xref: /netbsd-src/external/gpl3/binutils.old/dist/gold/layout.cc (revision d90047b5d07facf36e6c01dcc0bded8997ce9cc2)
1 // layout.cc -- lay out output file sections for gold
2 
3 // Copyright (C) 2006-2018 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5 
6 // This file is part of gold.
7 
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12 
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17 
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22 
23 #include "gold.h"
24 
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <fstream>
30 #include <utility>
31 #include <fcntl.h>
32 #include <fnmatch.h>
33 #include <unistd.h>
34 #include "libiberty.h"
35 #include "md5.h"
36 #include "sha1.h"
37 #ifdef __MINGW32__
38 #include <windows.h>
39 #include <rpcdce.h>
40 #endif
41 
42 #include "parameters.h"
43 #include "options.h"
44 #include "mapfile.h"
45 #include "script.h"
46 #include "script-sections.h"
47 #include "output.h"
48 #include "symtab.h"
49 #include "dynobj.h"
50 #include "ehframe.h"
51 #include "gdb-index.h"
52 #include "compressed_output.h"
53 #include "reduced_debug_output.h"
54 #include "object.h"
55 #include "reloc.h"
56 #include "descriptors.h"
57 #include "plugin.h"
58 #include "incremental.h"
59 #include "layout.h"
60 
61 namespace gold
62 {
63 
64 // Class Free_list.
65 
66 // The total number of free lists used.
67 unsigned int Free_list::num_lists = 0;
68 // The total number of free list nodes used.
69 unsigned int Free_list::num_nodes = 0;
70 // The total number of calls to Free_list::remove.
71 unsigned int Free_list::num_removes = 0;
72 // The total number of nodes visited during calls to Free_list::remove.
73 unsigned int Free_list::num_remove_visits = 0;
74 // The total number of calls to Free_list::allocate.
75 unsigned int Free_list::num_allocates = 0;
76 // The total number of nodes visited during calls to Free_list::allocate.
77 unsigned int Free_list::num_allocate_visits = 0;
78 
79 // Initialize the free list.  Creates a single free list node that
80 // describes the entire region of length LEN.  If EXTEND is true,
81 // allocate() is allowed to extend the region beyond its initial
82 // length.
83 
84 void
85 Free_list::init(off_t len, bool extend)
86 {
87   this->list_.push_front(Free_list_node(0, len));
88   this->last_remove_ = this->list_.begin();
89   this->extend_ = extend;
90   this->length_ = len;
91   ++Free_list::num_lists;
92   ++Free_list::num_nodes;
93 }
94 
95 // Remove a chunk from the free list.  Because we start with a single
96 // node that covers the entire section, and remove chunks from it one
97 // at a time, we do not need to coalesce chunks or handle cases that
98 // span more than one free node.  We expect to remove chunks from the
99 // free list in order, and we expect to have only a few chunks of free
100 // space left (corresponding to files that have changed since the last
101 // incremental link), so a simple linear list should provide sufficient
102 // performance.
103 
104 void
105 Free_list::remove(off_t start, off_t end)
106 {
107   if (start == end)
108     return;
109   gold_assert(start < end);
110 
111   ++Free_list::num_removes;
112 
113   Iterator p = this->last_remove_;
114   if (p->start_ > start)
115     p = this->list_.begin();
116 
117   for (; p != this->list_.end(); ++p)
118     {
119       ++Free_list::num_remove_visits;
120       // Find a node that wholly contains the indicated region.
121       if (p->start_ <= start && p->end_ >= end)
122 	{
123 	  // Case 1: the indicated region spans the whole node.
124 	  // Add some fuzz to avoid creating tiny free chunks.
125 	  if (p->start_ + 3 >= start && p->end_ <= end + 3)
126 	    p = this->list_.erase(p);
127 	  // Case 2: remove a chunk from the start of the node.
128 	  else if (p->start_ + 3 >= start)
129 	    p->start_ = end;
130 	  // Case 3: remove a chunk from the end of the node.
131 	  else if (p->end_ <= end + 3)
132 	    p->end_ = start;
133 	  // Case 4: remove a chunk from the middle, and split
134 	  // the node into two.
135 	  else
136 	    {
137 	      Free_list_node newnode(p->start_, start);
138 	      p->start_ = end;
139 	      this->list_.insert(p, newnode);
140 	      ++Free_list::num_nodes;
141 	    }
142 	  this->last_remove_ = p;
143 	  return;
144 	}
145     }
146 
147   // Did not find a node containing the given chunk.  This could happen
148   // because a small chunk was already removed due to the fuzz.
149   gold_debug(DEBUG_INCREMENTAL,
150 	     "Free_list::remove(%d,%d) not found",
151 	     static_cast<int>(start), static_cast<int>(end));
152 }
153 
154 // Allocate a chunk of size LEN from the free list.  Returns -1ULL
155 // if a sufficiently large chunk of free space is not found.
156 // We use a simple first-fit algorithm.
157 
158 off_t
159 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
160 {
161   gold_debug(DEBUG_INCREMENTAL,
162 	     "Free_list::allocate(%08lx, %d, %08lx)",
163 	     static_cast<long>(len), static_cast<int>(align),
164 	     static_cast<long>(minoff));
165   if (len == 0)
166     return align_address(minoff, align);
167 
168   ++Free_list::num_allocates;
169 
170   // We usually want to drop free chunks smaller than 4 bytes.
171   // If we need to guarantee a minimum hole size, though, we need
172   // to keep track of all free chunks.
173   const int fuzz = this->min_hole_ > 0 ? 0 : 3;
174 
175   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
176     {
177       ++Free_list::num_allocate_visits;
178       off_t start = p->start_ > minoff ? p->start_ : minoff;
179       start = align_address(start, align);
180       off_t end = start + len;
181       if (end > p->end_ && p->end_ == this->length_ && this->extend_)
182 	{
183 	  this->length_ = end;
184 	  p->end_ = end;
185 	}
186       if (end == p->end_ || (end <= p->end_ - this->min_hole_))
187 	{
188 	  if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
189 	    this->list_.erase(p);
190 	  else if (p->start_ + fuzz >= start)
191 	    p->start_ = end;
192 	  else if (p->end_ <= end + fuzz)
193 	    p->end_ = start;
194 	  else
195 	    {
196 	      Free_list_node newnode(p->start_, start);
197 	      p->start_ = end;
198 	      this->list_.insert(p, newnode);
199 	      ++Free_list::num_nodes;
200 	    }
201 	  return start;
202 	}
203     }
204   if (this->extend_)
205     {
206       off_t start = align_address(this->length_, align);
207       this->length_ = start + len;
208       return start;
209     }
210   return -1;
211 }
212 
213 // Dump the free list (for debugging).
214 void
215 Free_list::dump()
216 {
217   gold_info("Free list:\n     start      end   length\n");
218   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
219     gold_info("  %08lx %08lx %08lx", static_cast<long>(p->start_),
220 	      static_cast<long>(p->end_),
221 	      static_cast<long>(p->end_ - p->start_));
222 }
223 
224 // Print the statistics for the free lists.
225 void
226 Free_list::print_stats()
227 {
228   fprintf(stderr, _("%s: total free lists: %u\n"),
229 	  program_name, Free_list::num_lists);
230   fprintf(stderr, _("%s: total free list nodes: %u\n"),
231 	  program_name, Free_list::num_nodes);
232   fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
233 	  program_name, Free_list::num_removes);
234   fprintf(stderr, _("%s: nodes visited: %u\n"),
235 	  program_name, Free_list::num_remove_visits);
236   fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
237 	  program_name, Free_list::num_allocates);
238   fprintf(stderr, _("%s: nodes visited: %u\n"),
239 	  program_name, Free_list::num_allocate_visits);
240 }
241 
242 // A Hash_task computes the MD5 checksum of an array of char.
243 
244 class Hash_task : public Task
245 {
246  public:
247   Hash_task(Output_file* of,
248 	    size_t offset,
249 	    size_t size,
250 	    unsigned char* dst,
251 	    Task_token* final_blocker)
252     : of_(of), offset_(offset), size_(size), dst_(dst),
253       final_blocker_(final_blocker)
254   { }
255 
256   void
257   run(Workqueue*)
258   {
259     const unsigned char* iv =
260 	this->of_->get_input_view(this->offset_, this->size_);
261     md5_buffer(reinterpret_cast<const char*>(iv), this->size_, this->dst_);
262     this->of_->free_input_view(this->offset_, this->size_, iv);
263   }
264 
265   Task_token*
266   is_runnable()
267   { return NULL; }
268 
269   // Unblock FINAL_BLOCKER_ when done.
270   void
271   locks(Task_locker* tl)
272   { tl->add(this, this->final_blocker_); }
273 
274   std::string
275   get_name() const
276   { return "Hash_task"; }
277 
278  private:
279   Output_file* of_;
280   const size_t offset_;
281   const size_t size_;
282   unsigned char* const dst_;
283   Task_token* const final_blocker_;
284 };
285 
286 // Layout::Relaxation_debug_check methods.
287 
288 // Check that sections and special data are in reset states.
289 // We do not save states for Output_sections and special Output_data.
290 // So we check that they have not assigned any addresses or offsets.
291 // clean_up_after_relaxation simply resets their addresses and offsets.
292 void
293 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
294     const Layout::Section_list& sections,
295     const Layout::Data_list& special_outputs,
296     const Layout::Data_list& relax_outputs)
297 {
298   for(Layout::Section_list::const_iterator p = sections.begin();
299       p != sections.end();
300       ++p)
301     gold_assert((*p)->address_and_file_offset_have_reset_values());
302 
303   for(Layout::Data_list::const_iterator p = special_outputs.begin();
304       p != special_outputs.end();
305       ++p)
306     gold_assert((*p)->address_and_file_offset_have_reset_values());
307 
308   gold_assert(relax_outputs.empty());
309 }
310 
311 // Save information of SECTIONS for checking later.
312 
313 void
314 Layout::Relaxation_debug_check::read_sections(
315     const Layout::Section_list& sections)
316 {
317   for(Layout::Section_list::const_iterator p = sections.begin();
318       p != sections.end();
319       ++p)
320     {
321       Output_section* os = *p;
322       Section_info info;
323       info.output_section = os;
324       info.address = os->is_address_valid() ? os->address() : 0;
325       info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
326       info.offset = os->is_offset_valid()? os->offset() : -1 ;
327       this->section_infos_.push_back(info);
328     }
329 }
330 
331 // Verify SECTIONS using previously recorded information.
332 
333 void
334 Layout::Relaxation_debug_check::verify_sections(
335     const Layout::Section_list& sections)
336 {
337   size_t i = 0;
338   for(Layout::Section_list::const_iterator p = sections.begin();
339       p != sections.end();
340       ++p, ++i)
341     {
342       Output_section* os = *p;
343       uint64_t address = os->is_address_valid() ? os->address() : 0;
344       off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
345       off_t offset = os->is_offset_valid()? os->offset() : -1 ;
346 
347       if (i >= this->section_infos_.size())
348 	{
349 	  gold_fatal("Section_info of %s missing.\n", os->name());
350 	}
351       const Section_info& info = this->section_infos_[i];
352       if (os != info.output_section)
353 	gold_fatal("Section order changed.  Expecting %s but see %s\n",
354 		   info.output_section->name(), os->name());
355       if (address != info.address
356 	  || data_size != info.data_size
357 	  || offset != info.offset)
358 	gold_fatal("Section %s changed.\n", os->name());
359     }
360 }
361 
362 // Layout_task_runner methods.
363 
364 // Lay out the sections.  This is called after all the input objects
365 // have been read.
366 
367 void
368 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
369 {
370   // See if any of the input definitions violate the One Definition Rule.
371   // TODO: if this is too slow, do this as a task, rather than inline.
372   this->symtab_->detect_odr_violations(task, this->options_.output_file_name());
373 
374   Layout* layout = this->layout_;
375   off_t file_size = layout->finalize(this->input_objects_,
376 				     this->symtab_,
377 				     this->target_,
378 				     task);
379 
380   // Now we know the final size of the output file and we know where
381   // each piece of information goes.
382 
383   if (this->mapfile_ != NULL)
384     {
385       this->mapfile_->print_discarded_sections(this->input_objects_);
386       layout->print_to_mapfile(this->mapfile_);
387     }
388 
389   Output_file* of;
390   if (layout->incremental_base() == NULL)
391     {
392       of = new Output_file(parameters->options().output_file_name());
393       if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
394 	of->set_is_temporary();
395       of->open(file_size);
396     }
397   else
398     {
399       of = layout->incremental_base()->output_file();
400 
401       // Apply the incremental relocations for symbols whose values
402       // have changed.  We do this before we resize the file and start
403       // writing anything else to it, so that we can read the old
404       // incremental information from the file before (possibly)
405       // overwriting it.
406       if (parameters->incremental_update())
407 	layout->incremental_base()->apply_incremental_relocs(this->symtab_,
408 							     this->layout_,
409 							     of);
410 
411       of->resize(file_size);
412     }
413 
414   // Queue up the final set of tasks.
415   gold::queue_final_tasks(this->options_, this->input_objects_,
416 			  this->symtab_, layout, workqueue, of);
417 }
418 
419 // Layout methods.
420 
421 Layout::Layout(int number_of_input_files, Script_options* script_options)
422   : number_of_input_files_(number_of_input_files),
423     script_options_(script_options),
424     namepool_(),
425     sympool_(),
426     dynpool_(),
427     signatures_(),
428     section_name_map_(),
429     segment_list_(),
430     section_list_(),
431     unattached_section_list_(),
432     special_output_list_(),
433     relax_output_list_(),
434     section_headers_(NULL),
435     tls_segment_(NULL),
436     relro_segment_(NULL),
437     interp_segment_(NULL),
438     increase_relro_(0),
439     symtab_section_(NULL),
440     symtab_xindex_(NULL),
441     dynsym_section_(NULL),
442     dynsym_xindex_(NULL),
443     dynamic_section_(NULL),
444     dynamic_symbol_(NULL),
445     dynamic_data_(NULL),
446     eh_frame_section_(NULL),
447     eh_frame_data_(NULL),
448     added_eh_frame_data_(false),
449     eh_frame_hdr_section_(NULL),
450     gdb_index_data_(NULL),
451     build_id_note_(NULL),
452     debug_abbrev_(NULL),
453     debug_info_(NULL),
454     group_signatures_(),
455     output_file_size_(-1),
456     have_added_input_section_(false),
457     sections_are_attached_(false),
458     input_requires_executable_stack_(false),
459     input_with_gnu_stack_note_(false),
460     input_without_gnu_stack_note_(false),
461     has_static_tls_(false),
462     any_postprocessing_sections_(false),
463     resized_signatures_(false),
464     have_stabstr_section_(false),
465     section_ordering_specified_(false),
466     unique_segment_for_sections_specified_(false),
467     incremental_inputs_(NULL),
468     record_output_section_data_from_script_(false),
469     script_output_section_data_list_(),
470     segment_states_(NULL),
471     relaxation_debug_check_(NULL),
472     section_order_map_(),
473     section_segment_map_(),
474     input_section_position_(),
475     input_section_glob_(),
476     incremental_base_(NULL),
477     free_list_(),
478     gnu_properties_()
479 {
480   // Make space for more than enough segments for a typical file.
481   // This is just for efficiency--it's OK if we wind up needing more.
482   this->segment_list_.reserve(12);
483 
484   // We expect two unattached Output_data objects: the file header and
485   // the segment headers.
486   this->special_output_list_.reserve(2);
487 
488   // Initialize structure needed for an incremental build.
489   if (parameters->incremental())
490     this->incremental_inputs_ = new Incremental_inputs;
491 
492   // The section name pool is worth optimizing in all cases, because
493   // it is small, but there are often overlaps due to .rel sections.
494   this->namepool_.set_optimize();
495 }
496 
497 // For incremental links, record the base file to be modified.
498 
499 void
500 Layout::set_incremental_base(Incremental_binary* base)
501 {
502   this->incremental_base_ = base;
503   this->free_list_.init(base->output_file()->filesize(), true);
504 }
505 
506 // Hash a key we use to look up an output section mapping.
507 
508 size_t
509 Layout::Hash_key::operator()(const Layout::Key& k) const
510 {
511  return k.first + k.second.first + k.second.second;
512 }
513 
514 // These are the debug sections that are actually used by gdb.
515 // Currently, we've checked versions of gdb up to and including 7.4.
516 // We only check the part of the name that follows ".debug_" or
517 // ".zdebug_".
518 
519 static const char* gdb_sections[] =
520 {
521   "abbrev",
522   "addr",         // Fission extension
523   // "aranges",   // not used by gdb as of 7.4
524   "frame",
525   "gdb_scripts",
526   "info",
527   "types",
528   "line",
529   "loc",
530   "macinfo",
531   "macro",
532   // "pubnames",  // not used by gdb as of 7.4
533   // "pubtypes",  // not used by gdb as of 7.4
534   // "gnu_pubnames",  // Fission extension
535   // "gnu_pubtypes",  // Fission extension
536   "ranges",
537   "str",
538   "str_offsets",
539 };
540 
541 // This is the minimum set of sections needed for line numbers.
542 
543 static const char* lines_only_debug_sections[] =
544 {
545   "abbrev",
546   // "addr",      // Fission extension
547   // "aranges",   // not used by gdb as of 7.4
548   // "frame",
549   // "gdb_scripts",
550   "info",
551   // "types",
552   "line",
553   // "loc",
554   // "macinfo",
555   // "macro",
556   // "pubnames",  // not used by gdb as of 7.4
557   // "pubtypes",  // not used by gdb as of 7.4
558   // "gnu_pubnames",  // Fission extension
559   // "gnu_pubtypes",  // Fission extension
560   // "ranges",
561   "str",
562   "str_offsets",  // Fission extension
563 };
564 
565 // These sections are the DWARF fast-lookup tables, and are not needed
566 // when building a .gdb_index section.
567 
568 static const char* gdb_fast_lookup_sections[] =
569 {
570   "aranges",
571   "pubnames",
572   "gnu_pubnames",
573   "pubtypes",
574   "gnu_pubtypes",
575 };
576 
577 // Returns whether the given debug section is in the list of
578 // debug-sections-used-by-some-version-of-gdb.  SUFFIX is the
579 // portion of the name following ".debug_" or ".zdebug_".
580 
581 static inline bool
582 is_gdb_debug_section(const char* suffix)
583 {
584   // We can do this faster: binary search or a hashtable.  But why bother?
585   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
586     if (strcmp(suffix, gdb_sections[i]) == 0)
587       return true;
588   return false;
589 }
590 
591 // Returns whether the given section is needed for lines-only debugging.
592 
593 static inline bool
594 is_lines_only_debug_section(const char* suffix)
595 {
596   // We can do this faster: binary search or a hashtable.  But why bother?
597   for (size_t i = 0;
598        i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
599        ++i)
600     if (strcmp(suffix, lines_only_debug_sections[i]) == 0)
601       return true;
602   return false;
603 }
604 
605 // Returns whether the given section is a fast-lookup section that
606 // will not be needed when building a .gdb_index section.
607 
608 static inline bool
609 is_gdb_fast_lookup_section(const char* suffix)
610 {
611   // We can do this faster: binary search or a hashtable.  But why bother?
612   for (size_t i = 0;
613        i < sizeof(gdb_fast_lookup_sections)/sizeof(*gdb_fast_lookup_sections);
614        ++i)
615     if (strcmp(suffix, gdb_fast_lookup_sections[i]) == 0)
616       return true;
617   return false;
618 }
619 
620 // Sometimes we compress sections.  This is typically done for
621 // sections that are not part of normal program execution (such as
622 // .debug_* sections), and where the readers of these sections know
623 // how to deal with compressed sections.  This routine doesn't say for
624 // certain whether we'll compress -- it depends on commandline options
625 // as well -- just whether this section is a candidate for compression.
626 // (The Output_compressed_section class decides whether to compress
627 // a given section, and picks the name of the compressed section.)
628 
629 static bool
630 is_compressible_debug_section(const char* secname)
631 {
632   return (is_prefix_of(".debug", secname));
633 }
634 
635 // We may see compressed debug sections in input files.  Return TRUE
636 // if this is the name of a compressed debug section.
637 
638 bool
639 is_compressed_debug_section(const char* secname)
640 {
641   return (is_prefix_of(".zdebug", secname));
642 }
643 
644 std::string
645 corresponding_uncompressed_section_name(std::string secname)
646 {
647   gold_assert(secname[0] == '.' && secname[1] == 'z');
648   std::string ret(".");
649   ret.append(secname, 2, std::string::npos);
650   return ret;
651 }
652 
653 // Whether to include this section in the link.
654 
655 template<int size, bool big_endian>
656 bool
657 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
658 			const elfcpp::Shdr<size, big_endian>& shdr)
659 {
660   if (!parameters->options().relocatable()
661       && (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE))
662     return false;
663 
664   elfcpp::Elf_Word sh_type = shdr.get_sh_type();
665 
666   if ((sh_type >= elfcpp::SHT_LOOS && sh_type <= elfcpp::SHT_HIOS)
667       || (sh_type >= elfcpp::SHT_LOPROC && sh_type <= elfcpp::SHT_HIPROC))
668     return parameters->target().should_include_section(sh_type);
669 
670   switch (sh_type)
671     {
672     case elfcpp::SHT_NULL:
673     case elfcpp::SHT_SYMTAB:
674     case elfcpp::SHT_DYNSYM:
675     case elfcpp::SHT_HASH:
676     case elfcpp::SHT_DYNAMIC:
677     case elfcpp::SHT_SYMTAB_SHNDX:
678       return false;
679 
680     case elfcpp::SHT_STRTAB:
681       // Discard the sections which have special meanings in the ELF
682       // ABI.  Keep others (e.g., .stabstr).  We could also do this by
683       // checking the sh_link fields of the appropriate sections.
684       return (strcmp(name, ".dynstr") != 0
685 	      && strcmp(name, ".strtab") != 0
686 	      && strcmp(name, ".shstrtab") != 0);
687 
688     case elfcpp::SHT_RELA:
689     case elfcpp::SHT_REL:
690     case elfcpp::SHT_GROUP:
691       // If we are emitting relocations these should be handled
692       // elsewhere.
693       gold_assert(!parameters->options().relocatable());
694       return false;
695 
696     case elfcpp::SHT_PROGBITS:
697       if (parameters->options().strip_debug()
698 	  && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
699 	{
700 	  if (is_debug_info_section(name))
701 	    return false;
702 	}
703       if (parameters->options().strip_debug_non_line()
704 	  && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
705 	{
706 	  // Debugging sections can only be recognized by name.
707 	  if (is_prefix_of(".debug_", name)
708 	      && !is_lines_only_debug_section(name + 7))
709 	    return false;
710 	  if (is_prefix_of(".zdebug_", name)
711 	      && !is_lines_only_debug_section(name + 8))
712 	    return false;
713 	}
714       if (parameters->options().strip_debug_gdb()
715 	  && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
716 	{
717 	  // Debugging sections can only be recognized by name.
718 	  if (is_prefix_of(".debug_", name)
719 	      && !is_gdb_debug_section(name + 7))
720 	    return false;
721 	  if (is_prefix_of(".zdebug_", name)
722 	      && !is_gdb_debug_section(name + 8))
723 	    return false;
724 	}
725       if (parameters->options().gdb_index()
726 	  && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
727 	{
728 	  // When building .gdb_index, we can strip .debug_pubnames,
729 	  // .debug_pubtypes, and .debug_aranges sections.
730 	  if (is_prefix_of(".debug_", name)
731 	      && is_gdb_fast_lookup_section(name + 7))
732 	    return false;
733 	  if (is_prefix_of(".zdebug_", name)
734 	      && is_gdb_fast_lookup_section(name + 8))
735 	    return false;
736 	}
737       if (parameters->options().strip_lto_sections()
738 	  && !parameters->options().relocatable()
739 	  && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
740 	{
741 	  // Ignore LTO sections containing intermediate code.
742 	  if (is_prefix_of(".gnu.lto_", name))
743 	    return false;
744 	}
745       // The GNU linker strips .gnu_debuglink sections, so we do too.
746       // This is a feature used to keep debugging information in
747       // separate files.
748       if (strcmp(name, ".gnu_debuglink") == 0)
749 	return false;
750       return true;
751 
752     default:
753       return true;
754     }
755 }
756 
757 // Return an output section named NAME, or NULL if there is none.
758 
759 Output_section*
760 Layout::find_output_section(const char* name) const
761 {
762   for (Section_list::const_iterator p = this->section_list_.begin();
763        p != this->section_list_.end();
764        ++p)
765     if (strcmp((*p)->name(), name) == 0)
766       return *p;
767   return NULL;
768 }
769 
770 // Return an output segment of type TYPE, with segment flags SET set
771 // and segment flags CLEAR clear.  Return NULL if there is none.
772 
773 Output_segment*
774 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
775 			    elfcpp::Elf_Word clear) const
776 {
777   for (Segment_list::const_iterator p = this->segment_list_.begin();
778        p != this->segment_list_.end();
779        ++p)
780     if (static_cast<elfcpp::PT>((*p)->type()) == type
781 	&& ((*p)->flags() & set) == set
782 	&& ((*p)->flags() & clear) == 0)
783       return *p;
784   return NULL;
785 }
786 
787 // When we put a .ctors or .dtors section with more than one word into
788 // a .init_array or .fini_array section, we need to reverse the words
789 // in the .ctors/.dtors section.  This is because .init_array executes
790 // constructors front to back, where .ctors executes them back to
791 // front, and vice-versa for .fini_array/.dtors.  Although we do want
792 // to remap .ctors/.dtors into .init_array/.fini_array because it can
793 // be more efficient, we don't want to change the order in which
794 // constructors/destructors are run.  This set just keeps track of
795 // these sections which need to be reversed.  It is only changed by
796 // Layout::layout.  It should be a private member of Layout, but that
797 // would require layout.h to #include object.h to get the definition
798 // of Section_id.
799 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
800 
801 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
802 // .init_array/.fini_array section.
803 
804 bool
805 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
806 {
807   return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
808 	  != ctors_sections_in_init_array.end());
809 }
810 
811 // Return the output section to use for section NAME with type TYPE
812 // and section flags FLAGS.  NAME must be canonicalized in the string
813 // pool, and NAME_KEY is the key.  ORDER is where this should appear
814 // in the output sections.  IS_RELRO is true for a relro section.
815 
816 Output_section*
817 Layout::get_output_section(const char* name, Stringpool::Key name_key,
818 			   elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
819 			   Output_section_order order, bool is_relro)
820 {
821   elfcpp::Elf_Word lookup_type = type;
822 
823   // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
824   // PREINIT_ARRAY like PROGBITS.  This ensures that we combine
825   // .init_array, .fini_array, and .preinit_array sections by name
826   // whatever their type in the input file.  We do this because the
827   // types are not always right in the input files.
828   if (lookup_type == elfcpp::SHT_INIT_ARRAY
829       || lookup_type == elfcpp::SHT_FINI_ARRAY
830       || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
831     lookup_type = elfcpp::SHT_PROGBITS;
832 
833   elfcpp::Elf_Xword lookup_flags = flags;
834 
835   // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
836   // read-write with read-only sections.  Some other ELF linkers do
837   // not do this.  FIXME: Perhaps there should be an option
838   // controlling this.
839   lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
840 
841   const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
842   const std::pair<Key, Output_section*> v(key, NULL);
843   std::pair<Section_name_map::iterator, bool> ins(
844     this->section_name_map_.insert(v));
845 
846   if (!ins.second)
847     return ins.first->second;
848   else
849     {
850       // This is the first time we've seen this name/type/flags
851       // combination.  For compatibility with the GNU linker, we
852       // combine sections with contents and zero flags with sections
853       // with non-zero flags.  This is a workaround for cases where
854       // assembler code forgets to set section flags.  FIXME: Perhaps
855       // there should be an option to control this.
856       Output_section* os = NULL;
857 
858       if (lookup_type == elfcpp::SHT_PROGBITS)
859 	{
860 	  if (flags == 0)
861 	    {
862 	      Output_section* same_name = this->find_output_section(name);
863 	      if (same_name != NULL
864 		  && (same_name->type() == elfcpp::SHT_PROGBITS
865 		      || same_name->type() == elfcpp::SHT_INIT_ARRAY
866 		      || same_name->type() == elfcpp::SHT_FINI_ARRAY
867 		      || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
868 		  && (same_name->flags() & elfcpp::SHF_TLS) == 0)
869 		os = same_name;
870 	    }
871 	  else if ((flags & elfcpp::SHF_TLS) == 0)
872 	    {
873 	      elfcpp::Elf_Xword zero_flags = 0;
874 	      const Key zero_key(name_key, std::make_pair(lookup_type,
875 							  zero_flags));
876 	      Section_name_map::iterator p =
877 		  this->section_name_map_.find(zero_key);
878 	      if (p != this->section_name_map_.end())
879 		os = p->second;
880 	    }
881 	}
882 
883       if (os == NULL)
884 	os = this->make_output_section(name, type, flags, order, is_relro);
885 
886       ins.first->second = os;
887       return os;
888     }
889 }
890 
891 // Returns TRUE iff NAME (an input section from RELOBJ) will
892 // be mapped to an output section that should be KEPT.
893 
894 bool
895 Layout::keep_input_section(const Relobj* relobj, const char* name)
896 {
897   if (! this->script_options_->saw_sections_clause())
898     return false;
899 
900   Script_sections* ss = this->script_options_->script_sections();
901   const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
902   Output_section** output_section_slot;
903   Script_sections::Section_type script_section_type;
904   bool keep;
905 
906   name = ss->output_section_name(file_name, name, &output_section_slot,
907 				 &script_section_type, &keep, true);
908   return name != NULL && keep;
909 }
910 
911 // Clear the input section flags that should not be copied to the
912 // output section.
913 
914 elfcpp::Elf_Xword
915 Layout::get_output_section_flags(elfcpp::Elf_Xword input_section_flags)
916 {
917   // Some flags in the input section should not be automatically
918   // copied to the output section.
919   input_section_flags &= ~ (elfcpp::SHF_INFO_LINK
920 			    | elfcpp::SHF_GROUP
921 			    | elfcpp::SHF_COMPRESSED
922 			    | elfcpp::SHF_MERGE
923 			    | elfcpp::SHF_STRINGS);
924 
925   // We only clear the SHF_LINK_ORDER flag in for
926   // a non-relocatable link.
927   if (!parameters->options().relocatable())
928     input_section_flags &= ~elfcpp::SHF_LINK_ORDER;
929 
930   return input_section_flags;
931 }
932 
933 // Pick the output section to use for section NAME, in input file
934 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
935 // linker created section.  IS_INPUT_SECTION is true if we are
936 // choosing an output section for an input section found in a input
937 // file.  ORDER is where this section should appear in the output
938 // sections.  IS_RELRO is true for a relro section.  This will return
939 // NULL if the input section should be discarded.  MATCH_INPUT_SPEC
940 // is true if the section name should be matched against input specs
941 // in a linker script.
942 
943 Output_section*
944 Layout::choose_output_section(const Relobj* relobj, const char* name,
945 			      elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
946 			      bool is_input_section, Output_section_order order,
947 			      bool is_relro, bool is_reloc,
948 			      bool match_input_spec)
949 {
950   // We should not see any input sections after we have attached
951   // sections to segments.
952   gold_assert(!is_input_section || !this->sections_are_attached_);
953 
954   flags = this->get_output_section_flags(flags);
955 
956   if (this->script_options_->saw_sections_clause() && !is_reloc)
957     {
958       // We are using a SECTIONS clause, so the output section is
959       // chosen based only on the name.
960 
961       Script_sections* ss = this->script_options_->script_sections();
962       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
963       Output_section** output_section_slot;
964       Script_sections::Section_type script_section_type;
965       const char* orig_name = name;
966       bool keep;
967       name = ss->output_section_name(file_name, name, &output_section_slot,
968 				     &script_section_type, &keep,
969 				     match_input_spec);
970 
971       if (name == NULL)
972 	{
973 	  gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
974 				     "because it is not allowed by the "
975 				     "SECTIONS clause of the linker script"),
976 		     orig_name);
977 	  // The SECTIONS clause says to discard this input section.
978 	  return NULL;
979 	}
980 
981       // We can only handle script section types ST_NONE and ST_NOLOAD.
982       switch (script_section_type)
983 	{
984 	case Script_sections::ST_NONE:
985 	  break;
986 	case Script_sections::ST_NOLOAD:
987 	  flags &= elfcpp::SHF_ALLOC;
988 	  break;
989 	default:
990 	  gold_unreachable();
991 	}
992 
993       // If this is an orphan section--one not mentioned in the linker
994       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
995       // default processing below.
996 
997       if (output_section_slot != NULL)
998 	{
999 	  if (*output_section_slot != NULL)
1000 	    {
1001 	      (*output_section_slot)->update_flags_for_input_section(flags);
1002 	      return *output_section_slot;
1003 	    }
1004 
1005 	  // We don't put sections found in the linker script into
1006 	  // SECTION_NAME_MAP_.  That keeps us from getting confused
1007 	  // if an orphan section is mapped to a section with the same
1008 	  // name as one in the linker script.
1009 
1010 	  name = this->namepool_.add(name, false, NULL);
1011 
1012 	  Output_section* os = this->make_output_section(name, type, flags,
1013 							 order, is_relro);
1014 
1015 	  os->set_found_in_sections_clause();
1016 
1017 	  // Special handling for NOLOAD sections.
1018 	  if (script_section_type == Script_sections::ST_NOLOAD)
1019 	    {
1020 	      os->set_is_noload();
1021 
1022 	      // The constructor of Output_section sets addresses of non-ALLOC
1023 	      // sections to 0 by default.  We don't want that for NOLOAD
1024 	      // sections even if they have no SHF_ALLOC flag.
1025 	      if ((os->flags() & elfcpp::SHF_ALLOC) == 0
1026 		  && os->is_address_valid())
1027 		{
1028 		  gold_assert(os->address() == 0
1029 			      && !os->is_offset_valid()
1030 			      && !os->is_data_size_valid());
1031 		  os->reset_address_and_file_offset();
1032 		}
1033 	    }
1034 
1035 	  *output_section_slot = os;
1036 	  return os;
1037 	}
1038     }
1039 
1040   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
1041 
1042   size_t len = strlen(name);
1043   std::string uncompressed_name;
1044 
1045   // Compressed debug sections should be mapped to the corresponding
1046   // uncompressed section.
1047   if (is_compressed_debug_section(name))
1048     {
1049       uncompressed_name =
1050 	  corresponding_uncompressed_section_name(std::string(name, len));
1051       name = uncompressed_name.c_str();
1052       len = uncompressed_name.length();
1053     }
1054 
1055   // Turn NAME from the name of the input section into the name of the
1056   // output section.
1057   if (is_input_section
1058       && !this->script_options_->saw_sections_clause()
1059       && !parameters->options().relocatable())
1060     {
1061       const char *orig_name = name;
1062       name = parameters->target().output_section_name(relobj, name, &len);
1063       if (name == NULL)
1064 	name = Layout::output_section_name(relobj, orig_name, &len);
1065     }
1066 
1067   Stringpool::Key name_key;
1068   name = this->namepool_.add_with_length(name, len, true, &name_key);
1069 
1070   // Find or make the output section.  The output section is selected
1071   // based on the section name, type, and flags.
1072   return this->get_output_section(name, name_key, type, flags, order, is_relro);
1073 }
1074 
1075 // For incremental links, record the initial fixed layout of a section
1076 // from the base file, and return a pointer to the Output_section.
1077 
1078 template<int size, bool big_endian>
1079 Output_section*
1080 Layout::init_fixed_output_section(const char* name,
1081 				  elfcpp::Shdr<size, big_endian>& shdr)
1082 {
1083   unsigned int sh_type = shdr.get_sh_type();
1084 
1085   // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
1086   // PRE_INIT_ARRAY, and NOTE sections.
1087   // All others will be created from scratch and reallocated.
1088   if (!can_incremental_update(sh_type))
1089     return NULL;
1090 
1091   // If we're generating a .gdb_index section, we need to regenerate
1092   // it from scratch.
1093   if (parameters->options().gdb_index()
1094       && sh_type == elfcpp::SHT_PROGBITS
1095       && strcmp(name, ".gdb_index") == 0)
1096     return NULL;
1097 
1098   typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
1099   typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
1100   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1101   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1102   typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
1103       shdr.get_sh_addralign();
1104 
1105   // Make the output section.
1106   Stringpool::Key name_key;
1107   name = this->namepool_.add(name, true, &name_key);
1108   Output_section* os = this->get_output_section(name, name_key, sh_type,
1109 						sh_flags, ORDER_INVALID, false);
1110   os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
1111   if (sh_type != elfcpp::SHT_NOBITS)
1112     this->free_list_.remove(sh_offset, sh_offset + sh_size);
1113   return os;
1114 }
1115 
1116 // Return the index by which an input section should be ordered.  This
1117 // is used to sort some .text sections, for compatibility with GNU ld.
1118 
1119 int
1120 Layout::special_ordering_of_input_section(const char* name)
1121 {
1122   // The GNU linker has some special handling for some sections that
1123   // wind up in the .text section.  Sections that start with these
1124   // prefixes must appear first, and must appear in the order listed
1125   // here.
1126   static const char* const text_section_sort[] =
1127   {
1128     ".text.unlikely",
1129     ".text.exit",
1130     ".text.startup",
1131     ".text.hot"
1132   };
1133 
1134   for (size_t i = 0;
1135        i < sizeof(text_section_sort) / sizeof(text_section_sort[0]);
1136        i++)
1137     if (is_prefix_of(text_section_sort[i], name))
1138       return i;
1139 
1140   return -1;
1141 }
1142 
1143 // Return the output section to use for input section SHNDX, with name
1144 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
1145 // index of a relocation section which applies to this section, or 0
1146 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
1147 // relocation section if there is one.  Set *OFF to the offset of this
1148 // input section without the output section.  Return NULL if the
1149 // section should be discarded.  Set *OFF to -1 if the section
1150 // contents should not be written directly to the output file, but
1151 // will instead receive special handling.
1152 
1153 template<int size, bool big_endian>
1154 Output_section*
1155 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
1156 	       const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
1157 	       unsigned int sh_type, unsigned int reloc_shndx,
1158 	       unsigned int, off_t* off)
1159 {
1160   *off = 0;
1161 
1162   if (!this->include_section(object, name, shdr))
1163     return NULL;
1164 
1165   // In a relocatable link a grouped section must not be combined with
1166   // any other sections.
1167   Output_section* os;
1168   if (parameters->options().relocatable()
1169       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
1170     {
1171       // Some flags in the input section should not be automatically
1172       // copied to the output section.
1173       elfcpp::Elf_Xword flags = (shdr.get_sh_flags()
1174 				 & ~ elfcpp::SHF_COMPRESSED);
1175       name = this->namepool_.add(name, true, NULL);
1176       os = this->make_output_section(name, sh_type, flags,
1177 				     ORDER_INVALID, false);
1178     }
1179   else
1180     {
1181       // All ".text.unlikely.*" sections can be moved to a unique
1182       // segment with --text-unlikely-segment option.
1183       bool text_unlikely_segment
1184           = (parameters->options().text_unlikely_segment()
1185              && is_prefix_of(".text.unlikely",
1186                              object->section_name(shndx).c_str()));
1187       if (text_unlikely_segment)
1188         {
1189 	  elfcpp::Elf_Xword flags
1190 	    = this->get_output_section_flags(shdr.get_sh_flags());
1191 
1192 	  Stringpool::Key name_key;
1193 	  const char* os_name = this->namepool_.add(".text.unlikely", true,
1194 						    &name_key);
1195 	  os = this->get_output_section(os_name, name_key, sh_type, flags,
1196 					ORDER_INVALID, false);
1197           // Map this output section to a unique segment.  This is done to
1198           // separate "text" that is not likely to be executed from "text"
1199           // that is likely executed.
1200 	  os->set_is_unique_segment();
1201         }
1202       else
1203 	{
1204 	  // Plugins can choose to place one or more subsets of sections in
1205 	  // unique segments and this is done by mapping these section subsets
1206 	  // to unique output sections.  Check if this section needs to be
1207 	  // remapped to a unique output section.
1208 	  Section_segment_map::iterator it
1209 	    = this->section_segment_map_.find(Const_section_id(object, shndx));
1210 	  if (it == this->section_segment_map_.end())
1211 	    {
1212 	      os = this->choose_output_section(object, name, sh_type,
1213 					       shdr.get_sh_flags(), true,
1214 					       ORDER_INVALID, false, false,
1215 					       true);
1216 	    }
1217 	  else
1218 	    {
1219 	      // We know the name of the output section, directly call
1220 	      // get_output_section here by-passing choose_output_section.
1221 	      elfcpp::Elf_Xword flags
1222 	        = this->get_output_section_flags(shdr.get_sh_flags());
1223 
1224 	      const char* os_name = it->second->name;
1225 	      Stringpool::Key name_key;
1226 	      os_name = this->namepool_.add(os_name, true, &name_key);
1227 	      os = this->get_output_section(os_name, name_key, sh_type, flags,
1228 					ORDER_INVALID, false);
1229 	      if (!os->is_unique_segment())
1230 	        {
1231 	          os->set_is_unique_segment();
1232 	          os->set_extra_segment_flags(it->second->flags);
1233 	          os->set_segment_alignment(it->second->align);
1234 	        }
1235 	    }
1236 	  }
1237       if (os == NULL)
1238 	return NULL;
1239     }
1240 
1241   // By default the GNU linker sorts input sections whose names match
1242   // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*.  The
1243   // sections are sorted by name.  This is used to implement
1244   // constructor priority ordering.  We are compatible.  When we put
1245   // .ctor sections in .init_array and .dtor sections in .fini_array,
1246   // we must also sort plain .ctor and .dtor sections.
1247   if (!this->script_options_->saw_sections_clause()
1248       && !parameters->options().relocatable()
1249       && (is_prefix_of(".ctors.", name)
1250 	  || is_prefix_of(".dtors.", name)
1251 	  || is_prefix_of(".init_array.", name)
1252 	  || is_prefix_of(".fini_array.", name)
1253 	  || (parameters->options().ctors_in_init_array()
1254 	      && (strcmp(name, ".ctors") == 0
1255 		  || strcmp(name, ".dtors") == 0))))
1256     os->set_must_sort_attached_input_sections();
1257 
1258   // By default the GNU linker sorts some special text sections ahead
1259   // of others.  We are compatible.
1260   if (parameters->options().text_reorder()
1261       && !this->script_options_->saw_sections_clause()
1262       && !this->is_section_ordering_specified()
1263       && !parameters->options().relocatable()
1264       && Layout::special_ordering_of_input_section(name) >= 0)
1265     os->set_must_sort_attached_input_sections();
1266 
1267   // If this is a .ctors or .ctors.* section being mapped to a
1268   // .init_array section, or a .dtors or .dtors.* section being mapped
1269   // to a .fini_array section, we will need to reverse the words if
1270   // there is more than one.  Record this section for later.  See
1271   // ctors_sections_in_init_array above.
1272   if (!this->script_options_->saw_sections_clause()
1273       && !parameters->options().relocatable()
1274       && shdr.get_sh_size() > size / 8
1275       && (((strcmp(name, ".ctors") == 0
1276 	    || is_prefix_of(".ctors.", name))
1277 	   && strcmp(os->name(), ".init_array") == 0)
1278 	  || ((strcmp(name, ".dtors") == 0
1279 	       || is_prefix_of(".dtors.", name))
1280 	      && strcmp(os->name(), ".fini_array") == 0)))
1281     ctors_sections_in_init_array.insert(Section_id(object, shndx));
1282 
1283   // FIXME: Handle SHF_LINK_ORDER somewhere.
1284 
1285   elfcpp::Elf_Xword orig_flags = os->flags();
1286 
1287   *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1288 			       this->script_options_->saw_sections_clause());
1289 
1290   // If the flags changed, we may have to change the order.
1291   if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1292     {
1293       orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1294       elfcpp::Elf_Xword new_flags =
1295 	os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1296       if (orig_flags != new_flags)
1297 	os->set_order(this->default_section_order(os, false));
1298     }
1299 
1300   this->have_added_input_section_ = true;
1301 
1302   return os;
1303 }
1304 
1305 // Maps section SECN to SEGMENT s.
1306 void
1307 Layout::insert_section_segment_map(Const_section_id secn,
1308 				   Unique_segment_info *s)
1309 {
1310   gold_assert(this->unique_segment_for_sections_specified_);
1311   this->section_segment_map_[secn] = s;
1312 }
1313 
1314 // Handle a relocation section when doing a relocatable link.
1315 
1316 template<int size, bool big_endian>
1317 Output_section*
1318 Layout::layout_reloc(Sized_relobj_file<size, big_endian>*,
1319 		     unsigned int,
1320 		     const elfcpp::Shdr<size, big_endian>& shdr,
1321 		     Output_section* data_section,
1322 		     Relocatable_relocs* rr)
1323 {
1324   gold_assert(parameters->options().relocatable()
1325 	      || parameters->options().emit_relocs());
1326 
1327   int sh_type = shdr.get_sh_type();
1328 
1329   std::string name;
1330   if (sh_type == elfcpp::SHT_REL)
1331     name = ".rel";
1332   else if (sh_type == elfcpp::SHT_RELA)
1333     name = ".rela";
1334   else
1335     gold_unreachable();
1336   name += data_section->name();
1337 
1338   // If the output data section already has a reloc section, use that;
1339   // otherwise, make a new one.
1340   Output_section* os = data_section->reloc_section();
1341   if (os == NULL)
1342     {
1343       const char* n = this->namepool_.add(name.c_str(), true, NULL);
1344       os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1345 				     ORDER_INVALID, false);
1346       os->set_should_link_to_symtab();
1347       os->set_info_section(data_section);
1348       data_section->set_reloc_section(os);
1349     }
1350 
1351   Output_section_data* posd;
1352   if (sh_type == elfcpp::SHT_REL)
1353     {
1354       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1355       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1356 					   size,
1357 					   big_endian>(rr);
1358     }
1359   else if (sh_type == elfcpp::SHT_RELA)
1360     {
1361       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1362       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1363 					   size,
1364 					   big_endian>(rr);
1365     }
1366   else
1367     gold_unreachable();
1368 
1369   os->add_output_section_data(posd);
1370   rr->set_output_data(posd);
1371 
1372   return os;
1373 }
1374 
1375 // Handle a group section when doing a relocatable link.
1376 
1377 template<int size, bool big_endian>
1378 void
1379 Layout::layout_group(Symbol_table* symtab,
1380 		     Sized_relobj_file<size, big_endian>* object,
1381 		     unsigned int,
1382 		     const char* group_section_name,
1383 		     const char* signature,
1384 		     const elfcpp::Shdr<size, big_endian>& shdr,
1385 		     elfcpp::Elf_Word flags,
1386 		     std::vector<unsigned int>* shndxes)
1387 {
1388   gold_assert(parameters->options().relocatable());
1389   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1390   group_section_name = this->namepool_.add(group_section_name, true, NULL);
1391   Output_section* os = this->make_output_section(group_section_name,
1392 						 elfcpp::SHT_GROUP,
1393 						 shdr.get_sh_flags(),
1394 						 ORDER_INVALID, false);
1395 
1396   // We need to find a symbol with the signature in the symbol table.
1397   // If we don't find one now, we need to look again later.
1398   Symbol* sym = symtab->lookup(signature, NULL);
1399   if (sym != NULL)
1400     os->set_info_symndx(sym);
1401   else
1402     {
1403       // Reserve some space to minimize reallocations.
1404       if (this->group_signatures_.empty())
1405 	this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1406 
1407       // We will wind up using a symbol whose name is the signature.
1408       // So just put the signature in the symbol name pool to save it.
1409       signature = symtab->canonicalize_name(signature);
1410       this->group_signatures_.push_back(Group_signature(os, signature));
1411     }
1412 
1413   os->set_should_link_to_symtab();
1414   os->set_entsize(4);
1415 
1416   section_size_type entry_count =
1417     convert_to_section_size_type(shdr.get_sh_size() / 4);
1418   Output_section_data* posd =
1419     new Output_data_group<size, big_endian>(object, entry_count, flags,
1420 					    shndxes);
1421   os->add_output_section_data(posd);
1422 }
1423 
1424 // Special GNU handling of sections name .eh_frame.  They will
1425 // normally hold exception frame data as defined by the C++ ABI
1426 // (http://codesourcery.com/cxx-abi/).
1427 
1428 template<int size, bool big_endian>
1429 Output_section*
1430 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1431 			const unsigned char* symbols,
1432 			off_t symbols_size,
1433 			const unsigned char* symbol_names,
1434 			off_t symbol_names_size,
1435 			unsigned int shndx,
1436 			const elfcpp::Shdr<size, big_endian>& shdr,
1437 			unsigned int reloc_shndx, unsigned int reloc_type,
1438 			off_t* off)
1439 {
1440   const unsigned int unwind_section_type =
1441       parameters->target().unwind_section_type();
1442 
1443   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1444 	      || shdr.get_sh_type() == unwind_section_type);
1445   gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1446 
1447   Output_section* os = this->make_eh_frame_section(object);
1448   if (os == NULL)
1449     return NULL;
1450 
1451   gold_assert(this->eh_frame_section_ == os);
1452 
1453   elfcpp::Elf_Xword orig_flags = os->flags();
1454 
1455   Eh_frame::Eh_frame_section_disposition disp =
1456       Eh_frame::EH_UNRECOGNIZED_SECTION;
1457   if (!parameters->incremental())
1458     {
1459       disp = this->eh_frame_data_->add_ehframe_input_section(object,
1460 							     symbols,
1461 							     symbols_size,
1462 							     symbol_names,
1463 							     symbol_names_size,
1464 							     shndx,
1465 							     reloc_shndx,
1466 							     reloc_type);
1467     }
1468 
1469   if (disp == Eh_frame::EH_OPTIMIZABLE_SECTION)
1470     {
1471       os->update_flags_for_input_section(shdr.get_sh_flags());
1472 
1473       // A writable .eh_frame section is a RELRO section.
1474       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1475 	  != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1476 	{
1477 	  os->set_is_relro();
1478 	  os->set_order(ORDER_RELRO);
1479 	}
1480 
1481       *off = -1;
1482       return os;
1483     }
1484 
1485   if (disp == Eh_frame::EH_END_MARKER_SECTION && !this->added_eh_frame_data_)
1486     {
1487       // We found the end marker section, so now we can add the set of
1488       // optimized sections to the output section.  We need to postpone
1489       // adding this until we've found a section we can optimize so that
1490       // the .eh_frame section in crtbeginT.o winds up at the start of
1491       // the output section.
1492       os->add_output_section_data(this->eh_frame_data_);
1493       this->added_eh_frame_data_ = true;
1494      }
1495 
1496   // We couldn't handle this .eh_frame section for some reason.
1497   // Add it as a normal section.
1498   bool saw_sections_clause = this->script_options_->saw_sections_clause();
1499   *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1500 			       reloc_shndx, saw_sections_clause);
1501   this->have_added_input_section_ = true;
1502 
1503   if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1504       != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1505     os->set_order(this->default_section_order(os, false));
1506 
1507   return os;
1508 }
1509 
1510 void
1511 Layout::finalize_eh_frame_section()
1512 {
1513   // If we never found an end marker section, we need to add the
1514   // optimized eh sections to the output section now.
1515   if (!parameters->incremental()
1516       && this->eh_frame_section_ != NULL
1517       && !this->added_eh_frame_data_)
1518     {
1519       this->eh_frame_section_->add_output_section_data(this->eh_frame_data_);
1520       this->added_eh_frame_data_ = true;
1521     }
1522 }
1523 
1524 // Create and return the magic .eh_frame section.  Create
1525 // .eh_frame_hdr also if appropriate.  OBJECT is the object with the
1526 // input .eh_frame section; it may be NULL.
1527 
1528 Output_section*
1529 Layout::make_eh_frame_section(const Relobj* object)
1530 {
1531   const unsigned int unwind_section_type =
1532       parameters->target().unwind_section_type();
1533 
1534   Output_section* os = this->choose_output_section(object, ".eh_frame",
1535 						   unwind_section_type,
1536 						   elfcpp::SHF_ALLOC, false,
1537 						   ORDER_EHFRAME, false, false,
1538 						   false);
1539   if (os == NULL)
1540     return NULL;
1541 
1542   if (this->eh_frame_section_ == NULL)
1543     {
1544       this->eh_frame_section_ = os;
1545       this->eh_frame_data_ = new Eh_frame();
1546 
1547       // For incremental linking, we do not optimize .eh_frame sections
1548       // or create a .eh_frame_hdr section.
1549       if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1550 	{
1551 	  Output_section* hdr_os =
1552 	    this->choose_output_section(NULL, ".eh_frame_hdr",
1553 					unwind_section_type,
1554 					elfcpp::SHF_ALLOC, false,
1555 					ORDER_EHFRAME, false, false,
1556 					false);
1557 
1558 	  if (hdr_os != NULL)
1559 	    {
1560 	      Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1561 							this->eh_frame_data_);
1562 	      hdr_os->add_output_section_data(hdr_posd);
1563 
1564 	      hdr_os->set_after_input_sections();
1565 
1566 	      if (!this->script_options_->saw_phdrs_clause())
1567 		{
1568 		  Output_segment* hdr_oseg;
1569 		  hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1570 						       elfcpp::PF_R);
1571 		  hdr_oseg->add_output_section_to_nonload(hdr_os,
1572 							  elfcpp::PF_R);
1573 		}
1574 
1575 	      this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1576 	    }
1577 	}
1578     }
1579 
1580   return os;
1581 }
1582 
1583 // Add an exception frame for a PLT.  This is called from target code.
1584 
1585 void
1586 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1587 			     size_t cie_length, const unsigned char* fde_data,
1588 			     size_t fde_length)
1589 {
1590   if (parameters->incremental())
1591     {
1592       // FIXME: Maybe this could work some day....
1593       return;
1594     }
1595   Output_section* os = this->make_eh_frame_section(NULL);
1596   if (os == NULL)
1597     return;
1598   this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1599 					    fde_data, fde_length);
1600   if (!this->added_eh_frame_data_)
1601     {
1602       os->add_output_section_data(this->eh_frame_data_);
1603       this->added_eh_frame_data_ = true;
1604     }
1605 }
1606 
1607 // Remove .eh_frame information for a PLT.  FDEs using the CIE must
1608 // be removed in reverse order to the order they were added.
1609 
1610 void
1611 Layout::remove_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1612 				size_t cie_length, const unsigned char* fde_data,
1613 				size_t fde_length)
1614 {
1615   if (parameters->incremental())
1616     {
1617       // FIXME: Maybe this could work some day....
1618       return;
1619     }
1620   this->eh_frame_data_->remove_ehframe_for_plt(plt, cie_data, cie_length,
1621 					       fde_data, fde_length);
1622 }
1623 
1624 // Scan a .debug_info or .debug_types section, and add summary
1625 // information to the .gdb_index section.
1626 
1627 template<int size, bool big_endian>
1628 void
1629 Layout::add_to_gdb_index(bool is_type_unit,
1630 			 Sized_relobj<size, big_endian>* object,
1631 			 const unsigned char* symbols,
1632 			 off_t symbols_size,
1633 			 unsigned int shndx,
1634 			 unsigned int reloc_shndx,
1635 			 unsigned int reloc_type)
1636 {
1637   if (this->gdb_index_data_ == NULL)
1638     {
1639       Output_section* os = this->choose_output_section(NULL, ".gdb_index",
1640 						       elfcpp::SHT_PROGBITS, 0,
1641 						       false, ORDER_INVALID,
1642 						       false, false, false);
1643       if (os == NULL)
1644 	return;
1645 
1646       this->gdb_index_data_ = new Gdb_index(os);
1647       os->add_output_section_data(this->gdb_index_data_);
1648       os->set_after_input_sections();
1649     }
1650 
1651   this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
1652 					 symbols_size, shndx, reloc_shndx,
1653 					 reloc_type);
1654 }
1655 
1656 // Add POSD to an output section using NAME, TYPE, and FLAGS.  Return
1657 // the output section.
1658 
1659 Output_section*
1660 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1661 				elfcpp::Elf_Xword flags,
1662 				Output_section_data* posd,
1663 				Output_section_order order, bool is_relro)
1664 {
1665   Output_section* os = this->choose_output_section(NULL, name, type, flags,
1666 						   false, order, is_relro,
1667 						   false, false);
1668   if (os != NULL)
1669     os->add_output_section_data(posd);
1670   return os;
1671 }
1672 
1673 // Map section flags to segment flags.
1674 
1675 elfcpp::Elf_Word
1676 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1677 {
1678   elfcpp::Elf_Word ret = elfcpp::PF_R;
1679   if ((flags & elfcpp::SHF_WRITE) != 0)
1680     ret |= elfcpp::PF_W;
1681   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1682     ret |= elfcpp::PF_X;
1683   return ret;
1684 }
1685 
1686 // Make a new Output_section, and attach it to segments as
1687 // appropriate.  ORDER is the order in which this section should
1688 // appear in the output segment.  IS_RELRO is true if this is a relro
1689 // (read-only after relocations) section.
1690 
1691 Output_section*
1692 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1693 			    elfcpp::Elf_Xword flags,
1694 			    Output_section_order order, bool is_relro)
1695 {
1696   Output_section* os;
1697   if ((flags & elfcpp::SHF_ALLOC) == 0
1698       && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1699       && is_compressible_debug_section(name))
1700     os = new Output_compressed_section(&parameters->options(), name, type,
1701 				       flags);
1702   else if ((flags & elfcpp::SHF_ALLOC) == 0
1703 	   && parameters->options().strip_debug_non_line()
1704 	   && strcmp(".debug_abbrev", name) == 0)
1705     {
1706       os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1707 	  name, type, flags);
1708       if (this->debug_info_)
1709 	this->debug_info_->set_abbreviations(this->debug_abbrev_);
1710     }
1711   else if ((flags & elfcpp::SHF_ALLOC) == 0
1712 	   && parameters->options().strip_debug_non_line()
1713 	   && strcmp(".debug_info", name) == 0)
1714     {
1715       os = this->debug_info_ = new Output_reduced_debug_info_section(
1716 	  name, type, flags);
1717       if (this->debug_abbrev_)
1718 	this->debug_info_->set_abbreviations(this->debug_abbrev_);
1719     }
1720   else
1721     {
1722       // Sometimes .init_array*, .preinit_array* and .fini_array* do
1723       // not have correct section types.  Force them here.
1724       if (type == elfcpp::SHT_PROGBITS)
1725 	{
1726 	  if (is_prefix_of(".init_array", name))
1727 	    type = elfcpp::SHT_INIT_ARRAY;
1728 	  else if (is_prefix_of(".preinit_array", name))
1729 	    type = elfcpp::SHT_PREINIT_ARRAY;
1730 	  else if (is_prefix_of(".fini_array", name))
1731 	    type = elfcpp::SHT_FINI_ARRAY;
1732 	}
1733 
1734       // FIXME: const_cast is ugly.
1735       Target* target = const_cast<Target*>(&parameters->target());
1736       os = target->make_output_section(name, type, flags);
1737     }
1738 
1739   // With -z relro, we have to recognize the special sections by name.
1740   // There is no other way.
1741   bool is_relro_local = false;
1742   if (!this->script_options_->saw_sections_clause()
1743       && parameters->options().relro()
1744       && (flags & elfcpp::SHF_ALLOC) != 0
1745       && (flags & elfcpp::SHF_WRITE) != 0)
1746     {
1747       if (type == elfcpp::SHT_PROGBITS)
1748 	{
1749 	  if ((flags & elfcpp::SHF_TLS) != 0)
1750 	    is_relro = true;
1751 	  else if (strcmp(name, ".data.rel.ro") == 0)
1752 	    is_relro = true;
1753 	  else if (strcmp(name, ".data.rel.ro.local") == 0)
1754 	    {
1755 	      is_relro = true;
1756 	      is_relro_local = true;
1757 	    }
1758 	  else if (strcmp(name, ".ctors") == 0
1759 		   || strcmp(name, ".dtors") == 0
1760 		   || strcmp(name, ".jcr") == 0)
1761 	    is_relro = true;
1762 	}
1763       else if (type == elfcpp::SHT_INIT_ARRAY
1764 	       || type == elfcpp::SHT_FINI_ARRAY
1765 	       || type == elfcpp::SHT_PREINIT_ARRAY)
1766 	is_relro = true;
1767     }
1768 
1769   if (is_relro)
1770     os->set_is_relro();
1771 
1772   if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1773     order = this->default_section_order(os, is_relro_local);
1774 
1775   os->set_order(order);
1776 
1777   parameters->target().new_output_section(os);
1778 
1779   this->section_list_.push_back(os);
1780 
1781   // The GNU linker by default sorts some sections by priority, so we
1782   // do the same.  We need to know that this might happen before we
1783   // attach any input sections.
1784   if (!this->script_options_->saw_sections_clause()
1785       && !parameters->options().relocatable()
1786       && (strcmp(name, ".init_array") == 0
1787 	  || strcmp(name, ".fini_array") == 0
1788 	  || (!parameters->options().ctors_in_init_array()
1789 	      && (strcmp(name, ".ctors") == 0
1790 		  || strcmp(name, ".dtors") == 0))))
1791     os->set_may_sort_attached_input_sections();
1792 
1793   // The GNU linker by default sorts .text.{unlikely,exit,startup,hot}
1794   // sections before other .text sections.  We are compatible.  We
1795   // need to know that this might happen before we attach any input
1796   // sections.
1797   if (parameters->options().text_reorder()
1798       && !this->script_options_->saw_sections_clause()
1799       && !this->is_section_ordering_specified()
1800       && !parameters->options().relocatable()
1801       && strcmp(name, ".text") == 0)
1802     os->set_may_sort_attached_input_sections();
1803 
1804   // GNU linker sorts section by name with --sort-section=name.
1805   if (strcmp(parameters->options().sort_section(), "name") == 0)
1806       os->set_must_sort_attached_input_sections();
1807 
1808   // Check for .stab*str sections, as .stab* sections need to link to
1809   // them.
1810   if (type == elfcpp::SHT_STRTAB
1811       && !this->have_stabstr_section_
1812       && strncmp(name, ".stab", 5) == 0
1813       && strcmp(name + strlen(name) - 3, "str") == 0)
1814     this->have_stabstr_section_ = true;
1815 
1816   // During a full incremental link, we add patch space to most
1817   // PROGBITS and NOBITS sections.  Flag those that may be
1818   // arbitrarily padded.
1819   if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1820       && order != ORDER_INTERP
1821       && order != ORDER_INIT
1822       && order != ORDER_PLT
1823       && order != ORDER_FINI
1824       && order != ORDER_RELRO_LAST
1825       && order != ORDER_NON_RELRO_FIRST
1826       && strcmp(name, ".eh_frame") != 0
1827       && strcmp(name, ".ctors") != 0
1828       && strcmp(name, ".dtors") != 0
1829       && strcmp(name, ".jcr") != 0)
1830     {
1831       os->set_is_patch_space_allowed();
1832 
1833       // Certain sections require "holes" to be filled with
1834       // specific fill patterns.  These fill patterns may have
1835       // a minimum size, so we must prevent allocations from the
1836       // free list that leave a hole smaller than the minimum.
1837       if (strcmp(name, ".debug_info") == 0)
1838 	os->set_free_space_fill(new Output_fill_debug_info(false));
1839       else if (strcmp(name, ".debug_types") == 0)
1840 	os->set_free_space_fill(new Output_fill_debug_info(true));
1841       else if (strcmp(name, ".debug_line") == 0)
1842 	os->set_free_space_fill(new Output_fill_debug_line());
1843     }
1844 
1845   // If we have already attached the sections to segments, then we
1846   // need to attach this one now.  This happens for sections created
1847   // directly by the linker.
1848   if (this->sections_are_attached_)
1849     this->attach_section_to_segment(&parameters->target(), os);
1850 
1851   return os;
1852 }
1853 
1854 // Return the default order in which a section should be placed in an
1855 // output segment.  This function captures a lot of the ideas in
1856 // ld/scripttempl/elf.sc in the GNU linker.  Note that the order of a
1857 // linker created section is normally set when the section is created;
1858 // this function is used for input sections.
1859 
1860 Output_section_order
1861 Layout::default_section_order(Output_section* os, bool is_relro_local)
1862 {
1863   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1864   bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1865   bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1866   bool is_bss = false;
1867 
1868   switch (os->type())
1869     {
1870     default:
1871     case elfcpp::SHT_PROGBITS:
1872       break;
1873     case elfcpp::SHT_NOBITS:
1874       is_bss = true;
1875       break;
1876     case elfcpp::SHT_RELA:
1877     case elfcpp::SHT_REL:
1878       if (!is_write)
1879 	return ORDER_DYNAMIC_RELOCS;
1880       break;
1881     case elfcpp::SHT_HASH:
1882     case elfcpp::SHT_DYNAMIC:
1883     case elfcpp::SHT_SHLIB:
1884     case elfcpp::SHT_DYNSYM:
1885     case elfcpp::SHT_GNU_HASH:
1886     case elfcpp::SHT_GNU_verdef:
1887     case elfcpp::SHT_GNU_verneed:
1888     case elfcpp::SHT_GNU_versym:
1889       if (!is_write)
1890 	return ORDER_DYNAMIC_LINKER;
1891       break;
1892     case elfcpp::SHT_NOTE:
1893       return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1894     }
1895 
1896   if ((os->flags() & elfcpp::SHF_TLS) != 0)
1897     return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1898 
1899   if (!is_bss && !is_write)
1900     {
1901       if (is_execinstr)
1902 	{
1903 	  if (strcmp(os->name(), ".init") == 0)
1904 	    return ORDER_INIT;
1905 	  else if (strcmp(os->name(), ".fini") == 0)
1906 	    return ORDER_FINI;
1907 	  else if (parameters->options().keep_text_section_prefix())
1908 	    {
1909 	      // -z,keep-text-section-prefix introduces additional
1910 	      // output sections.
1911 	      if (strcmp(os->name(), ".text.hot") == 0)
1912 		return ORDER_TEXT_HOT;
1913 	      else if (strcmp(os->name(), ".text.startup") == 0)
1914 		return ORDER_TEXT_STARTUP;
1915 	      else if (strcmp(os->name(), ".text.exit") == 0)
1916 		return ORDER_TEXT_EXIT;
1917 	      else if (strcmp(os->name(), ".text.unlikely") == 0)
1918 		return ORDER_TEXT_UNLIKELY;
1919 	    }
1920 	}
1921       return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1922     }
1923 
1924   if (os->is_relro())
1925     return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1926 
1927   if (os->is_small_section())
1928     return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1929   if (os->is_large_section())
1930     return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1931 
1932   return is_bss ? ORDER_BSS : ORDER_DATA;
1933 }
1934 
1935 // Attach output sections to segments.  This is called after we have
1936 // seen all the input sections.
1937 
1938 void
1939 Layout::attach_sections_to_segments(const Target* target)
1940 {
1941   for (Section_list::iterator p = this->section_list_.begin();
1942        p != this->section_list_.end();
1943        ++p)
1944     this->attach_section_to_segment(target, *p);
1945 
1946   this->sections_are_attached_ = true;
1947 }
1948 
1949 // Attach an output section to a segment.
1950 
1951 void
1952 Layout::attach_section_to_segment(const Target* target, Output_section* os)
1953 {
1954   if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1955     this->unattached_section_list_.push_back(os);
1956   else
1957     this->attach_allocated_section_to_segment(target, os);
1958 }
1959 
1960 // Attach an allocated output section to a segment.
1961 
1962 void
1963 Layout::attach_allocated_section_to_segment(const Target* target,
1964 					    Output_section* os)
1965 {
1966   elfcpp::Elf_Xword flags = os->flags();
1967   gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1968 
1969   if (parameters->options().relocatable())
1970     return;
1971 
1972   // If we have a SECTIONS clause, we can't handle the attachment to
1973   // segments until after we've seen all the sections.
1974   if (this->script_options_->saw_sections_clause())
1975     return;
1976 
1977   gold_assert(!this->script_options_->saw_phdrs_clause());
1978 
1979   // This output section goes into a PT_LOAD segment.
1980 
1981   elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1982 
1983   // If this output section's segment has extra flags that need to be set,
1984   // coming from a linker plugin, do that.
1985   seg_flags |= os->extra_segment_flags();
1986 
1987   // Check for --section-start.
1988   uint64_t addr;
1989   bool is_address_set = parameters->options().section_start(os->name(), &addr);
1990 
1991   // In general the only thing we really care about for PT_LOAD
1992   // segments is whether or not they are writable or executable,
1993   // so that is how we search for them.
1994   // Large data sections also go into their own PT_LOAD segment.
1995   // People who need segments sorted on some other basis will
1996   // have to use a linker script.
1997 
1998   Segment_list::const_iterator p;
1999   if (!os->is_unique_segment())
2000     {
2001       for (p = this->segment_list_.begin();
2002 	   p != this->segment_list_.end();
2003 	   ++p)
2004 	{
2005 	  if ((*p)->type() != elfcpp::PT_LOAD)
2006 	    continue;
2007 	  if ((*p)->is_unique_segment())
2008 	    continue;
2009 	  if (!parameters->options().omagic()
2010 	      && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
2011 	    continue;
2012 	  if ((target->isolate_execinstr() || parameters->options().rosegment())
2013 	      && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
2014 	    continue;
2015 	  // If -Tbss was specified, we need to separate the data and BSS
2016 	  // segments.
2017 	  if (parameters->options().user_set_Tbss())
2018 	    {
2019 	      if ((os->type() == elfcpp::SHT_NOBITS)
2020 		  == (*p)->has_any_data_sections())
2021 		continue;
2022 	    }
2023 	  if (os->is_large_data_section() && !(*p)->is_large_data_segment())
2024 	    continue;
2025 
2026 	  if (is_address_set)
2027 	    {
2028 	      if ((*p)->are_addresses_set())
2029 		continue;
2030 
2031 	      (*p)->add_initial_output_data(os);
2032 	      (*p)->update_flags_for_output_section(seg_flags);
2033 	      (*p)->set_addresses(addr, addr);
2034 	      break;
2035 	    }
2036 
2037 	  (*p)->add_output_section_to_load(this, os, seg_flags);
2038 	  break;
2039 	}
2040     }
2041 
2042   if (p == this->segment_list_.end()
2043       || os->is_unique_segment())
2044     {
2045       Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
2046 						       seg_flags);
2047       if (os->is_large_data_section())
2048 	oseg->set_is_large_data_segment();
2049       oseg->add_output_section_to_load(this, os, seg_flags);
2050       if (is_address_set)
2051 	oseg->set_addresses(addr, addr);
2052       // Check if segment should be marked unique.  For segments marked
2053       // unique by linker plugins, set the new alignment if specified.
2054       if (os->is_unique_segment())
2055 	{
2056 	  oseg->set_is_unique_segment();
2057 	  if (os->segment_alignment() != 0)
2058 	    oseg->set_minimum_p_align(os->segment_alignment());
2059 	}
2060     }
2061 
2062   // If we see a loadable SHT_NOTE section, we create a PT_NOTE
2063   // segment.
2064   if (os->type() == elfcpp::SHT_NOTE)
2065     {
2066       // See if we already have an equivalent PT_NOTE segment.
2067       for (p = this->segment_list_.begin();
2068 	   p != segment_list_.end();
2069 	   ++p)
2070 	{
2071 	  if ((*p)->type() == elfcpp::PT_NOTE
2072 	      && (((*p)->flags() & elfcpp::PF_W)
2073 		  == (seg_flags & elfcpp::PF_W)))
2074 	    {
2075 	      (*p)->add_output_section_to_nonload(os, seg_flags);
2076 	      break;
2077 	    }
2078 	}
2079 
2080       if (p == this->segment_list_.end())
2081 	{
2082 	  Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
2083 							   seg_flags);
2084 	  oseg->add_output_section_to_nonload(os, seg_flags);
2085 	}
2086     }
2087 
2088   // If we see a loadable SHF_TLS section, we create a PT_TLS
2089   // segment.  There can only be one such segment.
2090   if ((flags & elfcpp::SHF_TLS) != 0)
2091     {
2092       if (this->tls_segment_ == NULL)
2093 	this->make_output_segment(elfcpp::PT_TLS, seg_flags);
2094       this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
2095     }
2096 
2097   // If -z relro is in effect, and we see a relro section, we create a
2098   // PT_GNU_RELRO segment.  There can only be one such segment.
2099   if (os->is_relro() && parameters->options().relro())
2100     {
2101       gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
2102       if (this->relro_segment_ == NULL)
2103 	this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
2104       this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
2105     }
2106 
2107   // If we see a section named .interp, put it into a PT_INTERP
2108   // segment.  This seems broken to me, but this is what GNU ld does,
2109   // and glibc expects it.
2110   if (strcmp(os->name(), ".interp") == 0
2111       && !this->script_options_->saw_phdrs_clause())
2112     {
2113       if (this->interp_segment_ == NULL)
2114 	this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
2115       else
2116 	gold_warning(_("multiple '.interp' sections in input files "
2117 		       "may cause confusing PT_INTERP segment"));
2118       this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
2119     }
2120 }
2121 
2122 // Make an output section for a script.
2123 
2124 Output_section*
2125 Layout::make_output_section_for_script(
2126     const char* name,
2127     Script_sections::Section_type section_type)
2128 {
2129   name = this->namepool_.add(name, false, NULL);
2130   elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
2131   if (section_type == Script_sections::ST_NOLOAD)
2132     sh_flags = 0;
2133   Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
2134 						 sh_flags, ORDER_INVALID,
2135 						 false);
2136   os->set_found_in_sections_clause();
2137   if (section_type == Script_sections::ST_NOLOAD)
2138     os->set_is_noload();
2139   return os;
2140 }
2141 
2142 // Return the number of segments we expect to see.
2143 
2144 size_t
2145 Layout::expected_segment_count() const
2146 {
2147   size_t ret = this->segment_list_.size();
2148 
2149   // If we didn't see a SECTIONS clause in a linker script, we should
2150   // already have the complete list of segments.  Otherwise we ask the
2151   // SECTIONS clause how many segments it expects, and add in the ones
2152   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
2153 
2154   if (!this->script_options_->saw_sections_clause())
2155     return ret;
2156   else
2157     {
2158       const Script_sections* ss = this->script_options_->script_sections();
2159       return ret + ss->expected_segment_count(this);
2160     }
2161 }
2162 
2163 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
2164 // is whether we saw a .note.GNU-stack section in the object file.
2165 // GNU_STACK_FLAGS is the section flags.  The flags give the
2166 // protection required for stack memory.  We record this in an
2167 // executable as a PT_GNU_STACK segment.  If an object file does not
2168 // have a .note.GNU-stack segment, we must assume that it is an old
2169 // object.  On some targets that will force an executable stack.
2170 
2171 void
2172 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
2173 			 const Object* obj)
2174 {
2175   if (!seen_gnu_stack)
2176     {
2177       this->input_without_gnu_stack_note_ = true;
2178       if (parameters->options().warn_execstack()
2179 	  && parameters->target().is_default_stack_executable())
2180 	gold_warning(_("%s: missing .note.GNU-stack section"
2181 		       " implies executable stack"),
2182 		     obj->name().c_str());
2183     }
2184   else
2185     {
2186       this->input_with_gnu_stack_note_ = true;
2187       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
2188 	{
2189 	  this->input_requires_executable_stack_ = true;
2190 	  if (parameters->options().warn_execstack())
2191 	    gold_warning(_("%s: requires executable stack"),
2192 			 obj->name().c_str());
2193 	}
2194     }
2195 }
2196 
2197 // Read a value with given size and endianness.
2198 
2199 static inline uint64_t
2200 read_sized_value(size_t size, const unsigned char* buf, bool is_big_endian,
2201 		 const Object* object)
2202 {
2203   uint64_t val = 0;
2204   if (size == 4)
2205     {
2206       if (is_big_endian)
2207 	val = elfcpp::Swap<32, true>::readval(buf);
2208       else
2209 	val = elfcpp::Swap<32, false>::readval(buf);
2210     }
2211   else if (size == 8)
2212     {
2213       if (is_big_endian)
2214 	val = elfcpp::Swap<64, true>::readval(buf);
2215       else
2216 	val = elfcpp::Swap<64, false>::readval(buf);
2217     }
2218   else
2219     {
2220       gold_warning(_("%s: in .note.gnu.property section, "
2221 		     "pr_datasz must be 4 or 8"),
2222 		   object->name().c_str());
2223     }
2224   return val;
2225 }
2226 
2227 // Write a value with given size and endianness.
2228 
2229 static inline void
2230 write_sized_value(uint64_t value, size_t size, unsigned char* buf,
2231 		  bool is_big_endian)
2232 {
2233   if (size == 4)
2234     {
2235       if (is_big_endian)
2236 	elfcpp::Swap<32, true>::writeval(buf, static_cast<uint32_t>(value));
2237       else
2238 	elfcpp::Swap<32, false>::writeval(buf, static_cast<uint32_t>(value));
2239     }
2240   else if (size == 8)
2241     {
2242       if (is_big_endian)
2243 	elfcpp::Swap<64, true>::writeval(buf, value);
2244       else
2245 	elfcpp::Swap<64, false>::writeval(buf, value);
2246     }
2247   else
2248     {
2249       // We will have already complained about this.
2250     }
2251 }
2252 
2253 // Handle the .note.gnu.property section at layout time.
2254 
2255 void
2256 Layout::layout_gnu_property(unsigned int note_type,
2257 			    unsigned int pr_type,
2258 			    size_t pr_datasz,
2259 			    const unsigned char* pr_data,
2260 			    const Object* object)
2261 {
2262   // We currently support only the one note type.
2263   gold_assert(note_type == elfcpp::NT_GNU_PROPERTY_TYPE_0);
2264 
2265   if (pr_type >= elfcpp::GNU_PROPERTY_LOPROC
2266       && pr_type < elfcpp::GNU_PROPERTY_HIPROC)
2267     {
2268       // Target-dependent property value; call the target to record.
2269       const int size = parameters->target().get_size();
2270       const bool is_big_endian = parameters->target().is_big_endian();
2271       if (size == 32)
2272         {
2273           if (is_big_endian)
2274             {
2275 #ifdef HAVE_TARGET_32_BIG
2276 	      parameters->sized_target<32, true>()->
2277 		  record_gnu_property(note_type, pr_type, pr_datasz, pr_data,
2278 				      object);
2279 #else
2280 	      gold_unreachable();
2281 #endif
2282             }
2283           else
2284             {
2285 #ifdef HAVE_TARGET_32_LITTLE
2286 	      parameters->sized_target<32, false>()->
2287 		  record_gnu_property(note_type, pr_type, pr_datasz, pr_data,
2288 				      object);
2289 #else
2290 	      gold_unreachable();
2291 #endif
2292             }
2293         }
2294       else if (size == 64)
2295         {
2296           if (is_big_endian)
2297             {
2298 #ifdef HAVE_TARGET_64_BIG
2299 	      parameters->sized_target<64, true>()->
2300 		  record_gnu_property(note_type, pr_type, pr_datasz, pr_data,
2301 				      object);
2302 #else
2303 	      gold_unreachable();
2304 #endif
2305             }
2306           else
2307             {
2308 #ifdef HAVE_TARGET_64_LITTLE
2309 	      parameters->sized_target<64, false>()->
2310 		  record_gnu_property(note_type, pr_type, pr_datasz, pr_data,
2311 				      object);
2312 #else
2313 	      gold_unreachable();
2314 #endif
2315             }
2316         }
2317       else
2318         gold_unreachable();
2319       return;
2320     }
2321 
2322   Gnu_properties::iterator pprop = this->gnu_properties_.find(pr_type);
2323   if (pprop == this->gnu_properties_.end())
2324     {
2325       Gnu_property prop;
2326       prop.pr_datasz = pr_datasz;
2327       prop.pr_data = new unsigned char[pr_datasz];
2328       memcpy(prop.pr_data, pr_data, pr_datasz);
2329       this->gnu_properties_[pr_type] = prop;
2330     }
2331   else
2332     {
2333       const bool is_big_endian = parameters->target().is_big_endian();
2334       switch (pr_type)
2335 	{
2336 	case elfcpp::GNU_PROPERTY_STACK_SIZE:
2337 	  // Record the maximum value seen.
2338 	  {
2339 	    uint64_t val1 = read_sized_value(pprop->second.pr_datasz,
2340 					     pprop->second.pr_data,
2341 					     is_big_endian, object);
2342 	    uint64_t val2 = read_sized_value(pr_datasz, pr_data,
2343 					     is_big_endian, object);
2344 	    if (val2 > val1)
2345 	      write_sized_value(val2, pprop->second.pr_datasz,
2346 				pprop->second.pr_data, is_big_endian);
2347 	  }
2348 	  break;
2349 	case elfcpp::GNU_PROPERTY_NO_COPY_ON_PROTECTED:
2350 	  // No data to merge.
2351 	  break;
2352 	default:
2353 	  gold_warning(_("%s: unknown program property type %d "
2354 			 "in .note.gnu.property section"),
2355 		       object->name().c_str(), pr_type);
2356 	}
2357     }
2358 }
2359 
2360 // Merge per-object properties with program properties.
2361 // This lets the target identify objects that are missing certain
2362 // properties, in cases where properties must be ANDed together.
2363 
2364 void
2365 Layout::merge_gnu_properties(const Object* object)
2366 {
2367   const int size = parameters->target().get_size();
2368   const bool is_big_endian = parameters->target().is_big_endian();
2369   if (size == 32)
2370     {
2371       if (is_big_endian)
2372 	{
2373 #ifdef HAVE_TARGET_32_BIG
2374 	  parameters->sized_target<32, true>()->merge_gnu_properties(object);
2375 #else
2376 	  gold_unreachable();
2377 #endif
2378 	}
2379       else
2380 	{
2381 #ifdef HAVE_TARGET_32_LITTLE
2382 	  parameters->sized_target<32, false>()->merge_gnu_properties(object);
2383 #else
2384 	  gold_unreachable();
2385 #endif
2386 	}
2387     }
2388   else if (size == 64)
2389     {
2390       if (is_big_endian)
2391 	{
2392 #ifdef HAVE_TARGET_64_BIG
2393 	  parameters->sized_target<64, true>()->merge_gnu_properties(object);
2394 #else
2395 	  gold_unreachable();
2396 #endif
2397 	}
2398       else
2399 	{
2400 #ifdef HAVE_TARGET_64_LITTLE
2401 	  parameters->sized_target<64, false>()->merge_gnu_properties(object);
2402 #else
2403 	  gold_unreachable();
2404 #endif
2405 	}
2406     }
2407   else
2408     gold_unreachable();
2409 }
2410 
2411 // Add a target-specific property for the output .note.gnu.property section.
2412 
2413 void
2414 Layout::add_gnu_property(unsigned int note_type,
2415 			 unsigned int pr_type,
2416 			 size_t pr_datasz,
2417 			 const unsigned char* pr_data)
2418 {
2419   gold_assert(note_type == elfcpp::NT_GNU_PROPERTY_TYPE_0);
2420 
2421   Gnu_property prop;
2422   prop.pr_datasz = pr_datasz;
2423   prop.pr_data = new unsigned char[pr_datasz];
2424   memcpy(prop.pr_data, pr_data, pr_datasz);
2425   this->gnu_properties_[pr_type] = prop;
2426 }
2427 
2428 // Create automatic note sections.
2429 
2430 void
2431 Layout::create_notes()
2432 {
2433   this->create_gnu_properties_note();
2434   this->create_gold_note();
2435   this->create_stack_segment();
2436   this->create_build_id();
2437 }
2438 
2439 // Create the dynamic sections which are needed before we read the
2440 // relocs.
2441 
2442 void
2443 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
2444 {
2445   if (parameters->doing_static_link())
2446     return;
2447 
2448   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
2449 						       elfcpp::SHT_DYNAMIC,
2450 						       (elfcpp::SHF_ALLOC
2451 							| elfcpp::SHF_WRITE),
2452 						       false, ORDER_RELRO,
2453 						       true, false, false);
2454 
2455   // A linker script may discard .dynamic, so check for NULL.
2456   if (this->dynamic_section_ != NULL)
2457     {
2458       this->dynamic_symbol_ =
2459 	symtab->define_in_output_data("_DYNAMIC", NULL,
2460 				      Symbol_table::PREDEFINED,
2461 				      this->dynamic_section_, 0, 0,
2462 				      elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
2463 				      elfcpp::STV_HIDDEN, 0, false, false);
2464 
2465       this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
2466 
2467       this->dynamic_section_->add_output_section_data(this->dynamic_data_);
2468     }
2469 }
2470 
2471 // For each output section whose name can be represented as C symbol,
2472 // define __start and __stop symbols for the section.  This is a GNU
2473 // extension.
2474 
2475 void
2476 Layout::define_section_symbols(Symbol_table* symtab)
2477 {
2478   for (Section_list::const_iterator p = this->section_list_.begin();
2479        p != this->section_list_.end();
2480        ++p)
2481     {
2482       const char* const name = (*p)->name();
2483       if (is_cident(name))
2484 	{
2485 	  const std::string name_string(name);
2486 	  const std::string start_name(cident_section_start_prefix
2487 				       + name_string);
2488 	  const std::string stop_name(cident_section_stop_prefix
2489 				      + name_string);
2490 
2491 	  symtab->define_in_output_data(start_name.c_str(),
2492 					NULL, // version
2493 					Symbol_table::PREDEFINED,
2494 					*p,
2495 					0, // value
2496 					0, // symsize
2497 					elfcpp::STT_NOTYPE,
2498 					elfcpp::STB_GLOBAL,
2499 					elfcpp::STV_PROTECTED,
2500 					0, // nonvis
2501 					false, // offset_is_from_end
2502 					true); // only_if_ref
2503 
2504 	  symtab->define_in_output_data(stop_name.c_str(),
2505 					NULL, // version
2506 					Symbol_table::PREDEFINED,
2507 					*p,
2508 					0, // value
2509 					0, // symsize
2510 					elfcpp::STT_NOTYPE,
2511 					elfcpp::STB_GLOBAL,
2512 					elfcpp::STV_PROTECTED,
2513 					0, // nonvis
2514 					true, // offset_is_from_end
2515 					true); // only_if_ref
2516 	}
2517     }
2518 }
2519 
2520 // Define symbols for group signatures.
2521 
2522 void
2523 Layout::define_group_signatures(Symbol_table* symtab)
2524 {
2525   for (Group_signatures::iterator p = this->group_signatures_.begin();
2526        p != this->group_signatures_.end();
2527        ++p)
2528     {
2529       Symbol* sym = symtab->lookup(p->signature, NULL);
2530       if (sym != NULL)
2531 	p->section->set_info_symndx(sym);
2532       else
2533 	{
2534 	  // Force the name of the group section to the group
2535 	  // signature, and use the group's section symbol as the
2536 	  // signature symbol.
2537 	  if (strcmp(p->section->name(), p->signature) != 0)
2538 	    {
2539 	      const char* name = this->namepool_.add(p->signature,
2540 						     true, NULL);
2541 	      p->section->set_name(name);
2542 	    }
2543 	  p->section->set_needs_symtab_index();
2544 	  p->section->set_info_section_symndx(p->section);
2545 	}
2546     }
2547 
2548   this->group_signatures_.clear();
2549 }
2550 
2551 // Find the first read-only PT_LOAD segment, creating one if
2552 // necessary.
2553 
2554 Output_segment*
2555 Layout::find_first_load_seg(const Target* target)
2556 {
2557   Output_segment* best = NULL;
2558   for (Segment_list::const_iterator p = this->segment_list_.begin();
2559        p != this->segment_list_.end();
2560        ++p)
2561     {
2562       if ((*p)->type() == elfcpp::PT_LOAD
2563 	  && ((*p)->flags() & elfcpp::PF_R) != 0
2564 	  && (parameters->options().omagic()
2565 	      || ((*p)->flags() & elfcpp::PF_W) == 0)
2566 	  && (!target->isolate_execinstr()
2567 	      || ((*p)->flags() & elfcpp::PF_X) == 0))
2568 	{
2569 	  if (best == NULL || this->segment_precedes(*p, best))
2570 	    best = *p;
2571 	}
2572     }
2573   if (best != NULL)
2574     return best;
2575 
2576   gold_assert(!this->script_options_->saw_phdrs_clause());
2577 
2578   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
2579 						       elfcpp::PF_R);
2580   return load_seg;
2581 }
2582 
2583 // Save states of all current output segments.  Store saved states
2584 // in SEGMENT_STATES.
2585 
2586 void
2587 Layout::save_segments(Segment_states* segment_states)
2588 {
2589   for (Segment_list::const_iterator p = this->segment_list_.begin();
2590        p != this->segment_list_.end();
2591        ++p)
2592     {
2593       Output_segment* segment = *p;
2594       // Shallow copy.
2595       Output_segment* copy = new Output_segment(*segment);
2596       (*segment_states)[segment] = copy;
2597     }
2598 }
2599 
2600 // Restore states of output segments and delete any segment not found in
2601 // SEGMENT_STATES.
2602 
2603 void
2604 Layout::restore_segments(const Segment_states* segment_states)
2605 {
2606   // Go through the segment list and remove any segment added in the
2607   // relaxation loop.
2608   this->tls_segment_ = NULL;
2609   this->relro_segment_ = NULL;
2610   Segment_list::iterator list_iter = this->segment_list_.begin();
2611   while (list_iter != this->segment_list_.end())
2612     {
2613       Output_segment* segment = *list_iter;
2614       Segment_states::const_iterator states_iter =
2615 	  segment_states->find(segment);
2616       if (states_iter != segment_states->end())
2617 	{
2618 	  const Output_segment* copy = states_iter->second;
2619 	  // Shallow copy to restore states.
2620 	  *segment = *copy;
2621 
2622 	  // Also fix up TLS and RELRO segment pointers as appropriate.
2623 	  if (segment->type() == elfcpp::PT_TLS)
2624 	    this->tls_segment_ = segment;
2625 	  else if (segment->type() == elfcpp::PT_GNU_RELRO)
2626 	    this->relro_segment_ = segment;
2627 
2628 	  ++list_iter;
2629 	}
2630       else
2631 	{
2632 	  list_iter = this->segment_list_.erase(list_iter);
2633 	  // This is a segment created during section layout.  It should be
2634 	  // safe to remove it since we should have removed all pointers to it.
2635 	  delete segment;
2636 	}
2637     }
2638 }
2639 
2640 // Clean up after relaxation so that sections can be laid out again.
2641 
2642 void
2643 Layout::clean_up_after_relaxation()
2644 {
2645   // Restore the segments to point state just prior to the relaxation loop.
2646   Script_sections* script_section = this->script_options_->script_sections();
2647   script_section->release_segments();
2648   this->restore_segments(this->segment_states_);
2649 
2650   // Reset section addresses and file offsets
2651   for (Section_list::iterator p = this->section_list_.begin();
2652        p != this->section_list_.end();
2653        ++p)
2654     {
2655       (*p)->restore_states();
2656 
2657       // If an input section changes size because of relaxation,
2658       // we need to adjust the section offsets of all input sections.
2659       // after such a section.
2660       if ((*p)->section_offsets_need_adjustment())
2661 	(*p)->adjust_section_offsets();
2662 
2663       (*p)->reset_address_and_file_offset();
2664     }
2665 
2666   // Reset special output object address and file offsets.
2667   for (Data_list::iterator p = this->special_output_list_.begin();
2668        p != this->special_output_list_.end();
2669        ++p)
2670     (*p)->reset_address_and_file_offset();
2671 
2672   // A linker script may have created some output section data objects.
2673   // They are useless now.
2674   for (Output_section_data_list::const_iterator p =
2675 	 this->script_output_section_data_list_.begin();
2676        p != this->script_output_section_data_list_.end();
2677        ++p)
2678     delete *p;
2679   this->script_output_section_data_list_.clear();
2680 
2681   // Special-case fill output objects are recreated each time through
2682   // the relaxation loop.
2683   this->reset_relax_output();
2684 }
2685 
2686 void
2687 Layout::reset_relax_output()
2688 {
2689   for (Data_list::const_iterator p = this->relax_output_list_.begin();
2690        p != this->relax_output_list_.end();
2691        ++p)
2692     delete *p;
2693   this->relax_output_list_.clear();
2694 }
2695 
2696 // Prepare for relaxation.
2697 
2698 void
2699 Layout::prepare_for_relaxation()
2700 {
2701   // Create an relaxation debug check if in debugging mode.
2702   if (is_debugging_enabled(DEBUG_RELAXATION))
2703     this->relaxation_debug_check_ = new Relaxation_debug_check();
2704 
2705   // Save segment states.
2706   this->segment_states_ = new Segment_states();
2707   this->save_segments(this->segment_states_);
2708 
2709   for(Section_list::const_iterator p = this->section_list_.begin();
2710       p != this->section_list_.end();
2711       ++p)
2712     (*p)->save_states();
2713 
2714   if (is_debugging_enabled(DEBUG_RELAXATION))
2715     this->relaxation_debug_check_->check_output_data_for_reset_values(
2716 	this->section_list_, this->special_output_list_,
2717 	this->relax_output_list_);
2718 
2719   // Also enable recording of output section data from scripts.
2720   this->record_output_section_data_from_script_ = true;
2721 }
2722 
2723 // If the user set the address of the text segment, that may not be
2724 // compatible with putting the segment headers and file headers into
2725 // that segment.  For isolate_execinstr() targets, it's the rodata
2726 // segment rather than text where we might put the headers.
2727 static inline bool
2728 load_seg_unusable_for_headers(const Target* target)
2729 {
2730   const General_options& options = parameters->options();
2731   if (target->isolate_execinstr())
2732     return (options.user_set_Trodata_segment()
2733 	    && options.Trodata_segment() % target->abi_pagesize() != 0);
2734   else
2735     return (options.user_set_Ttext()
2736 	    && options.Ttext() % target->abi_pagesize() != 0);
2737 }
2738 
2739 // Relaxation loop body:  If target has no relaxation, this runs only once
2740 // Otherwise, the target relaxation hook is called at the end of
2741 // each iteration.  If the hook returns true, it means re-layout of
2742 // section is required.
2743 //
2744 // The number of segments created by a linking script without a PHDRS
2745 // clause may be affected by section sizes and alignments.  There is
2746 // a remote chance that relaxation causes different number of PT_LOAD
2747 // segments are created and sections are attached to different segments.
2748 // Therefore, we always throw away all segments created during section
2749 // layout.  In order to be able to restart the section layout, we keep
2750 // a copy of the segment list right before the relaxation loop and use
2751 // that to restore the segments.
2752 //
2753 // PASS is the current relaxation pass number.
2754 // SYMTAB is a symbol table.
2755 // PLOAD_SEG is the address of a pointer for the load segment.
2756 // PHDR_SEG is a pointer to the PHDR segment.
2757 // SEGMENT_HEADERS points to the output segment header.
2758 // FILE_HEADER points to the output file header.
2759 // PSHNDX is the address to store the output section index.
2760 
2761 off_t inline
2762 Layout::relaxation_loop_body(
2763     int pass,
2764     Target* target,
2765     Symbol_table* symtab,
2766     Output_segment** pload_seg,
2767     Output_segment* phdr_seg,
2768     Output_segment_headers* segment_headers,
2769     Output_file_header* file_header,
2770     unsigned int* pshndx)
2771 {
2772   // If this is not the first iteration, we need to clean up after
2773   // relaxation so that we can lay out the sections again.
2774   if (pass != 0)
2775     this->clean_up_after_relaxation();
2776 
2777   // If there is a SECTIONS clause, put all the input sections into
2778   // the required order.
2779   Output_segment* load_seg;
2780   if (this->script_options_->saw_sections_clause())
2781     load_seg = this->set_section_addresses_from_script(symtab);
2782   else if (parameters->options().relocatable())
2783     load_seg = NULL;
2784   else
2785     load_seg = this->find_first_load_seg(target);
2786 
2787   if (parameters->options().oformat_enum()
2788       != General_options::OBJECT_FORMAT_ELF)
2789     load_seg = NULL;
2790 
2791   if (load_seg_unusable_for_headers(target))
2792     {
2793       load_seg = NULL;
2794       phdr_seg = NULL;
2795     }
2796 
2797   gold_assert(phdr_seg == NULL
2798 	      || load_seg != NULL
2799 	      || this->script_options_->saw_sections_clause());
2800 
2801   // If the address of the load segment we found has been set by
2802   // --section-start rather than by a script, then adjust the VMA and
2803   // LMA downward if possible to include the file and section headers.
2804   uint64_t header_gap = 0;
2805   if (load_seg != NULL
2806       && load_seg->are_addresses_set()
2807       && !this->script_options_->saw_sections_clause()
2808       && !parameters->options().relocatable())
2809     {
2810       file_header->finalize_data_size();
2811       segment_headers->finalize_data_size();
2812       size_t sizeof_headers = (file_header->data_size()
2813 			       + segment_headers->data_size());
2814       const uint64_t abi_pagesize = target->abi_pagesize();
2815       uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2816       hdr_paddr &= ~(abi_pagesize - 1);
2817       uint64_t subtract = load_seg->paddr() - hdr_paddr;
2818       if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2819 	load_seg = NULL;
2820       else
2821 	{
2822 	  load_seg->set_addresses(load_seg->vaddr() - subtract,
2823 				  load_seg->paddr() - subtract);
2824 	  header_gap = subtract - sizeof_headers;
2825 	}
2826     }
2827 
2828   // Lay out the segment headers.
2829   if (!parameters->options().relocatable())
2830     {
2831       gold_assert(segment_headers != NULL);
2832       if (header_gap != 0 && load_seg != NULL)
2833 	{
2834 	  Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2835 	  load_seg->add_initial_output_data(z);
2836 	}
2837       if (load_seg != NULL)
2838 	load_seg->add_initial_output_data(segment_headers);
2839       if (phdr_seg != NULL)
2840 	phdr_seg->add_initial_output_data(segment_headers);
2841     }
2842 
2843   // Lay out the file header.
2844   if (load_seg != NULL)
2845     load_seg->add_initial_output_data(file_header);
2846 
2847   if (this->script_options_->saw_phdrs_clause()
2848       && !parameters->options().relocatable())
2849     {
2850       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2851       // clause in a linker script.
2852       Script_sections* ss = this->script_options_->script_sections();
2853       ss->put_headers_in_phdrs(file_header, segment_headers);
2854     }
2855 
2856   // We set the output section indexes in set_segment_offsets and
2857   // set_section_indexes.
2858   *pshndx = 1;
2859 
2860   // Set the file offsets of all the segments, and all the sections
2861   // they contain.
2862   off_t off;
2863   if (!parameters->options().relocatable())
2864     off = this->set_segment_offsets(target, load_seg, pshndx);
2865   else
2866     off = this->set_relocatable_section_offsets(file_header, pshndx);
2867 
2868    // Verify that the dummy relaxation does not change anything.
2869   if (is_debugging_enabled(DEBUG_RELAXATION))
2870     {
2871       if (pass == 0)
2872 	this->relaxation_debug_check_->read_sections(this->section_list_);
2873       else
2874 	this->relaxation_debug_check_->verify_sections(this->section_list_);
2875     }
2876 
2877   *pload_seg = load_seg;
2878   return off;
2879 }
2880 
2881 // Search the list of patterns and find the position of the given section
2882 // name in the output section.  If the section name matches a glob
2883 // pattern and a non-glob name, then the non-glob position takes
2884 // precedence.  Return 0 if no match is found.
2885 
2886 unsigned int
2887 Layout::find_section_order_index(const std::string& section_name)
2888 {
2889   Unordered_map<std::string, unsigned int>::iterator map_it;
2890   map_it = this->input_section_position_.find(section_name);
2891   if (map_it != this->input_section_position_.end())
2892     return map_it->second;
2893 
2894   // Absolute match failed.  Linear search the glob patterns.
2895   std::vector<std::string>::iterator it;
2896   for (it = this->input_section_glob_.begin();
2897        it != this->input_section_glob_.end();
2898        ++it)
2899     {
2900        if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2901 	 {
2902 	   map_it = this->input_section_position_.find(*it);
2903 	   gold_assert(map_it != this->input_section_position_.end());
2904 	   return map_it->second;
2905 	 }
2906     }
2907   return 0;
2908 }
2909 
2910 // Read the sequence of input sections from the file specified with
2911 // option --section-ordering-file.
2912 
2913 void
2914 Layout::read_layout_from_file()
2915 {
2916   const char* filename = parameters->options().section_ordering_file();
2917   std::ifstream in;
2918   std::string line;
2919 
2920   in.open(filename);
2921   if (!in)
2922     gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2923 	       filename, strerror(errno));
2924 
2925   std::getline(in, line);   // this chops off the trailing \n, if any
2926   unsigned int position = 1;
2927   this->set_section_ordering_specified();
2928 
2929   while (in)
2930     {
2931       if (!line.empty() && line[line.length() - 1] == '\r')   // Windows
2932 	line.resize(line.length() - 1);
2933       // Ignore comments, beginning with '#'
2934       if (line[0] == '#')
2935 	{
2936 	  std::getline(in, line);
2937 	  continue;
2938 	}
2939       this->input_section_position_[line] = position;
2940       // Store all glob patterns in a vector.
2941       if (is_wildcard_string(line.c_str()))
2942 	this->input_section_glob_.push_back(line);
2943       position++;
2944       std::getline(in, line);
2945     }
2946 }
2947 
2948 // Finalize the layout.  When this is called, we have created all the
2949 // output sections and all the output segments which are based on
2950 // input sections.  We have several things to do, and we have to do
2951 // them in the right order, so that we get the right results correctly
2952 // and efficiently.
2953 
2954 // 1) Finalize the list of output segments and create the segment
2955 // table header.
2956 
2957 // 2) Finalize the dynamic symbol table and associated sections.
2958 
2959 // 3) Determine the final file offset of all the output segments.
2960 
2961 // 4) Determine the final file offset of all the SHF_ALLOC output
2962 // sections.
2963 
2964 // 5) Create the symbol table sections and the section name table
2965 // section.
2966 
2967 // 6) Finalize the symbol table: set symbol values to their final
2968 // value and make a final determination of which symbols are going
2969 // into the output symbol table.
2970 
2971 // 7) Create the section table header.
2972 
2973 // 8) Determine the final file offset of all the output sections which
2974 // are not SHF_ALLOC, including the section table header.
2975 
2976 // 9) Finalize the ELF file header.
2977 
2978 // This function returns the size of the output file.
2979 
2980 off_t
2981 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2982 		 Target* target, const Task* task)
2983 {
2984   unsigned int local_dynamic_count = 0;
2985   unsigned int forced_local_dynamic_count = 0;
2986 
2987   target->finalize_sections(this, input_objects, symtab);
2988 
2989   this->count_local_symbols(task, input_objects);
2990 
2991   this->link_stabs_sections();
2992 
2993   Output_segment* phdr_seg = NULL;
2994   if (!parameters->options().relocatable() && !parameters->doing_static_link())
2995     {
2996       // There was a dynamic object in the link.  We need to create
2997       // some information for the dynamic linker.
2998 
2999       // Create the PT_PHDR segment which will hold the program
3000       // headers.
3001       if (!this->script_options_->saw_phdrs_clause())
3002 	phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
3003 
3004       // Create the dynamic symbol table, including the hash table.
3005       Output_section* dynstr;
3006       std::vector<Symbol*> dynamic_symbols;
3007       Versions versions(*this->script_options()->version_script_info(),
3008 			&this->dynpool_);
3009       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
3010 				  &local_dynamic_count,
3011 				  &forced_local_dynamic_count,
3012 				  &dynamic_symbols,
3013 				  &versions);
3014 
3015       // Create the .interp section to hold the name of the
3016       // interpreter, and put it in a PT_INTERP segment.  Don't do it
3017       // if we saw a .interp section in an input file.
3018       if ((!parameters->options().shared()
3019 	   || parameters->options().dynamic_linker() != NULL)
3020 	  && this->interp_segment_ == NULL)
3021 	this->create_interp(target);
3022 
3023       // Finish the .dynamic section to hold the dynamic data, and put
3024       // it in a PT_DYNAMIC segment.
3025       this->finish_dynamic_section(input_objects, symtab);
3026 
3027       // We should have added everything we need to the dynamic string
3028       // table.
3029       this->dynpool_.set_string_offsets();
3030 
3031       // Create the version sections.  We can't do this until the
3032       // dynamic string table is complete.
3033       this->create_version_sections(&versions, symtab,
3034 				    (local_dynamic_count
3035 				     + forced_local_dynamic_count),
3036 				    dynamic_symbols, dynstr);
3037 
3038       // Set the size of the _DYNAMIC symbol.  We can't do this until
3039       // after we call create_version_sections.
3040       this->set_dynamic_symbol_size(symtab);
3041     }
3042 
3043   // Create segment headers.
3044   Output_segment_headers* segment_headers =
3045     (parameters->options().relocatable()
3046      ? NULL
3047      : new Output_segment_headers(this->segment_list_));
3048 
3049   // Lay out the file header.
3050   Output_file_header* file_header = new Output_file_header(target, symtab,
3051 							   segment_headers);
3052 
3053   this->special_output_list_.push_back(file_header);
3054   if (segment_headers != NULL)
3055     this->special_output_list_.push_back(segment_headers);
3056 
3057   // Find approriate places for orphan output sections if we are using
3058   // a linker script.
3059   if (this->script_options_->saw_sections_clause())
3060     this->place_orphan_sections_in_script();
3061 
3062   Output_segment* load_seg;
3063   off_t off;
3064   unsigned int shndx;
3065   int pass = 0;
3066 
3067   // Take a snapshot of the section layout as needed.
3068   if (target->may_relax())
3069     this->prepare_for_relaxation();
3070 
3071   // Run the relaxation loop to lay out sections.
3072   do
3073     {
3074       off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
3075 				       phdr_seg, segment_headers, file_header,
3076 				       &shndx);
3077       pass++;
3078     }
3079   while (target->may_relax()
3080 	 && target->relax(pass, input_objects, symtab, this, task));
3081 
3082   // If there is a load segment that contains the file and program headers,
3083   // provide a symbol __ehdr_start pointing there.
3084   // A program can use this to examine itself robustly.
3085   Symbol *ehdr_start = symtab->lookup("__ehdr_start");
3086   if (ehdr_start != NULL && ehdr_start->is_predefined())
3087     {
3088       if (load_seg != NULL)
3089 	ehdr_start->set_output_segment(load_seg, Symbol::SEGMENT_START);
3090       else
3091 	ehdr_start->set_undefined();
3092     }
3093 
3094   // Set the file offsets of all the non-data sections we've seen so
3095   // far which don't have to wait for the input sections.  We need
3096   // this in order to finalize local symbols in non-allocated
3097   // sections.
3098   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
3099 
3100   // Set the section indexes of all unallocated sections seen so far,
3101   // in case any of them are somehow referenced by a symbol.
3102   shndx = this->set_section_indexes(shndx);
3103 
3104   // Create the symbol table sections.
3105   this->create_symtab_sections(input_objects, symtab, shndx, &off,
3106 			       local_dynamic_count);
3107   if (!parameters->doing_static_link())
3108     this->assign_local_dynsym_offsets(input_objects);
3109 
3110   // Process any symbol assignments from a linker script.  This must
3111   // be called after the symbol table has been finalized.
3112   this->script_options_->finalize_symbols(symtab, this);
3113 
3114   // Create the incremental inputs sections.
3115   if (this->incremental_inputs_)
3116     {
3117       this->incremental_inputs_->finalize();
3118       this->create_incremental_info_sections(symtab);
3119     }
3120 
3121   // Create the .shstrtab section.
3122   Output_section* shstrtab_section = this->create_shstrtab();
3123 
3124   // Set the file offsets of the rest of the non-data sections which
3125   // don't have to wait for the input sections.
3126   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
3127 
3128   // Now that all sections have been created, set the section indexes
3129   // for any sections which haven't been done yet.
3130   shndx = this->set_section_indexes(shndx);
3131 
3132   // Create the section table header.
3133   this->create_shdrs(shstrtab_section, &off);
3134 
3135   // If there are no sections which require postprocessing, we can
3136   // handle the section names now, and avoid a resize later.
3137   if (!this->any_postprocessing_sections_)
3138     {
3139       off = this->set_section_offsets(off,
3140 				      POSTPROCESSING_SECTIONS_PASS);
3141       off =
3142 	  this->set_section_offsets(off,
3143 				    STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
3144     }
3145 
3146   file_header->set_section_info(this->section_headers_, shstrtab_section);
3147 
3148   // Now we know exactly where everything goes in the output file
3149   // (except for non-allocated sections which require postprocessing).
3150   Output_data::layout_complete();
3151 
3152   this->output_file_size_ = off;
3153 
3154   return off;
3155 }
3156 
3157 // Create a note header following the format defined in the ELF ABI.
3158 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
3159 // of the section to create, DESCSZ is the size of the descriptor.
3160 // ALLOCATE is true if the section should be allocated in memory.
3161 // This returns the new note section.  It sets *TRAILING_PADDING to
3162 // the number of trailing zero bytes required.
3163 
3164 Output_section*
3165 Layout::create_note(const char* name, int note_type,
3166 		    const char* section_name, size_t descsz,
3167 		    bool allocate, size_t* trailing_padding)
3168 {
3169   // Authorities all agree that the values in a .note field should
3170   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
3171   // they differ on what the alignment is for 64-bit binaries.
3172   // The GABI says unambiguously they take 8-byte alignment:
3173   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
3174   // Other documentation says alignment should always be 4 bytes:
3175   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
3176   // GNU ld and GNU readelf both support the latter (at least as of
3177   // version 2.16.91), and glibc always generates the latter for
3178   // .note.ABI-tag (as of version 1.6), so that's the one we go with
3179   // here.
3180 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
3181   const int size = parameters->target().get_size();
3182 #else
3183   const int size = 32;
3184 #endif
3185 
3186   // The contents of the .note section.
3187   size_t namesz = strlen(name) + 1;
3188   size_t aligned_namesz = align_address(namesz, size / 8);
3189   size_t aligned_descsz = align_address(descsz, size / 8);
3190 
3191   size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
3192 
3193   unsigned char* buffer = new unsigned char[notehdrsz];
3194   memset(buffer, 0, notehdrsz);
3195 
3196   bool is_big_endian = parameters->target().is_big_endian();
3197 
3198   if (size == 32)
3199     {
3200       if (!is_big_endian)
3201 	{
3202 	  elfcpp::Swap<32, false>::writeval(buffer, namesz);
3203 	  elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
3204 	  elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
3205 	}
3206       else
3207 	{
3208 	  elfcpp::Swap<32, true>::writeval(buffer, namesz);
3209 	  elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
3210 	  elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
3211 	}
3212     }
3213   else if (size == 64)
3214     {
3215       if (!is_big_endian)
3216 	{
3217 	  elfcpp::Swap<64, false>::writeval(buffer, namesz);
3218 	  elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
3219 	  elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
3220 	}
3221       else
3222 	{
3223 	  elfcpp::Swap<64, true>::writeval(buffer, namesz);
3224 	  elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
3225 	  elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
3226 	}
3227     }
3228   else
3229     gold_unreachable();
3230 
3231   memcpy(buffer + 3 * (size / 8), name, namesz);
3232 
3233   elfcpp::Elf_Xword flags = 0;
3234   Output_section_order order = ORDER_INVALID;
3235   if (allocate)
3236     {
3237       flags = elfcpp::SHF_ALLOC;
3238       order = ORDER_RO_NOTE;
3239     }
3240   Output_section* os = this->choose_output_section(NULL, section_name,
3241 						   elfcpp::SHT_NOTE,
3242 						   flags, false, order, false,
3243 						   false, true);
3244   if (os == NULL)
3245     return NULL;
3246 
3247   Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
3248 							   size / 8,
3249 							   "** note header");
3250   os->add_output_section_data(posd);
3251 
3252   *trailing_padding = aligned_descsz - descsz;
3253 
3254   return os;
3255 }
3256 
3257 // Create a .note.gnu.property section to record program properties
3258 // accumulated from the input files.
3259 
3260 void
3261 Layout::create_gnu_properties_note()
3262 {
3263   parameters->target().finalize_gnu_properties(this);
3264 
3265   if (this->gnu_properties_.empty())
3266     return;
3267 
3268   const unsigned int size = parameters->target().get_size();
3269   const bool is_big_endian = parameters->target().is_big_endian();
3270 
3271   // Compute the total size of the properties array.
3272   size_t descsz = 0;
3273   for (Gnu_properties::const_iterator prop = this->gnu_properties_.begin();
3274        prop != this->gnu_properties_.end();
3275        ++prop)
3276     {
3277       descsz = align_address(descsz + 8 + prop->second.pr_datasz, size / 8);
3278     }
3279 
3280   // Create the note section.
3281   size_t trailing_padding;
3282   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_PROPERTY_TYPE_0,
3283 					 ".note.gnu.property", descsz,
3284 					 true, &trailing_padding);
3285   if (os == NULL)
3286     return;
3287   gold_assert(trailing_padding == 0);
3288 
3289   // Allocate and fill the properties array.
3290   unsigned char* desc = new unsigned char[descsz];
3291   unsigned char* p = desc;
3292   for (Gnu_properties::const_iterator prop = this->gnu_properties_.begin();
3293        prop != this->gnu_properties_.end();
3294        ++prop)
3295     {
3296       size_t datasz = prop->second.pr_datasz;
3297       size_t aligned_datasz = align_address(prop->second.pr_datasz, size / 8);
3298       write_sized_value(prop->first, 4, p, is_big_endian);
3299       write_sized_value(datasz, 4, p + 4, is_big_endian);
3300       memcpy(p + 8, prop->second.pr_data, datasz);
3301       if (aligned_datasz > datasz)
3302         memset(p + 8 + datasz, 0, aligned_datasz - datasz);
3303       p += 8 + aligned_datasz;
3304     }
3305   Output_section_data* posd = new Output_data_const(desc, descsz, 4);
3306   os->add_output_section_data(posd);
3307 }
3308 
3309 // For an executable or shared library, create a note to record the
3310 // version of gold used to create the binary.
3311 
3312 void
3313 Layout::create_gold_note()
3314 {
3315   if (parameters->options().relocatable()
3316       || parameters->incremental_update())
3317     return;
3318 
3319   std::string desc = std::string("gold ") + gold::get_version_string();
3320 
3321   size_t trailing_padding;
3322   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
3323 					 ".note.gnu.gold-version", desc.size(),
3324 					 false, &trailing_padding);
3325   if (os == NULL)
3326     return;
3327 
3328   Output_section_data* posd = new Output_data_const(desc, 4);
3329   os->add_output_section_data(posd);
3330 
3331   if (trailing_padding > 0)
3332     {
3333       posd = new Output_data_zero_fill(trailing_padding, 0);
3334       os->add_output_section_data(posd);
3335     }
3336 }
3337 
3338 // Record whether the stack should be executable.  This can be set
3339 // from the command line using the -z execstack or -z noexecstack
3340 // options.  Otherwise, if any input file has a .note.GNU-stack
3341 // section with the SHF_EXECINSTR flag set, the stack should be
3342 // executable.  Otherwise, if at least one input file a
3343 // .note.GNU-stack section, and some input file has no .note.GNU-stack
3344 // section, we use the target default for whether the stack should be
3345 // executable.  If -z stack-size was used to set a p_memsz value for
3346 // PT_GNU_STACK, we generate the segment regardless.  Otherwise, we
3347 // don't generate a stack note.  When generating a object file, we
3348 // create a .note.GNU-stack section with the appropriate marking.
3349 // When generating an executable or shared library, we create a
3350 // PT_GNU_STACK segment.
3351 
3352 void
3353 Layout::create_stack_segment()
3354 {
3355   bool is_stack_executable;
3356   if (parameters->options().is_execstack_set())
3357     {
3358       is_stack_executable = parameters->options().is_stack_executable();
3359       if (!is_stack_executable
3360 	  && this->input_requires_executable_stack_
3361 	  && parameters->options().warn_execstack())
3362 	gold_warning(_("one or more inputs require executable stack, "
3363 		       "but -z noexecstack was given"));
3364     }
3365   else if (!this->input_with_gnu_stack_note_
3366 	   && (!parameters->options().user_set_stack_size()
3367 	       || parameters->options().relocatable()))
3368     return;
3369   else
3370     {
3371       if (this->input_requires_executable_stack_)
3372 	is_stack_executable = true;
3373       else if (this->input_without_gnu_stack_note_)
3374 	is_stack_executable =
3375 	  parameters->target().is_default_stack_executable();
3376       else
3377 	is_stack_executable = false;
3378     }
3379 
3380   if (parameters->options().relocatable())
3381     {
3382       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
3383       elfcpp::Elf_Xword flags = 0;
3384       if (is_stack_executable)
3385 	flags |= elfcpp::SHF_EXECINSTR;
3386       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
3387 				ORDER_INVALID, false);
3388     }
3389   else
3390     {
3391       if (this->script_options_->saw_phdrs_clause())
3392 	return;
3393       int flags = elfcpp::PF_R | elfcpp::PF_W;
3394       if (is_stack_executable)
3395 	flags |= elfcpp::PF_X;
3396       Output_segment* seg =
3397 	this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
3398       seg->set_size(parameters->options().stack_size());
3399       // BFD lets targets override this default alignment, but the only
3400       // targets that do so are ones that Gold does not support so far.
3401       seg->set_minimum_p_align(16);
3402     }
3403 }
3404 
3405 // If --build-id was used, set up the build ID note.
3406 
3407 void
3408 Layout::create_build_id()
3409 {
3410   if (!parameters->options().user_set_build_id())
3411     return;
3412 
3413   const char* style = parameters->options().build_id();
3414   if (strcmp(style, "none") == 0)
3415     return;
3416 
3417   // Set DESCSZ to the size of the note descriptor.  When possible,
3418   // set DESC to the note descriptor contents.
3419   size_t descsz;
3420   std::string desc;
3421   if (strcmp(style, "md5") == 0)
3422     descsz = 128 / 8;
3423   else if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
3424     descsz = 160 / 8;
3425   else if (strcmp(style, "uuid") == 0)
3426     {
3427 #ifndef __MINGW32__
3428       const size_t uuidsz = 128 / 8;
3429 
3430       char buffer[uuidsz];
3431       memset(buffer, 0, uuidsz);
3432 
3433       int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
3434       if (descriptor < 0)
3435 	gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
3436 		   strerror(errno));
3437       else
3438 	{
3439 	  ssize_t got = ::read(descriptor, buffer, uuidsz);
3440 	  release_descriptor(descriptor, true);
3441 	  if (got < 0)
3442 	    gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
3443 	  else if (static_cast<size_t>(got) != uuidsz)
3444 	    gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
3445 		       uuidsz, got);
3446 	}
3447 
3448       desc.assign(buffer, uuidsz);
3449       descsz = uuidsz;
3450 #else // __MINGW32__
3451       UUID uuid;
3452       typedef RPC_STATUS (RPC_ENTRY *UuidCreateFn)(UUID *Uuid);
3453 
3454       HMODULE rpc_library = LoadLibrary("rpcrt4.dll");
3455       if (!rpc_library)
3456 	gold_error(_("--build-id=uuid failed: could not load rpcrt4.dll"));
3457       else
3458 	{
3459 	  UuidCreateFn uuid_create = reinterpret_cast<UuidCreateFn>(
3460 	      GetProcAddress(rpc_library, "UuidCreate"));
3461 	  if (!uuid_create)
3462 	    gold_error(_("--build-id=uuid failed: could not find UuidCreate"));
3463 	  else if (uuid_create(&uuid) != RPC_S_OK)
3464 	    gold_error(_("__build_id=uuid failed: call UuidCreate() failed"));
3465 	  FreeLibrary(rpc_library);
3466 	}
3467       desc.assign(reinterpret_cast<const char *>(&uuid), sizeof(UUID));
3468       descsz = sizeof(UUID);
3469 #endif // __MINGW32__
3470     }
3471   else if (strncmp(style, "0x", 2) == 0)
3472     {
3473       hex_init();
3474       const char* p = style + 2;
3475       while (*p != '\0')
3476 	{
3477 	  if (hex_p(p[0]) && hex_p(p[1]))
3478 	    {
3479 	      char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
3480 	      desc += c;
3481 	      p += 2;
3482 	    }
3483 	  else if (*p == '-' || *p == ':')
3484 	    ++p;
3485 	  else
3486 	    gold_fatal(_("--build-id argument '%s' not a valid hex number"),
3487 		       style);
3488 	}
3489       descsz = desc.size();
3490     }
3491   else
3492     gold_fatal(_("unrecognized --build-id argument '%s'"), style);
3493 
3494   // Create the note.
3495   size_t trailing_padding;
3496   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
3497 					 ".note.gnu.build-id", descsz, true,
3498 					 &trailing_padding);
3499   if (os == NULL)
3500     return;
3501 
3502   if (!desc.empty())
3503     {
3504       // We know the value already, so we fill it in now.
3505       gold_assert(desc.size() == descsz);
3506 
3507       Output_section_data* posd = new Output_data_const(desc, 4);
3508       os->add_output_section_data(posd);
3509 
3510       if (trailing_padding != 0)
3511 	{
3512 	  posd = new Output_data_zero_fill(trailing_padding, 0);
3513 	  os->add_output_section_data(posd);
3514 	}
3515     }
3516   else
3517     {
3518       // We need to compute a checksum after we have completed the
3519       // link.
3520       gold_assert(trailing_padding == 0);
3521       this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
3522       os->add_output_section_data(this->build_id_note_);
3523     }
3524 }
3525 
3526 // If we have both .stabXX and .stabXXstr sections, then the sh_link
3527 // field of the former should point to the latter.  I'm not sure who
3528 // started this, but the GNU linker does it, and some tools depend
3529 // upon it.
3530 
3531 void
3532 Layout::link_stabs_sections()
3533 {
3534   if (!this->have_stabstr_section_)
3535     return;
3536 
3537   for (Section_list::iterator p = this->section_list_.begin();
3538        p != this->section_list_.end();
3539        ++p)
3540     {
3541       if ((*p)->type() != elfcpp::SHT_STRTAB)
3542 	continue;
3543 
3544       const char* name = (*p)->name();
3545       if (strncmp(name, ".stab", 5) != 0)
3546 	continue;
3547 
3548       size_t len = strlen(name);
3549       if (strcmp(name + len - 3, "str") != 0)
3550 	continue;
3551 
3552       std::string stab_name(name, len - 3);
3553       Output_section* stab_sec;
3554       stab_sec = this->find_output_section(stab_name.c_str());
3555       if (stab_sec != NULL)
3556 	stab_sec->set_link_section(*p);
3557     }
3558 }
3559 
3560 // Create .gnu_incremental_inputs and related sections needed
3561 // for the next run of incremental linking to check what has changed.
3562 
3563 void
3564 Layout::create_incremental_info_sections(Symbol_table* symtab)
3565 {
3566   Incremental_inputs* incr = this->incremental_inputs_;
3567 
3568   gold_assert(incr != NULL);
3569 
3570   // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
3571   incr->create_data_sections(symtab);
3572 
3573   // Add the .gnu_incremental_inputs section.
3574   const char* incremental_inputs_name =
3575     this->namepool_.add(".gnu_incremental_inputs", false, NULL);
3576   Output_section* incremental_inputs_os =
3577     this->make_output_section(incremental_inputs_name,
3578 			      elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
3579 			      ORDER_INVALID, false);
3580   incremental_inputs_os->add_output_section_data(incr->inputs_section());
3581 
3582   // Add the .gnu_incremental_symtab section.
3583   const char* incremental_symtab_name =
3584     this->namepool_.add(".gnu_incremental_symtab", false, NULL);
3585   Output_section* incremental_symtab_os =
3586     this->make_output_section(incremental_symtab_name,
3587 			      elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
3588 			      ORDER_INVALID, false);
3589   incremental_symtab_os->add_output_section_data(incr->symtab_section());
3590   incremental_symtab_os->set_entsize(4);
3591 
3592   // Add the .gnu_incremental_relocs section.
3593   const char* incremental_relocs_name =
3594     this->namepool_.add(".gnu_incremental_relocs", false, NULL);
3595   Output_section* incremental_relocs_os =
3596     this->make_output_section(incremental_relocs_name,
3597 			      elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
3598 			      ORDER_INVALID, false);
3599   incremental_relocs_os->add_output_section_data(incr->relocs_section());
3600   incremental_relocs_os->set_entsize(incr->relocs_entsize());
3601 
3602   // Add the .gnu_incremental_got_plt section.
3603   const char* incremental_got_plt_name =
3604     this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
3605   Output_section* incremental_got_plt_os =
3606     this->make_output_section(incremental_got_plt_name,
3607 			      elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
3608 			      ORDER_INVALID, false);
3609   incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
3610 
3611   // Add the .gnu_incremental_strtab section.
3612   const char* incremental_strtab_name =
3613     this->namepool_.add(".gnu_incremental_strtab", false, NULL);
3614   Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
3615 							elfcpp::SHT_STRTAB, 0,
3616 							ORDER_INVALID, false);
3617   Output_data_strtab* strtab_data =
3618       new Output_data_strtab(incr->get_stringpool());
3619   incremental_strtab_os->add_output_section_data(strtab_data);
3620 
3621   incremental_inputs_os->set_after_input_sections();
3622   incremental_symtab_os->set_after_input_sections();
3623   incremental_relocs_os->set_after_input_sections();
3624   incremental_got_plt_os->set_after_input_sections();
3625 
3626   incremental_inputs_os->set_link_section(incremental_strtab_os);
3627   incremental_symtab_os->set_link_section(incremental_inputs_os);
3628   incremental_relocs_os->set_link_section(incremental_inputs_os);
3629   incremental_got_plt_os->set_link_section(incremental_inputs_os);
3630 }
3631 
3632 // Return whether SEG1 should be before SEG2 in the output file.  This
3633 // is based entirely on the segment type and flags.  When this is
3634 // called the segment addresses have normally not yet been set.
3635 
3636 bool
3637 Layout::segment_precedes(const Output_segment* seg1,
3638 			 const Output_segment* seg2)
3639 {
3640   // In order to produce a stable ordering if we're called with the same pointer
3641   // return false.
3642   if (seg1 == seg2)
3643     return false;
3644 
3645   elfcpp::Elf_Word type1 = seg1->type();
3646   elfcpp::Elf_Word type2 = seg2->type();
3647 
3648   // The single PT_PHDR segment is required to precede any loadable
3649   // segment.  We simply make it always first.
3650   if (type1 == elfcpp::PT_PHDR)
3651     {
3652       gold_assert(type2 != elfcpp::PT_PHDR);
3653       return true;
3654     }
3655   if (type2 == elfcpp::PT_PHDR)
3656     return false;
3657 
3658   // The single PT_INTERP segment is required to precede any loadable
3659   // segment.  We simply make it always second.
3660   if (type1 == elfcpp::PT_INTERP)
3661     {
3662       gold_assert(type2 != elfcpp::PT_INTERP);
3663       return true;
3664     }
3665   if (type2 == elfcpp::PT_INTERP)
3666     return false;
3667 
3668   // We then put PT_LOAD segments before any other segments.
3669   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
3670     return true;
3671   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
3672     return false;
3673 
3674   // We put the PT_TLS segment last except for the PT_GNU_RELRO
3675   // segment, because that is where the dynamic linker expects to find
3676   // it (this is just for efficiency; other positions would also work
3677   // correctly).
3678   if (type1 == elfcpp::PT_TLS
3679       && type2 != elfcpp::PT_TLS
3680       && type2 != elfcpp::PT_GNU_RELRO)
3681     return false;
3682   if (type2 == elfcpp::PT_TLS
3683       && type1 != elfcpp::PT_TLS
3684       && type1 != elfcpp::PT_GNU_RELRO)
3685     return true;
3686 
3687   // We put the PT_GNU_RELRO segment last, because that is where the
3688   // dynamic linker expects to find it (as with PT_TLS, this is just
3689   // for efficiency).
3690   if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
3691     return false;
3692   if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
3693     return true;
3694 
3695   const elfcpp::Elf_Word flags1 = seg1->flags();
3696   const elfcpp::Elf_Word flags2 = seg2->flags();
3697 
3698   // The order of non-PT_LOAD segments is unimportant.  We simply sort
3699   // by the numeric segment type and flags values.  There should not
3700   // be more than one segment with the same type and flags, except
3701   // when a linker script specifies such.
3702   if (type1 != elfcpp::PT_LOAD)
3703     {
3704       if (type1 != type2)
3705 	return type1 < type2;
3706       gold_assert(flags1 != flags2
3707 		  || this->script_options_->saw_phdrs_clause());
3708       return flags1 < flags2;
3709     }
3710 
3711   // If the addresses are set already, sort by load address.
3712   if (seg1->are_addresses_set())
3713     {
3714       if (!seg2->are_addresses_set())
3715 	return true;
3716 
3717       unsigned int section_count1 = seg1->output_section_count();
3718       unsigned int section_count2 = seg2->output_section_count();
3719       if (section_count1 == 0 && section_count2 > 0)
3720 	return true;
3721       if (section_count1 > 0 && section_count2 == 0)
3722 	return false;
3723 
3724       uint64_t paddr1 =	(seg1->are_addresses_set()
3725 			 ? seg1->paddr()
3726 			 : seg1->first_section_load_address());
3727       uint64_t paddr2 =	(seg2->are_addresses_set()
3728 			 ? seg2->paddr()
3729 			 : seg2->first_section_load_address());
3730 
3731       if (paddr1 != paddr2)
3732 	return paddr1 < paddr2;
3733     }
3734   else if (seg2->are_addresses_set())
3735     return false;
3736 
3737   // A segment which holds large data comes after a segment which does
3738   // not hold large data.
3739   if (seg1->is_large_data_segment())
3740     {
3741       if (!seg2->is_large_data_segment())
3742 	return false;
3743     }
3744   else if (seg2->is_large_data_segment())
3745     return true;
3746 
3747   // Otherwise, we sort PT_LOAD segments based on the flags.  Readonly
3748   // segments come before writable segments.  Then writable segments
3749   // with data come before writable segments without data.  Then
3750   // executable segments come before non-executable segments.  Then
3751   // the unlikely case of a non-readable segment comes before the
3752   // normal case of a readable segment.  If there are multiple
3753   // segments with the same type and flags, we require that the
3754   // address be set, and we sort by virtual address and then physical
3755   // address.
3756   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
3757     return (flags1 & elfcpp::PF_W) == 0;
3758   if ((flags1 & elfcpp::PF_W) != 0
3759       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
3760     return seg1->has_any_data_sections();
3761   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
3762     return (flags1 & elfcpp::PF_X) != 0;
3763   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
3764     return (flags1 & elfcpp::PF_R) == 0;
3765 
3766   // We shouldn't get here--we shouldn't create segments which we
3767   // can't distinguish.  Unless of course we are using a weird linker
3768   // script or overlapping --section-start options.  We could also get
3769   // here if plugins want unique segments for subsets of sections.
3770   gold_assert(this->script_options_->saw_phdrs_clause()
3771 	      || parameters->options().any_section_start()
3772 	      || this->is_unique_segment_for_sections_specified()
3773 	      || parameters->options().text_unlikely_segment());
3774   return false;
3775 }
3776 
3777 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3778 
3779 static off_t
3780 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
3781 {
3782   uint64_t unsigned_off = off;
3783   uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
3784 			  | (addr & (abi_pagesize - 1)));
3785   if (aligned_off < unsigned_off)
3786     aligned_off += abi_pagesize;
3787   return aligned_off;
3788 }
3789 
3790 // On targets where the text segment contains only executable code,
3791 // a non-executable segment is never the text segment.
3792 
3793 static inline bool
3794 is_text_segment(const Target* target, const Output_segment* seg)
3795 {
3796   elfcpp::Elf_Xword flags = seg->flags();
3797   if ((flags & elfcpp::PF_W) != 0)
3798     return false;
3799   if ((flags & elfcpp::PF_X) == 0)
3800     return !target->isolate_execinstr();
3801   return true;
3802 }
3803 
3804 // Set the file offsets of all the segments, and all the sections they
3805 // contain.  They have all been created.  LOAD_SEG must be laid out
3806 // first.  Return the offset of the data to follow.
3807 
3808 off_t
3809 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3810 			    unsigned int* pshndx)
3811 {
3812   // Sort them into the final order.  We use a stable sort so that we
3813   // don't randomize the order of indistinguishable segments created
3814   // by linker scripts.
3815   std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3816 		   Layout::Compare_segments(this));
3817 
3818   // Find the PT_LOAD segments, and set their addresses and offsets
3819   // and their section's addresses and offsets.
3820   uint64_t start_addr;
3821   if (parameters->options().user_set_Ttext())
3822     start_addr = parameters->options().Ttext();
3823   else if (parameters->options().output_is_position_independent())
3824     start_addr = 0;
3825   else
3826     start_addr = target->default_text_segment_address();
3827 
3828   uint64_t addr = start_addr;
3829   off_t off = 0;
3830 
3831   // If LOAD_SEG is NULL, then the file header and segment headers
3832   // will not be loadable.  But they still need to be at offset 0 in
3833   // the file.  Set their offsets now.
3834   if (load_seg == NULL)
3835     {
3836       for (Data_list::iterator p = this->special_output_list_.begin();
3837 	   p != this->special_output_list_.end();
3838 	   ++p)
3839 	{
3840 	  off = align_address(off, (*p)->addralign());
3841 	  (*p)->set_address_and_file_offset(0, off);
3842 	  off += (*p)->data_size();
3843 	}
3844     }
3845 
3846   unsigned int increase_relro = this->increase_relro_;
3847   if (this->script_options_->saw_sections_clause())
3848     increase_relro = 0;
3849 
3850   const bool check_sections = parameters->options().check_sections();
3851   Output_segment* last_load_segment = NULL;
3852 
3853   unsigned int shndx_begin = *pshndx;
3854   unsigned int shndx_load_seg = *pshndx;
3855 
3856   for (Segment_list::iterator p = this->segment_list_.begin();
3857        p != this->segment_list_.end();
3858        ++p)
3859     {
3860       if ((*p)->type() == elfcpp::PT_LOAD)
3861 	{
3862 	  if (target->isolate_execinstr())
3863 	    {
3864 	      // When we hit the segment that should contain the
3865 	      // file headers, reset the file offset so we place
3866 	      // it and subsequent segments appropriately.
3867 	      // We'll fix up the preceding segments below.
3868 	      if (load_seg == *p)
3869 		{
3870 		  if (off == 0)
3871 		    load_seg = NULL;
3872 		  else
3873 		    {
3874 		      off = 0;
3875 		      shndx_load_seg = *pshndx;
3876 		    }
3877 		}
3878 	    }
3879 	  else
3880 	    {
3881 	      // Verify that the file headers fall into the first segment.
3882 	      if (load_seg != NULL && load_seg != *p)
3883 		gold_unreachable();
3884 	      load_seg = NULL;
3885 	    }
3886 
3887 	  bool are_addresses_set = (*p)->are_addresses_set();
3888 	  if (are_addresses_set)
3889 	    {
3890 	      // When it comes to setting file offsets, we care about
3891 	      // the physical address.
3892 	      addr = (*p)->paddr();
3893 	    }
3894 	  else if (parameters->options().user_set_Ttext()
3895 		   && (parameters->options().omagic()
3896 		       || is_text_segment(target, *p)))
3897 	    {
3898 	      are_addresses_set = true;
3899 	    }
3900 	  else if (parameters->options().user_set_Trodata_segment()
3901 		   && ((*p)->flags() & (elfcpp::PF_W | elfcpp::PF_X)) == 0)
3902 	    {
3903 	      addr = parameters->options().Trodata_segment();
3904 	      are_addresses_set = true;
3905 	    }
3906 	  else if (parameters->options().user_set_Tdata()
3907 		   && ((*p)->flags() & elfcpp::PF_W) != 0
3908 		   && (!parameters->options().user_set_Tbss()
3909 		       || (*p)->has_any_data_sections()))
3910 	    {
3911 	      addr = parameters->options().Tdata();
3912 	      are_addresses_set = true;
3913 	    }
3914 	  else if (parameters->options().user_set_Tbss()
3915 		   && ((*p)->flags() & elfcpp::PF_W) != 0
3916 		   && !(*p)->has_any_data_sections())
3917 	    {
3918 	      addr = parameters->options().Tbss();
3919 	      are_addresses_set = true;
3920 	    }
3921 
3922 	  uint64_t orig_addr = addr;
3923 	  uint64_t orig_off = off;
3924 
3925 	  uint64_t aligned_addr = 0;
3926 	  uint64_t abi_pagesize = target->abi_pagesize();
3927 	  uint64_t common_pagesize = target->common_pagesize();
3928 
3929 	  if (!parameters->options().nmagic()
3930 	      && !parameters->options().omagic())
3931 	    (*p)->set_minimum_p_align(abi_pagesize);
3932 
3933 	  if (!are_addresses_set)
3934 	    {
3935 	      // Skip the address forward one page, maintaining the same
3936 	      // position within the page.  This lets us store both segments
3937 	      // overlapping on a single page in the file, but the loader will
3938 	      // put them on different pages in memory. We will revisit this
3939 	      // decision once we know the size of the segment.
3940 
3941 	      uint64_t max_align = (*p)->maximum_alignment();
3942 	      if (max_align > abi_pagesize)
3943 		addr = align_address(addr, max_align);
3944 	      aligned_addr = addr;
3945 
3946 	      if (load_seg == *p)
3947 		{
3948 		  // This is the segment that will contain the file
3949 		  // headers, so its offset will have to be exactly zero.
3950 		  gold_assert(orig_off == 0);
3951 
3952 		  // If the target wants a fixed minimum distance from the
3953 		  // text segment to the read-only segment, move up now.
3954 		  uint64_t min_addr =
3955 		    start_addr + (parameters->options().user_set_rosegment_gap()
3956 				  ? parameters->options().rosegment_gap()
3957 				  : target->rosegment_gap());
3958 		  if (addr < min_addr)
3959 		    addr = min_addr;
3960 
3961 		  // But this is not the first segment!  To make its
3962 		  // address congruent with its offset, that address better
3963 		  // be aligned to the ABI-mandated page size.
3964 		  addr = align_address(addr, abi_pagesize);
3965 		  aligned_addr = addr;
3966 		}
3967 	      else
3968 		{
3969 		  if ((addr & (abi_pagesize - 1)) != 0)
3970 		    addr = addr + abi_pagesize;
3971 
3972 		  off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3973 		}
3974 	    }
3975 
3976 	  if (!parameters->options().nmagic()
3977 	      && !parameters->options().omagic())
3978 	    {
3979 	      // Here we are also taking care of the case when
3980 	      // the maximum segment alignment is larger than the page size.
3981 	      off = align_file_offset(off, addr,
3982 				      std::max(abi_pagesize,
3983 					       (*p)->maximum_alignment()));
3984 	    }
3985 	  else
3986 	    {
3987 	      // This is -N or -n with a section script which prevents
3988 	      // us from using a load segment.  We need to ensure that
3989 	      // the file offset is aligned to the alignment of the
3990 	      // segment.  This is because the linker script
3991 	      // implicitly assumed a zero offset.  If we don't align
3992 	      // here, then the alignment of the sections in the
3993 	      // linker script may not match the alignment of the
3994 	      // sections in the set_section_addresses call below,
3995 	      // causing an error about dot moving backward.
3996 	      off = align_address(off, (*p)->maximum_alignment());
3997 	    }
3998 
3999 	  unsigned int shndx_hold = *pshndx;
4000 	  bool has_relro = false;
4001 	  uint64_t new_addr = (*p)->set_section_addresses(target, this,
4002 							  false, addr,
4003 							  &increase_relro,
4004 							  &has_relro,
4005 							  &off, pshndx);
4006 
4007 	  // Now that we know the size of this segment, we may be able
4008 	  // to save a page in memory, at the cost of wasting some
4009 	  // file space, by instead aligning to the start of a new
4010 	  // page.  Here we use the real machine page size rather than
4011 	  // the ABI mandated page size.  If the segment has been
4012 	  // aligned so that the relro data ends at a page boundary,
4013 	  // we do not try to realign it.
4014 
4015 	  if (!are_addresses_set
4016 	      && !has_relro
4017 	      && aligned_addr != addr
4018 	      && !parameters->incremental())
4019 	    {
4020 	      uint64_t first_off = (common_pagesize
4021 				    - (aligned_addr
4022 				       & (common_pagesize - 1)));
4023 	      uint64_t last_off = new_addr & (common_pagesize - 1);
4024 	      if (first_off > 0
4025 		  && last_off > 0
4026 		  && ((aligned_addr & ~ (common_pagesize - 1))
4027 		      != (new_addr & ~ (common_pagesize - 1)))
4028 		  && first_off + last_off <= common_pagesize)
4029 		{
4030 		  *pshndx = shndx_hold;
4031 		  addr = align_address(aligned_addr, common_pagesize);
4032 		  addr = align_address(addr, (*p)->maximum_alignment());
4033 		  if ((addr & (abi_pagesize - 1)) != 0)
4034 		    addr = addr + abi_pagesize;
4035 		  off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
4036 		  off = align_file_offset(off, addr, abi_pagesize);
4037 
4038 		  increase_relro = this->increase_relro_;
4039 		  if (this->script_options_->saw_sections_clause())
4040 		    increase_relro = 0;
4041 		  has_relro = false;
4042 
4043 		  new_addr = (*p)->set_section_addresses(target, this,
4044 							 true, addr,
4045 							 &increase_relro,
4046 							 &has_relro,
4047 							 &off, pshndx);
4048 		}
4049 	    }
4050 
4051 	  addr = new_addr;
4052 
4053 	  // Implement --check-sections.  We know that the segments
4054 	  // are sorted by LMA.
4055 	  if (check_sections && last_load_segment != NULL)
4056 	    {
4057 	      gold_assert(last_load_segment->paddr() <= (*p)->paddr());
4058 	      if (last_load_segment->paddr() + last_load_segment->memsz()
4059 		  > (*p)->paddr())
4060 		{
4061 		  unsigned long long lb1 = last_load_segment->paddr();
4062 		  unsigned long long le1 = lb1 + last_load_segment->memsz();
4063 		  unsigned long long lb2 = (*p)->paddr();
4064 		  unsigned long long le2 = lb2 + (*p)->memsz();
4065 		  gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
4066 			       "[0x%llx -> 0x%llx]"),
4067 			     lb1, le1, lb2, le2);
4068 		}
4069 	    }
4070 	  last_load_segment = *p;
4071 	}
4072     }
4073 
4074   if (load_seg != NULL && target->isolate_execinstr())
4075     {
4076       // Process the early segments again, setting their file offsets
4077       // so they land after the segments starting at LOAD_SEG.
4078       off = align_file_offset(off, 0, target->abi_pagesize());
4079 
4080       this->reset_relax_output();
4081 
4082       for (Segment_list::iterator p = this->segment_list_.begin();
4083 	   *p != load_seg;
4084 	   ++p)
4085 	{
4086 	  if ((*p)->type() == elfcpp::PT_LOAD)
4087 	    {
4088 	      // We repeat the whole job of assigning addresses and
4089 	      // offsets, but we really only want to change the offsets and
4090 	      // must ensure that the addresses all come out the same as
4091 	      // they did the first time through.
4092 	      bool has_relro = false;
4093 	      const uint64_t old_addr = (*p)->vaddr();
4094 	      const uint64_t old_end = old_addr + (*p)->memsz();
4095 	      uint64_t new_addr = (*p)->set_section_addresses(target, this,
4096 							      true, old_addr,
4097 							      &increase_relro,
4098 							      &has_relro,
4099 							      &off,
4100 							      &shndx_begin);
4101 	      gold_assert(new_addr == old_end);
4102 	    }
4103 	}
4104 
4105       gold_assert(shndx_begin == shndx_load_seg);
4106     }
4107 
4108   // Handle the non-PT_LOAD segments, setting their offsets from their
4109   // section's offsets.
4110   for (Segment_list::iterator p = this->segment_list_.begin();
4111        p != this->segment_list_.end();
4112        ++p)
4113     {
4114       // PT_GNU_STACK was set up correctly when it was created.
4115       if ((*p)->type() != elfcpp::PT_LOAD
4116 	  && (*p)->type() != elfcpp::PT_GNU_STACK)
4117 	(*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
4118 			 ? increase_relro
4119 			 : 0);
4120     }
4121 
4122   // Set the TLS offsets for each section in the PT_TLS segment.
4123   if (this->tls_segment_ != NULL)
4124     this->tls_segment_->set_tls_offsets();
4125 
4126   return off;
4127 }
4128 
4129 // Set the offsets of all the allocated sections when doing a
4130 // relocatable link.  This does the same jobs as set_segment_offsets,
4131 // only for a relocatable link.
4132 
4133 off_t
4134 Layout::set_relocatable_section_offsets(Output_data* file_header,
4135 					unsigned int* pshndx)
4136 {
4137   off_t off = 0;
4138 
4139   file_header->set_address_and_file_offset(0, 0);
4140   off += file_header->data_size();
4141 
4142   for (Section_list::iterator p = this->section_list_.begin();
4143        p != this->section_list_.end();
4144        ++p)
4145     {
4146       // We skip unallocated sections here, except that group sections
4147       // have to come first.
4148       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
4149 	  && (*p)->type() != elfcpp::SHT_GROUP)
4150 	continue;
4151 
4152       off = align_address(off, (*p)->addralign());
4153 
4154       // The linker script might have set the address.
4155       if (!(*p)->is_address_valid())
4156 	(*p)->set_address(0);
4157       (*p)->set_file_offset(off);
4158       (*p)->finalize_data_size();
4159       if ((*p)->type() != elfcpp::SHT_NOBITS)
4160 	off += (*p)->data_size();
4161 
4162       (*p)->set_out_shndx(*pshndx);
4163       ++*pshndx;
4164     }
4165 
4166   return off;
4167 }
4168 
4169 // Set the file offset of all the sections not associated with a
4170 // segment.
4171 
4172 off_t
4173 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
4174 {
4175   off_t startoff = off;
4176   off_t maxoff = off;
4177 
4178   for (Section_list::iterator p = this->unattached_section_list_.begin();
4179        p != this->unattached_section_list_.end();
4180        ++p)
4181     {
4182       // The symtab section is handled in create_symtab_sections.
4183       if (*p == this->symtab_section_)
4184 	continue;
4185 
4186       // If we've already set the data size, don't set it again.
4187       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
4188 	continue;
4189 
4190       if (pass == BEFORE_INPUT_SECTIONS_PASS
4191 	  && (*p)->requires_postprocessing())
4192 	{
4193 	  (*p)->create_postprocessing_buffer();
4194 	  this->any_postprocessing_sections_ = true;
4195 	}
4196 
4197       if (pass == BEFORE_INPUT_SECTIONS_PASS
4198 	  && (*p)->after_input_sections())
4199 	continue;
4200       else if (pass == POSTPROCESSING_SECTIONS_PASS
4201 	       && (!(*p)->after_input_sections()
4202 		   || (*p)->type() == elfcpp::SHT_STRTAB))
4203 	continue;
4204       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
4205 	       && (!(*p)->after_input_sections()
4206 		   || (*p)->type() != elfcpp::SHT_STRTAB))
4207 	continue;
4208 
4209       if (!parameters->incremental_update())
4210 	{
4211 	  off = align_address(off, (*p)->addralign());
4212 	  (*p)->set_file_offset(off);
4213 	  (*p)->finalize_data_size();
4214 	}
4215       else
4216 	{
4217 	  // Incremental update: allocate file space from free list.
4218 	  (*p)->pre_finalize_data_size();
4219 	  off_t current_size = (*p)->current_data_size();
4220 	  off = this->allocate(current_size, (*p)->addralign(), startoff);
4221 	  if (off == -1)
4222 	    {
4223 	      if (is_debugging_enabled(DEBUG_INCREMENTAL))
4224 		this->free_list_.dump();
4225 	      gold_assert((*p)->output_section() != NULL);
4226 	      gold_fallback(_("out of patch space for section %s; "
4227 			      "relink with --incremental-full"),
4228 			    (*p)->output_section()->name());
4229 	    }
4230 	  (*p)->set_file_offset(off);
4231 	  (*p)->finalize_data_size();
4232 	  if ((*p)->data_size() > current_size)
4233 	    {
4234 	      gold_assert((*p)->output_section() != NULL);
4235 	      gold_fallback(_("%s: section changed size; "
4236 			      "relink with --incremental-full"),
4237 			    (*p)->output_section()->name());
4238 	    }
4239 	  gold_debug(DEBUG_INCREMENTAL,
4240 		     "set_section_offsets: %08lx %08lx %s",
4241 		     static_cast<long>(off),
4242 		     static_cast<long>((*p)->data_size()),
4243 		     ((*p)->output_section() != NULL
4244 		      ? (*p)->output_section()->name() : "(special)"));
4245 	}
4246 
4247       off += (*p)->data_size();
4248       if (off > maxoff)
4249 	maxoff = off;
4250 
4251       // At this point the name must be set.
4252       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
4253 	this->namepool_.add((*p)->name(), false, NULL);
4254     }
4255   return maxoff;
4256 }
4257 
4258 // Set the section indexes of all the sections not associated with a
4259 // segment.
4260 
4261 unsigned int
4262 Layout::set_section_indexes(unsigned int shndx)
4263 {
4264   for (Section_list::iterator p = this->unattached_section_list_.begin();
4265        p != this->unattached_section_list_.end();
4266        ++p)
4267     {
4268       if (!(*p)->has_out_shndx())
4269 	{
4270 	  (*p)->set_out_shndx(shndx);
4271 	  ++shndx;
4272 	}
4273     }
4274   return shndx;
4275 }
4276 
4277 // Set the section addresses according to the linker script.  This is
4278 // only called when we see a SECTIONS clause.  This returns the
4279 // program segment which should hold the file header and segment
4280 // headers, if any.  It will return NULL if they should not be in a
4281 // segment.
4282 
4283 Output_segment*
4284 Layout::set_section_addresses_from_script(Symbol_table* symtab)
4285 {
4286   Script_sections* ss = this->script_options_->script_sections();
4287   gold_assert(ss->saw_sections_clause());
4288   return this->script_options_->set_section_addresses(symtab, this);
4289 }
4290 
4291 // Place the orphan sections in the linker script.
4292 
4293 void
4294 Layout::place_orphan_sections_in_script()
4295 {
4296   Script_sections* ss = this->script_options_->script_sections();
4297   gold_assert(ss->saw_sections_clause());
4298 
4299   // Place each orphaned output section in the script.
4300   for (Section_list::iterator p = this->section_list_.begin();
4301        p != this->section_list_.end();
4302        ++p)
4303     {
4304       if (!(*p)->found_in_sections_clause())
4305 	ss->place_orphan(*p);
4306     }
4307 }
4308 
4309 // Count the local symbols in the regular symbol table and the dynamic
4310 // symbol table, and build the respective string pools.
4311 
4312 void
4313 Layout::count_local_symbols(const Task* task,
4314 			    const Input_objects* input_objects)
4315 {
4316   // First, figure out an upper bound on the number of symbols we'll
4317   // be inserting into each pool.  This helps us create the pools with
4318   // the right size, to avoid unnecessary hashtable resizing.
4319   unsigned int symbol_count = 0;
4320   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4321        p != input_objects->relobj_end();
4322        ++p)
4323     symbol_count += (*p)->local_symbol_count();
4324 
4325   // Go from "upper bound" to "estimate."  We overcount for two
4326   // reasons: we double-count symbols that occur in more than one
4327   // object file, and we count symbols that are dropped from the
4328   // output.  Add it all together and assume we overcount by 100%.
4329   symbol_count /= 2;
4330 
4331   // We assume all symbols will go into both the sympool and dynpool.
4332   this->sympool_.reserve(symbol_count);
4333   this->dynpool_.reserve(symbol_count);
4334 
4335   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4336        p != input_objects->relobj_end();
4337        ++p)
4338     {
4339       Task_lock_obj<Object> tlo(task, *p);
4340       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
4341     }
4342 }
4343 
4344 // Create the symbol table sections.  Here we also set the final
4345 // values of the symbols.  At this point all the loadable sections are
4346 // fully laid out.  SHNUM is the number of sections so far.
4347 
4348 void
4349 Layout::create_symtab_sections(const Input_objects* input_objects,
4350 			       Symbol_table* symtab,
4351 			       unsigned int shnum,
4352 			       off_t* poff,
4353 			       unsigned int local_dynamic_count)
4354 {
4355   int symsize;
4356   unsigned int align;
4357   if (parameters->target().get_size() == 32)
4358     {
4359       symsize = elfcpp::Elf_sizes<32>::sym_size;
4360       align = 4;
4361     }
4362   else if (parameters->target().get_size() == 64)
4363     {
4364       symsize = elfcpp::Elf_sizes<64>::sym_size;
4365       align = 8;
4366     }
4367   else
4368     gold_unreachable();
4369 
4370   // Compute file offsets relative to the start of the symtab section.
4371   off_t off = 0;
4372 
4373   // Save space for the dummy symbol at the start of the section.  We
4374   // never bother to write this out--it will just be left as zero.
4375   off += symsize;
4376   unsigned int local_symbol_index = 1;
4377 
4378   // Add STT_SECTION symbols for each Output section which needs one.
4379   for (Section_list::iterator p = this->section_list_.begin();
4380        p != this->section_list_.end();
4381        ++p)
4382     {
4383       if (!(*p)->needs_symtab_index())
4384 	(*p)->set_symtab_index(-1U);
4385       else
4386 	{
4387 	  (*p)->set_symtab_index(local_symbol_index);
4388 	  ++local_symbol_index;
4389 	  off += symsize;
4390 	}
4391     }
4392 
4393   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4394        p != input_objects->relobj_end();
4395        ++p)
4396     {
4397       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
4398 							off, symtab);
4399       off += (index - local_symbol_index) * symsize;
4400       local_symbol_index = index;
4401     }
4402 
4403   unsigned int local_symcount = local_symbol_index;
4404   gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
4405 
4406   off_t dynoff;
4407   size_t dyncount;
4408   if (this->dynsym_section_ == NULL)
4409     {
4410       dynoff = 0;
4411       dyncount = 0;
4412     }
4413   else
4414     {
4415       off_t locsize = local_dynamic_count * this->dynsym_section_->entsize();
4416       dynoff = this->dynsym_section_->offset() + locsize;
4417       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
4418       gold_assert(static_cast<off_t>(dyncount * symsize)
4419 		  == this->dynsym_section_->data_size() - locsize);
4420     }
4421 
4422   off_t global_off = off;
4423   off = symtab->finalize(off, dynoff, local_dynamic_count, dyncount,
4424 			 &this->sympool_, &local_symcount);
4425 
4426   if (!parameters->options().strip_all())
4427     {
4428       this->sympool_.set_string_offsets();
4429 
4430       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
4431       Output_section* osymtab = this->make_output_section(symtab_name,
4432 							  elfcpp::SHT_SYMTAB,
4433 							  0, ORDER_INVALID,
4434 							  false);
4435       this->symtab_section_ = osymtab;
4436 
4437       Output_section_data* pos = new Output_data_fixed_space(off, align,
4438 							     "** symtab");
4439       osymtab->add_output_section_data(pos);
4440 
4441       // We generate a .symtab_shndx section if we have more than
4442       // SHN_LORESERVE sections.  Technically it is possible that we
4443       // don't need one, because it is possible that there are no
4444       // symbols in any of sections with indexes larger than
4445       // SHN_LORESERVE.  That is probably unusual, though, and it is
4446       // easier to always create one than to compute section indexes
4447       // twice (once here, once when writing out the symbols).
4448       if (shnum >= elfcpp::SHN_LORESERVE)
4449 	{
4450 	  const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
4451 							       false, NULL);
4452 	  Output_section* osymtab_xindex =
4453 	    this->make_output_section(symtab_xindex_name,
4454 				      elfcpp::SHT_SYMTAB_SHNDX, 0,
4455 				      ORDER_INVALID, false);
4456 
4457 	  size_t symcount = off / symsize;
4458 	  this->symtab_xindex_ = new Output_symtab_xindex(symcount);
4459 
4460 	  osymtab_xindex->add_output_section_data(this->symtab_xindex_);
4461 
4462 	  osymtab_xindex->set_link_section(osymtab);
4463 	  osymtab_xindex->set_addralign(4);
4464 	  osymtab_xindex->set_entsize(4);
4465 
4466 	  osymtab_xindex->set_after_input_sections();
4467 
4468 	  // This tells the driver code to wait until the symbol table
4469 	  // has written out before writing out the postprocessing
4470 	  // sections, including the .symtab_shndx section.
4471 	  this->any_postprocessing_sections_ = true;
4472 	}
4473 
4474       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
4475       Output_section* ostrtab = this->make_output_section(strtab_name,
4476 							  elfcpp::SHT_STRTAB,
4477 							  0, ORDER_INVALID,
4478 							  false);
4479 
4480       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
4481       ostrtab->add_output_section_data(pstr);
4482 
4483       off_t symtab_off;
4484       if (!parameters->incremental_update())
4485 	symtab_off = align_address(*poff, align);
4486       else
4487 	{
4488 	  symtab_off = this->allocate(off, align, *poff);
4489 	  if (off == -1)
4490 	    gold_fallback(_("out of patch space for symbol table; "
4491 			    "relink with --incremental-full"));
4492 	  gold_debug(DEBUG_INCREMENTAL,
4493 		     "create_symtab_sections: %08lx %08lx .symtab",
4494 		     static_cast<long>(symtab_off),
4495 		     static_cast<long>(off));
4496 	}
4497 
4498       symtab->set_file_offset(symtab_off + global_off);
4499       osymtab->set_file_offset(symtab_off);
4500       osymtab->finalize_data_size();
4501       osymtab->set_link_section(ostrtab);
4502       osymtab->set_info(local_symcount);
4503       osymtab->set_entsize(symsize);
4504 
4505       if (symtab_off + off > *poff)
4506 	*poff = symtab_off + off;
4507     }
4508 }
4509 
4510 // Create the .shstrtab section, which holds the names of the
4511 // sections.  At the time this is called, we have created all the
4512 // output sections except .shstrtab itself.
4513 
4514 Output_section*
4515 Layout::create_shstrtab()
4516 {
4517   // FIXME: We don't need to create a .shstrtab section if we are
4518   // stripping everything.
4519 
4520   const char* name = this->namepool_.add(".shstrtab", false, NULL);
4521 
4522   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
4523 						 ORDER_INVALID, false);
4524 
4525   if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
4526     {
4527       // We can't write out this section until we've set all the
4528       // section names, and we don't set the names of compressed
4529       // output sections until relocations are complete.  FIXME: With
4530       // the current names we use, this is unnecessary.
4531       os->set_after_input_sections();
4532     }
4533 
4534   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
4535   os->add_output_section_data(posd);
4536 
4537   return os;
4538 }
4539 
4540 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
4541 // offset.
4542 
4543 void
4544 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
4545 {
4546   Output_section_headers* oshdrs;
4547   oshdrs = new Output_section_headers(this,
4548 				      &this->segment_list_,
4549 				      &this->section_list_,
4550 				      &this->unattached_section_list_,
4551 				      &this->namepool_,
4552 				      shstrtab_section);
4553   off_t off;
4554   if (!parameters->incremental_update())
4555     off = align_address(*poff, oshdrs->addralign());
4556   else
4557     {
4558       oshdrs->pre_finalize_data_size();
4559       off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
4560       if (off == -1)
4561 	  gold_fallback(_("out of patch space for section header table; "
4562 			  "relink with --incremental-full"));
4563       gold_debug(DEBUG_INCREMENTAL,
4564 		 "create_shdrs: %08lx %08lx (section header table)",
4565 		 static_cast<long>(off),
4566 		 static_cast<long>(off + oshdrs->data_size()));
4567     }
4568   oshdrs->set_address_and_file_offset(0, off);
4569   off += oshdrs->data_size();
4570   if (off > *poff)
4571     *poff = off;
4572   this->section_headers_ = oshdrs;
4573 }
4574 
4575 // Count the allocated sections.
4576 
4577 size_t
4578 Layout::allocated_output_section_count() const
4579 {
4580   size_t section_count = 0;
4581   for (Segment_list::const_iterator p = this->segment_list_.begin();
4582        p != this->segment_list_.end();
4583        ++p)
4584     section_count += (*p)->output_section_count();
4585   return section_count;
4586 }
4587 
4588 // Create the dynamic symbol table.
4589 // *PLOCAL_DYNAMIC_COUNT will be set to the number of local symbols
4590 // from input objects, and *PFORCED_LOCAL_DYNAMIC_COUNT will be set
4591 // to the number of global symbols that have been forced local.
4592 // We need to remember the former because the forced-local symbols are
4593 // written along with the global symbols in Symtab::write_globals().
4594 
4595 void
4596 Layout::create_dynamic_symtab(const Input_objects* input_objects,
4597 			      Symbol_table* symtab,
4598 			      Output_section** pdynstr,
4599 			      unsigned int* plocal_dynamic_count,
4600 			      unsigned int* pforced_local_dynamic_count,
4601 			      std::vector<Symbol*>* pdynamic_symbols,
4602 			      Versions* pversions)
4603 {
4604   // Count all the symbols in the dynamic symbol table, and set the
4605   // dynamic symbol indexes.
4606 
4607   // Skip symbol 0, which is always all zeroes.
4608   unsigned int index = 1;
4609 
4610   // Add STT_SECTION symbols for each Output section which needs one.
4611   for (Section_list::iterator p = this->section_list_.begin();
4612        p != this->section_list_.end();
4613        ++p)
4614     {
4615       if (!(*p)->needs_dynsym_index())
4616 	(*p)->set_dynsym_index(-1U);
4617       else
4618 	{
4619 	  (*p)->set_dynsym_index(index);
4620 	  ++index;
4621 	}
4622     }
4623 
4624   // Count the local symbols that need to go in the dynamic symbol table,
4625   // and set the dynamic symbol indexes.
4626   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4627        p != input_objects->relobj_end();
4628        ++p)
4629     {
4630       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
4631       index = new_index;
4632     }
4633 
4634   unsigned int local_symcount = index;
4635   unsigned int forced_local_count = 0;
4636 
4637   index = symtab->set_dynsym_indexes(index, &forced_local_count,
4638 				     pdynamic_symbols, &this->dynpool_,
4639 				     pversions);
4640 
4641   *plocal_dynamic_count = local_symcount;
4642   *pforced_local_dynamic_count = forced_local_count;
4643 
4644   int symsize;
4645   unsigned int align;
4646   const int size = parameters->target().get_size();
4647   if (size == 32)
4648     {
4649       symsize = elfcpp::Elf_sizes<32>::sym_size;
4650       align = 4;
4651     }
4652   else if (size == 64)
4653     {
4654       symsize = elfcpp::Elf_sizes<64>::sym_size;
4655       align = 8;
4656     }
4657   else
4658     gold_unreachable();
4659 
4660   // Create the dynamic symbol table section.
4661 
4662   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
4663 						       elfcpp::SHT_DYNSYM,
4664 						       elfcpp::SHF_ALLOC,
4665 						       false,
4666 						       ORDER_DYNAMIC_LINKER,
4667 						       false, false, false);
4668 
4669   // Check for NULL as a linker script may discard .dynsym.
4670   if (dynsym != NULL)
4671     {
4672       Output_section_data* odata = new Output_data_fixed_space(index * symsize,
4673 							       align,
4674 							       "** dynsym");
4675       dynsym->add_output_section_data(odata);
4676 
4677       dynsym->set_info(local_symcount + forced_local_count);
4678       dynsym->set_entsize(symsize);
4679       dynsym->set_addralign(align);
4680 
4681       this->dynsym_section_ = dynsym;
4682     }
4683 
4684   Output_data_dynamic* const odyn = this->dynamic_data_;
4685   if (odyn != NULL)
4686     {
4687       odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
4688       odyn->add_constant(elfcpp::DT_SYMENT, symsize);
4689     }
4690 
4691   // If there are more than SHN_LORESERVE allocated sections, we
4692   // create a .dynsym_shndx section.  It is possible that we don't
4693   // need one, because it is possible that there are no dynamic
4694   // symbols in any of the sections with indexes larger than
4695   // SHN_LORESERVE.  This is probably unusual, though, and at this
4696   // time we don't know the actual section indexes so it is
4697   // inconvenient to check.
4698   if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
4699     {
4700       Output_section* dynsym_xindex =
4701 	this->choose_output_section(NULL, ".dynsym_shndx",
4702 				    elfcpp::SHT_SYMTAB_SHNDX,
4703 				    elfcpp::SHF_ALLOC,
4704 				    false, ORDER_DYNAMIC_LINKER, false, false,
4705 				    false);
4706 
4707       if (dynsym_xindex != NULL)
4708 	{
4709 	  this->dynsym_xindex_ = new Output_symtab_xindex(index);
4710 
4711 	  dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
4712 
4713 	  dynsym_xindex->set_link_section(dynsym);
4714 	  dynsym_xindex->set_addralign(4);
4715 	  dynsym_xindex->set_entsize(4);
4716 
4717 	  dynsym_xindex->set_after_input_sections();
4718 
4719 	  // This tells the driver code to wait until the symbol table
4720 	  // has written out before writing out the postprocessing
4721 	  // sections, including the .dynsym_shndx section.
4722 	  this->any_postprocessing_sections_ = true;
4723 	}
4724     }
4725 
4726   // Create the dynamic string table section.
4727 
4728   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
4729 						       elfcpp::SHT_STRTAB,
4730 						       elfcpp::SHF_ALLOC,
4731 						       false,
4732 						       ORDER_DYNAMIC_LINKER,
4733 						       false, false, false);
4734   *pdynstr = dynstr;
4735   if (dynstr != NULL)
4736     {
4737       Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
4738       dynstr->add_output_section_data(strdata);
4739 
4740       if (dynsym != NULL)
4741 	dynsym->set_link_section(dynstr);
4742       if (this->dynamic_section_ != NULL)
4743 	this->dynamic_section_->set_link_section(dynstr);
4744 
4745       if (odyn != NULL)
4746 	{
4747 	  odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
4748 	  odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
4749 	}
4750     }
4751 
4752   // Create the hash tables.  The Gnu-style hash table must be
4753   // built first, because it changes the order of the symbols
4754   // in the dynamic symbol table.
4755 
4756   if (strcmp(parameters->options().hash_style(), "gnu") == 0
4757       || strcmp(parameters->options().hash_style(), "both") == 0)
4758     {
4759       unsigned char* phash;
4760       unsigned int hashlen;
4761       Dynobj::create_gnu_hash_table(*pdynamic_symbols,
4762 				    local_symcount + forced_local_count,
4763 				    &phash, &hashlen);
4764 
4765       Output_section* hashsec =
4766 	this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
4767 				    elfcpp::SHF_ALLOC, false,
4768 				    ORDER_DYNAMIC_LINKER, false, false,
4769 				    false);
4770 
4771       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4772 								   hashlen,
4773 								   align,
4774 								   "** hash");
4775       if (hashsec != NULL && hashdata != NULL)
4776 	hashsec->add_output_section_data(hashdata);
4777 
4778       if (hashsec != NULL)
4779 	{
4780 	  if (dynsym != NULL)
4781 	    hashsec->set_link_section(dynsym);
4782 
4783 	  // For a 64-bit target, the entries in .gnu.hash do not have
4784 	  // a uniform size, so we only set the entry size for a
4785 	  // 32-bit target.
4786 	  if (parameters->target().get_size() == 32)
4787 	    hashsec->set_entsize(4);
4788 
4789 	  if (odyn != NULL)
4790 	    odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
4791 	}
4792     }
4793 
4794   if (strcmp(parameters->options().hash_style(), "sysv") == 0
4795       || strcmp(parameters->options().hash_style(), "both") == 0)
4796     {
4797       unsigned char* phash;
4798       unsigned int hashlen;
4799       Dynobj::create_elf_hash_table(*pdynamic_symbols,
4800 				    local_symcount + forced_local_count,
4801 				    &phash, &hashlen);
4802 
4803       Output_section* hashsec =
4804 	this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
4805 				    elfcpp::SHF_ALLOC, false,
4806 				    ORDER_DYNAMIC_LINKER, false, false,
4807 				    false);
4808 
4809       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4810 								   hashlen,
4811 								   align,
4812 								   "** hash");
4813       if (hashsec != NULL && hashdata != NULL)
4814 	hashsec->add_output_section_data(hashdata);
4815 
4816       if (hashsec != NULL)
4817 	{
4818 	  if (dynsym != NULL)
4819 	    hashsec->set_link_section(dynsym);
4820 	  hashsec->set_entsize(parameters->target().hash_entry_size() / 8);
4821 	}
4822 
4823       if (odyn != NULL)
4824 	odyn->add_section_address(elfcpp::DT_HASH, hashsec);
4825     }
4826 }
4827 
4828 // Assign offsets to each local portion of the dynamic symbol table.
4829 
4830 void
4831 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
4832 {
4833   Output_section* dynsym = this->dynsym_section_;
4834   if (dynsym == NULL)
4835     return;
4836 
4837   off_t off = dynsym->offset();
4838 
4839   // Skip the dummy symbol at the start of the section.
4840   off += dynsym->entsize();
4841 
4842   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4843        p != input_objects->relobj_end();
4844        ++p)
4845     {
4846       unsigned int count = (*p)->set_local_dynsym_offset(off);
4847       off += count * dynsym->entsize();
4848     }
4849 }
4850 
4851 // Create the version sections.
4852 
4853 void
4854 Layout::create_version_sections(const Versions* versions,
4855 				const Symbol_table* symtab,
4856 				unsigned int local_symcount,
4857 				const std::vector<Symbol*>& dynamic_symbols,
4858 				const Output_section* dynstr)
4859 {
4860   if (!versions->any_defs() && !versions->any_needs())
4861     return;
4862 
4863   switch (parameters->size_and_endianness())
4864     {
4865 #ifdef HAVE_TARGET_32_LITTLE
4866     case Parameters::TARGET_32_LITTLE:
4867       this->sized_create_version_sections<32, false>(versions, symtab,
4868 						     local_symcount,
4869 						     dynamic_symbols, dynstr);
4870       break;
4871 #endif
4872 #ifdef HAVE_TARGET_32_BIG
4873     case Parameters::TARGET_32_BIG:
4874       this->sized_create_version_sections<32, true>(versions, symtab,
4875 						    local_symcount,
4876 						    dynamic_symbols, dynstr);
4877       break;
4878 #endif
4879 #ifdef HAVE_TARGET_64_LITTLE
4880     case Parameters::TARGET_64_LITTLE:
4881       this->sized_create_version_sections<64, false>(versions, symtab,
4882 						     local_symcount,
4883 						     dynamic_symbols, dynstr);
4884       break;
4885 #endif
4886 #ifdef HAVE_TARGET_64_BIG
4887     case Parameters::TARGET_64_BIG:
4888       this->sized_create_version_sections<64, true>(versions, symtab,
4889 						    local_symcount,
4890 						    dynamic_symbols, dynstr);
4891       break;
4892 #endif
4893     default:
4894       gold_unreachable();
4895     }
4896 }
4897 
4898 // Create the version sections, sized version.
4899 
4900 template<int size, bool big_endian>
4901 void
4902 Layout::sized_create_version_sections(
4903     const Versions* versions,
4904     const Symbol_table* symtab,
4905     unsigned int local_symcount,
4906     const std::vector<Symbol*>& dynamic_symbols,
4907     const Output_section* dynstr)
4908 {
4909   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
4910 						     elfcpp::SHT_GNU_versym,
4911 						     elfcpp::SHF_ALLOC,
4912 						     false,
4913 						     ORDER_DYNAMIC_LINKER,
4914 						     false, false, false);
4915 
4916   // Check for NULL since a linker script may discard this section.
4917   if (vsec != NULL)
4918     {
4919       unsigned char* vbuf;
4920       unsigned int vsize;
4921       versions->symbol_section_contents<size, big_endian>(symtab,
4922 							  &this->dynpool_,
4923 							  local_symcount,
4924 							  dynamic_symbols,
4925 							  &vbuf, &vsize);
4926 
4927       Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4928 								"** versions");
4929 
4930       vsec->add_output_section_data(vdata);
4931       vsec->set_entsize(2);
4932       vsec->set_link_section(this->dynsym_section_);
4933     }
4934 
4935   Output_data_dynamic* const odyn = this->dynamic_data_;
4936   if (odyn != NULL && vsec != NULL)
4937     odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4938 
4939   if (versions->any_defs())
4940     {
4941       Output_section* vdsec;
4942       vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4943 					  elfcpp::SHT_GNU_verdef,
4944 					  elfcpp::SHF_ALLOC,
4945 					  false, ORDER_DYNAMIC_LINKER, false,
4946 					  false, false);
4947 
4948       if (vdsec != NULL)
4949 	{
4950 	  unsigned char* vdbuf;
4951 	  unsigned int vdsize;
4952 	  unsigned int vdentries;
4953 	  versions->def_section_contents<size, big_endian>(&this->dynpool_,
4954 							   &vdbuf, &vdsize,
4955 							   &vdentries);
4956 
4957 	  Output_section_data* vddata =
4958 	    new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4959 
4960 	  vdsec->add_output_section_data(vddata);
4961 	  vdsec->set_link_section(dynstr);
4962 	  vdsec->set_info(vdentries);
4963 
4964 	  if (odyn != NULL)
4965 	    {
4966 	      odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4967 	      odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4968 	    }
4969 	}
4970     }
4971 
4972   if (versions->any_needs())
4973     {
4974       Output_section* vnsec;
4975       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4976 					  elfcpp::SHT_GNU_verneed,
4977 					  elfcpp::SHF_ALLOC,
4978 					  false, ORDER_DYNAMIC_LINKER, false,
4979 					  false, false);
4980 
4981       if (vnsec != NULL)
4982 	{
4983 	  unsigned char* vnbuf;
4984 	  unsigned int vnsize;
4985 	  unsigned int vnentries;
4986 	  versions->need_section_contents<size, big_endian>(&this->dynpool_,
4987 							    &vnbuf, &vnsize,
4988 							    &vnentries);
4989 
4990 	  Output_section_data* vndata =
4991 	    new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4992 
4993 	  vnsec->add_output_section_data(vndata);
4994 	  vnsec->set_link_section(dynstr);
4995 	  vnsec->set_info(vnentries);
4996 
4997 	  if (odyn != NULL)
4998 	    {
4999 	      odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
5000 	      odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
5001 	    }
5002 	}
5003     }
5004 }
5005 
5006 // Create the .interp section and PT_INTERP segment.
5007 
5008 void
5009 Layout::create_interp(const Target* target)
5010 {
5011   gold_assert(this->interp_segment_ == NULL);
5012 
5013   const char* interp = parameters->options().dynamic_linker();
5014   if (interp == NULL)
5015     {
5016       interp = target->dynamic_linker();
5017       gold_assert(interp != NULL);
5018     }
5019 
5020   size_t len = strlen(interp) + 1;
5021 
5022   Output_section_data* odata = new Output_data_const(interp, len, 1);
5023 
5024   Output_section* osec = this->choose_output_section(NULL, ".interp",
5025 						     elfcpp::SHT_PROGBITS,
5026 						     elfcpp::SHF_ALLOC,
5027 						     false, ORDER_INTERP,
5028 						     false, false, false);
5029   if (osec != NULL)
5030     osec->add_output_section_data(odata);
5031 }
5032 
5033 // Add dynamic tags for the PLT and the dynamic relocs.  This is
5034 // called by the target-specific code.  This does nothing if not doing
5035 // a dynamic link.
5036 
5037 // USE_REL is true for REL relocs rather than RELA relocs.
5038 
5039 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
5040 
5041 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
5042 // and we also set DT_PLTREL.  We use PLT_REL's output section, since
5043 // some targets have multiple reloc sections in PLT_REL.
5044 
5045 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
5046 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.  Again we use the output
5047 // section.
5048 
5049 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
5050 // executable.
5051 
5052 void
5053 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
5054 				const Output_data* plt_rel,
5055 				const Output_data_reloc_generic* dyn_rel,
5056 				bool add_debug, bool dynrel_includes_plt)
5057 {
5058   Output_data_dynamic* odyn = this->dynamic_data_;
5059   if (odyn == NULL)
5060     return;
5061 
5062   if (plt_got != NULL && plt_got->output_section() != NULL)
5063     odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
5064 
5065   if (plt_rel != NULL && plt_rel->output_section() != NULL)
5066     {
5067       odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
5068       odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
5069       odyn->add_constant(elfcpp::DT_PLTREL,
5070 			 use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
5071     }
5072 
5073   if ((dyn_rel != NULL && dyn_rel->output_section() != NULL)
5074       || (dynrel_includes_plt
5075 	  && plt_rel != NULL
5076 	  && plt_rel->output_section() != NULL))
5077     {
5078       bool have_dyn_rel = dyn_rel != NULL && dyn_rel->output_section() != NULL;
5079       bool have_plt_rel = plt_rel != NULL && plt_rel->output_section() != NULL;
5080       odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
5081 				(have_dyn_rel
5082 				 ? dyn_rel->output_section()
5083 				 : plt_rel->output_section()));
5084       elfcpp::DT size_tag = use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ;
5085       if (have_dyn_rel && have_plt_rel && dynrel_includes_plt)
5086 	odyn->add_section_size(size_tag,
5087 			       dyn_rel->output_section(),
5088 			       plt_rel->output_section());
5089       else if (have_dyn_rel)
5090 	odyn->add_section_size(size_tag, dyn_rel->output_section());
5091       else
5092 	odyn->add_section_size(size_tag, plt_rel->output_section());
5093       const int size = parameters->target().get_size();
5094       elfcpp::DT rel_tag;
5095       int rel_size;
5096       if (use_rel)
5097 	{
5098 	  rel_tag = elfcpp::DT_RELENT;
5099 	  if (size == 32)
5100 	    rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
5101 	  else if (size == 64)
5102 	    rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
5103 	  else
5104 	    gold_unreachable();
5105 	}
5106       else
5107 	{
5108 	  rel_tag = elfcpp::DT_RELAENT;
5109 	  if (size == 32)
5110 	    rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
5111 	  else if (size == 64)
5112 	    rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
5113 	  else
5114 	    gold_unreachable();
5115 	}
5116       odyn->add_constant(rel_tag, rel_size);
5117 
5118       if (parameters->options().combreloc() && have_dyn_rel)
5119 	{
5120 	  size_t c = dyn_rel->relative_reloc_count();
5121 	  if (c > 0)
5122 	    odyn->add_constant((use_rel
5123 				? elfcpp::DT_RELCOUNT
5124 				: elfcpp::DT_RELACOUNT),
5125 			       c);
5126 	}
5127     }
5128 
5129   if (add_debug && !parameters->options().shared())
5130     {
5131       // The value of the DT_DEBUG tag is filled in by the dynamic
5132       // linker at run time, and used by the debugger.
5133       odyn->add_constant(elfcpp::DT_DEBUG, 0);
5134     }
5135 }
5136 
5137 void
5138 Layout::add_target_specific_dynamic_tag(elfcpp::DT tag, unsigned int val)
5139 {
5140   Output_data_dynamic* odyn = this->dynamic_data_;
5141   if (odyn == NULL)
5142     return;
5143   odyn->add_constant(tag, val);
5144 }
5145 
5146 // Finish the .dynamic section and PT_DYNAMIC segment.
5147 
5148 void
5149 Layout::finish_dynamic_section(const Input_objects* input_objects,
5150 			       const Symbol_table* symtab)
5151 {
5152   if (!this->script_options_->saw_phdrs_clause()
5153       && this->dynamic_section_ != NULL)
5154     {
5155       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
5156 						       (elfcpp::PF_R
5157 							| elfcpp::PF_W));
5158       oseg->add_output_section_to_nonload(this->dynamic_section_,
5159 					  elfcpp::PF_R | elfcpp::PF_W);
5160     }
5161 
5162   Output_data_dynamic* const odyn = this->dynamic_data_;
5163   if (odyn == NULL)
5164     return;
5165 
5166   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
5167        p != input_objects->dynobj_end();
5168        ++p)
5169     {
5170       if (!(*p)->is_needed() && (*p)->as_needed())
5171 	{
5172 	  // This dynamic object was linked with --as-needed, but it
5173 	  // is not needed.
5174 	  continue;
5175 	}
5176 
5177       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
5178     }
5179 
5180   if (parameters->options().shared())
5181     {
5182       const char* soname = parameters->options().soname();
5183       if (soname != NULL)
5184 	odyn->add_string(elfcpp::DT_SONAME, soname);
5185     }
5186 
5187   Symbol* sym = symtab->lookup(parameters->options().init());
5188   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
5189     odyn->add_symbol(elfcpp::DT_INIT, sym);
5190 
5191   sym = symtab->lookup(parameters->options().fini());
5192   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
5193     odyn->add_symbol(elfcpp::DT_FINI, sym);
5194 
5195   // Look for .init_array, .preinit_array and .fini_array by checking
5196   // section types.
5197   for(Layout::Section_list::const_iterator p = this->section_list_.begin();
5198       p != this->section_list_.end();
5199       ++p)
5200     switch((*p)->type())
5201       {
5202       case elfcpp::SHT_FINI_ARRAY:
5203 	odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
5204 	odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
5205 	break;
5206       case elfcpp::SHT_INIT_ARRAY:
5207 	odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
5208 	odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
5209 	break;
5210       case elfcpp::SHT_PREINIT_ARRAY:
5211 	odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
5212 	odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
5213 	break;
5214       default:
5215 	break;
5216       }
5217 
5218   // Add a DT_RPATH entry if needed.
5219   const General_options::Dir_list& rpath(parameters->options().rpath());
5220   if (!rpath.empty())
5221     {
5222       std::string rpath_val;
5223       for (General_options::Dir_list::const_iterator p = rpath.begin();
5224 	   p != rpath.end();
5225 	   ++p)
5226 	{
5227 	  if (rpath_val.empty())
5228 	    rpath_val = p->name();
5229 	  else
5230 	    {
5231 	      // Eliminate duplicates.
5232 	      General_options::Dir_list::const_iterator q;
5233 	      for (q = rpath.begin(); q != p; ++q)
5234 		if (q->name() == p->name())
5235 		  break;
5236 	      if (q == p)
5237 		{
5238 		  rpath_val += ':';
5239 		  rpath_val += p->name();
5240 		}
5241 	    }
5242 	}
5243 
5244       if (!parameters->options().enable_new_dtags())
5245 	odyn->add_string(elfcpp::DT_RPATH, rpath_val);
5246       else
5247 	odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
5248     }
5249 
5250   // Look for text segments that have dynamic relocations.
5251   bool have_textrel = false;
5252   if (!this->script_options_->saw_sections_clause())
5253     {
5254       for (Segment_list::const_iterator p = this->segment_list_.begin();
5255 	   p != this->segment_list_.end();
5256 	   ++p)
5257 	{
5258 	  if ((*p)->type() == elfcpp::PT_LOAD
5259 	      && ((*p)->flags() & elfcpp::PF_W) == 0
5260 	      && (*p)->has_dynamic_reloc())
5261 	    {
5262 	      have_textrel = true;
5263 	      break;
5264 	    }
5265 	}
5266     }
5267   else
5268     {
5269       // We don't know the section -> segment mapping, so we are
5270       // conservative and just look for readonly sections with
5271       // relocations.  If those sections wind up in writable segments,
5272       // then we have created an unnecessary DT_TEXTREL entry.
5273       for (Section_list::const_iterator p = this->section_list_.begin();
5274 	   p != this->section_list_.end();
5275 	   ++p)
5276 	{
5277 	  if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
5278 	      && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
5279 	      && (*p)->has_dynamic_reloc())
5280 	    {
5281 	      have_textrel = true;
5282 	      break;
5283 	    }
5284 	}
5285     }
5286 
5287   if (parameters->options().filter() != NULL)
5288     odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
5289   if (parameters->options().any_auxiliary())
5290     {
5291       for (options::String_set::const_iterator p =
5292 	     parameters->options().auxiliary_begin();
5293 	   p != parameters->options().auxiliary_end();
5294 	   ++p)
5295 	odyn->add_string(elfcpp::DT_AUXILIARY, *p);
5296     }
5297 
5298   // Add a DT_FLAGS entry if necessary.
5299   unsigned int flags = 0;
5300   if (have_textrel)
5301     {
5302       // Add a DT_TEXTREL for compatibility with older loaders.
5303       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
5304       flags |= elfcpp::DF_TEXTREL;
5305 
5306       if (parameters->options().text())
5307 	gold_error(_("read-only segment has dynamic relocations"));
5308       else if (parameters->options().warn_shared_textrel()
5309 	       && parameters->options().shared())
5310 	gold_warning(_("shared library text segment is not shareable"));
5311     }
5312   if (parameters->options().shared() && this->has_static_tls())
5313     flags |= elfcpp::DF_STATIC_TLS;
5314   if (parameters->options().origin())
5315     flags |= elfcpp::DF_ORIGIN;
5316   if (parameters->options().Bsymbolic()
5317       && !parameters->options().have_dynamic_list())
5318     {
5319       flags |= elfcpp::DF_SYMBOLIC;
5320       // Add DT_SYMBOLIC for compatibility with older loaders.
5321       odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
5322     }
5323   if (parameters->options().now())
5324     flags |= elfcpp::DF_BIND_NOW;
5325   if (flags != 0)
5326     odyn->add_constant(elfcpp::DT_FLAGS, flags);
5327 
5328   flags = 0;
5329   if (parameters->options().global())
5330     flags |= elfcpp::DF_1_GLOBAL;
5331   if (parameters->options().initfirst())
5332     flags |= elfcpp::DF_1_INITFIRST;
5333   if (parameters->options().interpose())
5334     flags |= elfcpp::DF_1_INTERPOSE;
5335   if (parameters->options().loadfltr())
5336     flags |= elfcpp::DF_1_LOADFLTR;
5337   if (parameters->options().nodefaultlib())
5338     flags |= elfcpp::DF_1_NODEFLIB;
5339   if (parameters->options().nodelete())
5340     flags |= elfcpp::DF_1_NODELETE;
5341   if (parameters->options().nodlopen())
5342     flags |= elfcpp::DF_1_NOOPEN;
5343   if (parameters->options().nodump())
5344     flags |= elfcpp::DF_1_NODUMP;
5345   if (!parameters->options().shared())
5346     flags &= ~(elfcpp::DF_1_INITFIRST
5347 	       | elfcpp::DF_1_NODELETE
5348 	       | elfcpp::DF_1_NOOPEN);
5349   if (parameters->options().origin())
5350     flags |= elfcpp::DF_1_ORIGIN;
5351   if (parameters->options().now())
5352     flags |= elfcpp::DF_1_NOW;
5353   if (parameters->options().Bgroup())
5354     flags |= elfcpp::DF_1_GROUP;
5355   if (flags != 0)
5356     odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
5357 }
5358 
5359 // Set the size of the _DYNAMIC symbol table to be the size of the
5360 // dynamic data.
5361 
5362 void
5363 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
5364 {
5365   Output_data_dynamic* const odyn = this->dynamic_data_;
5366   if (odyn == NULL)
5367     return;
5368   odyn->finalize_data_size();
5369   if (this->dynamic_symbol_ == NULL)
5370     return;
5371   off_t data_size = odyn->data_size();
5372   const int size = parameters->target().get_size();
5373   if (size == 32)
5374     symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
5375   else if (size == 64)
5376     symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
5377   else
5378     gold_unreachable();
5379 }
5380 
5381 // The mapping of input section name prefixes to output section names.
5382 // In some cases one prefix is itself a prefix of another prefix; in
5383 // such a case the longer prefix must come first.  These prefixes are
5384 // based on the GNU linker default ELF linker script.
5385 
5386 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
5387 #define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 }
5388 const Layout::Section_name_mapping Layout::section_name_mapping[] =
5389 {
5390   MAPPING_INIT(".text.", ".text"),
5391   MAPPING_INIT(".rodata.", ".rodata"),
5392   MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"),
5393   MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"),
5394   MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"),
5395   MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"),
5396   MAPPING_INIT(".data.", ".data"),
5397   MAPPING_INIT(".bss.", ".bss"),
5398   MAPPING_INIT(".tdata.", ".tdata"),
5399   MAPPING_INIT(".tbss.", ".tbss"),
5400   MAPPING_INIT(".init_array.", ".init_array"),
5401   MAPPING_INIT(".fini_array.", ".fini_array"),
5402   MAPPING_INIT(".sdata.", ".sdata"),
5403   MAPPING_INIT(".sbss.", ".sbss"),
5404   // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
5405   // differently depending on whether it is creating a shared library.
5406   MAPPING_INIT(".sdata2.", ".sdata"),
5407   MAPPING_INIT(".sbss2.", ".sbss"),
5408   MAPPING_INIT(".lrodata.", ".lrodata"),
5409   MAPPING_INIT(".ldata.", ".ldata"),
5410   MAPPING_INIT(".lbss.", ".lbss"),
5411   MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
5412   MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
5413   MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
5414   MAPPING_INIT(".gnu.linkonce.t.", ".text"),
5415   MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
5416   MAPPING_INIT(".gnu.linkonce.d.", ".data"),
5417   MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
5418   MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
5419   MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
5420   MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
5421   MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
5422   MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
5423   MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
5424   MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
5425   MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
5426   MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
5427   MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
5428   MAPPING_INIT(".ARM.extab", ".ARM.extab"),
5429   MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
5430   MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
5431   MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
5432 };
5433 
5434 // Mapping for ".text" section prefixes with -z,keep-text-section-prefix.
5435 const Layout::Section_name_mapping Layout::text_section_name_mapping[] =
5436 {
5437   MAPPING_INIT(".text.hot.", ".text.hot"),
5438   MAPPING_INIT_EXACT(".text.hot", ".text.hot"),
5439   MAPPING_INIT(".text.unlikely.", ".text.unlikely"),
5440   MAPPING_INIT_EXACT(".text.unlikely", ".text.unlikely"),
5441   MAPPING_INIT(".text.startup.", ".text.startup"),
5442   MAPPING_INIT_EXACT(".text.startup", ".text.startup"),
5443   MAPPING_INIT(".text.exit.", ".text.exit"),
5444   MAPPING_INIT_EXACT(".text.exit", ".text.exit"),
5445   MAPPING_INIT(".text.", ".text"),
5446 };
5447 #undef MAPPING_INIT
5448 #undef MAPPING_INIT_EXACT
5449 
5450 const int Layout::section_name_mapping_count =
5451   (sizeof(Layout::section_name_mapping)
5452    / sizeof(Layout::section_name_mapping[0]));
5453 
5454 const int Layout::text_section_name_mapping_count =
5455   (sizeof(Layout::text_section_name_mapping)
5456    / sizeof(Layout::text_section_name_mapping[0]));
5457 
5458 // Find section name NAME in PSNM and return the mapped name if found
5459 // with the length set in PLEN.
5460 const char *
5461 Layout::match_section_name(const Layout::Section_name_mapping* psnm,
5462 			   const int count,
5463 			   const char* name, size_t* plen)
5464 {
5465   for (int i = 0; i < count; ++i, ++psnm)
5466     {
5467       if (psnm->fromlen > 0)
5468 	{
5469 	  if (strncmp(name, psnm->from, psnm->fromlen) == 0)
5470 	    {
5471 	      *plen = psnm->tolen;
5472 	      return psnm->to;
5473 	    }
5474 	}
5475       else
5476 	{
5477 	  if (strcmp(name, psnm->from) == 0)
5478 	    {
5479 	      *plen = psnm->tolen;
5480 	      return psnm->to;
5481 	    }
5482 	}
5483     }
5484   return NULL;
5485 }
5486 
5487 // Choose the output section name to use given an input section name.
5488 // Set *PLEN to the length of the name.  *PLEN is initialized to the
5489 // length of NAME.
5490 
5491 const char*
5492 Layout::output_section_name(const Relobj* relobj, const char* name,
5493 			    size_t* plen)
5494 {
5495   // gcc 4.3 generates the following sorts of section names when it
5496   // needs a section name specific to a function:
5497   //   .text.FN
5498   //   .rodata.FN
5499   //   .sdata2.FN
5500   //   .data.FN
5501   //   .data.rel.FN
5502   //   .data.rel.local.FN
5503   //   .data.rel.ro.FN
5504   //   .data.rel.ro.local.FN
5505   //   .sdata.FN
5506   //   .bss.FN
5507   //   .sbss.FN
5508   //   .tdata.FN
5509   //   .tbss.FN
5510 
5511   // The GNU linker maps all of those to the part before the .FN,
5512   // except that .data.rel.local.FN is mapped to .data, and
5513   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
5514   // beginning with .data.rel.ro.local are grouped together.
5515 
5516   // For an anonymous namespace, the string FN can contain a '.'.
5517 
5518   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
5519   // GNU linker maps to .rodata.
5520 
5521   // The .data.rel.ro sections are used with -z relro.  The sections
5522   // are recognized by name.  We use the same names that the GNU
5523   // linker does for these sections.
5524 
5525   // It is hard to handle this in a principled way, so we don't even
5526   // try.  We use a table of mappings.  If the input section name is
5527   // not found in the table, we simply use it as the output section
5528   // name.
5529 
5530   if (parameters->options().keep_text_section_prefix()
5531       && is_prefix_of(".text", name))
5532     {
5533       const char* match = match_section_name(text_section_name_mapping,
5534 					     text_section_name_mapping_count,
5535 					     name, plen);
5536       if (match != NULL)
5537 	return match;
5538     }
5539 
5540   const char* match = match_section_name(section_name_mapping,
5541 					 section_name_mapping_count, name, plen);
5542   if (match != NULL)
5543     return match;
5544 
5545   // As an additional complication, .ctors sections are output in
5546   // either .ctors or .init_array sections, and .dtors sections are
5547   // output in either .dtors or .fini_array sections.
5548   if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
5549     {
5550       if (parameters->options().ctors_in_init_array())
5551 	{
5552 	  *plen = 11;
5553 	  return name[1] == 'c' ? ".init_array" : ".fini_array";
5554 	}
5555       else
5556 	{
5557 	  *plen = 6;
5558 	  return name[1] == 'c' ? ".ctors" : ".dtors";
5559 	}
5560     }
5561   if (parameters->options().ctors_in_init_array()
5562       && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
5563     {
5564       // To make .init_array/.fini_array work with gcc we must exclude
5565       // .ctors and .dtors sections from the crtbegin and crtend
5566       // files.
5567       if (relobj == NULL
5568 	  || (!Layout::match_file_name(relobj, "crtbegin")
5569 	      && !Layout::match_file_name(relobj, "crtend")))
5570 	{
5571 	  *plen = 11;
5572 	  return name[1] == 'c' ? ".init_array" : ".fini_array";
5573 	}
5574     }
5575 
5576   return name;
5577 }
5578 
5579 // Return true if RELOBJ is an input file whose base name matches
5580 // FILE_NAME.  The base name must have an extension of ".o", and must
5581 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o".  This is
5582 // to match crtbegin.o as well as crtbeginS.o without getting confused
5583 // by other possibilities.  Overall matching the file name this way is
5584 // a dreadful hack, but the GNU linker does it in order to better
5585 // support gcc, and we need to be compatible.
5586 
5587 bool
5588 Layout::match_file_name(const Relobj* relobj, const char* match)
5589 {
5590   const std::string& file_name(relobj->name());
5591   const char* base_name = lbasename(file_name.c_str());
5592   size_t match_len = strlen(match);
5593   if (strncmp(base_name, match, match_len) != 0)
5594     return false;
5595   size_t base_len = strlen(base_name);
5596   if (base_len != match_len + 2 && base_len != match_len + 3)
5597     return false;
5598   return memcmp(base_name + base_len - 2, ".o", 2) == 0;
5599 }
5600 
5601 // Check if a comdat group or .gnu.linkonce section with the given
5602 // NAME is selected for the link.  If there is already a section,
5603 // *KEPT_SECTION is set to point to the existing section and the
5604 // function returns false.  Otherwise, OBJECT, SHNDX, IS_COMDAT, and
5605 // IS_GROUP_NAME are recorded for this NAME in the layout object,
5606 // *KEPT_SECTION is set to the internal copy and the function returns
5607 // true.
5608 
5609 bool
5610 Layout::find_or_add_kept_section(const std::string& name,
5611 				 Relobj* object,
5612 				 unsigned int shndx,
5613 				 bool is_comdat,
5614 				 bool is_group_name,
5615 				 Kept_section** kept_section)
5616 {
5617   // It's normal to see a couple of entries here, for the x86 thunk
5618   // sections.  If we see more than a few, we're linking a C++
5619   // program, and we resize to get more space to minimize rehashing.
5620   if (this->signatures_.size() > 4
5621       && !this->resized_signatures_)
5622     {
5623       reserve_unordered_map(&this->signatures_,
5624 			    this->number_of_input_files_ * 64);
5625       this->resized_signatures_ = true;
5626     }
5627 
5628   Kept_section candidate;
5629   std::pair<Signatures::iterator, bool> ins =
5630     this->signatures_.insert(std::make_pair(name, candidate));
5631 
5632   if (kept_section != NULL)
5633     *kept_section = &ins.first->second;
5634   if (ins.second)
5635     {
5636       // This is the first time we've seen this signature.
5637       ins.first->second.set_object(object);
5638       ins.first->second.set_shndx(shndx);
5639       if (is_comdat)
5640 	ins.first->second.set_is_comdat();
5641       if (is_group_name)
5642 	ins.first->second.set_is_group_name();
5643       return true;
5644     }
5645 
5646   // We have already seen this signature.
5647 
5648   if (ins.first->second.is_group_name())
5649     {
5650       // We've already seen a real section group with this signature.
5651       // If the kept group is from a plugin object, and we're in the
5652       // replacement phase, accept the new one as a replacement.
5653       if (ins.first->second.object() == NULL
5654 	  && parameters->options().plugins()->in_replacement_phase())
5655 	{
5656 	  ins.first->second.set_object(object);
5657 	  ins.first->second.set_shndx(shndx);
5658 	  return true;
5659 	}
5660       return false;
5661     }
5662   else if (is_group_name)
5663     {
5664       // This is a real section group, and we've already seen a
5665       // linkonce section with this signature.  Record that we've seen
5666       // a section group, and don't include this section group.
5667       ins.first->second.set_is_group_name();
5668       return false;
5669     }
5670   else
5671     {
5672       // We've already seen a linkonce section and this is a linkonce
5673       // section.  These don't block each other--this may be the same
5674       // symbol name with different section types.
5675       return true;
5676     }
5677 }
5678 
5679 // Store the allocated sections into the section list.
5680 
5681 void
5682 Layout::get_allocated_sections(Section_list* section_list) const
5683 {
5684   for (Section_list::const_iterator p = this->section_list_.begin();
5685        p != this->section_list_.end();
5686        ++p)
5687     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
5688       section_list->push_back(*p);
5689 }
5690 
5691 // Store the executable sections into the section list.
5692 
5693 void
5694 Layout::get_executable_sections(Section_list* section_list) const
5695 {
5696   for (Section_list::const_iterator p = this->section_list_.begin();
5697        p != this->section_list_.end();
5698        ++p)
5699     if (((*p)->flags() & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5700 	== (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5701       section_list->push_back(*p);
5702 }
5703 
5704 // Create an output segment.
5705 
5706 Output_segment*
5707 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
5708 {
5709   gold_assert(!parameters->options().relocatable());
5710   Output_segment* oseg = new Output_segment(type, flags);
5711   this->segment_list_.push_back(oseg);
5712 
5713   if (type == elfcpp::PT_TLS)
5714     this->tls_segment_ = oseg;
5715   else if (type == elfcpp::PT_GNU_RELRO)
5716     this->relro_segment_ = oseg;
5717   else if (type == elfcpp::PT_INTERP)
5718     this->interp_segment_ = oseg;
5719 
5720   return oseg;
5721 }
5722 
5723 // Return the file offset of the normal symbol table.
5724 
5725 off_t
5726 Layout::symtab_section_offset() const
5727 {
5728   if (this->symtab_section_ != NULL)
5729     return this->symtab_section_->offset();
5730   return 0;
5731 }
5732 
5733 // Return the section index of the normal symbol table.  It may have
5734 // been stripped by the -s/--strip-all option.
5735 
5736 unsigned int
5737 Layout::symtab_section_shndx() const
5738 {
5739   if (this->symtab_section_ != NULL)
5740     return this->symtab_section_->out_shndx();
5741   return 0;
5742 }
5743 
5744 // Write out the Output_sections.  Most won't have anything to write,
5745 // since most of the data will come from input sections which are
5746 // handled elsewhere.  But some Output_sections do have Output_data.
5747 
5748 void
5749 Layout::write_output_sections(Output_file* of) const
5750 {
5751   for (Section_list::const_iterator p = this->section_list_.begin();
5752        p != this->section_list_.end();
5753        ++p)
5754     {
5755       if (!(*p)->after_input_sections())
5756 	(*p)->write(of);
5757     }
5758 }
5759 
5760 // Write out data not associated with a section or the symbol table.
5761 
5762 void
5763 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
5764 {
5765   if (!parameters->options().strip_all())
5766     {
5767       const Output_section* symtab_section = this->symtab_section_;
5768       for (Section_list::const_iterator p = this->section_list_.begin();
5769 	   p != this->section_list_.end();
5770 	   ++p)
5771 	{
5772 	  if ((*p)->needs_symtab_index())
5773 	    {
5774 	      gold_assert(symtab_section != NULL);
5775 	      unsigned int index = (*p)->symtab_index();
5776 	      gold_assert(index > 0 && index != -1U);
5777 	      off_t off = (symtab_section->offset()
5778 			   + index * symtab_section->entsize());
5779 	      symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
5780 	    }
5781 	}
5782     }
5783 
5784   const Output_section* dynsym_section = this->dynsym_section_;
5785   for (Section_list::const_iterator p = this->section_list_.begin();
5786        p != this->section_list_.end();
5787        ++p)
5788     {
5789       if ((*p)->needs_dynsym_index())
5790 	{
5791 	  gold_assert(dynsym_section != NULL);
5792 	  unsigned int index = (*p)->dynsym_index();
5793 	  gold_assert(index > 0 && index != -1U);
5794 	  off_t off = (dynsym_section->offset()
5795 		       + index * dynsym_section->entsize());
5796 	  symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
5797 	}
5798     }
5799 
5800   // Write out the Output_data which are not in an Output_section.
5801   for (Data_list::const_iterator p = this->special_output_list_.begin();
5802        p != this->special_output_list_.end();
5803        ++p)
5804     (*p)->write(of);
5805 
5806   // Write out the Output_data which are not in an Output_section
5807   // and are regenerated in each iteration of relaxation.
5808   for (Data_list::const_iterator p = this->relax_output_list_.begin();
5809        p != this->relax_output_list_.end();
5810        ++p)
5811     (*p)->write(of);
5812 }
5813 
5814 // Write out the Output_sections which can only be written after the
5815 // input sections are complete.
5816 
5817 void
5818 Layout::write_sections_after_input_sections(Output_file* of)
5819 {
5820   // Determine the final section offsets, and thus the final output
5821   // file size.  Note we finalize the .shstrab last, to allow the
5822   // after_input_section sections to modify their section-names before
5823   // writing.
5824   if (this->any_postprocessing_sections_)
5825     {
5826       off_t off = this->output_file_size_;
5827       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
5828 
5829       // Now that we've finalized the names, we can finalize the shstrab.
5830       off =
5831 	this->set_section_offsets(off,
5832 				  STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
5833 
5834       if (off > this->output_file_size_)
5835 	{
5836 	  of->resize(off);
5837 	  this->output_file_size_ = off;
5838 	}
5839     }
5840 
5841   for (Section_list::const_iterator p = this->section_list_.begin();
5842        p != this->section_list_.end();
5843        ++p)
5844     {
5845       if ((*p)->after_input_sections())
5846 	(*p)->write(of);
5847     }
5848 
5849   this->section_headers_->write(of);
5850 }
5851 
5852 // If a tree-style build ID was requested, the parallel part of that computation
5853 // is already done, and the final hash-of-hashes is computed here.  For other
5854 // types of build IDs, all the work is done here.
5855 
5856 void
5857 Layout::write_build_id(Output_file* of, unsigned char* array_of_hashes,
5858 		       size_t size_of_hashes) const
5859 {
5860   if (this->build_id_note_ == NULL)
5861     return;
5862 
5863   unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
5864 					  this->build_id_note_->data_size());
5865 
5866   if (array_of_hashes == NULL)
5867     {
5868       const size_t output_file_size = this->output_file_size();
5869       const unsigned char* iv = of->get_input_view(0, output_file_size);
5870       const char* style = parameters->options().build_id();
5871 
5872       // If we get here with style == "tree" then the output must be
5873       // too small for chunking, and we use SHA-1 in that case.
5874       if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
5875 	sha1_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5876       else if (strcmp(style, "md5") == 0)
5877 	md5_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5878       else
5879 	gold_unreachable();
5880 
5881       of->free_input_view(0, output_file_size, iv);
5882     }
5883   else
5884     {
5885       // Non-overlapping substrings of the output file have been hashed.
5886       // Compute SHA-1 hash of the hashes.
5887       sha1_buffer(reinterpret_cast<const char*>(array_of_hashes),
5888 		  size_of_hashes, ov);
5889       delete[] array_of_hashes;
5890     }
5891 
5892   of->write_output_view(this->build_id_note_->offset(),
5893 			this->build_id_note_->data_size(),
5894 			ov);
5895 }
5896 
5897 // Write out a binary file.  This is called after the link is
5898 // complete.  IN is the temporary output file we used to generate the
5899 // ELF code.  We simply walk through the segments, read them from
5900 // their file offset in IN, and write them to their load address in
5901 // the output file.  FIXME: with a bit more work, we could support
5902 // S-records and/or Intel hex format here.
5903 
5904 void
5905 Layout::write_binary(Output_file* in) const
5906 {
5907   gold_assert(parameters->options().oformat_enum()
5908 	      == General_options::OBJECT_FORMAT_BINARY);
5909 
5910   // Get the size of the binary file.
5911   uint64_t max_load_address = 0;
5912   for (Segment_list::const_iterator p = this->segment_list_.begin();
5913        p != this->segment_list_.end();
5914        ++p)
5915     {
5916       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5917 	{
5918 	  uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
5919 	  if (max_paddr > max_load_address)
5920 	    max_load_address = max_paddr;
5921 	}
5922     }
5923 
5924   Output_file out(parameters->options().output_file_name());
5925   out.open(max_load_address);
5926 
5927   for (Segment_list::const_iterator p = this->segment_list_.begin();
5928        p != this->segment_list_.end();
5929        ++p)
5930     {
5931       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5932 	{
5933 	  const unsigned char* vin = in->get_input_view((*p)->offset(),
5934 							(*p)->filesz());
5935 	  unsigned char* vout = out.get_output_view((*p)->paddr(),
5936 						    (*p)->filesz());
5937 	  memcpy(vout, vin, (*p)->filesz());
5938 	  out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
5939 	  in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
5940 	}
5941     }
5942 
5943   out.close();
5944 }
5945 
5946 // Print the output sections to the map file.
5947 
5948 void
5949 Layout::print_to_mapfile(Mapfile* mapfile) const
5950 {
5951   for (Segment_list::const_iterator p = this->segment_list_.begin();
5952        p != this->segment_list_.end();
5953        ++p)
5954     (*p)->print_sections_to_mapfile(mapfile);
5955   for (Section_list::const_iterator p = this->unattached_section_list_.begin();
5956        p != this->unattached_section_list_.end();
5957        ++p)
5958     (*p)->print_to_mapfile(mapfile);
5959 }
5960 
5961 // Print statistical information to stderr.  This is used for --stats.
5962 
5963 void
5964 Layout::print_stats() const
5965 {
5966   this->namepool_.print_stats("section name pool");
5967   this->sympool_.print_stats("output symbol name pool");
5968   this->dynpool_.print_stats("dynamic name pool");
5969 
5970   for (Section_list::const_iterator p = this->section_list_.begin();
5971        p != this->section_list_.end();
5972        ++p)
5973     (*p)->print_merge_stats();
5974 }
5975 
5976 // Write_sections_task methods.
5977 
5978 // We can always run this task.
5979 
5980 Task_token*
5981 Write_sections_task::is_runnable()
5982 {
5983   return NULL;
5984 }
5985 
5986 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
5987 // when finished.
5988 
5989 void
5990 Write_sections_task::locks(Task_locker* tl)
5991 {
5992   tl->add(this, this->output_sections_blocker_);
5993   if (this->input_sections_blocker_ != NULL)
5994     tl->add(this, this->input_sections_blocker_);
5995   tl->add(this, this->final_blocker_);
5996 }
5997 
5998 // Run the task--write out the data.
5999 
6000 void
6001 Write_sections_task::run(Workqueue*)
6002 {
6003   this->layout_->write_output_sections(this->of_);
6004 }
6005 
6006 // Write_data_task methods.
6007 
6008 // We can always run this task.
6009 
6010 Task_token*
6011 Write_data_task::is_runnable()
6012 {
6013   return NULL;
6014 }
6015 
6016 // We need to unlock FINAL_BLOCKER when finished.
6017 
6018 void
6019 Write_data_task::locks(Task_locker* tl)
6020 {
6021   tl->add(this, this->final_blocker_);
6022 }
6023 
6024 // Run the task--write out the data.
6025 
6026 void
6027 Write_data_task::run(Workqueue*)
6028 {
6029   this->layout_->write_data(this->symtab_, this->of_);
6030 }
6031 
6032 // Write_symbols_task methods.
6033 
6034 // We can always run this task.
6035 
6036 Task_token*
6037 Write_symbols_task::is_runnable()
6038 {
6039   return NULL;
6040 }
6041 
6042 // We need to unlock FINAL_BLOCKER when finished.
6043 
6044 void
6045 Write_symbols_task::locks(Task_locker* tl)
6046 {
6047   tl->add(this, this->final_blocker_);
6048 }
6049 
6050 // Run the task--write out the symbols.
6051 
6052 void
6053 Write_symbols_task::run(Workqueue*)
6054 {
6055   this->symtab_->write_globals(this->sympool_, this->dynpool_,
6056 			       this->layout_->symtab_xindex(),
6057 			       this->layout_->dynsym_xindex(), this->of_);
6058 }
6059 
6060 // Write_after_input_sections_task methods.
6061 
6062 // We can only run this task after the input sections have completed.
6063 
6064 Task_token*
6065 Write_after_input_sections_task::is_runnable()
6066 {
6067   if (this->input_sections_blocker_->is_blocked())
6068     return this->input_sections_blocker_;
6069   return NULL;
6070 }
6071 
6072 // We need to unlock FINAL_BLOCKER when finished.
6073 
6074 void
6075 Write_after_input_sections_task::locks(Task_locker* tl)
6076 {
6077   tl->add(this, this->final_blocker_);
6078 }
6079 
6080 // Run the task.
6081 
6082 void
6083 Write_after_input_sections_task::run(Workqueue*)
6084 {
6085   this->layout_->write_sections_after_input_sections(this->of_);
6086 }
6087 
6088 // Build IDs can be computed as a "flat" sha1 or md5 of a string of bytes,
6089 // or as a "tree" where each chunk of the string is hashed and then those
6090 // hashes are put into a (much smaller) string which is hashed with sha1.
6091 // We compute a checksum over the entire file because that is simplest.
6092 
6093 void
6094 Build_id_task_runner::run(Workqueue* workqueue, const Task*)
6095 {
6096   Task_token* post_hash_tasks_blocker = new Task_token(true);
6097   const Layout* layout = this->layout_;
6098   Output_file* of = this->of_;
6099   const size_t filesize = (layout->output_file_size() <= 0 ? 0
6100 			   : static_cast<size_t>(layout->output_file_size()));
6101   unsigned char* array_of_hashes = NULL;
6102   size_t size_of_hashes = 0;
6103 
6104   if (strcmp(this->options_->build_id(), "tree") == 0
6105       && this->options_->build_id_chunk_size_for_treehash() > 0
6106       && filesize > 0
6107       && (filesize >= this->options_->build_id_min_file_size_for_treehash()))
6108     {
6109       static const size_t MD5_OUTPUT_SIZE_IN_BYTES = 16;
6110       const size_t chunk_size =
6111 	  this->options_->build_id_chunk_size_for_treehash();
6112       const size_t num_hashes = ((filesize - 1) / chunk_size) + 1;
6113       post_hash_tasks_blocker->add_blockers(num_hashes);
6114       size_of_hashes = num_hashes * MD5_OUTPUT_SIZE_IN_BYTES;
6115       array_of_hashes = new unsigned char[size_of_hashes];
6116       unsigned char *dst = array_of_hashes;
6117       for (size_t i = 0, src_offset = 0; i < num_hashes;
6118 	   i++, dst += MD5_OUTPUT_SIZE_IN_BYTES, src_offset += chunk_size)
6119 	{
6120 	  size_t size = std::min(chunk_size, filesize - src_offset);
6121 	  workqueue->queue(new Hash_task(of,
6122 					 src_offset,
6123 					 size,
6124 					 dst,
6125 					 post_hash_tasks_blocker));
6126 	}
6127     }
6128 
6129   // Queue the final task to write the build id and close the output file.
6130   workqueue->queue(new Task_function(new Close_task_runner(this->options_,
6131 							   layout,
6132 							   of,
6133 							   array_of_hashes,
6134 							   size_of_hashes),
6135 				     post_hash_tasks_blocker,
6136 				     "Task_function Close_task_runner"));
6137 }
6138 
6139 // Close_task_runner methods.
6140 
6141 // Finish up the build ID computation, if necessary, and write a binary file,
6142 // if necessary.  Then close the output file.
6143 
6144 void
6145 Close_task_runner::run(Workqueue*, const Task*)
6146 {
6147   // At this point the multi-threaded part of the build ID computation,
6148   // if any, is done.  See Build_id_task_runner.
6149   this->layout_->write_build_id(this->of_, this->array_of_hashes_,
6150 				this->size_of_hashes_);
6151 
6152   // If we've been asked to create a binary file, we do so here.
6153   if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
6154     this->layout_->write_binary(this->of_);
6155 
6156   this->of_->close();
6157 }
6158 
6159 // Instantiate the templates we need.  We could use the configure
6160 // script to restrict this to only the ones for implemented targets.
6161 
6162 #ifdef HAVE_TARGET_32_LITTLE
6163 template
6164 Output_section*
6165 Layout::init_fixed_output_section<32, false>(
6166     const char* name,
6167     elfcpp::Shdr<32, false>& shdr);
6168 #endif
6169 
6170 #ifdef HAVE_TARGET_32_BIG
6171 template
6172 Output_section*
6173 Layout::init_fixed_output_section<32, true>(
6174     const char* name,
6175     elfcpp::Shdr<32, true>& shdr);
6176 #endif
6177 
6178 #ifdef HAVE_TARGET_64_LITTLE
6179 template
6180 Output_section*
6181 Layout::init_fixed_output_section<64, false>(
6182     const char* name,
6183     elfcpp::Shdr<64, false>& shdr);
6184 #endif
6185 
6186 #ifdef HAVE_TARGET_64_BIG
6187 template
6188 Output_section*
6189 Layout::init_fixed_output_section<64, true>(
6190     const char* name,
6191     elfcpp::Shdr<64, true>& shdr);
6192 #endif
6193 
6194 #ifdef HAVE_TARGET_32_LITTLE
6195 template
6196 Output_section*
6197 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
6198 			  unsigned int shndx,
6199 			  const char* name,
6200 			  const elfcpp::Shdr<32, false>& shdr,
6201 			  unsigned int, unsigned int, unsigned int, off_t*);
6202 #endif
6203 
6204 #ifdef HAVE_TARGET_32_BIG
6205 template
6206 Output_section*
6207 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
6208 			 unsigned int shndx,
6209 			 const char* name,
6210 			 const elfcpp::Shdr<32, true>& shdr,
6211 			 unsigned int, unsigned int, unsigned int, off_t*);
6212 #endif
6213 
6214 #ifdef HAVE_TARGET_64_LITTLE
6215 template
6216 Output_section*
6217 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
6218 			  unsigned int shndx,
6219 			  const char* name,
6220 			  const elfcpp::Shdr<64, false>& shdr,
6221 			  unsigned int, unsigned int, unsigned int, off_t*);
6222 #endif
6223 
6224 #ifdef HAVE_TARGET_64_BIG
6225 template
6226 Output_section*
6227 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
6228 			 unsigned int shndx,
6229 			 const char* name,
6230 			 const elfcpp::Shdr<64, true>& shdr,
6231 			 unsigned int, unsigned int, unsigned int, off_t*);
6232 #endif
6233 
6234 #ifdef HAVE_TARGET_32_LITTLE
6235 template
6236 Output_section*
6237 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
6238 				unsigned int reloc_shndx,
6239 				const elfcpp::Shdr<32, false>& shdr,
6240 				Output_section* data_section,
6241 				Relocatable_relocs* rr);
6242 #endif
6243 
6244 #ifdef HAVE_TARGET_32_BIG
6245 template
6246 Output_section*
6247 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
6248 			       unsigned int reloc_shndx,
6249 			       const elfcpp::Shdr<32, true>& shdr,
6250 			       Output_section* data_section,
6251 			       Relocatable_relocs* rr);
6252 #endif
6253 
6254 #ifdef HAVE_TARGET_64_LITTLE
6255 template
6256 Output_section*
6257 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
6258 				unsigned int reloc_shndx,
6259 				const elfcpp::Shdr<64, false>& shdr,
6260 				Output_section* data_section,
6261 				Relocatable_relocs* rr);
6262 #endif
6263 
6264 #ifdef HAVE_TARGET_64_BIG
6265 template
6266 Output_section*
6267 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
6268 			       unsigned int reloc_shndx,
6269 			       const elfcpp::Shdr<64, true>& shdr,
6270 			       Output_section* data_section,
6271 			       Relocatable_relocs* rr);
6272 #endif
6273 
6274 #ifdef HAVE_TARGET_32_LITTLE
6275 template
6276 void
6277 Layout::layout_group<32, false>(Symbol_table* symtab,
6278 				Sized_relobj_file<32, false>* object,
6279 				unsigned int,
6280 				const char* group_section_name,
6281 				const char* signature,
6282 				const elfcpp::Shdr<32, false>& shdr,
6283 				elfcpp::Elf_Word flags,
6284 				std::vector<unsigned int>* shndxes);
6285 #endif
6286 
6287 #ifdef HAVE_TARGET_32_BIG
6288 template
6289 void
6290 Layout::layout_group<32, true>(Symbol_table* symtab,
6291 			       Sized_relobj_file<32, true>* object,
6292 			       unsigned int,
6293 			       const char* group_section_name,
6294 			       const char* signature,
6295 			       const elfcpp::Shdr<32, true>& shdr,
6296 			       elfcpp::Elf_Word flags,
6297 			       std::vector<unsigned int>* shndxes);
6298 #endif
6299 
6300 #ifdef HAVE_TARGET_64_LITTLE
6301 template
6302 void
6303 Layout::layout_group<64, false>(Symbol_table* symtab,
6304 				Sized_relobj_file<64, false>* object,
6305 				unsigned int,
6306 				const char* group_section_name,
6307 				const char* signature,
6308 				const elfcpp::Shdr<64, false>& shdr,
6309 				elfcpp::Elf_Word flags,
6310 				std::vector<unsigned int>* shndxes);
6311 #endif
6312 
6313 #ifdef HAVE_TARGET_64_BIG
6314 template
6315 void
6316 Layout::layout_group<64, true>(Symbol_table* symtab,
6317 			       Sized_relobj_file<64, true>* object,
6318 			       unsigned int,
6319 			       const char* group_section_name,
6320 			       const char* signature,
6321 			       const elfcpp::Shdr<64, true>& shdr,
6322 			       elfcpp::Elf_Word flags,
6323 			       std::vector<unsigned int>* shndxes);
6324 #endif
6325 
6326 #ifdef HAVE_TARGET_32_LITTLE
6327 template
6328 Output_section*
6329 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
6330 				   const unsigned char* symbols,
6331 				   off_t symbols_size,
6332 				   const unsigned char* symbol_names,
6333 				   off_t symbol_names_size,
6334 				   unsigned int shndx,
6335 				   const elfcpp::Shdr<32, false>& shdr,
6336 				   unsigned int reloc_shndx,
6337 				   unsigned int reloc_type,
6338 				   off_t* off);
6339 #endif
6340 
6341 #ifdef HAVE_TARGET_32_BIG
6342 template
6343 Output_section*
6344 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
6345 				  const unsigned char* symbols,
6346 				  off_t symbols_size,
6347 				  const unsigned char* symbol_names,
6348 				  off_t symbol_names_size,
6349 				  unsigned int shndx,
6350 				  const elfcpp::Shdr<32, true>& shdr,
6351 				  unsigned int reloc_shndx,
6352 				  unsigned int reloc_type,
6353 				  off_t* off);
6354 #endif
6355 
6356 #ifdef HAVE_TARGET_64_LITTLE
6357 template
6358 Output_section*
6359 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
6360 				   const unsigned char* symbols,
6361 				   off_t symbols_size,
6362 				   const unsigned char* symbol_names,
6363 				   off_t symbol_names_size,
6364 				   unsigned int shndx,
6365 				   const elfcpp::Shdr<64, false>& shdr,
6366 				   unsigned int reloc_shndx,
6367 				   unsigned int reloc_type,
6368 				   off_t* off);
6369 #endif
6370 
6371 #ifdef HAVE_TARGET_64_BIG
6372 template
6373 Output_section*
6374 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
6375 				  const unsigned char* symbols,
6376 				  off_t symbols_size,
6377 				  const unsigned char* symbol_names,
6378 				  off_t symbol_names_size,
6379 				  unsigned int shndx,
6380 				  const elfcpp::Shdr<64, true>& shdr,
6381 				  unsigned int reloc_shndx,
6382 				  unsigned int reloc_type,
6383 				  off_t* off);
6384 #endif
6385 
6386 #ifdef HAVE_TARGET_32_LITTLE
6387 template
6388 void
6389 Layout::add_to_gdb_index(bool is_type_unit,
6390 			 Sized_relobj<32, false>* object,
6391 			 const unsigned char* symbols,
6392 			 off_t symbols_size,
6393 			 unsigned int shndx,
6394 			 unsigned int reloc_shndx,
6395 			 unsigned int reloc_type);
6396 #endif
6397 
6398 #ifdef HAVE_TARGET_32_BIG
6399 template
6400 void
6401 Layout::add_to_gdb_index(bool is_type_unit,
6402 			 Sized_relobj<32, true>* object,
6403 			 const unsigned char* symbols,
6404 			 off_t symbols_size,
6405 			 unsigned int shndx,
6406 			 unsigned int reloc_shndx,
6407 			 unsigned int reloc_type);
6408 #endif
6409 
6410 #ifdef HAVE_TARGET_64_LITTLE
6411 template
6412 void
6413 Layout::add_to_gdb_index(bool is_type_unit,
6414 			 Sized_relobj<64, false>* object,
6415 			 const unsigned char* symbols,
6416 			 off_t symbols_size,
6417 			 unsigned int shndx,
6418 			 unsigned int reloc_shndx,
6419 			 unsigned int reloc_type);
6420 #endif
6421 
6422 #ifdef HAVE_TARGET_64_BIG
6423 template
6424 void
6425 Layout::add_to_gdb_index(bool is_type_unit,
6426 			 Sized_relobj<64, true>* object,
6427 			 const unsigned char* symbols,
6428 			 off_t symbols_size,
6429 			 unsigned int shndx,
6430 			 unsigned int reloc_shndx,
6431 			 unsigned int reloc_type);
6432 #endif
6433 
6434 } // End namespace gold.
6435