10300_24:
1486 	case R_MN10300_16:
1487 	case R_MN10300_8:
1488 	  value -= sym_diff_value;
1489 	  /* If we are computing a 32-bit value for the location lists
1490 	     and the result is 0 then we add one to the value.  A zero
1491 	     value can result because of linker relaxation deleteing
1492 	     prologue instructions and using a value of 1 (for the begin
1493 	     and end offsets in the location list entry) results in a
1494 	     nul entry which does not prevent the following entries from
1495 	     being parsed.  */
1496 	  if (r_type == R_MN10300_32
1497 	      && value == 0
1498 	      && strcmp (input_section->name, ".debug_loc") == 0)
1499 	    value = 1;
1500 	  sym_diff_section = NULL;
1501 	  is_sym_diff_reloc = TRUE;
1502 	  break;
1503 
1504 	default:
1505 	  sym_diff_section = NULL;
1506 	  break;
1507 	}
1508     }
1509 
1510   switch (r_type)
1511     {
1512     case R_MN10300_SYM_DIFF:
1513       BFD_ASSERT (addend == 0);
1514       /* Cache the input section and value.
1515 	 The offset is unreliable, since relaxation may
1516 	 have reduced the following reloc's offset.  */
1517       sym_diff_section = input_section;
1518       sym_diff_value = value;
1519       return bfd_reloc_ok;
1520 
1521     case R_MN10300_ALIGN:
1522     case R_MN10300_NONE:
1523       return bfd_reloc_ok;
1524 
1525     case R_MN10300_32:
1526       if (info->shared
1527 	  /* Do not generate relocs when an R_MN10300_32 has been used
1528 	     with an R_MN10300_SYM_DIFF to compute a difference of two
1529 	     symbols.  */
1530 	  && is_sym_diff_reloc == FALSE
1531 	  /* Also, do not generate a reloc when the symbol associated
1532 	     with the R_MN10300_32 reloc is absolute - there is no
1533 	     need for a run time computation in this case.  */
1534 	  && sym_sec != bfd_abs_section_ptr
1535 	  /* If the section is not going to be allocated at load time
1536 	     then there is no need to generate relocs for it.  */
1537 	  && (input_section->flags & SEC_ALLOC) != 0)
1538 	{
1539 	  Elf_Internal_Rela outrel;
1540 	  bfd_boolean skip, relocate;
1541 
1542 	  /* When generating a shared object, these relocations are
1543 	     copied into the output file to be resolved at run
1544 	     time.  */
1545 	  if (sreloc == NULL)
1546 	    {
1547 	      sreloc = _bfd_elf_get_dynamic_reloc_section
1548 		(input_bfd, input_section, /*rela?*/ TRUE);
1549 	      if (sreloc == NULL)
1550 		return FALSE;
1551 	    }
1552 
1553 	  skip = FALSE;
1554 
1555 	  outrel.r_offset = _bfd_elf_section_offset (input_bfd, info,
1556 						     input_section, offset);
1557 	  if (outrel.r_offset == (bfd_vma) -1)
1558 	    skip = TRUE;
1559 
1560 	  outrel.r_offset += (input_section->output_section->vma
1561 			      + input_section->output_offset);
1562 
1563 	  if (skip)
1564 	    {
1565 	      memset (&outrel, 0, sizeof outrel);
1566 	      relocate = FALSE;
1567 	    }
1568 	  else
1569 	    {
1570 	      /* h->dynindx may be -1 if this symbol was marked to
1571 		 become local.  */
1572 	      if (h == NULL
1573 		  || SYMBOL_REFERENCES_LOCAL (info, h))
1574 		{
1575 		  relocate = TRUE;
1576 		  outrel.r_info = ELF32_R_INFO (0, R_MN10300_RELATIVE);
1577 		  outrel.r_addend = value + addend;
1578 		}
1579 	      else
1580 		{
1581 		  BFD_ASSERT (h->dynindx != -1);
1582 		  relocate = FALSE;
1583 		  outrel.r_info = ELF32_R_INFO (h->dynindx, R_MN10300_32);
1584 		  outrel.r_addend = value + addend;
1585 		}
1586 	    }
1587 
1588 	  bfd_elf32_swap_reloca_out (output_bfd, &outrel,
1589 				     (bfd_byte *) (((Elf32_External_Rela *) sreloc->contents)
1590 						   + sreloc->reloc_count));
1591 	  ++sreloc->reloc_count;
1592 
1593 	  /* If this reloc is against an external symbol, we do
1594 	     not want to fiddle with the addend.  Otherwise, we
1595 	     need to include the symbol value so that it becomes
1596 	     an addend for the dynamic reloc.  */
1597 	  if (! relocate)
1598 	    return bfd_reloc_ok;
1599 	}
1600       value += addend;
1601       bfd_put_32 (input_bfd, value, hit_data);
1602       return bfd_reloc_ok;
1603 
1604     case R_MN10300_24:
1605       value += addend;
1606 
1607       if ((long) value > 0x7fffff || (long) value < -0x800000)
1608 	return bfd_reloc_overflow;
1609 
1610       bfd_put_8 (input_bfd, value & 0xff, hit_data);
1611       bfd_put_8 (input_bfd, (value >> 8) & 0xff, hit_data + 1);
1612       bfd_put_8 (input_bfd, (value >> 16) & 0xff, hit_data + 2);
1613       return bfd_reloc_ok;
1614 
1615     case R_MN10300_16:
1616       value += addend;
1617 
1618       if ((long) value > 0x7fff || (long) value < -0x8000)
1619 	return bfd_reloc_overflow;
1620 
1621       bfd_put_16 (input_bfd, value, hit_data);
1622       return bfd_reloc_ok;
1623 
1624     case R_MN10300_8:
1625       value += addend;
1626 
1627       if ((long) value > 0x7f || (long) value < -0x80)
1628 	return bfd_reloc_overflow;
1629 
1630       bfd_put_8 (input_bfd, value, hit_data);
1631       return bfd_reloc_ok;
1632 
1633     case R_MN10300_PCREL8:
1634       value -= (input_section->output_section->vma
1635 		+ input_section->output_offset);
1636       value -= offset;
1637       value += addend;
1638 
1639       if ((long) value > 0x7f || (long) value < -0x80)
1640 	return bfd_reloc_overflow;
1641 
1642       bfd_put_8 (input_bfd, value, hit_data);
1643       return bfd_reloc_ok;
1644 
1645     case R_MN10300_PCREL16:
1646       value -= (input_section->output_section->vma
1647 		+ input_section->output_offset);
1648       value -= offset;
1649       value += addend;
1650 
1651       if ((long) value > 0x7fff || (long) value < -0x8000)
1652 	return bfd_reloc_overflow;
1653 
1654       bfd_put_16 (input_bfd, value, hit_data);
1655       return bfd_reloc_ok;
1656 
1657     case R_MN10300_PCREL32:
1658       value -= (input_section->output_section->vma
1659 		+ input_section->output_offset);
1660       value -= offset;
1661       value += addend;
1662 
1663       bfd_put_32 (input_bfd, value, hit_data);
1664       return bfd_reloc_ok;
1665 
1666     case R_MN10300_GNU_VTINHERIT:
1667     case R_MN10300_GNU_VTENTRY:
1668       return bfd_reloc_ok;
1669 
1670     case R_MN10300_GOTPC32:
1671       if (dynobj == NULL)
1672 	return bfd_reloc_dangerous;
1673 
1674       /* Use global offset table as symbol value.  */
1675       value = htab->root.sgot->output_section->vma;
1676       value -= (input_section->output_section->vma
1677 		+ input_section->output_offset);
1678       value -= offset;
1679       value += addend;
1680 
1681       bfd_put_32 (input_bfd, value, hit_data);
1682       return bfd_reloc_ok;
1683 
1684     case R_MN10300_GOTPC16:
1685       if (dynobj == NULL)
1686 	return bfd_reloc_dangerous;
1687 
1688       /* Use global offset table as symbol value.  */
1689       value = htab->root.sgot->output_section->vma;
1690       value -= (input_section->output_section->vma
1691 		+ input_section->output_offset);
1692       value -= offset;
1693       value += addend;
1694 
1695       if ((long) value > 0x7fff || (long) value < -0x8000)
1696 	return bfd_reloc_overflow;
1697 
1698       bfd_put_16 (input_bfd, value, hit_data);
1699       return bfd_reloc_ok;
1700 
1701     case R_MN10300_GOTOFF32:
1702       if (dynobj == NULL)
1703 	return bfd_reloc_dangerous;
1704 
1705       value -= htab->root.sgot->output_section->vma;
1706       value += addend;
1707 
1708       bfd_put_32 (input_bfd, value, hit_data);
1709       return bfd_reloc_ok;
1710 
1711     case R_MN10300_GOTOFF24:
1712       if (dynobj == NULL)
1713 	return bfd_reloc_dangerous;
1714 
1715       value -= htab->root.sgot->output_section->vma;
1716       value += addend;
1717 
1718       if ((long) value > 0x7fffff || (long) value < -0x800000)
1719 	return bfd_reloc_overflow;
1720 
1721       bfd_put_8 (input_bfd, value, hit_data);
1722       bfd_put_8 (input_bfd, (value >> 8) & 0xff, hit_data + 1);
1723       bfd_put_8 (input_bfd, (value >> 16) & 0xff, hit_data + 2);
1724       return bfd_reloc_ok;
1725 
1726     case R_MN10300_GOTOFF16:
1727       if (dynobj == NULL)
1728 	return bfd_reloc_dangerous;
1729 
1730       value -= htab->root.sgot->output_section->vma;
1731       value += addend;
1732 
1733       if ((long) value > 0x7fff || (long) value < -0x8000)
1734 	return bfd_reloc_overflow;
1735 
1736       bfd_put_16 (input_bfd, value, hit_data);
1737       return bfd_reloc_ok;
1738 
1739     case R_MN10300_PLT32:
1740       if (h != NULL
1741 	  && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
1742 	  && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
1743 	  && h->plt.offset != (bfd_vma) -1)
1744 	{
1745 	  if (dynobj == NULL)
1746 	    return bfd_reloc_dangerous;
1747 
1748 	  splt = htab->root.splt;
1749 	  value = (splt->output_section->vma
1750 		   + splt->output_offset
1751 		   + h->plt.offset) - value;
1752 	}
1753 
1754       value -= (input_section->output_section->vma
1755 		+ input_section->output_offset);
1756       value -= offset;
1757       value += addend;
1758 
1759       bfd_put_32 (input_bfd, value, hit_data);
1760       return bfd_reloc_ok;
1761 
1762     case R_MN10300_PLT16:
1763       if (h != NULL
1764 	  && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
1765 	  && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
1766 	  && h->plt.offset != (bfd_vma) -1)
1767 	{
1768 	  if (dynobj == NULL)
1769 	    return bfd_reloc_dangerous;
1770 
1771 	  splt = htab->root.splt;
1772 	  value = (splt->output_section->vma
1773 		   + splt->output_offset
1774 		   + h->plt.offset) - value;
1775 	}
1776 
1777       value -= (input_section->output_section->vma
1778 		+ input_section->output_offset);
1779       value -= offset;
1780       value += addend;
1781 
1782       if ((long) value > 0x7fff || (long) value < -0x8000)
1783 	return bfd_reloc_overflow;
1784 
1785       bfd_put_16 (input_bfd, value, hit_data);
1786       return bfd_reloc_ok;
1787 
1788     case R_MN10300_TLS_LDO:
1789       value = dtpoff (info, value);
1790       bfd_put_32 (input_bfd, value + addend, hit_data);
1791       return bfd_reloc_ok;
1792 
1793     case R_MN10300_TLS_LE:
1794       value = tpoff (info, value);
1795       bfd_put_32 (input_bfd, value + addend, hit_data);
1796       return bfd_reloc_ok;
1797 
1798     case R_MN10300_TLS_LD:
1799       if (dynobj == NULL)
1800 	return bfd_reloc_dangerous;
1801 
1802       sgot = htab->root.sgot;
1803       BFD_ASSERT (sgot != NULL);
1804       value = htab->tls_ldm_got.offset + sgot->output_offset;
1805       bfd_put_32 (input_bfd, value, hit_data);
1806 
1807       if (!htab->tls_ldm_got.rel_emitted)
1808 	{
1809 	  asection * srelgot = bfd_get_linker_section (dynobj, ".rela.got");
1810 	  Elf_Internal_Rela rel;
1811 
1812 	  BFD_ASSERT (srelgot != NULL);
1813 	  htab->tls_ldm_got.rel_emitted ++;
1814 	  rel.r_offset = (sgot->output_section->vma
1815 			  + sgot->output_offset
1816 			  + htab->tls_ldm_got.offset);
1817 	  bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + htab->tls_ldm_got.offset);
1818 	  bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + htab->tls_ldm_got.offset+4);
1819 	  rel.r_info = ELF32_R_INFO (0, R_MN10300_TLS_DTPMOD);
1820 	  rel.r_addend = 0;
1821 	  bfd_elf32_swap_reloca_out (output_bfd, & rel,
1822 				     (bfd_byte *) ((Elf32_External_Rela *) srelgot->contents
1823 						   + srelgot->reloc_count));
1824 	  ++ srelgot->reloc_count;
1825 	}
1826 
1827       return bfd_reloc_ok;
1828 
1829     case R_MN10300_TLS_GOTIE:
1830       value = tpoff (info, value);
1831       /* Fall Through.  */
1832 
1833     case R_MN10300_TLS_GD:
1834     case R_MN10300_TLS_IE:
1835     case R_MN10300_GOT32:
1836     case R_MN10300_GOT24:
1837     case R_MN10300_GOT16:
1838       if (dynobj == NULL)
1839 	return bfd_reloc_dangerous;
1840 
1841       sgot = htab->root.sgot;
1842       if (r_type == R_MN10300_TLS_GD)
1843 	value = dtpoff (info, value);
1844 
1845       if (h != NULL)
1846 	{
1847 	  bfd_vma off;
1848 
1849 	  off = h->got.offset;
1850 	  /* Offsets in the GOT are allocated in check_relocs
1851 	     which is not called for shared libraries... */
1852 	  if (off == (bfd_vma) -1)
1853 	    off = 0;
1854 
1855 	  if (sgot->contents != NULL
1856 	      && (! elf_hash_table (info)->dynamic_sections_created
1857 		  || SYMBOL_REFERENCES_LOCAL (info, h)))
1858 	    /* This is actually a static link, or it is a
1859 	       -Bsymbolic link and the symbol is defined
1860 	       locally, or the symbol was forced to be local
1861 	       because of a version file.  We must initialize
1862 	       this entry in the global offset table.
1863 
1864 	       When doing a dynamic link, we create a .rela.got
1865 	       relocation entry to initialize the value.  This
1866 	       is done in the finish_dynamic_symbol routine.  */
1867 	    bfd_put_32 (output_bfd, value,
1868 			sgot->contents + off);
1869 
1870 	  value = sgot->output_offset + off;
1871 	}
1872       else
1873 	{
1874 	  bfd_vma off;
1875 
1876 	  off = elf_local_got_offsets (input_bfd)[symndx];
1877 
1878 	  if (off & 1)
1879 	    bfd_put_32 (output_bfd, value, sgot->contents + (off & ~ 1));
1880 	  else
1881 	    {
1882 	      bfd_put_32 (output_bfd, value, sgot->contents + off);
1883 
1884 	      if (info->shared)
1885 		{
1886 		  asection * srelgot;
1887 		  Elf_Internal_Rela outrel;
1888 
1889 		  srelgot = bfd_get_linker_section (dynobj, ".rela.got");
1890 		  BFD_ASSERT (srelgot != NULL);
1891 
1892 		  outrel.r_offset = (sgot->output_section->vma
1893 				     + sgot->output_offset
1894 				     + off);
1895 		  switch (r_type)
1896 		    {
1897 		    case R_MN10300_TLS_GD:
1898 		      outrel.r_info = ELF32_R_INFO (0, R_MN10300_TLS_DTPOFF);
1899 		      outrel.r_offset = (sgot->output_section->vma
1900 					 + sgot->output_offset
1901 					 + off + 4);
1902 		      bfd_elf32_swap_reloca_out (output_bfd, & outrel,
1903 						 (bfd_byte *) (((Elf32_External_Rela *)
1904 								srelgot->contents)
1905 							       + srelgot->reloc_count));
1906 		      ++ srelgot->reloc_count;
1907 		      outrel.r_info = ELF32_R_INFO (0, R_MN10300_TLS_DTPMOD);
1908 		      break;
1909 		    case R_MN10300_TLS_GOTIE:
1910 		    case R_MN10300_TLS_IE:
1911 		      outrel.r_info = ELF32_R_INFO (0, R_MN10300_TLS_TPOFF);
1912 		      break;
1913 		    default:
1914 		      outrel.r_info = ELF32_R_INFO (0, R_MN10300_RELATIVE);
1915 		      break;
1916 		    }
1917 
1918 		  outrel.r_addend = value;
1919 		  bfd_elf32_swap_reloca_out (output_bfd, &outrel,
1920 					     (bfd_byte *) (((Elf32_External_Rela *)
1921 							    srelgot->contents)
1922 							   + srelgot->reloc_count));
1923 		  ++ srelgot->reloc_count;
1924 		  elf_local_got_offsets (input_bfd)[symndx] |= 1;
1925 		}
1926 
1927 	      value = sgot->output_offset + (off & ~(bfd_vma) 1);
1928 	    }
1929 	}
1930 
1931       value += addend;
1932 
1933       if (r_type == R_MN10300_TLS_IE)
1934 	{
1935 	  value += sgot->output_section->vma;
1936 	  bfd_put_32 (input_bfd, value, hit_data);
1937 	  return bfd_reloc_ok;
1938 	}
1939       else if (r_type == R_MN10300_TLS_GOTIE
1940 	       || r_type == R_MN10300_TLS_GD
1941 	       || r_type == R_MN10300_TLS_LD)
1942 	{
1943 	  bfd_put_32 (input_bfd, value, hit_data);
1944 	  return bfd_reloc_ok;
1945 	}
1946       else if (r_type == R_MN10300_GOT32)
1947 	{
1948 	  bfd_put_32 (input_bfd, value, hit_data);
1949 	  return bfd_reloc_ok;
1950 	}
1951       else if (r_type == R_MN10300_GOT24)
1952 	{
1953 	  if ((long) value > 0x7fffff || (long) value < -0x800000)
1954 	    return bfd_reloc_overflow;
1955 
1956 	  bfd_put_8 (input_bfd, value & 0xff, hit_data);
1957 	  bfd_put_8 (input_bfd, (value >> 8) & 0xff, hit_data + 1);
1958 	  bfd_put_8 (input_bfd, (value >> 16) & 0xff, hit_data + 2);
1959 	  return bfd_reloc_ok;
1960 	}
1961       else if (r_type == R_MN10300_GOT16)
1962 	{
1963 	  if ((long) value > 0x7fff || (long) value < -0x8000)
1964 	    return bfd_reloc_overflow;
1965 
1966 	  bfd_put_16 (input_bfd, value, hit_data);
1967 	  return bfd_reloc_ok;
1968 	}
1969       /* Fall through.  */
1970 
1971     default:
1972       return bfd_reloc_notsupported;
1973     }
1974 }
1975 
1976 /* Relocate an MN10300 ELF section.  */
1977 
1978 static bfd_boolean
1979 mn10300_elf_relocate_section (bfd *output_bfd,
1980 			      struct bfd_link_info *info,
1981 			      bfd *input_bfd,
1982 			      asection *input_section,
1983 			      bfd_byte *contents,
1984 			      Elf_Internal_Rela *relocs,
1985 			      Elf_Internal_Sym *local_syms,
1986 			      asection **local_sections)
1987 {
1988   Elf_Internal_Shdr *symtab_hdr;
1989   struct elf_link_hash_entry **sym_hashes;
1990   Elf_Internal_Rela *rel, *relend;
1991   Elf_Internal_Rela * trel;
1992 
1993   symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1994   sym_hashes = elf_sym_hashes (input_bfd);
1995 
1996   rel = relocs;
1997   relend = relocs + input_section->reloc_count;
1998   for (; rel < relend; rel++)
1999     {
2000       int r_type;
2001       reloc_howto_type *howto;
2002       unsigned long r_symndx;
2003       Elf_Internal_Sym *sym;
2004       asection *sec;
2005       struct elf32_mn10300_link_hash_entry *h;
2006       bfd_vma relocation;
2007       bfd_reloc_status_type r;
2008       int tls_r_type;
2009       bfd_boolean unresolved_reloc = FALSE;
2010       bfd_boolean warned;
2011       struct elf_link_hash_entry * hh;
2012 
2013       relocation = 0;
2014       r_symndx = ELF32_R_SYM (rel->r_info);
2015       r_type = ELF32_R_TYPE (rel->r_info);
2016       howto = elf_mn10300_howto_table + r_type;
2017 
2018       /* Just skip the vtable gc relocs.  */
2019       if (r_type == R_MN10300_GNU_VTINHERIT
2020 	  || r_type == R_MN10300_GNU_VTENTRY)
2021 	continue;
2022 
2023       h = NULL;
2024       sym = NULL;
2025       sec = NULL;
2026       if (r_symndx < symtab_hdr->sh_info)
2027 	hh = NULL;
2028       else
2029 	{
2030 	  RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2031 				   r_symndx, symtab_hdr, sym_hashes,
2032 				   hh, sec, relocation,
2033 				   unresolved_reloc, warned);
2034 	}
2035       h = elf_mn10300_hash_entry (hh);
2036 
2037       tls_r_type = elf_mn10300_tls_transition (info, r_type, hh, input_section, 0);
2038       if (tls_r_type != r_type)
2039 	{
2040 	  bfd_boolean had_plt;
2041 
2042 	  had_plt = mn10300_do_tls_transition (input_bfd, r_type, tls_r_type,
2043 					       contents, rel->r_offset);
2044 	  r_type = tls_r_type;
2045 	  howto = elf_mn10300_howto_table + r_type;
2046 
2047 	  if (had_plt)
2048 	    for (trel = rel+1; trel < relend; trel++)
2049 	      if ((ELF32_R_TYPE (trel->r_info) == R_MN10300_PLT32
2050 		   || ELF32_R_TYPE (trel->r_info) == R_MN10300_PCREL32)
2051 		  && rel->r_offset + had_plt == trel->r_offset)
2052 		trel->r_info = ELF32_R_INFO (0, R_MN10300_NONE);
2053 	}
2054 
2055       if (r_symndx < symtab_hdr->sh_info)
2056 	{
2057 	  sym = local_syms + r_symndx;
2058 	  sec = local_sections[r_symndx];
2059 	  relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2060 	}
2061       else
2062 	{
2063 	  if ((h->root.root.type == bfd_link_hash_defined
2064 	      || h->root.root.type == bfd_link_hash_defweak)
2065 	      && (   r_type == R_MN10300_GOTPC32
2066 		  || r_type == R_MN10300_GOTPC16
2067 		  || ((   r_type == R_MN10300_PLT32
2068 		       || r_type == R_MN10300_PLT16)
2069 		      && ELF_ST_VISIBILITY (h->root.other) != STV_INTERNAL
2070 		      && ELF_ST_VISIBILITY (h->root.other) != STV_HIDDEN
2071 		      && h->root.plt.offset != (bfd_vma) -1)
2072 		  || ((   r_type == R_MN10300_GOT32
2073 		       || r_type == R_MN10300_GOT24
2074 		       || r_type == R_MN10300_TLS_GD
2075 		       || r_type == R_MN10300_TLS_LD
2076 		       || r_type == R_MN10300_TLS_GOTIE
2077 		       || r_type == R_MN10300_TLS_IE
2078 		       || r_type == R_MN10300_GOT16)
2079 		      && elf_hash_table (info)->dynamic_sections_created
2080 		      && !SYMBOL_REFERENCES_LOCAL (info, hh))
2081 		  || (r_type == R_MN10300_32
2082 		      /* _32 relocs in executables force _COPY relocs,
2083 			 such that the address of the symbol ends up
2084 			 being local.  */
2085 		      && !info->executable
2086 		      && !SYMBOL_REFERENCES_LOCAL (info, hh)
2087 		      && ((input_section->flags & SEC_ALLOC) != 0
2088 			  /* DWARF will emit R_MN10300_32 relocations
2089 			     in its sections against symbols defined
2090 			     externally in shared libraries.  We can't
2091 			     do anything with them here.  */
2092 			  || ((input_section->flags & SEC_DEBUGGING) != 0
2093 			      && h->root.def_dynamic)))))
2094 	    /* In these cases, we don't need the relocation
2095 	       value.  We check specially because in some
2096 	       obscure cases sec->output_section will be NULL.  */
2097 	    relocation = 0;
2098 
2099 	  else if (!info->relocatable && unresolved_reloc
2100 		   && _bfd_elf_section_offset (output_bfd, info, input_section,
2101 					       rel->r_offset) != (bfd_vma) -1)
2102 
2103 	    (*_bfd_error_handler)
2104 	      (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
2105 	       input_bfd,
2106 	       input_section,
2107 	       (long) rel->r_offset,
2108 	       howto->name,
2109 	       h->root.root.root.string);
2110 	}
2111 
2112       if (sec != NULL && discarded_section (sec))
2113 	RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
2114 					 rel, 1, relend, howto, 0, contents);
2115 
2116       if (info->relocatable)
2117 	continue;
2118 
2119       r = mn10300_elf_final_link_relocate (howto, input_bfd, output_bfd,
2120 					   input_section,
2121 					   contents, rel->r_offset,
2122 					   relocation, rel->r_addend,
2123 					   (struct elf_link_hash_entry *) h,
2124 					   r_symndx,
2125 					   info, sec, h == NULL);
2126 
2127       if (r != bfd_reloc_ok)
2128 	{
2129 	  const char *name;
2130 	  const char *msg = NULL;
2131 
2132 	  if (h != NULL)
2133 	    name = h->root.root.root.string;
2134 	  else
2135 	    {
2136 	      name = (bfd_elf_string_from_elf_section
2137 		      (input_bfd, symtab_hdr->sh_link, sym->st_name));
2138 	      if (name == NULL || *name == '\0')
2139 		name = bfd_section_name (input_bfd, sec);
2140 	    }
2141 
2142 	  switch (r)
2143 	    {
2144 	    case bfd_reloc_overflow:
2145 	      if (! ((*info->callbacks->reloc_overflow)
2146 		     (info, (h ? &h->root.root : NULL), name,
2147 		      howto->name, (bfd_vma) 0, input_bfd,
2148 		      input_section, rel->r_offset)))
2149 		return FALSE;
2150 	      break;
2151 
2152 	    case bfd_reloc_undefined:
2153 	      if (! ((*info->callbacks->undefined_symbol)
2154 		     (info, name, input_bfd, input_section,
2155 		      rel->r_offset, TRUE)))
2156 		return FALSE;
2157 	      break;
2158 
2159 	    case bfd_reloc_outofrange:
2160 	      msg = _("internal error: out of range error");
2161 	      goto common_error;
2162 
2163 	    case bfd_reloc_notsupported:
2164 	      msg = _("internal error: unsupported relocation error");
2165 	      goto common_error;
2166 
2167 	    case bfd_reloc_dangerous:
2168 	      if (r_type == R_MN10300_PCREL32)
2169 		msg = _("error: inappropriate relocation type for shared"
2170 			" library (did you forget -fpic?)");
2171 	      else if (r_type == R_MN10300_GOT32)
2172 		msg = _("%B: taking the address of protected function"
2173 			" '%s' cannot be done when making a shared library");
2174 	      else
2175 		msg = _("internal error: suspicious relocation type used"
2176 			" in shared library");
2177 	      goto common_error;
2178 
2179 	    default:
2180 	      msg = _("internal error: unknown error");
2181 	      /* Fall through.  */
2182 
2183 	    common_error:
2184 	      _bfd_error_handler (msg, input_bfd, name);
2185 	      bfd_set_error (bfd_error_bad_value);
2186 	      return FALSE;
2187 	    }
2188 	}
2189     }
2190 
2191   return TRUE;
2192 }
2193 
2194 /* Finish initializing one hash table entry.  */
2195 
2196 static bfd_boolean
2197 elf32_mn10300_finish_hash_table_entry (struct bfd_hash_entry *gen_entry,
2198 				       void * in_args)
2199 {
2200   struct elf32_mn10300_link_hash_entry *entry;
2201   struct bfd_link_info *link_info = (struct bfd_link_info *) in_args;
2202   unsigned int byte_count = 0;
2203 
2204   entry = (struct elf32_mn10300_link_hash_entry *) gen_entry;
2205 
2206   /* If we already know we want to convert "call" to "calls" for calls
2207      to this symbol, then return now.  */
2208   if (entry->flags == MN10300_CONVERT_CALL_TO_CALLS)
2209     return TRUE;
2210 
2211   /* If there are no named calls to this symbol, or there's nothing we
2212      can move from the function itself into the "call" instruction,
2213      then note that all "call" instructions should be converted into
2214      "calls" instructions and return.  If a symbol is available for
2215      dynamic symbol resolution (overridable or overriding), avoid
2216      custom calling conventions.  */
2217   if (entry->direct_calls == 0
2218       || (entry->stack_size == 0 && entry->movm_args == 0)
2219       || (elf_hash_table (link_info)->dynamic_sections_created
2220 	  && ELF_ST_VISIBILITY (entry->root.other) != STV_INTERNAL
2221 	  && ELF_ST_VISIBILITY (entry->root.other) != STV_HIDDEN))
2222     {
2223       /* Make a note that we should convert "call" instructions to "calls"
2224 	 instructions for calls to this symbol.  */
2225       entry->flags |= MN10300_CONVERT_CALL_TO_CALLS;
2226       return TRUE;
2227     }
2228 
2229   /* We may be able to move some instructions from the function itself into
2230      the "call" instruction.  Count how many bytes we might be able to
2231      eliminate in the function itself.  */
2232 
2233   /* A movm instruction is two bytes.  */
2234   if (entry->movm_args)
2235     byte_count += 2;
2236 
2237   /* Count the insn to allocate stack space too.  */
2238   if (entry->stack_size > 0)
2239     {
2240       if (entry->stack_size <= 128)
2241 	byte_count += 3;
2242       else
2243 	byte_count += 4;
2244     }
2245 
2246   /* If using "call" will result in larger code, then turn all
2247      the associated "call" instructions into "calls" instructions.  */
2248   if (byte_count < entry->direct_calls)
2249     entry->flags |= MN10300_CONVERT_CALL_TO_CALLS;
2250 
2251   /* This routine never fails.  */
2252   return TRUE;
2253 }
2254 
2255 /* Used to count hash table entries.  */
2256 
2257 static bfd_boolean
2258 elf32_mn10300_count_hash_table_entries (struct bfd_hash_entry *gen_entry ATTRIBUTE_UNUSED,
2259 					void * in_args)
2260 {
2261   int *count = (int *) in_args;
2262 
2263   (*count) ++;
2264   return TRUE;
2265 }
2266 
2267 /* Used to enumerate hash table entries into a linear array.  */
2268 
2269 static bfd_boolean
2270 elf32_mn10300_list_hash_table_entries (struct bfd_hash_entry *gen_entry,
2271 				       void * in_args)
2272 {
2273   struct bfd_hash_entry ***ptr = (struct bfd_hash_entry ***) in_args;
2274 
2275   **ptr = gen_entry;
2276   (*ptr) ++;
2277   return TRUE;
2278 }
2279 
2280 /* Used to sort the array created by the above.  */
2281 
2282 static int
2283 sort_by_value (const void *va, const void *vb)
2284 {
2285   struct elf32_mn10300_link_hash_entry *a
2286     = *(struct elf32_mn10300_link_hash_entry **) va;
2287   struct elf32_mn10300_link_hash_entry *b
2288     = *(struct elf32_mn10300_link_hash_entry **) vb;
2289 
2290   return a->value - b->value;
2291 }
2292 
2293 /* Compute the stack size and movm arguments for the function
2294    referred to by HASH at address ADDR in section with
2295    contents CONTENTS, store the information in the hash table.  */
2296 
2297 static void
2298 compute_function_info (bfd *abfd,
2299 		       struct elf32_mn10300_link_hash_entry *hash,
2300 		       bfd_vma addr,
2301 		       unsigned char *contents)
2302 {
2303   unsigned char byte1, byte2;
2304   /* We only care about a very small subset of the possible prologue
2305      sequences here.  Basically we look for:
2306 
2307      movm [d2,d3,a2,a3],sp (optional)
2308      add <size>,sp (optional, and only for sizes which fit in an unsigned
2309 		    8 bit number)
2310 
2311      If we find anything else, we quit.  */
2312 
2313   /* Look for movm [regs],sp.  */
2314   byte1 = bfd_get_8 (abfd, contents + addr);
2315   byte2 = bfd_get_8 (abfd, contents + addr + 1);
2316 
2317   if (byte1 == 0xcf)
2318     {
2319       hash->movm_args = byte2;
2320       addr += 2;
2321       byte1 = bfd_get_8 (abfd, contents + addr);
2322       byte2 = bfd_get_8 (abfd, contents + addr + 1);
2323     }
2324 
2325   /* Now figure out how much stack space will be allocated by the movm
2326      instruction.  We need this kept separate from the function's normal
2327      stack space.  */
2328   if (hash->movm_args)
2329     {
2330       /* Space for d2.  */
2331       if (hash->movm_args & 0x80)
2332 	hash->movm_stack_size += 4;
2333 
2334       /* Space for d3.  */
2335       if (hash->movm_args & 0x40)
2336 	hash->movm_stack_size += 4;
2337 
2338       /* Space for a2.  */
2339       if (hash->movm_args & 0x20)
2340 	hash->movm_stack_size += 4;
2341 
2342       /* Space for a3.  */
2343       if (hash->movm_args & 0x10)
2344 	hash->movm_stack_size += 4;
2345 
2346       /* "other" space.  d0, d1, a0, a1, mdr, lir, lar, 4 byte pad.  */
2347       if (hash->movm_args & 0x08)
2348 	hash->movm_stack_size += 8 * 4;
2349 
2350       if (bfd_get_mach (abfd) == bfd_mach_am33
2351 	  || bfd_get_mach (abfd) == bfd_mach_am33_2)
2352 	{
2353 	  /* "exother" space.  e0, e1, mdrq, mcrh, mcrl, mcvf */
2354 	  if (hash->movm_args & 0x1)
2355 	    hash->movm_stack_size += 6 * 4;
2356 
2357 	  /* exreg1 space.  e4, e5, e6, e7 */
2358 	  if (hash->movm_args & 0x2)
2359 	    hash->movm_stack_size += 4 * 4;
2360 
2361 	  /* exreg0 space.  e2, e3  */
2362 	  if (hash->movm_args & 0x4)
2363 	    hash->movm_stack_size += 2 * 4;
2364 	}
2365     }
2366 
2367   /* Now look for the two stack adjustment variants.  */
2368   if (byte1 == 0xf8 && byte2 == 0xfe)
2369     {
2370       int temp = bfd_get_8 (abfd, contents + addr + 2);
2371       temp = ((temp & 0xff) ^ (~0x7f)) + 0x80;
2372 
2373       hash->stack_size = -temp;
2374     }
2375   else if (byte1 == 0xfa && byte2 == 0xfe)
2376     {
2377       int temp = bfd_get_16 (abfd, contents + addr + 2);
2378       temp = ((temp & 0xffff) ^ (~0x7fff)) + 0x8000;
2379       temp = -temp;
2380 
2381       if (temp < 255)
2382 	hash->stack_size = temp;
2383     }
2384 
2385   /* If the total stack to be allocated by the call instruction is more
2386      than 255 bytes, then we can't remove the stack adjustment by using
2387      "call" (we might still be able to remove the "movm" instruction.  */
2388   if (hash->stack_size + hash->movm_stack_size > 255)
2389     hash->stack_size = 0;
2390 }
2391 
2392 /* Delete some bytes from a section while relaxing.  */
2393 
2394 static bfd_boolean
2395 mn10300_elf_relax_delete_bytes (bfd *abfd,
2396 				asection *sec,
2397 				bfd_vma addr,
2398 				int count)
2399 {
2400   Elf_Internal_Shdr *symtab_hdr;
2401   unsigned int sec_shndx;
2402   bfd_byte *contents;
2403   Elf_Internal_Rela *irel, *irelend;
2404   Elf_Internal_Rela *irelalign;
2405   bfd_vma toaddr;
2406   Elf_Internal_Sym *isym, *isymend;
2407   struct elf_link_hash_entry **sym_hashes;
2408   struct elf_link_hash_entry **end_hashes;
2409   unsigned int symcount;
2410 
2411   sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
2412 
2413   contents = elf_section_data (sec)->this_hdr.contents;
2414 
2415   irelalign = NULL;
2416   toaddr = sec->size;
2417 
2418   irel = elf_section_data (sec)->relocs;
2419   irelend = irel + sec->reloc_count;
2420 
2421   if (sec->reloc_count > 0)
2422     {
2423       /* If there is an align reloc at the end of the section ignore it.
2424 	 GAS creates these relocs for reasons of its own, and they just
2425 	 serve to keep the section artifically inflated.  */
2426       if (ELF32_R_TYPE ((irelend - 1)->r_info) == (int) R_MN10300_ALIGN)
2427 	--irelend;
2428 
2429       /* The deletion must stop at the next ALIGN reloc for an aligment
2430 	 power larger than, or not a multiple of, the number of bytes we
2431 	 are deleting.  */
2432       for (; irel < irelend; irel++)
2433 	{
2434 	  int alignment = 1 << irel->r_addend;
2435 
2436 	  if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_ALIGN
2437 	      && irel->r_offset > addr
2438 	      && irel->r_offset < toaddr
2439 	      && (count < alignment
2440 		  || alignment % count != 0))
2441 	    {
2442 	      irelalign = irel;
2443 	      toaddr = irel->r_offset;
2444 	      break;
2445 	    }
2446 	}
2447     }
2448 
2449   /* Actually delete the bytes.  */
2450   memmove (contents + addr, contents + addr + count,
2451 	   (size_t) (toaddr - addr - count));
2452 
2453   /* Adjust the section's size if we are shrinking it, or else
2454      pad the bytes between the end of the shrunken region and
2455      the start of the next region with NOP codes.  */
2456   if (irelalign == NULL)
2457     {
2458       sec->size -= count;
2459       /* Include symbols at the end of the section, but
2460 	 not at the end of a sub-region of the section.  */
2461       toaddr ++;
2462     }
2463   else
2464     {
2465       int i;
2466 
2467 #define NOP_OPCODE 0xcb
2468 
2469       for (i = 0; i < count; i ++)
2470 	bfd_put_8 (abfd, (bfd_vma) NOP_OPCODE, contents + toaddr - count + i);
2471     }
2472 
2473   /* Adjust all the relocs.  */
2474   for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
2475     {
2476       /* Get the new reloc address.  */
2477       if ((irel->r_offset > addr
2478 	   && irel->r_offset < toaddr)
2479 	  || (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_ALIGN
2480 	      && irel->r_offset == toaddr))
2481 	irel->r_offset -= count;
2482     }
2483 
2484   /* Adjust the local symbols in the section, reducing their value
2485      by the number of bytes deleted.  Note - symbols within the deleted
2486      region are moved to the address of the start of the region, which
2487      actually means that they will address the byte beyond the end of
2488      the region once the deletion has been completed.  */
2489   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2490   isym = (Elf_Internal_Sym *) symtab_hdr->contents;
2491   for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
2492     {
2493       if (isym->st_shndx == sec_shndx
2494 	  && isym->st_value > addr
2495 	  && isym->st_value < toaddr)
2496 	{
2497 	  if (isym->st_value < addr + count)
2498 	    isym->st_value = addr;
2499 	  else
2500 	    isym->st_value -= count;
2501 	}
2502       /* Adjust the function symbol's size as well.  */
2503       else if (isym->st_shndx == sec_shndx
2504 	       && ELF_ST_TYPE (isym->st_info) == STT_FUNC
2505 	       && isym->st_value + isym->st_size > addr
2506 	       && isym->st_value + isym->st_size < toaddr)
2507 	isym->st_size -= count;
2508     }
2509 
2510   /* Now adjust the global symbols defined in this section.  */
2511   symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2512 	      - symtab_hdr->sh_info);
2513   sym_hashes = elf_sym_hashes (abfd);
2514   end_hashes = sym_hashes + symcount;
2515   for (; sym_hashes < end_hashes; sym_hashes++)
2516     {
2517       struct elf_link_hash_entry *sym_hash = *sym_hashes;
2518 
2519       if ((sym_hash->root.type == bfd_link_hash_defined
2520 	   || sym_hash->root.type == bfd_link_hash_defweak)
2521 	  && sym_hash->root.u.def.section == sec
2522 	  && sym_hash->root.u.def.value > addr
2523 	  && sym_hash->root.u.def.value < toaddr)
2524 	{
2525 	  if (sym_hash->root.u.def.value < addr + count)
2526 	    sym_hash->root.u.def.value = addr;
2527 	  else
2528 	    sym_hash->root.u.def.value -= count;
2529 	}
2530       /* Adjust the function symbol's size as well.  */
2531       else if (sym_hash->root.type == bfd_link_hash_defined
2532 	       && sym_hash->root.u.def.section == sec
2533 	       && sym_hash->type == STT_FUNC
2534 	       && sym_hash->root.u.def.value + sym_hash->size > addr
2535 	       && sym_hash->root.u.def.value + sym_hash->size < toaddr)
2536 	sym_hash->size -= count;
2537     }
2538 
2539   /* See if we can move the ALIGN reloc forward.
2540      We have adjusted r_offset for it already.  */
2541   if (irelalign != NULL)
2542     {
2543       bfd_vma alignto, alignaddr;
2544 
2545       if ((int) irelalign->r_addend > 0)
2546 	{
2547 	  /* This is the old address.  */
2548 	  alignto = BFD_ALIGN (toaddr, 1 << irelalign->r_addend);
2549 	  /* This is where the align points to now.  */
2550 	  alignaddr = BFD_ALIGN (irelalign->r_offset,
2551 				 1 << irelalign->r_addend);
2552 	  if (alignaddr < alignto)
2553 	    /* Tail recursion.  */
2554 	    return mn10300_elf_relax_delete_bytes (abfd, sec, alignaddr,
2555 						   (int) (alignto - alignaddr));
2556 	}
2557     }
2558 
2559   return TRUE;
2560 }
2561 
2562 /* Return TRUE if a symbol exists at the given address, else return
2563    FALSE.  */
2564 
2565 static bfd_boolean
2566 mn10300_elf_symbol_address_p (bfd *abfd,
2567 			      asection *sec,
2568 			      Elf_Internal_Sym *isym,
2569 			      bfd_vma addr)
2570 {
2571   Elf_Internal_Shdr *symtab_hdr;
2572   unsigned int sec_shndx;
2573   Elf_Internal_Sym *isymend;
2574   struct elf_link_hash_entry **sym_hashes;
2575   struct elf_link_hash_entry **end_hashes;
2576   unsigned int symcount;
2577 
2578   sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
2579 
2580   /* Examine all the symbols.  */
2581   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2582   for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
2583     if (isym->st_shndx == sec_shndx
2584 	&& isym->st_value == addr)
2585       return TRUE;
2586 
2587   symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2588 	      - symtab_hdr->sh_info);
2589   sym_hashes = elf_sym_hashes (abfd);
2590   end_hashes = sym_hashes + symcount;
2591   for (; sym_hashes < end_hashes; sym_hashes++)
2592     {
2593       struct elf_link_hash_entry *sym_hash = *sym_hashes;
2594 
2595       if ((sym_hash->root.type == bfd_link_hash_defined
2596 	   || sym_hash->root.type == bfd_link_hash_defweak)
2597 	  && sym_hash->root.u.def.section == sec
2598 	  && sym_hash->root.u.def.value == addr)
2599 	return TRUE;
2600     }
2601 
2602   return FALSE;
2603 }
2604 
2605 /* This function handles relaxing for the mn10300.
2606 
2607    There are quite a few relaxing opportunities available on the mn10300:
2608 
2609 	* calls:32 -> calls:16 					   2 bytes
2610 	* call:32  -> call:16					   2 bytes
2611 
2612 	* call:32 -> calls:32					   1 byte
2613 	* call:16 -> calls:16					   1 byte
2614 		* These are done anytime using "calls" would result
2615 		in smaller code, or when necessary to preserve the
2616 		meaning of the program.
2617 
2618 	* call:32						   varies
2619 	* call:16
2620 		* In some circumstances we can move instructions
2621 		from a function prologue into a "call" instruction.
2622 		This is only done if the resulting code is no larger
2623 		than the original code.
2624 
2625 	* jmp:32 -> jmp:16					   2 bytes
2626 	* jmp:16 -> bra:8					   1 byte
2627 
2628 		* If the previous instruction is a conditional branch
2629 		around the jump/bra, we may be able to reverse its condition
2630 		and change its target to the jump's target.  The jump/bra
2631 		can then be deleted.				   2 bytes
2632 
2633 	* mov abs32 -> mov abs16				   1 or 2 bytes
2634 
2635 	* Most instructions which accept imm32 can relax to imm16  1 or 2 bytes
2636 	- Most instructions which accept imm16 can relax to imm8   1 or 2 bytes
2637 
2638 	* Most instructions which accept d32 can relax to d16	   1 or 2 bytes
2639 	- Most instructions which accept d16 can relax to d8	   1 or 2 bytes
2640 
2641 	We don't handle imm16->imm8 or d16->d8 as they're very rare
2642 	and somewhat more difficult to support.  */
2643 
2644 static bfd_boolean
2645 mn10300_elf_relax_section (bfd *abfd,
2646 			   asection *sec,
2647 			   struct bfd_link_info *link_info,
2648 			   bfd_boolean *again)
2649 {
2650   Elf_Internal_Shdr *symtab_hdr;
2651   Elf_Internal_Rela *internal_relocs = NULL;
2652   Elf_Internal_Rela *irel, *irelend;
2653   bfd_byte *contents = NULL;
2654   Elf_Internal_Sym *isymbuf = NULL;
2655   struct elf32_mn10300_link_hash_table *hash_table;
2656   asection *section = sec;
2657   bfd_vma align_gap_adjustment;
2658 
2659   if (link_info->relocatable)
2660     (*link_info->callbacks->einfo)
2661       (_("%P%F: --relax and -r may not be used together\n"));
2662 
2663   /* Assume nothing changes.  */
2664   *again = FALSE;
2665 
2666   /* We need a pointer to the mn10300 specific hash table.  */
2667   hash_table = elf32_mn10300_hash_table (link_info);
2668   if (hash_table == NULL)
2669     return FALSE;
2670 
2671   /* Initialize fields in each hash table entry the first time through.  */
2672   if ((hash_table->flags & MN10300_HASH_ENTRIES_INITIALIZED) == 0)
2673     {
2674       bfd *input_bfd;
2675 
2676       /* Iterate over all the input bfds.  */
2677       for (input_bfd = link_info->input_bfds;
2678 	   input_bfd != NULL;
2679 	   input_bfd = input_bfd->link_next)
2680 	{
2681 	  /* We're going to need all the symbols for each bfd.  */
2682 	  symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2683 	  if (symtab_hdr->sh_info != 0)
2684 	    {
2685 	      isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
2686 	      if (isymbuf == NULL)
2687 		isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2688 						symtab_hdr->sh_info, 0,
2689 						NULL, NULL, NULL);
2690 	      if (isymbuf == NULL)
2691 		goto error_return;
2692 	    }
2693 
2694 	  /* Iterate over each section in this bfd.  */
2695 	  for (section = input_bfd->sections;
2696 	       section != NULL;
2697 	       section = section->next)
2698 	    {
2699 	      struct elf32_mn10300_link_hash_entry *hash;
2700 	      asection *sym_sec = NULL;
2701 	      const char *sym_name;
2702 	      char *new_name;
2703 
2704 	      /* If there's nothing to do in this section, skip it.  */
2705 	      if (! ((section->flags & SEC_RELOC) != 0
2706 		     && section->reloc_count != 0))
2707 		continue;
2708 	      if ((section->flags & SEC_ALLOC) == 0)
2709 		continue;
2710 
2711 	      /* Get cached copy of section contents if it exists.  */
2712 	      if (elf_section_data (section)->this_hdr.contents != NULL)
2713 		contents = elf_section_data (section)->this_hdr.contents;
2714 	      else if (section->size != 0)
2715 		{
2716 		  /* Go get them off disk.  */
2717 		  if (!bfd_malloc_and_get_section (input_bfd, section,
2718 						   &contents))
2719 		    goto error_return;
2720 		}
2721 	      else
2722 		contents = NULL;
2723 
2724 	      /* If there aren't any relocs, then there's nothing to do.  */
2725 	      if ((section->flags & SEC_RELOC) != 0
2726 		  && section->reloc_count != 0)
2727 		{
2728 		  /* Get a copy of the native relocations.  */
2729 		  internal_relocs = _bfd_elf_link_read_relocs (input_bfd, section,
2730 							       NULL, NULL,
2731 							       link_info->keep_memory);
2732 		  if (internal_relocs == NULL)
2733 		    goto error_return;
2734 
2735 		  /* Now examine each relocation.  */
2736 		  irel = internal_relocs;
2737 		  irelend = irel + section->reloc_count;
2738 		  for (; irel < irelend; irel++)
2739 		    {
2740 		      long r_type;
2741 		      unsigned long r_index;
2742 		      unsigned char code;
2743 
2744 		      r_type = ELF32_R_TYPE (irel->r_info);
2745 		      r_index = ELF32_R_SYM (irel->r_info);
2746 
2747 		      if (r_type < 0 || r_type >= (int) R_MN10300_MAX)
2748 			goto error_return;
2749 
2750 		      /* We need the name and hash table entry of the target
2751 			 symbol!  */
2752 		      hash = NULL;
2753 		      sym_sec = NULL;
2754 
2755 		      if (r_index < symtab_hdr->sh_info)
2756 			{
2757 			  /* A local symbol.  */
2758 			  Elf_Internal_Sym *isym;
2759 			  struct elf_link_hash_table *elftab;
2760 			  bfd_size_type amt;
2761 
2762 			  isym = isymbuf + r_index;
2763 			  if (isym->st_shndx == SHN_UNDEF)
2764 			    sym_sec = bfd_und_section_ptr;
2765 			  else if (isym->st_shndx == SHN_ABS)
2766 			    sym_sec = bfd_abs_section_ptr;
2767 			  else if (isym->st_shndx == SHN_COMMON)
2768 			    sym_sec = bfd_com_section_ptr;
2769 			  else
2770 			    sym_sec
2771 			      = bfd_section_from_elf_index (input_bfd,
2772 							    isym->st_shndx);
2773 
2774 			  sym_name
2775 			    = bfd_elf_string_from_elf_section (input_bfd,
2776 							       (symtab_hdr
2777 								->sh_link),
2778 							       isym->st_name);
2779 
2780 			  /* If it isn't a function, then we don't care
2781 			     about it.  */
2782 			  if (ELF_ST_TYPE (isym->st_info) != STT_FUNC)
2783 			    continue;
2784 
2785 			  /* Tack on an ID so we can uniquely identify this
2786 			     local symbol in the global hash table.  */
2787 			  amt = strlen (sym_name) + 10;
2788 			  new_name = bfd_malloc (amt);
2789 			  if (new_name == NULL)
2790 			    goto error_return;
2791 
2792 			  sprintf (new_name, "%s_%08x", sym_name, sym_sec->id);
2793 			  sym_name = new_name;
2794 
2795 			  elftab = &hash_table->static_hash_table->root;
2796 			  hash = ((struct elf32_mn10300_link_hash_entry *)
2797 				  elf_link_hash_lookup (elftab, sym_name,
2798 							TRUE, TRUE, FALSE));
2799 			  free (new_name);
2800 			}
2801 		      else
2802 			{
2803 			  r_index -= symtab_hdr->sh_info;
2804 			  hash = (struct elf32_mn10300_link_hash_entry *)
2805 				   elf_sym_hashes (input_bfd)[r_index];
2806 			}
2807 
2808 		      sym_name = hash->root.root.root.string;
2809 		      if ((section->flags & SEC_CODE) != 0)
2810 			{
2811 			  /* If this is not a "call" instruction, then we
2812 			     should convert "call" instructions to "calls"
2813 			     instructions.  */
2814 			  code = bfd_get_8 (input_bfd,
2815 					    contents + irel->r_offset - 1);
2816 			  if (code != 0xdd && code != 0xcd)
2817 			    hash->flags |= MN10300_CONVERT_CALL_TO_CALLS;
2818 			}
2819 
2820 		      /* If this is a jump/call, then bump the
2821 			 direct_calls counter.  Else force "call" to
2822 			 "calls" conversions.  */
2823 		      if (r_type == R_MN10300_PCREL32
2824 			  || r_type == R_MN10300_PLT32
2825 			  || r_type == R_MN10300_PLT16
2826 			  || r_type == R_MN10300_PCREL16)
2827 			hash->direct_calls++;
2828 		      else
2829 			hash->flags |= MN10300_CONVERT_CALL_TO_CALLS;
2830 		    }
2831 		}
2832 
2833 	      /* Now look at the actual contents to get the stack size,
2834 		 and a list of what registers were saved in the prologue
2835 		 (ie movm_args).  */
2836 	      if ((section->flags & SEC_CODE) != 0)
2837 		{
2838 		  Elf_Internal_Sym *isym, *isymend;
2839 		  unsigned int sec_shndx;
2840 		  struct elf_link_hash_entry **hashes;
2841 		  struct elf_link_hash_entry **end_hashes;
2842 		  unsigned int symcount;
2843 
2844 		  sec_shndx = _bfd_elf_section_from_bfd_section (input_bfd,
2845 								 section);
2846 
2847 		  symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2848 			      - symtab_hdr->sh_info);
2849 		  hashes = elf_sym_hashes (input_bfd);
2850 		  end_hashes = hashes + symcount;
2851 
2852 		  /* Look at each function defined in this section and
2853 		     update info for that function.  */
2854 		  isymend = isymbuf + symtab_hdr->sh_info;
2855 		  for (isym = isymbuf; isym < isymend; isym++)
2856 		    {
2857 		      if (isym->st_shndx == sec_shndx
2858 			  && ELF_ST_TYPE (isym->st_info) == STT_FUNC)
2859 			{
2860 			  struct elf_link_hash_table *elftab;
2861 			  bfd_size_type amt;
2862 			  struct elf_link_hash_entry **lhashes = hashes;
2863 
2864 			  /* Skip a local symbol if it aliases a
2865 			     global one.  */
2866 			  for (; lhashes < end_hashes; lhashes++)
2867 			    {
2868 			      hash = (struct elf32_mn10300_link_hash_entry *) *lhashes;
2869 			      if ((hash->root.root.type == bfd_link_hash_defined
2870 				   || hash->root.root.type == bfd_link_hash_defweak)
2871 				  && hash->root.root.u.def.section == section
2872 				  && hash->root.type == STT_FUNC
2873 				  && hash->root.root.u.def.value == isym->st_value)
2874 				break;
2875 			    }
2876 			  if (lhashes != end_hashes)
2877 			    continue;
2878 
2879 			  if (isym->st_shndx == SHN_UNDEF)
2880 			    sym_sec = bfd_und_section_ptr;
2881 			  else if (isym->st_shndx == SHN_ABS)
2882 			    sym_sec = bfd_abs_section_ptr;
2883 			  else if (isym->st_shndx == SHN_COMMON)
2884 			    sym_sec = bfd_com_section_ptr;
2885 			  else
2886 			    sym_sec
2887 			      = bfd_section_from_elf_index (input_bfd,
2888 							    isym->st_shndx);
2889 
2890 			  sym_name = (bfd_elf_string_from_elf_section
2891 				      (input_bfd, symtab_hdr->sh_link,
2892 				       isym->st_name));
2893 
2894 			  /* Tack on an ID so we can uniquely identify this
2895 			     local symbol in the global hash table.  */
2896 			  amt = strlen (sym_name) + 10;
2897 			  new_name = bfd_malloc (amt);
2898 			  if (new_name == NULL)
2899 			    goto error_return;
2900 
2901 			  sprintf (new_name, "%s_%08x", sym_name, sym_sec->id);
2902 			  sym_name = new_name;
2903 
2904 			  elftab = &hash_table->static_hash_table->root;
2905 			  hash = ((struct elf32_mn10300_link_hash_entry *)
2906 				  elf_link_hash_lookup (elftab, sym_name,
2907 							TRUE, TRUE, FALSE));
2908 			  free (new_name);
2909 			  compute_function_info (input_bfd, hash,
2910 						 isym->st_value, contents);
2911 			  hash->value = isym->st_value;
2912 			}
2913 		    }
2914 
2915 		  for (; hashes < end_hashes; hashes++)
2916 		    {
2917 		      hash = (struct elf32_mn10300_link_hash_entry *) *hashes;
2918 		      if ((hash->root.root.type == bfd_link_hash_defined
2919 			   || hash->root.root.type == bfd_link_hash_defweak)
2920 			  && hash->root.root.u.def.section == section
2921 			  && hash->root.type == STT_FUNC)
2922 			compute_function_info (input_bfd, hash,
2923 					       (hash)->root.root.u.def.value,
2924 					       contents);
2925 		    }
2926 		}
2927 
2928 	      /* Cache or free any memory we allocated for the relocs.  */
2929 	      if (internal_relocs != NULL
2930 		  && elf_section_data (section)->relocs != internal_relocs)
2931 		free (internal_relocs);
2932 	      internal_relocs = NULL;
2933 
2934 	      /* Cache or free any memory we allocated for the contents.  */
2935 	      if (contents != NULL
2936 		  && elf_section_data (section)->this_hdr.contents != contents)
2937 		{
2938 		  if (! link_info->keep_memory)
2939 		    free (contents);
2940 		  else
2941 		    {
2942 		      /* Cache the section contents for elf_link_input_bfd.  */
2943 		      elf_section_data (section)->this_hdr.contents = contents;
2944 		    }
2945 		}
2946 	      contents = NULL;
2947 	    }
2948 
2949 	  /* Cache or free any memory we allocated for the symbols.  */
2950 	  if (isymbuf != NULL
2951 	      && symtab_hdr->contents != (unsigned char *) isymbuf)
2952 	    {
2953 	      if (! link_info->keep_memory)
2954 		free (isymbuf);
2955 	      else
2956 		{
2957 		  /* Cache the symbols for elf_link_input_bfd.  */
2958 		  symtab_hdr->contents = (unsigned char *) isymbuf;
2959 		}
2960 	    }
2961 	  isymbuf = NULL;
2962 	}
2963 
2964       /* Now iterate on each symbol in the hash table and perform
2965 	 the final initialization steps on each.  */
2966       elf32_mn10300_link_hash_traverse (hash_table,
2967 					elf32_mn10300_finish_hash_table_entry,
2968 					link_info);
2969       elf32_mn10300_link_hash_traverse (hash_table->static_hash_table,
2970 					elf32_mn10300_finish_hash_table_entry,
2971 					link_info);
2972 
2973       {
2974 	/* This section of code collects all our local symbols, sorts
2975 	   them by value, and looks for multiple symbols referring to
2976 	   the same address.  For those symbols, the flags are merged.
2977 	   At this point, the only flag that can be set is
2978 	   MN10300_CONVERT_CALL_TO_CALLS, so we simply OR the flags
2979 	   together.  */
2980 	int static_count = 0, i;
2981 	struct elf32_mn10300_link_hash_entry **entries;
2982 	struct elf32_mn10300_link_hash_entry **ptr;
2983 
2984 	elf32_mn10300_link_hash_traverse (hash_table->static_hash_table,
2985 					  elf32_mn10300_count_hash_table_entries,
2986 					  &static_count);
2987 
2988 	entries = bfd_malloc (static_count * sizeof (* ptr));
2989 
2990 	ptr = entries;
2991 	elf32_mn10300_link_hash_traverse (hash_table->static_hash_table,
2992 					  elf32_mn10300_list_hash_table_entries,
2993 					  & ptr);
2994 
2995 	qsort (entries, static_count, sizeof (entries[0]), sort_by_value);
2996 
2997 	for (i = 0; i < static_count - 1; i++)
2998 	  if (entries[i]->value && entries[i]->value == entries[i+1]->value)
2999 	    {
3000 	      int v = entries[i]->flags;
3001 	      int j;
3002 
3003 	      for (j = i + 1; j < static_count && entries[j]->value == entries[i]->value; j++)
3004 		v |= entries[j]->flags;
3005 
3006 	      for (j = i; j < static_count && entries[j]->value == entries[i]->value; j++)
3007 		entries[j]->flags = v;
3008 
3009 	      i = j - 1;
3010 	    }
3011       }
3012 
3013       /* All entries in the hash table are fully initialized.  */
3014       hash_table->flags |= MN10300_HASH_ENTRIES_INITIALIZED;
3015 
3016       /* Now that everything has been initialized, go through each
3017 	 code section and delete any prologue insns which will be
3018 	 redundant because their operations will be performed by
3019 	 a "call" instruction.  */
3020       for (input_bfd = link_info->input_bfds;
3021 	   input_bfd != NULL;
3022 	   input_bfd = input_bfd->link_next)
3023 	{
3024 	  /* We're going to need all the local symbols for each bfd.  */
3025 	  symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3026 	  if (symtab_hdr->sh_info != 0)
3027 	    {
3028 	      isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
3029 	      if (isymbuf == NULL)
3030 		isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
3031 						symtab_hdr->sh_info, 0,
3032 						NULL, NULL, NULL);
3033 	      if (isymbuf == NULL)
3034 		goto error_return;
3035 	    }
3036 
3037 	  /* Walk over each section in this bfd.  */
3038 	  for (section = input_bfd->sections;
3039 	       section != NULL;
3040 	       section = section->next)
3041 	    {
3042 	      unsigned int sec_shndx;
3043 	      Elf_Internal_Sym *isym, *isymend;
3044 	      struct elf_link_hash_entry **hashes;
3045 	      struct elf_link_hash_entry **end_hashes;
3046 	      unsigned int symcount;
3047 
3048 	      /* Skip non-code sections and empty sections.  */
3049 	      if ((section->flags & SEC_CODE) == 0 || section->size == 0)
3050 		continue;
3051 
3052 	      if (section->reloc_count != 0)
3053 		{
3054 		  /* Get a copy of the native relocations.  */
3055 		  internal_relocs = _bfd_elf_link_read_relocs (input_bfd, section,
3056 							       NULL, NULL,
3057 							       link_info->keep_memory);
3058 		  if (internal_relocs == NULL)
3059 		    goto error_return;
3060 		}
3061 
3062 	      /* Get cached copy of section contents if it exists.  */
3063 	      if (elf_section_data (section)->this_hdr.contents != NULL)
3064 		contents = elf_section_data (section)->this_hdr.contents;
3065 	      else
3066 		{
3067 		  /* Go get them off disk.  */
3068 		  if (!bfd_malloc_and_get_section (input_bfd, section,
3069 						   &contents))
3070 		    goto error_return;
3071 		}
3072 
3073 	      sec_shndx = _bfd_elf_section_from_bfd_section (input_bfd,
3074 							     section);
3075 
3076 	      /* Now look for any function in this section which needs
3077 		 insns deleted from its prologue.  */
3078 	      isymend = isymbuf + symtab_hdr->sh_info;
3079 	      for (isym = isymbuf; isym < isymend; isym++)
3080 		{
3081 		  struct elf32_mn10300_link_hash_entry *sym_hash;
3082 		  asection *sym_sec = NULL;
3083 		  const char *sym_name;
3084 		  char *new_name;
3085 		  struct elf_link_hash_table *elftab;
3086 		  bfd_size_type amt;
3087 
3088 		  if (isym->st_shndx != sec_shndx)
3089 		    continue;
3090 
3091 		  if (isym->st_shndx == SHN_UNDEF)
3092 		    sym_sec = bfd_und_section_ptr;
3093 		  else if (isym->st_shndx == SHN_ABS)
3094 		    sym_sec = bfd_abs_section_ptr;
3095 		  else if (isym->st_shndx == SHN_COMMON)
3096 		    sym_sec = bfd_com_section_ptr;
3097 		  else
3098 		    sym_sec
3099 		      = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
3100 
3101 		  sym_name
3102 		    = bfd_elf_string_from_elf_section (input_bfd,
3103 						       symtab_hdr->sh_link,
3104 						       isym->st_name);
3105 
3106 		  /* Tack on an ID so we can uniquely identify this
3107 		     local symbol in the global hash table.  */
3108 		  amt = strlen (sym_name) + 10;
3109 		  new_name = bfd_malloc (amt);
3110 		  if (new_name == NULL)
3111 		    goto error_return;
3112 		  sprintf (new_name, "%s_%08x", sym_name, sym_sec->id);
3113 		  sym_name = new_name;
3114 
3115 		  elftab = & hash_table->static_hash_table->root;
3116 		  sym_hash = (struct elf32_mn10300_link_hash_entry *)
3117 		    elf_link_hash_lookup (elftab, sym_name,
3118 					  FALSE, FALSE, FALSE);
3119 
3120 		  free (new_name);
3121 		  if (sym_hash == NULL)
3122 		    continue;
3123 
3124 		  if (! (sym_hash->flags & MN10300_CONVERT_CALL_TO_CALLS)
3125 		      && ! (sym_hash->flags & MN10300_DELETED_PROLOGUE_BYTES))
3126 		    {
3127 		      int bytes = 0;
3128 
3129 		      /* Note that we've changed things.  */
3130 		      elf_section_data (section)->relocs = internal_relocs;
3131 		      elf_section_data (section)->this_hdr.contents = contents;
3132 		      symtab_hdr->contents = (unsigned char *) isymbuf;
3133 
3134 		      /* Count how many bytes we're going to delete.  */
3135 		      if (sym_hash->movm_args)
3136 			bytes += 2;
3137 
3138 		      if (sym_hash->stack_size > 0)
3139 			{
3140 			  if (sym_hash->stack_size <= 128)
3141 			    bytes += 3;
3142 			  else
3143 			    bytes += 4;
3144 			}
3145 
3146 		      /* Note that we've deleted prologue bytes for this
3147 			 function.  */
3148 		      sym_hash->flags |= MN10300_DELETED_PROLOGUE_BYTES;
3149 
3150 		      /* Actually delete the bytes.  */
3151 		      if (!mn10300_elf_relax_delete_bytes (input_bfd,
3152 							   section,
3153 							   isym->st_value,
3154 							   bytes))
3155 			goto error_return;
3156 
3157 		      /* Something changed.  Not strictly necessary, but
3158 			 may lead to more relaxing opportunities.  */
3159 		      *again = TRUE;
3160 		    }
3161 		}
3162 
3163 	      /* Look for any global functions in this section which
3164 		 need insns deleted from their prologues.  */
3165 	      symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
3166 			  - symtab_hdr->sh_info);
3167 	      hashes = elf_sym_hashes (input_bfd);
3168 	      end_hashes = hashes + symcount;
3169 	      for (; hashes < end_hashes; hashes++)
3170 		{
3171 		  struct elf32_mn10300_link_hash_entry *sym_hash;
3172 
3173 		  sym_hash = (struct elf32_mn10300_link_hash_entry *) *hashes;
3174 		  if ((sym_hash->root.root.type == bfd_link_hash_defined
3175 		       || sym_hash->root.root.type == bfd_link_hash_defweak)
3176 		      && sym_hash->root.root.u.def.section == section
3177 		      && ! (sym_hash->flags & MN10300_CONVERT_CALL_TO_CALLS)
3178 		      && ! (sym_hash->flags & MN10300_DELETED_PROLOGUE_BYTES))
3179 		    {
3180 		      int bytes = 0;
3181 		      bfd_vma symval;
3182 		      struct elf_link_hash_entry **hh;
3183 
3184 		      /* Note that we've changed things.  */
3185 		      elf_section_data (section)->relocs = internal_relocs;
3186 		      elf_section_data (section)->this_hdr.contents = contents;
3187 		      symtab_hdr->contents = (unsigned char *) isymbuf;
3188 
3189 		      /* Count how many bytes we're going to delete.  */
3190 		      if (sym_hash->movm_args)
3191 			bytes += 2;
3192 
3193 		      if (sym_hash->stack_size > 0)
3194 			{
3195 			  if (sym_hash->stack_size <= 128)
3196 			    bytes += 3;
3197 			  else
3198 			    bytes += 4;
3199 			}
3200 
3201 		      /* Note that we've deleted prologue bytes for this
3202 			 function.  */
3203 		      sym_hash->flags |= MN10300_DELETED_PROLOGUE_BYTES;
3204 
3205 		      /* Actually delete the bytes.  */
3206 		      symval = sym_hash->root.root.u.def.value;
3207 		      if (!mn10300_elf_relax_delete_bytes (input_bfd,
3208 							   section,
3209 							   symval,
3210 							   bytes))
3211 			goto error_return;
3212 
3213 		      /* There may be other C++ functions symbols with the same
3214 			 address.  If so then mark these as having had their
3215 			 prologue bytes deleted as well.  */
3216 		      for (hh = elf_sym_hashes (input_bfd); hh < end_hashes; hh++)
3217 			{
3218 			  struct elf32_mn10300_link_hash_entry *h;
3219 
3220 			  h = (struct elf32_mn10300_link_hash_entry *) * hh;
3221 
3222 			  if (h != sym_hash
3223 			      && (h->root.root.type == bfd_link_hash_defined
3224 				  || h->root.root.type == bfd_link_hash_defweak)
3225 			      && h->root.root.u.def.section == section
3226 			      && ! (h->flags & MN10300_CONVERT_CALL_TO_CALLS)
3227 			      && h->root.root.u.def.value == symval
3228 			      && h->root.type == STT_FUNC)
3229 			    h->flags |= MN10300_DELETED_PROLOGUE_BYTES;
3230 			}
3231 
3232 		      /* Something changed.  Not strictly necessary, but
3233 			 may lead to more relaxing opportunities.  */
3234 		      *again = TRUE;
3235 		    }
3236 		}
3237 
3238 	      /* Cache or free any memory we allocated for the relocs.  */
3239 	      if (internal_relocs != NULL
3240 		  && elf_section_data (section)->relocs != internal_relocs)
3241 		free (internal_relocs);
3242 	      internal_relocs = NULL;
3243 
3244 	      /* Cache or free any memory we allocated for the contents.  */
3245 	      if (contents != NULL
3246 		  && elf_section_data (section)->this_hdr.contents != contents)
3247 		{
3248 		  if (! link_info->keep_memory)
3249 		    free (contents);
3250 		  else
3251 		    /* Cache the section contents for elf_link_input_bfd.  */
3252 		    elf_section_data (section)->this_hdr.contents = contents;
3253 		}
3254 	      contents = NULL;
3255 	    }
3256 
3257 	  /* Cache or free any memory we allocated for the symbols.  */
3258 	  if (isymbuf != NULL
3259 	      && symtab_hdr->contents != (unsigned char *) isymbuf)
3260 	    {
3261 	      if (! link_info->keep_memory)
3262 		free (isymbuf);
3263 	      else
3264 		/* Cache the symbols for elf_link_input_bfd.  */
3265 		symtab_hdr->contents = (unsigned char *) isymbuf;
3266 	    }
3267 	  isymbuf = NULL;
3268 	}
3269     }
3270 
3271   /* (Re)initialize for the basic instruction shortening/relaxing pass.  */
3272   contents = NULL;
3273   internal_relocs = NULL;
3274   isymbuf = NULL;
3275   /* For error_return.  */
3276   section = sec;
3277 
3278   /* We don't have to do anything for a relocatable link, if
3279      this section does not have relocs, or if this is not a
3280      code section.  */
3281   if (link_info->relocatable
3282       || (sec->flags & SEC_RELOC) == 0
3283       || sec->reloc_count == 0
3284       || (sec->flags & SEC_CODE) == 0)
3285     return TRUE;
3286 
3287   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
3288 
3289   /* Get a copy of the native relocations.  */
3290   internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
3291 					       link_info->keep_memory);
3292   if (internal_relocs == NULL)
3293     goto error_return;
3294 
3295   /* Scan for worst case alignment gap changes.  Note that this logic
3296      is not ideal; what we should do is run this scan for every
3297      opcode/address range and adjust accordingly, but that's
3298      expensive.  Worst case is that for an alignment of N bytes, we
3299      move by 2*N-N-1 bytes, assuming we have aligns of 1, 2, 4, 8, etc
3300      all before it.  Plus, this still doesn't cover cross-section
3301      jumps with section alignment.  */
3302   irelend = internal_relocs + sec->reloc_count;
3303   align_gap_adjustment = 0;
3304   for (irel = internal_relocs; irel < irelend; irel++)
3305     {
3306       if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_ALIGN)
3307 	{
3308 	  bfd_vma adj = 1 << irel->r_addend;
3309 	  bfd_vma aend = irel->r_offset;
3310 
3311 	  aend = BFD_ALIGN (aend, 1 << irel->r_addend);
3312 	  adj = 2 * adj - adj - 1;
3313 
3314 	  /* Record the biggest adjustmnet.  Skip any alignment at the
3315 	     end of our section.  */
3316 	  if (align_gap_adjustment < adj
3317 	      && aend < sec->output_section->vma + sec->output_offset + sec->size)
3318 	    align_gap_adjustment = adj;
3319 	}
3320     }
3321 
3322   /* Walk through them looking for relaxing opportunities.  */
3323   irelend = internal_relocs + sec->reloc_count;
3324   for (irel = internal_relocs; irel < irelend; irel++)
3325     {
3326       bfd_vma symval;
3327       bfd_signed_vma jump_offset;
3328       asection *sym_sec = NULL;
3329       struct elf32_mn10300_link_hash_entry *h = NULL;
3330 
3331       /* If this isn't something that can be relaxed, then ignore
3332 	 this reloc.  */
3333       if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_NONE
3334 	  || ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_8
3335 	  || ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_MAX)
3336 	continue;
3337 
3338       /* Get the section contents if we haven't done so already.  */
3339       if (contents == NULL)
3340 	{
3341 	  /* Get cached copy if it exists.  */
3342 	  if (elf_section_data (sec)->this_hdr.contents != NULL)
3343 	    contents = elf_section_data (sec)->this_hdr.contents;
3344 	  else
3345 	    {
3346 	      /* Go get them off disk.  */
3347 	      if (!bfd_malloc_and_get_section (abfd, sec, &contents))
3348 		goto error_return;
3349 	    }
3350 	}
3351 
3352       /* Read this BFD's symbols if we haven't done so already.  */
3353       if (isymbuf == NULL && symtab_hdr->sh_info != 0)
3354 	{
3355 	  isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
3356 	  if (isymbuf == NULL)
3357 	    isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
3358 					    symtab_hdr->sh_info, 0,
3359 					    NULL, NULL, NULL);
3360 	  if (isymbuf == NULL)
3361 	    goto error_return;
3362 	}
3363 
3364       /* Get the value of the symbol referred to by the reloc.  */
3365       if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info)
3366 	{
3367 	  Elf_Internal_Sym *isym;
3368 	  const char *sym_name;
3369 	  char *new_name;
3370 
3371 	  /* A local symbol.  */
3372 	  isym = isymbuf + ELF32_R_SYM (irel->r_info);
3373 	  if (isym->st_shndx == SHN_UNDEF)
3374 	    sym_sec = bfd_und_section_ptr;
3375 	  else if (isym->st_shndx == SHN_ABS)
3376 	    sym_sec = bfd_abs_section_ptr;
3377 	  else if (isym->st_shndx == SHN_COMMON)
3378 	    sym_sec = bfd_com_section_ptr;
3379 	  else
3380 	    sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3381 
3382 	  sym_name = bfd_elf_string_from_elf_section (abfd,
3383 						      symtab_hdr->sh_link,
3384 						      isym->st_name);
3385 
3386 	  if ((sym_sec->flags & SEC_MERGE)
3387 	      && sym_sec->sec_info_type == SEC_INFO_TYPE_MERGE)
3388 	    {
3389 	      symval = isym->st_value;
3390 
3391 	      /* GAS may reduce relocations against symbols in SEC_MERGE
3392 		 sections to a relocation against the section symbol when
3393 		 the original addend was zero.  When the reloc is against
3394 		 a section symbol we should include the addend in the
3395 		 offset passed to _bfd_merged_section_offset, since the
3396 		 location of interest is the original symbol.  On the
3397 		 other hand, an access to "sym+addend" where "sym" is not
3398 		 a section symbol should not include the addend;  Such an
3399 		 access is presumed to be an offset from "sym";  The
3400 		 location of interest is just "sym".  */
3401 	      if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
3402 		symval += irel->r_addend;
3403 
3404 	      symval = _bfd_merged_section_offset (abfd, & sym_sec,
3405 						   elf_section_data (sym_sec)->sec_info,
3406 						   symval);
3407 
3408 	      if (ELF_ST_TYPE (isym->st_info) != STT_SECTION)
3409 		symval += irel->r_addend;
3410 
3411 	      symval += sym_sec->output_section->vma
3412 		+ sym_sec->output_offset - irel->r_addend;
3413 	    }
3414 	  else
3415 	    symval = (isym->st_value
3416 		      + sym_sec->output_section->vma
3417 		      + sym_sec->output_offset);
3418 
3419 	  /* Tack on an ID so we can uniquely identify this
3420 	     local symbol in the global hash table.  */
3421 	  new_name = bfd_malloc ((bfd_size_type) strlen (sym_name) + 10);
3422 	  if (new_name == NULL)
3423 	    goto error_return;
3424 	  sprintf (new_name, "%s_%08x", sym_name, sym_sec->id);
3425 	  sym_name = new_name;
3426 
3427 	  h = (struct elf32_mn10300_link_hash_entry *)
3428 		elf_link_hash_lookup (&hash_table->static_hash_table->root,
3429 				      sym_name, FALSE, FALSE, FALSE);
3430 	  free (new_name);
3431 	}
3432       else
3433 	{
3434 	  unsigned long indx;
3435 
3436 	  /* An external symbol.  */
3437 	  indx = ELF32_R_SYM (irel->r_info) - symtab_hdr->sh_info;
3438 	  h = (struct elf32_mn10300_link_hash_entry *)
3439 		(elf_sym_hashes (abfd)[indx]);
3440 	  BFD_ASSERT (h != NULL);
3441 	  if (h->root.root.type != bfd_link_hash_defined
3442 	      && h->root.root.type != bfd_link_hash_defweak)
3443 	    /* This appears to be a reference to an undefined
3444 	       symbol.  Just ignore it--it will be caught by the
3445 	       regular reloc processing.  */
3446 	    continue;
3447 
3448 	  /* Check for a reference to a discarded symbol and ignore it.  */
3449 	  if (h->root.root.u.def.section->output_section == NULL)
3450 	    continue;
3451 
3452 	  sym_sec = h->root.root.u.def.section->output_section;
3453 
3454 	  symval = (h->root.root.u.def.value
3455 		    + h->root.root.u.def.section->output_section->vma
3456 		    + h->root.root.u.def.section->output_offset);
3457 	}
3458 
3459       /* For simplicity of coding, we are going to modify the section
3460 	 contents, the section relocs, and the BFD symbol table.  We
3461 	 must tell the rest of the code not to free up this
3462 	 information.  It would be possible to instead create a table
3463 	 of changes which have to be made, as is done in coff-mips.c;
3464 	 that would be more work, but would require less memory when
3465 	 the linker is run.  */
3466 
3467       /* Try to turn a 32bit pc-relative branch/call into a 16bit pc-relative
3468 	 branch/call, also deal with "call" -> "calls" conversions and
3469 	 insertion of prologue data into "call" instructions.  */
3470       if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_PCREL32
3471 	  || ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_PLT32)
3472 	{
3473 	  bfd_vma value = symval;
3474 
3475 	  if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_PLT32
3476 	      && h != NULL
3477 	      && ELF_ST_VISIBILITY (h->root.other) != STV_INTERNAL
3478 	      && ELF_ST_VISIBILITY (h->root.other) != STV_HIDDEN
3479 	      && h->root.plt.offset != (bfd_vma) -1)
3480 	    {
3481 	      asection * splt;
3482 
3483 	      splt = hash_table->root.splt;
3484 	      value = ((splt->output_section->vma
3485 			+ splt->output_offset
3486 			+ h->root.plt.offset)
3487 		       - (sec->output_section->vma
3488 			  + sec->output_offset
3489 			  + irel->r_offset));
3490 	    }
3491 
3492 	  /* If we've got a "call" instruction that needs to be turned
3493 	     into a "calls" instruction, do so now.  It saves a byte.  */
3494 	  if (h && (h->flags & MN10300_CONVERT_CALL_TO_CALLS))
3495 	    {
3496 	      unsigned char code;
3497 
3498 	      /* Get the opcode.  */
3499 	      code = bfd_get_8 (abfd, contents + irel->r_offset - 1);
3500 
3501 	      /* Make sure we're working with a "call" instruction!  */
3502 	      if (code == 0xdd)
3503 		{
3504 		  /* Note that we've changed the relocs, section contents,
3505 		     etc.  */
3506 		  elf_section_data (sec)->relocs = internal_relocs;
3507 		  elf_section_data (sec)->this_hdr.contents = contents;
3508 		  symtab_hdr->contents = (unsigned char *) isymbuf;
3509 
3510 		  /* Fix the opcode.  */
3511 		  bfd_put_8 (abfd, 0xfc, contents + irel->r_offset - 1);
3512 		  bfd_put_8 (abfd, 0xff, contents + irel->r_offset);
3513 
3514 		  /* Fix irel->r_offset and irel->r_addend.  */
3515 		  irel->r_offset += 1;
3516 		  irel->r_addend += 1;
3517 
3518 		  /* Delete one byte of data.  */
3519 		  if (!mn10300_elf_relax_delete_bytes (abfd, sec,
3520 						       irel->r_offset + 3, 1))
3521 		    goto error_return;
3522 
3523 		  /* That will change things, so, we should relax again.
3524 		     Note that this is not required, and it may be slow.  */
3525 		  *again = TRUE;
3526 		}
3527 	    }
3528 	  else if (h)
3529 	    {
3530 	      /* We've got a "call" instruction which needs some data
3531 		 from target function filled in.  */
3532 	      unsigned char code;
3533 
3534 	      /* Get the opcode.  */
3535 	      code = bfd_get_8 (abfd, contents + irel->r_offset - 1);
3536 
3537 	      /* Insert data from the target function into the "call"
3538 		 instruction if needed.  */
3539 	      if (code == 0xdd)
3540 		{
3541 		  bfd_put_8 (abfd, h->movm_args, contents + irel->r_offset + 4);
3542 		  bfd_put_8 (abfd, h->stack_size + h->movm_stack_size,
3543 			     contents + irel->r_offset + 5);
3544 		}
3545 	    }
3546 
3547 	  /* Deal with pc-relative gunk.  */
3548 	  value -= (sec->output_section->vma + sec->output_offset);
3549 	  value -= irel->r_offset;
3550 	  value += irel->r_addend;
3551 
3552 	  /* See if the value will fit in 16 bits, note the high value is
3553 	     0x7fff + 2 as the target will be two bytes closer if we are
3554 	     able to relax, if it's in the same section.  */
3555 	  if (sec->output_section == sym_sec->output_section)
3556 	    jump_offset = 0x8001;
3557 	  else
3558 	    jump_offset = 0x7fff;
3559 
3560 	  /* Account for jumps across alignment boundaries using
3561 	     align_gap_adjustment.  */
3562 	  if ((bfd_signed_vma) value < jump_offset - (bfd_signed_vma) align_gap_adjustment
3563 	      && ((bfd_signed_vma) value > -0x8000 + (bfd_signed_vma) align_gap_adjustment))
3564 	    {
3565 	      unsigned char code;
3566 
3567 	      /* Get the opcode.  */
3568 	      code = bfd_get_8 (abfd, contents + irel->r_offset - 1);
3569 
3570 	      if (code != 0xdc && code != 0xdd && code != 0xff)
3571 		continue;
3572 
3573 	      /* Note that we've changed the relocs, section contents, etc.  */
3574 	      elf_section_data (sec)->relocs = internal_relocs;
3575 	      elf_section_data (sec)->this_hdr.contents = contents;
3576 	      symtab_hdr->contents = (unsigned char *) isymbuf;
3577 
3578 	      /* Fix the opcode.  */
3579 	      if (code == 0xdc)
3580 		bfd_put_8 (abfd, 0xcc, contents + irel->r_offset - 1);
3581 	      else if (code == 0xdd)
3582 		bfd_put_8 (abfd, 0xcd, contents + irel->r_offset - 1);
3583 	      else if (code == 0xff)
3584 		bfd_put_8 (abfd, 0xfa, contents + irel->r_offset - 2);
3585 
3586 	      /* Fix the relocation's type.  */
3587 	      irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
3588 					   (ELF32_R_TYPE (irel->r_info)
3589 					    == (int) R_MN10300_PLT32)
3590 					   ? R_MN10300_PLT16 :
3591 					   R_MN10300_PCREL16);
3592 
3593 	      /* Delete two bytes of data.  */
3594 	      if (!mn10300_elf_relax_delete_bytes (abfd, sec,
3595 						   irel->r_offset + 1, 2))
3596 		goto error_return;
3597 
3598 	      /* That will change things, so, we should relax again.
3599 		 Note that this is not required, and it may be slow.  */
3600 	      *again = TRUE;
3601 	    }
3602 	}
3603 
3604       /* Try to turn a 16bit pc-relative branch into a 8bit pc-relative
3605 	 branch.  */
3606       if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_PCREL16)
3607 	{
3608 	  bfd_vma value = symval;
3609 
3610 	  /* If we've got a "call" instruction that needs to be turned
3611 	     into a "calls" instruction, do so now.  It saves a byte.  */
3612 	  if (h && (h->flags & MN10300_CONVERT_CALL_TO_CALLS))
3613 	    {
3614 	      unsigned char code;
3615 
3616 	      /* Get the opcode.  */
3617 	      code = bfd_get_8 (abfd, contents + irel->r_offset - 1);
3618 
3619 	      /* Make sure we're working with a "call" instruction!  */
3620 	      if (code == 0xcd)
3621 		{
3622 		  /* Note that we've changed the relocs, section contents,
3623 		     etc.  */
3624 		  elf_section_data (sec)->relocs = internal_relocs;
3625 		  elf_section_data (sec)->this_hdr.contents = contents;
3626 		  symtab_hdr->contents = (unsigned char *) isymbuf;
3627 
3628 		  /* Fix the opcode.  */
3629 		  bfd_put_8 (abfd, 0xfa, contents + irel->r_offset - 1);
3630 		  bfd_put_8 (abfd, 0xff, contents + irel->r_offset);
3631 
3632 		  /* Fix irel->r_offset and irel->r_addend.  */
3633 		  irel->r_offset += 1;
3634 		  irel->r_addend += 1;
3635 
3636 		  /* Delete one byte of data.  */
3637 		  if (!mn10300_elf_relax_delete_bytes (abfd, sec,
3638 						       irel->r_offset + 1, 1))
3639 		    goto error_return;
3640 
3641 		  /* That will change things, so, we should relax again.
3642 		     Note that this is not required, and it may be slow.  */
3643 		  *again = TRUE;
3644 		}
3645 	    }
3646 	  else if (h)
3647 	    {
3648 	      unsigned char code;
3649 
3650 	      /* Get the opcode.  */
3651 	      code = bfd_get_8 (abfd, contents + irel->r_offset - 1);
3652 
3653 	      /* Insert data from the target function into the "call"
3654 		 instruction if needed.  */
3655 	      if (code == 0xcd)
3656 		{
3657 		  bfd_put_8 (abfd, h->movm_args, contents + irel->r_offset + 2);
3658 		  bfd_put_8 (abfd, h->stack_size + h->movm_stack_size,
3659 			     contents + irel->r_offset + 3);
3660 		}
3661 	    }
3662 
3663 	  /* Deal with pc-relative gunk.  */
3664 	  value -= (sec->output_section->vma + sec->output_offset);
3665 	  value -= irel->r_offset;
3666 	  value += irel->r_addend;
3667 
3668 	  /* See if the value will fit in 8 bits, note the high value is
3669 	     0x7f + 1 as the target will be one bytes closer if we are
3670 	     able to relax.  */
3671 	  if ((long) value < 0x80 && (long) value > -0x80)
3672 	    {
3673 	      unsigned char code;
3674 
3675 	      /* Get the opcode.  */
3676 	      code = bfd_get_8 (abfd, contents + irel->r_offset - 1);
3677 
3678 	      if (code != 0xcc)
3679 		continue;
3680 
3681 	      /* Note that we've changed the relocs, section contents, etc.  */
3682 	      elf_section_data (sec)->relocs = internal_relocs;
3683 	      elf_section_data (sec)->this_hdr.contents = contents;
3684 	      symtab_hdr->contents = (unsigned char *) isymbuf;
3685 
3686 	      /* Fix the opcode.  */
3687 	      bfd_put_8 (abfd, 0xca, contents + irel->r_offset - 1);
3688 
3689 	      /* Fix the relocation's type.  */
3690 	      irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
3691 					   R_MN10300_PCREL8);
3692 
3693 	      /* Delete one byte of data.  */
3694 	      if (!mn10300_elf_relax_delete_bytes (abfd, sec,
3695 						   irel->r_offset + 1, 1))
3696 		goto error_return;
3697 
3698 	      /* That will change things, so, we should relax again.
3699 		 Note that this is not required, and it may be slow.  */
3700 	      *again = TRUE;
3701 	    }
3702 	}
3703 
3704       /* Try to eliminate an unconditional 8 bit pc-relative branch
3705 	 which immediately follows a conditional 8 bit pc-relative
3706 	 branch around the unconditional branch.
3707 
3708 	    original:		new:
3709 	    bCC lab1		bCC' lab2
3710 	    bra lab2
3711 	   lab1:	       lab1:
3712 
3713 	 This happens when the bCC can't reach lab2 at assembly time,
3714 	 but due to other relaxations it can reach at link time.  */
3715       if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_PCREL8)
3716 	{
3717 	  Elf_Internal_Rela *nrel;
3718 	  bfd_vma value = symval;
3719 	  unsigned char code;
3720 
3721 	  /* Deal with pc-relative gunk.  */
3722 	  value -= (sec->output_section->vma + sec->output_offset);
3723 	  value -= irel->r_offset;
3724 	  value += irel->r_addend;
3725 
3726 	  /* Do nothing if this reloc is the last byte in the section.  */
3727 	  if (irel->r_offset == sec->size)
3728 	    continue;
3729 
3730 	  /* See if the next instruction is an unconditional pc-relative
3731 	     branch, more often than not this test will fail, so we
3732 	     test it first to speed things up.  */
3733 	  code = bfd_get_8 (abfd, contents + irel->r_offset + 1);
3734 	  if (code != 0xca)
3735 	    continue;
3736 
3737 	  /* Also make sure the next relocation applies to the next
3738 	     instruction and that it's a pc-relative 8 bit branch.  */
3739 	  nrel = irel + 1;
3740 	  if (nrel == irelend
3741 	      || irel->r_offset + 2 != nrel->r_offset
3742 	      || ELF32_R_TYPE (nrel->r_info) != (int) R_MN10300_PCREL8)
3743 	    continue;
3744 
3745 	  /* Make sure our destination immediately follows the
3746 	     unconditional branch.  */
3747 	  if (symval != (sec->output_section->vma + sec->output_offset
3748 			 + irel->r_offset + 3))
3749 	    continue;
3750 
3751 	  /* Now make sure we are a conditional branch.  This may not
3752 	     be necessary, but why take the chance.
3753 
3754 	     Note these checks assume that R_MN10300_PCREL8 relocs
3755 	     only occur on bCC and bCCx insns.  If they occured
3756 	     elsewhere, we'd need to know the start of this insn
3757 	     for this check to be accurate.  */
3758 	  code = bfd_get_8 (abfd, contents + irel->r_offset - 1);
3759 	  if (code != 0xc0 && code != 0xc1 && code != 0xc2
3760 	      && code != 0xc3 && code != 0xc4 && code != 0xc5
3761 	      && code != 0xc6 && code != 0xc7 && code != 0xc8
3762 	      && code != 0xc9 && code != 0xe8 && code != 0xe9
3763 	      && code != 0xea && code != 0xeb)
3764 	    continue;
3765 
3766 	  /* We also have to be sure there is no symbol/label
3767 	     at the unconditional branch.  */
3768 	  if (mn10300_elf_symbol_address_p (abfd, sec, isymbuf,
3769 					    irel->r_offset + 1))
3770 	    continue;
3771 
3772 	  /* Note that we've changed the relocs, section contents, etc.  */
3773 	  elf_section_data (sec)->relocs = internal_relocs;
3774 	  elf_section_data (sec)->this_hdr.contents = contents;
3775 	  symtab_hdr->contents = (unsigned char *) isymbuf;
3776 
3777 	  /* Reverse the condition of the first branch.  */
3778 	  switch (code)
3779 	    {
3780 	    case 0xc8:
3781 	      code = 0xc9;
3782 	      break;
3783 	    case 0xc9:
3784 	      code = 0xc8;
3785 	      break;
3786 	    case 0xc0:
3787 	      code = 0xc2;
3788 	      break;
3789 	    case 0xc2:
3790 	      code = 0xc0;
3791 	      break;
3792 	    case 0xc3:
3793 	      code = 0xc1;
3794 	      break;
3795 	    case 0xc1:
3796 	      code = 0xc3;
3797 	      break;
3798 	    case 0xc4:
3799 	      code = 0xc6;
3800 	      break;
3801 	    case 0xc6:
3802 	      code = 0xc4;
3803 	      break;
3804 	    case 0xc7:
3805 	      code = 0xc5;
3806 	      break;
3807 	    case 0xc5:
3808 	      code = 0xc7;
3809 	      break;
3810 	    case 0xe8:
3811 	      code = 0xe9;
3812 	      break;
3813 	    case 0x9d:
3814 	      code = 0xe8;
3815 	      break;
3816 	    case 0xea:
3817 	      code = 0xeb;
3818 	      break;
3819 	    case 0xeb:
3820 	      code = 0xea;
3821 	      break;
3822 	    }
3823 	  bfd_put_8 (abfd, code, contents + irel->r_offset - 1);
3824 
3825 	  /* Set the reloc type and symbol for the first branch
3826 	     from the second branch.  */
3827 	  irel->r_info = nrel->r_info;
3828 
3829 	  /* Make the reloc for the second branch a null reloc.  */
3830 	  nrel->r_info = ELF32_R_INFO (ELF32_R_SYM (nrel->r_info),
3831 				       R_MN10300_NONE);
3832 
3833 	  /* Delete two bytes of data.  */
3834 	  if (!mn10300_elf_relax_delete_bytes (abfd, sec,
3835 					       irel->r_offset + 1, 2))
3836 	    goto error_return;
3837 
3838 	  /* That will change things, so, we should relax again.
3839 	     Note that this is not required, and it may be slow.  */
3840 	  *again = TRUE;
3841 	}
3842 
3843       /* Try to turn a 24 immediate, displacement or absolute address
3844 	 into a 8 immediate, displacement or absolute address.  */
3845       if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_24)
3846 	{
3847 	  bfd_vma value = symval;
3848 	  value += irel->r_addend;
3849 
3850 	  /* See if the value will fit in 8 bits.  */
3851 	  if ((long) value < 0x7f && (long) value > -0x80)
3852 	    {
3853 	      unsigned char code;
3854 
3855 	      /* AM33 insns which have 24 operands are 6 bytes long and
3856 		 will have 0xfd as the first byte.  */
3857 
3858 	      /* Get the first opcode.  */
3859 	      code = bfd_get_8 (abfd, contents + irel->r_offset - 3);
3860 
3861 	      if (code == 0xfd)
3862 		{
3863 		  /* Get the second opcode.  */
3864 		  code = bfd_get_8 (abfd, contents + irel->r_offset - 2);
3865 
3866 		  /* We can not relax 0x6b, 0x7b, 0x8b, 0x9b as no 24bit
3867 		     equivalent instructions exists.  */
3868 		  if (code != 0x6b && code != 0x7b
3869 		      && code != 0x8b && code != 0x9b
3870 		      && ((code & 0x0f) == 0x09 || (code & 0x0f) == 0x08
3871 			  || (code & 0x0f) == 0x0a || (code & 0x0f) == 0x0b
3872 			  || (code & 0x0f) == 0x0e))
3873 		    {
3874 		      /* Not safe if the high bit is on as relaxing may
3875 			 move the value out of high mem and thus not fit
3876 			 in a signed 8bit value.  This is currently over
3877 			 conservative.  */
3878 		      if ((value & 0x80) == 0)
3879 			{
3880 			  /* Note that we've changed the relocation contents,
3881 			     etc.  */
3882 			  elf_section_data (sec)->relocs = internal_relocs;
3883 			  elf_section_data (sec)->this_hdr.contents = contents;
3884 			  symtab_hdr->contents = (unsigned char *) isymbuf;
3885 
3886 			  /* Fix the opcode.  */
3887 			  bfd_put_8 (abfd, 0xfb, contents + irel->r_offset - 3);
3888 			  bfd_put_8 (abfd, code, contents + irel->r_offset - 2);
3889 
3890 			  /* Fix the relocation's type.  */
3891 			  irel->r_info =
3892 			    ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
3893 					  R_MN10300_8);
3894 
3895 			  /* Delete two bytes of data.  */
3896 			  if (!mn10300_elf_relax_delete_bytes (abfd, sec,
3897 							       irel->r_offset + 1, 2))
3898 			    goto error_return;
3899 
3900 			  /* That will change things, so, we should relax
3901 			     again.  Note that this is not required, and it
3902 			     may be slow.  */
3903 			  *again = TRUE;
3904 			  break;
3905 			}
3906 		    }
3907 		}
3908 	    }
3909 	}
3910 
3911       /* Try to turn a 32bit immediate, displacement or absolute address
3912 	 into a 16bit immediate, displacement or absolute address.  */
3913       if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_32
3914 	  || ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_GOT32
3915 	  || ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_GOTOFF32)
3916 	{
3917 	  bfd_vma value = symval;
3918 
3919 	  if (ELF32_R_TYPE (irel->r_info) != (int) R_MN10300_32)
3920 	    {
3921 	      asection * sgot;
3922 
3923 	      sgot = hash_table->root.sgot;
3924 	      if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_GOT32)
3925 		{
3926 		  value = sgot->output_offset;
3927 
3928 		  if (h)
3929 		    value += h->root.got.offset;
3930 		  else
3931 		    value += (elf_local_got_offsets
3932 			      (abfd)[ELF32_R_SYM (irel->r_info)]);
3933 		}
3934 	      else if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_GOTOFF32)
3935 		value -= sgot->output_section->vma;
3936 	      else if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_GOTPC32)
3937 		value = (sgot->output_section->vma
3938 			 - (sec->output_section->vma
3939 			    + sec->output_offset
3940 			    + irel->r_offset));
3941 	      else
3942 		abort ();
3943 	    }
3944 
3945 	  value += irel->r_addend;
3946 
3947 	  /* See if the value will fit in 24 bits.
3948 	     We allow any 16bit match here.  We prune those we can't
3949 	     handle below.  */
3950 	  if ((long) value < 0x7fffff && (long) value > -0x800000)
3951 	    {
3952 	      unsigned char code;
3953 
3954 	      /* AM33 insns which have 32bit operands are 7 bytes long and
3955 		 will have 0xfe as the first byte.  */
3956 
3957 	      /* Get the first opcode.  */
3958 	      code = bfd_get_8 (abfd, contents + irel->r_offset - 3);
3959 
3960 	      if (code == 0xfe)
3961 		{
3962 		  /* Get the second opcode.  */
3963 		  code = bfd_get_8 (abfd, contents + irel->r_offset - 2);
3964 
3965 		  /* All the am33 32 -> 24 relaxing possibilities.  */
3966 		  /* We can not relax 0x6b, 0x7b, 0x8b, 0x9b as no 24bit
3967 		     equivalent instructions exists.  */
3968 		  if (code != 0x6b && code != 0x7b
3969 		      && code != 0x8b && code != 0x9b
3970 		      && (ELF32_R_TYPE (irel->r_info)
3971 			  != (int) R_MN10300_GOTPC32)
3972 		      && ((code & 0x0f) == 0x09 || (code & 0x0f) == 0x08
3973 			  || (code & 0x0f) == 0x0a || (code & 0x0f) == 0x0b
3974 			  || (code & 0x0f) == 0x0e))
3975 		    {
3976 		      /* Not safe if the high bit is on as relaxing may
3977 			 move the value out of high mem and thus not fit
3978 			 in a signed 16bit value.  This is currently over
3979 			 conservative.  */
3980 		      if ((value & 0x8000) == 0)
3981 			{
3982 			  /* Note that we've changed the relocation contents,
3983 			     etc.  */
3984 			  elf_section_data (sec)->relocs = internal_relocs;
3985 			  elf_section_data (sec)->this_hdr.contents = contents;
3986 			  symtab_hdr->contents = (unsigned char *) isymbuf;
3987 
3988 			  /* Fix the opcode.  */
3989 			  bfd_put_8 (abfd, 0xfd, contents + irel->r_offset - 3);
3990 			  bfd_put_8 (abfd, code, contents + irel->r_offset - 2);
3991 
3992 			  /* Fix the relocation's type.  */
3993 			  irel->r_info =
3994 			    ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
3995 					  (ELF32_R_TYPE (irel->r_info)
3996 					   == (int) R_MN10300_GOTOFF32)
3997 					  ? R_MN10300_GOTOFF24
3998 					  : (ELF32_R_TYPE (irel->r_info)
3999 					     == (int) R_MN10300_GOT32)
4000 					  ? R_MN10300_GOT24 :
4001 					  R_MN10300_24);
4002 
4003 			  /* Delete one byte of data.  */
4004 			  if (!mn10300_elf_relax_delete_bytes (abfd, sec,
4005 							       irel->r_offset + 3, 1))
4006 			    goto error_return;
4007 
4008 			  /* That will change things, so, we should relax
4009 			     again.  Note that this is not required, and it
4010 			     may be slow.  */
4011 			  *again = TRUE;
4012 			  break;
4013 			}
4014 		    }
4015 		}
4016 	    }
4017 
4018 	  /* See if the value will fit in 16 bits.
4019 	     We allow any 16bit match here.  We prune those we can't
4020 	     handle below.  */
4021 	  if ((long) value < 0x7fff && (long) value > -0x8000)
4022 	    {
4023 	      unsigned char code;
4024 
4025 	      /* Most insns which have 32bit operands are 6 bytes long;
4026 		 exceptions are pcrel insns and bit insns.
4027 
4028 		 We handle pcrel insns above.  We don't bother trying
4029 		 to handle the bit insns here.
4030 
4031 		 The first byte of the remaining insns will be 0xfc.  */
4032 
4033 	      /* Get the first opcode.  */
4034 	      code = bfd_get_8 (abfd, contents + irel->r_offset - 2);
4035 
4036 	      if (code != 0xfc)
4037 		continue;
4038 
4039 	      /* Get the second opcode.  */
4040 	      code = bfd_get_8 (abfd, contents + irel->r_offset - 1);
4041 
4042 	      if ((code & 0xf0) < 0x80)
4043 		switch (code & 0xf0)
4044 		  {
4045 		  /* mov (d32,am),dn   -> mov (d32,am),dn
4046 		     mov dm,(d32,am)   -> mov dn,(d32,am)
4047 		     mov (d32,am),an   -> mov (d32,am),an
4048 		     mov dm,(d32,am)   -> mov dn,(d32,am)
4049 		     movbu (d32,am),dn -> movbu (d32,am),dn
4050 		     movbu dm,(d32,am) -> movbu dn,(d32,am)
4051 		     movhu (d32,am),dn -> movhu (d32,am),dn
4052 		     movhu dm,(d32,am) -> movhu dn,(d32,am) */
4053 		  case 0x00:
4054 		  case 0x10:
4055 		  case 0x20:
4056 		  case 0x30:
4057 		  case 0x40:
4058 		  case 0x50:
4059 		  case 0x60:
4060 		  case 0x70:
4061 		    /* Not safe if the high bit is on as relaxing may
4062 		       move the value out of high mem and thus not fit
4063 		       in a signed 16bit value.  */
4064 		    if (code == 0xcc
4065 			&& (value & 0x8000))
4066 		      continue;
4067 
4068 		    /* Note that we've changed the relocation contents, etc.  */
4069 		    elf_section_data (sec)->relocs = internal_relocs;
4070 		    elf_section_data (sec)->this_hdr.contents = contents;
4071 		    symtab_hdr->contents = (unsigned char *) isymbuf;
4072 
4073 		    /* Fix the opcode.  */
4074 		    bfd_put_8 (abfd, 0xfa, contents + irel->r_offset - 2);
4075 		    bfd_put_8 (abfd, code, contents + irel->r_offset - 1);
4076 
4077 		    /* Fix the relocation's type.  */
4078 		    irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
4079 						 (ELF32_R_TYPE (irel->r_info)
4080 						  == (int) R_MN10300_GOTOFF32)
4081 						 ? R_MN10300_GOTOFF16
4082 						 : (ELF32_R_TYPE (irel->r_info)
4083 						    == (int) R_MN10300_GOT32)
4084 						 ? R_MN10300_GOT16
4085 						 : (ELF32_R_TYPE (irel->r_info)
4086 						    == (int) R_MN10300_GOTPC32)
4087 						 ? R_MN10300_GOTPC16 :
4088 						 R_MN10300_16);
4089 
4090 		    /* Delete two bytes of data.  */
4091 		    if (!mn10300_elf_relax_delete_bytes (abfd, sec,
4092 							 irel->r_offset + 2, 2))
4093 		      goto error_return;
4094 
4095 		    /* That will change things, so, we should relax again.
4096 		       Note that this is not required, and it may be slow.  */
4097 		    *again = TRUE;
4098 		    break;
4099 		  }
4100 	      else if ((code & 0xf0) == 0x80
4101 		       || (code & 0xf0) == 0x90)
4102 		switch (code & 0xf3)
4103 		  {
4104 		  /* mov dn,(abs32)   -> mov dn,(abs16)
4105 		     movbu dn,(abs32) -> movbu dn,(abs16)
4106 		     movhu dn,(abs32) -> movhu dn,(abs16)  */
4107 		  case 0x81:
4108 		  case 0x82:
4109 		  case 0x83:
4110 		    /* Note that we've changed the relocation contents, etc.  */
4111 		    elf_section_data (sec)->relocs = internal_relocs;
4112 		    elf_section_data (sec)->this_hdr.contents = contents;
4113 		    symtab_hdr->contents = (unsigned char *) isymbuf;
4114 
4115 		    if ((code & 0xf3) == 0x81)
4116 		      code = 0x01 + (code & 0x0c);
4117 		    else if ((code & 0xf3) == 0x82)
4118 		      code = 0x02 + (code & 0x0c);
4119 		    else if ((code & 0xf3) == 0x83)
4120 		      code = 0x03 + (code & 0x0c);
4121 		    else
4122 		      abort ();
4123 
4124 		    /* Fix the opcode.  */
4125 		    bfd_put_8 (abfd, code, contents + irel->r_offset - 2);
4126 
4127 		    /* Fix the relocation's type.  */
4128 		    irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
4129 						 (ELF32_R_TYPE (irel->r_info)
4130 						  == (int) R_MN10300_GOTOFF32)
4131 						 ? R_MN10300_GOTOFF16
4132 						 : (ELF32_R_TYPE (irel->r_info)
4133 						    == (int) R_MN10300_GOT32)
4134 						 ? R_MN10300_GOT16
4135 						 : (ELF32_R_TYPE (irel->r_info)
4136 						    == (int) R_MN10300_GOTPC32)
4137 						 ? R_MN10300_GOTPC16 :
4138 						 R_MN10300_16);
4139 
4140 		    /* The opcode got shorter too, so we have to fix the
4141 		       addend and offset too!  */
4142 		    irel->r_offset -= 1;
4143 
4144 		    /* Delete three bytes of data.  */
4145 		    if (!mn10300_elf_relax_delete_bytes (abfd, sec,
4146 							 irel->r_offset + 1, 3))
4147 		      goto error_return;
4148 
4149 		    /* That will change things, so, we should relax again.
4150 		       Note that this is not required, and it may be slow.  */
4151 		    *again = TRUE;
4152 		    break;
4153 
4154 		  /* mov am,(abs32)    -> mov am,(abs16)
4155 		     mov am,(d32,sp)   -> mov am,(d16,sp)
4156 		     mov dm,(d32,sp)   -> mov dm,(d32,sp)
4157 		     movbu dm,(d32,sp) -> movbu dm,(d32,sp)
4158 		     movhu dm,(d32,sp) -> movhu dm,(d32,sp) */
4159 		  case 0x80:
4160 		  case 0x90:
4161 		  case 0x91:
4162 		  case 0x92:
4163 		  case 0x93:
4164 		    /* sp-based offsets are zero-extended.  */
4165 		    if (code >= 0x90 && code <= 0x93
4166 			&& (long) value < 0)
4167 		      continue;
4168 
4169 		    /* Note that we've changed the relocation contents, etc.  */
4170 		    elf_section_data (sec)->relocs = internal_relocs;
4171 		    elf_section_data (sec)->this_hdr.contents = contents;
4172 		    symtab_hdr->contents = (unsigned char *) isymbuf;
4173 
4174 		    /* Fix the opcode.  */
4175 		    bfd_put_8 (abfd, 0xfa, contents + irel->r_offset - 2);
4176 		    bfd_put_8 (abfd, code, contents + irel->r_offset - 1);
4177 
4178 		    /* Fix the relocation's type.  */
4179 		    irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
4180 						 (ELF32_R_TYPE (irel->r_info)
4181 						  == (int) R_MN10300_GOTOFF32)
4182 						 ? R_MN10300_GOTOFF16
4183 						 : (ELF32_R_TYPE (irel->r_info)
4184 						    == (int) R_MN10300_GOT32)
4185 						 ? R_MN10300_GOT16
4186 						 : (ELF32_R_TYPE (irel->r_info)
4187 						    == (int) R_MN10300_GOTPC32)
4188 						 ? R_MN10300_GOTPC16 :
4189 						 R_MN10300_16);
4190 
4191 		    /* Delete two bytes of data.  */
4192 		    if (!mn10300_elf_relax_delete_bytes (abfd, sec,
4193 							 irel->r_offset + 2, 2))
4194 		      goto error_return;
4195 
4196 		    /* That will change things, so, we should relax again.
4197 		       Note that this is not required, and it may be slow.  */
4198 		    *again = TRUE;
4199 		    break;
4200 		  }
4201 	      else if ((code & 0xf0) < 0xf0)
4202 		switch (code & 0xfc)
4203 		  {
4204 		  /* mov imm32,dn     -> mov imm16,dn
4205 		     mov imm32,an     -> mov imm16,an
4206 		     mov (abs32),dn   -> mov (abs16),dn
4207 		     movbu (abs32),dn -> movbu (abs16),dn
4208 		     movhu (abs32),dn -> movhu (abs16),dn  */
4209 		  case 0xcc:
4210 		  case 0xdc:
4211 		  case 0xa4:
4212 		  case 0xa8:
4213 		  case 0xac:
4214 		    /* Not safe if the high bit is on as relaxing may
4215 		       move the value out of high mem and thus not fit
4216 		       in a signed 16bit value.  */
4217 		    if (code == 0xcc
4218 			&& (value & 0x8000))
4219 		      continue;
4220 
4221 		    /* "mov imm16, an" zero-extends the immediate.  */
4222 		    if ((code & 0xfc) == 0xdc
4223 			&& (long) value < 0)
4224 		      continue;
4225 
4226 		    /* Note that we've changed the relocation contents, etc.  */
4227 		    elf_section_data (sec)->relocs = internal_relocs;
4228 		    elf_section_data (sec)->this_hdr.contents = contents;
4229 		    symtab_hdr->contents = (unsigned char *) isymbuf;
4230 
4231 		    if ((code & 0xfc) == 0xcc)
4232 		      code = 0x2c + (code & 0x03);
4233 		    else if ((code & 0xfc) == 0xdc)
4234 		      code = 0x24 + (code & 0x03);
4235 		    else if ((code & 0xfc) == 0xa4)
4236 		      code = 0x30 + (code & 0x03);
4237 		    else if ((code & 0xfc) == 0xa8)
4238 		      code = 0x34 + (code & 0x03);
4239 		    else if ((code & 0xfc) == 0xac)
4240 		      code = 0x38 + (code & 0x03);
4241 		    else
4242 		      abort ();
4243 
4244 		    /* Fix the opcode.  */
4245 		    bfd_put_8 (abfd, code, contents + irel->r_offset - 2);
4246 
4247 		    /* Fix the relocation's type.  */
4248 		    irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
4249 						 (ELF32_R_TYPE (irel->r_info)
4250 						  == (int) R_MN10300_GOTOFF32)
4251 						 ? R_MN10300_GOTOFF16
4252 						 : (ELF32_R_TYPE (irel->r_info)
4253 						    == (int) R_MN10300_GOT32)
4254 						 ? R_MN10300_GOT16
4255 						 : (ELF32_R_TYPE (irel->r_info)
4256 						    == (int) R_MN10300_GOTPC32)
4257 						 ? R_MN10300_GOTPC16 :
4258 						 R_MN10300_16);
4259 
4260 		    /* The opcode got shorter too, so we have to fix the
4261 		       addend and offset too!  */
4262 		    irel->r_offset -= 1;
4263 
4264 		    /* Delete three bytes of data.  */
4265 		    if (!mn10300_elf_relax_delete_bytes (abfd, sec,
4266 							 irel->r_offset + 1, 3))
4267 		      goto error_return;
4268 
4269 		    /* That will change things, so, we should relax again.
4270 		       Note that this is not required, and it may be slow.  */
4271 		    *again = TRUE;
4272 		    break;
4273 
4274 		  /* mov (abs32),an    -> mov (abs16),an
4275 		     mov (d32,sp),an   -> mov (d16,sp),an
4276 		     mov (d32,sp),dn   -> mov (d16,sp),dn
4277 		     movbu (d32,sp),dn -> movbu (d16,sp),dn
4278 		     movhu (d32,sp),dn -> movhu (d16,sp),dn
4279 		     add imm32,dn      -> add imm16,dn
4280 		     cmp imm32,dn      -> cmp imm16,dn
4281 		     add imm32,an      -> add imm16,an
4282 		     cmp imm32,an      -> cmp imm16,an
4283 		     and imm32,dn      -> and imm16,dn
4284 		     or imm32,dn       -> or imm16,dn
4285 		     xor imm32,dn      -> xor imm16,dn
4286 		     btst imm32,dn     -> btst imm16,dn */
4287 
4288 		  case 0xa0:
4289 		  case 0xb0:
4290 		  case 0xb1:
4291 		  case 0xb2:
4292 		  case 0xb3:
4293 		  case 0xc0:
4294 		  case 0xc8:
4295 
4296 		  case 0xd0:
4297 		  case 0xd8:
4298 		  case 0xe0:
4299 		  case 0xe1:
4300 		  case 0xe2:
4301 		  case 0xe3:
4302 		    /* cmp imm16, an zero-extends the immediate.  */
4303 		    if (code == 0xdc
4304 			&& (long) value < 0)
4305 		      continue;
4306 
4307 		    /* So do sp-based offsets.  */
4308 		    if (code >= 0xb0 && code <= 0xb3
4309 			&& (long) value < 0)
4310 		      continue;
4311 
4312 		    /* Note that we've changed the relocation contents, etc.  */
4313 		    elf_section_data (sec)->relocs = internal_relocs;
4314 		    elf_section_data (sec)->this_hdr.contents = contents;
4315 		    symtab_hdr->contents = (unsigned char *) isymbuf;
4316 
4317 		    /* Fix the opcode.  */
4318 		    bfd_put_8 (abfd, 0xfa, contents + irel->r_offset - 2);
4319 		    bfd_put_8 (abfd, code, contents + irel->r_offset - 1);
4320 
4321 		    /* Fix the relocation's type.  */
4322 		    irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
4323 						 (ELF32_R_TYPE (irel->r_info)
4324 						  == (int) R_MN10300_GOTOFF32)
4325 						 ? R_MN10300_GOTOFF16
4326 						 : (ELF32_R_TYPE (irel->r_info)
4327 						    == (int) R_MN10300_GOT32)
4328 						 ? R_MN10300_GOT16
4329 						 : (ELF32_R_TYPE (irel->r_info)
4330 						    == (int) R_MN10300_GOTPC32)
4331 						 ? R_MN10300_GOTPC16 :
4332 						 R_MN10300_16);
4333 
4334 		    /* Delete two bytes of data.  */
4335 		    if (!mn10300_elf_relax_delete_bytes (abfd, sec,
4336 							 irel->r_offset + 2, 2))
4337 		      goto error_return;
4338 
4339 		    /* That will change things, so, we should relax again.
4340 		       Note that this is not required, and it may be slow.  */
4341 		    *again = TRUE;
4342 		    break;
4343 		  }
4344 	      else if (code == 0xfe)
4345 		{
4346 		  /* add imm32,sp -> add imm16,sp  */
4347 
4348 		  /* Note that we've changed the relocation contents, etc.  */
4349 		  elf_section_data (sec)->relocs = internal_relocs;
4350 		  elf_section_data (sec)->this_hdr.contents = contents;
4351 		  symtab_hdr->contents = (unsigned char *) isymbuf;
4352 
4353 		  /* Fix the opcode.  */
4354 		  bfd_put_8 (abfd, 0xfa, contents + irel->r_offset - 2);
4355 		  bfd_put_8 (abfd, 0xfe, contents + irel->r_offset - 1);
4356 
4357 		  /* Fix the relocation's type.  */
4358 		  irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
4359 					       (ELF32_R_TYPE (irel->r_info)
4360 						== (int) R_MN10300_GOT32)
4361 					       ? R_MN10300_GOT16
4362 					       : (ELF32_R_TYPE (irel->r_info)
4363 						  == (int) R_MN10300_GOTOFF32)
4364 					       ? R_MN10300_GOTOFF16
4365 					       : (ELF32_R_TYPE (irel->r_info)
4366 						  == (int) R_MN10300_GOTPC32)
4367 					       ? R_MN10300_GOTPC16 :
4368 					       R_MN10300_16);
4369 
4370 		  /* Delete two bytes of data.  */
4371 		  if (!mn10300_elf_relax_delete_bytes (abfd, sec,
4372 						       irel->r_offset + 2, 2))
4373 		    goto error_return;
4374 
4375 		  /* That will change things, so, we should relax again.
4376 		     Note that this is not required, and it may be slow.  */
4377 		  *again = TRUE;
4378 		  break;
4379 		}
4380 	    }
4381 	}
4382     }
4383 
4384   if (isymbuf != NULL
4385       && symtab_hdr->contents != (unsigned char *) isymbuf)
4386     {
4387       if (! link_info->keep_memory)
4388 	free (isymbuf);
4389       else
4390 	{
4391 	  /* Cache the symbols for elf_link_input_bfd.  */
4392 	  symtab_hdr->contents = (unsigned char *) isymbuf;
4393 	}
4394     }
4395 
4396   if (contents != NULL
4397       && elf_section_data (sec)->this_hdr.contents != contents)
4398     {
4399       if (! link_info->keep_memory)
4400 	free (contents);
4401       else
4402 	{
4403 	  /* Cache the section contents for elf_link_input_bfd.  */
4404 	  elf_section_data (sec)->this_hdr.contents = contents;
4405 	}
4406     }
4407 
4408   if (internal_relocs != NULL
4409       && elf_section_data (sec)->relocs != internal_relocs)
4410     free (internal_relocs);
4411 
4412   return TRUE;
4413 
4414  error_return:
4415   if (isymbuf != NULL
4416       && symtab_hdr->contents != (unsigned char *) isymbuf)
4417     free (isymbuf);
4418   if (contents != NULL
4419       && elf_section_data (section)->this_hdr.contents != contents)
4420     free (contents);
4421   if (internal_relocs != NULL
4422       && elf_section_data (section)->relocs != internal_relocs)
4423     free (internal_relocs);
4424 
4425   return FALSE;
4426 }
4427 
4428 /* This is a version of bfd_generic_get_relocated_section_contents
4429    which uses mn10300_elf_relocate_section.  */
4430 
4431 static bfd_byte *
4432 mn10300_elf_get_relocated_section_contents (bfd *output_bfd,
4433 					    struct bfd_link_info *link_info,
4434 					    struct bfd_link_order *link_order,
4435 					    bfd_byte *data,
4436 					    bfd_boolean relocatable,
4437 					    asymbol **symbols)
4438 {
4439   Elf_Internal_Shdr *symtab_hdr;
4440   asection *input_section = link_order->u.indirect.section;
4441   bfd *input_bfd = input_section->owner;
4442   asection **sections = NULL;
4443   Elf_Internal_Rela *internal_relocs = NULL;
4444   Elf_Internal_Sym *isymbuf = NULL;
4445 
4446   /* We only need to handle the case of relaxing, or of having a
4447      particular set of section contents, specially.  */
4448   if (relocatable
4449       || elf_section_data (input_section)->this_hdr.contents == NULL)
4450     return bfd_generic_get_relocated_section_contents (output_bfd, link_info,
4451 						       link_order, data,
4452 						       relocatable,
4453 						       symbols);
4454 
4455   symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4456 
4457   memcpy (data, elf_section_data (input_section)->this_hdr.contents,
4458 	  (size_t) input_section->size);
4459 
4460   if ((input_section->flags & SEC_RELOC) != 0
4461       && input_section->reloc_count > 0)
4462     {
4463       asection **secpp;
4464       Elf_Internal_Sym *isym, *isymend;
4465       bfd_size_type amt;
4466 
4467       internal_relocs = _bfd_elf_link_read_relocs (input_bfd, input_section,
4468 						   NULL, NULL, FALSE);
4469       if (internal_relocs == NULL)
4470 	goto error_return;
4471 
4472       if (symtab_hdr->sh_info != 0)
4473 	{
4474 	  isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
4475 	  if (isymbuf == NULL)
4476 	    isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
4477 					    symtab_hdr->sh_info, 0,
4478 					    NULL, NULL, NULL);
4479 	  if (isymbuf == NULL)
4480 	    goto error_return;
4481 	}
4482 
4483       amt = symtab_hdr->sh_info;
4484       amt *= sizeof (asection *);
4485       sections = bfd_malloc (amt);
4486       if (sections == NULL && amt != 0)
4487 	goto error_return;
4488 
4489       isymend = isymbuf + symtab_hdr->sh_info;
4490       for (isym = isymbuf, secpp = sections; isym < isymend; ++isym, ++secpp)
4491 	{
4492 	  asection *isec;
4493 
4494 	  if (isym->st_shndx == SHN_UNDEF)
4495 	    isec = bfd_und_section_ptr;
4496 	  else if (isym->st_shndx == SHN_ABS)
4497 	    isec = bfd_abs_section_ptr;
4498 	  else if (isym->st_shndx == SHN_COMMON)
4499 	    isec = bfd_com_section_ptr;
4500 	  else
4501 	    isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
4502 
4503 	  *secpp = isec;
4504 	}
4505 
4506       if (! mn10300_elf_relocate_section (output_bfd, link_info, input_bfd,
4507 					  input_section, data, internal_relocs,
4508 					  isymbuf, sections))
4509 	goto error_return;
4510 
4511       if (sections != NULL)
4512 	free (sections);
4513       if (isymbuf != NULL && symtab_hdr->contents != (unsigned char *) isymbuf)
4514 	free (isymbuf);
4515       if (internal_relocs != elf_section_data (input_section)->relocs)
4516 	free (internal_relocs);
4517     }
4518 
4519   return data;
4520 
4521  error_return:
4522   if (sections != NULL)
4523     free (sections);
4524   if (isymbuf != NULL && symtab_hdr->contents != (unsigned char *) isymbuf)
4525     free (isymbuf);
4526   if (internal_relocs != NULL
4527       && internal_relocs != elf_section_data (input_section)->relocs)
4528     free (internal_relocs);
4529   return NULL;
4530 }
4531 
4532 /* Assorted hash table functions.  */
4533 
4534 /* Initialize an entry in the link hash table.  */
4535 
4536 /* Create an entry in an MN10300 ELF linker hash table.  */
4537 
4538 static struct bfd_hash_entry *
4539 elf32_mn10300_link_hash_newfunc (struct bfd_hash_entry *entry,
4540 				 struct bfd_hash_table *table,
4541 				 const char *string)
4542 {
4543   struct elf32_mn10300_link_hash_entry *ret =
4544     (struct elf32_mn10300_link_hash_entry *) entry;
4545 
4546   /* Allocate the structure if it has not already been allocated by a
4547      subclass.  */
4548   if (ret == NULL)
4549     ret = (struct elf32_mn10300_link_hash_entry *)
4550 	   bfd_hash_allocate (table, sizeof (* ret));
4551   if (ret == NULL)
4552     return (struct bfd_hash_entry *) ret;
4553 
4554   /* Call the allocation method of the superclass.  */
4555   ret = (struct elf32_mn10300_link_hash_entry *)
4556 	 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
4557 				     table, string);
4558   if (ret != NULL)
4559     {
4560       ret->direct_calls = 0;
4561       ret->stack_size = 0;
4562       ret->movm_args = 0;
4563       ret->movm_stack_size = 0;
4564       ret->flags = 0;
4565       ret->value = 0;
4566       ret->tls_type = GOT_UNKNOWN;
4567     }
4568 
4569   return (struct bfd_hash_entry *) ret;
4570 }
4571 
4572 static void
4573 _bfd_mn10300_copy_indirect_symbol (struct bfd_link_info *        info,
4574 				   struct elf_link_hash_entry *  dir,
4575 				   struct elf_link_hash_entry *  ind)
4576 {
4577   struct elf32_mn10300_link_hash_entry * edir;
4578   struct elf32_mn10300_link_hash_entry * eind;
4579 
4580   edir = elf_mn10300_hash_entry (dir);
4581   eind = elf_mn10300_hash_entry (ind);
4582 
4583   if (ind->root.type == bfd_link_hash_indirect
4584       && dir->got.refcount <= 0)
4585     {
4586       edir->tls_type = eind->tls_type;
4587       eind->tls_type = GOT_UNKNOWN;
4588     }
4589   edir->direct_calls = eind->direct_calls;
4590   edir->stack_size = eind->stack_size;
4591   edir->movm_args = eind->movm_args;
4592   edir->movm_stack_size = eind->movm_stack_size;
4593   edir->flags = eind->flags;
4594 
4595   _bfd_elf_link_hash_copy_indirect (info, dir, ind);
4596 }
4597 
4598 /* Create an mn10300 ELF linker hash table.  */
4599 
4600 static struct bfd_link_hash_table *
4601 elf32_mn10300_link_hash_table_create (bfd *abfd)
4602 {
4603   struct elf32_mn10300_link_hash_table *ret;
4604   bfd_size_type amt = sizeof (* ret);
4605 
4606   ret = bfd_malloc (amt);
4607   if (ret == NULL)
4608     return NULL;
4609 
4610   if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
4611 				      elf32_mn10300_link_hash_newfunc,
4612 				      sizeof (struct elf32_mn10300_link_hash_entry),
4613 				      MN10300_ELF_DATA))
4614     {
4615       free (ret);
4616       return NULL;
4617     }
4618 
4619   ret->flags = 0;
4620   ret->tls_ldm_got.refcount = 0;
4621   ret->tls_ldm_got.offset = -1;
4622   ret->tls_ldm_got.got_allocated = 0;
4623   ret->tls_ldm_got.rel_emitted = 0;
4624 
4625   amt = sizeof (struct elf_link_hash_table);
4626   ret->static_hash_table = bfd_malloc (amt);
4627   if (ret->static_hash_table == NULL)
4628     {
4629       free (ret);
4630       return NULL;
4631     }
4632 
4633   if (!_bfd_elf_link_hash_table_init (&ret->static_hash_table->root, abfd,
4634 				      elf32_mn10300_link_hash_newfunc,
4635 				      sizeof (struct elf32_mn10300_link_hash_entry),
4636 				      MN10300_ELF_DATA))
4637     {
4638       free (ret->static_hash_table);
4639       free (ret);
4640       return NULL;
4641     }
4642   return & ret->root.root;
4643 }
4644 
4645 /* Free an mn10300 ELF linker hash table.  */
4646 
4647 static void
4648 elf32_mn10300_link_hash_table_free (struct bfd_link_hash_table *hash)
4649 {
4650   struct elf32_mn10300_link_hash_table *ret
4651     = (struct elf32_mn10300_link_hash_table *) hash;
4652 
4653   _bfd_generic_link_hash_table_free
4654     ((struct bfd_link_hash_table *) ret->static_hash_table);
4655   _bfd_generic_link_hash_table_free
4656     ((struct bfd_link_hash_table *) ret);
4657 }
4658 
4659 static unsigned long
4660 elf_mn10300_mach (flagword flags)
4661 {
4662   switch (flags & EF_MN10300_MACH)
4663     {
4664     case E_MN10300_MACH_MN10300:
4665     default:
4666       return bfd_mach_mn10300;
4667 
4668     case E_MN10300_MACH_AM33:
4669       return bfd_mach_am33;
4670 
4671     case E_MN10300_MACH_AM33_2:
4672       return bfd_mach_am33_2;
4673     }
4674 }
4675 
4676 /* The final processing done just before writing out a MN10300 ELF object
4677    file.  This gets the MN10300 architecture right based on the machine
4678    number.  */
4679 
4680 static void
4681 _bfd_mn10300_elf_final_write_processing (bfd *abfd,
4682 					 bfd_boolean linker ATTRIBUTE_UNUSED)
4683 {
4684   unsigned long val;
4685 
4686   switch (bfd_get_mach (abfd))
4687     {
4688     default:
4689     case bfd_mach_mn10300:
4690       val = E_MN10300_MACH_MN10300;
4691       break;
4692 
4693     case bfd_mach_am33:
4694       val = E_MN10300_MACH_AM33;
4695       break;
4696 
4697     case bfd_mach_am33_2:
4698       val = E_MN10300_MACH_AM33_2;
4699       break;
4700     }
4701 
4702   elf_elfheader (abfd)->e_flags &= ~ (EF_MN10300_MACH);
4703   elf_elfheader (abfd)->e_flags |= val;
4704 }
4705 
4706 static bfd_boolean
4707 _bfd_mn10300_elf_object_p (bfd *abfd)
4708 {
4709   bfd_default_set_arch_mach (abfd, bfd_arch_mn10300,
4710 			     elf_mn10300_mach (elf_elfheader (abfd)->e_flags));
4711   return TRUE;
4712 }
4713 
4714 /* Merge backend specific data from an object file to the output
4715    object file when linking.  */
4716 
4717 static bfd_boolean
4718 _bfd_mn10300_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
4719 {
4720   if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
4721       || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
4722     return TRUE;
4723 
4724   if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
4725       && bfd_get_mach (obfd) < bfd_get_mach (ibfd))
4726     {
4727       if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
4728 			       bfd_get_mach (ibfd)))
4729 	return FALSE;
4730     }
4731 
4732   return TRUE;
4733 }
4734 
4735 #define PLT0_ENTRY_SIZE     15
4736 #define PLT_ENTRY_SIZE      20
4737 #define PIC_PLT_ENTRY_SIZE  24
4738 
4739 static const bfd_byte elf_mn10300_plt0_entry[PLT0_ENTRY_SIZE] =
4740 {
4741   0xfc, 0xa0, 0, 0, 0, 0,	/* mov	(.got+8),a0 */
4742   0xfe, 0xe, 0x10, 0, 0, 0, 0,	/* mov	(.got+4),r1 */
4743   0xf0, 0xf4,			/* jmp	(a0) */
4744 };
4745 
4746 static const bfd_byte elf_mn10300_plt_entry[PLT_ENTRY_SIZE] =
4747 {
4748   0xfc, 0xa0, 0, 0, 0, 0,	/* mov	(nameN@GOT + .got),a0 */
4749   0xf0, 0xf4,			/* jmp	(a0) */
4750   0xfe, 8, 0, 0, 0, 0, 0,	/* mov	reloc-table-address,r0 */
4751   0xdc, 0, 0, 0, 0,		/* jmp	.plt0 */
4752 };
4753 
4754 static const bfd_byte elf_mn10300_pic_plt_entry[PIC_PLT_ENTRY_SIZE] =
4755 {
4756   0xfc, 0x22, 0, 0, 0, 0,	/* mov	(nameN@GOT,a2),a0 */
4757   0xf0, 0xf4,			/* jmp	(a0) */
4758   0xfe, 8, 0, 0, 0, 0, 0,	/* mov	reloc-table-address,r0 */
4759   0xf8, 0x22, 8,		/* mov	(8,a2),a0 */
4760   0xfb, 0xa, 0x1a, 4,		/* mov	(4,a2),r1 */
4761   0xf0, 0xf4,			/* jmp	(a0) */
4762 };
4763 
4764 /* Return size of the first PLT entry.  */
4765 #define elf_mn10300_sizeof_plt0(info) \
4766   (info->shared ? PIC_PLT_ENTRY_SIZE : PLT0_ENTRY_SIZE)
4767 
4768 /* Return size of a PLT entry.  */
4769 #define elf_mn10300_sizeof_plt(info) \
4770   (info->shared ? PIC_PLT_ENTRY_SIZE : PLT_ENTRY_SIZE)
4771 
4772 /* Return offset of the PLT0 address in an absolute PLT entry.  */
4773 #define elf_mn10300_plt_plt0_offset(info) 16
4774 
4775 /* Return offset of the linker in PLT0 entry.  */
4776 #define elf_mn10300_plt0_linker_offset(info) 2
4777 
4778 /* Return offset of the GOT id in PLT0 entry.  */
4779 #define elf_mn10300_plt0_gotid_offset(info) 9
4780 
4781 /* Return offset of the temporary in PLT entry.  */
4782 #define elf_mn10300_plt_temp_offset(info) 8
4783 
4784 /* Return offset of the symbol in PLT entry.  */
4785 #define elf_mn10300_plt_symbol_offset(info) 2
4786 
4787 /* Return offset of the relocation in PLT entry.  */
4788 #define elf_mn10300_plt_reloc_offset(info) 11
4789 
4790 /* The name of the dynamic interpreter.  This is put in the .interp
4791    section.  */
4792 
4793 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
4794 
4795 /* Create dynamic sections when linking against a dynamic object.  */
4796 
4797 static bfd_boolean
4798 _bfd_mn10300_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
4799 {
4800   flagword   flags;
4801   asection * s;
4802   const struct elf_backend_data * bed = get_elf_backend_data (abfd);
4803   struct elf32_mn10300_link_hash_table *htab = elf32_mn10300_hash_table (info);
4804   int ptralign = 0;
4805 
4806   switch (bed->s->arch_size)
4807     {
4808     case 32:
4809       ptralign = 2;
4810       break;
4811 
4812     case 64:
4813       ptralign = 3;
4814       break;
4815 
4816     default:
4817       bfd_set_error (bfd_error_bad_value);
4818       return FALSE;
4819     }
4820 
4821   /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
4822      .rel[a].bss sections.  */
4823   flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4824 	   | SEC_LINKER_CREATED);
4825 
4826   s = bfd_make_section_anyway_with_flags (abfd,
4827 					  (bed->default_use_rela_p
4828 					   ? ".rela.plt" : ".rel.plt"),
4829 					  flags | SEC_READONLY);
4830   htab->root.srelplt = s;
4831   if (s == NULL
4832       || ! bfd_set_section_alignment (abfd, s, ptralign))
4833     return FALSE;
4834 
4835   if (! _bfd_mn10300_elf_create_got_section (abfd, info))
4836     return FALSE;
4837 
4838   if (bed->want_dynbss)
4839     {
4840       /* The .dynbss section is a place to put symbols which are defined
4841 	 by dynamic objects, are referenced by regular objects, and are
4842 	 not functions.  We must allocate space for them in the process
4843 	 image and use a R_*_COPY reloc to tell the dynamic linker to
4844 	 initialize them at run time.  The linker script puts the .dynbss
4845 	 section into the .bss section of the final image.  */
4846       s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
4847 					      SEC_ALLOC | SEC_LINKER_CREATED);
4848       if (s == NULL)
4849 	return FALSE;
4850 
4851       /* The .rel[a].bss section holds copy relocs.  This section is not
4852 	 normally needed.  We need to create it here, though, so that the
4853 	 linker will map it to an output section.  We can't just create it
4854 	 only if we need it, because we will not know whether we need it
4855 	 until we have seen all the input files, and the first time the
4856 	 main linker code calls BFD after examining all the input files
4857 	 (size_dynamic_sections) the input sections have already been
4858 	 mapped to the output sections.  If the section turns out not to
4859 	 be needed, we can discard it later.  We will never need this
4860 	 section when generating a shared object, since they do not use
4861 	 copy relocs.  */
4862       if (! info->shared)
4863 	{
4864 	  s = bfd_make_section_anyway_with_flags (abfd,
4865 						  (bed->default_use_rela_p
4866 						   ? ".rela.bss" : ".rel.bss"),
4867 						  flags | SEC_READONLY);
4868 	  if (s == NULL
4869 	      || ! bfd_set_section_alignment (abfd, s, ptralign))
4870 	    return FALSE;
4871 	}
4872     }
4873 
4874   return TRUE;
4875 }
4876 
4877 /* Adjust a symbol defined by a dynamic object and referenced by a
4878    regular object.  The current definition is in some section of the
4879    dynamic object, but we're not including those sections.  We have to
4880    change the definition to something the rest of the link can
4881    understand.  */
4882 
4883 static bfd_boolean
4884 _bfd_mn10300_elf_adjust_dynamic_symbol (struct bfd_link_info * info,
4885 					struct elf_link_hash_entry * h)
4886 {
4887   struct elf32_mn10300_link_hash_table *htab = elf32_mn10300_hash_table (info);
4888   bfd * dynobj;
4889   asection * s;
4890 
4891   dynobj = htab->root.dynobj;
4892 
4893   /* Make sure we know what is going on here.  */
4894   BFD_ASSERT (dynobj != NULL
4895 	      && (h->needs_plt
4896 		  || h->u.weakdef != NULL
4897 		  || (h->def_dynamic
4898 		      && h->ref_regular
4899 		      && !h->def_regular)));
4900 
4901   /* If this is a function, put it in the procedure linkage table.  We
4902      will fill in the contents of the procedure linkage table later,
4903      when we know the address of the .got section.  */
4904   if (h->type == STT_FUNC
4905       || h->needs_plt)
4906     {
4907       if (! info->shared
4908 	  && !h->def_dynamic
4909 	  && !h->ref_dynamic)
4910 	{
4911 	  /* This case can occur if we saw a PLT reloc in an input
4912 	     file, but the symbol was never referred to by a dynamic
4913 	     object.  In such a case, we don't actually need to build
4914 	     a procedure linkage table, and we can just do a REL32
4915 	     reloc instead.  */
4916 	  BFD_ASSERT (h->needs_plt);
4917 	  return TRUE;
4918 	}
4919 
4920       /* Make sure this symbol is output as a dynamic symbol.  */
4921       if (h->dynindx == -1)
4922 	{
4923 	  if (! bfd_elf_link_record_dynamic_symbol (info, h))
4924 	    return FALSE;
4925 	}
4926 
4927       s = htab->root.splt;
4928       BFD_ASSERT (s != NULL);
4929 
4930       /* If this is the first .plt entry, make room for the special
4931 	 first entry.  */
4932       if (s->size == 0)
4933 	s->size += elf_mn10300_sizeof_plt0 (info);
4934 
4935       /* If this symbol is not defined in a regular file, and we are
4936 	 not generating a shared library, then set the symbol to this
4937 	 location in the .plt.  This is required to make function
4938 	 pointers compare as equal between the normal executable and
4939 	 the shared library.  */
4940       if (! info->shared
4941 	  && !h->def_regular)
4942 	{
4943 	  h->root.u.def.section = s;
4944 	  h->root.u.def.value = s->size;
4945 	}
4946 
4947       h->plt.offset = s->size;
4948 
4949       /* Make room for this entry.  */
4950       s->size += elf_mn10300_sizeof_plt (info);
4951 
4952       /* We also need to make an entry in the .got.plt section, which
4953 	 will be placed in the .got section by the linker script.  */
4954       s = htab->root.sgotplt;
4955       BFD_ASSERT (s != NULL);
4956       s->size += 4;
4957 
4958       /* We also need to make an entry in the .rela.plt section.  */
4959       s = bfd_get_linker_section (dynobj, ".rela.plt");
4960       BFD_ASSERT (s != NULL);
4961       s->size += sizeof (Elf32_External_Rela);
4962 
4963       return TRUE;
4964     }
4965 
4966   /* If this is a weak symbol, and there is a real definition, the
4967      processor independent code will have arranged for us to see the
4968      real definition first, and we can just use the same value.  */
4969   if (h->u.weakdef != NULL)
4970     {
4971       BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
4972 		  || h->u.weakdef->root.type == bfd_link_hash_defweak);
4973       h->root.u.def.section = h->u.weakdef->root.u.def.section;
4974       h->root.u.def.value = h->u.weakdef->root.u.def.value;
4975       return TRUE;
4976     }
4977 
4978   /* This is a reference to a symbol defined by a dynamic object which
4979      is not a function.  */
4980 
4981   /* If we are creating a shared library, we must presume that the
4982      only references to the symbol are via the global offset table.
4983      For such cases we need not do anything here; the relocations will
4984      be handled correctly by relocate_section.  */
4985   if (info->shared)
4986     return TRUE;
4987 
4988   /* If there are no references to this symbol that do not use the
4989      GOT, we don't need to generate a copy reloc.  */
4990   if (!h->non_got_ref)
4991     return TRUE;
4992 
4993   /* We must allocate the symbol in our .dynbss section, which will
4994      become part of the .bss section of the executable.  There will be
4995      an entry for this symbol in the .dynsym section.  The dynamic
4996      object will contain position independent code, so all references
4997      from the dynamic object to this symbol will go through the global
4998      offset table.  The dynamic linker will use the .dynsym entry to
4999      determine the address it must put in the global offset table, so
5000      both the dynamic object and the regular object will refer to the
5001      same memory location for the variable.  */
5002 
5003   s = bfd_get_linker_section (dynobj, ".dynbss");
5004   BFD_ASSERT (s != NULL);
5005 
5006   /* We must generate a R_MN10300_COPY reloc to tell the dynamic linker to
5007      copy the initial value out of the dynamic object and into the
5008      runtime process image.  We need to remember the offset into the
5009      .rela.bss section we are going to use.  */
5010   if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
5011     {
5012       asection * srel;
5013 
5014       srel = bfd_get_linker_section (dynobj, ".rela.bss");
5015       BFD_ASSERT (srel != NULL);
5016       srel->size += sizeof (Elf32_External_Rela);
5017       h->needs_copy = 1;
5018     }
5019 
5020   return _bfd_elf_adjust_dynamic_copy (h, s);
5021 }
5022 
5023 /* Set the sizes of the dynamic sections.  */
5024 
5025 static bfd_boolean
5026 _bfd_mn10300_elf_size_dynamic_sections (bfd * output_bfd,
5027 					struct bfd_link_info * info)
5028 {
5029   struct elf32_mn10300_link_hash_table *htab = elf32_mn10300_hash_table (info);
5030   bfd * dynobj;
5031   asection * s;
5032   bfd_boolean plt;
5033   bfd_boolean relocs;
5034   bfd_boolean reltext;
5035 
5036   dynobj = htab->root.dynobj;
5037   BFD_ASSERT (dynobj != NULL);
5038 
5039   if (elf_hash_table (info)->dynamic_sections_created)
5040     {
5041       /* Set the contents of the .interp section to the interpreter.  */
5042       if (info->executable)
5043 	{
5044 	  s = bfd_get_linker_section (dynobj, ".interp");
5045 	  BFD_ASSERT (s != NULL);
5046 	  s->size = sizeof ELF_DYNAMIC_INTERPRETER;
5047 	  s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
5048 	}
5049     }
5050   else
5051     {
5052       /* We may have created entries in the .rela.got section.
5053 	 However, if we are not creating the dynamic sections, we will
5054 	 not actually use these entries.  Reset the size of .rela.got,
5055 	 which will cause it to get stripped from the output file
5056 	 below.  */
5057       s = htab->root.sgot;
5058       if (s != NULL)
5059 	s->size = 0;
5060     }
5061 
5062   if (htab->tls_ldm_got.refcount > 0)
5063     {
5064       s = bfd_get_linker_section (dynobj, ".rela.got");
5065       BFD_ASSERT (s != NULL);
5066       s->size += sizeof (Elf32_External_Rela);
5067     }
5068 
5069   /* The check_relocs and adjust_dynamic_symbol entry points have
5070      determined the sizes of the various dynamic sections.  Allocate
5071      memory for them.  */
5072   plt = FALSE;
5073   relocs = FALSE;
5074   reltext = FALSE;
5075   for (s = dynobj->sections; s != NULL; s = s->next)
5076     {
5077       const char * name;
5078 
5079       if ((s->flags & SEC_LINKER_CREATED) == 0)
5080 	continue;
5081 
5082       /* It's OK to base decisions on the section name, because none
5083 	 of the dynobj section names depend upon the input files.  */
5084       name = bfd_get_section_name (dynobj, s);
5085 
5086       if (streq (name, ".plt"))
5087 	{
5088 	  /* Remember whether there is a PLT.  */
5089 	  plt = s->size != 0;
5090 	}
5091       else if (CONST_STRNEQ (name, ".rela"))
5092 	{
5093 	  if (s->size != 0)
5094 	    {
5095 	      asection * target;
5096 
5097 	      /* Remember whether there are any reloc sections other
5098 		 than .rela.plt.  */
5099 	      if (! streq (name, ".rela.plt"))
5100 		{
5101 		  const char * outname;
5102 
5103 		  relocs = TRUE;
5104 
5105 		  /* If this relocation section applies to a read only
5106 		     section, then we probably need a DT_TEXTREL
5107 		     entry.  The entries in the .rela.plt section
5108 		     really apply to the .got section, which we
5109 		     created ourselves and so know is not readonly.  */
5110 		  outname = bfd_get_section_name (output_bfd,
5111 						  s->output_section);
5112 		  target = bfd_get_section_by_name (output_bfd, outname + 5);
5113 		  if (target != NULL
5114 		      && (target->flags & SEC_READONLY) != 0
5115 		      && (target->flags & SEC_ALLOC) != 0)
5116 		    reltext = TRUE;
5117 		}
5118 
5119 	      /* We use the reloc_count field as a counter if we need
5120 		 to copy relocs into the output file.  */
5121 	      s->reloc_count = 0;
5122 	    }
5123 	}
5124       else if (! CONST_STRNEQ (name, ".got")
5125 	       && ! streq (name, ".dynbss"))
5126 	/* It's not one of our sections, so don't allocate space.  */
5127 	continue;
5128 
5129       if (s->size == 0)
5130 	{
5131 	  /* If we don't need this section, strip it from the
5132 	     output file.  This is mostly to handle .rela.bss and
5133 	     .rela.plt.  We must create both sections in
5134 	     create_dynamic_sections, because they must be created
5135 	     before the linker maps input sections to output
5136 	     sections.  The linker does that before
5137 	     adjust_dynamic_symbol is called, and it is that
5138 	     function which decides whether anything needs to go
5139 	     into these sections.  */
5140 	  s->flags |= SEC_EXCLUDE;
5141 	  continue;
5142 	}
5143 
5144 	if ((s->flags & SEC_HAS_CONTENTS) == 0)
5145 	  continue;
5146 
5147       /* Allocate memory for the section contents.  We use bfd_zalloc
5148 	 here in case unused entries are not reclaimed before the
5149 	 section's contents are written out.  This should not happen,
5150 	 but this way if it does, we get a R_MN10300_NONE reloc
5151 	 instead of garbage.  */
5152       s->contents = bfd_zalloc (dynobj, s->size);
5153       if (s->contents == NULL)
5154 	return FALSE;
5155     }
5156 
5157   if (elf_hash_table (info)->dynamic_sections_created)
5158     {
5159       /* Add some entries to the .dynamic section.  We fill in the
5160 	 values later, in _bfd_mn10300_elf_finish_dynamic_sections,
5161 	 but we must add the entries now so that we get the correct
5162 	 size for the .dynamic section.  The DT_DEBUG entry is filled
5163 	 in by the dynamic linker and used by the debugger.  */
5164       if (! info->shared)
5165 	{
5166 	  if (!_bfd_elf_add_dynamic_entry (info, DT_DEBUG, 0))
5167 	    return FALSE;
5168 	}
5169 
5170       if (plt)
5171 	{
5172 	  if (!_bfd_elf_add_dynamic_entry (info, DT_PLTGOT, 0)
5173 	      || !_bfd_elf_add_dynamic_entry (info, DT_PLTRELSZ, 0)
5174 	      || !_bfd_elf_add_dynamic_entry (info, DT_PLTREL, DT_RELA)
5175 	      || !_bfd_elf_add_dynamic_entry (info, DT_JMPREL, 0))
5176 	    return FALSE;
5177 	}
5178 
5179       if (relocs)
5180 	{
5181 	  if (!_bfd_elf_add_dynamic_entry (info, DT_RELA, 0)
5182 	      || !_bfd_elf_add_dynamic_entry (info, DT_RELASZ, 0)
5183 	      || !_bfd_elf_add_dynamic_entry (info, DT_RELAENT,
5184 					      sizeof (Elf32_External_Rela)))
5185 	    return FALSE;
5186 	}
5187 
5188       if (reltext)
5189 	{
5190 	  if (!_bfd_elf_add_dynamic_entry (info, DT_TEXTREL, 0))
5191 	    return FALSE;
5192 	}
5193     }
5194 
5195   return TRUE;
5196 }
5197 
5198 /* Finish up dynamic symbol handling.  We set the contents of various
5199    dynamic sections here.  */
5200 
5201 static bfd_boolean
5202 _bfd_mn10300_elf_finish_dynamic_symbol (bfd * output_bfd,
5203 					struct bfd_link_info * info,
5204 					struct elf_link_hash_entry * h,
5205 					Elf_Internal_Sym * sym)
5206 {
5207   struct elf32_mn10300_link_hash_table *htab = elf32_mn10300_hash_table (info);
5208   bfd * dynobj;
5209 
5210   dynobj = htab->root.dynobj;
5211 
5212   if (h->plt.offset != (bfd_vma) -1)
5213     {
5214       asection *        splt;
5215       asection *        sgot;
5216       asection *        srel;
5217       bfd_vma           plt_index;
5218       bfd_vma           got_offset;
5219       Elf_Internal_Rela rel;
5220 
5221       /* This symbol has an entry in the procedure linkage table.  Set
5222 	 it up.  */
5223 
5224       BFD_ASSERT (h->dynindx != -1);
5225 
5226       splt = htab->root.splt;
5227       sgot = htab->root.sgotplt;
5228       srel = bfd_get_linker_section (dynobj, ".rela.plt");
5229       BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL);
5230 
5231       /* Get the index in the procedure linkage table which
5232 	 corresponds to this symbol.  This is the index of this symbol
5233 	 in all the symbols for which we are making plt entries.  The
5234 	 first entry in the procedure linkage table is reserved.  */
5235       plt_index = ((h->plt.offset - elf_mn10300_sizeof_plt0 (info))
5236 		   / elf_mn10300_sizeof_plt (info));
5237 
5238       /* Get the offset into the .got table of the entry that
5239 	 corresponds to this function.  Each .got entry is 4 bytes.
5240 	 The first three are reserved.  */
5241       got_offset = (plt_index + 3) * 4;
5242 
5243       /* Fill in the entry in the procedure linkage table.  */
5244       if (! info->shared)
5245 	{
5246 	  memcpy (splt->contents + h->plt.offset, elf_mn10300_plt_entry,
5247 		  elf_mn10300_sizeof_plt (info));
5248 	  bfd_put_32 (output_bfd,
5249 		      (sgot->output_section->vma
5250 		       + sgot->output_offset
5251 		       + got_offset),
5252 		      (splt->contents + h->plt.offset
5253 		       + elf_mn10300_plt_symbol_offset (info)));
5254 
5255 	  bfd_put_32 (output_bfd,
5256 		      (1 - h->plt.offset - elf_mn10300_plt_plt0_offset (info)),
5257 		      (splt->contents + h->plt.offset
5258 		       + elf_mn10300_plt_plt0_offset (info)));
5259 	}
5260       else
5261 	{
5262 	  memcpy (splt->contents + h->plt.offset, elf_mn10300_pic_plt_entry,
5263 		  elf_mn10300_sizeof_plt (info));
5264 
5265 	  bfd_put_32 (output_bfd, got_offset,
5266 		      (splt->contents + h->plt.offset
5267 		       + elf_mn10300_plt_symbol_offset (info)));
5268 	}
5269 
5270       bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rela),
5271 		  (splt->contents + h->plt.offset
5272 		   + elf_mn10300_plt_reloc_offset (info)));
5273 
5274       /* Fill in the entry in the global offset table.  */
5275       bfd_put_32 (output_bfd,
5276 		  (splt->output_section->vma
5277 		   + splt->output_offset
5278 		   + h->plt.offset
5279 		   + elf_mn10300_plt_temp_offset (info)),
5280 		  sgot->contents + got_offset);
5281 
5282       /* Fill in the entry in the .rela.plt section.  */
5283       rel.r_offset = (sgot->output_section->vma
5284 		      + sgot->output_offset
5285 		      + got_offset);
5286       rel.r_info = ELF32_R_INFO (h->dynindx, R_MN10300_JMP_SLOT);
5287       rel.r_addend = 0;
5288       bfd_elf32_swap_reloca_out (output_bfd, &rel,
5289 				 (bfd_byte *) ((Elf32_External_Rela *) srel->contents
5290 					       + plt_index));
5291 
5292       if (!h->def_regular)
5293 	/* Mark the symbol as undefined, rather than as defined in
5294 	   the .plt section.  Leave the value alone.  */
5295 	sym->st_shndx = SHN_UNDEF;
5296     }
5297 
5298   if (h->got.offset != (bfd_vma) -1)
5299     {
5300       asection *        sgot;
5301       asection *        srel;
5302       Elf_Internal_Rela rel;
5303 
5304       /* This symbol has an entry in the global offset table.  Set it up.  */
5305       sgot = htab->root.sgot;
5306       srel = bfd_get_linker_section (dynobj, ".rela.got");
5307       BFD_ASSERT (sgot != NULL && srel != NULL);
5308 
5309       rel.r_offset = (sgot->output_section->vma
5310 		      + sgot->output_offset
5311 		      + (h->got.offset & ~1));
5312 
5313       switch (elf_mn10300_hash_entry (h)->tls_type)
5314 	{
5315 	case GOT_TLS_GD:
5316 	  bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
5317 	  bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset + 4);
5318 	  rel.r_info = ELF32_R_INFO (h->dynindx, R_MN10300_TLS_DTPMOD);
5319 	  rel.r_addend = 0;
5320 	  bfd_elf32_swap_reloca_out (output_bfd, & rel,
5321 				     (bfd_byte *) ((Elf32_External_Rela *) srel->contents
5322 						   + srel->reloc_count));
5323 	  ++ srel->reloc_count;
5324 	  rel.r_info = ELF32_R_INFO (h->dynindx, R_MN10300_TLS_DTPOFF);
5325 	  rel.r_offset += 4;
5326 	  rel.r_addend = 0;
5327 	  break;
5328 
5329 	case GOT_TLS_IE:
5330 	  /* We originally stored the addend in the GOT, but at this
5331 	     point, we want to move it to the reloc instead as that's
5332 	     where the dynamic linker wants it.  */
5333 	  rel.r_addend = bfd_get_32 (output_bfd, sgot->contents + h->got.offset);
5334 	  bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
5335 	  if (h->dynindx == -1)
5336 	    rel.r_info = ELF32_R_INFO (0, R_MN10300_TLS_TPOFF);
5337 	  else
5338 	    rel.r_info = ELF32_R_INFO (h->dynindx, R_MN10300_TLS_TPOFF);
5339 	  break;
5340 
5341 	default:
5342 	  /* If this is a -Bsymbolic link, and the symbol is defined
5343 	     locally, we just want to emit a RELATIVE reloc.  Likewise if
5344 	     the symbol was forced to be local because of a version file.
5345 	     The entry in the global offset table will already have been
5346 	     initialized in the relocate_section function.  */
5347 	  if (info->shared
5348 	      && (info->symbolic || h->dynindx == -1)
5349 	      && h->def_regular)
5350 	    {
5351 	      rel.r_info = ELF32_R_INFO (0, R_MN10300_RELATIVE);
5352 	      rel.r_addend = (h->root.u.def.value
5353 			      + h->root.u.def.section->output_section->vma
5354 			      + h->root.u.def.section->output_offset);
5355 	    }
5356 	  else
5357 	    {
5358 	      bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
5359 	      rel.r_info = ELF32_R_INFO (h->dynindx, R_MN10300_GLOB_DAT);
5360 	      rel.r_addend = 0;
5361 	    }
5362 	}
5363 
5364       if (ELF32_R_TYPE (rel.r_info) != R_MN10300_NONE)
5365 	{
5366 	  bfd_elf32_swap_reloca_out (output_bfd, &rel,
5367 				     (bfd_byte *) ((Elf32_External_Rela *) srel->contents
5368 						   + srel->reloc_count));
5369 	  ++ srel->reloc_count;
5370 	}
5371     }
5372 
5373   if (h->needs_copy)
5374     {
5375       asection *        s;
5376       Elf_Internal_Rela rel;
5377 
5378       /* This symbol needs a copy reloc.  Set it up.  */
5379       BFD_ASSERT (h->dynindx != -1
5380 		  && (h->root.type == bfd_link_hash_defined
5381 		      || h->root.type == bfd_link_hash_defweak));
5382 
5383       s = bfd_get_linker_section (dynobj, ".rela.bss");
5384       BFD_ASSERT (s != NULL);
5385 
5386       rel.r_offset = (h->root.u.def.value
5387 		      + h->root.u.def.section->output_section->vma
5388 		      + h->root.u.def.section->output_offset);
5389       rel.r_info = ELF32_R_INFO (h->dynindx, R_MN10300_COPY);
5390       rel.r_addend = 0;
5391       bfd_elf32_swap_reloca_out (output_bfd, & rel,
5392 				 (bfd_byte *) ((Elf32_External_Rela *) s->contents
5393 					       + s->reloc_count));
5394       ++ s->reloc_count;
5395     }
5396 
5397   /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute.  */
5398   if (streq (h->root.root.string, "_DYNAMIC")
5399       || h == elf_hash_table (info)->hgot)
5400     sym->st_shndx = SHN_ABS;
5401 
5402   return TRUE;
5403 }
5404 
5405 /* Finish up the dynamic sections.  */
5406 
5407 static bfd_boolean
5408 _bfd_mn10300_elf_finish_dynamic_sections (bfd * output_bfd,
5409 					  struct bfd_link_info * info)
5410 {
5411   bfd *      dynobj;
5412   asection * sgot;
5413   asection * sdyn;
5414   struct elf32_mn10300_link_hash_table *htab = elf32_mn10300_hash_table (info);
5415 
5416   dynobj = htab->root.dynobj;
5417   sgot = htab->root.sgotplt;
5418   BFD_ASSERT (sgot != NULL);
5419   sdyn = bfd_get_linker_section (dynobj, ".dynamic");
5420 
5421   if (elf_hash_table (info)->dynamic_sections_created)
5422     {
5423       asection *           splt;
5424       Elf32_External_Dyn * dyncon;
5425       Elf32_External_Dyn * dynconend;
5426 
5427       BFD_ASSERT (sdyn != NULL);
5428 
5429       dyncon = (Elf32_External_Dyn *) sdyn->contents;
5430       dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
5431 
5432       for (; dyncon < dynconend; dyncon++)
5433 	{
5434 	  Elf_Internal_Dyn dyn;
5435 	  const char * name;
5436 	  asection * s;
5437 
5438 	  bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
5439 
5440 	  switch (dyn.d_tag)
5441 	    {
5442 	    default:
5443 	      break;
5444 
5445 	    case DT_PLTGOT:
5446 	      name = ".got";
5447 	      goto get_vma;
5448 
5449 	    case DT_JMPREL:
5450 	      name = ".rela.plt";
5451 	    get_vma:
5452 	      s = bfd_get_section_by_name (output_bfd, name);
5453 	      BFD_ASSERT (s != NULL);
5454 	      dyn.d_un.d_ptr = s->vma;
5455 	      bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
5456 	      break;
5457 
5458 	    case DT_PLTRELSZ:
5459 	      s = bfd_get_section_by_name (output_bfd, ".rela.plt");
5460 	      BFD_ASSERT (s != NULL);
5461 	      dyn.d_un.d_val = s->size;
5462 	      bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
5463 	      break;
5464 
5465 	    case DT_RELASZ:
5466 	      /* My reading of the SVR4 ABI indicates that the
5467 		 procedure linkage table relocs (DT_JMPREL) should be
5468 		 included in the overall relocs (DT_RELA).  This is
5469 		 what Solaris does.  However, UnixWare can not handle
5470 		 that case.  Therefore, we override the DT_RELASZ entry
5471 		 here to make it not include the JMPREL relocs.  Since
5472 		 the linker script arranges for .rela.plt to follow all
5473 		 other relocation sections, we don't have to worry
5474 		 about changing the DT_RELA entry.  */
5475 	      s = bfd_get_section_by_name (output_bfd, ".rela.plt");
5476 	      if (s != NULL)
5477 		dyn.d_un.d_val -= s->size;
5478 	      bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
5479 	      break;
5480 	    }
5481 	}
5482 
5483       /* Fill in the first entry in the procedure linkage table.  */
5484       splt = htab->root.splt;
5485       if (splt && splt->size > 0)
5486 	{
5487 	  if (info->shared)
5488 	    {
5489 	      memcpy (splt->contents, elf_mn10300_pic_plt_entry,
5490 		      elf_mn10300_sizeof_plt (info));
5491 	    }
5492 	  else
5493 	    {
5494 	      memcpy (splt->contents, elf_mn10300_plt0_entry, PLT0_ENTRY_SIZE);
5495 	      bfd_put_32 (output_bfd,
5496 			  sgot->output_section->vma + sgot->output_offset + 4,
5497 			  splt->contents + elf_mn10300_plt0_gotid_offset (info));
5498 	      bfd_put_32 (output_bfd,
5499 			  sgot->output_section->vma + sgot->output_offset + 8,
5500 			  splt->contents + elf_mn10300_plt0_linker_offset (info));
5501 	    }
5502 
5503 	  /* UnixWare sets the entsize of .plt to 4, although that doesn't
5504 	     really seem like the right value.  */
5505 	  elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
5506 
5507 	  /* UnixWare sets the entsize of .plt to 4, but this is incorrect
5508 	     as it means that the size of the PLT0 section (15 bytes) is not
5509 	     a multiple of the sh_entsize.  Some ELF tools flag this as an
5510 	     error.  We could pad PLT0 to 16 bytes, but that would introduce
5511 	     compatibilty issues with previous toolchains, so instead we
5512 	     just set the entry size to 1.  */
5513 	  elf_section_data (splt->output_section)->this_hdr.sh_entsize = 1;
5514 	}
5515     }
5516 
5517   /* Fill in the first three entries in the global offset table.  */
5518   if (sgot->size > 0)
5519     {
5520       if (sdyn == NULL)
5521 	bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
5522       else
5523 	bfd_put_32 (output_bfd,
5524 		    sdyn->output_section->vma + sdyn->output_offset,
5525 		    sgot->contents);
5526       bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
5527       bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
5528     }
5529 
5530   elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
5531 
5532   return TRUE;
5533 }
5534 
5535 /* Classify relocation types, such that combreloc can sort them
5536    properly.  */
5537 
5538 static enum elf_reloc_type_class
5539 _bfd_mn10300_elf_reloc_type_class (const Elf_Internal_Rela *rela)
5540 {
5541   switch ((int) ELF32_R_TYPE (rela->r_info))
5542     {
5543     case R_MN10300_RELATIVE:	return reloc_class_relative;
5544     case R_MN10300_JMP_SLOT:	return reloc_class_plt;
5545     case R_MN10300_COPY:	return reloc_class_copy;
5546     default:			return reloc_class_normal;
5547     }
5548 }
5549 
5550 /* Allocate space for an MN10300 extension to the bfd elf data structure.  */
5551 
5552 static bfd_boolean
5553 mn10300_elf_mkobject (bfd *abfd)
5554 {
5555   return bfd_elf_allocate_object (abfd, sizeof (struct elf_mn10300_obj_tdata),
5556 				  MN10300_ELF_DATA);
5557 }
5558 
5559 #define bfd_elf32_mkobject	mn10300_elf_mkobject
5560 
5561 #ifndef ELF_ARCH
5562 #define TARGET_LITTLE_SYM	bfd_elf32_mn10300_vec
5563 #define TARGET_LITTLE_NAME	"elf32-mn10300"
5564 #define ELF_ARCH		bfd_arch_mn10300
5565 #define ELF_TARGET_ID		MN10300_ELF_DATA
5566 #define ELF_MACHINE_CODE	EM_MN10300
5567 #define ELF_MACHINE_ALT1	EM_CYGNUS_MN10300
5568 #define ELF_MAXPAGESIZE		0x1000
5569 #endif
5570 
5571 #define elf_info_to_howto		mn10300_info_to_howto
5572 #define elf_info_to_howto_rel		0
5573 #define elf_backend_can_gc_sections	1
5574 #define elf_backend_rela_normal		1
5575 #define elf_backend_check_relocs	mn10300_elf_check_relocs
5576 #define elf_backend_gc_mark_hook	mn10300_elf_gc_mark_hook
5577 #define elf_backend_relocate_section	mn10300_elf_relocate_section
5578 #define bfd_elf32_bfd_relax_section	mn10300_elf_relax_section
5579 #define bfd_elf32_bfd_get_relocated_section_contents \
5580 				mn10300_elf_get_relocated_section_contents
5581 #define bfd_elf32_bfd_link_hash_table_create \
5582 				elf32_mn10300_link_hash_table_create
5583 #define bfd_elf32_bfd_link_hash_table_free \
5584 				elf32_mn10300_link_hash_table_free
5585 
5586 #ifndef elf_symbol_leading_char
5587 #define elf_symbol_leading_char '_'
5588 #endif
5589 
5590 /* So we can set bits in e_flags.  */
5591 #define elf_backend_final_write_processing \
5592 					_bfd_mn10300_elf_final_write_processing
5593 #define elf_backend_object_p		_bfd_mn10300_elf_object_p
5594 
5595 #define bfd_elf32_bfd_merge_private_bfd_data \
5596 					_bfd_mn10300_elf_merge_private_bfd_data
5597 
5598 #define elf_backend_can_gc_sections	1
5599 #define elf_backend_create_dynamic_sections \
5600   _bfd_mn10300_elf_create_dynamic_sections
5601 #define elf_backend_adjust_dynamic_symbol \
5602   _bfd_mn10300_elf_adjust_dynamic_symbol
5603 #define elf_backend_size_dynamic_sections \
5604   _bfd_mn10300_elf_size_dynamic_sections
5605 #define elf_backend_omit_section_dynsym \
5606   ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
5607 #define elf_backend_finish_dynamic_symbol \
5608   _bfd_mn10300_elf_finish_dynamic_symbol
5609 #define elf_backend_finish_dynamic_sections \
5610   _bfd_mn10300_elf_finish_dynamic_sections
5611 #define elf_backend_copy_indirect_symbol \
5612   _bfd_mn10300_copy_indirect_symbol
5613 #define elf_backend_reloc_type_class \
5614   _bfd_mn10300_elf_reloc_type_class
5615 
5616 #define elf_backend_want_got_plt	1
5617 #define elf_backend_plt_readonly	1
5618 #define elf_backend_want_plt_sym	0
5619 #define elf_backend_got_header_size	12
5620 
5621 #include "elf32-target.h"
5622