xref: /netbsd-src/external/gpl3/binutils.old/dist/gold/target.h (revision e992f068c547fd6e84b3f104dc2340adcc955732)
1 // target.h -- target support for gold   -*- C++ -*-
2 
3 // Copyright (C) 2006-2022 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5 
6 // This file is part of gold.
7 
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12 
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17 
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22 
23 // The abstract class Target is the interface for target specific
24 // support.  It defines abstract methods which each target must
25 // implement.  Typically there will be one target per processor, but
26 // in some cases it may be necessary to have subclasses.
27 
28 // For speed and consistency we want to use inline functions to handle
29 // relocation processing.  So besides implementations of the abstract
30 // methods, each target is expected to define a template
31 // specialization of the relocation functions.
32 
33 #ifndef GOLD_TARGET_H
34 #define GOLD_TARGET_H
35 
36 #include "elfcpp.h"
37 #include "options.h"
38 #include "parameters.h"
39 #include "stringpool.h"
40 #include "debug.h"
41 
42 namespace gold
43 {
44 
45 class Object;
46 class Relobj;
47 template<int size, bool big_endian>
48 class Sized_relobj;
49 template<int size, bool big_endian>
50 class Sized_relobj_file;
51 class Relocatable_relocs;
52 template<int size, bool big_endian>
53 struct Relocate_info;
54 class Reloc_symbol_changes;
55 class Symbol;
56 template<int size>
57 class Sized_symbol;
58 class Symbol_table;
59 class Output_data;
60 class Output_data_got_base;
61 class Output_section;
62 class Input_objects;
63 class Task;
64 struct Symbol_location;
65 class Versions;
66 
67 // The abstract class for target specific handling.
68 
69 class Target
70 {
71  public:
~Target()72   virtual ~Target()
73   { }
74 
75   // Return the bit size that this target implements.  This should
76   // return 32 or 64.
77   int
get_size()78   get_size() const
79   { return this->pti_->size; }
80 
81   // Return whether this target is big-endian.
82   bool
is_big_endian()83   is_big_endian() const
84   { return this->pti_->is_big_endian; }
85 
86   // Machine code to store in e_machine field of ELF header.
87   elfcpp::EM
machine_code()88   machine_code() const
89   { return this->pti_->machine_code; }
90 
91   // Processor specific flags to store in e_flags field of ELF header.
92   elfcpp::Elf_Word
processor_specific_flags()93   processor_specific_flags() const
94   { return this->processor_specific_flags_; }
95 
96   // Whether processor specific flags are set at least once.
97   bool
are_processor_specific_flags_set()98   are_processor_specific_flags_set() const
99   { return this->are_processor_specific_flags_set_; }
100 
101   // Whether this target has a specific make_symbol function.
102   bool
has_make_symbol()103   has_make_symbol() const
104   { return this->pti_->has_make_symbol; }
105 
106   // Whether this target has a specific resolve function.
107   bool
has_resolve()108   has_resolve() const
109   { return this->pti_->has_resolve; }
110 
111   // Whether this target has a specific code fill function.
112   bool
has_code_fill()113   has_code_fill() const
114   { return this->pti_->has_code_fill; }
115 
116   // Return the default name of the dynamic linker.
117   const char*
dynamic_linker()118   dynamic_linker() const
119   { return this->pti_->dynamic_linker; }
120 
121   // Return the default address to use for the text segment.
122   // If a -z max-page-size argument has set the ABI page size
123   // to a value larger than the default starting address,
124   // bump the starting address up to the page size, to avoid
125   // misaligning the text segment in the file.
126   uint64_t
default_text_segment_address()127   default_text_segment_address() const
128   {
129     uint64_t addr = this->pti_->default_text_segment_address;
130     uint64_t pagesize = this->abi_pagesize();
131     if (addr < pagesize)
132       addr = pagesize;
133     return addr;
134   }
135 
136   // Return the ABI specified page size.
137   uint64_t
abi_pagesize()138   abi_pagesize() const
139   {
140     if (parameters->options().max_page_size() > 0)
141       return parameters->options().max_page_size();
142     else
143       return this->pti_->abi_pagesize;
144   }
145 
146   // Return the common page size used on actual systems.
147   uint64_t
common_pagesize()148   common_pagesize() const
149   {
150     if (parameters->options().common_page_size() > 0)
151       return std::min(parameters->options().common_page_size(),
152 		      this->abi_pagesize());
153     else
154       return std::min(this->pti_->common_pagesize,
155 		      this->abi_pagesize());
156   }
157 
158   // Return whether PF_X segments must contain nothing but the contents of
159   // SHF_EXECINSTR sections (no non-executable data, no headers).
160   bool
isolate_execinstr()161   isolate_execinstr() const
162   { return this->pti_->isolate_execinstr; }
163 
164   uint64_t
rosegment_gap()165   rosegment_gap() const
166   { return this->pti_->rosegment_gap; }
167 
168   // If we see some object files with .note.GNU-stack sections, and
169   // some objects files without them, this returns whether we should
170   // consider the object files without them to imply that the stack
171   // should be executable.
172   bool
is_default_stack_executable()173   is_default_stack_executable() const
174   { return this->pti_->is_default_stack_executable; }
175 
176   // Return a character which may appear as a prefix for a wrap
177   // symbol.  If this character appears, we strip it when checking for
178   // wrapping and add it back when forming the final symbol name.
179   // This should be '\0' if not special prefix is required, which is
180   // the normal case.
181   char
wrap_char()182   wrap_char() const
183   { return this->pti_->wrap_char; }
184 
185   // Return the special section index which indicates a small common
186   // symbol.  This will return SHN_UNDEF if there are no small common
187   // symbols.
188   elfcpp::Elf_Half
small_common_shndx()189   small_common_shndx() const
190   { return this->pti_->small_common_shndx; }
191 
192   // Return values to add to the section flags for the section holding
193   // small common symbols.
194   elfcpp::Elf_Xword
small_common_section_flags()195   small_common_section_flags() const
196   {
197     gold_assert(this->pti_->small_common_shndx != elfcpp::SHN_UNDEF);
198     return this->pti_->small_common_section_flags;
199   }
200 
201   // Return the special section index which indicates a large common
202   // symbol.  This will return SHN_UNDEF if there are no large common
203   // symbols.
204   elfcpp::Elf_Half
large_common_shndx()205   large_common_shndx() const
206   { return this->pti_->large_common_shndx; }
207 
208   // Return values to add to the section flags for the section holding
209   // large common symbols.
210   elfcpp::Elf_Xword
large_common_section_flags()211   large_common_section_flags() const
212   {
213     gold_assert(this->pti_->large_common_shndx != elfcpp::SHN_UNDEF);
214     return this->pti_->large_common_section_flags;
215   }
216 
217   // This hook is called when an output section is created.
218   void
new_output_section(Output_section * os)219   new_output_section(Output_section* os) const
220   { this->do_new_output_section(os); }
221 
222   // This is called to tell the target to complete any sections it is
223   // handling.  After this all sections must have their final size.
224   void
finalize_sections(Layout * layout,const Input_objects * input_objects,Symbol_table * symtab)225   finalize_sections(Layout* layout, const Input_objects* input_objects,
226 		    Symbol_table* symtab)
227   { return this->do_finalize_sections(layout, input_objects, symtab); }
228 
229   // Return the value to use for a global symbol which needs a special
230   // value in the dynamic symbol table.  This will only be called if
231   // the backend first calls symbol->set_needs_dynsym_value().
232   uint64_t
dynsym_value(const Symbol * sym)233   dynsym_value(const Symbol* sym) const
234   { return this->do_dynsym_value(sym); }
235 
236   // Return a string to use to fill out a code section.  This is
237   // basically one or more NOPS which must fill out the specified
238   // length in bytes.
239   std::string
code_fill(section_size_type length)240   code_fill(section_size_type length) const
241   { return this->do_code_fill(length); }
242 
243   // Return whether SYM is known to be defined by the ABI.  This is
244   // used to avoid inappropriate warnings about undefined symbols.
245   bool
is_defined_by_abi(const Symbol * sym)246   is_defined_by_abi(const Symbol* sym) const
247   { return this->do_is_defined_by_abi(sym); }
248 
249   // Adjust the output file header before it is written out.  VIEW
250   // points to the header in external form.  LEN is the length.
251   void
adjust_elf_header(unsigned char * view,int len)252   adjust_elf_header(unsigned char* view, int len)
253   { return this->do_adjust_elf_header(view, len); }
254 
255   // Return address and size to plug into eh_frame FDEs associated with a PLT.
256   void
plt_fde_location(const Output_data * plt,unsigned char * oview,uint64_t * address,off_t * len)257   plt_fde_location(const Output_data* plt, unsigned char* oview,
258 		   uint64_t* address, off_t* len) const
259   { return this->do_plt_fde_location(plt, oview, address, len); }
260 
261   // Return whether NAME is a local label name.  This is used to implement the
262   // --discard-locals options.
263   bool
is_local_label_name(const char * name)264   is_local_label_name(const char* name) const
265   { return this->do_is_local_label_name(name); }
266 
267   // Get the symbol index to use for a target specific reloc.
268   unsigned int
reloc_symbol_index(void * arg,unsigned int type)269   reloc_symbol_index(void* arg, unsigned int type) const
270   { return this->do_reloc_symbol_index(arg, type); }
271 
272   // Get the addend to use for a target specific reloc.
273   uint64_t
reloc_addend(void * arg,unsigned int type,uint64_t addend)274   reloc_addend(void* arg, unsigned int type, uint64_t addend) const
275   { return this->do_reloc_addend(arg, type, addend); }
276 
277   // Return the PLT address to use for a global symbol.
278   uint64_t
plt_address_for_global(const Symbol * sym)279   plt_address_for_global(const Symbol* sym) const
280   { return this->do_plt_address_for_global(sym); }
281 
282   // Return the PLT address to use for a local symbol.
283   uint64_t
plt_address_for_local(const Relobj * object,unsigned int symndx)284   plt_address_for_local(const Relobj* object, unsigned int symndx) const
285   { return this->do_plt_address_for_local(object, symndx); }
286 
287   // Return the offset to use for the GOT_INDX'th got entry which is
288   // for a local tls symbol specified by OBJECT, SYMNDX.
289   int64_t
tls_offset_for_local(const Relobj * object,unsigned int symndx,Output_data_got_base * got,unsigned int got_indx,uint64_t addend)290   tls_offset_for_local(const Relobj* object,
291 		       unsigned int symndx,
292 		       Output_data_got_base* got,
293 		       unsigned int got_indx,
294 		       uint64_t addend) const
295   { return do_tls_offset_for_local(object, symndx, got, got_indx, addend); }
296 
297   // Return the offset to use for the GOT_INDX'th got entry which is
298   // for global tls symbol GSYM.
299   int64_t
tls_offset_for_global(Symbol * gsym,Output_data_got_base * got,unsigned int got_indx,uint64_t addend)300   tls_offset_for_global(Symbol* gsym,
301 			Output_data_got_base* got,
302 			unsigned int got_indx,
303 			uint64_t addend) const
304   { return do_tls_offset_for_global(gsym, got, got_indx, addend); }
305 
306   // For targets that use function descriptors, if LOC is the location
307   // of a function, modify it to point at the function entry location.
308   void
function_location(Symbol_location * loc)309   function_location(Symbol_location* loc) const
310   { return do_function_location(loc); }
311 
312   // Return whether this target can use relocation types to determine
313   // if a function's address is taken.
314   bool
can_check_for_function_pointers()315   can_check_for_function_pointers() const
316   { return this->do_can_check_for_function_pointers(); }
317 
318   // Return whether a relocation to a merged section can be processed
319   // to retrieve the contents.
320   bool
can_icf_inline_merge_sections()321   can_icf_inline_merge_sections () const
322   { return this->pti_->can_icf_inline_merge_sections; }
323 
324   // Whether a section called SECTION_NAME may have function pointers to
325   // sections not eligible for safe ICF folding.
326   virtual bool
section_may_have_icf_unsafe_pointers(const char * section_name)327   section_may_have_icf_unsafe_pointers(const char* section_name) const
328   { return this->do_section_may_have_icf_unsafe_pointers(section_name); }
329 
330   // Return the base to use for the PC value in an FDE when it is
331   // encoded using DW_EH_PE_datarel.  This does not appear to be
332   // documented anywhere, but it is target specific.  Any use of
333   // DW_EH_PE_datarel in gcc requires defining a special macro
334   // (ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX) to output the value.
335   uint64_t
ehframe_datarel_base()336   ehframe_datarel_base() const
337   { return this->do_ehframe_datarel_base(); }
338 
339   // Return true if a reference to SYM from a reloc at *PRELOC
340   // means that the current function may call an object compiled
341   // without -fsplit-stack.  SYM is known to be defined in an object
342   // compiled without -fsplit-stack.
343   bool
is_call_to_non_split(const Symbol * sym,const unsigned char * preloc,const unsigned char * view,section_size_type view_size)344   is_call_to_non_split(const Symbol* sym, const unsigned char* preloc,
345 		       const unsigned char* view,
346 		       section_size_type view_size) const
347   { return this->do_is_call_to_non_split(sym, preloc, view, view_size); }
348 
349   // A function starts at OFFSET in section SHNDX in OBJECT.  That
350   // function was compiled with -fsplit-stack, but it refers to a
351   // function which was compiled without -fsplit-stack.  VIEW is a
352   // modifiable view of the section; VIEW_SIZE is the size of the
353   // view.  The target has to adjust the function so that it allocates
354   // enough stack.
355   void
calls_non_split(Relobj * object,unsigned int shndx,section_offset_type fnoffset,section_size_type fnsize,const unsigned char * prelocs,size_t reloc_count,unsigned char * view,section_size_type view_size,std::string * from,std::string * to)356   calls_non_split(Relobj* object, unsigned int shndx,
357 		  section_offset_type fnoffset, section_size_type fnsize,
358 		  const unsigned char* prelocs, size_t reloc_count,
359 		  unsigned char* view, section_size_type view_size,
360 		  std::string* from, std::string* to) const
361   {
362     this->do_calls_non_split(object, shndx, fnoffset, fnsize,
363 			     prelocs, reloc_count, view, view_size,
364 			     from, to);
365   }
366 
367   // Make an ELF object.
368   template<int size, bool big_endian>
369   Object*
make_elf_object(const std::string & name,Input_file * input_file,off_t offset,const elfcpp::Ehdr<size,big_endian> & ehdr)370   make_elf_object(const std::string& name, Input_file* input_file,
371 		  off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
372   { return this->do_make_elf_object(name, input_file, offset, ehdr); }
373 
374   // Make an output section.
375   Output_section*
make_output_section(const char * name,elfcpp::Elf_Word type,elfcpp::Elf_Xword flags)376   make_output_section(const char* name, elfcpp::Elf_Word type,
377 		      elfcpp::Elf_Xword flags)
378   { return this->do_make_output_section(name, type, flags); }
379 
380   // Return true if target wants to perform relaxation.
381   bool
may_relax()382   may_relax() const
383   {
384     // Run the dummy relaxation pass twice if relaxation debugging is enabled.
385     if (is_debugging_enabled(DEBUG_RELAXATION))
386       return true;
387 
388      return this->do_may_relax();
389   }
390 
391   // Perform a relaxation pass.  Return true if layout may be changed.
392   bool
relax(int pass,const Input_objects * input_objects,Symbol_table * symtab,Layout * layout,const Task * task)393   relax(int pass, const Input_objects* input_objects, Symbol_table* symtab,
394 	Layout* layout, const Task* task)
395   {
396     // Run the dummy relaxation pass twice if relaxation debugging is enabled.
397     if (is_debugging_enabled(DEBUG_RELAXATION))
398       return pass < 2;
399 
400     return this->do_relax(pass, input_objects, symtab, layout, task);
401   }
402 
403   // Return the target-specific name of attributes section.  This is
404   // NULL if a target does not use attributes section or if it uses
405   // the default section name ".gnu.attributes".
406   const char*
attributes_section()407   attributes_section() const
408   { return this->pti_->attributes_section; }
409 
410   // Return the vendor name of vendor attributes.
411   const char*
attributes_vendor()412   attributes_vendor() const
413   { return this->pti_->attributes_vendor; }
414 
415   // Whether a section called NAME is an attribute section.
416   bool
is_attributes_section(const char * name)417   is_attributes_section(const char* name) const
418   {
419     return ((this->pti_->attributes_section != NULL
420 	     && strcmp(name, this->pti_->attributes_section) == 0)
421 	    || strcmp(name, ".gnu.attributes") == 0);
422   }
423 
424   // Return a bit mask of argument types for attribute with TAG.
425   int
attribute_arg_type(int tag)426   attribute_arg_type(int tag) const
427   { return this->do_attribute_arg_type(tag); }
428 
429   // Return the attribute tag of the position NUM in the list of fixed
430   // attributes.  Normally there is no reordering and
431   // attributes_order(NUM) == NUM.
432   int
attributes_order(int num)433   attributes_order(int num) const
434   { return this->do_attributes_order(num); }
435 
436   // When a target is selected as the default target, we call this method,
437   // which may be used for expensive, target-specific initialization.
438   void
select_as_default_target()439   select_as_default_target()
440   { this->do_select_as_default_target(); }
441 
442   // Return the value to store in the EI_OSABI field in the ELF
443   // header.
444   elfcpp::ELFOSABI
osabi()445   osabi() const
446   { return this->osabi_; }
447 
448   // Set the value to store in the EI_OSABI field in the ELF header.
449   void
set_osabi(elfcpp::ELFOSABI osabi)450   set_osabi(elfcpp::ELFOSABI osabi)
451   { this->osabi_ = osabi; }
452 
453   // Define target-specific standard symbols.
454   void
define_standard_symbols(Symbol_table * symtab,Layout * layout)455   define_standard_symbols(Symbol_table* symtab, Layout* layout)
456   { this->do_define_standard_symbols(symtab, layout); }
457 
458   // Return the output section name to use given an input section
459   // name, or NULL if no target specific name mapping is required.
460   // Set *PLEN to the length of the name if returning non-NULL.
461   const char*
output_section_name(const Relobj * relobj,const char * name,size_t * plen)462   output_section_name(const Relobj* relobj,
463 		      const char* name,
464 		      size_t* plen) const
465   { return this->do_output_section_name(relobj, name, plen); }
466 
467   // Add any special sections for this symbol to the gc work list.
468   void
gc_mark_symbol(Symbol_table * symtab,Symbol * sym)469   gc_mark_symbol(Symbol_table* symtab, Symbol* sym) const
470   { this->do_gc_mark_symbol(symtab, sym); }
471 
472   // Return the name of the entry point symbol.
473   const char*
entry_symbol_name()474   entry_symbol_name() const
475   { return this->pti_->entry_symbol_name; }
476 
477   // Return the size in bits of SHT_HASH entry.
478   int
hash_entry_size()479   hash_entry_size() const
480   { return this->pti_->hash_entry_size; }
481 
482   // Return the section type to use for unwind sections.
483   unsigned int
unwind_section_type()484   unwind_section_type() const
485   { return this->pti_->unwind_section_type; }
486 
487   // Whether the target has a custom set_dynsym_indexes method.
488   bool
has_custom_set_dynsym_indexes()489   has_custom_set_dynsym_indexes() const
490   { return this->do_has_custom_set_dynsym_indexes(); }
491 
492   // Custom set_dynsym_indexes method for a target.
493   unsigned int
set_dynsym_indexes(std::vector<Symbol * > * dyn_symbols,unsigned int index,std::vector<Symbol * > * syms,Stringpool * dynpool,Versions * versions,Symbol_table * symtab)494   set_dynsym_indexes(std::vector<Symbol*>* dyn_symbols, unsigned int index,
495                      std::vector<Symbol*>* syms, Stringpool* dynpool,
496                      Versions* versions, Symbol_table* symtab) const
497   {
498     return this->do_set_dynsym_indexes(dyn_symbols, index, syms, dynpool,
499                                        versions, symtab);
500   }
501 
502   // Get the custom dynamic tag value.
503   unsigned int
dynamic_tag_custom_value(elfcpp::DT tag)504   dynamic_tag_custom_value(elfcpp::DT tag) const
505   { return this->do_dynamic_tag_custom_value(tag); }
506 
507   // Adjust the value written to the dynamic symbol table.
508   void
adjust_dyn_symbol(const Symbol * sym,unsigned char * view)509   adjust_dyn_symbol(const Symbol* sym, unsigned char* view) const
510   { this->do_adjust_dyn_symbol(sym, view); }
511 
512   // Return whether to include the section in the link.
513   bool
should_include_section(elfcpp::Elf_Word sh_type)514   should_include_section(elfcpp::Elf_Word sh_type) const
515   { return this->do_should_include_section(sh_type); }
516 
517   // Finalize the target-specific properties in the .note.gnu.property section.
518   void
finalize_gnu_properties(Layout * layout)519   finalize_gnu_properties(Layout* layout) const
520   { this->do_finalize_gnu_properties(layout); }
521 
522  protected:
523   // This struct holds the constant information for a child class.  We
524   // use a struct to avoid the overhead of virtual function calls for
525   // simple information.
526   struct Target_info
527   {
528     // Address size (32 or 64).
529     int size;
530     // Whether the target is big endian.
531     bool is_big_endian;
532     // The code to store in the e_machine field of the ELF header.
533     elfcpp::EM machine_code;
534     // Whether this target has a specific make_symbol function.
535     bool has_make_symbol;
536     // Whether this target has a specific resolve function.
537     bool has_resolve;
538     // Whether this target has a specific code fill function.
539     bool has_code_fill;
540     // Whether an object file with no .note.GNU-stack sections implies
541     // that the stack should be executable.
542     bool is_default_stack_executable;
543     // Whether a relocation to a merged section can be processed to
544     // retrieve the contents.
545     bool can_icf_inline_merge_sections;
546     // Prefix character to strip when checking for wrapping.
547     char wrap_char;
548     // The default dynamic linker name.
549     const char* dynamic_linker;
550     // The default text segment address.
551     uint64_t default_text_segment_address;
552     // The ABI specified page size.
553     uint64_t abi_pagesize;
554     // The common page size used by actual implementations.
555     uint64_t common_pagesize;
556     // Whether PF_X segments must contain nothing but the contents of
557     // SHF_EXECINSTR sections (no non-executable data, no headers).
558     bool isolate_execinstr;
559     // If nonzero, distance from the text segment to the read-only segment.
560     uint64_t rosegment_gap;
561     // The special section index for small common symbols; SHN_UNDEF
562     // if none.
563     elfcpp::Elf_Half small_common_shndx;
564     // The special section index for large common symbols; SHN_UNDEF
565     // if none.
566     elfcpp::Elf_Half large_common_shndx;
567     // Section flags for small common section.
568     elfcpp::Elf_Xword small_common_section_flags;
569     // Section flags for large common section.
570     elfcpp::Elf_Xword large_common_section_flags;
571     // Name of attributes section if it is not ".gnu.attributes".
572     const char* attributes_section;
573     // Vendor name of vendor attributes.
574     const char* attributes_vendor;
575     // Name of the main entry point to the program.
576     const char* entry_symbol_name;
577     // Size (in bits) of SHT_HASH entry. Always equal to 32, except for
578     // 64-bit S/390.
579     const int hash_entry_size;
580     // Processor-specific section type for ".eh_frame" (unwind) sections.
581     // SHT_PROGBITS if there is no special section type.
582     const unsigned int unwind_section_type;
583   };
584 
Target(const Target_info * pti)585   Target(const Target_info* pti)
586     : pti_(pti), processor_specific_flags_(0),
587       are_processor_specific_flags_set_(false), osabi_(elfcpp::ELFOSABI_NONE)
588   { }
589 
590   // Virtual function which may be implemented by the child class.
591   virtual void
do_new_output_section(Output_section *)592   do_new_output_section(Output_section*) const
593   { }
594 
595   // Virtual function which may be implemented by the child class.
596   virtual void
do_finalize_sections(Layout *,const Input_objects *,Symbol_table *)597   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*)
598   { }
599 
600   // Virtual function which may be implemented by the child class.
601   virtual uint64_t
do_dynsym_value(const Symbol *)602   do_dynsym_value(const Symbol*) const
603   { gold_unreachable(); }
604 
605   // Virtual function which must be implemented by the child class if
606   // needed.
607   virtual std::string
do_code_fill(section_size_type)608   do_code_fill(section_size_type) const
609   { gold_unreachable(); }
610 
611   // Virtual function which may be implemented by the child class.
612   virtual bool
do_is_defined_by_abi(const Symbol *)613   do_is_defined_by_abi(const Symbol*) const
614   { return false; }
615 
616   // Adjust the output file header before it is written out.  VIEW
617   // points to the header in external form.  LEN is the length, and
618   // will be one of the values of elfcpp::Elf_sizes<size>::ehdr_size.
619   // By default, we set the EI_OSABI field if requested (in
620   // Sized_target).
621   virtual void
622   do_adjust_elf_header(unsigned char*, int) = 0;
623 
624   // Return address and size to plug into eh_frame FDEs associated with a PLT.
625   virtual void
626   do_plt_fde_location(const Output_data* plt, unsigned char* oview,
627 		      uint64_t* address, off_t* len) const;
628 
629   // Virtual function which may be overridden by the child class.
630   virtual bool
631   do_is_local_label_name(const char*) const;
632 
633   // Virtual function that must be overridden by a target which uses
634   // target specific relocations.
635   virtual unsigned int
do_reloc_symbol_index(void *,unsigned int)636   do_reloc_symbol_index(void*, unsigned int) const
637   { gold_unreachable(); }
638 
639   // Virtual function that must be overridden by a target which uses
640   // target specific relocations.
641   virtual uint64_t
do_reloc_addend(void *,unsigned int,uint64_t)642   do_reloc_addend(void*, unsigned int, uint64_t) const
643   { gold_unreachable(); }
644 
645   // Virtual functions that must be overridden by a target that uses
646   // STT_GNU_IFUNC symbols.
647   virtual uint64_t
do_plt_address_for_global(const Symbol *)648   do_plt_address_for_global(const Symbol*) const
649   { gold_unreachable(); }
650 
651   virtual uint64_t
do_plt_address_for_local(const Relobj *,unsigned int)652   do_plt_address_for_local(const Relobj*, unsigned int) const
653   { gold_unreachable(); }
654 
655   virtual int64_t
do_tls_offset_for_local(const Relobj *,unsigned int,Output_data_got_base *,unsigned int,uint64_t)656   do_tls_offset_for_local(const Relobj*, unsigned int,
657 			  Output_data_got_base*, unsigned int,
658 			  uint64_t) const
659   { gold_unreachable(); }
660 
661   virtual int64_t
do_tls_offset_for_global(Symbol *,Output_data_got_base *,unsigned int,uint64_t)662   do_tls_offset_for_global(Symbol*, Output_data_got_base*, unsigned int,
663 			   uint64_t) const
664   { gold_unreachable(); }
665 
666   virtual void
667   do_function_location(Symbol_location*) const = 0;
668 
669   // Virtual function which may be overriden by the child class.
670   virtual bool
do_can_check_for_function_pointers()671   do_can_check_for_function_pointers() const
672   { return false; }
673 
674   // Virtual function which may be overridden by the child class.  We
675   // recognize some default sections for which we don't care whether
676   // they have function pointers.
677   virtual bool
do_section_may_have_icf_unsafe_pointers(const char * section_name)678   do_section_may_have_icf_unsafe_pointers(const char* section_name) const
679   {
680     // We recognize sections for normal vtables, construction vtables and
681     // EH frames.
682     return (!is_prefix_of(".rodata._ZTV", section_name)
683 	    && !is_prefix_of(".data.rel.ro._ZTV", section_name)
684 	    && !is_prefix_of(".rodata._ZTC", section_name)
685 	    && !is_prefix_of(".data.rel.ro._ZTC", section_name)
686 	    && !is_prefix_of(".eh_frame", section_name));
687   }
688 
689   virtual uint64_t
do_ehframe_datarel_base()690   do_ehframe_datarel_base() const
691   { gold_unreachable(); }
692 
693   // Virtual function which may be overridden by the child class.  The
694   // default implementation is that any function not defined by the
695   // ABI is a call to a non-split function.
696   virtual bool
697   do_is_call_to_non_split(const Symbol* sym, const unsigned char*,
698 			  const unsigned char*, section_size_type) const;
699 
700   // Virtual function which may be overridden by the child class.
701   virtual void
702   do_calls_non_split(Relobj* object, unsigned int, section_offset_type,
703 		     section_size_type, const unsigned char*, size_t,
704 		     unsigned char*, section_size_type,
705 		     std::string*, std::string*) const;
706 
707   // make_elf_object hooks.  There are four versions of these for
708   // different address sizes and endianness.
709 
710   // Set processor specific flags.
711   void
set_processor_specific_flags(elfcpp::Elf_Word flags)712   set_processor_specific_flags(elfcpp::Elf_Word flags)
713   {
714     this->processor_specific_flags_ = flags;
715     this->are_processor_specific_flags_set_ = true;
716   }
717 
718 #ifdef HAVE_TARGET_32_LITTLE
719   // Virtual functions which may be overridden by the child class.
720   virtual Object*
721   do_make_elf_object(const std::string&, Input_file*, off_t,
722 		     const elfcpp::Ehdr<32, false>&);
723 #endif
724 
725 #ifdef HAVE_TARGET_32_BIG
726   // Virtual functions which may be overridden by the child class.
727   virtual Object*
728   do_make_elf_object(const std::string&, Input_file*, off_t,
729 		     const elfcpp::Ehdr<32, true>&);
730 #endif
731 
732 #ifdef HAVE_TARGET_64_LITTLE
733   // Virtual functions which may be overridden by the child class.
734   virtual Object*
735   do_make_elf_object(const std::string&, Input_file*, off_t,
736 		     const elfcpp::Ehdr<64, false>& ehdr);
737 #endif
738 
739 #ifdef HAVE_TARGET_64_BIG
740   // Virtual functions which may be overridden by the child class.
741   virtual Object*
742   do_make_elf_object(const std::string& name, Input_file* input_file,
743 		     off_t offset, const elfcpp::Ehdr<64, true>& ehdr);
744 #endif
745 
746   // Virtual functions which may be overridden by the child class.
747   virtual Output_section*
748   do_make_output_section(const char* name, elfcpp::Elf_Word type,
749 			 elfcpp::Elf_Xword flags);
750 
751   // Virtual function which may be overridden by the child class.
752   virtual bool
do_may_relax()753   do_may_relax() const
754   { return parameters->options().relax(); }
755 
756   // Virtual function which may be overridden by the child class.
757   virtual bool
do_relax(int,const Input_objects *,Symbol_table *,Layout *,const Task *)758   do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*)
759   { return false; }
760 
761   // A function for targets to call.  Return whether BYTES/LEN matches
762   // VIEW/VIEW_SIZE at OFFSET.
763   bool
764   match_view(const unsigned char* view, section_size_type view_size,
765 	     section_offset_type offset, const char* bytes, size_t len) const;
766 
767   // Set the contents of a VIEW/VIEW_SIZE to nops starting at OFFSET
768   // for LEN bytes.
769   void
770   set_view_to_nop(unsigned char* view, section_size_type view_size,
771 		  section_offset_type offset, size_t len) const;
772 
773   // This must be overridden by the child class if it has target-specific
774   // attributes subsection in the attribute section.
775   virtual int
do_attribute_arg_type(int)776   do_attribute_arg_type(int) const
777   { gold_unreachable(); }
778 
779   // This may be overridden by the child class.
780   virtual int
do_attributes_order(int num)781   do_attributes_order(int num) const
782   { return num; }
783 
784   // This may be overridden by the child class.
785   virtual void
do_select_as_default_target()786   do_select_as_default_target()
787   { }
788 
789   // This may be overridden by the child class.
790   virtual void
do_define_standard_symbols(Symbol_table *,Layout *)791   do_define_standard_symbols(Symbol_table*, Layout*)
792   { }
793 
794   // This may be overridden by the child class.
795   virtual const char*
do_output_section_name(const Relobj *,const char *,size_t *)796   do_output_section_name(const Relobj*, const char*, size_t*) const
797   { return NULL; }
798 
799   // This may be overridden by the child class.
800   virtual void
do_gc_mark_symbol(Symbol_table *,Symbol *)801   do_gc_mark_symbol(Symbol_table*, Symbol*) const
802   { }
803 
804   // This may be overridden by the child class.
805   virtual bool
do_has_custom_set_dynsym_indexes()806   do_has_custom_set_dynsym_indexes() const
807   { return false; }
808 
809   // This may be overridden by the child class.
810   virtual unsigned int
do_set_dynsym_indexes(std::vector<Symbol * > *,unsigned int,std::vector<Symbol * > *,Stringpool *,Versions *,Symbol_table *)811   do_set_dynsym_indexes(std::vector<Symbol*>*, unsigned int,
812                         std::vector<Symbol*>*, Stringpool*, Versions*,
813                         Symbol_table*) const
814   { gold_unreachable(); }
815 
816   // This may be overridden by the child class.
817   virtual unsigned int
do_dynamic_tag_custom_value(elfcpp::DT)818   do_dynamic_tag_custom_value(elfcpp::DT) const
819   { gold_unreachable(); }
820 
821   // This may be overridden by the child class.
822   virtual void
do_adjust_dyn_symbol(const Symbol *,unsigned char *)823   do_adjust_dyn_symbol(const Symbol*, unsigned char*) const
824   { }
825 
826   // This may be overridden by the child class.
827   virtual bool
do_should_include_section(elfcpp::Elf_Word)828   do_should_include_section(elfcpp::Elf_Word) const
829   { return true; }
830 
831   // Finalize the target-specific properties in the .note.gnu.property section.
832   virtual void
do_finalize_gnu_properties(Layout *)833   do_finalize_gnu_properties(Layout*) const
834   { }
835 
836  private:
837   // The implementations of the four do_make_elf_object virtual functions are
838   // almost identical except for their sizes and endianness.  We use a template.
839   // for their implementations.
840   template<int size, bool big_endian>
841   inline Object*
842   do_make_elf_object_implementation(const std::string&, Input_file*, off_t,
843 				    const elfcpp::Ehdr<size, big_endian>&);
844 
845   Target(const Target&);
846   Target& operator=(const Target&);
847 
848   // The target information.
849   const Target_info* pti_;
850   // Processor-specific flags.
851   elfcpp::Elf_Word processor_specific_flags_;
852   // Whether the processor-specific flags are set at least once.
853   bool are_processor_specific_flags_set_;
854   // If not ELFOSABI_NONE, the value to put in the EI_OSABI field of
855   // the ELF header.  This is handled at this level because it is
856   // OS-specific rather than processor-specific.
857   elfcpp::ELFOSABI osabi_;
858 };
859 
860 // The abstract class for a specific size and endianness of target.
861 // Each actual target implementation class should derive from an
862 // instantiation of Sized_target.
863 
864 template<int size, bool big_endian>
865 class Sized_target : public Target
866 {
867  public:
868   // Make a new symbol table entry for the target.  This should be
869   // overridden by a target which needs additional information in the
870   // symbol table.  This will only be called if has_make_symbol()
871   // returns true.
872   virtual Sized_symbol<size>*
make_symbol(const char *,elfcpp::STT,Object *,unsigned int,uint64_t)873   make_symbol(const char*, elfcpp::STT, Object*, unsigned int, uint64_t)
874   { gold_unreachable(); }
875 
876   // Resolve a symbol for the target.  This should be overridden by a
877   // target which needs to take special action.  TO is the
878   // pre-existing symbol.  SYM is the new symbol, seen in OBJECT.
879   // VERSION is the version of SYM.  This will only be called if
880   // has_resolve() returns true.
881   virtual bool
resolve(Symbol *,const elfcpp::Sym<size,big_endian> &,Object *,const char *)882   resolve(Symbol*, const elfcpp::Sym<size, big_endian>&, Object*,
883 	  const char*)
884   { gold_unreachable(); }
885 
886   // Process the relocs for a section, and record information of the
887   // mapping from source to destination sections. This mapping is later
888   // used to determine unreferenced garbage sections. This procedure is
889   // only called during garbage collection.
890   virtual void
891   gc_process_relocs(Symbol_table* symtab,
892 		    Layout* layout,
893 		    Sized_relobj_file<size, big_endian>* object,
894 		    unsigned int data_shndx,
895 		    unsigned int sh_type,
896 		    const unsigned char* prelocs,
897 		    size_t reloc_count,
898 		    Output_section* output_section,
899 		    bool needs_special_offset_handling,
900 		    size_t local_symbol_count,
901 		    const unsigned char* plocal_symbols) = 0;
902 
903   // Scan the relocs for a section, and record any information
904   // required for the symbol.  SYMTAB is the symbol table.  OBJECT is
905   // the object in which the section appears.  DATA_SHNDX is the
906   // section index that these relocs apply to.  SH_TYPE is the type of
907   // the relocation section, SHT_REL or SHT_RELA.  PRELOCS points to
908   // the relocation data.  RELOC_COUNT is the number of relocs.
909   // LOCAL_SYMBOL_COUNT is the number of local symbols.
910   // OUTPUT_SECTION is the output section.
911   // NEEDS_SPECIAL_OFFSET_HANDLING is true if offsets to the output
912   // sections are not mapped as usual.  PLOCAL_SYMBOLS points to the
913   // local symbol data from OBJECT.  GLOBAL_SYMBOLS is the array of
914   // pointers to the global symbol table from OBJECT.
915   virtual void
916   scan_relocs(Symbol_table* symtab,
917 	      Layout* layout,
918 	      Sized_relobj_file<size, big_endian>* object,
919 	      unsigned int data_shndx,
920 	      unsigned int sh_type,
921 	      const unsigned char* prelocs,
922 	      size_t reloc_count,
923 	      Output_section* output_section,
924 	      bool needs_special_offset_handling,
925 	      size_t local_symbol_count,
926 	      const unsigned char* plocal_symbols) = 0;
927 
928   // Relocate section data.  SH_TYPE is the type of the relocation
929   // section, SHT_REL or SHT_RELA.  PRELOCS points to the relocation
930   // information.  RELOC_COUNT is the number of relocs.
931   // OUTPUT_SECTION is the output section.
932   // NEEDS_SPECIAL_OFFSET_HANDLING is true if offsets must be mapped
933   // to correspond to the output section.  VIEW is a view into the
934   // output file holding the section contents, VIEW_ADDRESS is the
935   // virtual address of the view, and VIEW_SIZE is the size of the
936   // view.  If NEEDS_SPECIAL_OFFSET_HANDLING is true, the VIEW_xx
937   // parameters refer to the complete output section data, not just
938   // the input section data.
939   virtual void
940   relocate_section(const Relocate_info<size, big_endian>*,
941 		   unsigned int sh_type,
942 		   const unsigned char* prelocs,
943 		   size_t reloc_count,
944 		   Output_section* output_section,
945 		   bool needs_special_offset_handling,
946 		   unsigned char* view,
947 		   typename elfcpp::Elf_types<size>::Elf_Addr view_address,
948 		   section_size_type view_size,
949 		   const Reloc_symbol_changes*) = 0;
950 
951   // Scan the relocs during a relocatable link.  The parameters are
952   // like scan_relocs, with an additional Relocatable_relocs
953   // parameter, used to record the disposition of the relocs.
954   virtual void
955   scan_relocatable_relocs(Symbol_table* symtab,
956 			  Layout* layout,
957 			  Sized_relobj_file<size, big_endian>* object,
958 			  unsigned int data_shndx,
959 			  unsigned int sh_type,
960 			  const unsigned char* prelocs,
961 			  size_t reloc_count,
962 			  Output_section* output_section,
963 			  bool needs_special_offset_handling,
964 			  size_t local_symbol_count,
965 			  const unsigned char* plocal_symbols,
966 			  Relocatable_relocs*) = 0;
967 
968   // Scan the relocs for --emit-relocs.  The parameters are
969   // like scan_relocatable_relocs.
970   virtual void
971   emit_relocs_scan(Symbol_table* symtab,
972 		   Layout* layout,
973 		   Sized_relobj_file<size, big_endian>* object,
974 		   unsigned int data_shndx,
975 		   unsigned int sh_type,
976 		   const unsigned char* prelocs,
977 		   size_t reloc_count,
978 		   Output_section* output_section,
979 		   bool needs_special_offset_handling,
980 		   size_t local_symbol_count,
981 		   const unsigned char* plocal_syms,
982 		   Relocatable_relocs* rr) = 0;
983 
984   // Emit relocations for a section during a relocatable link, and for
985   // --emit-relocs.  The parameters are like relocate_section, with
986   // additional parameters for the view of the output reloc section.
987   virtual void
988   relocate_relocs(const Relocate_info<size, big_endian>*,
989 		  unsigned int sh_type,
990 		  const unsigned char* prelocs,
991 		  size_t reloc_count,
992 		  Output_section* output_section,
993 		  typename elfcpp::Elf_types<size>::Elf_Off
994                     offset_in_output_section,
995 		  unsigned char* view,
996 		  typename elfcpp::Elf_types<size>::Elf_Addr view_address,
997 		  section_size_type view_size,
998 		  unsigned char* reloc_view,
999 		  section_size_type reloc_view_size) = 0;
1000 
1001   // Perform target-specific processing in a relocatable link.  This is
1002   // only used if we use the relocation strategy RELOC_SPECIAL.
1003   // RELINFO points to a Relocation_info structure. SH_TYPE is the relocation
1004   // section type. PRELOC_IN points to the original relocation.  RELNUM is
1005   // the index number of the relocation in the relocation section.
1006   // OUTPUT_SECTION is the output section to which the relocation is applied.
1007   // OFFSET_IN_OUTPUT_SECTION is the offset of the relocation input section
1008   // within the output section.  VIEW points to the output view of the
1009   // output section.  VIEW_ADDRESS is output address of the view.  VIEW_SIZE
1010   // is the size of the output view and PRELOC_OUT points to the new
1011   // relocation in the output object.
1012   //
1013   // A target only needs to override this if the generic code in
1014   // target-reloc.h cannot handle some relocation types.
1015 
1016   virtual void
relocate_special_relocatable(const Relocate_info<size,big_endian> *,unsigned int,const unsigned char *,size_t,Output_section *,typename elfcpp::Elf_types<size>::Elf_Off,unsigned char *,typename elfcpp::Elf_types<size>::Elf_Addr,section_size_type,unsigned char *)1017   relocate_special_relocatable(const Relocate_info<size, big_endian>*
1018 				/*relinfo */,
1019 			       unsigned int /* sh_type */,
1020 			       const unsigned char* /* preloc_in */,
1021 			       size_t /* relnum */,
1022 			       Output_section* /* output_section */,
1023 			       typename elfcpp::Elf_types<size>::Elf_Off
1024                                  /* offset_in_output_section */,
1025 			       unsigned char* /* view */,
1026 			       typename elfcpp::Elf_types<size>::Elf_Addr
1027 				 /* view_address */,
1028 			       section_size_type /* view_size */,
1029 			       unsigned char* /* preloc_out*/)
1030   { gold_unreachable(); }
1031 
1032   // Return the number of entries in the GOT.  This is only used for
1033   // laying out the incremental link info sections.  A target needs
1034   // to implement this to support incremental linking.
1035 
1036   virtual unsigned int
got_entry_count()1037   got_entry_count() const
1038   { gold_unreachable(); }
1039 
1040   // Return the number of entries in the PLT.  This is only used for
1041   // laying out the incremental link info sections.  A target needs
1042   // to implement this to support incremental linking.
1043 
1044   virtual unsigned int
plt_entry_count()1045   plt_entry_count() const
1046   { gold_unreachable(); }
1047 
1048   // Return the offset of the first non-reserved PLT entry.  This is
1049   // only used for laying out the incremental link info sections.
1050   // A target needs to implement this to support incremental linking.
1051 
1052   virtual unsigned int
first_plt_entry_offset()1053   first_plt_entry_offset() const
1054   { gold_unreachable(); }
1055 
1056   // Return the size of each PLT entry.  This is only used for
1057   // laying out the incremental link info sections.  A target needs
1058   // to implement this to support incremental linking.
1059 
1060   virtual unsigned int
plt_entry_size()1061   plt_entry_size() const
1062   { gold_unreachable(); }
1063 
1064   // Return the size of each GOT entry.  This is only used for
1065   // laying out the incremental link info sections.  A target needs
1066   // to implement this if its GOT size is different.
1067 
1068   virtual unsigned int
got_entry_size()1069   got_entry_size() const
1070   { return size / 8; }
1071 
1072   // Create the GOT and PLT sections for an incremental update.
1073   // A target needs to implement this to support incremental linking.
1074 
1075   virtual Output_data_got_base*
init_got_plt_for_update(Symbol_table *,Layout *,unsigned int,unsigned int)1076   init_got_plt_for_update(Symbol_table*,
1077 			  Layout*,
1078 			  unsigned int /* got_count */,
1079 			  unsigned int /* plt_count */)
1080   { gold_unreachable(); }
1081 
1082   // Reserve a GOT entry for a local symbol, and regenerate any
1083   // necessary dynamic relocations.
1084   virtual void
reserve_local_got_entry(unsigned int,Sized_relobj<size,big_endian> *,unsigned int,unsigned int)1085   reserve_local_got_entry(unsigned int /* got_index */,
1086 			  Sized_relobj<size, big_endian>* /* obj */,
1087 			  unsigned int /* r_sym */,
1088 			  unsigned int /* got_type */)
1089   { gold_unreachable(); }
1090 
1091   // Reserve a GOT entry for a global symbol, and regenerate any
1092   // necessary dynamic relocations.
1093   virtual void
reserve_global_got_entry(unsigned int,Symbol *,unsigned int)1094   reserve_global_got_entry(unsigned int /* got_index */, Symbol* /* gsym */,
1095 			   unsigned int /* got_type */)
1096   { gold_unreachable(); }
1097 
1098   // Register an existing PLT entry for a global symbol.
1099   // A target needs to implement this to support incremental linking.
1100 
1101   virtual void
register_global_plt_entry(Symbol_table *,Layout *,unsigned int,Symbol *)1102   register_global_plt_entry(Symbol_table*, Layout*,
1103 			    unsigned int /* plt_index */,
1104 			    Symbol*)
1105   { gold_unreachable(); }
1106 
1107   // Force a COPY relocation for a given symbol.
1108   // A target needs to implement this to support incremental linking.
1109 
1110   virtual void
emit_copy_reloc(Symbol_table *,Symbol *,Output_section *,off_t)1111   emit_copy_reloc(Symbol_table*, Symbol*, Output_section*, off_t)
1112   { gold_unreachable(); }
1113 
1114   // Apply an incremental relocation.
1115 
1116   virtual void
apply_relocation(const Relocate_info<size,big_endian> *,typename elfcpp::Elf_types<size>::Elf_Addr,unsigned int,typename elfcpp::Elf_types<size>::Elf_Swxword,const Symbol *,unsigned char *,typename elfcpp::Elf_types<size>::Elf_Addr,section_size_type)1117   apply_relocation(const Relocate_info<size, big_endian>* /* relinfo */,
1118 		   typename elfcpp::Elf_types<size>::Elf_Addr /* r_offset */,
1119 		   unsigned int /* r_type */,
1120 		   typename elfcpp::Elf_types<size>::Elf_Swxword /* r_addend */,
1121 		   const Symbol* /* gsym */,
1122 		   unsigned char* /* view */,
1123 		   typename elfcpp::Elf_types<size>::Elf_Addr /* address */,
1124 		   section_size_type /* view_size */)
1125   { gold_unreachable(); }
1126 
1127   // Handle target specific gc actions when adding a gc reference from
1128   // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
1129   // and DST_OFF.
1130   void
gc_add_reference(Symbol_table * symtab,Relobj * src_obj,unsigned int src_shndx,Relobj * dst_obj,unsigned int dst_shndx,typename elfcpp::Elf_types<size>::Elf_Addr dst_off)1131   gc_add_reference(Symbol_table* symtab,
1132 		   Relobj* src_obj,
1133 		   unsigned int src_shndx,
1134 		   Relobj* dst_obj,
1135 		   unsigned int dst_shndx,
1136 		   typename elfcpp::Elf_types<size>::Elf_Addr dst_off) const
1137   {
1138     this->do_gc_add_reference(symtab, src_obj, src_shndx,
1139 			      dst_obj, dst_shndx, dst_off);
1140   }
1141 
1142   // Return the r_sym field from a relocation.
1143   // Most targets can use the default version of this routine,
1144   // but some targets have a non-standard r_info field, and will
1145   // need to provide a target-specific version.
1146   virtual unsigned int
get_r_sym(const unsigned char * preloc)1147   get_r_sym(const unsigned char* preloc) const
1148   {
1149     // Since REL and RELA relocs share the same structure through
1150     // the r_info field, we can just use REL here.
1151     elfcpp::Rel<size, big_endian> rel(preloc);
1152     return elfcpp::elf_r_sym<size>(rel.get_r_info());
1153   }
1154 
1155   // Record a target-specific program property in the .note.gnu.property
1156   // section.
1157   virtual void
record_gnu_property(unsigned int,unsigned int,size_t,const unsigned char *,const Object *)1158   record_gnu_property(unsigned int, unsigned int, size_t,
1159 		      const unsigned char*, const Object*)
1160   { }
1161 
1162   // Merge the target-specific program properties from the current object.
1163   virtual void
merge_gnu_properties(const Object *)1164   merge_gnu_properties(const Object*)
1165   { }
1166 
1167  protected:
Sized_target(const Target::Target_info * pti)1168   Sized_target(const Target::Target_info* pti)
1169     : Target(pti)
1170   {
1171     gold_assert(pti->size == size);
1172     gold_assert(pti->is_big_endian ? big_endian : !big_endian);
1173   }
1174 
1175   // Set the EI_OSABI field if requested.
1176   virtual void
1177   do_adjust_elf_header(unsigned char*, int);
1178 
1179   // Handle target specific gc actions when adding a gc reference.
1180   virtual void
do_gc_add_reference(Symbol_table *,Relobj *,unsigned int,Relobj *,unsigned int,typename elfcpp::Elf_types<size>::Elf_Addr)1181   do_gc_add_reference(Symbol_table*, Relobj*, unsigned int,
1182 		      Relobj*, unsigned int,
1183 		      typename elfcpp::Elf_types<size>::Elf_Addr) const
1184   { }
1185 
1186   virtual void
do_function_location(Symbol_location *)1187   do_function_location(Symbol_location*) const
1188   { }
1189 };
1190 
1191 } // End namespace gold.
1192 
1193 #endif // !defined(GOLD_TARGET_H)
1194