1 // target.h -- target support for gold -*- C++ -*- 2 3 // Copyright (C) 2006-2022 Free Software Foundation, Inc. 4 // Written by Ian Lance Taylor <iant@google.com>. 5 6 // This file is part of gold. 7 8 // This program is free software; you can redistribute it and/or modify 9 // it under the terms of the GNU General Public License as published by 10 // the Free Software Foundation; either version 3 of the License, or 11 // (at your option) any later version. 12 13 // This program is distributed in the hope that it will be useful, 14 // but WITHOUT ANY WARRANTY; without even the implied warranty of 15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 // GNU General Public License for more details. 17 18 // You should have received a copy of the GNU General Public License 19 // along with this program; if not, write to the Free Software 20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, 21 // MA 02110-1301, USA. 22 23 // The abstract class Target is the interface for target specific 24 // support. It defines abstract methods which each target must 25 // implement. Typically there will be one target per processor, but 26 // in some cases it may be necessary to have subclasses. 27 28 // For speed and consistency we want to use inline functions to handle 29 // relocation processing. So besides implementations of the abstract 30 // methods, each target is expected to define a template 31 // specialization of the relocation functions. 32 33 #ifndef GOLD_TARGET_H 34 #define GOLD_TARGET_H 35 36 #include "elfcpp.h" 37 #include "options.h" 38 #include "parameters.h" 39 #include "stringpool.h" 40 #include "debug.h" 41 42 namespace gold 43 { 44 45 class Object; 46 class Relobj; 47 template<int size, bool big_endian> 48 class Sized_relobj; 49 template<int size, bool big_endian> 50 class Sized_relobj_file; 51 class Relocatable_relocs; 52 template<int size, bool big_endian> 53 struct Relocate_info; 54 class Reloc_symbol_changes; 55 class Symbol; 56 template<int size> 57 class Sized_symbol; 58 class Symbol_table; 59 class Output_data; 60 class Output_data_got_base; 61 class Output_section; 62 class Input_objects; 63 class Task; 64 struct Symbol_location; 65 class Versions; 66 67 // The abstract class for target specific handling. 68 69 class Target 70 { 71 public: ~Target()72 virtual ~Target() 73 { } 74 75 // Return the bit size that this target implements. This should 76 // return 32 or 64. 77 int get_size()78 get_size() const 79 { return this->pti_->size; } 80 81 // Return whether this target is big-endian. 82 bool is_big_endian()83 is_big_endian() const 84 { return this->pti_->is_big_endian; } 85 86 // Machine code to store in e_machine field of ELF header. 87 elfcpp::EM machine_code()88 machine_code() const 89 { return this->pti_->machine_code; } 90 91 // Processor specific flags to store in e_flags field of ELF header. 92 elfcpp::Elf_Word processor_specific_flags()93 processor_specific_flags() const 94 { return this->processor_specific_flags_; } 95 96 // Whether processor specific flags are set at least once. 97 bool are_processor_specific_flags_set()98 are_processor_specific_flags_set() const 99 { return this->are_processor_specific_flags_set_; } 100 101 // Whether this target has a specific make_symbol function. 102 bool has_make_symbol()103 has_make_symbol() const 104 { return this->pti_->has_make_symbol; } 105 106 // Whether this target has a specific resolve function. 107 bool has_resolve()108 has_resolve() const 109 { return this->pti_->has_resolve; } 110 111 // Whether this target has a specific code fill function. 112 bool has_code_fill()113 has_code_fill() const 114 { return this->pti_->has_code_fill; } 115 116 // Return the default name of the dynamic linker. 117 const char* dynamic_linker()118 dynamic_linker() const 119 { return this->pti_->dynamic_linker; } 120 121 // Return the default address to use for the text segment. 122 // If a -z max-page-size argument has set the ABI page size 123 // to a value larger than the default starting address, 124 // bump the starting address up to the page size, to avoid 125 // misaligning the text segment in the file. 126 uint64_t default_text_segment_address()127 default_text_segment_address() const 128 { 129 uint64_t addr = this->pti_->default_text_segment_address; 130 uint64_t pagesize = this->abi_pagesize(); 131 if (addr < pagesize) 132 addr = pagesize; 133 return addr; 134 } 135 136 // Return the ABI specified page size. 137 uint64_t abi_pagesize()138 abi_pagesize() const 139 { 140 if (parameters->options().max_page_size() > 0) 141 return parameters->options().max_page_size(); 142 else 143 return this->pti_->abi_pagesize; 144 } 145 146 // Return the common page size used on actual systems. 147 uint64_t common_pagesize()148 common_pagesize() const 149 { 150 if (parameters->options().common_page_size() > 0) 151 return std::min(parameters->options().common_page_size(), 152 this->abi_pagesize()); 153 else 154 return std::min(this->pti_->common_pagesize, 155 this->abi_pagesize()); 156 } 157 158 // Return whether PF_X segments must contain nothing but the contents of 159 // SHF_EXECINSTR sections (no non-executable data, no headers). 160 bool isolate_execinstr()161 isolate_execinstr() const 162 { return this->pti_->isolate_execinstr; } 163 164 uint64_t rosegment_gap()165 rosegment_gap() const 166 { return this->pti_->rosegment_gap; } 167 168 // If we see some object files with .note.GNU-stack sections, and 169 // some objects files without them, this returns whether we should 170 // consider the object files without them to imply that the stack 171 // should be executable. 172 bool is_default_stack_executable()173 is_default_stack_executable() const 174 { return this->pti_->is_default_stack_executable; } 175 176 // Return a character which may appear as a prefix for a wrap 177 // symbol. If this character appears, we strip it when checking for 178 // wrapping and add it back when forming the final symbol name. 179 // This should be '\0' if not special prefix is required, which is 180 // the normal case. 181 char wrap_char()182 wrap_char() const 183 { return this->pti_->wrap_char; } 184 185 // Return the special section index which indicates a small common 186 // symbol. This will return SHN_UNDEF if there are no small common 187 // symbols. 188 elfcpp::Elf_Half small_common_shndx()189 small_common_shndx() const 190 { return this->pti_->small_common_shndx; } 191 192 // Return values to add to the section flags for the section holding 193 // small common symbols. 194 elfcpp::Elf_Xword small_common_section_flags()195 small_common_section_flags() const 196 { 197 gold_assert(this->pti_->small_common_shndx != elfcpp::SHN_UNDEF); 198 return this->pti_->small_common_section_flags; 199 } 200 201 // Return the special section index which indicates a large common 202 // symbol. This will return SHN_UNDEF if there are no large common 203 // symbols. 204 elfcpp::Elf_Half large_common_shndx()205 large_common_shndx() const 206 { return this->pti_->large_common_shndx; } 207 208 // Return values to add to the section flags for the section holding 209 // large common symbols. 210 elfcpp::Elf_Xword large_common_section_flags()211 large_common_section_flags() const 212 { 213 gold_assert(this->pti_->large_common_shndx != elfcpp::SHN_UNDEF); 214 return this->pti_->large_common_section_flags; 215 } 216 217 // This hook is called when an output section is created. 218 void new_output_section(Output_section * os)219 new_output_section(Output_section* os) const 220 { this->do_new_output_section(os); } 221 222 // This is called to tell the target to complete any sections it is 223 // handling. After this all sections must have their final size. 224 void finalize_sections(Layout * layout,const Input_objects * input_objects,Symbol_table * symtab)225 finalize_sections(Layout* layout, const Input_objects* input_objects, 226 Symbol_table* symtab) 227 { return this->do_finalize_sections(layout, input_objects, symtab); } 228 229 // Return the value to use for a global symbol which needs a special 230 // value in the dynamic symbol table. This will only be called if 231 // the backend first calls symbol->set_needs_dynsym_value(). 232 uint64_t dynsym_value(const Symbol * sym)233 dynsym_value(const Symbol* sym) const 234 { return this->do_dynsym_value(sym); } 235 236 // Return a string to use to fill out a code section. This is 237 // basically one or more NOPS which must fill out the specified 238 // length in bytes. 239 std::string code_fill(section_size_type length)240 code_fill(section_size_type length) const 241 { return this->do_code_fill(length); } 242 243 // Return whether SYM is known to be defined by the ABI. This is 244 // used to avoid inappropriate warnings about undefined symbols. 245 bool is_defined_by_abi(const Symbol * sym)246 is_defined_by_abi(const Symbol* sym) const 247 { return this->do_is_defined_by_abi(sym); } 248 249 // Adjust the output file header before it is written out. VIEW 250 // points to the header in external form. LEN is the length. 251 void adjust_elf_header(unsigned char * view,int len)252 adjust_elf_header(unsigned char* view, int len) 253 { return this->do_adjust_elf_header(view, len); } 254 255 // Return address and size to plug into eh_frame FDEs associated with a PLT. 256 void plt_fde_location(const Output_data * plt,unsigned char * oview,uint64_t * address,off_t * len)257 plt_fde_location(const Output_data* plt, unsigned char* oview, 258 uint64_t* address, off_t* len) const 259 { return this->do_plt_fde_location(plt, oview, address, len); } 260 261 // Return whether NAME is a local label name. This is used to implement the 262 // --discard-locals options. 263 bool is_local_label_name(const char * name)264 is_local_label_name(const char* name) const 265 { return this->do_is_local_label_name(name); } 266 267 // Get the symbol index to use for a target specific reloc. 268 unsigned int reloc_symbol_index(void * arg,unsigned int type)269 reloc_symbol_index(void* arg, unsigned int type) const 270 { return this->do_reloc_symbol_index(arg, type); } 271 272 // Get the addend to use for a target specific reloc. 273 uint64_t reloc_addend(void * arg,unsigned int type,uint64_t addend)274 reloc_addend(void* arg, unsigned int type, uint64_t addend) const 275 { return this->do_reloc_addend(arg, type, addend); } 276 277 // Return the PLT address to use for a global symbol. 278 uint64_t plt_address_for_global(const Symbol * sym)279 plt_address_for_global(const Symbol* sym) const 280 { return this->do_plt_address_for_global(sym); } 281 282 // Return the PLT address to use for a local symbol. 283 uint64_t plt_address_for_local(const Relobj * object,unsigned int symndx)284 plt_address_for_local(const Relobj* object, unsigned int symndx) const 285 { return this->do_plt_address_for_local(object, symndx); } 286 287 // Return the offset to use for the GOT_INDX'th got entry which is 288 // for a local tls symbol specified by OBJECT, SYMNDX. 289 int64_t tls_offset_for_local(const Relobj * object,unsigned int symndx,Output_data_got_base * got,unsigned int got_indx,uint64_t addend)290 tls_offset_for_local(const Relobj* object, 291 unsigned int symndx, 292 Output_data_got_base* got, 293 unsigned int got_indx, 294 uint64_t addend) const 295 { return do_tls_offset_for_local(object, symndx, got, got_indx, addend); } 296 297 // Return the offset to use for the GOT_INDX'th got entry which is 298 // for global tls symbol GSYM. 299 int64_t tls_offset_for_global(Symbol * gsym,Output_data_got_base * got,unsigned int got_indx,uint64_t addend)300 tls_offset_for_global(Symbol* gsym, 301 Output_data_got_base* got, 302 unsigned int got_indx, 303 uint64_t addend) const 304 { return do_tls_offset_for_global(gsym, got, got_indx, addend); } 305 306 // For targets that use function descriptors, if LOC is the location 307 // of a function, modify it to point at the function entry location. 308 void function_location(Symbol_location * loc)309 function_location(Symbol_location* loc) const 310 { return do_function_location(loc); } 311 312 // Return whether this target can use relocation types to determine 313 // if a function's address is taken. 314 bool can_check_for_function_pointers()315 can_check_for_function_pointers() const 316 { return this->do_can_check_for_function_pointers(); } 317 318 // Return whether a relocation to a merged section can be processed 319 // to retrieve the contents. 320 bool can_icf_inline_merge_sections()321 can_icf_inline_merge_sections () const 322 { return this->pti_->can_icf_inline_merge_sections; } 323 324 // Whether a section called SECTION_NAME may have function pointers to 325 // sections not eligible for safe ICF folding. 326 virtual bool section_may_have_icf_unsafe_pointers(const char * section_name)327 section_may_have_icf_unsafe_pointers(const char* section_name) const 328 { return this->do_section_may_have_icf_unsafe_pointers(section_name); } 329 330 // Return the base to use for the PC value in an FDE when it is 331 // encoded using DW_EH_PE_datarel. This does not appear to be 332 // documented anywhere, but it is target specific. Any use of 333 // DW_EH_PE_datarel in gcc requires defining a special macro 334 // (ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX) to output the value. 335 uint64_t ehframe_datarel_base()336 ehframe_datarel_base() const 337 { return this->do_ehframe_datarel_base(); } 338 339 // Return true if a reference to SYM from a reloc at *PRELOC 340 // means that the current function may call an object compiled 341 // without -fsplit-stack. SYM is known to be defined in an object 342 // compiled without -fsplit-stack. 343 bool is_call_to_non_split(const Symbol * sym,const unsigned char * preloc,const unsigned char * view,section_size_type view_size)344 is_call_to_non_split(const Symbol* sym, const unsigned char* preloc, 345 const unsigned char* view, 346 section_size_type view_size) const 347 { return this->do_is_call_to_non_split(sym, preloc, view, view_size); } 348 349 // A function starts at OFFSET in section SHNDX in OBJECT. That 350 // function was compiled with -fsplit-stack, but it refers to a 351 // function which was compiled without -fsplit-stack. VIEW is a 352 // modifiable view of the section; VIEW_SIZE is the size of the 353 // view. The target has to adjust the function so that it allocates 354 // enough stack. 355 void calls_non_split(Relobj * object,unsigned int shndx,section_offset_type fnoffset,section_size_type fnsize,const unsigned char * prelocs,size_t reloc_count,unsigned char * view,section_size_type view_size,std::string * from,std::string * to)356 calls_non_split(Relobj* object, unsigned int shndx, 357 section_offset_type fnoffset, section_size_type fnsize, 358 const unsigned char* prelocs, size_t reloc_count, 359 unsigned char* view, section_size_type view_size, 360 std::string* from, std::string* to) const 361 { 362 this->do_calls_non_split(object, shndx, fnoffset, fnsize, 363 prelocs, reloc_count, view, view_size, 364 from, to); 365 } 366 367 // Make an ELF object. 368 template<int size, bool big_endian> 369 Object* make_elf_object(const std::string & name,Input_file * input_file,off_t offset,const elfcpp::Ehdr<size,big_endian> & ehdr)370 make_elf_object(const std::string& name, Input_file* input_file, 371 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr) 372 { return this->do_make_elf_object(name, input_file, offset, ehdr); } 373 374 // Make an output section. 375 Output_section* make_output_section(const char * name,elfcpp::Elf_Word type,elfcpp::Elf_Xword flags)376 make_output_section(const char* name, elfcpp::Elf_Word type, 377 elfcpp::Elf_Xword flags) 378 { return this->do_make_output_section(name, type, flags); } 379 380 // Return true if target wants to perform relaxation. 381 bool may_relax()382 may_relax() const 383 { 384 // Run the dummy relaxation pass twice if relaxation debugging is enabled. 385 if (is_debugging_enabled(DEBUG_RELAXATION)) 386 return true; 387 388 return this->do_may_relax(); 389 } 390 391 // Perform a relaxation pass. Return true if layout may be changed. 392 bool relax(int pass,const Input_objects * input_objects,Symbol_table * symtab,Layout * layout,const Task * task)393 relax(int pass, const Input_objects* input_objects, Symbol_table* symtab, 394 Layout* layout, const Task* task) 395 { 396 // Run the dummy relaxation pass twice if relaxation debugging is enabled. 397 if (is_debugging_enabled(DEBUG_RELAXATION)) 398 return pass < 2; 399 400 return this->do_relax(pass, input_objects, symtab, layout, task); 401 } 402 403 // Return the target-specific name of attributes section. This is 404 // NULL if a target does not use attributes section or if it uses 405 // the default section name ".gnu.attributes". 406 const char* attributes_section()407 attributes_section() const 408 { return this->pti_->attributes_section; } 409 410 // Return the vendor name of vendor attributes. 411 const char* attributes_vendor()412 attributes_vendor() const 413 { return this->pti_->attributes_vendor; } 414 415 // Whether a section called NAME is an attribute section. 416 bool is_attributes_section(const char * name)417 is_attributes_section(const char* name) const 418 { 419 return ((this->pti_->attributes_section != NULL 420 && strcmp(name, this->pti_->attributes_section) == 0) 421 || strcmp(name, ".gnu.attributes") == 0); 422 } 423 424 // Return a bit mask of argument types for attribute with TAG. 425 int attribute_arg_type(int tag)426 attribute_arg_type(int tag) const 427 { return this->do_attribute_arg_type(tag); } 428 429 // Return the attribute tag of the position NUM in the list of fixed 430 // attributes. Normally there is no reordering and 431 // attributes_order(NUM) == NUM. 432 int attributes_order(int num)433 attributes_order(int num) const 434 { return this->do_attributes_order(num); } 435 436 // When a target is selected as the default target, we call this method, 437 // which may be used for expensive, target-specific initialization. 438 void select_as_default_target()439 select_as_default_target() 440 { this->do_select_as_default_target(); } 441 442 // Return the value to store in the EI_OSABI field in the ELF 443 // header. 444 elfcpp::ELFOSABI osabi()445 osabi() const 446 { return this->osabi_; } 447 448 // Set the value to store in the EI_OSABI field in the ELF header. 449 void set_osabi(elfcpp::ELFOSABI osabi)450 set_osabi(elfcpp::ELFOSABI osabi) 451 { this->osabi_ = osabi; } 452 453 // Define target-specific standard symbols. 454 void define_standard_symbols(Symbol_table * symtab,Layout * layout)455 define_standard_symbols(Symbol_table* symtab, Layout* layout) 456 { this->do_define_standard_symbols(symtab, layout); } 457 458 // Return the output section name to use given an input section 459 // name, or NULL if no target specific name mapping is required. 460 // Set *PLEN to the length of the name if returning non-NULL. 461 const char* output_section_name(const Relobj * relobj,const char * name,size_t * plen)462 output_section_name(const Relobj* relobj, 463 const char* name, 464 size_t* plen) const 465 { return this->do_output_section_name(relobj, name, plen); } 466 467 // Add any special sections for this symbol to the gc work list. 468 void gc_mark_symbol(Symbol_table * symtab,Symbol * sym)469 gc_mark_symbol(Symbol_table* symtab, Symbol* sym) const 470 { this->do_gc_mark_symbol(symtab, sym); } 471 472 // Return the name of the entry point symbol. 473 const char* entry_symbol_name()474 entry_symbol_name() const 475 { return this->pti_->entry_symbol_name; } 476 477 // Return the size in bits of SHT_HASH entry. 478 int hash_entry_size()479 hash_entry_size() const 480 { return this->pti_->hash_entry_size; } 481 482 // Return the section type to use for unwind sections. 483 unsigned int unwind_section_type()484 unwind_section_type() const 485 { return this->pti_->unwind_section_type; } 486 487 // Whether the target has a custom set_dynsym_indexes method. 488 bool has_custom_set_dynsym_indexes()489 has_custom_set_dynsym_indexes() const 490 { return this->do_has_custom_set_dynsym_indexes(); } 491 492 // Custom set_dynsym_indexes method for a target. 493 unsigned int set_dynsym_indexes(std::vector<Symbol * > * dyn_symbols,unsigned int index,std::vector<Symbol * > * syms,Stringpool * dynpool,Versions * versions,Symbol_table * symtab)494 set_dynsym_indexes(std::vector<Symbol*>* dyn_symbols, unsigned int index, 495 std::vector<Symbol*>* syms, Stringpool* dynpool, 496 Versions* versions, Symbol_table* symtab) const 497 { 498 return this->do_set_dynsym_indexes(dyn_symbols, index, syms, dynpool, 499 versions, symtab); 500 } 501 502 // Get the custom dynamic tag value. 503 unsigned int dynamic_tag_custom_value(elfcpp::DT tag)504 dynamic_tag_custom_value(elfcpp::DT tag) const 505 { return this->do_dynamic_tag_custom_value(tag); } 506 507 // Adjust the value written to the dynamic symbol table. 508 void adjust_dyn_symbol(const Symbol * sym,unsigned char * view)509 adjust_dyn_symbol(const Symbol* sym, unsigned char* view) const 510 { this->do_adjust_dyn_symbol(sym, view); } 511 512 // Return whether to include the section in the link. 513 bool should_include_section(elfcpp::Elf_Word sh_type)514 should_include_section(elfcpp::Elf_Word sh_type) const 515 { return this->do_should_include_section(sh_type); } 516 517 // Finalize the target-specific properties in the .note.gnu.property section. 518 void finalize_gnu_properties(Layout * layout)519 finalize_gnu_properties(Layout* layout) const 520 { this->do_finalize_gnu_properties(layout); } 521 522 protected: 523 // This struct holds the constant information for a child class. We 524 // use a struct to avoid the overhead of virtual function calls for 525 // simple information. 526 struct Target_info 527 { 528 // Address size (32 or 64). 529 int size; 530 // Whether the target is big endian. 531 bool is_big_endian; 532 // The code to store in the e_machine field of the ELF header. 533 elfcpp::EM machine_code; 534 // Whether this target has a specific make_symbol function. 535 bool has_make_symbol; 536 // Whether this target has a specific resolve function. 537 bool has_resolve; 538 // Whether this target has a specific code fill function. 539 bool has_code_fill; 540 // Whether an object file with no .note.GNU-stack sections implies 541 // that the stack should be executable. 542 bool is_default_stack_executable; 543 // Whether a relocation to a merged section can be processed to 544 // retrieve the contents. 545 bool can_icf_inline_merge_sections; 546 // Prefix character to strip when checking for wrapping. 547 char wrap_char; 548 // The default dynamic linker name. 549 const char* dynamic_linker; 550 // The default text segment address. 551 uint64_t default_text_segment_address; 552 // The ABI specified page size. 553 uint64_t abi_pagesize; 554 // The common page size used by actual implementations. 555 uint64_t common_pagesize; 556 // Whether PF_X segments must contain nothing but the contents of 557 // SHF_EXECINSTR sections (no non-executable data, no headers). 558 bool isolate_execinstr; 559 // If nonzero, distance from the text segment to the read-only segment. 560 uint64_t rosegment_gap; 561 // The special section index for small common symbols; SHN_UNDEF 562 // if none. 563 elfcpp::Elf_Half small_common_shndx; 564 // The special section index for large common symbols; SHN_UNDEF 565 // if none. 566 elfcpp::Elf_Half large_common_shndx; 567 // Section flags for small common section. 568 elfcpp::Elf_Xword small_common_section_flags; 569 // Section flags for large common section. 570 elfcpp::Elf_Xword large_common_section_flags; 571 // Name of attributes section if it is not ".gnu.attributes". 572 const char* attributes_section; 573 // Vendor name of vendor attributes. 574 const char* attributes_vendor; 575 // Name of the main entry point to the program. 576 const char* entry_symbol_name; 577 // Size (in bits) of SHT_HASH entry. Always equal to 32, except for 578 // 64-bit S/390. 579 const int hash_entry_size; 580 // Processor-specific section type for ".eh_frame" (unwind) sections. 581 // SHT_PROGBITS if there is no special section type. 582 const unsigned int unwind_section_type; 583 }; 584 Target(const Target_info * pti)585 Target(const Target_info* pti) 586 : pti_(pti), processor_specific_flags_(0), 587 are_processor_specific_flags_set_(false), osabi_(elfcpp::ELFOSABI_NONE) 588 { } 589 590 // Virtual function which may be implemented by the child class. 591 virtual void do_new_output_section(Output_section *)592 do_new_output_section(Output_section*) const 593 { } 594 595 // Virtual function which may be implemented by the child class. 596 virtual void do_finalize_sections(Layout *,const Input_objects *,Symbol_table *)597 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*) 598 { } 599 600 // Virtual function which may be implemented by the child class. 601 virtual uint64_t do_dynsym_value(const Symbol *)602 do_dynsym_value(const Symbol*) const 603 { gold_unreachable(); } 604 605 // Virtual function which must be implemented by the child class if 606 // needed. 607 virtual std::string do_code_fill(section_size_type)608 do_code_fill(section_size_type) const 609 { gold_unreachable(); } 610 611 // Virtual function which may be implemented by the child class. 612 virtual bool do_is_defined_by_abi(const Symbol *)613 do_is_defined_by_abi(const Symbol*) const 614 { return false; } 615 616 // Adjust the output file header before it is written out. VIEW 617 // points to the header in external form. LEN is the length, and 618 // will be one of the values of elfcpp::Elf_sizes<size>::ehdr_size. 619 // By default, we set the EI_OSABI field if requested (in 620 // Sized_target). 621 virtual void 622 do_adjust_elf_header(unsigned char*, int) = 0; 623 624 // Return address and size to plug into eh_frame FDEs associated with a PLT. 625 virtual void 626 do_plt_fde_location(const Output_data* plt, unsigned char* oview, 627 uint64_t* address, off_t* len) const; 628 629 // Virtual function which may be overridden by the child class. 630 virtual bool 631 do_is_local_label_name(const char*) const; 632 633 // Virtual function that must be overridden by a target which uses 634 // target specific relocations. 635 virtual unsigned int do_reloc_symbol_index(void *,unsigned int)636 do_reloc_symbol_index(void*, unsigned int) const 637 { gold_unreachable(); } 638 639 // Virtual function that must be overridden by a target which uses 640 // target specific relocations. 641 virtual uint64_t do_reloc_addend(void *,unsigned int,uint64_t)642 do_reloc_addend(void*, unsigned int, uint64_t) const 643 { gold_unreachable(); } 644 645 // Virtual functions that must be overridden by a target that uses 646 // STT_GNU_IFUNC symbols. 647 virtual uint64_t do_plt_address_for_global(const Symbol *)648 do_plt_address_for_global(const Symbol*) const 649 { gold_unreachable(); } 650 651 virtual uint64_t do_plt_address_for_local(const Relobj *,unsigned int)652 do_plt_address_for_local(const Relobj*, unsigned int) const 653 { gold_unreachable(); } 654 655 virtual int64_t do_tls_offset_for_local(const Relobj *,unsigned int,Output_data_got_base *,unsigned int,uint64_t)656 do_tls_offset_for_local(const Relobj*, unsigned int, 657 Output_data_got_base*, unsigned int, 658 uint64_t) const 659 { gold_unreachable(); } 660 661 virtual int64_t do_tls_offset_for_global(Symbol *,Output_data_got_base *,unsigned int,uint64_t)662 do_tls_offset_for_global(Symbol*, Output_data_got_base*, unsigned int, 663 uint64_t) const 664 { gold_unreachable(); } 665 666 virtual void 667 do_function_location(Symbol_location*) const = 0; 668 669 // Virtual function which may be overriden by the child class. 670 virtual bool do_can_check_for_function_pointers()671 do_can_check_for_function_pointers() const 672 { return false; } 673 674 // Virtual function which may be overridden by the child class. We 675 // recognize some default sections for which we don't care whether 676 // they have function pointers. 677 virtual bool do_section_may_have_icf_unsafe_pointers(const char * section_name)678 do_section_may_have_icf_unsafe_pointers(const char* section_name) const 679 { 680 // We recognize sections for normal vtables, construction vtables and 681 // EH frames. 682 return (!is_prefix_of(".rodata._ZTV", section_name) 683 && !is_prefix_of(".data.rel.ro._ZTV", section_name) 684 && !is_prefix_of(".rodata._ZTC", section_name) 685 && !is_prefix_of(".data.rel.ro._ZTC", section_name) 686 && !is_prefix_of(".eh_frame", section_name)); 687 } 688 689 virtual uint64_t do_ehframe_datarel_base()690 do_ehframe_datarel_base() const 691 { gold_unreachable(); } 692 693 // Virtual function which may be overridden by the child class. The 694 // default implementation is that any function not defined by the 695 // ABI is a call to a non-split function. 696 virtual bool 697 do_is_call_to_non_split(const Symbol* sym, const unsigned char*, 698 const unsigned char*, section_size_type) const; 699 700 // Virtual function which may be overridden by the child class. 701 virtual void 702 do_calls_non_split(Relobj* object, unsigned int, section_offset_type, 703 section_size_type, const unsigned char*, size_t, 704 unsigned char*, section_size_type, 705 std::string*, std::string*) const; 706 707 // make_elf_object hooks. There are four versions of these for 708 // different address sizes and endianness. 709 710 // Set processor specific flags. 711 void set_processor_specific_flags(elfcpp::Elf_Word flags)712 set_processor_specific_flags(elfcpp::Elf_Word flags) 713 { 714 this->processor_specific_flags_ = flags; 715 this->are_processor_specific_flags_set_ = true; 716 } 717 718 #ifdef HAVE_TARGET_32_LITTLE 719 // Virtual functions which may be overridden by the child class. 720 virtual Object* 721 do_make_elf_object(const std::string&, Input_file*, off_t, 722 const elfcpp::Ehdr<32, false>&); 723 #endif 724 725 #ifdef HAVE_TARGET_32_BIG 726 // Virtual functions which may be overridden by the child class. 727 virtual Object* 728 do_make_elf_object(const std::string&, Input_file*, off_t, 729 const elfcpp::Ehdr<32, true>&); 730 #endif 731 732 #ifdef HAVE_TARGET_64_LITTLE 733 // Virtual functions which may be overridden by the child class. 734 virtual Object* 735 do_make_elf_object(const std::string&, Input_file*, off_t, 736 const elfcpp::Ehdr<64, false>& ehdr); 737 #endif 738 739 #ifdef HAVE_TARGET_64_BIG 740 // Virtual functions which may be overridden by the child class. 741 virtual Object* 742 do_make_elf_object(const std::string& name, Input_file* input_file, 743 off_t offset, const elfcpp::Ehdr<64, true>& ehdr); 744 #endif 745 746 // Virtual functions which may be overridden by the child class. 747 virtual Output_section* 748 do_make_output_section(const char* name, elfcpp::Elf_Word type, 749 elfcpp::Elf_Xword flags); 750 751 // Virtual function which may be overridden by the child class. 752 virtual bool do_may_relax()753 do_may_relax() const 754 { return parameters->options().relax(); } 755 756 // Virtual function which may be overridden by the child class. 757 virtual bool do_relax(int,const Input_objects *,Symbol_table *,Layout *,const Task *)758 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*) 759 { return false; } 760 761 // A function for targets to call. Return whether BYTES/LEN matches 762 // VIEW/VIEW_SIZE at OFFSET. 763 bool 764 match_view(const unsigned char* view, section_size_type view_size, 765 section_offset_type offset, const char* bytes, size_t len) const; 766 767 // Set the contents of a VIEW/VIEW_SIZE to nops starting at OFFSET 768 // for LEN bytes. 769 void 770 set_view_to_nop(unsigned char* view, section_size_type view_size, 771 section_offset_type offset, size_t len) const; 772 773 // This must be overridden by the child class if it has target-specific 774 // attributes subsection in the attribute section. 775 virtual int do_attribute_arg_type(int)776 do_attribute_arg_type(int) const 777 { gold_unreachable(); } 778 779 // This may be overridden by the child class. 780 virtual int do_attributes_order(int num)781 do_attributes_order(int num) const 782 { return num; } 783 784 // This may be overridden by the child class. 785 virtual void do_select_as_default_target()786 do_select_as_default_target() 787 { } 788 789 // This may be overridden by the child class. 790 virtual void do_define_standard_symbols(Symbol_table *,Layout *)791 do_define_standard_symbols(Symbol_table*, Layout*) 792 { } 793 794 // This may be overridden by the child class. 795 virtual const char* do_output_section_name(const Relobj *,const char *,size_t *)796 do_output_section_name(const Relobj*, const char*, size_t*) const 797 { return NULL; } 798 799 // This may be overridden by the child class. 800 virtual void do_gc_mark_symbol(Symbol_table *,Symbol *)801 do_gc_mark_symbol(Symbol_table*, Symbol*) const 802 { } 803 804 // This may be overridden by the child class. 805 virtual bool do_has_custom_set_dynsym_indexes()806 do_has_custom_set_dynsym_indexes() const 807 { return false; } 808 809 // This may be overridden by the child class. 810 virtual unsigned int do_set_dynsym_indexes(std::vector<Symbol * > *,unsigned int,std::vector<Symbol * > *,Stringpool *,Versions *,Symbol_table *)811 do_set_dynsym_indexes(std::vector<Symbol*>*, unsigned int, 812 std::vector<Symbol*>*, Stringpool*, Versions*, 813 Symbol_table*) const 814 { gold_unreachable(); } 815 816 // This may be overridden by the child class. 817 virtual unsigned int do_dynamic_tag_custom_value(elfcpp::DT)818 do_dynamic_tag_custom_value(elfcpp::DT) const 819 { gold_unreachable(); } 820 821 // This may be overridden by the child class. 822 virtual void do_adjust_dyn_symbol(const Symbol *,unsigned char *)823 do_adjust_dyn_symbol(const Symbol*, unsigned char*) const 824 { } 825 826 // This may be overridden by the child class. 827 virtual bool do_should_include_section(elfcpp::Elf_Word)828 do_should_include_section(elfcpp::Elf_Word) const 829 { return true; } 830 831 // Finalize the target-specific properties in the .note.gnu.property section. 832 virtual void do_finalize_gnu_properties(Layout *)833 do_finalize_gnu_properties(Layout*) const 834 { } 835 836 private: 837 // The implementations of the four do_make_elf_object virtual functions are 838 // almost identical except for their sizes and endianness. We use a template. 839 // for their implementations. 840 template<int size, bool big_endian> 841 inline Object* 842 do_make_elf_object_implementation(const std::string&, Input_file*, off_t, 843 const elfcpp::Ehdr<size, big_endian>&); 844 845 Target(const Target&); 846 Target& operator=(const Target&); 847 848 // The target information. 849 const Target_info* pti_; 850 // Processor-specific flags. 851 elfcpp::Elf_Word processor_specific_flags_; 852 // Whether the processor-specific flags are set at least once. 853 bool are_processor_specific_flags_set_; 854 // If not ELFOSABI_NONE, the value to put in the EI_OSABI field of 855 // the ELF header. This is handled at this level because it is 856 // OS-specific rather than processor-specific. 857 elfcpp::ELFOSABI osabi_; 858 }; 859 860 // The abstract class for a specific size and endianness of target. 861 // Each actual target implementation class should derive from an 862 // instantiation of Sized_target. 863 864 template<int size, bool big_endian> 865 class Sized_target : public Target 866 { 867 public: 868 // Make a new symbol table entry for the target. This should be 869 // overridden by a target which needs additional information in the 870 // symbol table. This will only be called if has_make_symbol() 871 // returns true. 872 virtual Sized_symbol<size>* make_symbol(const char *,elfcpp::STT,Object *,unsigned int,uint64_t)873 make_symbol(const char*, elfcpp::STT, Object*, unsigned int, uint64_t) 874 { gold_unreachable(); } 875 876 // Resolve a symbol for the target. This should be overridden by a 877 // target which needs to take special action. TO is the 878 // pre-existing symbol. SYM is the new symbol, seen in OBJECT. 879 // VERSION is the version of SYM. This will only be called if 880 // has_resolve() returns true. 881 virtual bool resolve(Symbol *,const elfcpp::Sym<size,big_endian> &,Object *,const char *)882 resolve(Symbol*, const elfcpp::Sym<size, big_endian>&, Object*, 883 const char*) 884 { gold_unreachable(); } 885 886 // Process the relocs for a section, and record information of the 887 // mapping from source to destination sections. This mapping is later 888 // used to determine unreferenced garbage sections. This procedure is 889 // only called during garbage collection. 890 virtual void 891 gc_process_relocs(Symbol_table* symtab, 892 Layout* layout, 893 Sized_relobj_file<size, big_endian>* object, 894 unsigned int data_shndx, 895 unsigned int sh_type, 896 const unsigned char* prelocs, 897 size_t reloc_count, 898 Output_section* output_section, 899 bool needs_special_offset_handling, 900 size_t local_symbol_count, 901 const unsigned char* plocal_symbols) = 0; 902 903 // Scan the relocs for a section, and record any information 904 // required for the symbol. SYMTAB is the symbol table. OBJECT is 905 // the object in which the section appears. DATA_SHNDX is the 906 // section index that these relocs apply to. SH_TYPE is the type of 907 // the relocation section, SHT_REL or SHT_RELA. PRELOCS points to 908 // the relocation data. RELOC_COUNT is the number of relocs. 909 // LOCAL_SYMBOL_COUNT is the number of local symbols. 910 // OUTPUT_SECTION is the output section. 911 // NEEDS_SPECIAL_OFFSET_HANDLING is true if offsets to the output 912 // sections are not mapped as usual. PLOCAL_SYMBOLS points to the 913 // local symbol data from OBJECT. GLOBAL_SYMBOLS is the array of 914 // pointers to the global symbol table from OBJECT. 915 virtual void 916 scan_relocs(Symbol_table* symtab, 917 Layout* layout, 918 Sized_relobj_file<size, big_endian>* object, 919 unsigned int data_shndx, 920 unsigned int sh_type, 921 const unsigned char* prelocs, 922 size_t reloc_count, 923 Output_section* output_section, 924 bool needs_special_offset_handling, 925 size_t local_symbol_count, 926 const unsigned char* plocal_symbols) = 0; 927 928 // Relocate section data. SH_TYPE is the type of the relocation 929 // section, SHT_REL or SHT_RELA. PRELOCS points to the relocation 930 // information. RELOC_COUNT is the number of relocs. 931 // OUTPUT_SECTION is the output section. 932 // NEEDS_SPECIAL_OFFSET_HANDLING is true if offsets must be mapped 933 // to correspond to the output section. VIEW is a view into the 934 // output file holding the section contents, VIEW_ADDRESS is the 935 // virtual address of the view, and VIEW_SIZE is the size of the 936 // view. If NEEDS_SPECIAL_OFFSET_HANDLING is true, the VIEW_xx 937 // parameters refer to the complete output section data, not just 938 // the input section data. 939 virtual void 940 relocate_section(const Relocate_info<size, big_endian>*, 941 unsigned int sh_type, 942 const unsigned char* prelocs, 943 size_t reloc_count, 944 Output_section* output_section, 945 bool needs_special_offset_handling, 946 unsigned char* view, 947 typename elfcpp::Elf_types<size>::Elf_Addr view_address, 948 section_size_type view_size, 949 const Reloc_symbol_changes*) = 0; 950 951 // Scan the relocs during a relocatable link. The parameters are 952 // like scan_relocs, with an additional Relocatable_relocs 953 // parameter, used to record the disposition of the relocs. 954 virtual void 955 scan_relocatable_relocs(Symbol_table* symtab, 956 Layout* layout, 957 Sized_relobj_file<size, big_endian>* object, 958 unsigned int data_shndx, 959 unsigned int sh_type, 960 const unsigned char* prelocs, 961 size_t reloc_count, 962 Output_section* output_section, 963 bool needs_special_offset_handling, 964 size_t local_symbol_count, 965 const unsigned char* plocal_symbols, 966 Relocatable_relocs*) = 0; 967 968 // Scan the relocs for --emit-relocs. The parameters are 969 // like scan_relocatable_relocs. 970 virtual void 971 emit_relocs_scan(Symbol_table* symtab, 972 Layout* layout, 973 Sized_relobj_file<size, big_endian>* object, 974 unsigned int data_shndx, 975 unsigned int sh_type, 976 const unsigned char* prelocs, 977 size_t reloc_count, 978 Output_section* output_section, 979 bool needs_special_offset_handling, 980 size_t local_symbol_count, 981 const unsigned char* plocal_syms, 982 Relocatable_relocs* rr) = 0; 983 984 // Emit relocations for a section during a relocatable link, and for 985 // --emit-relocs. The parameters are like relocate_section, with 986 // additional parameters for the view of the output reloc section. 987 virtual void 988 relocate_relocs(const Relocate_info<size, big_endian>*, 989 unsigned int sh_type, 990 const unsigned char* prelocs, 991 size_t reloc_count, 992 Output_section* output_section, 993 typename elfcpp::Elf_types<size>::Elf_Off 994 offset_in_output_section, 995 unsigned char* view, 996 typename elfcpp::Elf_types<size>::Elf_Addr view_address, 997 section_size_type view_size, 998 unsigned char* reloc_view, 999 section_size_type reloc_view_size) = 0; 1000 1001 // Perform target-specific processing in a relocatable link. This is 1002 // only used if we use the relocation strategy RELOC_SPECIAL. 1003 // RELINFO points to a Relocation_info structure. SH_TYPE is the relocation 1004 // section type. PRELOC_IN points to the original relocation. RELNUM is 1005 // the index number of the relocation in the relocation section. 1006 // OUTPUT_SECTION is the output section to which the relocation is applied. 1007 // OFFSET_IN_OUTPUT_SECTION is the offset of the relocation input section 1008 // within the output section. VIEW points to the output view of the 1009 // output section. VIEW_ADDRESS is output address of the view. VIEW_SIZE 1010 // is the size of the output view and PRELOC_OUT points to the new 1011 // relocation in the output object. 1012 // 1013 // A target only needs to override this if the generic code in 1014 // target-reloc.h cannot handle some relocation types. 1015 1016 virtual void relocate_special_relocatable(const Relocate_info<size,big_endian> *,unsigned int,const unsigned char *,size_t,Output_section *,typename elfcpp::Elf_types<size>::Elf_Off,unsigned char *,typename elfcpp::Elf_types<size>::Elf_Addr,section_size_type,unsigned char *)1017 relocate_special_relocatable(const Relocate_info<size, big_endian>* 1018 /*relinfo */, 1019 unsigned int /* sh_type */, 1020 const unsigned char* /* preloc_in */, 1021 size_t /* relnum */, 1022 Output_section* /* output_section */, 1023 typename elfcpp::Elf_types<size>::Elf_Off 1024 /* offset_in_output_section */, 1025 unsigned char* /* view */, 1026 typename elfcpp::Elf_types<size>::Elf_Addr 1027 /* view_address */, 1028 section_size_type /* view_size */, 1029 unsigned char* /* preloc_out*/) 1030 { gold_unreachable(); } 1031 1032 // Return the number of entries in the GOT. This is only used for 1033 // laying out the incremental link info sections. A target needs 1034 // to implement this to support incremental linking. 1035 1036 virtual unsigned int got_entry_count()1037 got_entry_count() const 1038 { gold_unreachable(); } 1039 1040 // Return the number of entries in the PLT. This is only used for 1041 // laying out the incremental link info sections. A target needs 1042 // to implement this to support incremental linking. 1043 1044 virtual unsigned int plt_entry_count()1045 plt_entry_count() const 1046 { gold_unreachable(); } 1047 1048 // Return the offset of the first non-reserved PLT entry. This is 1049 // only used for laying out the incremental link info sections. 1050 // A target needs to implement this to support incremental linking. 1051 1052 virtual unsigned int first_plt_entry_offset()1053 first_plt_entry_offset() const 1054 { gold_unreachable(); } 1055 1056 // Return the size of each PLT entry. This is only used for 1057 // laying out the incremental link info sections. A target needs 1058 // to implement this to support incremental linking. 1059 1060 virtual unsigned int plt_entry_size()1061 plt_entry_size() const 1062 { gold_unreachable(); } 1063 1064 // Return the size of each GOT entry. This is only used for 1065 // laying out the incremental link info sections. A target needs 1066 // to implement this if its GOT size is different. 1067 1068 virtual unsigned int got_entry_size()1069 got_entry_size() const 1070 { return size / 8; } 1071 1072 // Create the GOT and PLT sections for an incremental update. 1073 // A target needs to implement this to support incremental linking. 1074 1075 virtual Output_data_got_base* init_got_plt_for_update(Symbol_table *,Layout *,unsigned int,unsigned int)1076 init_got_plt_for_update(Symbol_table*, 1077 Layout*, 1078 unsigned int /* got_count */, 1079 unsigned int /* plt_count */) 1080 { gold_unreachable(); } 1081 1082 // Reserve a GOT entry for a local symbol, and regenerate any 1083 // necessary dynamic relocations. 1084 virtual void reserve_local_got_entry(unsigned int,Sized_relobj<size,big_endian> *,unsigned int,unsigned int)1085 reserve_local_got_entry(unsigned int /* got_index */, 1086 Sized_relobj<size, big_endian>* /* obj */, 1087 unsigned int /* r_sym */, 1088 unsigned int /* got_type */) 1089 { gold_unreachable(); } 1090 1091 // Reserve a GOT entry for a global symbol, and regenerate any 1092 // necessary dynamic relocations. 1093 virtual void reserve_global_got_entry(unsigned int,Symbol *,unsigned int)1094 reserve_global_got_entry(unsigned int /* got_index */, Symbol* /* gsym */, 1095 unsigned int /* got_type */) 1096 { gold_unreachable(); } 1097 1098 // Register an existing PLT entry for a global symbol. 1099 // A target needs to implement this to support incremental linking. 1100 1101 virtual void register_global_plt_entry(Symbol_table *,Layout *,unsigned int,Symbol *)1102 register_global_plt_entry(Symbol_table*, Layout*, 1103 unsigned int /* plt_index */, 1104 Symbol*) 1105 { gold_unreachable(); } 1106 1107 // Force a COPY relocation for a given symbol. 1108 // A target needs to implement this to support incremental linking. 1109 1110 virtual void emit_copy_reloc(Symbol_table *,Symbol *,Output_section *,off_t)1111 emit_copy_reloc(Symbol_table*, Symbol*, Output_section*, off_t) 1112 { gold_unreachable(); } 1113 1114 // Apply an incremental relocation. 1115 1116 virtual void apply_relocation(const Relocate_info<size,big_endian> *,typename elfcpp::Elf_types<size>::Elf_Addr,unsigned int,typename elfcpp::Elf_types<size>::Elf_Swxword,const Symbol *,unsigned char *,typename elfcpp::Elf_types<size>::Elf_Addr,section_size_type)1117 apply_relocation(const Relocate_info<size, big_endian>* /* relinfo */, 1118 typename elfcpp::Elf_types<size>::Elf_Addr /* r_offset */, 1119 unsigned int /* r_type */, 1120 typename elfcpp::Elf_types<size>::Elf_Swxword /* r_addend */, 1121 const Symbol* /* gsym */, 1122 unsigned char* /* view */, 1123 typename elfcpp::Elf_types<size>::Elf_Addr /* address */, 1124 section_size_type /* view_size */) 1125 { gold_unreachable(); } 1126 1127 // Handle target specific gc actions when adding a gc reference from 1128 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX 1129 // and DST_OFF. 1130 void gc_add_reference(Symbol_table * symtab,Relobj * src_obj,unsigned int src_shndx,Relobj * dst_obj,unsigned int dst_shndx,typename elfcpp::Elf_types<size>::Elf_Addr dst_off)1131 gc_add_reference(Symbol_table* symtab, 1132 Relobj* src_obj, 1133 unsigned int src_shndx, 1134 Relobj* dst_obj, 1135 unsigned int dst_shndx, 1136 typename elfcpp::Elf_types<size>::Elf_Addr dst_off) const 1137 { 1138 this->do_gc_add_reference(symtab, src_obj, src_shndx, 1139 dst_obj, dst_shndx, dst_off); 1140 } 1141 1142 // Return the r_sym field from a relocation. 1143 // Most targets can use the default version of this routine, 1144 // but some targets have a non-standard r_info field, and will 1145 // need to provide a target-specific version. 1146 virtual unsigned int get_r_sym(const unsigned char * preloc)1147 get_r_sym(const unsigned char* preloc) const 1148 { 1149 // Since REL and RELA relocs share the same structure through 1150 // the r_info field, we can just use REL here. 1151 elfcpp::Rel<size, big_endian> rel(preloc); 1152 return elfcpp::elf_r_sym<size>(rel.get_r_info()); 1153 } 1154 1155 // Record a target-specific program property in the .note.gnu.property 1156 // section. 1157 virtual void record_gnu_property(unsigned int,unsigned int,size_t,const unsigned char *,const Object *)1158 record_gnu_property(unsigned int, unsigned int, size_t, 1159 const unsigned char*, const Object*) 1160 { } 1161 1162 // Merge the target-specific program properties from the current object. 1163 virtual void merge_gnu_properties(const Object *)1164 merge_gnu_properties(const Object*) 1165 { } 1166 1167 protected: Sized_target(const Target::Target_info * pti)1168 Sized_target(const Target::Target_info* pti) 1169 : Target(pti) 1170 { 1171 gold_assert(pti->size == size); 1172 gold_assert(pti->is_big_endian ? big_endian : !big_endian); 1173 } 1174 1175 // Set the EI_OSABI field if requested. 1176 virtual void 1177 do_adjust_elf_header(unsigned char*, int); 1178 1179 // Handle target specific gc actions when adding a gc reference. 1180 virtual void do_gc_add_reference(Symbol_table *,Relobj *,unsigned int,Relobj *,unsigned int,typename elfcpp::Elf_types<size>::Elf_Addr)1181 do_gc_add_reference(Symbol_table*, Relobj*, unsigned int, 1182 Relobj*, unsigned int, 1183 typename elfcpp::Elf_types<size>::Elf_Addr) const 1184 { } 1185 1186 virtual void do_function_location(Symbol_location *)1187 do_function_location(Symbol_location*) const 1188 { } 1189 }; 1190 1191 } // End namespace gold. 1192 1193 #endif // !defined(GOLD_TARGET_H) 1194