xref: /netbsd-src/external/gpl3/binutils/dist/bfd/elf-m10300.c (revision cb63e24e8d6aae7ddac1859a9015f48b1d8bd90e)
1 /* Matsushita 10300 specific support for 32-bit ELF
2    Copyright (C) 1996-2024 Free Software Foundation, Inc.
3 
4    This file is part of BFD, the Binary File Descriptor library.
5 
6    This program is free software; you can redistribute it and/or modify
7    it under the terms of the GNU General Public License as published by
8    the Free Software Foundation; either version 3 of the License, or
9    (at your option) any later version.
10 
11    This program is distributed in the hope that it will be useful,
12    but WITHOUT ANY WARRANTY; without even the implied warranty of
13    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14    GNU General Public License for more details.
15 
16    You should have received a copy of the GNU General Public License
17    along with this program; if not, write to the Free Software
18    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19    MA 02110-1301, USA.  */
20 
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "libbfd.h"
24 #include "elf-bfd.h"
25 #include "elf/mn10300.h"
26 #include "libiberty.h"
27 
28 /* The mn10300 linker needs to keep track of the number of relocs that
29    it decides to copy in check_relocs for each symbol.  This is so
30    that it can discard PC relative relocs if it doesn't need them when
31    linking with -Bsymbolic.  We store the information in a field
32    extending the regular ELF linker hash table.  */
33 
34 struct elf32_mn10300_link_hash_entry
35 {
36   /* The basic elf link hash table entry.  */
37   struct elf_link_hash_entry root;
38 
39   /* For function symbols, the number of times this function is
40      called directly (ie by name).  */
41   unsigned int direct_calls;
42 
43   /* For function symbols, the size of this function's stack
44      (if <= 255 bytes).  We stuff this into "call" instructions
45      to this target when it's valid and profitable to do so.
46 
47      This does not include stack allocated by movm!  */
48   unsigned char stack_size;
49 
50   /* For function symbols, arguments (if any) for movm instruction
51      in the prologue.  We stuff this value into "call" instructions
52      to the target when it's valid and profitable to do so.  */
53   unsigned char movm_args;
54 
55   /* For function symbols, the amount of stack space that would be allocated
56      by the movm instruction.  This is redundant with movm_args, but we
57      add it to the hash table to avoid computing it over and over.  */
58   unsigned char movm_stack_size;
59 
60 /* When set, convert all "call" instructions to this target into "calls"
61    instructions.  */
62 #define MN10300_CONVERT_CALL_TO_CALLS 0x1
63 
64 /* Used to mark functions which have had redundant parts of their
65    prologue deleted.  */
66 #define MN10300_DELETED_PROLOGUE_BYTES 0x2
67   unsigned char flags;
68 
69   /* Calculated value.  */
70   bfd_vma value;
71 
72 #define GOT_UNKNOWN	0
73 #define GOT_NORMAL	1
74 #define GOT_TLS_GD	2
75 #define GOT_TLS_LD	3
76 #define GOT_TLS_IE	4
77   /* Used to distinguish GOT entries for TLS types from normal GOT entries.  */
78   unsigned char tls_type;
79 };
80 
81 /* We derive a hash table from the main elf linker hash table so
82    we can store state variables and a secondary hash table without
83    resorting to global variables.  */
84 struct elf32_mn10300_link_hash_table
85 {
86   /* The main hash table.  */
87   struct elf_link_hash_table root;
88 
89   /* A hash table for static functions.  We could derive a new hash table
90      instead of using the full elf32_mn10300_link_hash_table if we wanted
91      to save some memory.  */
92   struct elf32_mn10300_link_hash_table *static_hash_table;
93 
94   /* Random linker state flags.  */
95 #define MN10300_HASH_ENTRIES_INITIALIZED 0x1
96   char flags;
97   struct
98   {
99     bfd_signed_vma  refcount;
100     bfd_vma	    offset;
101     char	    got_allocated;
102     char	    rel_emitted;
103   } tls_ldm_got;
104 };
105 
106 #define elf_mn10300_hash_entry(ent) ((struct elf32_mn10300_link_hash_entry *)(ent))
107 
108 struct elf_mn10300_obj_tdata
109 {
110   struct elf_obj_tdata root;
111 
112   /* tls_type for each local got entry.  */
113   char * local_got_tls_type;
114 };
115 
116 #define elf_mn10300_tdata(abfd) \
117   ((struct elf_mn10300_obj_tdata *) (abfd)->tdata.any)
118 
119 #define elf_mn10300_local_got_tls_type(abfd) \
120   (elf_mn10300_tdata (abfd)->local_got_tls_type)
121 
122 #ifndef streq
123 #define streq(a, b) (strcmp ((a),(b)) == 0)
124 #endif
125 
126 /* For MN10300 linker hash table.  */
127 
128 /* Get the MN10300 ELF linker hash table from a link_info structure.  */
129 
130 #define elf32_mn10300_hash_table(p) \
131   ((is_elf_hash_table ((p)->hash)					\
132     && elf_hash_table_id (elf_hash_table (p)) == MN10300_ELF_DATA)	\
133    ? (struct elf32_mn10300_link_hash_table *) (p)->hash : NULL)
134 
135 #define elf32_mn10300_link_hash_traverse(table, func, info)		\
136   (elf_link_hash_traverse						\
137    (&(table)->root,							\
138     (bool (*) (struct elf_link_hash_entry *, void *)) (func),		\
139     (info)))
140 
141 static reloc_howto_type elf_mn10300_howto_table[] =
142 {
143   /* Dummy relocation.  Does nothing.  */
144   HOWTO (R_MN10300_NONE,
145 	 0,
146 	 0,
147 	 0,
148 	 false,
149 	 0,
150 	 complain_overflow_dont,
151 	 bfd_elf_generic_reloc,
152 	 "R_MN10300_NONE",
153 	 false,
154 	 0,
155 	 0,
156 	 false),
157   /* Standard 32 bit reloc.  */
158   HOWTO (R_MN10300_32,
159 	 0,
160 	 4,
161 	 32,
162 	 false,
163 	 0,
164 	 complain_overflow_bitfield,
165 	 bfd_elf_generic_reloc,
166 	 "R_MN10300_32",
167 	 false,
168 	 0xffffffff,
169 	 0xffffffff,
170 	 false),
171   /* Standard 16 bit reloc.  */
172   HOWTO (R_MN10300_16,
173 	 0,
174 	 2,
175 	 16,
176 	 false,
177 	 0,
178 	 complain_overflow_bitfield,
179 	 bfd_elf_generic_reloc,
180 	 "R_MN10300_16",
181 	 false,
182 	 0xffff,
183 	 0xffff,
184 	 false),
185   /* Standard 8 bit reloc.  */
186   HOWTO (R_MN10300_8,
187 	 0,
188 	 1,
189 	 8,
190 	 false,
191 	 0,
192 	 complain_overflow_bitfield,
193 	 bfd_elf_generic_reloc,
194 	 "R_MN10300_8",
195 	 false,
196 	 0xff,
197 	 0xff,
198 	 false),
199   /* Standard 32bit pc-relative reloc.  */
200   HOWTO (R_MN10300_PCREL32,
201 	 0,
202 	 4,
203 	 32,
204 	 true,
205 	 0,
206 	 complain_overflow_bitfield,
207 	 bfd_elf_generic_reloc,
208 	 "R_MN10300_PCREL32",
209 	 false,
210 	 0xffffffff,
211 	 0xffffffff,
212 	 true),
213   /* Standard 16bit pc-relative reloc.  */
214   HOWTO (R_MN10300_PCREL16,
215 	 0,
216 	 2,
217 	 16,
218 	 true,
219 	 0,
220 	 complain_overflow_bitfield,
221 	 bfd_elf_generic_reloc,
222 	 "R_MN10300_PCREL16",
223 	 false,
224 	 0xffff,
225 	 0xffff,
226 	 true),
227   /* Standard 8 pc-relative reloc.  */
228   HOWTO (R_MN10300_PCREL8,
229 	 0,
230 	 1,
231 	 8,
232 	 true,
233 	 0,
234 	 complain_overflow_bitfield,
235 	 bfd_elf_generic_reloc,
236 	 "R_MN10300_PCREL8",
237 	 false,
238 	 0xff,
239 	 0xff,
240 	 true),
241 
242   /* GNU extension to record C++ vtable hierarchy.  */
243   HOWTO (R_MN10300_GNU_VTINHERIT, /* type */
244 	 0,			/* rightshift */
245 	 0,			/* size */
246 	 0,			/* bitsize */
247 	 false,			/* pc_relative */
248 	 0,			/* bitpos */
249 	 complain_overflow_dont, /* complain_on_overflow */
250 	 NULL,			/* special_function */
251 	 "R_MN10300_GNU_VTINHERIT", /* name */
252 	 false,			/* partial_inplace */
253 	 0,			/* src_mask */
254 	 0,			/* dst_mask */
255 	 false),		/* pcrel_offset */
256 
257   /* GNU extension to record C++ vtable member usage */
258   HOWTO (R_MN10300_GNU_VTENTRY,	/* type */
259 	 0,			/* rightshift */
260 	 0,			/* size */
261 	 0,			/* bitsize */
262 	 false,			/* pc_relative */
263 	 0,			/* bitpos */
264 	 complain_overflow_dont, /* complain_on_overflow */
265 	 NULL,			/* special_function */
266 	 "R_MN10300_GNU_VTENTRY", /* name */
267 	 false,			/* partial_inplace */
268 	 0,			/* src_mask */
269 	 0,			/* dst_mask */
270 	 false),		/* pcrel_offset */
271 
272   /* Standard 24 bit reloc.  */
273   HOWTO (R_MN10300_24,
274 	 0,
275 	 4,
276 	 24,
277 	 false,
278 	 0,
279 	 complain_overflow_bitfield,
280 	 bfd_elf_generic_reloc,
281 	 "R_MN10300_24",
282 	 false,
283 	 0xffffff,
284 	 0xffffff,
285 	 false),
286   HOWTO (R_MN10300_GOTPC32,	/* type */
287 	 0,			/* rightshift */
288 	 4,			/* size */
289 	 32,			/* bitsize */
290 	 true,			/* pc_relative */
291 	 0,			/* bitpos */
292 	 complain_overflow_bitfield, /* complain_on_overflow */
293 	 bfd_elf_generic_reloc, /* */
294 	 "R_MN10300_GOTPC32",	/* name */
295 	 false,			/* partial_inplace */
296 	 0xffffffff,		/* src_mask */
297 	 0xffffffff,		/* dst_mask */
298 	 true),			/* pcrel_offset */
299 
300   HOWTO (R_MN10300_GOTPC16,	/* type */
301 	 0,			/* rightshift */
302 	 2,			/* size */
303 	 16,			/* bitsize */
304 	 true,			/* pc_relative */
305 	 0,			/* bitpos */
306 	 complain_overflow_bitfield, /* complain_on_overflow */
307 	 bfd_elf_generic_reloc, /* */
308 	 "R_MN10300_GOTPC16",	/* name */
309 	 false,			/* partial_inplace */
310 	 0xffff,		/* src_mask */
311 	 0xffff,		/* dst_mask */
312 	 true),			/* pcrel_offset */
313 
314   HOWTO (R_MN10300_GOTOFF32,	/* type */
315 	 0,			/* rightshift */
316 	 4,			/* size */
317 	 32,			/* bitsize */
318 	 false,			/* pc_relative */
319 	 0,			/* bitpos */
320 	 complain_overflow_bitfield, /* complain_on_overflow */
321 	 bfd_elf_generic_reloc, /* */
322 	 "R_MN10300_GOTOFF32",	/* name */
323 	 false,			/* partial_inplace */
324 	 0xffffffff,		/* src_mask */
325 	 0xffffffff,		/* dst_mask */
326 	 false),		/* pcrel_offset */
327 
328   HOWTO (R_MN10300_GOTOFF24,	/* type */
329 	 0,			/* rightshift */
330 	 4,			/* size */
331 	 24,			/* bitsize */
332 	 false,			/* pc_relative */
333 	 0,			/* bitpos */
334 	 complain_overflow_bitfield, /* complain_on_overflow */
335 	 bfd_elf_generic_reloc, /* */
336 	 "R_MN10300_GOTOFF24",	/* name */
337 	 false,			/* partial_inplace */
338 	 0xffffff,		/* src_mask */
339 	 0xffffff,		/* dst_mask */
340 	 false),		/* pcrel_offset */
341 
342   HOWTO (R_MN10300_GOTOFF16,	/* type */
343 	 0,			/* rightshift */
344 	 2,			/* size */
345 	 16,			/* bitsize */
346 	 false,			/* pc_relative */
347 	 0,			/* bitpos */
348 	 complain_overflow_bitfield, /* complain_on_overflow */
349 	 bfd_elf_generic_reloc, /* */
350 	 "R_MN10300_GOTOFF16",	/* name */
351 	 false,			/* partial_inplace */
352 	 0xffff,		/* src_mask */
353 	 0xffff,		/* dst_mask */
354 	 false),		/* pcrel_offset */
355 
356   HOWTO (R_MN10300_PLT32,	/* type */
357 	 0,			/* rightshift */
358 	 4,			/* size */
359 	 32,			/* bitsize */
360 	 true,			/* pc_relative */
361 	 0,			/* bitpos */
362 	 complain_overflow_bitfield, /* complain_on_overflow */
363 	 bfd_elf_generic_reloc, /* */
364 	 "R_MN10300_PLT32",	/* name */
365 	 false,			/* partial_inplace */
366 	 0xffffffff,		/* src_mask */
367 	 0xffffffff,		/* dst_mask */
368 	 true),			/* pcrel_offset */
369 
370   HOWTO (R_MN10300_PLT16,	/* type */
371 	 0,			/* rightshift */
372 	 2,			/* size */
373 	 16,			/* bitsize */
374 	 true,			/* pc_relative */
375 	 0,			/* bitpos */
376 	 complain_overflow_bitfield, /* complain_on_overflow */
377 	 bfd_elf_generic_reloc, /* */
378 	 "R_MN10300_PLT16",	/* name */
379 	 false,			/* partial_inplace */
380 	 0xffff,		/* src_mask */
381 	 0xffff,		/* dst_mask */
382 	 true),			/* pcrel_offset */
383 
384   HOWTO (R_MN10300_GOT32,	/* type */
385 	 0,			/* rightshift */
386 	 4,			/* size */
387 	 32,			/* bitsize */
388 	 false,			/* pc_relative */
389 	 0,			/* bitpos */
390 	 complain_overflow_bitfield, /* complain_on_overflow */
391 	 bfd_elf_generic_reloc, /* */
392 	 "R_MN10300_GOT32",	/* name */
393 	 false,			/* partial_inplace */
394 	 0xffffffff,		/* src_mask */
395 	 0xffffffff,		/* dst_mask */
396 	 false),		/* pcrel_offset */
397 
398   HOWTO (R_MN10300_GOT24,	/* type */
399 	 0,			/* rightshift */
400 	 4,			/* size */
401 	 24,			/* bitsize */
402 	 false,			/* pc_relative */
403 	 0,			/* bitpos */
404 	 complain_overflow_bitfield, /* complain_on_overflow */
405 	 bfd_elf_generic_reloc, /* */
406 	 "R_MN10300_GOT24",	/* name */
407 	 false,			/* partial_inplace */
408 	 0xffffffff,		/* src_mask */
409 	 0xffffffff,		/* dst_mask */
410 	 false),		/* pcrel_offset */
411 
412   HOWTO (R_MN10300_GOT16,	/* type */
413 	 0,			/* rightshift */
414 	 2,			/* size */
415 	 16,			/* bitsize */
416 	 false,			/* pc_relative */
417 	 0,			/* bitpos */
418 	 complain_overflow_bitfield, /* complain_on_overflow */
419 	 bfd_elf_generic_reloc, /* */
420 	 "R_MN10300_GOT16",	/* name */
421 	 false,			/* partial_inplace */
422 	 0xffffffff,		/* src_mask */
423 	 0xffffffff,		/* dst_mask */
424 	 false),		/* pcrel_offset */
425 
426   HOWTO (R_MN10300_COPY,	/* type */
427 	 0,			/* rightshift */
428 	 4,			/* size */
429 	 32,			/* bitsize */
430 	 false,			/* pc_relative */
431 	 0,			/* bitpos */
432 	 complain_overflow_bitfield, /* complain_on_overflow */
433 	 bfd_elf_generic_reloc, /* */
434 	 "R_MN10300_COPY",		/* name */
435 	 false,			/* partial_inplace */
436 	 0xffffffff,		/* src_mask */
437 	 0xffffffff,		/* dst_mask */
438 	 false),		/* pcrel_offset */
439 
440   HOWTO (R_MN10300_GLOB_DAT,	/* type */
441 	 0,			/* rightshift */
442 	 4,			/* size */
443 	 32,			/* bitsize */
444 	 false,			/* pc_relative */
445 	 0,			/* bitpos */
446 	 complain_overflow_bitfield, /* complain_on_overflow */
447 	 bfd_elf_generic_reloc, /* */
448 	 "R_MN10300_GLOB_DAT",	/* name */
449 	 false,			/* partial_inplace */
450 	 0xffffffff,		/* src_mask */
451 	 0xffffffff,		/* dst_mask */
452 	 false),		/* pcrel_offset */
453 
454   HOWTO (R_MN10300_JMP_SLOT,	/* type */
455 	 0,			/* rightshift */
456 	 4,			/* size */
457 	 32,			/* bitsize */
458 	 false,			/* pc_relative */
459 	 0,			/* bitpos */
460 	 complain_overflow_bitfield, /* complain_on_overflow */
461 	 bfd_elf_generic_reloc, /* */
462 	 "R_MN10300_JMP_SLOT",	/* name */
463 	 false,			/* partial_inplace */
464 	 0xffffffff,		/* src_mask */
465 	 0xffffffff,		/* dst_mask */
466 	 false),		/* pcrel_offset */
467 
468   HOWTO (R_MN10300_RELATIVE,	/* type */
469 	 0,			/* rightshift */
470 	 4,			/* size */
471 	 32,			/* bitsize */
472 	 false,			/* pc_relative */
473 	 0,			/* bitpos */
474 	 complain_overflow_bitfield, /* complain_on_overflow */
475 	 bfd_elf_generic_reloc, /* */
476 	 "R_MN10300_RELATIVE",	/* name */
477 	 false,			/* partial_inplace */
478 	 0xffffffff,		/* src_mask */
479 	 0xffffffff,		/* dst_mask */
480 	 false),		/* pcrel_offset */
481 
482   HOWTO (R_MN10300_TLS_GD,	/* type */
483 	 0,			/* rightshift */
484 	 4,			/* size */
485 	 32,			/* bitsize */
486 	 false,			/* pc_relative */
487 	 0,			/* bitpos */
488 	 complain_overflow_bitfield, /* complain_on_overflow */
489 	 bfd_elf_generic_reloc, /* */
490 	 "R_MN10300_TLS_GD",	/* name */
491 	 false,			/* partial_inplace */
492 	 0xffffffff,		/* src_mask */
493 	 0xffffffff,		/* dst_mask */
494 	 false),		/* pcrel_offset */
495 
496   HOWTO (R_MN10300_TLS_LD,	/* type */
497 	 0,			/* rightshift */
498 	 4,			/* size */
499 	 32,			/* bitsize */
500 	 false,			/* pc_relative */
501 	 0,			/* bitpos */
502 	 complain_overflow_bitfield, /* complain_on_overflow */
503 	 bfd_elf_generic_reloc, /* */
504 	 "R_MN10300_TLS_LD",	/* name */
505 	 false,			/* partial_inplace */
506 	 0xffffffff,		/* src_mask */
507 	 0xffffffff,		/* dst_mask */
508 	 false),		/* pcrel_offset */
509 
510   HOWTO (R_MN10300_TLS_LDO,	/* type */
511 	 0,			/* rightshift */
512 	 4,			/* size */
513 	 32,			/* bitsize */
514 	 false,			/* pc_relative */
515 	 0,			/* bitpos */
516 	 complain_overflow_bitfield, /* complain_on_overflow */
517 	 bfd_elf_generic_reloc, /* */
518 	 "R_MN10300_TLS_LDO",	/* name */
519 	 false,			/* partial_inplace */
520 	 0xffffffff,		/* src_mask */
521 	 0xffffffff,		/* dst_mask */
522 	 false),		/* pcrel_offset */
523 
524   HOWTO (R_MN10300_TLS_GOTIE,	/* type */
525 	 0,			/* rightshift */
526 	 4,			/* size */
527 	 32,			/* bitsize */
528 	 false,			/* pc_relative */
529 	 0,			/* bitpos */
530 	 complain_overflow_bitfield, /* complain_on_overflow */
531 	 bfd_elf_generic_reloc, /* */
532 	 "R_MN10300_TLS_GOTIE",	/* name */
533 	 false,			/* partial_inplace */
534 	 0xffffffff,		/* src_mask */
535 	 0xffffffff,		/* dst_mask */
536 	 false),		/* pcrel_offset */
537 
538   HOWTO (R_MN10300_TLS_IE,	/* type */
539 	 0,			/* rightshift */
540 	 4,			/* size */
541 	 32,			/* bitsize */
542 	 false,			/* pc_relative */
543 	 0,			/* bitpos */
544 	 complain_overflow_bitfield, /* complain_on_overflow */
545 	 bfd_elf_generic_reloc, /* */
546 	 "R_MN10300_TLS_IE",	/* name */
547 	 false,			/* partial_inplace */
548 	 0xffffffff,		/* src_mask */
549 	 0xffffffff,		/* dst_mask */
550 	 false),		/* pcrel_offset */
551 
552   HOWTO (R_MN10300_TLS_LE,	/* type */
553 	 0,			/* rightshift */
554 	 4,			/* size */
555 	 32,			/* bitsize */
556 	 false,			/* pc_relative */
557 	 0,			/* bitpos */
558 	 complain_overflow_bitfield, /* complain_on_overflow */
559 	 bfd_elf_generic_reloc, /* */
560 	 "R_MN10300_TLS_LE",	/* name */
561 	 false,			/* partial_inplace */
562 	 0xffffffff,		/* src_mask */
563 	 0xffffffff,		/* dst_mask */
564 	 false),		/* pcrel_offset */
565 
566   HOWTO (R_MN10300_TLS_DTPMOD,	/* type */
567 	 0,			/* rightshift */
568 	 4,			/* size */
569 	 32,			/* bitsize */
570 	 false,			/* pc_relative */
571 	 0,			/* bitpos */
572 	 complain_overflow_bitfield, /* complain_on_overflow */
573 	 bfd_elf_generic_reloc, /* */
574 	 "R_MN10300_TLS_DTPMOD",	/* name */
575 	 false,			/* partial_inplace */
576 	 0xffffffff,		/* src_mask */
577 	 0xffffffff,		/* dst_mask */
578 	 false),		/* pcrel_offset */
579 
580   HOWTO (R_MN10300_TLS_DTPOFF,	/* type */
581 	 0,			/* rightshift */
582 	 4,			/* size */
583 	 32,			/* bitsize */
584 	 false,			/* pc_relative */
585 	 0,			/* bitpos */
586 	 complain_overflow_bitfield, /* complain_on_overflow */
587 	 bfd_elf_generic_reloc, /* */
588 	 "R_MN10300_TLS_DTPOFF",	/* name */
589 	 false,			/* partial_inplace */
590 	 0xffffffff,		/* src_mask */
591 	 0xffffffff,		/* dst_mask */
592 	 false),		/* pcrel_offset */
593 
594   HOWTO (R_MN10300_TLS_TPOFF,	/* type */
595 	 0,			/* rightshift */
596 	 4,			/* size */
597 	 32,			/* bitsize */
598 	 false,			/* pc_relative */
599 	 0,			/* bitpos */
600 	 complain_overflow_bitfield, /* complain_on_overflow */
601 	 bfd_elf_generic_reloc, /* */
602 	 "R_MN10300_TLS_TPOFF",	/* name */
603 	 false,			/* partial_inplace */
604 	 0xffffffff,		/* src_mask */
605 	 0xffffffff,		/* dst_mask */
606 	 false),		/* pcrel_offset */
607 
608   HOWTO (R_MN10300_SYM_DIFF,	/* type */
609 	 0,			/* rightshift */
610 	 4,			/* size */
611 	 32,			/* bitsize */
612 	 false,			/* pc_relative */
613 	 0,			/* bitpos */
614 	 complain_overflow_dont,/* complain_on_overflow */
615 	 NULL,			/* special handler.  */
616 	 "R_MN10300_SYM_DIFF",	/* name */
617 	 false,			/* partial_inplace */
618 	 0xffffffff,		/* src_mask */
619 	 0xffffffff,		/* dst_mask */
620 	 false),		/* pcrel_offset */
621 
622   HOWTO (R_MN10300_ALIGN,	/* type */
623 	 0,			/* rightshift */
624 	 1,			/* size */
625 	 32,			/* bitsize */
626 	 false,			/* pc_relative */
627 	 0,			/* bitpos */
628 	 complain_overflow_dont,/* complain_on_overflow */
629 	 NULL,			/* special handler.  */
630 	 "R_MN10300_ALIGN",	/* name */
631 	 false,			/* partial_inplace */
632 	 0,			/* src_mask */
633 	 0,			/* dst_mask */
634 	 false)			/* pcrel_offset */
635 };
636 
637 struct mn10300_reloc_map
638 {
639   bfd_reloc_code_real_type bfd_reloc_val;
640   unsigned char elf_reloc_val;
641 };
642 
643 static const struct mn10300_reloc_map mn10300_reloc_map[] =
644 {
645   { BFD_RELOC_NONE, R_MN10300_NONE, },
646   { BFD_RELOC_32, R_MN10300_32, },
647   { BFD_RELOC_16, R_MN10300_16, },
648   { BFD_RELOC_8, R_MN10300_8, },
649   { BFD_RELOC_32_PCREL, R_MN10300_PCREL32, },
650   { BFD_RELOC_16_PCREL, R_MN10300_PCREL16, },
651   { BFD_RELOC_8_PCREL, R_MN10300_PCREL8, },
652   { BFD_RELOC_24, R_MN10300_24, },
653   { BFD_RELOC_VTABLE_INHERIT, R_MN10300_GNU_VTINHERIT },
654   { BFD_RELOC_VTABLE_ENTRY, R_MN10300_GNU_VTENTRY },
655   { BFD_RELOC_32_GOT_PCREL, R_MN10300_GOTPC32 },
656   { BFD_RELOC_16_GOT_PCREL, R_MN10300_GOTPC16 },
657   { BFD_RELOC_32_GOTOFF, R_MN10300_GOTOFF32 },
658   { BFD_RELOC_MN10300_GOTOFF24, R_MN10300_GOTOFF24 },
659   { BFD_RELOC_16_GOTOFF, R_MN10300_GOTOFF16 },
660   { BFD_RELOC_32_PLT_PCREL, R_MN10300_PLT32 },
661   { BFD_RELOC_16_PLT_PCREL, R_MN10300_PLT16 },
662   { BFD_RELOC_MN10300_GOT32, R_MN10300_GOT32 },
663   { BFD_RELOC_MN10300_GOT24, R_MN10300_GOT24 },
664   { BFD_RELOC_MN10300_GOT16, R_MN10300_GOT16 },
665   { BFD_RELOC_MN10300_COPY, R_MN10300_COPY },
666   { BFD_RELOC_MN10300_GLOB_DAT, R_MN10300_GLOB_DAT },
667   { BFD_RELOC_MN10300_JMP_SLOT, R_MN10300_JMP_SLOT },
668   { BFD_RELOC_MN10300_RELATIVE, R_MN10300_RELATIVE },
669   { BFD_RELOC_MN10300_TLS_GD, R_MN10300_TLS_GD },
670   { BFD_RELOC_MN10300_TLS_LD, R_MN10300_TLS_LD },
671   { BFD_RELOC_MN10300_TLS_LDO, R_MN10300_TLS_LDO },
672   { BFD_RELOC_MN10300_TLS_GOTIE, R_MN10300_TLS_GOTIE },
673   { BFD_RELOC_MN10300_TLS_IE, R_MN10300_TLS_IE },
674   { BFD_RELOC_MN10300_TLS_LE, R_MN10300_TLS_LE },
675   { BFD_RELOC_MN10300_TLS_DTPMOD, R_MN10300_TLS_DTPMOD },
676   { BFD_RELOC_MN10300_TLS_DTPOFF, R_MN10300_TLS_DTPOFF },
677   { BFD_RELOC_MN10300_TLS_TPOFF, R_MN10300_TLS_TPOFF },
678   { BFD_RELOC_MN10300_SYM_DIFF, R_MN10300_SYM_DIFF },
679   { BFD_RELOC_MN10300_ALIGN, R_MN10300_ALIGN }
680 };
681 
682 /* Create the GOT section.  */
683 
684 static bool
_bfd_mn10300_elf_create_got_section(bfd * abfd,struct bfd_link_info * info)685 _bfd_mn10300_elf_create_got_section (bfd * abfd,
686 				     struct bfd_link_info * info)
687 {
688   flagword   flags;
689   flagword   pltflags;
690   asection * s;
691   struct elf_link_hash_entry * h;
692   const struct elf_backend_data * bed = get_elf_backend_data (abfd);
693   struct elf_link_hash_table *htab;
694   int ptralign;
695 
696   /* This function may be called more than once.  */
697   htab = elf_hash_table (info);
698   if (htab->sgot != NULL)
699     return true;
700 
701   switch (bed->s->arch_size)
702     {
703     case 32:
704       ptralign = 2;
705       break;
706 
707     case 64:
708       ptralign = 3;
709       break;
710 
711     default:
712       bfd_set_error (bfd_error_bad_value);
713       return false;
714     }
715 
716   flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
717 	   | SEC_LINKER_CREATED);
718 
719   pltflags = flags;
720   pltflags |= SEC_CODE;
721   if (bed->plt_not_loaded)
722     pltflags &= ~ (SEC_LOAD | SEC_HAS_CONTENTS);
723   if (bed->plt_readonly)
724     pltflags |= SEC_READONLY;
725 
726   s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
727   htab->splt = s;
728   if (s == NULL
729       || !bfd_set_section_alignment (s, bed->plt_alignment))
730     return false;
731 
732   /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
733      .plt section.  */
734   if (bed->want_plt_sym)
735     {
736       h = _bfd_elf_define_linkage_sym (abfd, info, s,
737 				       "_PROCEDURE_LINKAGE_TABLE_");
738       htab->hplt = h;
739       if (h == NULL)
740 	return false;
741     }
742 
743   s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
744   htab->sgot = s;
745   if (s == NULL
746       || !bfd_set_section_alignment (s, ptralign))
747     return false;
748 
749   if (bed->want_got_plt)
750     {
751       s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
752       htab->sgotplt = s;
753       if (s == NULL
754 	  || !bfd_set_section_alignment (s, ptralign))
755 	return false;
756     }
757 
758   /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
759      (or .got.plt) section.  We don't do this in the linker script
760      because we don't want to define the symbol if we are not creating
761      a global offset table.  */
762   h = _bfd_elf_define_linkage_sym (abfd, info, s, "_GLOBAL_OFFSET_TABLE_");
763   htab->hgot = h;
764   if (h == NULL)
765     return false;
766 
767   /* The first bit of the global offset table is the header.  */
768   s->size += bed->got_header_size;
769 
770   return true;
771 }
772 
773 static reloc_howto_type *
bfd_elf32_bfd_reloc_type_lookup(bfd * abfd ATTRIBUTE_UNUSED,bfd_reloc_code_real_type code)774 bfd_elf32_bfd_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
775 				 bfd_reloc_code_real_type code)
776 {
777   unsigned int i;
778 
779   for (i = ARRAY_SIZE (mn10300_reloc_map); i--;)
780     if (mn10300_reloc_map[i].bfd_reloc_val == code)
781       return &elf_mn10300_howto_table[mn10300_reloc_map[i].elf_reloc_val];
782 
783   return NULL;
784 }
785 
786 static reloc_howto_type *
bfd_elf32_bfd_reloc_name_lookup(bfd * abfd ATTRIBUTE_UNUSED,const char * r_name)787 bfd_elf32_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
788 				 const char *r_name)
789 {
790   unsigned int i;
791 
792   for (i = ARRAY_SIZE (elf_mn10300_howto_table); i--;)
793     if (elf_mn10300_howto_table[i].name != NULL
794 	&& strcasecmp (elf_mn10300_howto_table[i].name, r_name) == 0)
795       return elf_mn10300_howto_table + i;
796 
797   return NULL;
798 }
799 
800 /* Set the howto pointer for an MN10300 ELF reloc.  */
801 
802 static bool
mn10300_info_to_howto(bfd * abfd,arelent * cache_ptr,Elf_Internal_Rela * dst)803 mn10300_info_to_howto (bfd *abfd,
804 		       arelent *cache_ptr,
805 		       Elf_Internal_Rela *dst)
806 {
807   unsigned int r_type;
808 
809   r_type = ELF32_R_TYPE (dst->r_info);
810   if (r_type >= R_MN10300_MAX)
811     {
812       /* xgettext:c-format */
813       _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
814 			  abfd, r_type);
815       bfd_set_error (bfd_error_bad_value);
816       return false;
817     }
818   cache_ptr->howto = elf_mn10300_howto_table + r_type;
819   return true;
820 }
821 
822 static int
elf_mn10300_tls_transition(struct bfd_link_info * info,int r_type,struct elf_link_hash_entry * h,asection * sec,bool counting)823 elf_mn10300_tls_transition (struct bfd_link_info *	  info,
824 			    int				  r_type,
825 			    struct elf_link_hash_entry *  h,
826 			    asection *			  sec,
827 			    bool			  counting)
828 {
829   bool is_local;
830 
831   if (r_type == R_MN10300_TLS_GD
832       && h != NULL
833       && elf_mn10300_hash_entry (h)->tls_type == GOT_TLS_IE)
834     return R_MN10300_TLS_GOTIE;
835 
836   if (bfd_link_pic (info))
837     return r_type;
838 
839   if (! (sec->flags & SEC_CODE))
840     return r_type;
841 
842   if (! counting && h != NULL && ! elf_hash_table (info)->dynamic_sections_created)
843     is_local = true;
844   else
845     is_local = SYMBOL_CALLS_LOCAL (info, h);
846 
847   /* For the main program, these are the transitions we do.  */
848   switch (r_type)
849     {
850     case R_MN10300_TLS_GD: return is_local ? R_MN10300_TLS_LE : R_MN10300_TLS_GOTIE;
851     case R_MN10300_TLS_LD: return R_MN10300_NONE;
852     case R_MN10300_TLS_LDO: return R_MN10300_TLS_LE;
853     case R_MN10300_TLS_IE:
854     case R_MN10300_TLS_GOTIE: return is_local ? R_MN10300_TLS_LE : r_type;
855     }
856 
857   return r_type;
858 }
859 
860 /* Return the relocation value for @tpoff relocation
861    if STT_TLS virtual address is ADDRESS.  */
862 
863 static bfd_vma
dtpoff(struct bfd_link_info * info,bfd_vma address)864 dtpoff (struct bfd_link_info * info, bfd_vma address)
865 {
866   struct elf_link_hash_table *htab = elf_hash_table (info);
867 
868   /* If tls_sec is NULL, we should have signalled an error already.  */
869   if (htab->tls_sec == NULL)
870     return 0;
871   return address - htab->tls_sec->vma;
872 }
873 
874 /* Return the relocation value for @tpoff relocation
875    if STT_TLS virtual address is ADDRESS.  */
876 
877 static bfd_vma
tpoff(struct bfd_link_info * info,bfd_vma address)878 tpoff (struct bfd_link_info * info, bfd_vma address)
879 {
880   struct elf_link_hash_table *htab = elf_hash_table (info);
881 
882   /* If tls_sec is NULL, we should have signalled an error already.  */
883   if (htab->tls_sec == NULL)
884     return 0;
885   return address - (htab->tls_size + htab->tls_sec->vma);
886 }
887 
888 /* Returns nonzero if there's a R_MN10300_PLT32 reloc that we now need
889    to skip, after this one.  The actual value is the offset between
890    this reloc and the PLT reloc.  */
891 
892 static int
mn10300_do_tls_transition(bfd * input_bfd,unsigned int r_type,unsigned int tls_r_type,bfd_byte * contents,bfd_vma offset)893 mn10300_do_tls_transition (bfd *	 input_bfd,
894 			   unsigned int	 r_type,
895 			   unsigned int	 tls_r_type,
896 			   bfd_byte *	 contents,
897 			   bfd_vma	 offset)
898 {
899   bfd_byte *op = contents + offset;
900   int gotreg = 0;
901 
902 #define TLS_PAIR(r1,r2) ((r1) * R_MN10300_MAX + (r2))
903 
904   /* This is common to all GD/LD transitions, so break it out.  */
905   if (r_type == R_MN10300_TLS_GD
906       || r_type == R_MN10300_TLS_LD)
907     {
908       op -= 2;
909       /* mov imm,d0.  */
910       BFD_ASSERT (bfd_get_8 (input_bfd, op) == 0xFC);
911       BFD_ASSERT (bfd_get_8 (input_bfd, op + 1) == 0xCC);
912       /* add aN,d0.  */
913       BFD_ASSERT (bfd_get_8 (input_bfd, op + 6) == 0xF1);
914       gotreg = (bfd_get_8 (input_bfd, op + 7) & 0x0c) >> 2;
915       /* Call.  */
916       BFD_ASSERT (bfd_get_8 (input_bfd, op + 8) == 0xDD);
917     }
918 
919   switch (TLS_PAIR (r_type, tls_r_type))
920     {
921     case TLS_PAIR (R_MN10300_TLS_GD, R_MN10300_TLS_GOTIE):
922       {
923 	/* Keep track of which register we put GOTptr in.  */
924 	/* mov (_x@indntpoff,a2),a0.  */
925 	memcpy (op, "\xFC\x20\x00\x00\x00\x00", 6);
926 	op[1] |= gotreg;
927 	/* add e2,a0.  */
928 	memcpy (op+6, "\xF9\x78\x28", 3);
929 	/* or  0x00000000, d0 - six byte nop.  */
930 	memcpy (op+9, "\xFC\xE4\x00\x00\x00\x00", 6);
931       }
932       return 7;
933 
934     case TLS_PAIR (R_MN10300_TLS_GD, R_MN10300_TLS_LE):
935       {
936 	/* Register is *always* a0.  */
937 	/* mov _x@tpoff,a0.  */
938 	memcpy (op, "\xFC\xDC\x00\x00\x00\x00", 6);
939 	/* add e2,a0.  */
940 	memcpy (op+6, "\xF9\x78\x28", 3);
941 	/* or  0x00000000, d0 - six byte nop.  */
942 	memcpy (op+9, "\xFC\xE4\x00\x00\x00\x00", 6);
943       }
944       return 7;
945     case TLS_PAIR (R_MN10300_TLS_LD, R_MN10300_NONE):
946       {
947 	/* Register is *always* a0.  */
948 	/* mov e2,a0.  */
949 	memcpy (op, "\xF5\x88", 2);
950 	/* or  0x00000000, d0 - six byte nop.  */
951 	memcpy (op+2, "\xFC\xE4\x00\x00\x00\x00", 6);
952 	/* or  0x00000000, e2 - seven byte nop.  */
953 	memcpy (op+8, "\xFE\x19\x22\x00\x00\x00\x00", 7);
954       }
955       return 7;
956 
957     case TLS_PAIR (R_MN10300_TLS_LDO, R_MN10300_TLS_LE):
958       /* No changes needed, just the reloc change.  */
959       return 0;
960 
961     /*  These are a little tricky, because we have to detect which
962 	opcode is being used (they're different sizes, with the reloc
963 	at different offsets within the opcode) and convert each
964 	accordingly, copying the operands as needed.  The conversions
965 	we do are as follows (IE,GOTIE,LE):
966 
967 		   1111 1100  1010 01Dn  [-- abs32 --]  MOV (x@indntpoff),Dn
968 		   1111 1100  0000 DnAm  [-- abs32 --]  MOV (x@gotntpoff,Am),Dn
969 		   1111 1100  1100 11Dn  [-- abs32 --]  MOV x@tpoff,Dn
970 
971 		   1111 1100  1010 00An  [-- abs32 --]  MOV (x@indntpoff),An
972 		   1111 1100  0010 AnAm  [-- abs32 --]  MOV (x@gotntpoff,Am),An
973 		   1111 1100  1101 11An  [-- abs32 --]  MOV x@tpoff,An
974 
975 	1111 1110  0000 1110  Rnnn Xxxx  [-- abs32 --]  MOV (x@indntpoff),Rn
976 	1111 1110  0000 1010  Rnnn Rmmm  [-- abs32 --]  MOV (x@indntpoff,Rm),Rn
977 	1111 1110  0000 1000  Rnnn Xxxx  [-- abs32 --]  MOV x@tpoff,Rn
978 
979 	Since the GOT pointer is always $a2, we assume the last
980 	normally won't happen, but let's be paranoid and plan for the
981 	day that GCC optimizes it somewhow.  */
982 
983     case TLS_PAIR (R_MN10300_TLS_IE, R_MN10300_TLS_LE):
984       if (op[-2] == 0xFC)
985 	{
986 	  op -= 2;
987 	  if ((op[1] & 0xFC) == 0xA4) /* Dn */
988 	    {
989 	      op[1] &= 0x03; /* Leaves Dn.  */
990 	      op[1] |= 0xCC;
991 	    }
992 	  else /* An */
993 	    {
994 	      op[1] &= 0x03; /* Leaves An. */
995 	      op[1] |= 0xDC;
996 	    }
997 	}
998       else if (op[-3] == 0xFE)
999 	op[-2] = 0x08;
1000       else
1001 	abort ();
1002       break;
1003 
1004     case TLS_PAIR (R_MN10300_TLS_GOTIE, R_MN10300_TLS_LE):
1005       if (op[-2] == 0xFC)
1006 	{
1007 	  op -= 2;
1008 	  if ((op[1] & 0xF0) == 0x00) /* Dn */
1009 	    {
1010 	      op[1] &= 0x0C; /* Leaves Dn.  */
1011 	      op[1] >>= 2;
1012 	      op[1] |= 0xCC;
1013 	    }
1014 	  else /* An */
1015 	    {
1016 	      op[1] &= 0x0C; /* Leaves An.  */
1017 	      op[1] >>= 2;
1018 	      op[1] |= 0xDC;
1019 	    }
1020 	}
1021       else if (op[-3] == 0xFE)
1022 	op[-2] = 0x08;
1023       else
1024 	abort ();
1025       break;
1026 
1027     default:
1028       _bfd_error_handler
1029 	/* xgettext:c-format */
1030 	(_("%pB: unsupported transition from %s to %s"),
1031 	 input_bfd,
1032 	 elf_mn10300_howto_table[r_type].name,
1033 	 elf_mn10300_howto_table[tls_r_type].name);
1034       break;
1035     }
1036 #undef TLS_PAIR
1037   return 0;
1038 }
1039 
1040 /* Look through the relocs for a section during the first phase.
1041    Since we don't do .gots or .plts, we just need to consider the
1042    virtual table relocs for gc.  */
1043 
1044 static bool
mn10300_elf_check_relocs(bfd * abfd,struct bfd_link_info * info,asection * sec,const Elf_Internal_Rela * relocs)1045 mn10300_elf_check_relocs (bfd *abfd,
1046 			  struct bfd_link_info *info,
1047 			  asection *sec,
1048 			  const Elf_Internal_Rela *relocs)
1049 {
1050   struct elf32_mn10300_link_hash_table * htab = elf32_mn10300_hash_table (info);
1051   bool sym_diff_reloc_seen;
1052   Elf_Internal_Shdr *symtab_hdr;
1053   Elf_Internal_Sym * isymbuf = NULL;
1054   struct elf_link_hash_entry **sym_hashes;
1055   const Elf_Internal_Rela *rel;
1056   const Elf_Internal_Rela *rel_end;
1057   bfd *      dynobj;
1058   bfd_vma *  local_got_offsets;
1059   asection * sgot;
1060   asection * srelgot;
1061   asection * sreloc;
1062   bool result = false;
1063 
1064   sgot    = NULL;
1065   srelgot = NULL;
1066   sreloc  = NULL;
1067 
1068   if (bfd_link_relocatable (info))
1069     return true;
1070 
1071   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1072   isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
1073   sym_hashes = elf_sym_hashes (abfd);
1074 
1075   dynobj = elf_hash_table (info)->dynobj;
1076   local_got_offsets = elf_local_got_offsets (abfd);
1077   rel_end = relocs + sec->reloc_count;
1078   sym_diff_reloc_seen = false;
1079 
1080   for (rel = relocs; rel < rel_end; rel++)
1081     {
1082       struct elf_link_hash_entry *h;
1083       unsigned long r_symndx;
1084       unsigned int r_type;
1085       int tls_type = GOT_NORMAL;
1086 
1087       r_symndx = ELF32_R_SYM (rel->r_info);
1088       if (r_symndx < symtab_hdr->sh_info)
1089 	h = NULL;
1090       else
1091 	{
1092 	  h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1093 	  while (h->root.type == bfd_link_hash_indirect
1094 		 || h->root.type == bfd_link_hash_warning)
1095 	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
1096 	}
1097 
1098       r_type = ELF32_R_TYPE (rel->r_info);
1099       r_type = elf_mn10300_tls_transition (info, r_type, h, sec, true);
1100 
1101       /* Some relocs require a global offset table.  */
1102       if (dynobj == NULL)
1103 	{
1104 	  switch (r_type)
1105 	    {
1106 	    case R_MN10300_GOT32:
1107 	    case R_MN10300_GOT24:
1108 	    case R_MN10300_GOT16:
1109 	    case R_MN10300_GOTOFF32:
1110 	    case R_MN10300_GOTOFF24:
1111 	    case R_MN10300_GOTOFF16:
1112 	    case R_MN10300_GOTPC32:
1113 	    case R_MN10300_GOTPC16:
1114 	    case R_MN10300_TLS_GD:
1115 	    case R_MN10300_TLS_LD:
1116 	    case R_MN10300_TLS_GOTIE:
1117 	    case R_MN10300_TLS_IE:
1118 	      elf_hash_table (info)->dynobj = dynobj = abfd;
1119 	      if (! _bfd_mn10300_elf_create_got_section (dynobj, info))
1120 		goto fail;
1121 	      break;
1122 
1123 	    default:
1124 	      break;
1125 	    }
1126 	}
1127 
1128       switch (r_type)
1129 	{
1130 	/* This relocation describes the C++ object vtable hierarchy.
1131 	   Reconstruct it for later use during GC.  */
1132 	case R_MN10300_GNU_VTINHERIT:
1133 	  if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1134 	    goto fail;
1135 	  break;
1136 
1137 	/* This relocation describes which C++ vtable entries are actually
1138 	   used.  Record for later use during GC.  */
1139 	case R_MN10300_GNU_VTENTRY:
1140 	  if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1141 	    goto fail;
1142 	  break;
1143 
1144 	case R_MN10300_TLS_LD:
1145 	  htab->tls_ldm_got.refcount ++;
1146 	  tls_type = GOT_TLS_LD;
1147 
1148 	  if (htab->tls_ldm_got.got_allocated)
1149 	    break;
1150 	  goto create_got;
1151 
1152 	case R_MN10300_TLS_IE:
1153 	case R_MN10300_TLS_GOTIE:
1154 	  if (bfd_link_pic (info))
1155 	    info->flags |= DF_STATIC_TLS;
1156 	  /* Fall through */
1157 
1158 	case R_MN10300_TLS_GD:
1159 	case R_MN10300_GOT32:
1160 	case R_MN10300_GOT24:
1161 	case R_MN10300_GOT16:
1162 	create_got:
1163 	  /* This symbol requires a global offset table entry.  */
1164 
1165 	  switch (r_type)
1166 	    {
1167 	    case R_MN10300_TLS_IE:
1168 	    case R_MN10300_TLS_GOTIE: tls_type = GOT_TLS_IE; break;
1169 	    case R_MN10300_TLS_GD:    tls_type = GOT_TLS_GD; break;
1170 	    default:		      tls_type = GOT_NORMAL; break;
1171 	    }
1172 
1173 	  sgot = htab->root.sgot;
1174 	  srelgot = htab->root.srelgot;
1175 	  BFD_ASSERT (sgot != NULL && srelgot != NULL);
1176 
1177 	  if (r_type == R_MN10300_TLS_LD)
1178 	    {
1179 	      htab->tls_ldm_got.offset = sgot->size;
1180 	      htab->tls_ldm_got.got_allocated ++;
1181 	    }
1182 	  else if (h != NULL)
1183 	    {
1184 	      if (elf_mn10300_hash_entry (h)->tls_type != tls_type
1185 		  && elf_mn10300_hash_entry (h)->tls_type != GOT_UNKNOWN)
1186 		{
1187 		  if (tls_type == GOT_TLS_IE
1188 		      && elf_mn10300_hash_entry (h)->tls_type == GOT_TLS_GD)
1189 		    /* No change - this is ok.  */;
1190 		  else if (tls_type == GOT_TLS_GD
1191 		      && elf_mn10300_hash_entry (h)->tls_type == GOT_TLS_IE)
1192 		    /* Transition GD->IE.  */
1193 		    tls_type = GOT_TLS_IE;
1194 		  else
1195 		    _bfd_error_handler
1196 		      /* xgettext:c-format */
1197 		      (_("%pB: %s' accessed both as normal and thread local symbol"),
1198 		       abfd, h ? h->root.root.string : "<local>");
1199 		}
1200 
1201 	      elf_mn10300_hash_entry (h)->tls_type = tls_type;
1202 
1203 	      if (h->got.offset != (bfd_vma) -1)
1204 		/* We have already allocated space in the .got.  */
1205 		break;
1206 
1207 	      h->got.offset = sgot->size;
1208 
1209 	      if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
1210 		  /* Make sure this symbol is output as a dynamic symbol.  */
1211 		  && h->dynindx == -1)
1212 		{
1213 		  if (! bfd_elf_link_record_dynamic_symbol (info, h))
1214 		    goto fail;
1215 		}
1216 
1217 	      srelgot->size += sizeof (Elf32_External_Rela);
1218 	      if (r_type == R_MN10300_TLS_GD)
1219 		srelgot->size += sizeof (Elf32_External_Rela);
1220 	    }
1221 	  else
1222 	    {
1223 	      /* This is a global offset table entry for a local
1224 		 symbol.  */
1225 	      if (local_got_offsets == NULL)
1226 		{
1227 		  size_t       size;
1228 		  unsigned int i;
1229 
1230 		  size = symtab_hdr->sh_info * (sizeof (bfd_vma) + sizeof (char));
1231 		  local_got_offsets = bfd_alloc (abfd, size);
1232 
1233 		  if (local_got_offsets == NULL)
1234 		    goto fail;
1235 
1236 		  elf_local_got_offsets (abfd) = local_got_offsets;
1237 		  elf_mn10300_local_got_tls_type (abfd)
1238 		      = (char *) (local_got_offsets + symtab_hdr->sh_info);
1239 
1240 		  for (i = 0; i < symtab_hdr->sh_info; i++)
1241 		    local_got_offsets[i] = (bfd_vma) -1;
1242 		}
1243 
1244 	      if (local_got_offsets[r_symndx] != (bfd_vma) -1)
1245 		/* We have already allocated space in the .got.  */
1246 		break;
1247 
1248 	      local_got_offsets[r_symndx] = sgot->size;
1249 
1250 	      if (bfd_link_pic (info))
1251 		{
1252 		  /* If we are generating a shared object, we need to
1253 		     output a R_MN10300_RELATIVE reloc so that the dynamic
1254 		     linker can adjust this GOT entry.  */
1255 		  srelgot->size += sizeof (Elf32_External_Rela);
1256 
1257 		  if (r_type == R_MN10300_TLS_GD)
1258 		    /* And a R_MN10300_TLS_DTPOFF reloc as well.  */
1259 		    srelgot->size += sizeof (Elf32_External_Rela);
1260 		}
1261 
1262 	      elf_mn10300_local_got_tls_type (abfd) [r_symndx] = tls_type;
1263 	    }
1264 
1265 	  sgot->size += 4;
1266 	  if (r_type == R_MN10300_TLS_GD
1267 	      || r_type == R_MN10300_TLS_LD)
1268 	    sgot->size += 4;
1269 
1270 	  goto need_shared_relocs;
1271 
1272 	case R_MN10300_PLT32:
1273 	case R_MN10300_PLT16:
1274 	  /* This symbol requires a procedure linkage table entry.  We
1275 	     actually build the entry in adjust_dynamic_symbol,
1276 	     because this might be a case of linking PIC code which is
1277 	     never referenced by a dynamic object, in which case we
1278 	     don't need to generate a procedure linkage table entry
1279 	     after all.  */
1280 
1281 	  /* If this is a local symbol, we resolve it directly without
1282 	     creating a procedure linkage table entry.  */
1283 	  if (h == NULL)
1284 	    continue;
1285 
1286 	  if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
1287 	      || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
1288 	    break;
1289 
1290 	  h->needs_plt = 1;
1291 	  break;
1292 
1293 	case R_MN10300_24:
1294 	case R_MN10300_16:
1295 	case R_MN10300_8:
1296 	case R_MN10300_PCREL32:
1297 	case R_MN10300_PCREL16:
1298 	case R_MN10300_PCREL8:
1299 	  if (h != NULL)
1300 	    h->non_got_ref = 1;
1301 	  break;
1302 
1303 	case R_MN10300_SYM_DIFF:
1304 	  sym_diff_reloc_seen = true;
1305 	  break;
1306 
1307 	case R_MN10300_32:
1308 	  if (h != NULL)
1309 	    h->non_got_ref = 1;
1310 
1311 	need_shared_relocs:
1312 	  /* If we are creating a shared library, then we
1313 	     need to copy the reloc into the shared library.  */
1314 	  if (bfd_link_pic (info)
1315 	      && (sec->flags & SEC_ALLOC) != 0
1316 	      /* Do not generate a dynamic reloc for a
1317 		 reloc associated with a SYM_DIFF operation.  */
1318 	      && ! sym_diff_reloc_seen)
1319 	    {
1320 	      asection * sym_section = NULL;
1321 
1322 	      /* Find the section containing the
1323 		 symbol involved in the relocation.  */
1324 	      if (h == NULL)
1325 		{
1326 		  Elf_Internal_Sym * isym;
1327 
1328 		  if (isymbuf == NULL)
1329 		    isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
1330 						    symtab_hdr->sh_info, 0,
1331 						    NULL, NULL, NULL);
1332 		  if (isymbuf)
1333 		    {
1334 		      isym = isymbuf + r_symndx;
1335 		      /* All we care about is whether this local symbol is absolute.  */
1336 		      if (isym->st_shndx == SHN_ABS)
1337 			sym_section = bfd_abs_section_ptr;
1338 		    }
1339 		}
1340 	      else
1341 		{
1342 		  if (h->root.type == bfd_link_hash_defined
1343 		      || h->root.type == bfd_link_hash_defweak)
1344 		    sym_section = h->root.u.def.section;
1345 		}
1346 
1347 	      /* If the symbol is absolute then the relocation can
1348 		 be resolved during linking and there is no need for
1349 		 a dynamic reloc.  */
1350 	      if (sym_section != bfd_abs_section_ptr)
1351 		{
1352 		  /* When creating a shared object, we must copy these
1353 		     reloc types into the output file.  We create a reloc
1354 		     section in dynobj and make room for this reloc.  */
1355 		  if (sreloc == NULL)
1356 		    {
1357 		      sreloc = _bfd_elf_make_dynamic_reloc_section
1358 			(sec, dynobj, 2, abfd, /*rela?*/ true);
1359 		      if (sreloc == NULL)
1360 			goto fail;
1361 		    }
1362 
1363 		  sreloc->size += sizeof (Elf32_External_Rela);
1364 		}
1365 	    }
1366 
1367 	  break;
1368 	}
1369 
1370       if (ELF32_R_TYPE (rel->r_info) != R_MN10300_SYM_DIFF)
1371 	sym_diff_reloc_seen = false;
1372     }
1373 
1374   result = true;
1375  fail:
1376   if (symtab_hdr->contents != (unsigned char *) isymbuf)
1377     free (isymbuf);
1378 
1379   return result;
1380 }
1381 
1382 /* Return the section that should be marked against GC for a given
1383    relocation.  */
1384 
1385 static asection *
mn10300_elf_gc_mark_hook(asection * sec,struct bfd_link_info * info,Elf_Internal_Rela * rel,struct elf_link_hash_entry * h,Elf_Internal_Sym * sym)1386 mn10300_elf_gc_mark_hook (asection *sec,
1387 			  struct bfd_link_info *info,
1388 			  Elf_Internal_Rela *rel,
1389 			  struct elf_link_hash_entry *h,
1390 			  Elf_Internal_Sym *sym)
1391 {
1392   if (h != NULL)
1393     switch (ELF32_R_TYPE (rel->r_info))
1394       {
1395       case R_MN10300_GNU_VTINHERIT:
1396       case R_MN10300_GNU_VTENTRY:
1397 	return NULL;
1398       }
1399 
1400   return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1401 }
1402 
1403 /* Perform a relocation as part of a final link.  */
1404 
1405 static bfd_reloc_status_type
mn10300_elf_final_link_relocate(reloc_howto_type * howto,bfd * input_bfd,bfd * output_bfd ATTRIBUTE_UNUSED,asection * input_section,bfd_byte * contents,bfd_vma offset,bfd_vma value,bfd_vma addend,struct elf_link_hash_entry * h,unsigned long symndx,struct bfd_link_info * info,asection * sym_sec ATTRIBUTE_UNUSED,int is_local ATTRIBUTE_UNUSED)1406 mn10300_elf_final_link_relocate (reloc_howto_type *howto,
1407 				 bfd *input_bfd,
1408 				 bfd *output_bfd ATTRIBUTE_UNUSED,
1409 				 asection *input_section,
1410 				 bfd_byte *contents,
1411 				 bfd_vma offset,
1412 				 bfd_vma value,
1413 				 bfd_vma addend,
1414 				 struct elf_link_hash_entry * h,
1415 				 unsigned long symndx,
1416 				 struct bfd_link_info *info,
1417 				 asection *sym_sec ATTRIBUTE_UNUSED,
1418 				 int is_local ATTRIBUTE_UNUSED)
1419 {
1420   struct elf32_mn10300_link_hash_table * htab = elf32_mn10300_hash_table (info);
1421   static asection *  sym_diff_section;
1422   static bfd_vma     sym_diff_value;
1423   bool is_sym_diff_reloc;
1424   unsigned long r_type = howto->type;
1425   bfd_byte * hit_data = contents + offset;
1426   bfd *      dynobj;
1427   asection * sgot;
1428   asection * splt;
1429   asection * sreloc;
1430 
1431   dynobj = elf_hash_table (info)->dynobj;
1432   sgot   = NULL;
1433   splt   = NULL;
1434   sreloc = NULL;
1435 
1436   switch (r_type)
1437     {
1438     case R_MN10300_24:
1439     case R_MN10300_16:
1440     case R_MN10300_8:
1441     case R_MN10300_PCREL8:
1442     case R_MN10300_PCREL16:
1443     case R_MN10300_PCREL32:
1444     case R_MN10300_GOTOFF32:
1445     case R_MN10300_GOTOFF24:
1446     case R_MN10300_GOTOFF16:
1447       if (bfd_link_pic (info)
1448 	  && (input_section->flags & SEC_ALLOC) != 0
1449 	  && h != NULL
1450 	  && ! SYMBOL_REFERENCES_LOCAL (info, h))
1451 	return bfd_reloc_dangerous;
1452       /* Fall through.  */
1453     case R_MN10300_GOT32:
1454       /* Issue 2052223:
1455 	 Taking the address of a protected function in a shared library
1456 	 is illegal.  Issue an error message here.  */
1457       if (bfd_link_pic (info)
1458 	  && (input_section->flags & SEC_ALLOC) != 0
1459 	  && h != NULL
1460 	  && ELF_ST_VISIBILITY (h->other) == STV_PROTECTED
1461 	  && (h->type == STT_FUNC || h->type == STT_GNU_IFUNC)
1462 	  && ! SYMBOL_REFERENCES_LOCAL (info, h))
1463 	return bfd_reloc_dangerous;
1464     }
1465 
1466   is_sym_diff_reloc = false;
1467   if (sym_diff_section != NULL)
1468     {
1469       BFD_ASSERT (sym_diff_section == input_section);
1470 
1471       switch (r_type)
1472 	{
1473 	case R_MN10300_32:
1474 	case R_MN10300_24:
1475 	case R_MN10300_16:
1476 	case R_MN10300_8:
1477 	  value -= sym_diff_value;
1478 	  /* If we are computing a 32-bit value for the location lists
1479 	     and the result is 0 then we add one to the value.  A zero
1480 	     value can result because of linker relaxation deleteing
1481 	     prologue instructions and using a value of 1 (for the begin
1482 	     and end offsets in the location list entry) results in a
1483 	     nul entry which does not prevent the following entries from
1484 	     being parsed.  */
1485 	  if (r_type == R_MN10300_32
1486 	      && value == 0
1487 	      && strcmp (input_section->name, ".debug_loc") == 0)
1488 	    value = 1;
1489 	  sym_diff_section = NULL;
1490 	  is_sym_diff_reloc = true;
1491 	  break;
1492 
1493 	default:
1494 	  sym_diff_section = NULL;
1495 	  break;
1496 	}
1497     }
1498 
1499   switch (r_type)
1500     {
1501     case R_MN10300_SYM_DIFF:
1502       BFD_ASSERT (addend == 0);
1503       /* Cache the input section and value.
1504 	 The offset is unreliable, since relaxation may
1505 	 have reduced the following reloc's offset.  */
1506       sym_diff_section = input_section;
1507       sym_diff_value = value;
1508       return bfd_reloc_ok;
1509 
1510     case R_MN10300_ALIGN:
1511     case R_MN10300_NONE:
1512       return bfd_reloc_ok;
1513 
1514     case R_MN10300_32:
1515       if (bfd_link_pic (info)
1516 	  /* Do not generate relocs when an R_MN10300_32 has been used
1517 	     with an R_MN10300_SYM_DIFF to compute a difference of two
1518 	     symbols.  */
1519 	  && !is_sym_diff_reloc
1520 	  /* Also, do not generate a reloc when the symbol associated
1521 	     with the R_MN10300_32 reloc is absolute - there is no
1522 	     need for a run time computation in this case.  */
1523 	  && sym_sec != bfd_abs_section_ptr
1524 	  /* If the section is not going to be allocated at load time
1525 	     then there is no need to generate relocs for it.  */
1526 	  && (input_section->flags & SEC_ALLOC) != 0)
1527 	{
1528 	  Elf_Internal_Rela outrel;
1529 	  bool skip, relocate;
1530 
1531 	  /* When generating a shared object, these relocations are
1532 	     copied into the output file to be resolved at run
1533 	     time.  */
1534 	  if (sreloc == NULL)
1535 	    {
1536 	      sreloc = _bfd_elf_get_dynamic_reloc_section
1537 		(input_bfd, input_section, /*rela?*/ true);
1538 	      if (sreloc == NULL)
1539 		return false;
1540 	    }
1541 
1542 	  skip = false;
1543 
1544 	  outrel.r_offset = _bfd_elf_section_offset (input_bfd, info,
1545 						     input_section, offset);
1546 	  if (outrel.r_offset == (bfd_vma) -1)
1547 	    skip = true;
1548 
1549 	  outrel.r_offset += (input_section->output_section->vma
1550 			      + input_section->output_offset);
1551 
1552 	  if (skip)
1553 	    {
1554 	      memset (&outrel, 0, sizeof outrel);
1555 	      relocate = false;
1556 	    }
1557 	  else
1558 	    {
1559 	      /* h->dynindx may be -1 if this symbol was marked to
1560 		 become local.  */
1561 	      if (h == NULL
1562 		  || SYMBOL_REFERENCES_LOCAL (info, h))
1563 		{
1564 		  relocate = true;
1565 		  outrel.r_info = ELF32_R_INFO (0, R_MN10300_RELATIVE);
1566 		  outrel.r_addend = value + addend;
1567 		}
1568 	      else
1569 		{
1570 		  BFD_ASSERT (h->dynindx != -1);
1571 		  relocate = false;
1572 		  outrel.r_info = ELF32_R_INFO (h->dynindx, R_MN10300_32);
1573 		  outrel.r_addend = value + addend;
1574 		}
1575 	    }
1576 
1577 	  bfd_elf32_swap_reloca_out (output_bfd, &outrel,
1578 				     (bfd_byte *) (((Elf32_External_Rela *) sreloc->contents)
1579 						   + sreloc->reloc_count));
1580 	  ++sreloc->reloc_count;
1581 
1582 	  /* If this reloc is against an external symbol, we do
1583 	     not want to fiddle with the addend.  Otherwise, we
1584 	     need to include the symbol value so that it becomes
1585 	     an addend for the dynamic reloc.  */
1586 	  if (! relocate)
1587 	    return bfd_reloc_ok;
1588 	}
1589       value += addend;
1590       bfd_put_32 (input_bfd, value, hit_data);
1591       return bfd_reloc_ok;
1592 
1593     case R_MN10300_24:
1594       value += addend;
1595 
1596       if ((long) value > 0x7fffff || (long) value < -0x800000)
1597 	return bfd_reloc_overflow;
1598 
1599       bfd_put_8 (input_bfd, value & 0xff, hit_data);
1600       bfd_put_8 (input_bfd, (value >> 8) & 0xff, hit_data + 1);
1601       bfd_put_8 (input_bfd, (value >> 16) & 0xff, hit_data + 2);
1602       return bfd_reloc_ok;
1603 
1604     case R_MN10300_16:
1605       value += addend;
1606 
1607       if ((long) value > 0x7fff || (long) value < -0x8000)
1608 	return bfd_reloc_overflow;
1609 
1610       bfd_put_16 (input_bfd, value, hit_data);
1611       return bfd_reloc_ok;
1612 
1613     case R_MN10300_8:
1614       value += addend;
1615 
1616       if ((long) value > 0x7f || (long) value < -0x80)
1617 	return bfd_reloc_overflow;
1618 
1619       bfd_put_8 (input_bfd, value, hit_data);
1620       return bfd_reloc_ok;
1621 
1622     case R_MN10300_PCREL8:
1623       value -= (input_section->output_section->vma
1624 		+ input_section->output_offset);
1625       value -= offset;
1626       value += addend;
1627 
1628       if ((long) value > 0x7f || (long) value < -0x80)
1629 	return bfd_reloc_overflow;
1630 
1631       bfd_put_8 (input_bfd, value, hit_data);
1632       return bfd_reloc_ok;
1633 
1634     case R_MN10300_PCREL16:
1635       value -= (input_section->output_section->vma
1636 		+ input_section->output_offset);
1637       value -= offset;
1638       value += addend;
1639 
1640       if ((long) value > 0x7fff || (long) value < -0x8000)
1641 	return bfd_reloc_overflow;
1642 
1643       bfd_put_16 (input_bfd, value, hit_data);
1644       return bfd_reloc_ok;
1645 
1646     case R_MN10300_PCREL32:
1647       value -= (input_section->output_section->vma
1648 		+ input_section->output_offset);
1649       value -= offset;
1650       value += addend;
1651 
1652       bfd_put_32 (input_bfd, value, hit_data);
1653       return bfd_reloc_ok;
1654 
1655     case R_MN10300_GNU_VTINHERIT:
1656     case R_MN10300_GNU_VTENTRY:
1657       return bfd_reloc_ok;
1658 
1659     case R_MN10300_GOTPC32:
1660       if (dynobj == NULL)
1661 	return bfd_reloc_dangerous;
1662 
1663       /* Use global offset table as symbol value.  */
1664       value = htab->root.sgot->output_section->vma;
1665       value -= (input_section->output_section->vma
1666 		+ input_section->output_offset);
1667       value -= offset;
1668       value += addend;
1669 
1670       bfd_put_32 (input_bfd, value, hit_data);
1671       return bfd_reloc_ok;
1672 
1673     case R_MN10300_GOTPC16:
1674       if (dynobj == NULL)
1675 	return bfd_reloc_dangerous;
1676 
1677       /* Use global offset table as symbol value.  */
1678       value = htab->root.sgot->output_section->vma;
1679       value -= (input_section->output_section->vma
1680 		+ input_section->output_offset);
1681       value -= offset;
1682       value += addend;
1683 
1684       if ((long) value > 0x7fff || (long) value < -0x8000)
1685 	return bfd_reloc_overflow;
1686 
1687       bfd_put_16 (input_bfd, value, hit_data);
1688       return bfd_reloc_ok;
1689 
1690     case R_MN10300_GOTOFF32:
1691       if (dynobj == NULL)
1692 	return bfd_reloc_dangerous;
1693 
1694       value -= htab->root.sgot->output_section->vma;
1695       value += addend;
1696 
1697       bfd_put_32 (input_bfd, value, hit_data);
1698       return bfd_reloc_ok;
1699 
1700     case R_MN10300_GOTOFF24:
1701       if (dynobj == NULL)
1702 	return bfd_reloc_dangerous;
1703 
1704       value -= htab->root.sgot->output_section->vma;
1705       value += addend;
1706 
1707       if ((long) value > 0x7fffff || (long) value < -0x800000)
1708 	return bfd_reloc_overflow;
1709 
1710       bfd_put_8 (input_bfd, value, hit_data);
1711       bfd_put_8 (input_bfd, (value >> 8) & 0xff, hit_data + 1);
1712       bfd_put_8 (input_bfd, (value >> 16) & 0xff, hit_data + 2);
1713       return bfd_reloc_ok;
1714 
1715     case R_MN10300_GOTOFF16:
1716       if (dynobj == NULL)
1717 	return bfd_reloc_dangerous;
1718 
1719       value -= htab->root.sgot->output_section->vma;
1720       value += addend;
1721 
1722       if ((long) value > 0x7fff || (long) value < -0x8000)
1723 	return bfd_reloc_overflow;
1724 
1725       bfd_put_16 (input_bfd, value, hit_data);
1726       return bfd_reloc_ok;
1727 
1728     case R_MN10300_PLT32:
1729       if (h != NULL
1730 	  && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
1731 	  && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
1732 	  && h->plt.offset != (bfd_vma) -1)
1733 	{
1734 	  if (dynobj == NULL)
1735 	    return bfd_reloc_dangerous;
1736 
1737 	  splt = htab->root.splt;
1738 	  value = (splt->output_section->vma
1739 		   + splt->output_offset
1740 		   + h->plt.offset) - value;
1741 	}
1742 
1743       value -= (input_section->output_section->vma
1744 		+ input_section->output_offset);
1745       value -= offset;
1746       value += addend;
1747 
1748       bfd_put_32 (input_bfd, value, hit_data);
1749       return bfd_reloc_ok;
1750 
1751     case R_MN10300_PLT16:
1752       if (h != NULL
1753 	  && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
1754 	  && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
1755 	  && h->plt.offset != (bfd_vma) -1)
1756 	{
1757 	  if (dynobj == NULL)
1758 	    return bfd_reloc_dangerous;
1759 
1760 	  splt = htab->root.splt;
1761 	  value = (splt->output_section->vma
1762 		   + splt->output_offset
1763 		   + h->plt.offset) - value;
1764 	}
1765 
1766       value -= (input_section->output_section->vma
1767 		+ input_section->output_offset);
1768       value -= offset;
1769       value += addend;
1770 
1771       if ((long) value > 0x7fff || (long) value < -0x8000)
1772 	return bfd_reloc_overflow;
1773 
1774       bfd_put_16 (input_bfd, value, hit_data);
1775       return bfd_reloc_ok;
1776 
1777     case R_MN10300_TLS_LDO:
1778       value = dtpoff (info, value);
1779       bfd_put_32 (input_bfd, value + addend, hit_data);
1780       return bfd_reloc_ok;
1781 
1782     case R_MN10300_TLS_LE:
1783       value = tpoff (info, value);
1784       bfd_put_32 (input_bfd, value + addend, hit_data);
1785       return bfd_reloc_ok;
1786 
1787     case R_MN10300_TLS_LD:
1788       if (dynobj == NULL)
1789 	return bfd_reloc_dangerous;
1790 
1791       sgot = htab->root.sgot;
1792       BFD_ASSERT (sgot != NULL);
1793       value = htab->tls_ldm_got.offset + sgot->output_offset;
1794       bfd_put_32 (input_bfd, value, hit_data);
1795 
1796       if (!htab->tls_ldm_got.rel_emitted)
1797 	{
1798 	  asection *srelgot = htab->root.srelgot;
1799 	  Elf_Internal_Rela rel;
1800 
1801 	  BFD_ASSERT (srelgot != NULL);
1802 	  htab->tls_ldm_got.rel_emitted ++;
1803 	  rel.r_offset = (sgot->output_section->vma
1804 			  + sgot->output_offset
1805 			  + htab->tls_ldm_got.offset);
1806 	  bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + htab->tls_ldm_got.offset);
1807 	  bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + htab->tls_ldm_got.offset+4);
1808 	  rel.r_info = ELF32_R_INFO (0, R_MN10300_TLS_DTPMOD);
1809 	  rel.r_addend = 0;
1810 	  bfd_elf32_swap_reloca_out (output_bfd, & rel,
1811 				     (bfd_byte *) ((Elf32_External_Rela *) srelgot->contents
1812 						   + srelgot->reloc_count));
1813 	  ++ srelgot->reloc_count;
1814 	}
1815 
1816       return bfd_reloc_ok;
1817 
1818     case R_MN10300_TLS_GOTIE:
1819       value = tpoff (info, value);
1820       /* Fall Through.  */
1821 
1822     case R_MN10300_TLS_GD:
1823     case R_MN10300_TLS_IE:
1824     case R_MN10300_GOT32:
1825     case R_MN10300_GOT24:
1826     case R_MN10300_GOT16:
1827       if (dynobj == NULL)
1828 	return bfd_reloc_dangerous;
1829 
1830       sgot = htab->root.sgot;
1831       if (r_type == R_MN10300_TLS_GD)
1832 	value = dtpoff (info, value);
1833 
1834       if (h != NULL)
1835 	{
1836 	  bfd_vma off;
1837 
1838 	  off = h->got.offset;
1839 	  /* Offsets in the GOT are allocated in check_relocs
1840 	     which is not called for shared libraries... */
1841 	  if (off == (bfd_vma) -1)
1842 	    off = 0;
1843 
1844 	  if (sgot->contents != NULL
1845 	      && (! elf_hash_table (info)->dynamic_sections_created
1846 		  || SYMBOL_REFERENCES_LOCAL (info, h)))
1847 	    /* This is actually a static link, or it is a
1848 	       -Bsymbolic link and the symbol is defined
1849 	       locally, or the symbol was forced to be local
1850 	       because of a version file.  We must initialize
1851 	       this entry in the global offset table.
1852 
1853 	       When doing a dynamic link, we create a .rela.got
1854 	       relocation entry to initialize the value.  This
1855 	       is done in the finish_dynamic_symbol routine.  */
1856 	    bfd_put_32 (output_bfd, value,
1857 			sgot->contents + off);
1858 
1859 	  value = sgot->output_offset + off;
1860 	}
1861       else
1862 	{
1863 	  bfd_vma off;
1864 
1865 	  off = elf_local_got_offsets (input_bfd)[symndx];
1866 
1867 	  if (off & 1)
1868 	    bfd_put_32 (output_bfd, value, sgot->contents + (off & ~ 1));
1869 	  else
1870 	    {
1871 	      bfd_put_32 (output_bfd, value, sgot->contents + off);
1872 
1873 	      if (bfd_link_pic (info))
1874 		{
1875 		  asection *srelgot = htab->root.srelgot;;
1876 		  Elf_Internal_Rela outrel;
1877 
1878 		  BFD_ASSERT (srelgot != NULL);
1879 
1880 		  outrel.r_offset = (sgot->output_section->vma
1881 				     + sgot->output_offset
1882 				     + off);
1883 		  switch (r_type)
1884 		    {
1885 		    case R_MN10300_TLS_GD:
1886 		      outrel.r_info = ELF32_R_INFO (0, R_MN10300_TLS_DTPOFF);
1887 		      outrel.r_offset = (sgot->output_section->vma
1888 					 + sgot->output_offset
1889 					 + off + 4);
1890 		      bfd_elf32_swap_reloca_out (output_bfd, & outrel,
1891 						 (bfd_byte *) (((Elf32_External_Rela *)
1892 								srelgot->contents)
1893 							       + srelgot->reloc_count));
1894 		      ++ srelgot->reloc_count;
1895 		      outrel.r_info = ELF32_R_INFO (0, R_MN10300_TLS_DTPMOD);
1896 		      break;
1897 		    case R_MN10300_TLS_GOTIE:
1898 		    case R_MN10300_TLS_IE:
1899 		      outrel.r_info = ELF32_R_INFO (0, R_MN10300_TLS_TPOFF);
1900 		      break;
1901 		    default:
1902 		      outrel.r_info = ELF32_R_INFO (0, R_MN10300_RELATIVE);
1903 		      break;
1904 		    }
1905 
1906 		  outrel.r_addend = value;
1907 		  bfd_elf32_swap_reloca_out (output_bfd, &outrel,
1908 					     (bfd_byte *) (((Elf32_External_Rela *)
1909 							    srelgot->contents)
1910 							   + srelgot->reloc_count));
1911 		  ++ srelgot->reloc_count;
1912 		  elf_local_got_offsets (input_bfd)[symndx] |= 1;
1913 		}
1914 
1915 	      value = sgot->output_offset + (off & ~(bfd_vma) 1);
1916 	    }
1917 	}
1918 
1919       value += addend;
1920 
1921       if (r_type == R_MN10300_TLS_IE)
1922 	{
1923 	  value += sgot->output_section->vma;
1924 	  bfd_put_32 (input_bfd, value, hit_data);
1925 	  return bfd_reloc_ok;
1926 	}
1927       else if (r_type == R_MN10300_TLS_GOTIE
1928 	       || r_type == R_MN10300_TLS_GD
1929 	       || r_type == R_MN10300_TLS_LD)
1930 	{
1931 	  bfd_put_32 (input_bfd, value, hit_data);
1932 	  return bfd_reloc_ok;
1933 	}
1934       else if (r_type == R_MN10300_GOT32)
1935 	{
1936 	  bfd_put_32 (input_bfd, value, hit_data);
1937 	  return bfd_reloc_ok;
1938 	}
1939       else if (r_type == R_MN10300_GOT24)
1940 	{
1941 	  if ((long) value > 0x7fffff || (long) value < -0x800000)
1942 	    return bfd_reloc_overflow;
1943 
1944 	  bfd_put_8 (input_bfd, value & 0xff, hit_data);
1945 	  bfd_put_8 (input_bfd, (value >> 8) & 0xff, hit_data + 1);
1946 	  bfd_put_8 (input_bfd, (value >> 16) & 0xff, hit_data + 2);
1947 	  return bfd_reloc_ok;
1948 	}
1949       else if (r_type == R_MN10300_GOT16)
1950 	{
1951 	  if ((long) value > 0x7fff || (long) value < -0x8000)
1952 	    return bfd_reloc_overflow;
1953 
1954 	  bfd_put_16 (input_bfd, value, hit_data);
1955 	  return bfd_reloc_ok;
1956 	}
1957       /* Fall through.  */
1958 
1959     default:
1960       return bfd_reloc_notsupported;
1961     }
1962 }
1963 
1964 /* Relocate an MN10300 ELF section.  */
1965 
1966 static int
mn10300_elf_relocate_section(bfd * output_bfd,struct bfd_link_info * info,bfd * input_bfd,asection * input_section,bfd_byte * contents,Elf_Internal_Rela * relocs,Elf_Internal_Sym * local_syms,asection ** local_sections)1967 mn10300_elf_relocate_section (bfd *output_bfd,
1968 			      struct bfd_link_info *info,
1969 			      bfd *input_bfd,
1970 			      asection *input_section,
1971 			      bfd_byte *contents,
1972 			      Elf_Internal_Rela *relocs,
1973 			      Elf_Internal_Sym *local_syms,
1974 			      asection **local_sections)
1975 {
1976   Elf_Internal_Shdr *symtab_hdr;
1977   struct elf_link_hash_entry **sym_hashes;
1978   Elf_Internal_Rela *rel, *relend;
1979   Elf_Internal_Rela * trel;
1980 
1981   symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1982   sym_hashes = elf_sym_hashes (input_bfd);
1983 
1984   rel = relocs;
1985   relend = relocs + input_section->reloc_count;
1986   for (; rel < relend; rel++)
1987     {
1988       int r_type;
1989       reloc_howto_type *howto;
1990       unsigned long r_symndx;
1991       Elf_Internal_Sym *sym;
1992       asection *sec;
1993       struct elf32_mn10300_link_hash_entry *h;
1994       bfd_vma relocation;
1995       bfd_reloc_status_type r;
1996       int tls_r_type;
1997       bool unresolved_reloc = false;
1998       bool warned, ignored;
1999       struct elf_link_hash_entry * hh;
2000 
2001       relocation = 0;
2002       r_symndx = ELF32_R_SYM (rel->r_info);
2003       r_type = ELF32_R_TYPE (rel->r_info);
2004       howto = elf_mn10300_howto_table + r_type;
2005 
2006       /* Just skip the vtable gc relocs.  */
2007       if (r_type == R_MN10300_GNU_VTINHERIT
2008 	  || r_type == R_MN10300_GNU_VTENTRY)
2009 	continue;
2010 
2011       h = NULL;
2012       sym = NULL;
2013       sec = NULL;
2014       if (r_symndx < symtab_hdr->sh_info)
2015 	hh = NULL;
2016       else
2017 	{
2018 	  RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2019 				   r_symndx, symtab_hdr, sym_hashes,
2020 				   hh, sec, relocation,
2021 				   unresolved_reloc, warned, ignored);
2022 	}
2023       h = elf_mn10300_hash_entry (hh);
2024 
2025       tls_r_type = elf_mn10300_tls_transition (info, r_type, hh, input_section, 0);
2026       if (tls_r_type != r_type)
2027 	{
2028 	  bool had_plt;
2029 
2030 	  had_plt = mn10300_do_tls_transition (input_bfd, r_type, tls_r_type,
2031 					       contents, rel->r_offset);
2032 	  r_type = tls_r_type;
2033 	  howto = elf_mn10300_howto_table + r_type;
2034 
2035 	  if (had_plt)
2036 	    for (trel = rel+1; trel < relend; trel++)
2037 	      if ((ELF32_R_TYPE (trel->r_info) == R_MN10300_PLT32
2038 		   || ELF32_R_TYPE (trel->r_info) == R_MN10300_PCREL32)
2039 		  && rel->r_offset + had_plt == trel->r_offset)
2040 		trel->r_info = ELF32_R_INFO (0, R_MN10300_NONE);
2041 	}
2042 
2043       if (r_symndx < symtab_hdr->sh_info)
2044 	{
2045 	  sym = local_syms + r_symndx;
2046 	  sec = local_sections[r_symndx];
2047 	  relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2048 	}
2049       else
2050 	{
2051 	  if ((h->root.root.type == bfd_link_hash_defined
2052 	      || h->root.root.type == bfd_link_hash_defweak)
2053 	      && (   r_type == R_MN10300_GOTPC32
2054 		  || r_type == R_MN10300_GOTPC16
2055 		  || ((   r_type == R_MN10300_PLT32
2056 		       || r_type == R_MN10300_PLT16)
2057 		      && ELF_ST_VISIBILITY (h->root.other) != STV_INTERNAL
2058 		      && ELF_ST_VISIBILITY (h->root.other) != STV_HIDDEN
2059 		      && h->root.plt.offset != (bfd_vma) -1)
2060 		  || ((   r_type == R_MN10300_GOT32
2061 		       || r_type == R_MN10300_GOT24
2062 		       || r_type == R_MN10300_TLS_GD
2063 		       || r_type == R_MN10300_TLS_LD
2064 		       || r_type == R_MN10300_TLS_GOTIE
2065 		       || r_type == R_MN10300_TLS_IE
2066 		       || r_type == R_MN10300_GOT16)
2067 		      && elf_hash_table (info)->dynamic_sections_created
2068 		      && !SYMBOL_REFERENCES_LOCAL (info, hh))
2069 		  || (r_type == R_MN10300_32
2070 		      && !SYMBOL_REFERENCES_LOCAL (info, hh)
2071 		      /* _32 relocs in executables force _COPY relocs,
2072 			 such that the address of the symbol ends up
2073 			 being local.  */
2074 		      && (((input_section->flags & SEC_ALLOC) != 0
2075 			   && !bfd_link_executable (info))
2076 			  /* DWARF will emit R_MN10300_32 relocations
2077 			     in its sections against symbols defined
2078 			     externally in shared libraries.  We can't
2079 			     do anything with them here.  */
2080 			  || ((input_section->flags & SEC_DEBUGGING) != 0
2081 			      && h->root.def_dynamic)))))
2082 	    /* In these cases, we don't need the relocation
2083 	       value.  We check specially because in some
2084 	       obscure cases sec->output_section will be NULL.  */
2085 	    relocation = 0;
2086 
2087 	  else if (!bfd_link_relocatable (info) && unresolved_reloc
2088 		   && _bfd_elf_section_offset (output_bfd, info, input_section,
2089 					       rel->r_offset) != (bfd_vma) -1)
2090 
2091 	    _bfd_error_handler
2092 	      /* xgettext:c-format */
2093 	      (_("%pB(%pA+%#" PRIx64 "): "
2094 		 "unresolvable %s relocation against symbol `%s'"),
2095 	       input_bfd,
2096 	       input_section,
2097 	       (uint64_t) rel->r_offset,
2098 	       howto->name,
2099 	       h->root.root.root.string);
2100 	}
2101 
2102       if (sec != NULL && discarded_section (sec))
2103 	RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
2104 					 rel, 1, relend, howto, 0, contents);
2105 
2106       if (bfd_link_relocatable (info))
2107 	continue;
2108 
2109       r = mn10300_elf_final_link_relocate (howto, input_bfd, output_bfd,
2110 					   input_section,
2111 					   contents, rel->r_offset,
2112 					   relocation, rel->r_addend,
2113 					   (struct elf_link_hash_entry *) h,
2114 					   r_symndx,
2115 					   info, sec, h == NULL);
2116 
2117       if (r != bfd_reloc_ok)
2118 	{
2119 	  const char *name;
2120 	  const char *msg = NULL;
2121 
2122 	  if (h != NULL)
2123 	    name = h->root.root.root.string;
2124 	  else
2125 	    {
2126 	      name = (bfd_elf_string_from_elf_section
2127 		      (input_bfd, symtab_hdr->sh_link, sym->st_name));
2128 	      if (name == NULL || *name == '\0')
2129 		name = bfd_section_name (sec);
2130 	    }
2131 
2132 	  switch (r)
2133 	    {
2134 	    case bfd_reloc_overflow:
2135 	      (*info->callbacks->reloc_overflow)
2136 		(info, (h ? &h->root.root : NULL), name, howto->name,
2137 		 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
2138 	      break;
2139 
2140 	    case bfd_reloc_undefined:
2141 	      (*info->callbacks->undefined_symbol)
2142 		(info, name, input_bfd, input_section, rel->r_offset, true);
2143 	      break;
2144 
2145 	    case bfd_reloc_outofrange:
2146 	      msg = _("internal error: out of range error");
2147 	      goto common_error;
2148 
2149 	    case bfd_reloc_notsupported:
2150 	      msg = _("internal error: unsupported relocation error");
2151 	      goto common_error;
2152 
2153 	    case bfd_reloc_dangerous:
2154 	      if (r_type == R_MN10300_PCREL32)
2155 		msg = _("error: inappropriate relocation type for shared"
2156 			" library (did you forget -fpic?)");
2157 	      else if (r_type == R_MN10300_GOT32)
2158 		/* xgettext:c-format */
2159 		msg = _("%pB: taking the address of protected function"
2160 			" '%s' cannot be done when making a shared library");
2161 	      else
2162 		msg = _("internal error: suspicious relocation type used"
2163 			" in shared library");
2164 	      goto common_error;
2165 
2166 	    default:
2167 	      msg = _("internal error: unknown error");
2168 	      /* Fall through.  */
2169 
2170 	    common_error:
2171 	      _bfd_error_handler (msg, input_bfd, name);
2172 	      bfd_set_error (bfd_error_bad_value);
2173 	      return false;
2174 	    }
2175 	}
2176     }
2177 
2178   return true;
2179 }
2180 
2181 /* Finish initializing one hash table entry.  */
2182 
2183 static bool
elf32_mn10300_finish_hash_table_entry(struct bfd_hash_entry * gen_entry,void * in_args)2184 elf32_mn10300_finish_hash_table_entry (struct bfd_hash_entry *gen_entry,
2185 				       void * in_args)
2186 {
2187   struct elf32_mn10300_link_hash_entry *entry;
2188   struct bfd_link_info *link_info = (struct bfd_link_info *) in_args;
2189   unsigned int byte_count = 0;
2190 
2191   entry = (struct elf32_mn10300_link_hash_entry *) gen_entry;
2192 
2193   /* If we already know we want to convert "call" to "calls" for calls
2194      to this symbol, then return now.  */
2195   if (entry->flags == MN10300_CONVERT_CALL_TO_CALLS)
2196     return true;
2197 
2198   /* If there are no named calls to this symbol, or there's nothing we
2199      can move from the function itself into the "call" instruction,
2200      then note that all "call" instructions should be converted into
2201      "calls" instructions and return.  If a symbol is available for
2202      dynamic symbol resolution (overridable or overriding), avoid
2203      custom calling conventions.  */
2204   if (entry->direct_calls == 0
2205       || (entry->stack_size == 0 && entry->movm_args == 0)
2206       || (elf_hash_table (link_info)->dynamic_sections_created
2207 	  && ELF_ST_VISIBILITY (entry->root.other) != STV_INTERNAL
2208 	  && ELF_ST_VISIBILITY (entry->root.other) != STV_HIDDEN))
2209     {
2210       /* Make a note that we should convert "call" instructions to "calls"
2211 	 instructions for calls to this symbol.  */
2212       entry->flags |= MN10300_CONVERT_CALL_TO_CALLS;
2213       return true;
2214     }
2215 
2216   /* We may be able to move some instructions from the function itself into
2217      the "call" instruction.  Count how many bytes we might be able to
2218      eliminate in the function itself.  */
2219 
2220   /* A movm instruction is two bytes.  */
2221   if (entry->movm_args)
2222     byte_count += 2;
2223 
2224   /* Count the insn to allocate stack space too.  */
2225   if (entry->stack_size > 0)
2226     {
2227       if (entry->stack_size <= 128)
2228 	byte_count += 3;
2229       else
2230 	byte_count += 4;
2231     }
2232 
2233   /* If using "call" will result in larger code, then turn all
2234      the associated "call" instructions into "calls" instructions.  */
2235   if (byte_count < entry->direct_calls)
2236     entry->flags |= MN10300_CONVERT_CALL_TO_CALLS;
2237 
2238   /* This routine never fails.  */
2239   return true;
2240 }
2241 
2242 /* Used to count hash table entries.  */
2243 
2244 static bool
elf32_mn10300_count_hash_table_entries(struct bfd_hash_entry * gen_entry ATTRIBUTE_UNUSED,void * in_args)2245 elf32_mn10300_count_hash_table_entries (struct bfd_hash_entry *gen_entry ATTRIBUTE_UNUSED,
2246 					void * in_args)
2247 {
2248   int *count = (int *) in_args;
2249 
2250   (*count) ++;
2251   return true;
2252 }
2253 
2254 /* Used to enumerate hash table entries into a linear array.  */
2255 
2256 static bool
elf32_mn10300_list_hash_table_entries(struct bfd_hash_entry * gen_entry,void * in_args)2257 elf32_mn10300_list_hash_table_entries (struct bfd_hash_entry *gen_entry,
2258 				       void * in_args)
2259 {
2260   struct bfd_hash_entry ***ptr = (struct bfd_hash_entry ***) in_args;
2261 
2262   **ptr = gen_entry;
2263   (*ptr) ++;
2264   return true;
2265 }
2266 
2267 /* Used to sort the array created by the above.  */
2268 
2269 static int
sort_by_value(const void * va,const void * vb)2270 sort_by_value (const void *va, const void *vb)
2271 {
2272   struct elf32_mn10300_link_hash_entry *a
2273     = *(struct elf32_mn10300_link_hash_entry **) va;
2274   struct elf32_mn10300_link_hash_entry *b
2275     = *(struct elf32_mn10300_link_hash_entry **) vb;
2276 
2277   return a->value - b->value;
2278 }
2279 
2280 /* Compute the stack size and movm arguments for the function
2281    referred to by HASH at address ADDR in section with
2282    contents CONTENTS, store the information in the hash table.  */
2283 
2284 static void
compute_function_info(bfd * abfd,struct elf32_mn10300_link_hash_entry * hash,bfd_vma addr,unsigned char * contents)2285 compute_function_info (bfd *abfd,
2286 		       struct elf32_mn10300_link_hash_entry *hash,
2287 		       bfd_vma addr,
2288 		       unsigned char *contents)
2289 {
2290   unsigned char byte1, byte2;
2291   /* We only care about a very small subset of the possible prologue
2292      sequences here.  Basically we look for:
2293 
2294      movm [d2,d3,a2,a3],sp (optional)
2295      add <size>,sp (optional, and only for sizes which fit in an unsigned
2296 		    8 bit number)
2297 
2298      If we find anything else, we quit.  */
2299 
2300   /* Look for movm [regs],sp.  */
2301   byte1 = bfd_get_8 (abfd, contents + addr);
2302   byte2 = bfd_get_8 (abfd, contents + addr + 1);
2303 
2304   if (byte1 == 0xcf)
2305     {
2306       hash->movm_args = byte2;
2307       addr += 2;
2308       byte1 = bfd_get_8 (abfd, contents + addr);
2309       byte2 = bfd_get_8 (abfd, contents + addr + 1);
2310     }
2311 
2312   /* Now figure out how much stack space will be allocated by the movm
2313      instruction.  We need this kept separate from the function's normal
2314      stack space.  */
2315   if (hash->movm_args)
2316     {
2317       /* Space for d2.  */
2318       if (hash->movm_args & 0x80)
2319 	hash->movm_stack_size += 4;
2320 
2321       /* Space for d3.  */
2322       if (hash->movm_args & 0x40)
2323 	hash->movm_stack_size += 4;
2324 
2325       /* Space for a2.  */
2326       if (hash->movm_args & 0x20)
2327 	hash->movm_stack_size += 4;
2328 
2329       /* Space for a3.  */
2330       if (hash->movm_args & 0x10)
2331 	hash->movm_stack_size += 4;
2332 
2333       /* "other" space.  d0, d1, a0, a1, mdr, lir, lar, 4 byte pad.  */
2334       if (hash->movm_args & 0x08)
2335 	hash->movm_stack_size += 8 * 4;
2336 
2337       if (bfd_get_mach (abfd) == bfd_mach_am33
2338 	  || bfd_get_mach (abfd) == bfd_mach_am33_2)
2339 	{
2340 	  /* "exother" space.  e0, e1, mdrq, mcrh, mcrl, mcvf */
2341 	  if (hash->movm_args & 0x1)
2342 	    hash->movm_stack_size += 6 * 4;
2343 
2344 	  /* exreg1 space.  e4, e5, e6, e7 */
2345 	  if (hash->movm_args & 0x2)
2346 	    hash->movm_stack_size += 4 * 4;
2347 
2348 	  /* exreg0 space.  e2, e3  */
2349 	  if (hash->movm_args & 0x4)
2350 	    hash->movm_stack_size += 2 * 4;
2351 	}
2352     }
2353 
2354   /* Now look for the two stack adjustment variants.  */
2355   if (byte1 == 0xf8 && byte2 == 0xfe)
2356     {
2357       int temp = bfd_get_8 (abfd, contents + addr + 2);
2358       temp = ((temp & 0xff) ^ (~0x7f)) + 0x80;
2359 
2360       hash->stack_size = -temp;
2361     }
2362   else if (byte1 == 0xfa && byte2 == 0xfe)
2363     {
2364       int temp = bfd_get_16 (abfd, contents + addr + 2);
2365       temp = ((temp & 0xffff) ^ (~0x7fff)) + 0x8000;
2366       temp = -temp;
2367 
2368       if (temp < 255)
2369 	hash->stack_size = temp;
2370     }
2371 
2372   /* If the total stack to be allocated by the call instruction is more
2373      than 255 bytes, then we can't remove the stack adjustment by using
2374      "call" (we might still be able to remove the "movm" instruction.  */
2375   if (hash->stack_size + hash->movm_stack_size > 255)
2376     hash->stack_size = 0;
2377 }
2378 
2379 /* Delete some bytes from a section while relaxing.  */
2380 
2381 static bool
mn10300_elf_relax_delete_bytes(bfd * abfd,asection * sec,bfd_vma addr,int count)2382 mn10300_elf_relax_delete_bytes (bfd *abfd,
2383 				asection *sec,
2384 				bfd_vma addr,
2385 				int count)
2386 {
2387   Elf_Internal_Shdr *symtab_hdr;
2388   unsigned int sec_shndx;
2389   bfd_byte *contents;
2390   Elf_Internal_Rela *irel, *irelend;
2391   Elf_Internal_Rela *irelalign;
2392   bfd_vma toaddr;
2393   Elf_Internal_Sym *isym, *isymend;
2394   struct elf_link_hash_entry **sym_hashes;
2395   struct elf_link_hash_entry **end_hashes;
2396   unsigned int symcount;
2397 
2398   sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
2399 
2400   contents = elf_section_data (sec)->this_hdr.contents;
2401 
2402   irelalign = NULL;
2403   toaddr = sec->size;
2404 
2405   irel = elf_section_data (sec)->relocs;
2406   irelend = irel + sec->reloc_count;
2407 
2408   if (sec->reloc_count > 0)
2409     {
2410       /* If there is an align reloc at the end of the section ignore it.
2411 	 GAS creates these relocs for reasons of its own, and they just
2412 	 serve to keep the section artifically inflated.  */
2413       if (ELF32_R_TYPE ((irelend - 1)->r_info) == (int) R_MN10300_ALIGN)
2414 	--irelend;
2415 
2416       /* The deletion must stop at the next ALIGN reloc for an alignment
2417 	 power larger than, or not a multiple of, the number of bytes we
2418 	 are deleting.  */
2419       for (; irel < irelend; irel++)
2420 	{
2421 	  if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_ALIGN
2422 	      && irel->r_offset > addr
2423 	      && irel->r_offset < toaddr)
2424 	    {
2425 	      int alignment = 1 << irel->r_addend;
2426 
2427 	      if (count < alignment
2428 		  || alignment % count != 0)
2429 		{
2430 		  irelalign = irel;
2431 		  toaddr = irel->r_offset;
2432 		  break;
2433 		}
2434 	    }
2435 	}
2436     }
2437 
2438   /* Actually delete the bytes.  */
2439   memmove (contents + addr, contents + addr + count,
2440 	   (size_t) (toaddr - addr - count));
2441 
2442   /* Adjust the section's size if we are shrinking it, or else
2443      pad the bytes between the end of the shrunken region and
2444      the start of the next region with NOP codes.  */
2445   if (irelalign == NULL)
2446     {
2447       sec->size -= count;
2448       /* Include symbols at the end of the section, but
2449 	 not at the end of a sub-region of the section.  */
2450       toaddr ++;
2451     }
2452   else
2453     {
2454       int i;
2455 
2456 #define NOP_OPCODE 0xcb
2457 
2458       for (i = 0; i < count; i ++)
2459 	bfd_put_8 (abfd, (bfd_vma) NOP_OPCODE, contents + toaddr - count + i);
2460     }
2461 
2462   /* Adjust all the relocs.  */
2463   for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
2464     {
2465       /* Get the new reloc address.  */
2466       if ((irel->r_offset > addr
2467 	   && irel->r_offset < toaddr)
2468 	  || (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_ALIGN
2469 	      && irel->r_offset == toaddr))
2470 	irel->r_offset -= count;
2471     }
2472 
2473   /* Adjust the local symbols in the section, reducing their value
2474      by the number of bytes deleted.  Note - symbols within the deleted
2475      region are moved to the address of the start of the region, which
2476      actually means that they will address the byte beyond the end of
2477      the region once the deletion has been completed.  */
2478   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2479   isym = (Elf_Internal_Sym *) symtab_hdr->contents;
2480   for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
2481     {
2482       if (isym->st_shndx == sec_shndx
2483 	  && isym->st_value > addr
2484 	  && isym->st_value < toaddr)
2485 	{
2486 	  if (isym->st_value < addr + count)
2487 	    isym->st_value = addr;
2488 	  else
2489 	    isym->st_value -= count;
2490 	}
2491       /* Adjust the function symbol's size as well.  */
2492       else if (isym->st_shndx == sec_shndx
2493 	       && ELF_ST_TYPE (isym->st_info) == STT_FUNC
2494 	       && isym->st_value + isym->st_size > addr
2495 	       && isym->st_value + isym->st_size < toaddr)
2496 	isym->st_size -= count;
2497     }
2498 
2499   /* Now adjust the global symbols defined in this section.  */
2500   symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2501 	      - symtab_hdr->sh_info);
2502   sym_hashes = elf_sym_hashes (abfd);
2503   end_hashes = sym_hashes + symcount;
2504   for (; sym_hashes < end_hashes; sym_hashes++)
2505     {
2506       struct elf_link_hash_entry *sym_hash = *sym_hashes;
2507 
2508       if ((sym_hash->root.type == bfd_link_hash_defined
2509 	   || sym_hash->root.type == bfd_link_hash_defweak)
2510 	  && sym_hash->root.u.def.section == sec
2511 	  && sym_hash->root.u.def.value > addr
2512 	  && sym_hash->root.u.def.value < toaddr)
2513 	{
2514 	  if (sym_hash->root.u.def.value < addr + count)
2515 	    sym_hash->root.u.def.value = addr;
2516 	  else
2517 	    sym_hash->root.u.def.value -= count;
2518 	}
2519       /* Adjust the function symbol's size as well.  */
2520       else if (sym_hash->root.type == bfd_link_hash_defined
2521 	       && sym_hash->root.u.def.section == sec
2522 	       && sym_hash->type == STT_FUNC
2523 	       && sym_hash->root.u.def.value + sym_hash->size > addr
2524 	       && sym_hash->root.u.def.value + sym_hash->size < toaddr)
2525 	sym_hash->size -= count;
2526     }
2527 
2528   /* See if we can move the ALIGN reloc forward.
2529      We have adjusted r_offset for it already.  */
2530   if (irelalign != NULL)
2531     {
2532       bfd_vma alignto, alignaddr;
2533 
2534       if ((int) irelalign->r_addend > 0)
2535 	{
2536 	  /* This is the old address.  */
2537 	  alignto = BFD_ALIGN (toaddr, 1 << irelalign->r_addend);
2538 	  /* This is where the align points to now.  */
2539 	  alignaddr = BFD_ALIGN (irelalign->r_offset,
2540 				 1 << irelalign->r_addend);
2541 	  if (alignaddr < alignto)
2542 	    /* Tail recursion.  */
2543 	    return mn10300_elf_relax_delete_bytes (abfd, sec, alignaddr,
2544 						   (int) (alignto - alignaddr));
2545 	}
2546     }
2547 
2548   return true;
2549 }
2550 
2551 /* Return TRUE if a symbol exists at the given address, else return
2552    FALSE.  */
2553 
2554 static bool
mn10300_elf_symbol_address_p(bfd * abfd,asection * sec,Elf_Internal_Sym * isym,bfd_vma addr)2555 mn10300_elf_symbol_address_p (bfd *abfd,
2556 			      asection *sec,
2557 			      Elf_Internal_Sym *isym,
2558 			      bfd_vma addr)
2559 {
2560   Elf_Internal_Shdr *symtab_hdr;
2561   unsigned int sec_shndx;
2562   Elf_Internal_Sym *isymend;
2563   struct elf_link_hash_entry **sym_hashes;
2564   struct elf_link_hash_entry **end_hashes;
2565   unsigned int symcount;
2566 
2567   sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
2568 
2569   /* Examine all the symbols.  */
2570   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2571   for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
2572     if (isym->st_shndx == sec_shndx
2573 	&& isym->st_value == addr)
2574       return true;
2575 
2576   symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2577 	      - symtab_hdr->sh_info);
2578   sym_hashes = elf_sym_hashes (abfd);
2579   end_hashes = sym_hashes + symcount;
2580   for (; sym_hashes < end_hashes; sym_hashes++)
2581     {
2582       struct elf_link_hash_entry *sym_hash = *sym_hashes;
2583 
2584       if ((sym_hash->root.type == bfd_link_hash_defined
2585 	   || sym_hash->root.type == bfd_link_hash_defweak)
2586 	  && sym_hash->root.u.def.section == sec
2587 	  && sym_hash->root.u.def.value == addr)
2588 	return true;
2589     }
2590 
2591   return false;
2592 }
2593 
2594 /* This function handles relaxing for the mn10300.
2595 
2596    There are quite a few relaxing opportunities available on the mn10300:
2597 
2598 	* calls:32 -> calls:16					   2 bytes
2599 	* call:32  -> call:16					   2 bytes
2600 
2601 	* call:32 -> calls:32					   1 byte
2602 	* call:16 -> calls:16					   1 byte
2603 		* These are done anytime using "calls" would result
2604 		in smaller code, or when necessary to preserve the
2605 		meaning of the program.
2606 
2607 	* call:32						   varies
2608 	* call:16
2609 		* In some circumstances we can move instructions
2610 		from a function prologue into a "call" instruction.
2611 		This is only done if the resulting code is no larger
2612 		than the original code.
2613 
2614 	* jmp:32 -> jmp:16					   2 bytes
2615 	* jmp:16 -> bra:8					   1 byte
2616 
2617 		* If the previous instruction is a conditional branch
2618 		around the jump/bra, we may be able to reverse its condition
2619 		and change its target to the jump's target.  The jump/bra
2620 		can then be deleted.				   2 bytes
2621 
2622 	* mov abs32 -> mov abs16				   1 or 2 bytes
2623 
2624 	* Most instructions which accept imm32 can relax to imm16  1 or 2 bytes
2625 	- Most instructions which accept imm16 can relax to imm8   1 or 2 bytes
2626 
2627 	* Most instructions which accept d32 can relax to d16	   1 or 2 bytes
2628 	- Most instructions which accept d16 can relax to d8	   1 or 2 bytes
2629 
2630 	We don't handle imm16->imm8 or d16->d8 as they're very rare
2631 	and somewhat more difficult to support.  */
2632 
2633 static bool
mn10300_elf_relax_section(bfd * abfd,asection * sec,struct bfd_link_info * link_info,bool * again)2634 mn10300_elf_relax_section (bfd *abfd,
2635 			   asection *sec,
2636 			   struct bfd_link_info *link_info,
2637 			   bool *again)
2638 {
2639   Elf_Internal_Shdr *symtab_hdr;
2640   Elf_Internal_Rela *internal_relocs = NULL;
2641   Elf_Internal_Rela *irel, *irelend;
2642   bfd_byte *contents = NULL;
2643   Elf_Internal_Sym *isymbuf = NULL;
2644   struct elf32_mn10300_link_hash_table *hash_table;
2645   asection *section = sec;
2646   bfd_vma align_gap_adjustment;
2647 
2648   if (bfd_link_relocatable (link_info))
2649     (*link_info->callbacks->einfo)
2650       (_("%P%F: --relax and -r may not be used together\n"));
2651 
2652   /* Assume nothing changes.  */
2653   *again = false;
2654 
2655   /* We need a pointer to the mn10300 specific hash table.  */
2656   hash_table = elf32_mn10300_hash_table (link_info);
2657   if (hash_table == NULL)
2658     return false;
2659 
2660   /* Initialize fields in each hash table entry the first time through.  */
2661   if ((hash_table->flags & MN10300_HASH_ENTRIES_INITIALIZED) == 0)
2662     {
2663       bfd *input_bfd;
2664 
2665       /* Iterate over all the input bfds.  */
2666       for (input_bfd = link_info->input_bfds;
2667 	   input_bfd != NULL;
2668 	   input_bfd = input_bfd->link.next)
2669 	{
2670 	  /* We're going to need all the symbols for each bfd.  */
2671 	  symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2672 	  if (symtab_hdr->sh_info != 0)
2673 	    {
2674 	      isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
2675 	      if (isymbuf == NULL)
2676 		isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2677 						symtab_hdr->sh_info, 0,
2678 						NULL, NULL, NULL);
2679 	      if (isymbuf == NULL)
2680 		goto error_return;
2681 	    }
2682 
2683 	  /* Iterate over each section in this bfd.  */
2684 	  for (section = input_bfd->sections;
2685 	       section != NULL;
2686 	       section = section->next)
2687 	    {
2688 	      struct elf32_mn10300_link_hash_entry *hash;
2689 	      asection *sym_sec = NULL;
2690 	      const char *sym_name;
2691 	      char *new_name;
2692 
2693 	      /* If there's nothing to do in this section, skip it.  */
2694 	      if (! ((section->flags & SEC_RELOC) != 0
2695 		     && section->reloc_count != 0))
2696 		continue;
2697 	      if ((section->flags & SEC_ALLOC) == 0
2698 		  || (section->flags & SEC_HAS_CONTENTS) == 0)
2699 		continue;
2700 
2701 	      /* Get cached copy of section contents if it exists.  */
2702 	      if (elf_section_data (section)->this_hdr.contents != NULL)
2703 		contents = elf_section_data (section)->this_hdr.contents;
2704 	      else if (section->size != 0)
2705 		{
2706 		  /* Go get them off disk.  */
2707 		  if (!bfd_malloc_and_get_section (input_bfd, section,
2708 						   &contents))
2709 		    goto error_return;
2710 		}
2711 	      else
2712 		contents = NULL;
2713 
2714 	      /* If there aren't any relocs, then there's nothing to do.  */
2715 	      if ((section->flags & SEC_RELOC) != 0
2716 		  && section->reloc_count != 0)
2717 		{
2718 		  /* Get a copy of the native relocations.  */
2719 		  internal_relocs = _bfd_elf_link_read_relocs (input_bfd, section,
2720 							       NULL, NULL,
2721 							       link_info->keep_memory);
2722 		  if (internal_relocs == NULL)
2723 		    goto error_return;
2724 
2725 		  /* Now examine each relocation.  */
2726 		  irel = internal_relocs;
2727 		  irelend = irel + section->reloc_count;
2728 		  for (; irel < irelend; irel++)
2729 		    {
2730 		      long r_type;
2731 		      unsigned long r_index;
2732 		      unsigned char code;
2733 
2734 		      r_type = ELF32_R_TYPE (irel->r_info);
2735 		      r_index = ELF32_R_SYM (irel->r_info);
2736 
2737 		      if (r_type < 0 || r_type >= (int) R_MN10300_MAX)
2738 			goto error_return;
2739 
2740 		      /* We need the name and hash table entry of the target
2741 			 symbol!  */
2742 		      hash = NULL;
2743 		      sym_sec = NULL;
2744 
2745 		      if (r_index < symtab_hdr->sh_info)
2746 			{
2747 			  /* A local symbol.  */
2748 			  Elf_Internal_Sym *isym;
2749 			  struct elf_link_hash_table *elftab;
2750 			  size_t amt;
2751 
2752 			  isym = isymbuf + r_index;
2753 			  if (isym->st_shndx == SHN_UNDEF)
2754 			    sym_sec = bfd_und_section_ptr;
2755 			  else if (isym->st_shndx == SHN_ABS)
2756 			    sym_sec = bfd_abs_section_ptr;
2757 			  else if (isym->st_shndx == SHN_COMMON)
2758 			    sym_sec = bfd_com_section_ptr;
2759 			  else
2760 			    sym_sec
2761 			      = bfd_section_from_elf_index (input_bfd,
2762 							    isym->st_shndx);
2763 
2764 			  sym_name
2765 			    = bfd_elf_string_from_elf_section (input_bfd,
2766 							       (symtab_hdr
2767 								->sh_link),
2768 							       isym->st_name);
2769 
2770 			  /* If it isn't a function, then we don't care
2771 			     about it.  */
2772 			  if (ELF_ST_TYPE (isym->st_info) != STT_FUNC)
2773 			    continue;
2774 
2775 			  /* Tack on an ID so we can uniquely identify this
2776 			     local symbol in the global hash table.  */
2777 			  amt = strlen (sym_name) + 10;
2778 			  new_name = bfd_malloc (amt);
2779 			  if (new_name == NULL)
2780 			    goto error_return;
2781 
2782 			  sprintf (new_name, "%s_%08x", sym_name, sym_sec->id);
2783 			  sym_name = new_name;
2784 
2785 			  elftab = &hash_table->static_hash_table->root;
2786 			  hash = ((struct elf32_mn10300_link_hash_entry *)
2787 				  elf_link_hash_lookup (elftab, sym_name,
2788 							true, true, false));
2789 			  free (new_name);
2790 			}
2791 		      else
2792 			{
2793 			  r_index -= symtab_hdr->sh_info;
2794 			  hash = (struct elf32_mn10300_link_hash_entry *)
2795 				   elf_sym_hashes (input_bfd)[r_index];
2796 			}
2797 
2798 		      sym_name = hash->root.root.root.string;
2799 		      if ((section->flags & SEC_CODE) != 0)
2800 			{
2801 			  /* If this is not a "call" instruction, then we
2802 			     should convert "call" instructions to "calls"
2803 			     instructions.  */
2804 			  code = bfd_get_8 (input_bfd,
2805 					    contents + irel->r_offset - 1);
2806 			  if (code != 0xdd && code != 0xcd)
2807 			    hash->flags |= MN10300_CONVERT_CALL_TO_CALLS;
2808 			}
2809 
2810 		      /* If this is a jump/call, then bump the
2811 			 direct_calls counter.  Else force "call" to
2812 			 "calls" conversions.  */
2813 		      if (r_type == R_MN10300_PCREL32
2814 			  || r_type == R_MN10300_PLT32
2815 			  || r_type == R_MN10300_PLT16
2816 			  || r_type == R_MN10300_PCREL16)
2817 			hash->direct_calls++;
2818 		      else
2819 			hash->flags |= MN10300_CONVERT_CALL_TO_CALLS;
2820 		    }
2821 		}
2822 
2823 	      /* Now look at the actual contents to get the stack size,
2824 		 and a list of what registers were saved in the prologue
2825 		 (ie movm_args).  */
2826 	      if ((section->flags & SEC_CODE) != 0)
2827 		{
2828 		  Elf_Internal_Sym *isym, *isymend;
2829 		  unsigned int sec_shndx;
2830 		  struct elf_link_hash_entry **hashes;
2831 		  struct elf_link_hash_entry **end_hashes;
2832 		  unsigned int symcount;
2833 
2834 		  sec_shndx = _bfd_elf_section_from_bfd_section (input_bfd,
2835 								 section);
2836 
2837 		  symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2838 			      - symtab_hdr->sh_info);
2839 		  hashes = elf_sym_hashes (input_bfd);
2840 		  end_hashes = hashes + symcount;
2841 
2842 		  /* Look at each function defined in this section and
2843 		     update info for that function.  */
2844 		  isymend = isymbuf + symtab_hdr->sh_info;
2845 		  for (isym = isymbuf; isym < isymend; isym++)
2846 		    {
2847 		      if (isym->st_shndx == sec_shndx
2848 			  && ELF_ST_TYPE (isym->st_info) == STT_FUNC)
2849 			{
2850 			  struct elf_link_hash_table *elftab;
2851 			  size_t amt;
2852 			  struct elf_link_hash_entry **lhashes = hashes;
2853 
2854 			  /* Skip a local symbol if it aliases a
2855 			     global one.  */
2856 			  for (; lhashes < end_hashes; lhashes++)
2857 			    {
2858 			      hash = (struct elf32_mn10300_link_hash_entry *) *lhashes;
2859 			      if ((hash->root.root.type == bfd_link_hash_defined
2860 				   || hash->root.root.type == bfd_link_hash_defweak)
2861 				  && hash->root.root.u.def.section == section
2862 				  && hash->root.type == STT_FUNC
2863 				  && hash->root.root.u.def.value == isym->st_value)
2864 				break;
2865 			    }
2866 			  if (lhashes != end_hashes)
2867 			    continue;
2868 
2869 			  if (isym->st_shndx == SHN_UNDEF)
2870 			    sym_sec = bfd_und_section_ptr;
2871 			  else if (isym->st_shndx == SHN_ABS)
2872 			    sym_sec = bfd_abs_section_ptr;
2873 			  else if (isym->st_shndx == SHN_COMMON)
2874 			    sym_sec = bfd_com_section_ptr;
2875 			  else
2876 			    sym_sec
2877 			      = bfd_section_from_elf_index (input_bfd,
2878 							    isym->st_shndx);
2879 
2880 			  sym_name = (bfd_elf_string_from_elf_section
2881 				      (input_bfd, symtab_hdr->sh_link,
2882 				       isym->st_name));
2883 
2884 			  /* Tack on an ID so we can uniquely identify this
2885 			     local symbol in the global hash table.  */
2886 			  amt = strlen (sym_name) + 10;
2887 			  new_name = bfd_malloc (amt);
2888 			  if (new_name == NULL)
2889 			    goto error_return;
2890 
2891 			  sprintf (new_name, "%s_%08x", sym_name, sym_sec->id);
2892 			  sym_name = new_name;
2893 
2894 			  elftab = &hash_table->static_hash_table->root;
2895 			  hash = ((struct elf32_mn10300_link_hash_entry *)
2896 				  elf_link_hash_lookup (elftab, sym_name,
2897 							true, true, false));
2898 			  free (new_name);
2899 			  compute_function_info (input_bfd, hash,
2900 						 isym->st_value, contents);
2901 			  hash->value = isym->st_value;
2902 			}
2903 		    }
2904 
2905 		  for (; hashes < end_hashes; hashes++)
2906 		    {
2907 		      hash = (struct elf32_mn10300_link_hash_entry *) *hashes;
2908 		      if ((hash->root.root.type == bfd_link_hash_defined
2909 			   || hash->root.root.type == bfd_link_hash_defweak)
2910 			  && hash->root.root.u.def.section == section
2911 			  && hash->root.type == STT_FUNC)
2912 			compute_function_info (input_bfd, hash,
2913 					       (hash)->root.root.u.def.value,
2914 					       contents);
2915 		    }
2916 		}
2917 
2918 	      /* Cache or free any memory we allocated for the relocs.  */
2919 	      if (elf_section_data (section)->relocs != internal_relocs)
2920 		free (internal_relocs);
2921 	      internal_relocs = NULL;
2922 
2923 	      /* Cache or free any memory we allocated for the contents.  */
2924 	      if (contents != NULL
2925 		  && elf_section_data (section)->this_hdr.contents != contents)
2926 		{
2927 		  if (! link_info->keep_memory)
2928 		    free (contents);
2929 		  else
2930 		    {
2931 		      /* Cache the section contents for elf_link_input_bfd.  */
2932 		      elf_section_data (section)->this_hdr.contents = contents;
2933 		    }
2934 		}
2935 	      contents = NULL;
2936 	    }
2937 
2938 	  /* Cache or free any memory we allocated for the symbols.  */
2939 	  if (isymbuf != NULL
2940 	      && symtab_hdr->contents != (unsigned char *) isymbuf)
2941 	    {
2942 	      if (! link_info->keep_memory)
2943 		free (isymbuf);
2944 	      else
2945 		{
2946 		  /* Cache the symbols for elf_link_input_bfd.  */
2947 		  symtab_hdr->contents = (unsigned char *) isymbuf;
2948 		}
2949 	    }
2950 	  isymbuf = NULL;
2951 	}
2952 
2953       /* Now iterate on each symbol in the hash table and perform
2954 	 the final initialization steps on each.  */
2955       elf32_mn10300_link_hash_traverse (hash_table,
2956 					elf32_mn10300_finish_hash_table_entry,
2957 					link_info);
2958       elf32_mn10300_link_hash_traverse (hash_table->static_hash_table,
2959 					elf32_mn10300_finish_hash_table_entry,
2960 					link_info);
2961 
2962       {
2963 	/* This section of code collects all our local symbols, sorts
2964 	   them by value, and looks for multiple symbols referring to
2965 	   the same address.  For those symbols, the flags are merged.
2966 	   At this point, the only flag that can be set is
2967 	   MN10300_CONVERT_CALL_TO_CALLS, so we simply OR the flags
2968 	   together.  */
2969 	int static_count = 0, i;
2970 	struct elf32_mn10300_link_hash_entry **entries;
2971 	struct elf32_mn10300_link_hash_entry **ptr;
2972 
2973 	elf32_mn10300_link_hash_traverse (hash_table->static_hash_table,
2974 					  elf32_mn10300_count_hash_table_entries,
2975 					  &static_count);
2976 
2977 	entries = bfd_malloc (static_count * sizeof (* ptr));
2978 
2979 	ptr = entries;
2980 	elf32_mn10300_link_hash_traverse (hash_table->static_hash_table,
2981 					  elf32_mn10300_list_hash_table_entries,
2982 					  & ptr);
2983 
2984 	qsort (entries, static_count, sizeof (entries[0]), sort_by_value);
2985 
2986 	for (i = 0; i < static_count - 1; i++)
2987 	  if (entries[i]->value && entries[i]->value == entries[i+1]->value)
2988 	    {
2989 	      int v = entries[i]->flags;
2990 	      int j;
2991 
2992 	      for (j = i + 1; j < static_count && entries[j]->value == entries[i]->value; j++)
2993 		v |= entries[j]->flags;
2994 
2995 	      for (j = i; j < static_count && entries[j]->value == entries[i]->value; j++)
2996 		entries[j]->flags = v;
2997 
2998 	      i = j - 1;
2999 	    }
3000       }
3001 
3002       /* All entries in the hash table are fully initialized.  */
3003       hash_table->flags |= MN10300_HASH_ENTRIES_INITIALIZED;
3004 
3005       /* Now that everything has been initialized, go through each
3006 	 code section and delete any prologue insns which will be
3007 	 redundant because their operations will be performed by
3008 	 a "call" instruction.  */
3009       for (input_bfd = link_info->input_bfds;
3010 	   input_bfd != NULL;
3011 	   input_bfd = input_bfd->link.next)
3012 	{
3013 	  /* We're going to need all the local symbols for each bfd.  */
3014 	  symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3015 	  if (symtab_hdr->sh_info != 0)
3016 	    {
3017 	      isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
3018 	      if (isymbuf == NULL)
3019 		isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
3020 						symtab_hdr->sh_info, 0,
3021 						NULL, NULL, NULL);
3022 	      if (isymbuf == NULL)
3023 		goto error_return;
3024 	    }
3025 
3026 	  /* Walk over each section in this bfd.  */
3027 	  for (section = input_bfd->sections;
3028 	       section != NULL;
3029 	       section = section->next)
3030 	    {
3031 	      unsigned int sec_shndx;
3032 	      Elf_Internal_Sym *isym, *isymend;
3033 	      struct elf_link_hash_entry **hashes;
3034 	      struct elf_link_hash_entry **end_hashes;
3035 	      unsigned int symcount;
3036 
3037 	      /* Skip non-code sections and empty sections.  */
3038 	      if ((section->flags & SEC_CODE) == 0
3039 		  || (section->flags & SEC_HAS_CONTENTS) == 0
3040 		  || section->size == 0)
3041 		continue;
3042 
3043 	      if (section->reloc_count != 0)
3044 		{
3045 		  /* Get a copy of the native relocations.  */
3046 		  internal_relocs = _bfd_elf_link_read_relocs (input_bfd, section,
3047 							       NULL, NULL,
3048 							       link_info->keep_memory);
3049 		  if (internal_relocs == NULL)
3050 		    goto error_return;
3051 		}
3052 
3053 	      /* Get cached copy of section contents if it exists.  */
3054 	      if (elf_section_data (section)->this_hdr.contents != NULL)
3055 		contents = elf_section_data (section)->this_hdr.contents;
3056 	      else
3057 		{
3058 		  /* Go get them off disk.  */
3059 		  if (!bfd_malloc_and_get_section (input_bfd, section,
3060 						   &contents))
3061 		    goto error_return;
3062 		}
3063 
3064 	      sec_shndx = _bfd_elf_section_from_bfd_section (input_bfd,
3065 							     section);
3066 
3067 	      /* Now look for any function in this section which needs
3068 		 insns deleted from its prologue.  */
3069 	      isymend = isymbuf + symtab_hdr->sh_info;
3070 	      for (isym = isymbuf; isym < isymend; isym++)
3071 		{
3072 		  struct elf32_mn10300_link_hash_entry *sym_hash;
3073 		  asection *sym_sec = NULL;
3074 		  const char *sym_name;
3075 		  char *new_name;
3076 		  struct elf_link_hash_table *elftab;
3077 		  size_t amt;
3078 
3079 		  if (isym->st_shndx != sec_shndx)
3080 		    continue;
3081 
3082 		  if (isym->st_shndx == SHN_UNDEF)
3083 		    sym_sec = bfd_und_section_ptr;
3084 		  else if (isym->st_shndx == SHN_ABS)
3085 		    sym_sec = bfd_abs_section_ptr;
3086 		  else if (isym->st_shndx == SHN_COMMON)
3087 		    sym_sec = bfd_com_section_ptr;
3088 		  else
3089 		    sym_sec
3090 		      = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
3091 
3092 		  sym_name
3093 		    = bfd_elf_string_from_elf_section (input_bfd,
3094 						       symtab_hdr->sh_link,
3095 						       isym->st_name);
3096 
3097 		  /* Tack on an ID so we can uniquely identify this
3098 		     local symbol in the global hash table.  */
3099 		  amt = strlen (sym_name) + 10;
3100 		  new_name = bfd_malloc (amt);
3101 		  if (new_name == NULL)
3102 		    goto error_return;
3103 		  sprintf (new_name, "%s_%08x", sym_name, sym_sec->id);
3104 		  sym_name = new_name;
3105 
3106 		  elftab = & hash_table->static_hash_table->root;
3107 		  sym_hash = (struct elf32_mn10300_link_hash_entry *)
3108 		    elf_link_hash_lookup (elftab, sym_name,
3109 					  false, false, false);
3110 
3111 		  free (new_name);
3112 		  if (sym_hash == NULL)
3113 		    continue;
3114 
3115 		  if (! (sym_hash->flags & MN10300_CONVERT_CALL_TO_CALLS)
3116 		      && ! (sym_hash->flags & MN10300_DELETED_PROLOGUE_BYTES))
3117 		    {
3118 		      int bytes = 0;
3119 
3120 		      /* Note that we've changed things.  */
3121 		      elf_section_data (section)->relocs = internal_relocs;
3122 		      elf_section_data (section)->this_hdr.contents = contents;
3123 		      symtab_hdr->contents = (unsigned char *) isymbuf;
3124 
3125 		      /* Count how many bytes we're going to delete.  */
3126 		      if (sym_hash->movm_args)
3127 			bytes += 2;
3128 
3129 		      if (sym_hash->stack_size > 0)
3130 			{
3131 			  if (sym_hash->stack_size <= 128)
3132 			    bytes += 3;
3133 			  else
3134 			    bytes += 4;
3135 			}
3136 
3137 		      /* Note that we've deleted prologue bytes for this
3138 			 function.  */
3139 		      sym_hash->flags |= MN10300_DELETED_PROLOGUE_BYTES;
3140 
3141 		      /* Actually delete the bytes.  */
3142 		      if (!mn10300_elf_relax_delete_bytes (input_bfd,
3143 							   section,
3144 							   isym->st_value,
3145 							   bytes))
3146 			goto error_return;
3147 
3148 		      /* Something changed.  Not strictly necessary, but
3149 			 may lead to more relaxing opportunities.  */
3150 		      *again = true;
3151 		    }
3152 		}
3153 
3154 	      /* Look for any global functions in this section which
3155 		 need insns deleted from their prologues.  */
3156 	      symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
3157 			  - symtab_hdr->sh_info);
3158 	      hashes = elf_sym_hashes (input_bfd);
3159 	      end_hashes = hashes + symcount;
3160 	      for (; hashes < end_hashes; hashes++)
3161 		{
3162 		  struct elf32_mn10300_link_hash_entry *sym_hash;
3163 
3164 		  sym_hash = (struct elf32_mn10300_link_hash_entry *) *hashes;
3165 		  if ((sym_hash->root.root.type == bfd_link_hash_defined
3166 		       || sym_hash->root.root.type == bfd_link_hash_defweak)
3167 		      && sym_hash->root.root.u.def.section == section
3168 		      && ! (sym_hash->flags & MN10300_CONVERT_CALL_TO_CALLS)
3169 		      && ! (sym_hash->flags & MN10300_DELETED_PROLOGUE_BYTES))
3170 		    {
3171 		      int bytes = 0;
3172 		      bfd_vma symval;
3173 		      struct elf_link_hash_entry **hh;
3174 
3175 		      /* Note that we've changed things.  */
3176 		      elf_section_data (section)->relocs = internal_relocs;
3177 		      elf_section_data (section)->this_hdr.contents = contents;
3178 		      symtab_hdr->contents = (unsigned char *) isymbuf;
3179 
3180 		      /* Count how many bytes we're going to delete.  */
3181 		      if (sym_hash->movm_args)
3182 			bytes += 2;
3183 
3184 		      if (sym_hash->stack_size > 0)
3185 			{
3186 			  if (sym_hash->stack_size <= 128)
3187 			    bytes += 3;
3188 			  else
3189 			    bytes += 4;
3190 			}
3191 
3192 		      /* Note that we've deleted prologue bytes for this
3193 			 function.  */
3194 		      sym_hash->flags |= MN10300_DELETED_PROLOGUE_BYTES;
3195 
3196 		      /* Actually delete the bytes.  */
3197 		      symval = sym_hash->root.root.u.def.value;
3198 		      if (!mn10300_elf_relax_delete_bytes (input_bfd,
3199 							   section,
3200 							   symval,
3201 							   bytes))
3202 			goto error_return;
3203 
3204 		      /* There may be other C++ functions symbols with the same
3205 			 address.  If so then mark these as having had their
3206 			 prologue bytes deleted as well.  */
3207 		      for (hh = elf_sym_hashes (input_bfd); hh < end_hashes; hh++)
3208 			{
3209 			  struct elf32_mn10300_link_hash_entry *h;
3210 
3211 			  h = (struct elf32_mn10300_link_hash_entry *) * hh;
3212 
3213 			  if (h != sym_hash
3214 			      && (h->root.root.type == bfd_link_hash_defined
3215 				  || h->root.root.type == bfd_link_hash_defweak)
3216 			      && h->root.root.u.def.section == section
3217 			      && ! (h->flags & MN10300_CONVERT_CALL_TO_CALLS)
3218 			      && h->root.root.u.def.value == symval
3219 			      && h->root.type == STT_FUNC)
3220 			    h->flags |= MN10300_DELETED_PROLOGUE_BYTES;
3221 			}
3222 
3223 		      /* Something changed.  Not strictly necessary, but
3224 			 may lead to more relaxing opportunities.  */
3225 		      *again = true;
3226 		    }
3227 		}
3228 
3229 	      /* Cache or free any memory we allocated for the relocs.  */
3230 	      if (elf_section_data (section)->relocs != internal_relocs)
3231 		free (internal_relocs);
3232 	      internal_relocs = NULL;
3233 
3234 	      /* Cache or free any memory we allocated for the contents.  */
3235 	      if (contents != NULL
3236 		  && elf_section_data (section)->this_hdr.contents != contents)
3237 		{
3238 		  if (! link_info->keep_memory)
3239 		    free (contents);
3240 		  else
3241 		    /* Cache the section contents for elf_link_input_bfd.  */
3242 		    elf_section_data (section)->this_hdr.contents = contents;
3243 		}
3244 	      contents = NULL;
3245 	    }
3246 
3247 	  /* Cache or free any memory we allocated for the symbols.  */
3248 	  if (isymbuf != NULL
3249 	      && symtab_hdr->contents != (unsigned char *) isymbuf)
3250 	    {
3251 	      if (! link_info->keep_memory)
3252 		free (isymbuf);
3253 	      else
3254 		/* Cache the symbols for elf_link_input_bfd.  */
3255 		symtab_hdr->contents = (unsigned char *) isymbuf;
3256 	    }
3257 	  isymbuf = NULL;
3258 	}
3259     }
3260 
3261   /* (Re)initialize for the basic instruction shortening/relaxing pass.  */
3262   contents = NULL;
3263   internal_relocs = NULL;
3264   isymbuf = NULL;
3265   /* For error_return.  */
3266   section = sec;
3267 
3268   /* We don't have to do anything for a relocatable link, if
3269      this section does not have relocs, or if this is not a
3270      code section.  */
3271   if (bfd_link_relocatable (link_info)
3272       || (sec->flags & SEC_RELOC) == 0
3273       || sec->reloc_count == 0
3274       || (sec->flags & SEC_CODE) == 0)
3275     return true;
3276 
3277   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
3278 
3279   /* Get a copy of the native relocations.  */
3280   internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
3281 					       link_info->keep_memory);
3282   if (internal_relocs == NULL)
3283     goto error_return;
3284 
3285   /* Scan for worst case alignment gap changes.  Note that this logic
3286      is not ideal; what we should do is run this scan for every
3287      opcode/address range and adjust accordingly, but that's
3288      expensive.  Worst case is that for an alignment of N bytes, we
3289      move by 2*N-N-1 bytes, assuming we have aligns of 1, 2, 4, 8, etc
3290      all before it.  Plus, this still doesn't cover cross-section
3291      jumps with section alignment.  */
3292   irelend = internal_relocs + sec->reloc_count;
3293   align_gap_adjustment = 0;
3294   for (irel = internal_relocs; irel < irelend; irel++)
3295     {
3296       if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_ALIGN)
3297 	{
3298 	  bfd_vma adj = 1 << irel->r_addend;
3299 	  bfd_vma aend = irel->r_offset;
3300 
3301 	  aend = BFD_ALIGN (aend, 1 << irel->r_addend);
3302 	  adj = 2 * adj - adj - 1;
3303 
3304 	  /* Record the biggest adjustmnet.  Skip any alignment at the
3305 	     end of our section.  */
3306 	  if (align_gap_adjustment < adj
3307 	      && aend < sec->output_section->vma + sec->output_offset + sec->size)
3308 	    align_gap_adjustment = adj;
3309 	}
3310     }
3311 
3312   /* Walk through them looking for relaxing opportunities.  */
3313   irelend = internal_relocs + sec->reloc_count;
3314   for (irel = internal_relocs; irel < irelend; irel++)
3315     {
3316       bfd_vma symval;
3317       bfd_signed_vma jump_offset;
3318       asection *sym_sec = NULL;
3319       struct elf32_mn10300_link_hash_entry *h = NULL;
3320 
3321       /* If this isn't something that can be relaxed, then ignore
3322 	 this reloc.  */
3323       if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_NONE
3324 	  || ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_8
3325 	  || ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_MAX)
3326 	continue;
3327 
3328       /* Get the section contents if we haven't done so already.  */
3329       if (contents == NULL)
3330 	{
3331 	  /* Get cached copy if it exists.  */
3332 	  if (elf_section_data (sec)->this_hdr.contents != NULL)
3333 	    contents = elf_section_data (sec)->this_hdr.contents;
3334 	  else
3335 	    {
3336 	      /* Go get them off disk.  */
3337 	      if (!bfd_malloc_and_get_section (abfd, sec, &contents))
3338 		goto error_return;
3339 	    }
3340 	}
3341 
3342       /* Read this BFD's symbols if we haven't done so already.  */
3343       if (isymbuf == NULL && symtab_hdr->sh_info != 0)
3344 	{
3345 	  isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
3346 	  if (isymbuf == NULL)
3347 	    isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
3348 					    symtab_hdr->sh_info, 0,
3349 					    NULL, NULL, NULL);
3350 	  if (isymbuf == NULL)
3351 	    goto error_return;
3352 	}
3353 
3354       /* Get the value of the symbol referred to by the reloc.  */
3355       if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info)
3356 	{
3357 	  Elf_Internal_Sym *isym;
3358 	  const char *sym_name;
3359 	  char *new_name;
3360 
3361 	  /* A local symbol.  */
3362 	  isym = isymbuf + ELF32_R_SYM (irel->r_info);
3363 	  if (isym->st_shndx == SHN_UNDEF)
3364 	    sym_sec = bfd_und_section_ptr;
3365 	  else if (isym->st_shndx == SHN_ABS)
3366 	    sym_sec = bfd_abs_section_ptr;
3367 	  else if (isym->st_shndx == SHN_COMMON)
3368 	    sym_sec = bfd_com_section_ptr;
3369 	  else
3370 	    sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3371 
3372 	  sym_name = bfd_elf_string_from_elf_section (abfd,
3373 						      symtab_hdr->sh_link,
3374 						      isym->st_name);
3375 
3376 	  if ((sym_sec->flags & SEC_MERGE)
3377 	      && sym_sec->sec_info_type == SEC_INFO_TYPE_MERGE)
3378 	    {
3379 	      symval = isym->st_value;
3380 
3381 	      /* GAS may reduce relocations against symbols in SEC_MERGE
3382 		 sections to a relocation against the section symbol when
3383 		 the original addend was zero.  When the reloc is against
3384 		 a section symbol we should include the addend in the
3385 		 offset passed to _bfd_merged_section_offset, since the
3386 		 location of interest is the original symbol.  On the
3387 		 other hand, an access to "sym+addend" where "sym" is not
3388 		 a section symbol should not include the addend;  Such an
3389 		 access is presumed to be an offset from "sym";  The
3390 		 location of interest is just "sym".  */
3391 	      if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
3392 		symval += irel->r_addend;
3393 
3394 	      symval = _bfd_merged_section_offset (abfd, & sym_sec,
3395 						   elf_section_data (sym_sec)->sec_info,
3396 						   symval);
3397 
3398 	      if (ELF_ST_TYPE (isym->st_info) != STT_SECTION)
3399 		symval += irel->r_addend;
3400 
3401 	      symval += sym_sec->output_section->vma
3402 		+ sym_sec->output_offset - irel->r_addend;
3403 	    }
3404 	  else
3405 	    symval = (isym->st_value
3406 		      + sym_sec->output_section->vma
3407 		      + sym_sec->output_offset);
3408 
3409 	  /* Tack on an ID so we can uniquely identify this
3410 	     local symbol in the global hash table.  */
3411 	  new_name = bfd_malloc ((bfd_size_type) strlen (sym_name) + 10);
3412 	  if (new_name == NULL)
3413 	    goto error_return;
3414 	  sprintf (new_name, "%s_%08x", sym_name, sym_sec->id);
3415 	  sym_name = new_name;
3416 
3417 	  h = (struct elf32_mn10300_link_hash_entry *)
3418 		elf_link_hash_lookup (&hash_table->static_hash_table->root,
3419 				      sym_name, false, false, false);
3420 	  free (new_name);
3421 	}
3422       else
3423 	{
3424 	  unsigned long indx;
3425 
3426 	  /* An external symbol.  */
3427 	  indx = ELF32_R_SYM (irel->r_info) - symtab_hdr->sh_info;
3428 	  h = (struct elf32_mn10300_link_hash_entry *)
3429 		(elf_sym_hashes (abfd)[indx]);
3430 	  BFD_ASSERT (h != NULL);
3431 	  if (h->root.root.type != bfd_link_hash_defined
3432 	      && h->root.root.type != bfd_link_hash_defweak)
3433 	    /* This appears to be a reference to an undefined
3434 	       symbol.  Just ignore it--it will be caught by the
3435 	       regular reloc processing.  */
3436 	    continue;
3437 
3438 	  /* Check for a reference to a discarded symbol and ignore it.  */
3439 	  if (h->root.root.u.def.section->output_section == NULL)
3440 	    continue;
3441 
3442 	  sym_sec = h->root.root.u.def.section->output_section;
3443 
3444 	  symval = (h->root.root.u.def.value
3445 		    + h->root.root.u.def.section->output_section->vma
3446 		    + h->root.root.u.def.section->output_offset);
3447 	}
3448 
3449       /* For simplicity of coding, we are going to modify the section
3450 	 contents, the section relocs, and the BFD symbol table.  We
3451 	 must tell the rest of the code not to free up this
3452 	 information.  It would be possible to instead create a table
3453 	 of changes which have to be made, as is done in coff-mips.c;
3454 	 that would be more work, but would require less memory when
3455 	 the linker is run.  */
3456 
3457       /* Try to turn a 32bit pc-relative branch/call into a 16bit pc-relative
3458 	 branch/call, also deal with "call" -> "calls" conversions and
3459 	 insertion of prologue data into "call" instructions.  */
3460       if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_PCREL32
3461 	  || ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_PLT32)
3462 	{
3463 	  bfd_vma value = symval;
3464 
3465 	  if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_PLT32
3466 	      && h != NULL
3467 	      && ELF_ST_VISIBILITY (h->root.other) != STV_INTERNAL
3468 	      && ELF_ST_VISIBILITY (h->root.other) != STV_HIDDEN
3469 	      && h->root.plt.offset != (bfd_vma) -1)
3470 	    {
3471 	      asection * splt;
3472 
3473 	      splt = hash_table->root.splt;
3474 	      value = ((splt->output_section->vma
3475 			+ splt->output_offset
3476 			+ h->root.plt.offset)
3477 		       - (sec->output_section->vma
3478 			  + sec->output_offset
3479 			  + irel->r_offset));
3480 	    }
3481 
3482 	  /* If we've got a "call" instruction that needs to be turned
3483 	     into a "calls" instruction, do so now.  It saves a byte.  */
3484 	  if (h && (h->flags & MN10300_CONVERT_CALL_TO_CALLS))
3485 	    {
3486 	      unsigned char code;
3487 
3488 	      /* Get the opcode.  */
3489 	      code = bfd_get_8 (abfd, contents + irel->r_offset - 1);
3490 
3491 	      /* Make sure we're working with a "call" instruction!  */
3492 	      if (code == 0xdd)
3493 		{
3494 		  /* Note that we've changed the relocs, section contents,
3495 		     etc.  */
3496 		  elf_section_data (sec)->relocs = internal_relocs;
3497 		  elf_section_data (sec)->this_hdr.contents = contents;
3498 		  symtab_hdr->contents = (unsigned char *) isymbuf;
3499 
3500 		  /* Fix the opcode.  */
3501 		  bfd_put_8 (abfd, 0xfc, contents + irel->r_offset - 1);
3502 		  bfd_put_8 (abfd, 0xff, contents + irel->r_offset);
3503 
3504 		  /* Fix irel->r_offset and irel->r_addend.  */
3505 		  irel->r_offset += 1;
3506 		  irel->r_addend += 1;
3507 
3508 		  /* Delete one byte of data.  */
3509 		  if (!mn10300_elf_relax_delete_bytes (abfd, sec,
3510 						       irel->r_offset + 3, 1))
3511 		    goto error_return;
3512 
3513 		  /* That will change things, so, we should relax again.
3514 		     Note that this is not required, and it may be slow.  */
3515 		  *again = true;
3516 		}
3517 	    }
3518 	  else if (h)
3519 	    {
3520 	      /* We've got a "call" instruction which needs some data
3521 		 from target function filled in.  */
3522 	      unsigned char code;
3523 
3524 	      /* Get the opcode.  */
3525 	      code = bfd_get_8 (abfd, contents + irel->r_offset - 1);
3526 
3527 	      /* Insert data from the target function into the "call"
3528 		 instruction if needed.  */
3529 	      if (code == 0xdd)
3530 		{
3531 		  bfd_put_8 (abfd, h->movm_args, contents + irel->r_offset + 4);
3532 		  bfd_put_8 (abfd, h->stack_size + h->movm_stack_size,
3533 			     contents + irel->r_offset + 5);
3534 		}
3535 	    }
3536 
3537 	  /* Deal with pc-relative gunk.  */
3538 	  value -= (sec->output_section->vma + sec->output_offset);
3539 	  value -= irel->r_offset;
3540 	  value += irel->r_addend;
3541 
3542 	  /* See if the value will fit in 16 bits, note the high value is
3543 	     0x7fff + 2 as the target will be two bytes closer if we are
3544 	     able to relax, if it's in the same section.  */
3545 	  if (sec->output_section == sym_sec->output_section)
3546 	    jump_offset = 0x8001;
3547 	  else
3548 	    jump_offset = 0x7fff;
3549 
3550 	  /* Account for jumps across alignment boundaries using
3551 	     align_gap_adjustment.  */
3552 	  if ((bfd_signed_vma) value < jump_offset - (bfd_signed_vma) align_gap_adjustment
3553 	      && ((bfd_signed_vma) value > -0x8000 + (bfd_signed_vma) align_gap_adjustment))
3554 	    {
3555 	      unsigned char code;
3556 
3557 	      /* Get the opcode.  */
3558 	      code = bfd_get_8 (abfd, contents + irel->r_offset - 1);
3559 
3560 	      if (code != 0xdc && code != 0xdd && code != 0xff)
3561 		continue;
3562 
3563 	      /* Note that we've changed the relocs, section contents, etc.  */
3564 	      elf_section_data (sec)->relocs = internal_relocs;
3565 	      elf_section_data (sec)->this_hdr.contents = contents;
3566 	      symtab_hdr->contents = (unsigned char *) isymbuf;
3567 
3568 	      /* Fix the opcode.  */
3569 	      if (code == 0xdc)
3570 		bfd_put_8 (abfd, 0xcc, contents + irel->r_offset - 1);
3571 	      else if (code == 0xdd)
3572 		bfd_put_8 (abfd, 0xcd, contents + irel->r_offset - 1);
3573 	      else if (code == 0xff)
3574 		bfd_put_8 (abfd, 0xfa, contents + irel->r_offset - 2);
3575 
3576 	      /* Fix the relocation's type.  */
3577 	      irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
3578 					   (ELF32_R_TYPE (irel->r_info)
3579 					    == (int) R_MN10300_PLT32)
3580 					   ? R_MN10300_PLT16 :
3581 					   R_MN10300_PCREL16);
3582 
3583 	      /* Delete two bytes of data.  */
3584 	      if (!mn10300_elf_relax_delete_bytes (abfd, sec,
3585 						   irel->r_offset + 1, 2))
3586 		goto error_return;
3587 
3588 	      /* That will change things, so, we should relax again.
3589 		 Note that this is not required, and it may be slow.  */
3590 	      *again = true;
3591 	    }
3592 	}
3593 
3594       /* Try to turn a 16bit pc-relative branch into a 8bit pc-relative
3595 	 branch.  */
3596       if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_PCREL16)
3597 	{
3598 	  bfd_vma value = symval;
3599 
3600 	  /* If we've got a "call" instruction that needs to be turned
3601 	     into a "calls" instruction, do so now.  It saves a byte.  */
3602 	  if (h && (h->flags & MN10300_CONVERT_CALL_TO_CALLS))
3603 	    {
3604 	      unsigned char code;
3605 
3606 	      /* Get the opcode.  */
3607 	      code = bfd_get_8 (abfd, contents + irel->r_offset - 1);
3608 
3609 	      /* Make sure we're working with a "call" instruction!  */
3610 	      if (code == 0xcd)
3611 		{
3612 		  /* Note that we've changed the relocs, section contents,
3613 		     etc.  */
3614 		  elf_section_data (sec)->relocs = internal_relocs;
3615 		  elf_section_data (sec)->this_hdr.contents = contents;
3616 		  symtab_hdr->contents = (unsigned char *) isymbuf;
3617 
3618 		  /* Fix the opcode.  */
3619 		  bfd_put_8 (abfd, 0xfa, contents + irel->r_offset - 1);
3620 		  bfd_put_8 (abfd, 0xff, contents + irel->r_offset);
3621 
3622 		  /* Fix irel->r_offset and irel->r_addend.  */
3623 		  irel->r_offset += 1;
3624 		  irel->r_addend += 1;
3625 
3626 		  /* Delete one byte of data.  */
3627 		  if (!mn10300_elf_relax_delete_bytes (abfd, sec,
3628 						       irel->r_offset + 1, 1))
3629 		    goto error_return;
3630 
3631 		  /* That will change things, so, we should relax again.
3632 		     Note that this is not required, and it may be slow.  */
3633 		  *again = true;
3634 		}
3635 	    }
3636 	  else if (h)
3637 	    {
3638 	      unsigned char code;
3639 
3640 	      /* Get the opcode.  */
3641 	      code = bfd_get_8 (abfd, contents + irel->r_offset - 1);
3642 
3643 	      /* Insert data from the target function into the "call"
3644 		 instruction if needed.  */
3645 	      if (code == 0xcd)
3646 		{
3647 		  bfd_put_8 (abfd, h->movm_args, contents + irel->r_offset + 2);
3648 		  bfd_put_8 (abfd, h->stack_size + h->movm_stack_size,
3649 			     contents + irel->r_offset + 3);
3650 		}
3651 	    }
3652 
3653 	  /* Deal with pc-relative gunk.  */
3654 	  value -= (sec->output_section->vma + sec->output_offset);
3655 	  value -= irel->r_offset;
3656 	  value += irel->r_addend;
3657 
3658 	  /* See if the value will fit in 8 bits, note the high value is
3659 	     0x7f + 1 as the target will be one bytes closer if we are
3660 	     able to relax.  */
3661 	  if ((long) value < 0x80 && (long) value > -0x80)
3662 	    {
3663 	      unsigned char code;
3664 
3665 	      /* Get the opcode.  */
3666 	      code = bfd_get_8 (abfd, contents + irel->r_offset - 1);
3667 
3668 	      if (code != 0xcc)
3669 		continue;
3670 
3671 	      /* Note that we've changed the relocs, section contents, etc.  */
3672 	      elf_section_data (sec)->relocs = internal_relocs;
3673 	      elf_section_data (sec)->this_hdr.contents = contents;
3674 	      symtab_hdr->contents = (unsigned char *) isymbuf;
3675 
3676 	      /* Fix the opcode.  */
3677 	      bfd_put_8 (abfd, 0xca, contents + irel->r_offset - 1);
3678 
3679 	      /* Fix the relocation's type.  */
3680 	      irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
3681 					   R_MN10300_PCREL8);
3682 
3683 	      /* Delete one byte of data.  */
3684 	      if (!mn10300_elf_relax_delete_bytes (abfd, sec,
3685 						   irel->r_offset + 1, 1))
3686 		goto error_return;
3687 
3688 	      /* That will change things, so, we should relax again.
3689 		 Note that this is not required, and it may be slow.  */
3690 	      *again = true;
3691 	    }
3692 	}
3693 
3694       /* Try to eliminate an unconditional 8 bit pc-relative branch
3695 	 which immediately follows a conditional 8 bit pc-relative
3696 	 branch around the unconditional branch.
3697 
3698 	    original:		new:
3699 	    bCC lab1		bCC' lab2
3700 	    bra lab2
3701 	   lab1:	       lab1:
3702 
3703 	 This happens when the bCC can't reach lab2 at assembly time,
3704 	 but due to other relaxations it can reach at link time.  */
3705       if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_PCREL8)
3706 	{
3707 	  Elf_Internal_Rela *nrel;
3708 	  unsigned char code;
3709 
3710 	  /* Do nothing if this reloc is the last byte in the section.  */
3711 	  if (irel->r_offset == sec->size)
3712 	    continue;
3713 
3714 	  /* See if the next instruction is an unconditional pc-relative
3715 	     branch, more often than not this test will fail, so we
3716 	     test it first to speed things up.  */
3717 	  code = bfd_get_8 (abfd, contents + irel->r_offset + 1);
3718 	  if (code != 0xca)
3719 	    continue;
3720 
3721 	  /* Also make sure the next relocation applies to the next
3722 	     instruction and that it's a pc-relative 8 bit branch.  */
3723 	  nrel = irel + 1;
3724 	  if (nrel == irelend
3725 	      || irel->r_offset + 2 != nrel->r_offset
3726 	      || ELF32_R_TYPE (nrel->r_info) != (int) R_MN10300_PCREL8)
3727 	    continue;
3728 
3729 	  /* Make sure our destination immediately follows the
3730 	     unconditional branch.  */
3731 	  if (symval != (sec->output_section->vma + sec->output_offset
3732 			 + irel->r_offset + 3))
3733 	    continue;
3734 
3735 	  /* Now make sure we are a conditional branch.  This may not
3736 	     be necessary, but why take the chance.
3737 
3738 	     Note these checks assume that R_MN10300_PCREL8 relocs
3739 	     only occur on bCC and bCCx insns.  If they occured
3740 	     elsewhere, we'd need to know the start of this insn
3741 	     for this check to be accurate.  */
3742 	  code = bfd_get_8 (abfd, contents + irel->r_offset - 1);
3743 	  if (code != 0xc0 && code != 0xc1 && code != 0xc2
3744 	      && code != 0xc3 && code != 0xc4 && code != 0xc5
3745 	      && code != 0xc6 && code != 0xc7 && code != 0xc8
3746 	      && code != 0xc9 && code != 0xe8 && code != 0xe9
3747 	      && code != 0xea && code != 0xeb)
3748 	    continue;
3749 
3750 	  /* We also have to be sure there is no symbol/label
3751 	     at the unconditional branch.  */
3752 	  if (mn10300_elf_symbol_address_p (abfd, sec, isymbuf,
3753 					    irel->r_offset + 1))
3754 	    continue;
3755 
3756 	  /* Note that we've changed the relocs, section contents, etc.  */
3757 	  elf_section_data (sec)->relocs = internal_relocs;
3758 	  elf_section_data (sec)->this_hdr.contents = contents;
3759 	  symtab_hdr->contents = (unsigned char *) isymbuf;
3760 
3761 	  /* Reverse the condition of the first branch.  */
3762 	  switch (code)
3763 	    {
3764 	    case 0xc8:
3765 	      code = 0xc9;
3766 	      break;
3767 	    case 0xc9:
3768 	      code = 0xc8;
3769 	      break;
3770 	    case 0xc0:
3771 	      code = 0xc2;
3772 	      break;
3773 	    case 0xc2:
3774 	      code = 0xc0;
3775 	      break;
3776 	    case 0xc3:
3777 	      code = 0xc1;
3778 	      break;
3779 	    case 0xc1:
3780 	      code = 0xc3;
3781 	      break;
3782 	    case 0xc4:
3783 	      code = 0xc6;
3784 	      break;
3785 	    case 0xc6:
3786 	      code = 0xc4;
3787 	      break;
3788 	    case 0xc7:
3789 	      code = 0xc5;
3790 	      break;
3791 	    case 0xc5:
3792 	      code = 0xc7;
3793 	      break;
3794 	    case 0xe8:
3795 	      code = 0xe9;
3796 	      break;
3797 	    case 0x9d:
3798 	      code = 0xe8;
3799 	      break;
3800 	    case 0xea:
3801 	      code = 0xeb;
3802 	      break;
3803 	    case 0xeb:
3804 	      code = 0xea;
3805 	      break;
3806 	    }
3807 	  bfd_put_8 (abfd, code, contents + irel->r_offset - 1);
3808 
3809 	  /* Set the reloc type and symbol for the first branch
3810 	     from the second branch.  */
3811 	  irel->r_info = nrel->r_info;
3812 
3813 	  /* Make the reloc for the second branch a null reloc.  */
3814 	  nrel->r_info = ELF32_R_INFO (ELF32_R_SYM (nrel->r_info),
3815 				       R_MN10300_NONE);
3816 
3817 	  /* Delete two bytes of data.  */
3818 	  if (!mn10300_elf_relax_delete_bytes (abfd, sec,
3819 					       irel->r_offset + 1, 2))
3820 	    goto error_return;
3821 
3822 	  /* That will change things, so, we should relax again.
3823 	     Note that this is not required, and it may be slow.  */
3824 	  *again = true;
3825 	}
3826 
3827       /* Try to turn a 24 immediate, displacement or absolute address
3828 	 into a 8 immediate, displacement or absolute address.  */
3829       if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_24)
3830 	{
3831 	  bfd_vma value = symval;
3832 	  value += irel->r_addend;
3833 
3834 	  /* See if the value will fit in 8 bits.  */
3835 	  if ((long) value < 0x7f && (long) value > -0x80)
3836 	    {
3837 	      unsigned char code;
3838 
3839 	      /* AM33 insns which have 24 operands are 6 bytes long and
3840 		 will have 0xfd as the first byte.  */
3841 
3842 	      /* Get the first opcode.  */
3843 	      code = bfd_get_8 (abfd, contents + irel->r_offset - 3);
3844 
3845 	      if (code == 0xfd)
3846 		{
3847 		  /* Get the second opcode.  */
3848 		  code = bfd_get_8 (abfd, contents + irel->r_offset - 2);
3849 
3850 		  /* We can not relax 0x6b, 0x7b, 0x8b, 0x9b as no 24bit
3851 		     equivalent instructions exists.  */
3852 		  if (code != 0x6b && code != 0x7b
3853 		      && code != 0x8b && code != 0x9b
3854 		      && ((code & 0x0f) == 0x09 || (code & 0x0f) == 0x08
3855 			  || (code & 0x0f) == 0x0a || (code & 0x0f) == 0x0b
3856 			  || (code & 0x0f) == 0x0e))
3857 		    {
3858 		      /* Not safe if the high bit is on as relaxing may
3859 			 move the value out of high mem and thus not fit
3860 			 in a signed 8bit value.  This is currently over
3861 			 conservative.  */
3862 		      if ((value & 0x80) == 0)
3863 			{
3864 			  /* Note that we've changed the relocation contents,
3865 			     etc.  */
3866 			  elf_section_data (sec)->relocs = internal_relocs;
3867 			  elf_section_data (sec)->this_hdr.contents = contents;
3868 			  symtab_hdr->contents = (unsigned char *) isymbuf;
3869 
3870 			  /* Fix the opcode.  */
3871 			  bfd_put_8 (abfd, 0xfb, contents + irel->r_offset - 3);
3872 			  bfd_put_8 (abfd, code, contents + irel->r_offset - 2);
3873 
3874 			  /* Fix the relocation's type.  */
3875 			  irel->r_info =
3876 			    ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
3877 					  R_MN10300_8);
3878 
3879 			  /* Delete two bytes of data.  */
3880 			  if (!mn10300_elf_relax_delete_bytes (abfd, sec,
3881 							       irel->r_offset + 1, 2))
3882 			    goto error_return;
3883 
3884 			  /* That will change things, so, we should relax
3885 			     again.  Note that this is not required, and it
3886 			     may be slow.  */
3887 			  *again = true;
3888 			  break;
3889 			}
3890 		    }
3891 		}
3892 	    }
3893 	}
3894 
3895       /* Try to turn a 32bit immediate, displacement or absolute address
3896 	 into a 16bit immediate, displacement or absolute address.  */
3897       if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_32
3898 	  || ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_GOT32
3899 	  || ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_GOTOFF32)
3900 	{
3901 	  bfd_vma value = symval;
3902 
3903 	  if (ELF32_R_TYPE (irel->r_info) != (int) R_MN10300_32)
3904 	    {
3905 	      asection * sgot;
3906 
3907 	      sgot = hash_table->root.sgot;
3908 	      if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_GOT32)
3909 		{
3910 		  value = sgot->output_offset;
3911 
3912 		  if (h)
3913 		    value += h->root.got.offset;
3914 		  else
3915 		    value += (elf_local_got_offsets
3916 			      (abfd)[ELF32_R_SYM (irel->r_info)]);
3917 		}
3918 	      else if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_GOTOFF32)
3919 		value -= sgot->output_section->vma;
3920 	      else if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_GOTPC32)
3921 		value = (sgot->output_section->vma
3922 			 - (sec->output_section->vma
3923 			    + sec->output_offset
3924 			    + irel->r_offset));
3925 	      else
3926 		abort ();
3927 	    }
3928 
3929 	  value += irel->r_addend;
3930 
3931 	  /* See if the value will fit in 24 bits.
3932 	     We allow any 16bit match here.  We prune those we can't
3933 	     handle below.  */
3934 	  if (value + 0x800000 < 0x1000000 && irel->r_offset >= 3)
3935 	    {
3936 	      unsigned char code;
3937 
3938 	      /* AM33 insns which have 32bit operands are 7 bytes long and
3939 		 will have 0xfe as the first byte.  */
3940 
3941 	      /* Get the first opcode.  */
3942 	      code = bfd_get_8 (abfd, contents + irel->r_offset - 3);
3943 
3944 	      if (code == 0xfe)
3945 		{
3946 		  /* Get the second opcode.  */
3947 		  code = bfd_get_8 (abfd, contents + irel->r_offset - 2);
3948 
3949 		  /* All the am33 32 -> 24 relaxing possibilities.  */
3950 		  /* We can not relax 0x6b, 0x7b, 0x8b, 0x9b as no 24bit
3951 		     equivalent instructions exists.  */
3952 		  if (code != 0x6b && code != 0x7b
3953 		      && code != 0x8b && code != 0x9b
3954 		      && (ELF32_R_TYPE (irel->r_info)
3955 			  != (int) R_MN10300_GOTPC32)
3956 		      && ((code & 0x0f) == 0x09 || (code & 0x0f) == 0x08
3957 			  || (code & 0x0f) == 0x0a || (code & 0x0f) == 0x0b
3958 			  || (code & 0x0f) == 0x0e))
3959 		    {
3960 		      /* Not safe if the high bit is on as relaxing may
3961 			 move the value out of high mem and thus not fit
3962 			 in a signed 16bit value.  This is currently over
3963 			 conservative.  */
3964 		      if ((value & 0x8000) == 0)
3965 			{
3966 			  /* Note that we've changed the relocation contents,
3967 			     etc.  */
3968 			  elf_section_data (sec)->relocs = internal_relocs;
3969 			  elf_section_data (sec)->this_hdr.contents = contents;
3970 			  symtab_hdr->contents = (unsigned char *) isymbuf;
3971 
3972 			  /* Fix the opcode.  */
3973 			  bfd_put_8 (abfd, 0xfd, contents + irel->r_offset - 3);
3974 			  bfd_put_8 (abfd, code, contents + irel->r_offset - 2);
3975 
3976 			  /* Fix the relocation's type.  */
3977 			  irel->r_info =
3978 			    ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
3979 					  (ELF32_R_TYPE (irel->r_info)
3980 					   == (int) R_MN10300_GOTOFF32)
3981 					  ? R_MN10300_GOTOFF24
3982 					  : (ELF32_R_TYPE (irel->r_info)
3983 					     == (int) R_MN10300_GOT32)
3984 					  ? R_MN10300_GOT24 :
3985 					  R_MN10300_24);
3986 
3987 			  /* Delete one byte of data.  */
3988 			  if (!mn10300_elf_relax_delete_bytes (abfd, sec,
3989 							       irel->r_offset + 3, 1))
3990 			    goto error_return;
3991 
3992 			  /* That will change things, so, we should relax
3993 			     again.  Note that this is not required, and it
3994 			     may be slow.  */
3995 			  *again = true;
3996 			  break;
3997 			}
3998 		    }
3999 		}
4000 	    }
4001 
4002 	  /* See if the value will fit in 16 bits.
4003 	     We allow any 16bit match here.  We prune those we can't
4004 	     handle below.  */
4005 	  if (value + 0x8000 < 0x10000 && irel->r_offset >= 2)
4006 	    {
4007 	      unsigned char code;
4008 
4009 	      /* Most insns which have 32bit operands are 6 bytes long;
4010 		 exceptions are pcrel insns and bit insns.
4011 
4012 		 We handle pcrel insns above.  We don't bother trying
4013 		 to handle the bit insns here.
4014 
4015 		 The first byte of the remaining insns will be 0xfc.  */
4016 
4017 	      /* Get the first opcode.  */
4018 	      code = bfd_get_8 (abfd, contents + irel->r_offset - 2);
4019 
4020 	      if (code != 0xfc)
4021 		continue;
4022 
4023 	      /* Get the second opcode.  */
4024 	      code = bfd_get_8 (abfd, contents + irel->r_offset - 1);
4025 
4026 	      if ((code & 0xf0) < 0x80)
4027 		switch (code & 0xf0)
4028 		  {
4029 		  /* mov (d32,am),dn   -> mov (d32,am),dn
4030 		     mov dm,(d32,am)   -> mov dn,(d32,am)
4031 		     mov (d32,am),an   -> mov (d32,am),an
4032 		     mov dm,(d32,am)   -> mov dn,(d32,am)
4033 		     movbu (d32,am),dn -> movbu (d32,am),dn
4034 		     movbu dm,(d32,am) -> movbu dn,(d32,am)
4035 		     movhu (d32,am),dn -> movhu (d32,am),dn
4036 		     movhu dm,(d32,am) -> movhu dn,(d32,am) */
4037 		  case 0x00:
4038 		  case 0x10:
4039 		  case 0x20:
4040 		  case 0x30:
4041 		  case 0x40:
4042 		  case 0x50:
4043 		  case 0x60:
4044 		  case 0x70:
4045 		    /* Not safe if the high bit is on as relaxing may
4046 		       move the value out of high mem and thus not fit
4047 		       in a signed 16bit value.  */
4048 		    if (code == 0xcc
4049 			&& (value & 0x8000))
4050 		      continue;
4051 
4052 		    /* Note that we've changed the relocation contents, etc.  */
4053 		    elf_section_data (sec)->relocs = internal_relocs;
4054 		    elf_section_data (sec)->this_hdr.contents = contents;
4055 		    symtab_hdr->contents = (unsigned char *) isymbuf;
4056 
4057 		    /* Fix the opcode.  */
4058 		    bfd_put_8 (abfd, 0xfa, contents + irel->r_offset - 2);
4059 		    bfd_put_8 (abfd, code, contents + irel->r_offset - 1);
4060 
4061 		    /* Fix the relocation's type.  */
4062 		    irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
4063 						 (ELF32_R_TYPE (irel->r_info)
4064 						  == (int) R_MN10300_GOTOFF32)
4065 						 ? R_MN10300_GOTOFF16
4066 						 : (ELF32_R_TYPE (irel->r_info)
4067 						    == (int) R_MN10300_GOT32)
4068 						 ? R_MN10300_GOT16
4069 						 : (ELF32_R_TYPE (irel->r_info)
4070 						    == (int) R_MN10300_GOTPC32)
4071 						 ? R_MN10300_GOTPC16 :
4072 						 R_MN10300_16);
4073 
4074 		    /* Delete two bytes of data.  */
4075 		    if (!mn10300_elf_relax_delete_bytes (abfd, sec,
4076 							 irel->r_offset + 2, 2))
4077 		      goto error_return;
4078 
4079 		    /* That will change things, so, we should relax again.
4080 		       Note that this is not required, and it may be slow.  */
4081 		    *again = true;
4082 		    break;
4083 		  }
4084 	      else if ((code & 0xf0) == 0x80
4085 		       || (code & 0xf0) == 0x90)
4086 		switch (code & 0xf3)
4087 		  {
4088 		  /* mov dn,(abs32)   -> mov dn,(abs16)
4089 		     movbu dn,(abs32) -> movbu dn,(abs16)
4090 		     movhu dn,(abs32) -> movhu dn,(abs16)  */
4091 		  case 0x81:
4092 		  case 0x82:
4093 		  case 0x83:
4094 		    /* Note that we've changed the relocation contents, etc.  */
4095 		    elf_section_data (sec)->relocs = internal_relocs;
4096 		    elf_section_data (sec)->this_hdr.contents = contents;
4097 		    symtab_hdr->contents = (unsigned char *) isymbuf;
4098 
4099 		    if ((code & 0xf3) == 0x81)
4100 		      code = 0x01 + (code & 0x0c);
4101 		    else if ((code & 0xf3) == 0x82)
4102 		      code = 0x02 + (code & 0x0c);
4103 		    else if ((code & 0xf3) == 0x83)
4104 		      code = 0x03 + (code & 0x0c);
4105 		    else
4106 		      abort ();
4107 
4108 		    /* Fix the opcode.  */
4109 		    bfd_put_8 (abfd, code, contents + irel->r_offset - 2);
4110 
4111 		    /* Fix the relocation's type.  */
4112 		    irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
4113 						 (ELF32_R_TYPE (irel->r_info)
4114 						  == (int) R_MN10300_GOTOFF32)
4115 						 ? R_MN10300_GOTOFF16
4116 						 : (ELF32_R_TYPE (irel->r_info)
4117 						    == (int) R_MN10300_GOT32)
4118 						 ? R_MN10300_GOT16
4119 						 : (ELF32_R_TYPE (irel->r_info)
4120 						    == (int) R_MN10300_GOTPC32)
4121 						 ? R_MN10300_GOTPC16 :
4122 						 R_MN10300_16);
4123 
4124 		    /* The opcode got shorter too, so we have to fix the
4125 		       addend and offset too!  */
4126 		    irel->r_offset -= 1;
4127 
4128 		    /* Delete three bytes of data.  */
4129 		    if (!mn10300_elf_relax_delete_bytes (abfd, sec,
4130 							 irel->r_offset + 1, 3))
4131 		      goto error_return;
4132 
4133 		    /* That will change things, so, we should relax again.
4134 		       Note that this is not required, and it may be slow.  */
4135 		    *again = true;
4136 		    break;
4137 
4138 		  /* mov am,(abs32)    -> mov am,(abs16)
4139 		     mov am,(d32,sp)   -> mov am,(d16,sp)
4140 		     mov dm,(d32,sp)   -> mov dm,(d32,sp)
4141 		     movbu dm,(d32,sp) -> movbu dm,(d32,sp)
4142 		     movhu dm,(d32,sp) -> movhu dm,(d32,sp) */
4143 		  case 0x80:
4144 		  case 0x90:
4145 		  case 0x91:
4146 		  case 0x92:
4147 		  case 0x93:
4148 		    /* sp-based offsets are zero-extended.  */
4149 		    if (code >= 0x90 && code <= 0x93
4150 			&& (long) value < 0)
4151 		      continue;
4152 
4153 		    /* Note that we've changed the relocation contents, etc.  */
4154 		    elf_section_data (sec)->relocs = internal_relocs;
4155 		    elf_section_data (sec)->this_hdr.contents = contents;
4156 		    symtab_hdr->contents = (unsigned char *) isymbuf;
4157 
4158 		    /* Fix the opcode.  */
4159 		    bfd_put_8 (abfd, 0xfa, contents + irel->r_offset - 2);
4160 		    bfd_put_8 (abfd, code, contents + irel->r_offset - 1);
4161 
4162 		    /* Fix the relocation's type.  */
4163 		    irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
4164 						 (ELF32_R_TYPE (irel->r_info)
4165 						  == (int) R_MN10300_GOTOFF32)
4166 						 ? R_MN10300_GOTOFF16
4167 						 : (ELF32_R_TYPE (irel->r_info)
4168 						    == (int) R_MN10300_GOT32)
4169 						 ? R_MN10300_GOT16
4170 						 : (ELF32_R_TYPE (irel->r_info)
4171 						    == (int) R_MN10300_GOTPC32)
4172 						 ? R_MN10300_GOTPC16 :
4173 						 R_MN10300_16);
4174 
4175 		    /* Delete two bytes of data.  */
4176 		    if (!mn10300_elf_relax_delete_bytes (abfd, sec,
4177 							 irel->r_offset + 2, 2))
4178 		      goto error_return;
4179 
4180 		    /* That will change things, so, we should relax again.
4181 		       Note that this is not required, and it may be slow.  */
4182 		    *again = true;
4183 		    break;
4184 		  }
4185 	      else if ((code & 0xf0) < 0xf0)
4186 		switch (code & 0xfc)
4187 		  {
4188 		  /* mov imm32,dn     -> mov imm16,dn
4189 		     mov imm32,an     -> mov imm16,an
4190 		     mov (abs32),dn   -> mov (abs16),dn
4191 		     movbu (abs32),dn -> movbu (abs16),dn
4192 		     movhu (abs32),dn -> movhu (abs16),dn  */
4193 		  case 0xcc:
4194 		  case 0xdc:
4195 		  case 0xa4:
4196 		  case 0xa8:
4197 		  case 0xac:
4198 		    /* Not safe if the high bit is on as relaxing may
4199 		       move the value out of high mem and thus not fit
4200 		       in a signed 16bit value.  */
4201 		    if (code == 0xcc
4202 			&& (value & 0x8000))
4203 		      continue;
4204 
4205 		    /* "mov imm16, an" zero-extends the immediate.  */
4206 		    if ((code & 0xfc) == 0xdc
4207 			&& (long) value < 0)
4208 		      continue;
4209 
4210 		    /* Note that we've changed the relocation contents, etc.  */
4211 		    elf_section_data (sec)->relocs = internal_relocs;
4212 		    elf_section_data (sec)->this_hdr.contents = contents;
4213 		    symtab_hdr->contents = (unsigned char *) isymbuf;
4214 
4215 		    if ((code & 0xfc) == 0xcc)
4216 		      code = 0x2c + (code & 0x03);
4217 		    else if ((code & 0xfc) == 0xdc)
4218 		      code = 0x24 + (code & 0x03);
4219 		    else if ((code & 0xfc) == 0xa4)
4220 		      code = 0x30 + (code & 0x03);
4221 		    else if ((code & 0xfc) == 0xa8)
4222 		      code = 0x34 + (code & 0x03);
4223 		    else if ((code & 0xfc) == 0xac)
4224 		      code = 0x38 + (code & 0x03);
4225 		    else
4226 		      abort ();
4227 
4228 		    /* Fix the opcode.  */
4229 		    bfd_put_8 (abfd, code, contents + irel->r_offset - 2);
4230 
4231 		    /* Fix the relocation's type.  */
4232 		    irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
4233 						 (ELF32_R_TYPE (irel->r_info)
4234 						  == (int) R_MN10300_GOTOFF32)
4235 						 ? R_MN10300_GOTOFF16
4236 						 : (ELF32_R_TYPE (irel->r_info)
4237 						    == (int) R_MN10300_GOT32)
4238 						 ? R_MN10300_GOT16
4239 						 : (ELF32_R_TYPE (irel->r_info)
4240 						    == (int) R_MN10300_GOTPC32)
4241 						 ? R_MN10300_GOTPC16 :
4242 						 R_MN10300_16);
4243 
4244 		    /* The opcode got shorter too, so we have to fix the
4245 		       addend and offset too!  */
4246 		    irel->r_offset -= 1;
4247 
4248 		    /* Delete three bytes of data.  */
4249 		    if (!mn10300_elf_relax_delete_bytes (abfd, sec,
4250 							 irel->r_offset + 1, 3))
4251 		      goto error_return;
4252 
4253 		    /* That will change things, so, we should relax again.
4254 		       Note that this is not required, and it may be slow.  */
4255 		    *again = true;
4256 		    break;
4257 
4258 		  /* mov (abs32),an    -> mov (abs16),an
4259 		     mov (d32,sp),an   -> mov (d16,sp),an
4260 		     mov (d32,sp),dn   -> mov (d16,sp),dn
4261 		     movbu (d32,sp),dn -> movbu (d16,sp),dn
4262 		     movhu (d32,sp),dn -> movhu (d16,sp),dn
4263 		     add imm32,dn      -> add imm16,dn
4264 		     cmp imm32,dn      -> cmp imm16,dn
4265 		     add imm32,an      -> add imm16,an
4266 		     cmp imm32,an      -> cmp imm16,an
4267 		     and imm32,dn      -> and imm16,dn
4268 		     or imm32,dn       -> or imm16,dn
4269 		     xor imm32,dn      -> xor imm16,dn
4270 		     btst imm32,dn     -> btst imm16,dn */
4271 
4272 		  case 0xa0:
4273 		  case 0xb0:
4274 		  case 0xb1:
4275 		  case 0xb2:
4276 		  case 0xb3:
4277 		  case 0xc0:
4278 		  case 0xc8:
4279 
4280 		  case 0xd0:
4281 		  case 0xd8:
4282 		  case 0xe0:
4283 		  case 0xe1:
4284 		  case 0xe2:
4285 		  case 0xe3:
4286 		    /* cmp imm16, an zero-extends the immediate.  */
4287 		    if (code == 0xdc
4288 			&& (long) value < 0)
4289 		      continue;
4290 
4291 		    /* So do sp-based offsets.  */
4292 		    if (code >= 0xb0 && code <= 0xb3
4293 			&& (long) value < 0)
4294 		      continue;
4295 
4296 		    /* Note that we've changed the relocation contents, etc.  */
4297 		    elf_section_data (sec)->relocs = internal_relocs;
4298 		    elf_section_data (sec)->this_hdr.contents = contents;
4299 		    symtab_hdr->contents = (unsigned char *) isymbuf;
4300 
4301 		    /* Fix the opcode.  */
4302 		    bfd_put_8 (abfd, 0xfa, contents + irel->r_offset - 2);
4303 		    bfd_put_8 (abfd, code, contents + irel->r_offset - 1);
4304 
4305 		    /* Fix the relocation's type.  */
4306 		    irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
4307 						 (ELF32_R_TYPE (irel->r_info)
4308 						  == (int) R_MN10300_GOTOFF32)
4309 						 ? R_MN10300_GOTOFF16
4310 						 : (ELF32_R_TYPE (irel->r_info)
4311 						    == (int) R_MN10300_GOT32)
4312 						 ? R_MN10300_GOT16
4313 						 : (ELF32_R_TYPE (irel->r_info)
4314 						    == (int) R_MN10300_GOTPC32)
4315 						 ? R_MN10300_GOTPC16 :
4316 						 R_MN10300_16);
4317 
4318 		    /* Delete two bytes of data.  */
4319 		    if (!mn10300_elf_relax_delete_bytes (abfd, sec,
4320 							 irel->r_offset + 2, 2))
4321 		      goto error_return;
4322 
4323 		    /* That will change things, so, we should relax again.
4324 		       Note that this is not required, and it may be slow.  */
4325 		    *again = true;
4326 		    break;
4327 		  }
4328 	      else if (code == 0xfe)
4329 		{
4330 		  /* add imm32,sp -> add imm16,sp  */
4331 
4332 		  /* Note that we've changed the relocation contents, etc.  */
4333 		  elf_section_data (sec)->relocs = internal_relocs;
4334 		  elf_section_data (sec)->this_hdr.contents = contents;
4335 		  symtab_hdr->contents = (unsigned char *) isymbuf;
4336 
4337 		  /* Fix the opcode.  */
4338 		  bfd_put_8 (abfd, 0xfa, contents + irel->r_offset - 2);
4339 		  bfd_put_8 (abfd, 0xfe, contents + irel->r_offset - 1);
4340 
4341 		  /* Fix the relocation's type.  */
4342 		  irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
4343 					       (ELF32_R_TYPE (irel->r_info)
4344 						== (int) R_MN10300_GOT32)
4345 					       ? R_MN10300_GOT16
4346 					       : (ELF32_R_TYPE (irel->r_info)
4347 						  == (int) R_MN10300_GOTOFF32)
4348 					       ? R_MN10300_GOTOFF16
4349 					       : (ELF32_R_TYPE (irel->r_info)
4350 						  == (int) R_MN10300_GOTPC32)
4351 					       ? R_MN10300_GOTPC16 :
4352 					       R_MN10300_16);
4353 
4354 		  /* Delete two bytes of data.  */
4355 		  if (!mn10300_elf_relax_delete_bytes (abfd, sec,
4356 						       irel->r_offset + 2, 2))
4357 		    goto error_return;
4358 
4359 		  /* That will change things, so, we should relax again.
4360 		     Note that this is not required, and it may be slow.  */
4361 		  *again = true;
4362 		  break;
4363 		}
4364 	    }
4365 	}
4366     }
4367 
4368   if (isymbuf != NULL
4369       && symtab_hdr->contents != (unsigned char *) isymbuf)
4370     {
4371       if (! link_info->keep_memory)
4372 	free (isymbuf);
4373       else
4374 	{
4375 	  /* Cache the symbols for elf_link_input_bfd.  */
4376 	  symtab_hdr->contents = (unsigned char *) isymbuf;
4377 	}
4378     }
4379 
4380   if (contents != NULL
4381       && elf_section_data (sec)->this_hdr.contents != contents)
4382     {
4383       if (! link_info->keep_memory)
4384 	free (contents);
4385       else
4386 	{
4387 	  /* Cache the section contents for elf_link_input_bfd.  */
4388 	  elf_section_data (sec)->this_hdr.contents = contents;
4389 	}
4390     }
4391 
4392   if (elf_section_data (sec)->relocs != internal_relocs)
4393     free (internal_relocs);
4394 
4395   return true;
4396 
4397  error_return:
4398   if (symtab_hdr->contents != (unsigned char *) isymbuf)
4399     free (isymbuf);
4400   if (elf_section_data (section)->this_hdr.contents != contents)
4401     free (contents);
4402   if (elf_section_data (section)->relocs != internal_relocs)
4403     free (internal_relocs);
4404 
4405   return false;
4406 }
4407 
4408 /* This is a version of bfd_generic_get_relocated_section_contents
4409    which uses mn10300_elf_relocate_section.  */
4410 
4411 static bfd_byte *
mn10300_elf_get_relocated_section_contents(bfd * output_bfd,struct bfd_link_info * link_info,struct bfd_link_order * link_order,bfd_byte * data,bool relocatable,asymbol ** symbols)4412 mn10300_elf_get_relocated_section_contents (bfd *output_bfd,
4413 					    struct bfd_link_info *link_info,
4414 					    struct bfd_link_order *link_order,
4415 					    bfd_byte *data,
4416 					    bool relocatable,
4417 					    asymbol **symbols)
4418 {
4419   Elf_Internal_Shdr *symtab_hdr;
4420   asection *input_section = link_order->u.indirect.section;
4421   bfd *input_bfd = input_section->owner;
4422   asection **sections = NULL;
4423   Elf_Internal_Rela *internal_relocs = NULL;
4424   Elf_Internal_Sym *isymbuf = NULL;
4425 
4426   /* We only need to handle the case of relaxing, or of having a
4427      particular set of section contents, specially.  */
4428   if (relocatable
4429       || elf_section_data (input_section)->this_hdr.contents == NULL)
4430     return bfd_generic_get_relocated_section_contents (output_bfd, link_info,
4431 						       link_order, data,
4432 						       relocatable,
4433 						       symbols);
4434 
4435   symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4436 
4437   bfd_byte *orig_data = data;
4438   if (data == NULL)
4439     {
4440       data = bfd_malloc (input_section->size);
4441       if (data == NULL)
4442 	return NULL;
4443     }
4444   memcpy (data, elf_section_data (input_section)->this_hdr.contents,
4445 	  (size_t) input_section->size);
4446 
4447   if ((input_section->flags & SEC_RELOC) != 0
4448       && input_section->reloc_count > 0)
4449     {
4450       asection **secpp;
4451       Elf_Internal_Sym *isym, *isymend;
4452       bfd_size_type amt;
4453 
4454       internal_relocs = _bfd_elf_link_read_relocs (input_bfd, input_section,
4455 						   NULL, NULL, false);
4456       if (internal_relocs == NULL)
4457 	goto error_return;
4458 
4459       if (symtab_hdr->sh_info != 0)
4460 	{
4461 	  isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
4462 	  if (isymbuf == NULL)
4463 	    isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
4464 					    symtab_hdr->sh_info, 0,
4465 					    NULL, NULL, NULL);
4466 	  if (isymbuf == NULL)
4467 	    goto error_return;
4468 	}
4469 
4470       amt = symtab_hdr->sh_info;
4471       amt *= sizeof (asection *);
4472       sections = bfd_malloc (amt);
4473       if (sections == NULL && amt != 0)
4474 	goto error_return;
4475 
4476       isymend = isymbuf + symtab_hdr->sh_info;
4477       for (isym = isymbuf, secpp = sections; isym < isymend; ++isym, ++secpp)
4478 	{
4479 	  asection *isec;
4480 
4481 	  if (isym->st_shndx == SHN_UNDEF)
4482 	    isec = bfd_und_section_ptr;
4483 	  else if (isym->st_shndx == SHN_ABS)
4484 	    isec = bfd_abs_section_ptr;
4485 	  else if (isym->st_shndx == SHN_COMMON)
4486 	    isec = bfd_com_section_ptr;
4487 	  else
4488 	    isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
4489 
4490 	  *secpp = isec;
4491 	}
4492 
4493       if (! mn10300_elf_relocate_section (output_bfd, link_info, input_bfd,
4494 					  input_section, data, internal_relocs,
4495 					  isymbuf, sections))
4496 	goto error_return;
4497 
4498       free (sections);
4499       if (symtab_hdr->contents != (unsigned char *) isymbuf)
4500 	free (isymbuf);
4501       if (internal_relocs != elf_section_data (input_section)->relocs)
4502 	free (internal_relocs);
4503     }
4504 
4505   return data;
4506 
4507  error_return:
4508   free (sections);
4509   if (symtab_hdr->contents != (unsigned char *) isymbuf)
4510     free (isymbuf);
4511   if (internal_relocs != elf_section_data (input_section)->relocs)
4512     free (internal_relocs);
4513   if (orig_data == NULL)
4514     free (data);
4515   return NULL;
4516 }
4517 
4518 /* Assorted hash table functions.  */
4519 
4520 /* Initialize an entry in the link hash table.  */
4521 
4522 /* Create an entry in an MN10300 ELF linker hash table.  */
4523 
4524 static struct bfd_hash_entry *
elf32_mn10300_link_hash_newfunc(struct bfd_hash_entry * entry,struct bfd_hash_table * table,const char * string)4525 elf32_mn10300_link_hash_newfunc (struct bfd_hash_entry *entry,
4526 				 struct bfd_hash_table *table,
4527 				 const char *string)
4528 {
4529   struct elf32_mn10300_link_hash_entry *ret =
4530     (struct elf32_mn10300_link_hash_entry *) entry;
4531 
4532   /* Allocate the structure if it has not already been allocated by a
4533      subclass.  */
4534   if (ret == NULL)
4535     ret = (struct elf32_mn10300_link_hash_entry *)
4536 	   bfd_hash_allocate (table, sizeof (* ret));
4537   if (ret == NULL)
4538     return (struct bfd_hash_entry *) ret;
4539 
4540   /* Call the allocation method of the superclass.  */
4541   ret = (struct elf32_mn10300_link_hash_entry *)
4542 	 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
4543 				     table, string);
4544   if (ret != NULL)
4545     {
4546       ret->direct_calls = 0;
4547       ret->stack_size = 0;
4548       ret->movm_args = 0;
4549       ret->movm_stack_size = 0;
4550       ret->flags = 0;
4551       ret->value = 0;
4552       ret->tls_type = GOT_UNKNOWN;
4553     }
4554 
4555   return (struct bfd_hash_entry *) ret;
4556 }
4557 
4558 static void
_bfd_mn10300_copy_indirect_symbol(struct bfd_link_info * info,struct elf_link_hash_entry * dir,struct elf_link_hash_entry * ind)4559 _bfd_mn10300_copy_indirect_symbol (struct bfd_link_info *	 info,
4560 				   struct elf_link_hash_entry *	 dir,
4561 				   struct elf_link_hash_entry *	 ind)
4562 {
4563   struct elf32_mn10300_link_hash_entry * edir;
4564   struct elf32_mn10300_link_hash_entry * eind;
4565 
4566   edir = elf_mn10300_hash_entry (dir);
4567   eind = elf_mn10300_hash_entry (ind);
4568 
4569   if (ind->root.type == bfd_link_hash_indirect
4570       && dir->got.refcount <= 0)
4571     {
4572       edir->tls_type = eind->tls_type;
4573       eind->tls_type = GOT_UNKNOWN;
4574     }
4575   edir->direct_calls = eind->direct_calls;
4576   edir->stack_size = eind->stack_size;
4577   edir->movm_args = eind->movm_args;
4578   edir->movm_stack_size = eind->movm_stack_size;
4579   edir->flags = eind->flags;
4580 
4581   _bfd_elf_link_hash_copy_indirect (info, dir, ind);
4582 }
4583 
4584 /* Destroy an mn10300 ELF linker hash table.  */
4585 
4586 static void
elf32_mn10300_link_hash_table_free(bfd * obfd)4587 elf32_mn10300_link_hash_table_free (bfd *obfd)
4588 {
4589   struct elf32_mn10300_link_hash_table *ret
4590     = (struct elf32_mn10300_link_hash_table *) obfd->link.hash;
4591 
4592   obfd->link.hash = &ret->static_hash_table->root.root;
4593   _bfd_elf_link_hash_table_free (obfd);
4594   obfd->is_linker_output = true;
4595   obfd->link.hash = &ret->root.root;
4596   _bfd_elf_link_hash_table_free (obfd);
4597 }
4598 
4599 /* Create an mn10300 ELF linker hash table.  */
4600 
4601 static struct bfd_link_hash_table *
elf32_mn10300_link_hash_table_create(bfd * abfd)4602 elf32_mn10300_link_hash_table_create (bfd *abfd)
4603 {
4604   struct elf32_mn10300_link_hash_table *ret;
4605   size_t amt = sizeof (* ret);
4606 
4607   ret = bfd_zmalloc (amt);
4608   if (ret == NULL)
4609     return NULL;
4610 
4611   amt = sizeof (struct elf_link_hash_table);
4612   ret->static_hash_table = bfd_zmalloc (amt);
4613   if (ret->static_hash_table == NULL)
4614     {
4615       free (ret);
4616       return NULL;
4617     }
4618 
4619   if (!_bfd_elf_link_hash_table_init (&ret->static_hash_table->root, abfd,
4620 				      elf32_mn10300_link_hash_newfunc,
4621 				      sizeof (struct elf32_mn10300_link_hash_entry),
4622 				      MN10300_ELF_DATA))
4623     {
4624       free (ret->static_hash_table);
4625       free (ret);
4626       return NULL;
4627     }
4628 
4629   abfd->is_linker_output = false;
4630   abfd->link.hash = NULL;
4631   if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
4632 				      elf32_mn10300_link_hash_newfunc,
4633 				      sizeof (struct elf32_mn10300_link_hash_entry),
4634 				      MN10300_ELF_DATA))
4635     {
4636       abfd->is_linker_output = true;
4637       abfd->link.hash = &ret->static_hash_table->root.root;
4638       _bfd_elf_link_hash_table_free (abfd);
4639       free (ret);
4640       return NULL;
4641     }
4642   ret->root.root.hash_table_free = elf32_mn10300_link_hash_table_free;
4643 
4644   ret->tls_ldm_got.offset = -1;
4645 
4646   return & ret->root.root;
4647 }
4648 
4649 static unsigned long
elf_mn10300_mach(flagword flags)4650 elf_mn10300_mach (flagword flags)
4651 {
4652   switch (flags & EF_MN10300_MACH)
4653     {
4654     case E_MN10300_MACH_MN10300:
4655     default:
4656       return bfd_mach_mn10300;
4657 
4658     case E_MN10300_MACH_AM33:
4659       return bfd_mach_am33;
4660 
4661     case E_MN10300_MACH_AM33_2:
4662       return bfd_mach_am33_2;
4663     }
4664 }
4665 
4666 /* The final processing done just before writing out a MN10300 ELF object
4667    file.  This gets the MN10300 architecture right based on the machine
4668    number.  */
4669 
4670 static bool
_bfd_mn10300_elf_final_write_processing(bfd * abfd)4671 _bfd_mn10300_elf_final_write_processing (bfd *abfd)
4672 {
4673   unsigned long val;
4674 
4675   switch (bfd_get_mach (abfd))
4676     {
4677     default:
4678     case bfd_mach_mn10300:
4679       val = E_MN10300_MACH_MN10300;
4680       break;
4681 
4682     case bfd_mach_am33:
4683       val = E_MN10300_MACH_AM33;
4684       break;
4685 
4686     case bfd_mach_am33_2:
4687       val = E_MN10300_MACH_AM33_2;
4688       break;
4689     }
4690 
4691   elf_elfheader (abfd)->e_flags &= ~ (EF_MN10300_MACH);
4692   elf_elfheader (abfd)->e_flags |= val;
4693   return _bfd_elf_final_write_processing (abfd);
4694 }
4695 
4696 static bool
_bfd_mn10300_elf_object_p(bfd * abfd)4697 _bfd_mn10300_elf_object_p (bfd *abfd)
4698 {
4699   bfd_default_set_arch_mach (abfd, bfd_arch_mn10300,
4700 			     elf_mn10300_mach (elf_elfheader (abfd)->e_flags));
4701   return true;
4702 }
4703 
4704 /* Merge backend specific data from an object file to the output
4705    object file when linking.  */
4706 
4707 static bool
_bfd_mn10300_elf_merge_private_bfd_data(bfd * ibfd,struct bfd_link_info * info)4708 _bfd_mn10300_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
4709 {
4710   bfd *obfd = info->output_bfd;
4711 
4712   if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
4713       || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
4714     return true;
4715 
4716   if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
4717       && bfd_get_mach (obfd) < bfd_get_mach (ibfd))
4718     {
4719       if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
4720 			       bfd_get_mach (ibfd)))
4721 	return false;
4722     }
4723 
4724   return true;
4725 }
4726 
4727 #define PLT0_ENTRY_SIZE     15
4728 #define PLT_ENTRY_SIZE      20
4729 #define PIC_PLT_ENTRY_SIZE  24
4730 
4731 static const bfd_byte elf_mn10300_plt0_entry[PLT0_ENTRY_SIZE] =
4732 {
4733   0xfc, 0xa0, 0, 0, 0, 0,	/* mov	(.got+8),a0 */
4734   0xfe, 0xe, 0x10, 0, 0, 0, 0,	/* mov	(.got+4),r1 */
4735   0xf0, 0xf4,			/* jmp	(a0) */
4736 };
4737 
4738 static const bfd_byte elf_mn10300_plt_entry[PLT_ENTRY_SIZE] =
4739 {
4740   0xfc, 0xa0, 0, 0, 0, 0,	/* mov	(nameN@GOT + .got),a0 */
4741   0xf0, 0xf4,			/* jmp	(a0) */
4742   0xfe, 8, 0, 0, 0, 0, 0,	/* mov	reloc-table-address,r0 */
4743   0xdc, 0, 0, 0, 0,		/* jmp	.plt0 */
4744 };
4745 
4746 static const bfd_byte elf_mn10300_pic_plt_entry[PIC_PLT_ENTRY_SIZE] =
4747 {
4748   0xfc, 0x22, 0, 0, 0, 0,	/* mov	(nameN@GOT,a2),a0 */
4749   0xf0, 0xf4,			/* jmp	(a0) */
4750   0xfe, 8, 0, 0, 0, 0, 0,	/* mov	reloc-table-address,r0 */
4751   0xf8, 0x22, 8,		/* mov	(8,a2),a0 */
4752   0xfb, 0xa, 0x1a, 4,		/* mov	(4,a2),r1 */
4753   0xf0, 0xf4,			/* jmp	(a0) */
4754 };
4755 
4756 /* Return size of the first PLT entry.  */
4757 #define elf_mn10300_sizeof_plt0(info) \
4758   (bfd_link_pic (info) ? PIC_PLT_ENTRY_SIZE : PLT0_ENTRY_SIZE)
4759 
4760 /* Return size of a PLT entry.  */
4761 #define elf_mn10300_sizeof_plt(info) \
4762   (bfd_link_pic (info) ? PIC_PLT_ENTRY_SIZE : PLT_ENTRY_SIZE)
4763 
4764 /* Return offset of the PLT0 address in an absolute PLT entry.  */
4765 #define elf_mn10300_plt_plt0_offset(info) 16
4766 
4767 /* Return offset of the linker in PLT0 entry.  */
4768 #define elf_mn10300_plt0_linker_offset(info) 2
4769 
4770 /* Return offset of the GOT id in PLT0 entry.  */
4771 #define elf_mn10300_plt0_gotid_offset(info) 9
4772 
4773 /* Return offset of the temporary in PLT entry.  */
4774 #define elf_mn10300_plt_temp_offset(info) 8
4775 
4776 /* Return offset of the symbol in PLT entry.  */
4777 #define elf_mn10300_plt_symbol_offset(info) 2
4778 
4779 /* Return offset of the relocation in PLT entry.  */
4780 #define elf_mn10300_plt_reloc_offset(info) 11
4781 
4782 /* The name of the dynamic interpreter.  This is put in the .interp
4783    section.  */
4784 
4785 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
4786 
4787 /* Create dynamic sections when linking against a dynamic object.  */
4788 
4789 static bool
_bfd_mn10300_elf_create_dynamic_sections(bfd * abfd,struct bfd_link_info * info)4790 _bfd_mn10300_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
4791 {
4792   flagword   flags;
4793   asection * s;
4794   const struct elf_backend_data * bed = get_elf_backend_data (abfd);
4795   struct elf32_mn10300_link_hash_table *htab = elf32_mn10300_hash_table (info);
4796   int ptralign = 0;
4797 
4798   switch (bed->s->arch_size)
4799     {
4800     case 32:
4801       ptralign = 2;
4802       break;
4803 
4804     case 64:
4805       ptralign = 3;
4806       break;
4807 
4808     default:
4809       bfd_set_error (bfd_error_bad_value);
4810       return false;
4811     }
4812 
4813   /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
4814      .rel[a].bss sections.  */
4815   flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4816 	   | SEC_LINKER_CREATED);
4817 
4818   s = bfd_make_section_anyway_with_flags (abfd,
4819 					  (bed->default_use_rela_p
4820 					   ? ".rela.plt" : ".rel.plt"),
4821 					  flags | SEC_READONLY);
4822   htab->root.srelplt = s;
4823   if (s == NULL
4824       || !bfd_set_section_alignment (s, ptralign))
4825     return false;
4826 
4827   if (! _bfd_mn10300_elf_create_got_section (abfd, info))
4828     return false;
4829 
4830   if (bed->want_dynbss)
4831     {
4832       /* The .dynbss section is a place to put symbols which are defined
4833 	 by dynamic objects, are referenced by regular objects, and are
4834 	 not functions.  We must allocate space for them in the process
4835 	 image and use a R_*_COPY reloc to tell the dynamic linker to
4836 	 initialize them at run time.  The linker script puts the .dynbss
4837 	 section into the .bss section of the final image.  */
4838       s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
4839 					      SEC_ALLOC | SEC_LINKER_CREATED);
4840       if (s == NULL)
4841 	return false;
4842 
4843       /* The .rel[a].bss section holds copy relocs.  This section is not
4844 	 normally needed.  We need to create it here, though, so that the
4845 	 linker will map it to an output section.  We can't just create it
4846 	 only if we need it, because we will not know whether we need it
4847 	 until we have seen all the input files, and the first time the
4848 	 main linker code calls BFD after examining all the input files
4849 	 (size_dynamic_sections) the input sections have already been
4850 	 mapped to the output sections.  If the section turns out not to
4851 	 be needed, we can discard it later.  We will never need this
4852 	 section when generating a shared object, since they do not use
4853 	 copy relocs.  */
4854       if (! bfd_link_pic (info))
4855 	{
4856 	  s = bfd_make_section_anyway_with_flags (abfd,
4857 						  (bed->default_use_rela_p
4858 						   ? ".rela.bss" : ".rel.bss"),
4859 						  flags | SEC_READONLY);
4860 	  if (s == NULL
4861 	      || !bfd_set_section_alignment (s, ptralign))
4862 	    return false;
4863 	}
4864     }
4865 
4866   return true;
4867 }
4868 
4869 /* Adjust a symbol defined by a dynamic object and referenced by a
4870    regular object.  The current definition is in some section of the
4871    dynamic object, but we're not including those sections.  We have to
4872    change the definition to something the rest of the link can
4873    understand.  */
4874 
4875 static bool
_bfd_mn10300_elf_adjust_dynamic_symbol(struct bfd_link_info * info,struct elf_link_hash_entry * h)4876 _bfd_mn10300_elf_adjust_dynamic_symbol (struct bfd_link_info * info,
4877 					struct elf_link_hash_entry * h)
4878 {
4879   struct elf32_mn10300_link_hash_table *htab = elf32_mn10300_hash_table (info);
4880   bfd * dynobj;
4881   asection * s;
4882 
4883   dynobj = htab->root.dynobj;
4884 
4885   /* Make sure we know what is going on here.  */
4886   BFD_ASSERT (dynobj != NULL
4887 	      && (h->needs_plt
4888 		  || h->is_weakalias
4889 		  || (h->def_dynamic
4890 		      && h->ref_regular
4891 		      && !h->def_regular)));
4892 
4893   /* If this is a function, put it in the procedure linkage table.  We
4894      will fill in the contents of the procedure linkage table later,
4895      when we know the address of the .got section.  */
4896   if (h->type == STT_FUNC
4897       || h->needs_plt)
4898     {
4899       if (! bfd_link_pic (info)
4900 	  && !h->def_dynamic
4901 	  && !h->ref_dynamic)
4902 	{
4903 	  /* This case can occur if we saw a PLT reloc in an input
4904 	     file, but the symbol was never referred to by a dynamic
4905 	     object.  In such a case, we don't actually need to build
4906 	     a procedure linkage table, and we can just do a REL32
4907 	     reloc instead.  */
4908 	  BFD_ASSERT (h->needs_plt);
4909 	  return true;
4910 	}
4911 
4912       /* Make sure this symbol is output as a dynamic symbol.  */
4913       if (h->dynindx == -1)
4914 	{
4915 	  if (! bfd_elf_link_record_dynamic_symbol (info, h))
4916 	    return false;
4917 	}
4918 
4919       s = htab->root.splt;
4920       BFD_ASSERT (s != NULL);
4921 
4922       /* If this is the first .plt entry, make room for the special
4923 	 first entry.  */
4924       if (s->size == 0)
4925 	s->size += elf_mn10300_sizeof_plt0 (info);
4926 
4927       /* If this symbol is not defined in a regular file, and we are
4928 	 not generating a shared library, then set the symbol to this
4929 	 location in the .plt.  This is required to make function
4930 	 pointers compare as equal between the normal executable and
4931 	 the shared library.  */
4932       if (! bfd_link_pic (info)
4933 	  && !h->def_regular)
4934 	{
4935 	  h->root.u.def.section = s;
4936 	  h->root.u.def.value = s->size;
4937 	}
4938 
4939       h->plt.offset = s->size;
4940 
4941       /* Make room for this entry.  */
4942       s->size += elf_mn10300_sizeof_plt (info);
4943 
4944       /* We also need to make an entry in the .got.plt section, which
4945 	 will be placed in the .got section by the linker script.  */
4946       s = htab->root.sgotplt;
4947       BFD_ASSERT (s != NULL);
4948       s->size += 4;
4949 
4950       /* We also need to make an entry in the .rela.plt section.  */
4951       s = htab->root.srelplt;
4952       BFD_ASSERT (s != NULL);
4953       s->size += sizeof (Elf32_External_Rela);
4954 
4955       return true;
4956     }
4957 
4958   /* If this is a weak symbol, and there is a real definition, the
4959      processor independent code will have arranged for us to see the
4960      real definition first, and we can just use the same value.  */
4961   if (h->is_weakalias)
4962     {
4963       struct elf_link_hash_entry *def = weakdef (h);
4964       BFD_ASSERT (def->root.type == bfd_link_hash_defined);
4965       h->root.u.def.section = def->root.u.def.section;
4966       h->root.u.def.value = def->root.u.def.value;
4967       return true;
4968     }
4969 
4970   /* This is a reference to a symbol defined by a dynamic object which
4971      is not a function.  */
4972 
4973   /* If we are creating a shared library, we must presume that the
4974      only references to the symbol are via the global offset table.
4975      For such cases we need not do anything here; the relocations will
4976      be handled correctly by relocate_section.  */
4977   if (bfd_link_pic (info))
4978     return true;
4979 
4980   /* If there are no references to this symbol that do not use the
4981      GOT, we don't need to generate a copy reloc.  */
4982   if (!h->non_got_ref)
4983     return true;
4984 
4985   /* We must allocate the symbol in our .dynbss section, which will
4986      become part of the .bss section of the executable.  There will be
4987      an entry for this symbol in the .dynsym section.  The dynamic
4988      object will contain position independent code, so all references
4989      from the dynamic object to this symbol will go through the global
4990      offset table.  The dynamic linker will use the .dynsym entry to
4991      determine the address it must put in the global offset table, so
4992      both the dynamic object and the regular object will refer to the
4993      same memory location for the variable.  */
4994 
4995   s = bfd_get_linker_section (dynobj, ".dynbss");
4996   BFD_ASSERT (s != NULL);
4997 
4998   /* We must generate a R_MN10300_COPY reloc to tell the dynamic linker to
4999      copy the initial value out of the dynamic object and into the
5000      runtime process image.  We need to remember the offset into the
5001      .rela.bss section we are going to use.  */
5002   if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
5003     {
5004       asection * srel;
5005 
5006       srel = bfd_get_linker_section (dynobj, ".rela.bss");
5007       BFD_ASSERT (srel != NULL);
5008       srel->size += sizeof (Elf32_External_Rela);
5009       h->needs_copy = 1;
5010     }
5011 
5012   return _bfd_elf_adjust_dynamic_copy (info, h, s);
5013 }
5014 
5015 /* Set the sizes of the dynamic sections.  */
5016 
5017 static bool
_bfd_mn10300_elf_size_dynamic_sections(bfd * output_bfd,struct bfd_link_info * info)5018 _bfd_mn10300_elf_size_dynamic_sections (bfd * output_bfd,
5019 					struct bfd_link_info * info)
5020 {
5021   struct elf32_mn10300_link_hash_table *htab = elf32_mn10300_hash_table (info);
5022   bfd * dynobj;
5023   asection * s;
5024   bool relocs;
5025 
5026   dynobj = htab->root.dynobj;
5027   BFD_ASSERT (dynobj != NULL);
5028 
5029   if (elf_hash_table (info)->dynamic_sections_created)
5030     {
5031       /* Set the contents of the .interp section to the interpreter.  */
5032       if (bfd_link_executable (info) && !info->nointerp)
5033 	{
5034 	  s = bfd_get_linker_section (dynobj, ".interp");
5035 	  BFD_ASSERT (s != NULL);
5036 	  s->size = sizeof ELF_DYNAMIC_INTERPRETER;
5037 	  s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
5038 	}
5039     }
5040   else
5041     {
5042       /* We may have created entries in the .rela.got section.
5043 	 However, if we are not creating the dynamic sections, we will
5044 	 not actually use these entries.  Reset the size of .rela.got,
5045 	 which will cause it to get stripped from the output file
5046 	 below.  */
5047       s = htab->root.sgot;
5048       if (s != NULL)
5049 	s->size = 0;
5050     }
5051 
5052   if (htab->tls_ldm_got.refcount > 0)
5053     {
5054       s = htab->root.srelgot;
5055       BFD_ASSERT (s != NULL);
5056       s->size += sizeof (Elf32_External_Rela);
5057     }
5058 
5059   /* The check_relocs and adjust_dynamic_symbol entry points have
5060      determined the sizes of the various dynamic sections.  Allocate
5061      memory for them.  */
5062   relocs = false;
5063   for (s = dynobj->sections; s != NULL; s = s->next)
5064     {
5065       const char * name;
5066 
5067       if ((s->flags & SEC_LINKER_CREATED) == 0)
5068 	continue;
5069 
5070       /* It's OK to base decisions on the section name, because none
5071 	 of the dynobj section names depend upon the input files.  */
5072       name = bfd_section_name (s);
5073 
5074       if (streq (name, ".plt"))
5075 	{
5076 	  /* Remember whether there is a PLT.  */
5077 	  ;
5078 	}
5079       else if (startswith (name, ".rela"))
5080 	{
5081 	  if (s->size != 0)
5082 	    {
5083 	      /* Remember whether there are any reloc sections other
5084 		 than .rela.plt.  */
5085 	      if (! streq (name, ".rela.plt"))
5086 		relocs = true;
5087 
5088 	      /* We use the reloc_count field as a counter if we need
5089 		 to copy relocs into the output file.  */
5090 	      s->reloc_count = 0;
5091 	    }
5092 	}
5093       else if (! startswith (name, ".got")
5094 	       && ! streq (name, ".dynbss"))
5095 	/* It's not one of our sections, so don't allocate space.  */
5096 	continue;
5097 
5098       if (s->size == 0)
5099 	{
5100 	  /* If we don't need this section, strip it from the
5101 	     output file.  This is mostly to handle .rela.bss and
5102 	     .rela.plt.  We must create both sections in
5103 	     create_dynamic_sections, because they must be created
5104 	     before the linker maps input sections to output
5105 	     sections.  The linker does that before
5106 	     adjust_dynamic_symbol is called, and it is that
5107 	     function which decides whether anything needs to go
5108 	     into these sections.  */
5109 	  s->flags |= SEC_EXCLUDE;
5110 	  continue;
5111 	}
5112 
5113 	if ((s->flags & SEC_HAS_CONTENTS) == 0)
5114 	  continue;
5115 
5116       /* Allocate memory for the section contents.  We use bfd_zalloc
5117 	 here in case unused entries are not reclaimed before the
5118 	 section's contents are written out.  This should not happen,
5119 	 but this way if it does, we get a R_MN10300_NONE reloc
5120 	 instead of garbage.  */
5121       s->contents = bfd_zalloc (dynobj, s->size);
5122       if (s->contents == NULL)
5123 	return false;
5124     }
5125 
5126   return _bfd_elf_add_dynamic_tags (output_bfd, info, relocs);
5127 }
5128 
5129 /* Finish up dynamic symbol handling.  We set the contents of various
5130    dynamic sections here.  */
5131 
5132 static bool
_bfd_mn10300_elf_finish_dynamic_symbol(bfd * output_bfd,struct bfd_link_info * info,struct elf_link_hash_entry * h,Elf_Internal_Sym * sym)5133 _bfd_mn10300_elf_finish_dynamic_symbol (bfd * output_bfd,
5134 					struct bfd_link_info * info,
5135 					struct elf_link_hash_entry * h,
5136 					Elf_Internal_Sym * sym)
5137 {
5138   struct elf32_mn10300_link_hash_table *htab = elf32_mn10300_hash_table (info);
5139   bfd * dynobj;
5140 
5141   dynobj = htab->root.dynobj;
5142 
5143   if (h->plt.offset != (bfd_vma) -1)
5144     {
5145       asection *	splt;
5146       asection *	sgot;
5147       asection *	srel;
5148       bfd_vma		plt_index;
5149       bfd_vma		got_offset;
5150       Elf_Internal_Rela rel;
5151 
5152       /* This symbol has an entry in the procedure linkage table.  Set
5153 	 it up.  */
5154 
5155       BFD_ASSERT (h->dynindx != -1);
5156 
5157       splt = htab->root.splt;
5158       sgot = htab->root.sgotplt;
5159       srel = htab->root.srelplt;
5160       BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL);
5161 
5162       /* Get the index in the procedure linkage table which
5163 	 corresponds to this symbol.  This is the index of this symbol
5164 	 in all the symbols for which we are making plt entries.  The
5165 	 first entry in the procedure linkage table is reserved.  */
5166       plt_index = ((h->plt.offset - elf_mn10300_sizeof_plt0 (info))
5167 		   / elf_mn10300_sizeof_plt (info));
5168 
5169       /* Get the offset into the .got table of the entry that
5170 	 corresponds to this function.  Each .got entry is 4 bytes.
5171 	 The first three are reserved.  */
5172       got_offset = (plt_index + 3) * 4;
5173 
5174       /* Fill in the entry in the procedure linkage table.  */
5175       if (! bfd_link_pic (info))
5176 	{
5177 	  memcpy (splt->contents + h->plt.offset, elf_mn10300_plt_entry,
5178 		  elf_mn10300_sizeof_plt (info));
5179 	  bfd_put_32 (output_bfd,
5180 		      (sgot->output_section->vma
5181 		       + sgot->output_offset
5182 		       + got_offset),
5183 		      (splt->contents + h->plt.offset
5184 		       + elf_mn10300_plt_symbol_offset (info)));
5185 
5186 	  bfd_put_32 (output_bfd,
5187 		      (1 - h->plt.offset - elf_mn10300_plt_plt0_offset (info)),
5188 		      (splt->contents + h->plt.offset
5189 		       + elf_mn10300_plt_plt0_offset (info)));
5190 	}
5191       else
5192 	{
5193 	  memcpy (splt->contents + h->plt.offset, elf_mn10300_pic_plt_entry,
5194 		  elf_mn10300_sizeof_plt (info));
5195 
5196 	  bfd_put_32 (output_bfd, got_offset,
5197 		      (splt->contents + h->plt.offset
5198 		       + elf_mn10300_plt_symbol_offset (info)));
5199 	}
5200 
5201       bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rela),
5202 		  (splt->contents + h->plt.offset
5203 		   + elf_mn10300_plt_reloc_offset (info)));
5204 
5205       /* Fill in the entry in the global offset table.  */
5206       bfd_put_32 (output_bfd,
5207 		  (splt->output_section->vma
5208 		   + splt->output_offset
5209 		   + h->plt.offset
5210 		   + elf_mn10300_plt_temp_offset (info)),
5211 		  sgot->contents + got_offset);
5212 
5213       /* Fill in the entry in the .rela.plt section.  */
5214       rel.r_offset = (sgot->output_section->vma
5215 		      + sgot->output_offset
5216 		      + got_offset);
5217       rel.r_info = ELF32_R_INFO (h->dynindx, R_MN10300_JMP_SLOT);
5218       rel.r_addend = 0;
5219       bfd_elf32_swap_reloca_out (output_bfd, &rel,
5220 				 (bfd_byte *) ((Elf32_External_Rela *) srel->contents
5221 					       + plt_index));
5222 
5223       if (!h->def_regular)
5224 	/* Mark the symbol as undefined, rather than as defined in
5225 	   the .plt section.  Leave the value alone.  */
5226 	sym->st_shndx = SHN_UNDEF;
5227     }
5228 
5229   if (h->got.offset != (bfd_vma) -1)
5230     {
5231       asection *	sgot;
5232       asection *	srel;
5233       Elf_Internal_Rela rel;
5234 
5235       /* This symbol has an entry in the global offset table.  Set it up.  */
5236       sgot = htab->root.sgot;
5237       srel = htab->root.srelgot;
5238       BFD_ASSERT (sgot != NULL && srel != NULL);
5239 
5240       rel.r_offset = (sgot->output_section->vma
5241 		      + sgot->output_offset
5242 		      + (h->got.offset & ~1));
5243 
5244       switch (elf_mn10300_hash_entry (h)->tls_type)
5245 	{
5246 	case GOT_TLS_GD:
5247 	  bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
5248 	  bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset + 4);
5249 	  rel.r_info = ELF32_R_INFO (h->dynindx, R_MN10300_TLS_DTPMOD);
5250 	  rel.r_addend = 0;
5251 	  bfd_elf32_swap_reloca_out (output_bfd, & rel,
5252 				     (bfd_byte *) ((Elf32_External_Rela *) srel->contents
5253 						   + srel->reloc_count));
5254 	  ++ srel->reloc_count;
5255 	  rel.r_info = ELF32_R_INFO (h->dynindx, R_MN10300_TLS_DTPOFF);
5256 	  rel.r_offset += 4;
5257 	  rel.r_addend = 0;
5258 	  break;
5259 
5260 	case GOT_TLS_IE:
5261 	  /* We originally stored the addend in the GOT, but at this
5262 	     point, we want to move it to the reloc instead as that's
5263 	     where the dynamic linker wants it.  */
5264 	  rel.r_addend = bfd_get_32 (output_bfd, sgot->contents + h->got.offset);
5265 	  bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
5266 	  if (h->dynindx == -1)
5267 	    rel.r_info = ELF32_R_INFO (0, R_MN10300_TLS_TPOFF);
5268 	  else
5269 	    rel.r_info = ELF32_R_INFO (h->dynindx, R_MN10300_TLS_TPOFF);
5270 	  break;
5271 
5272 	default:
5273 	  /* If this is a -Bsymbolic link, and the symbol is defined
5274 	     locally, we just want to emit a RELATIVE reloc.  Likewise if
5275 	     the symbol was forced to be local because of a version file.
5276 	     The entry in the global offset table will already have been
5277 	     initialized in the relocate_section function.  */
5278 	  if (bfd_link_pic (info)
5279 	      && (info->symbolic || h->dynindx == -1)
5280 	      && h->def_regular)
5281 	    {
5282 	      rel.r_info = ELF32_R_INFO (0, R_MN10300_RELATIVE);
5283 	      rel.r_addend = (h->root.u.def.value
5284 			      + h->root.u.def.section->output_section->vma
5285 			      + h->root.u.def.section->output_offset);
5286 	    }
5287 	  else
5288 	    {
5289 	      bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
5290 	      rel.r_info = ELF32_R_INFO (h->dynindx, R_MN10300_GLOB_DAT);
5291 	      rel.r_addend = 0;
5292 	    }
5293 	}
5294 
5295       if (ELF32_R_TYPE (rel.r_info) != R_MN10300_NONE)
5296 	{
5297 	  bfd_elf32_swap_reloca_out (output_bfd, &rel,
5298 				     (bfd_byte *) ((Elf32_External_Rela *) srel->contents
5299 						   + srel->reloc_count));
5300 	  ++ srel->reloc_count;
5301 	}
5302     }
5303 
5304   if (h->needs_copy)
5305     {
5306       asection *	s;
5307       Elf_Internal_Rela rel;
5308 
5309       /* This symbol needs a copy reloc.  Set it up.  */
5310       BFD_ASSERT (h->dynindx != -1
5311 		  && (h->root.type == bfd_link_hash_defined
5312 		      || h->root.type == bfd_link_hash_defweak));
5313 
5314       s = bfd_get_linker_section (dynobj, ".rela.bss");
5315       BFD_ASSERT (s != NULL);
5316 
5317       rel.r_offset = (h->root.u.def.value
5318 		      + h->root.u.def.section->output_section->vma
5319 		      + h->root.u.def.section->output_offset);
5320       rel.r_info = ELF32_R_INFO (h->dynindx, R_MN10300_COPY);
5321       rel.r_addend = 0;
5322       bfd_elf32_swap_reloca_out (output_bfd, & rel,
5323 				 (bfd_byte *) ((Elf32_External_Rela *) s->contents
5324 					       + s->reloc_count));
5325       ++ s->reloc_count;
5326     }
5327 
5328   /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute.  */
5329   if (h == elf_hash_table (info)->hdynamic
5330       || h == elf_hash_table (info)->hgot)
5331     sym->st_shndx = SHN_ABS;
5332 
5333   return true;
5334 }
5335 
5336 /* Finish up the dynamic sections.  */
5337 
5338 static bool
_bfd_mn10300_elf_finish_dynamic_sections(bfd * output_bfd,struct bfd_link_info * info)5339 _bfd_mn10300_elf_finish_dynamic_sections (bfd * output_bfd,
5340 					  struct bfd_link_info * info)
5341 {
5342   bfd *      dynobj;
5343   asection * sgot;
5344   asection * sdyn;
5345   struct elf32_mn10300_link_hash_table *htab = elf32_mn10300_hash_table (info);
5346 
5347   dynobj = htab->root.dynobj;
5348   sgot = htab->root.sgotplt;
5349   BFD_ASSERT (sgot != NULL);
5350   sdyn = bfd_get_linker_section (dynobj, ".dynamic");
5351 
5352   if (elf_hash_table (info)->dynamic_sections_created)
5353     {
5354       asection *	   splt;
5355       Elf32_External_Dyn * dyncon;
5356       Elf32_External_Dyn * dynconend;
5357 
5358       BFD_ASSERT (sdyn != NULL);
5359 
5360       dyncon = (Elf32_External_Dyn *) sdyn->contents;
5361       dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
5362 
5363       for (; dyncon < dynconend; dyncon++)
5364 	{
5365 	  Elf_Internal_Dyn dyn;
5366 	  asection * s;
5367 
5368 	  bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
5369 
5370 	  switch (dyn.d_tag)
5371 	    {
5372 	    default:
5373 	      break;
5374 
5375 	    case DT_PLTGOT:
5376 	      s = htab->root.sgot;
5377 	      goto get_vma;
5378 
5379 	    case DT_JMPREL:
5380 	      s = htab->root.srelplt;
5381 	    get_vma:
5382 	      dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
5383 	      bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
5384 	      break;
5385 
5386 	    case DT_PLTRELSZ:
5387 	      s = htab->root.srelplt;
5388 	      dyn.d_un.d_val = s->size;
5389 	      bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
5390 	      break;
5391 	    }
5392 	}
5393 
5394       /* Fill in the first entry in the procedure linkage table.  */
5395       splt = htab->root.splt;
5396       if (splt && splt->size > 0)
5397 	{
5398 	  if (bfd_link_pic (info))
5399 	    {
5400 	      memcpy (splt->contents, elf_mn10300_pic_plt_entry,
5401 		      elf_mn10300_sizeof_plt (info));
5402 	    }
5403 	  else
5404 	    {
5405 	      memcpy (splt->contents, elf_mn10300_plt0_entry, PLT0_ENTRY_SIZE);
5406 	      bfd_put_32 (output_bfd,
5407 			  sgot->output_section->vma + sgot->output_offset + 4,
5408 			  splt->contents + elf_mn10300_plt0_gotid_offset (info));
5409 	      bfd_put_32 (output_bfd,
5410 			  sgot->output_section->vma + sgot->output_offset + 8,
5411 			  splt->contents + elf_mn10300_plt0_linker_offset (info));
5412 	    }
5413 
5414 	  /* UnixWare sets the entsize of .plt to 4, although that doesn't
5415 	     really seem like the right value.  */
5416 	  elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
5417 
5418 	  /* UnixWare sets the entsize of .plt to 4, but this is incorrect
5419 	     as it means that the size of the PLT0 section (15 bytes) is not
5420 	     a multiple of the sh_entsize.  Some ELF tools flag this as an
5421 	     error.  We could pad PLT0 to 16 bytes, but that would introduce
5422 	     compatibilty issues with previous toolchains, so instead we
5423 	     just set the entry size to 1.  */
5424 	  elf_section_data (splt->output_section)->this_hdr.sh_entsize = 1;
5425 	}
5426     }
5427 
5428   /* Fill in the first three entries in the global offset table.  */
5429   if (sgot->size > 0)
5430     {
5431       if (sdyn == NULL)
5432 	bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
5433       else
5434 	bfd_put_32 (output_bfd,
5435 		    sdyn->output_section->vma + sdyn->output_offset,
5436 		    sgot->contents);
5437       bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
5438       bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
5439     }
5440 
5441   elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
5442 
5443   return true;
5444 }
5445 
5446 /* Classify relocation types, such that combreloc can sort them
5447    properly.  */
5448 
5449 static enum elf_reloc_type_class
_bfd_mn10300_elf_reloc_type_class(const struct bfd_link_info * info ATTRIBUTE_UNUSED,const asection * rel_sec ATTRIBUTE_UNUSED,const Elf_Internal_Rela * rela)5450 _bfd_mn10300_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
5451 				   const asection *rel_sec ATTRIBUTE_UNUSED,
5452 				   const Elf_Internal_Rela *rela)
5453 {
5454   switch ((int) ELF32_R_TYPE (rela->r_info))
5455     {
5456     case R_MN10300_RELATIVE:	return reloc_class_relative;
5457     case R_MN10300_JMP_SLOT:	return reloc_class_plt;
5458     case R_MN10300_COPY:	return reloc_class_copy;
5459     default:			return reloc_class_normal;
5460     }
5461 }
5462 
5463 /* Allocate space for an MN10300 extension to the bfd elf data structure.  */
5464 
5465 static bool
mn10300_elf_mkobject(bfd * abfd)5466 mn10300_elf_mkobject (bfd *abfd)
5467 {
5468   return bfd_elf_allocate_object (abfd, sizeof (struct elf_mn10300_obj_tdata),
5469 				  MN10300_ELF_DATA);
5470 }
5471 
5472 #define bfd_elf32_mkobject	mn10300_elf_mkobject
5473 
5474 #ifndef ELF_ARCH
5475 #define TARGET_LITTLE_SYM	mn10300_elf32_vec
5476 #define TARGET_LITTLE_NAME	"elf32-mn10300"
5477 #define ELF_ARCH		bfd_arch_mn10300
5478 #define ELF_TARGET_ID		MN10300_ELF_DATA
5479 #define ELF_MACHINE_CODE	EM_MN10300
5480 #define ELF_MACHINE_ALT1	EM_CYGNUS_MN10300
5481 #define ELF_MAXPAGESIZE		0x1000
5482 #endif
5483 
5484 #define elf_info_to_howto		mn10300_info_to_howto
5485 #define elf_info_to_howto_rel		NULL
5486 #define elf_backend_can_gc_sections	1
5487 #define elf_backend_rela_normal		1
5488 #define elf_backend_check_relocs	mn10300_elf_check_relocs
5489 #define elf_backend_gc_mark_hook	mn10300_elf_gc_mark_hook
5490 #define elf_backend_relocate_section	mn10300_elf_relocate_section
5491 #define bfd_elf32_bfd_relax_section	mn10300_elf_relax_section
5492 #define bfd_elf32_bfd_get_relocated_section_contents \
5493 				mn10300_elf_get_relocated_section_contents
5494 #define bfd_elf32_bfd_link_hash_table_create \
5495 				elf32_mn10300_link_hash_table_create
5496 
5497 #ifndef elf_symbol_leading_char
5498 #define elf_symbol_leading_char '_'
5499 #endif
5500 
5501 /* So we can set bits in e_flags.  */
5502 #define elf_backend_final_write_processing \
5503 					_bfd_mn10300_elf_final_write_processing
5504 #define elf_backend_object_p		_bfd_mn10300_elf_object_p
5505 
5506 #define bfd_elf32_bfd_merge_private_bfd_data \
5507 					_bfd_mn10300_elf_merge_private_bfd_data
5508 
5509 #define elf_backend_can_gc_sections	1
5510 #define elf_backend_create_dynamic_sections \
5511   _bfd_mn10300_elf_create_dynamic_sections
5512 #define elf_backend_adjust_dynamic_symbol \
5513   _bfd_mn10300_elf_adjust_dynamic_symbol
5514 #define elf_backend_size_dynamic_sections \
5515   _bfd_mn10300_elf_size_dynamic_sections
5516 #define elf_backend_omit_section_dynsym _bfd_elf_omit_section_dynsym_all
5517 #define elf_backend_finish_dynamic_symbol \
5518   _bfd_mn10300_elf_finish_dynamic_symbol
5519 #define elf_backend_finish_dynamic_sections \
5520   _bfd_mn10300_elf_finish_dynamic_sections
5521 #define elf_backend_copy_indirect_symbol \
5522   _bfd_mn10300_copy_indirect_symbol
5523 #define elf_backend_reloc_type_class \
5524   _bfd_mn10300_elf_reloc_type_class
5525 
5526 #define elf_backend_want_got_plt	1
5527 #define elf_backend_plt_readonly	1
5528 #define elf_backend_want_plt_sym	0
5529 #define elf_backend_got_header_size	12
5530 #define elf_backend_dtrel_excludes_plt	1
5531 
5532 #include "elf32-target.h"
5533