xref: /netbsd-src/external/gpl3/binutils.old/dist/include/opcode/ppc.h (revision d90047b5d07facf36e6c01dcc0bded8997ce9cc2)
1 /* ppc.h -- Header file for PowerPC opcode table
2    Copyright (C) 1994-2018 Free Software Foundation, Inc.
3    Written by Ian Lance Taylor, Cygnus Support
4 
5    This file is part of GDB, GAS, and the GNU binutils.
6 
7    GDB, GAS, and the GNU binutils are free software; you can redistribute
8    them and/or modify them under the terms of the GNU General Public
9    License as published by the Free Software Foundation; either version 3,
10    or (at your option) any later version.
11 
12    GDB, GAS, and the GNU binutils are distributed in the hope that they
13    will be useful, but WITHOUT ANY WARRANTY; without even the implied
14    warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See
15    the GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this file; see the file COPYING3.  If not, write to the Free
19    Software Foundation, 51 Franklin Street - Fifth Floor, Boston,
20    MA 02110-1301, USA.  */
21 
22 #ifndef PPC_H
23 #define PPC_H
24 
25 #include "bfd_stdint.h"
26 
27 #ifdef __cplusplus
28 extern "C" {
29 #endif
30 
31 typedef uint64_t ppc_cpu_t;
32 
33 #if BFD_HOST_64BIT_LONG
34 # define PPC_INT_FMT "l"
35 #elif defined (__MSVCRT__)
36 # define PPC_INT_FMT "I64"
37 #else
38 # define PPC_INT_FMT "ll"
39 #endif
40 
41 /* The opcode table is an array of struct powerpc_opcode.  */
42 
43 struct powerpc_opcode
44 {
45   /* The opcode name.  */
46   const char *name;
47 
48   /* The opcode itself.  Those bits which will be filled in with
49      operands are zeroes.  */
50   uint64_t opcode;
51 
52   /* The opcode mask.  This is used by the disassembler.  This is a
53      mask containing ones indicating those bits which must match the
54      opcode field, and zeroes indicating those bits which need not
55      match (and are presumably filled in by operands).  */
56   uint64_t mask;
57 
58   /* One bit flags for the opcode.  These are used to indicate which
59      specific processors support the instructions.  The defined values
60      are listed below.  */
61   ppc_cpu_t flags;
62 
63   /* One bit flags for the opcode.  These are used to indicate which
64      specific processors no longer support the instructions.  The defined
65      values are listed below.  */
66   ppc_cpu_t deprecated;
67 
68   /* An array of operand codes.  Each code is an index into the
69      operand table.  They appear in the order which the operands must
70      appear in assembly code, and are terminated by a zero.  */
71   unsigned char operands[8];
72 };
73 
74 /* The table itself is sorted by major opcode number, and is otherwise
75    in the order in which the disassembler should consider
76    instructions.  */
77 extern const struct powerpc_opcode powerpc_opcodes[];
78 extern const unsigned int powerpc_num_opcodes;
79 extern const struct powerpc_opcode vle_opcodes[];
80 extern const unsigned int vle_num_opcodes;
81 extern const struct powerpc_opcode spe2_opcodes[];
82 extern const unsigned int spe2_num_opcodes;
83 
84 /* Values defined for the flags field of a struct powerpc_opcode.  */
85 
86 /* Opcode is defined for the PowerPC architecture.  */
87 #define PPC_OPCODE_PPC		       0x1ull
88 
89 /* Opcode is defined for the POWER (RS/6000) architecture.  */
90 #define PPC_OPCODE_POWER	       0x2ull
91 
92 /* Opcode is defined for the POWER2 (Rios 2) architecture.  */
93 #define PPC_OPCODE_POWER2	       0x4ull
94 
95 /* Opcode is only defined on 64 bit architectures.  */
96 #define PPC_OPCODE_64		       0x8ull
97 
98 /* Opcode is supported by the Motorola PowerPC 601 processor.  The 601
99    is assumed to support all PowerPC (PPC_OPCODE_PPC) instructions,
100    but it also supports many additional POWER instructions.  */
101 #define PPC_OPCODE_601		      0x10ull
102 
103 /* Opcode is supported in both the Power and PowerPC architectures
104    (ie, compiler's -mcpu=common or assembler's -mcom).  More than just
105    the intersection of PPC_OPCODE_PPC with the union of PPC_OPCODE_POWER
106    and PPC_OPCODE_POWER2 because many instructions changed mnemonics
107    between POWER and POWERPC.  */
108 #define PPC_OPCODE_COMMON	      0x20ull
109 
110 /* Opcode is supported for any Power or PowerPC platform (this is
111    for the assembler's -many option, and it eliminates duplicates).  */
112 #define PPC_OPCODE_ANY		      0x40ull
113 
114 /* Opcode is supported as part of the 64-bit bridge.  */
115 #define PPC_OPCODE_64_BRIDGE	      0x80ull
116 
117 /* Opcode is supported by Altivec Vector Unit */
118 #define PPC_OPCODE_ALTIVEC	     0x100ull
119 
120 /* Opcode is supported by PowerPC 403 processor.  */
121 #define PPC_OPCODE_403		     0x200ull
122 
123 /* Opcode is supported by PowerPC BookE processor.  */
124 #define PPC_OPCODE_BOOKE	     0x400ull
125 
126 /* Opcode is only supported by Power4 architecture.  */
127 #define PPC_OPCODE_POWER4	     0x800ull
128 
129 /* Opcode is only supported by e500x2 Core.
130    This bit, PPC_OPCODE_EFS, PPC_OPCODE_VLE, and all those with APU in
131    their comment mark opcodes so that when those instructions are used
132    an APUinfo entry can be generated.  */
133 #define PPC_OPCODE_SPE		    0x1000ull
134 
135 /* Opcode is supported by Integer select APU.  */
136 #define PPC_OPCODE_ISEL		    0x2000ull
137 
138 /* Opcode is an e500 SPE floating point instruction.  */
139 #define PPC_OPCODE_EFS		    0x4000ull
140 
141 /* Opcode is supported by branch locking APU.  */
142 #define PPC_OPCODE_BRLOCK	    0x8000ull
143 
144 /* Opcode is supported by performance monitor APU.  */
145 #define PPC_OPCODE_PMR		   0x10000ull
146 
147 /* Opcode is supported by cache locking APU.  */
148 #define PPC_OPCODE_CACHELCK	   0x20000ull
149 
150 /* Opcode is supported by machine check APU.  */
151 #define PPC_OPCODE_RFMCI	   0x40000ull
152 
153 /* Opcode is supported by PowerPC 440 processor.  */
154 #define PPC_OPCODE_440		   0x80000ull
155 
156 /* Opcode is only supported by Power5 architecture.  */
157 #define PPC_OPCODE_POWER5	  0x100000ull
158 
159 /* Opcode is supported by PowerPC e300 family.  */
160 #define PPC_OPCODE_E300		  0x200000ull
161 
162 /* Opcode is only supported by Power6 architecture.  */
163 #define PPC_OPCODE_POWER6	  0x400000ull
164 
165 /* Opcode is only supported by PowerPC Cell family.  */
166 #define PPC_OPCODE_CELL		  0x800000ull
167 
168 /* Opcode is supported by CPUs with paired singles support.  */
169 #define PPC_OPCODE_PPCPS	 0x1000000ull
170 
171 /* Opcode is supported by Power E500MC */
172 #define PPC_OPCODE_E500MC	 0x2000000ull
173 
174 /* Opcode is supported by PowerPC 405 processor.  */
175 #define PPC_OPCODE_405		 0x4000000ull
176 
177 /* Opcode is supported by Vector-Scalar (VSX) Unit */
178 #define PPC_OPCODE_VSX		 0x8000000ull
179 
180 /* Opcode is only supported by Power7 architecture.  */
181 #define PPC_OPCODE_POWER7	0x10000000ull
182 
183 /* Opcode is supported by A2.  */
184 #define PPC_OPCODE_A2		0x20000000ull
185 
186 /* Opcode is supported by PowerPC 476 processor.  */
187 #define PPC_OPCODE_476		0x40000000ull
188 
189 /* Opcode is supported by AppliedMicro Titan core */
190 #define PPC_OPCODE_TITAN	0x80000000ull
191 
192 /* Opcode which is supported by the e500 family */
193 #define PPC_OPCODE_E500        0x100000000ull
194 
195 /* Opcode is supported by Power E6500 */
196 #define PPC_OPCODE_E6500       0x200000000ull
197 
198 /* Opcode is supported by Thread management APU */
199 #define PPC_OPCODE_TMR	       0x400000000ull
200 
201 /* Opcode which is supported by the VLE extension.  */
202 #define PPC_OPCODE_VLE	       0x800000000ull
203 
204 /* Opcode is only supported by Power8 architecture.  */
205 #define PPC_OPCODE_POWER8     0x1000000000ull
206 
207 /* Opcode is supported by ppc750cl.  */
208 #define PPC_OPCODE_750	      0x2000000000ull
209 
210 /* Opcode is supported by ppc7450.  */
211 #define PPC_OPCODE_7450       0x4000000000ull
212 
213 /* Opcode is supported by ppc821/850/860.  */
214 #define PPC_OPCODE_860	      0x8000000000ull
215 
216 /* Opcode is only supported by Power9 architecture.  */
217 #define PPC_OPCODE_POWER9    0x10000000000ull
218 
219 /* Opcode is supported by e200z4.  */
220 #define PPC_OPCODE_E200Z4    0x20000000000ull
221 
222 /* Disassemble to instructions matching later in the opcode table
223    with fewer "mask" bits set rather than the earlist match.  Fewer
224    "mask" bits set imply a more general form of the opcode, in fact
225    the underlying machine instruction.  */
226 #define PPC_OPCODE_RAW	     0x40000000000ull
227 
228 /* Opcode is supported by PowerPC LSP */
229 #define PPC_OPCODE_LSP	     0x80000000000ull
230 
231 /* Opcode is only supported by Freescale SPE2 APU.  */
232 #define PPC_OPCODE_SPE2	    0x100000000000ull
233 
234 /* Opcode is supported by EFS2.  */
235 #define PPC_OPCODE_EFS2	    0x200000000000ull
236 
237 /* A macro to extract the major opcode from an instruction.  */
238 #define PPC_OP(i) (((i) >> 26) & 0x3f)
239 
240 /* A macro to determine if the instruction is a 2-byte VLE insn.  */
241 #define PPC_OP_SE_VLE(m) ((m) <= 0xffff)
242 
243 /* A macro to extract the major opcode from a VLE instruction.  */
244 #define VLE_OP(i,m) (((i) >> ((m) <= 0xffff ? 10 : 26)) & 0x3f)
245 
246 /* A macro to convert a VLE opcode to a VLE opcode segment.  */
247 #define VLE_OP_TO_SEG(i) ((i) >> 1)
248 
249 /* A macro to extract the extended opcode from a SPE2 instruction.  */
250 #define SPE2_XOP(i) ((i) & 0x7ff)
251 
252 /* A macro to convert a SPE2 extended opcode to a SPE2 xopcode segment.  */
253 #define SPE2_XOP_TO_SEG(i) ((i) >> 7)
254 
255 /* The operands table is an array of struct powerpc_operand.  */
256 
257 struct powerpc_operand
258 {
259   /* A bitmask of bits in the operand.  */
260   uint64_t bitm;
261 
262   /* The shift operation to be applied to the operand.  No shift
263      is made if this is zero.  For positive values, the operand
264      is shifted left by SHIFT.  For negative values, the operand
265      is shifted right by -SHIFT.  Use PPC_OPSHIFT_INV to indicate
266      that BITM and SHIFT cannot be used to determine where the
267      operand goes in the insn.  */
268   int shift;
269 
270   /* Insertion function.  This is used by the assembler.  To insert an
271      operand value into an instruction, check this field.
272 
273      If it is NULL, execute
274 	 if (o->shift >= 0)
275 	   i |= (op & o->bitm) << o->shift;
276 	 else
277 	   i |= (op & o->bitm) >> -o->shift;
278      (i is the instruction which we are filling in, o is a pointer to
279      this structure, and op is the operand value).
280 
281      If this field is not NULL, then simply call it with the
282      instruction and the operand value.  It will return the new value
283      of the instruction.  If the ERRMSG argument is not NULL, then if
284      the operand value is illegal, *ERRMSG will be set to a warning
285      string (the operand will be inserted in any case).  If the
286      operand value is legal, *ERRMSG will be unchanged (most operands
287      can accept any value).  */
288   uint64_t (*insert)
289     (uint64_t instruction, int64_t op, ppc_cpu_t dialect, const char **errmsg);
290 
291   /* Extraction function.  This is used by the disassembler.  To
292      extract this operand type from an instruction, check this field.
293 
294      If it is NULL, compute
295 	 if (o->shift >= 0)
296 	   op = (i >> o->shift) & o->bitm;
297 	 else
298 	   op = (i << -o->shift) & o->bitm;
299 	 if ((o->flags & PPC_OPERAND_SIGNED) != 0)
300 	   sign_extend (op);
301      (i is the instruction, o is a pointer to this structure, and op
302      is the result).
303 
304      If this field is not NULL, then simply call it with the
305      instruction value.  It will return the value of the operand.  If
306      the INVALID argument is not NULL, *INVALID will be set to
307      non-zero if this operand type can not actually be extracted from
308      this operand (i.e., the instruction does not match).  If the
309      operand is valid, *INVALID will not be changed.  */
310   int64_t (*extract) (uint64_t instruction, ppc_cpu_t dialect, int *invalid);
311 
312   /* One bit syntax flags.  */
313   unsigned long flags;
314 };
315 
316 /* Elements in the table are retrieved by indexing with values from
317    the operands field of the powerpc_opcodes table.  */
318 
319 extern const struct powerpc_operand powerpc_operands[];
320 extern const unsigned int num_powerpc_operands;
321 
322 /* Use with the shift field of a struct powerpc_operand to indicate
323      that BITM and SHIFT cannot be used to determine where the operand
324      goes in the insn.  */
325 #define PPC_OPSHIFT_INV (-1U << 31)
326 
327 /* Values defined for the flags field of a struct powerpc_operand.
328    Keep the register bits low:  They need to fit in an unsigned short.  */
329 
330 /* This operand names a register.  The disassembler uses this to print
331    register names with a leading 'r'.  */
332 #define PPC_OPERAND_GPR (0x1)
333 
334 /* Like PPC_OPERAND_GPR, but don't print a leading 'r' for r0.  */
335 #define PPC_OPERAND_GPR_0 (0x2)
336 
337 /* This operand names a floating point register.  The disassembler
338    prints these with a leading 'f'.  */
339 #define PPC_OPERAND_FPR (0x4)
340 
341 /* This operand names a vector unit register.  The disassembler
342    prints these with a leading 'v'.  */
343 #define PPC_OPERAND_VR (0x8)
344 
345 /* This operand names a vector-scalar unit register.  The disassembler
346    prints these with a leading 'vs'.  */
347 #define PPC_OPERAND_VSR (0x10)
348 
349 /* This operand may use the symbolic names for the CR fields (even
350    without -mregnames), which are
351        lt  0	gt  1	eq  2	so  3	un  3
352        cr0 0	cr1 1	cr2 2	cr3 3
353        cr4 4	cr5 5	cr6 6	cr7 7
354    These may be combined arithmetically, as in cr2*4+gt.  These are
355    only supported on the PowerPC, not the POWER.  */
356 #define PPC_OPERAND_CR_BIT (0x20)
357 
358 /* This is a CR FIELD that does not use symbolic names (unless
359    -mregnames is in effect).  */
360 #define PPC_OPERAND_CR_REG (0x40)
361 
362 /* This operand names a special purpose register.  */
363 #define PPC_OPERAND_SPR (0x80)
364 
365 /* This operand names a paired-single graphics quantization register.  */
366 #define PPC_OPERAND_GQR (0x100)
367 
368 /* This operand is a relative branch displacement.  The disassembler
369    prints these symbolically if possible.  */
370 #define PPC_OPERAND_RELATIVE (0x200)
371 
372 /* This operand is an absolute branch address.  The disassembler
373    prints these symbolically if possible.  */
374 #define PPC_OPERAND_ABSOLUTE (0x400)
375 
376 /* This operand takes signed values.  */
377 #define PPC_OPERAND_SIGNED (0x800)
378 
379 /* This operand takes signed values, but also accepts a full positive
380    range of values when running in 32 bit mode.  That is, if bits is
381    16, it takes any value from -0x8000 to 0xffff.  In 64 bit mode,
382    this flag is ignored.  */
383 #define PPC_OPERAND_SIGNOPT (0x1000)
384 
385 /* The next operand should be wrapped in parentheses rather than
386    separated from this one by a comma.  This is used for the load and
387    store instructions which want their operands to look like
388        reg,displacement(reg)
389    */
390 #define PPC_OPERAND_PARENS (0x2000)
391 
392 /* This operand is for the DS field in a DS form instruction.  */
393 #define PPC_OPERAND_DS (0x4000)
394 
395 /* This operand is for the DQ field in a DQ form instruction.  */
396 #define PPC_OPERAND_DQ (0x8000)
397 
398 /* This operand should be regarded as a negative number for the
399    purposes of overflow checking (i.e., the normal most negative
400    number is disallowed and one more than the normal most positive
401    number is allowed).  This flag will only be set for a signed
402    operand.  */
403 #define PPC_OPERAND_NEGATIVE (0x10000)
404 
405 /* Valid range of operand is 0..n rather than 0..n-1.  */
406 #define PPC_OPERAND_PLUS1 (0x20000)
407 
408 /* This operand is optional, and is zero if omitted.  This is used for
409    example, in the optional BF field in the comparison instructions.  The
410    assembler must count the number of operands remaining on the line,
411    and the number of operands remaining for the opcode, and decide
412    whether this operand is present or not.  The disassembler should
413    print this operand out only if it is not zero.  */
414 #define PPC_OPERAND_OPTIONAL (0x80000)
415 
416 /* This flag is only used with PPC_OPERAND_OPTIONAL.  If this operand
417    is omitted, then for the next operand use this operand value plus
418    1, ignoring the next operand field for the opcode.  This wretched
419    hack is needed because the Power rotate instructions can take
420    either 4 or 5 operands.  The disassembler should print this operand
421    out regardless of the PPC_OPERAND_OPTIONAL field.  */
422 #define PPC_OPERAND_NEXT (0x100000)
423 
424 /* This flag is only used with PPC_OPERAND_OPTIONAL.  If this operand
425    is omitted, then the value it should use for the operand is stored
426    in the SHIFT field of the immediatly following operand field.  */
427 #define PPC_OPERAND_OPTIONAL_VALUE (0x200000)
428 
429 /* This flag is only used with PPC_OPERAND_OPTIONAL.  The operand is
430    only optional when generating 32-bit code.  */
431 #define PPC_OPERAND_OPTIONAL32 (0x400000)
432 
433 /* Xilinx APU and FSL related operands */
434 #define PPC_OPERAND_FSL (0x800000)
435 #define PPC_OPERAND_FCR (0x1000000)
436 #define PPC_OPERAND_UDI (0x2000000)
437 
438 /* The POWER and PowerPC assemblers use a few macros.  We keep them
439    with the operands table for simplicity.  The macro table is an
440    array of struct powerpc_macro.  */
441 
442 struct powerpc_macro
443 {
444   /* The macro name.  */
445   const char *name;
446 
447   /* The number of operands the macro takes.  */
448   unsigned int operands;
449 
450   /* One bit flags for the opcode.  These are used to indicate which
451      specific processors support the instructions.  The values are the
452      same as those for the struct powerpc_opcode flags field.  */
453   ppc_cpu_t flags;
454 
455   /* A format string to turn the macro into a normal instruction.
456      Each %N in the string is replaced with operand number N (zero
457      based).  */
458   const char *format;
459 };
460 
461 extern const struct powerpc_macro powerpc_macros[];
462 extern const int powerpc_num_macros;
463 
464 extern ppc_cpu_t ppc_parse_cpu (ppc_cpu_t, ppc_cpu_t *, const char *);
465 
466 static inline int64_t
467 ppc_optional_operand_value (const struct powerpc_operand *operand)
468 {
469   if ((operand->flags & PPC_OPERAND_OPTIONAL_VALUE) != 0)
470     return (operand+1)->shift;
471   return 0;
472 }
473 
474 /* PowerPC VLE insns.  */
475 /* Form I16L, uses 16A relocs.  */
476 #define E_OR2I_INSN		0x7000C000
477 #define E_AND2I_DOT_INSN	0x7000C800
478 #define E_OR2IS_INSN		0x7000D000
479 #define E_LIS_INSN		0x7000E000
480 #define	E_AND2IS_DOT_INSN	0x7000E800
481 
482 /* Form I16A, uses 16D relocs.  */
483 #define E_ADD2I_DOT_INSN	0x70008800
484 #define E_ADD2IS_INSN		0x70009000
485 #define E_CMP16I_INSN		0x70009800
486 #define E_MULL2I_INSN		0x7000A000
487 #define E_CMPL16I_INSN		0x7000A800
488 #define E_CMPH16I_INSN		0x7000B000
489 #define E_CMPHL16I_INSN		0x7000B800
490 
491 #ifdef __cplusplus
492 }
493 #endif
494 
495 #endif /* PPC_H */
496