xref: /netbsd-src/external/gpl3/binutils.old/dist/gold/layout.cc (revision e992f068c547fd6e84b3f104dc2340adcc955732)
1 // layout.cc -- lay out output file sections for gold
2 
3 // Copyright (C) 2006-2022 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5 
6 // This file is part of gold.
7 
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12 
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17 
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22 
23 #include "gold.h"
24 
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <fstream>
30 #include <utility>
31 #include <fcntl.h>
32 #include <fnmatch.h>
33 #include <unistd.h>
34 #include "libiberty.h"
35 #include "md5.h"
36 #include "sha1.h"
37 #ifdef __MINGW32__
38 #include <windows.h>
39 #include <rpcdce.h>
40 #endif
41 
42 #include "parameters.h"
43 #include "options.h"
44 #include "mapfile.h"
45 #include "script.h"
46 #include "script-sections.h"
47 #include "output.h"
48 #include "symtab.h"
49 #include "dynobj.h"
50 #include "ehframe.h"
51 #include "gdb-index.h"
52 #include "compressed_output.h"
53 #include "reduced_debug_output.h"
54 #include "object.h"
55 #include "reloc.h"
56 #include "descriptors.h"
57 #include "plugin.h"
58 #include "incremental.h"
59 #include "layout.h"
60 
61 namespace gold
62 {
63 
64 // Class Free_list.
65 
66 // The total number of free lists used.
67 unsigned int Free_list::num_lists = 0;
68 // The total number of free list nodes used.
69 unsigned int Free_list::num_nodes = 0;
70 // The total number of calls to Free_list::remove.
71 unsigned int Free_list::num_removes = 0;
72 // The total number of nodes visited during calls to Free_list::remove.
73 unsigned int Free_list::num_remove_visits = 0;
74 // The total number of calls to Free_list::allocate.
75 unsigned int Free_list::num_allocates = 0;
76 // The total number of nodes visited during calls to Free_list::allocate.
77 unsigned int Free_list::num_allocate_visits = 0;
78 
79 // Initialize the free list.  Creates a single free list node that
80 // describes the entire region of length LEN.  If EXTEND is true,
81 // allocate() is allowed to extend the region beyond its initial
82 // length.
83 
84 void
init(off_t len,bool extend)85 Free_list::init(off_t len, bool extend)
86 {
87   this->list_.push_front(Free_list_node(0, len));
88   this->last_remove_ = this->list_.begin();
89   this->extend_ = extend;
90   this->length_ = len;
91   ++Free_list::num_lists;
92   ++Free_list::num_nodes;
93 }
94 
95 // Remove a chunk from the free list.  Because we start with a single
96 // node that covers the entire section, and remove chunks from it one
97 // at a time, we do not need to coalesce chunks or handle cases that
98 // span more than one free node.  We expect to remove chunks from the
99 // free list in order, and we expect to have only a few chunks of free
100 // space left (corresponding to files that have changed since the last
101 // incremental link), so a simple linear list should provide sufficient
102 // performance.
103 
104 void
remove(off_t start,off_t end)105 Free_list::remove(off_t start, off_t end)
106 {
107   if (start == end)
108     return;
109   gold_assert(start < end);
110 
111   ++Free_list::num_removes;
112 
113   Iterator p = this->last_remove_;
114   if (p->start_ > start)
115     p = this->list_.begin();
116 
117   for (; p != this->list_.end(); ++p)
118     {
119       ++Free_list::num_remove_visits;
120       // Find a node that wholly contains the indicated region.
121       if (p->start_ <= start && p->end_ >= end)
122 	{
123 	  // Case 1: the indicated region spans the whole node.
124 	  // Add some fuzz to avoid creating tiny free chunks.
125 	  if (p->start_ + 3 >= start && p->end_ <= end + 3)
126 	    p = this->list_.erase(p);
127 	  // Case 2: remove a chunk from the start of the node.
128 	  else if (p->start_ + 3 >= start)
129 	    p->start_ = end;
130 	  // Case 3: remove a chunk from the end of the node.
131 	  else if (p->end_ <= end + 3)
132 	    p->end_ = start;
133 	  // Case 4: remove a chunk from the middle, and split
134 	  // the node into two.
135 	  else
136 	    {
137 	      Free_list_node newnode(p->start_, start);
138 	      p->start_ = end;
139 	      this->list_.insert(p, newnode);
140 	      ++Free_list::num_nodes;
141 	    }
142 	  this->last_remove_ = p;
143 	  return;
144 	}
145     }
146 
147   // Did not find a node containing the given chunk.  This could happen
148   // because a small chunk was already removed due to the fuzz.
149   gold_debug(DEBUG_INCREMENTAL,
150 	     "Free_list::remove(%d,%d) not found",
151 	     static_cast<int>(start), static_cast<int>(end));
152 }
153 
154 // Allocate a chunk of size LEN from the free list.  Returns -1ULL
155 // if a sufficiently large chunk of free space is not found.
156 // We use a simple first-fit algorithm.
157 
158 off_t
allocate(off_t len,uint64_t align,off_t minoff)159 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
160 {
161   gold_debug(DEBUG_INCREMENTAL,
162 	     "Free_list::allocate(%08lx, %d, %08lx)",
163 	     static_cast<long>(len), static_cast<int>(align),
164 	     static_cast<long>(minoff));
165   if (len == 0)
166     return align_address(minoff, align);
167 
168   ++Free_list::num_allocates;
169 
170   // We usually want to drop free chunks smaller than 4 bytes.
171   // If we need to guarantee a minimum hole size, though, we need
172   // to keep track of all free chunks.
173   const int fuzz = this->min_hole_ > 0 ? 0 : 3;
174 
175   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
176     {
177       ++Free_list::num_allocate_visits;
178       off_t start = p->start_ > minoff ? p->start_ : minoff;
179       start = align_address(start, align);
180       off_t end = start + len;
181       if (end > p->end_ && p->end_ == this->length_ && this->extend_)
182 	{
183 	  this->length_ = end;
184 	  p->end_ = end;
185 	}
186       if (end == p->end_ || (end <= p->end_ - this->min_hole_))
187 	{
188 	  if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
189 	    this->list_.erase(p);
190 	  else if (p->start_ + fuzz >= start)
191 	    p->start_ = end;
192 	  else if (p->end_ <= end + fuzz)
193 	    p->end_ = start;
194 	  else
195 	    {
196 	      Free_list_node newnode(p->start_, start);
197 	      p->start_ = end;
198 	      this->list_.insert(p, newnode);
199 	      ++Free_list::num_nodes;
200 	    }
201 	  return start;
202 	}
203     }
204   if (this->extend_)
205     {
206       off_t start = align_address(this->length_, align);
207       this->length_ = start + len;
208       return start;
209     }
210   return -1;
211 }
212 
213 // Dump the free list (for debugging).
214 void
dump()215 Free_list::dump()
216 {
217   gold_info("Free list:\n     start      end   length\n");
218   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
219     gold_info("  %08lx %08lx %08lx", static_cast<long>(p->start_),
220 	      static_cast<long>(p->end_),
221 	      static_cast<long>(p->end_ - p->start_));
222 }
223 
224 // Print the statistics for the free lists.
225 void
print_stats()226 Free_list::print_stats()
227 {
228   fprintf(stderr, _("%s: total free lists: %u\n"),
229 	  program_name, Free_list::num_lists);
230   fprintf(stderr, _("%s: total free list nodes: %u\n"),
231 	  program_name, Free_list::num_nodes);
232   fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
233 	  program_name, Free_list::num_removes);
234   fprintf(stderr, _("%s: nodes visited: %u\n"),
235 	  program_name, Free_list::num_remove_visits);
236   fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
237 	  program_name, Free_list::num_allocates);
238   fprintf(stderr, _("%s: nodes visited: %u\n"),
239 	  program_name, Free_list::num_allocate_visits);
240 }
241 
242 // A Hash_task computes the MD5 checksum of an array of char.
243 
244 class Hash_task : public Task
245 {
246  public:
Hash_task(Output_file * of,size_t offset,size_t size,unsigned char * dst,Task_token * final_blocker)247   Hash_task(Output_file* of,
248 	    size_t offset,
249 	    size_t size,
250 	    unsigned char* dst,
251 	    Task_token* final_blocker)
252     : of_(of), offset_(offset), size_(size), dst_(dst),
253       final_blocker_(final_blocker)
254   { }
255 
256   void
run(Workqueue *)257   run(Workqueue*)
258   {
259     const unsigned char* iv =
260 	this->of_->get_input_view(this->offset_, this->size_);
261     md5_buffer(reinterpret_cast<const char*>(iv), this->size_, this->dst_);
262     this->of_->free_input_view(this->offset_, this->size_, iv);
263   }
264 
265   Task_token*
is_runnable()266   is_runnable()
267   { return NULL; }
268 
269   // Unblock FINAL_BLOCKER_ when done.
270   void
locks(Task_locker * tl)271   locks(Task_locker* tl)
272   { tl->add(this, this->final_blocker_); }
273 
274   std::string
get_name() const275   get_name() const
276   { return "Hash_task"; }
277 
278  private:
279   Output_file* of_;
280   const size_t offset_;
281   const size_t size_;
282   unsigned char* const dst_;
283   Task_token* const final_blocker_;
284 };
285 
286 // Layout::Relaxation_debug_check methods.
287 
288 // Check that sections and special data are in reset states.
289 // We do not save states for Output_sections and special Output_data.
290 // So we check that they have not assigned any addresses or offsets.
291 // clean_up_after_relaxation simply resets their addresses and offsets.
292 void
check_output_data_for_reset_values(const Layout::Section_list & sections,const Layout::Data_list & special_outputs,const Layout::Data_list & relax_outputs)293 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
294     const Layout::Section_list& sections,
295     const Layout::Data_list& special_outputs,
296     const Layout::Data_list& relax_outputs)
297 {
298   for(Layout::Section_list::const_iterator p = sections.begin();
299       p != sections.end();
300       ++p)
301     gold_assert((*p)->address_and_file_offset_have_reset_values());
302 
303   for(Layout::Data_list::const_iterator p = special_outputs.begin();
304       p != special_outputs.end();
305       ++p)
306     gold_assert((*p)->address_and_file_offset_have_reset_values());
307 
308   gold_assert(relax_outputs.empty());
309 }
310 
311 // Save information of SECTIONS for checking later.
312 
313 void
read_sections(const Layout::Section_list & sections)314 Layout::Relaxation_debug_check::read_sections(
315     const Layout::Section_list& sections)
316 {
317   for(Layout::Section_list::const_iterator p = sections.begin();
318       p != sections.end();
319       ++p)
320     {
321       Output_section* os = *p;
322       Section_info info;
323       info.output_section = os;
324       info.address = os->is_address_valid() ? os->address() : 0;
325       info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
326       info.offset = os->is_offset_valid()? os->offset() : -1 ;
327       this->section_infos_.push_back(info);
328     }
329 }
330 
331 // Verify SECTIONS using previously recorded information.
332 
333 void
verify_sections(const Layout::Section_list & sections)334 Layout::Relaxation_debug_check::verify_sections(
335     const Layout::Section_list& sections)
336 {
337   size_t i = 0;
338   for(Layout::Section_list::const_iterator p = sections.begin();
339       p != sections.end();
340       ++p, ++i)
341     {
342       Output_section* os = *p;
343       uint64_t address = os->is_address_valid() ? os->address() : 0;
344       off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
345       off_t offset = os->is_offset_valid()? os->offset() : -1 ;
346 
347       if (i >= this->section_infos_.size())
348 	{
349 	  gold_fatal("Section_info of %s missing.\n", os->name());
350 	}
351       const Section_info& info = this->section_infos_[i];
352       if (os != info.output_section)
353 	gold_fatal("Section order changed.  Expecting %s but see %s\n",
354 		   info.output_section->name(), os->name());
355       if (address != info.address
356 	  || data_size != info.data_size
357 	  || offset != info.offset)
358 	gold_fatal("Section %s changed.\n", os->name());
359     }
360 }
361 
362 // Layout_task_runner methods.
363 
364 // Lay out the sections.  This is called after all the input objects
365 // have been read.
366 
367 void
run(Workqueue * workqueue,const Task * task)368 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
369 {
370   // See if any of the input definitions violate the One Definition Rule.
371   // TODO: if this is too slow, do this as a task, rather than inline.
372   this->symtab_->detect_odr_violations(task, this->options_.output_file_name());
373 
374   Layout* layout = this->layout_;
375   off_t file_size = layout->finalize(this->input_objects_,
376 				     this->symtab_,
377 				     this->target_,
378 				     task);
379 
380   // Now we know the final size of the output file and we know where
381   // each piece of information goes.
382 
383   if (this->mapfile_ != NULL)
384     {
385       this->mapfile_->print_discarded_sections(this->input_objects_);
386       layout->print_to_mapfile(this->mapfile_);
387     }
388 
389   Output_file* of;
390   if (layout->incremental_base() == NULL)
391     {
392       of = new Output_file(parameters->options().output_file_name());
393       if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
394 	of->set_is_temporary();
395       of->open(file_size);
396     }
397   else
398     {
399       of = layout->incremental_base()->output_file();
400 
401       // Apply the incremental relocations for symbols whose values
402       // have changed.  We do this before we resize the file and start
403       // writing anything else to it, so that we can read the old
404       // incremental information from the file before (possibly)
405       // overwriting it.
406       if (parameters->incremental_update())
407 	layout->incremental_base()->apply_incremental_relocs(this->symtab_,
408 							     this->layout_,
409 							     of);
410 
411       of->resize(file_size);
412     }
413 
414   // Queue up the final set of tasks.
415   gold::queue_final_tasks(this->options_, this->input_objects_,
416 			  this->symtab_, layout, workqueue, of);
417 }
418 
419 // Layout methods.
420 
Layout(int number_of_input_files,Script_options * script_options)421 Layout::Layout(int number_of_input_files, Script_options* script_options)
422   : number_of_input_files_(number_of_input_files),
423     script_options_(script_options),
424     namepool_(),
425     sympool_(),
426     dynpool_(),
427     signatures_(),
428     section_name_map_(),
429     segment_list_(),
430     section_list_(),
431     unattached_section_list_(),
432     special_output_list_(),
433     relax_output_list_(),
434     section_headers_(NULL),
435     tls_segment_(NULL),
436     relro_segment_(NULL),
437     interp_segment_(NULL),
438     increase_relro_(0),
439     symtab_section_(NULL),
440     symtab_xindex_(NULL),
441     dynsym_section_(NULL),
442     dynsym_xindex_(NULL),
443     dynamic_section_(NULL),
444     dynamic_symbol_(NULL),
445     dynamic_data_(NULL),
446     eh_frame_section_(NULL),
447     eh_frame_data_(NULL),
448     added_eh_frame_data_(false),
449     eh_frame_hdr_section_(NULL),
450     gdb_index_data_(NULL),
451     build_id_note_(NULL),
452     debug_abbrev_(NULL),
453     debug_info_(NULL),
454     group_signatures_(),
455     output_file_size_(-1),
456     have_added_input_section_(false),
457     sections_are_attached_(false),
458     input_requires_executable_stack_(false),
459     input_with_gnu_stack_note_(false),
460     input_without_gnu_stack_note_(false),
461     has_static_tls_(false),
462     any_postprocessing_sections_(false),
463     resized_signatures_(false),
464     have_stabstr_section_(false),
465     section_ordering_specified_(false),
466     unique_segment_for_sections_specified_(false),
467     incremental_inputs_(NULL),
468     record_output_section_data_from_script_(false),
469     lto_slim_object_(false),
470     script_output_section_data_list_(),
471     segment_states_(NULL),
472     relaxation_debug_check_(NULL),
473     section_order_map_(),
474     section_segment_map_(),
475     input_section_position_(),
476     input_section_glob_(),
477     incremental_base_(NULL),
478     free_list_(),
479     gnu_properties_()
480 {
481   // Make space for more than enough segments for a typical file.
482   // This is just for efficiency--it's OK if we wind up needing more.
483   this->segment_list_.reserve(12);
484 
485   // We expect two unattached Output_data objects: the file header and
486   // the segment headers.
487   this->special_output_list_.reserve(2);
488 
489   // Initialize structure needed for an incremental build.
490   if (parameters->incremental())
491     this->incremental_inputs_ = new Incremental_inputs;
492 
493   // The section name pool is worth optimizing in all cases, because
494   // it is small, but there are often overlaps due to .rel sections.
495   this->namepool_.set_optimize();
496 }
497 
498 // For incremental links, record the base file to be modified.
499 
500 void
set_incremental_base(Incremental_binary * base)501 Layout::set_incremental_base(Incremental_binary* base)
502 {
503   this->incremental_base_ = base;
504   this->free_list_.init(base->output_file()->filesize(), true);
505 }
506 
507 // Hash a key we use to look up an output section mapping.
508 
509 size_t
operator ()(const Layout::Key & k) const510 Layout::Hash_key::operator()(const Layout::Key& k) const
511 {
512  return k.first + k.second.first + k.second.second;
513 }
514 
515 // These are the debug sections that are actually used by gdb.
516 // Currently, we've checked versions of gdb up to and including 7.4.
517 // We only check the part of the name that follows ".debug_" or
518 // ".zdebug_".
519 
520 static const char* gdb_sections[] =
521 {
522   "abbrev",
523   "addr",         // Fission extension
524   // "aranges",   // not used by gdb as of 7.4
525   "frame",
526   "gdb_scripts",
527   "info",
528   "types",
529   "line",
530   "loc",
531   "macinfo",
532   "macro",
533   // "pubnames",  // not used by gdb as of 7.4
534   // "pubtypes",  // not used by gdb as of 7.4
535   // "gnu_pubnames",  // Fission extension
536   // "gnu_pubtypes",  // Fission extension
537   "ranges",
538   "str",
539   "str_offsets",
540 };
541 
542 // This is the minimum set of sections needed for line numbers.
543 
544 static const char* lines_only_debug_sections[] =
545 {
546   "abbrev",
547   // "addr",      // Fission extension
548   // "aranges",   // not used by gdb as of 7.4
549   // "frame",
550   // "gdb_scripts",
551   "info",
552   // "types",
553   "line",
554   // "loc",
555   // "macinfo",
556   // "macro",
557   // "pubnames",  // not used by gdb as of 7.4
558   // "pubtypes",  // not used by gdb as of 7.4
559   // "gnu_pubnames",  // Fission extension
560   // "gnu_pubtypes",  // Fission extension
561   // "ranges",
562   "str",
563   "str_offsets",  // Fission extension
564 };
565 
566 // These sections are the DWARF fast-lookup tables, and are not needed
567 // when building a .gdb_index section.
568 
569 static const char* gdb_fast_lookup_sections[] =
570 {
571   "aranges",
572   "pubnames",
573   "gnu_pubnames",
574   "pubtypes",
575   "gnu_pubtypes",
576 };
577 
578 // Returns whether the given debug section is in the list of
579 // debug-sections-used-by-some-version-of-gdb.  SUFFIX is the
580 // portion of the name following ".debug_" or ".zdebug_".
581 
582 static inline bool
is_gdb_debug_section(const char * suffix)583 is_gdb_debug_section(const char* suffix)
584 {
585   // We can do this faster: binary search or a hashtable.  But why bother?
586   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
587     if (strcmp(suffix, gdb_sections[i]) == 0)
588       return true;
589   return false;
590 }
591 
592 // Returns whether the given section is needed for lines-only debugging.
593 
594 static inline bool
is_lines_only_debug_section(const char * suffix)595 is_lines_only_debug_section(const char* suffix)
596 {
597   // We can do this faster: binary search or a hashtable.  But why bother?
598   for (size_t i = 0;
599        i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
600        ++i)
601     if (strcmp(suffix, lines_only_debug_sections[i]) == 0)
602       return true;
603   return false;
604 }
605 
606 // Returns whether the given section is a fast-lookup section that
607 // will not be needed when building a .gdb_index section.
608 
609 static inline bool
is_gdb_fast_lookup_section(const char * suffix)610 is_gdb_fast_lookup_section(const char* suffix)
611 {
612   // We can do this faster: binary search or a hashtable.  But why bother?
613   for (size_t i = 0;
614        i < sizeof(gdb_fast_lookup_sections)/sizeof(*gdb_fast_lookup_sections);
615        ++i)
616     if (strcmp(suffix, gdb_fast_lookup_sections[i]) == 0)
617       return true;
618   return false;
619 }
620 
621 // Sometimes we compress sections.  This is typically done for
622 // sections that are not part of normal program execution (such as
623 // .debug_* sections), and where the readers of these sections know
624 // how to deal with compressed sections.  This routine doesn't say for
625 // certain whether we'll compress -- it depends on commandline options
626 // as well -- just whether this section is a candidate for compression.
627 // (The Output_compressed_section class decides whether to compress
628 // a given section, and picks the name of the compressed section.)
629 
630 static bool
is_compressible_debug_section(const char * secname)631 is_compressible_debug_section(const char* secname)
632 {
633   return (is_prefix_of(".debug", secname));
634 }
635 
636 // We may see compressed debug sections in input files.  Return TRUE
637 // if this is the name of a compressed debug section.
638 
639 bool
is_compressed_debug_section(const char * secname)640 is_compressed_debug_section(const char* secname)
641 {
642   return (is_prefix_of(".zdebug", secname));
643 }
644 
645 std::string
corresponding_uncompressed_section_name(std::string secname)646 corresponding_uncompressed_section_name(std::string secname)
647 {
648   gold_assert(secname[0] == '.' && secname[1] == 'z');
649   std::string ret(".");
650   ret.append(secname, 2, std::string::npos);
651   return ret;
652 }
653 
654 // Whether to include this section in the link.
655 
656 template<int size, bool big_endian>
657 bool
include_section(Sized_relobj_file<size,big_endian> *,const char * name,const elfcpp::Shdr<size,big_endian> & shdr)658 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
659 			const elfcpp::Shdr<size, big_endian>& shdr)
660 {
661   if (!parameters->options().relocatable()
662       && (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE))
663     return false;
664 
665   elfcpp::Elf_Word sh_type = shdr.get_sh_type();
666 
667   if ((sh_type >= elfcpp::SHT_LOOS && sh_type <= elfcpp::SHT_HIOS)
668       || (sh_type >= elfcpp::SHT_LOPROC && sh_type <= elfcpp::SHT_HIPROC))
669     return parameters->target().should_include_section(sh_type);
670 
671   switch (sh_type)
672     {
673     case elfcpp::SHT_NULL:
674     case elfcpp::SHT_SYMTAB:
675     case elfcpp::SHT_DYNSYM:
676     case elfcpp::SHT_HASH:
677     case elfcpp::SHT_DYNAMIC:
678     case elfcpp::SHT_SYMTAB_SHNDX:
679       return false;
680 
681     case elfcpp::SHT_STRTAB:
682       // Discard the sections which have special meanings in the ELF
683       // ABI.  Keep others (e.g., .stabstr).  We could also do this by
684       // checking the sh_link fields of the appropriate sections.
685       return (strcmp(name, ".dynstr") != 0
686 	      && strcmp(name, ".strtab") != 0
687 	      && strcmp(name, ".shstrtab") != 0);
688 
689     case elfcpp::SHT_RELA:
690     case elfcpp::SHT_REL:
691     case elfcpp::SHT_GROUP:
692       // If we are emitting relocations these should be handled
693       // elsewhere.
694       gold_assert(!parameters->options().relocatable());
695       return false;
696 
697     case elfcpp::SHT_PROGBITS:
698       if (parameters->options().strip_debug()
699 	  && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
700 	{
701 	  if (is_debug_info_section(name))
702 	    return false;
703 	}
704       if (parameters->options().strip_debug_non_line()
705 	  && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
706 	{
707 	  // Debugging sections can only be recognized by name.
708 	  if (is_prefix_of(".debug_", name)
709 	      && !is_lines_only_debug_section(name + 7))
710 	    return false;
711 	  if (is_prefix_of(".zdebug_", name)
712 	      && !is_lines_only_debug_section(name + 8))
713 	    return false;
714 	}
715       if (parameters->options().strip_debug_gdb()
716 	  && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
717 	{
718 	  // Debugging sections can only be recognized by name.
719 	  if (is_prefix_of(".debug_", name)
720 	      && !is_gdb_debug_section(name + 7))
721 	    return false;
722 	  if (is_prefix_of(".zdebug_", name)
723 	      && !is_gdb_debug_section(name + 8))
724 	    return false;
725 	}
726       if (parameters->options().gdb_index()
727 	  && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
728 	{
729 	  // When building .gdb_index, we can strip .debug_pubnames,
730 	  // .debug_pubtypes, and .debug_aranges sections.
731 	  if (is_prefix_of(".debug_", name)
732 	      && is_gdb_fast_lookup_section(name + 7))
733 	    return false;
734 	  if (is_prefix_of(".zdebug_", name)
735 	      && is_gdb_fast_lookup_section(name + 8))
736 	    return false;
737 	}
738       if (parameters->options().strip_lto_sections()
739 	  && !parameters->options().relocatable()
740 	  && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
741 	{
742 	  // Ignore LTO sections containing intermediate code.
743 	  if (is_prefix_of(".gnu.lto_", name))
744 	    return false;
745 	}
746       // The GNU linker strips .gnu_debuglink sections, so we do too.
747       // This is a feature used to keep debugging information in
748       // separate files.
749       if (strcmp(name, ".gnu_debuglink") == 0)
750 	return false;
751       return true;
752 
753     default:
754       return true;
755     }
756 }
757 
758 // Return an output section named NAME, or NULL if there is none.
759 
760 Output_section*
find_output_section(const char * name) const761 Layout::find_output_section(const char* name) const
762 {
763   for (Section_list::const_iterator p = this->section_list_.begin();
764        p != this->section_list_.end();
765        ++p)
766     if (strcmp((*p)->name(), name) == 0)
767       return *p;
768   return NULL;
769 }
770 
771 // Return an output segment of type TYPE, with segment flags SET set
772 // and segment flags CLEAR clear.  Return NULL if there is none.
773 
774 Output_segment*
find_output_segment(elfcpp::PT type,elfcpp::Elf_Word set,elfcpp::Elf_Word clear) const775 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
776 			    elfcpp::Elf_Word clear) const
777 {
778   for (Segment_list::const_iterator p = this->segment_list_.begin();
779        p != this->segment_list_.end();
780        ++p)
781     if (static_cast<elfcpp::PT>((*p)->type()) == type
782 	&& ((*p)->flags() & set) == set
783 	&& ((*p)->flags() & clear) == 0)
784       return *p;
785   return NULL;
786 }
787 
788 // When we put a .ctors or .dtors section with more than one word into
789 // a .init_array or .fini_array section, we need to reverse the words
790 // in the .ctors/.dtors section.  This is because .init_array executes
791 // constructors front to back, where .ctors executes them back to
792 // front, and vice-versa for .fini_array/.dtors.  Although we do want
793 // to remap .ctors/.dtors into .init_array/.fini_array because it can
794 // be more efficient, we don't want to change the order in which
795 // constructors/destructors are run.  This set just keeps track of
796 // these sections which need to be reversed.  It is only changed by
797 // Layout::layout.  It should be a private member of Layout, but that
798 // would require layout.h to #include object.h to get the definition
799 // of Section_id.
800 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
801 
802 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
803 // .init_array/.fini_array section.
804 
805 bool
is_ctors_in_init_array(Relobj * relobj,unsigned int shndx) const806 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
807 {
808   return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
809 	  != ctors_sections_in_init_array.end());
810 }
811 
812 // Return the output section to use for section NAME with type TYPE
813 // and section flags FLAGS.  NAME must be canonicalized in the string
814 // pool, and NAME_KEY is the key.  ORDER is where this should appear
815 // in the output sections.  IS_RELRO is true for a relro section.
816 
817 Output_section*
get_output_section(const char * name,Stringpool::Key name_key,elfcpp::Elf_Word type,elfcpp::Elf_Xword flags,Output_section_order order,bool is_relro)818 Layout::get_output_section(const char* name, Stringpool::Key name_key,
819 			   elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
820 			   Output_section_order order, bool is_relro)
821 {
822   elfcpp::Elf_Word lookup_type = type;
823 
824   // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
825   // PREINIT_ARRAY like PROGBITS.  This ensures that we combine
826   // .init_array, .fini_array, and .preinit_array sections by name
827   // whatever their type in the input file.  We do this because the
828   // types are not always right in the input files.
829   if (lookup_type == elfcpp::SHT_INIT_ARRAY
830       || lookup_type == elfcpp::SHT_FINI_ARRAY
831       || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
832     lookup_type = elfcpp::SHT_PROGBITS;
833 
834   elfcpp::Elf_Xword lookup_flags = flags;
835 
836   // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
837   // read-write with read-only sections.  Some other ELF linkers do
838   // not do this.  FIXME: Perhaps there should be an option
839   // controlling this.
840   lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
841 
842   const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
843   const std::pair<Key, Output_section*> v(key, NULL);
844   std::pair<Section_name_map::iterator, bool> ins(
845     this->section_name_map_.insert(v));
846 
847   if (!ins.second)
848     return ins.first->second;
849   else
850     {
851       // This is the first time we've seen this name/type/flags
852       // combination.  For compatibility with the GNU linker, we
853       // combine sections with contents and zero flags with sections
854       // with non-zero flags.  This is a workaround for cases where
855       // assembler code forgets to set section flags.  FIXME: Perhaps
856       // there should be an option to control this.
857       Output_section* os = NULL;
858 
859       if (lookup_type == elfcpp::SHT_PROGBITS)
860 	{
861 	  if (flags == 0)
862 	    {
863 	      Output_section* same_name = this->find_output_section(name);
864 	      if (same_name != NULL
865 		  && (same_name->type() == elfcpp::SHT_PROGBITS
866 		      || same_name->type() == elfcpp::SHT_INIT_ARRAY
867 		      || same_name->type() == elfcpp::SHT_FINI_ARRAY
868 		      || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
869 		  && (same_name->flags() & elfcpp::SHF_TLS) == 0)
870 		os = same_name;
871 	    }
872 	  else if ((flags & elfcpp::SHF_TLS) == 0)
873 	    {
874 	      elfcpp::Elf_Xword zero_flags = 0;
875 	      const Key zero_key(name_key, std::make_pair(lookup_type,
876 							  zero_flags));
877 	      Section_name_map::iterator p =
878 		  this->section_name_map_.find(zero_key);
879 	      if (p != this->section_name_map_.end())
880 		os = p->second;
881 	    }
882 	}
883 
884       if (os == NULL)
885 	os = this->make_output_section(name, type, flags, order, is_relro);
886 
887       ins.first->second = os;
888       return os;
889     }
890 }
891 
892 // Returns TRUE iff NAME (an input section from RELOBJ) will
893 // be mapped to an output section that should be KEPT.
894 
895 bool
keep_input_section(const Relobj * relobj,const char * name)896 Layout::keep_input_section(const Relobj* relobj, const char* name)
897 {
898   if (! this->script_options_->saw_sections_clause())
899     return false;
900 
901   Script_sections* ss = this->script_options_->script_sections();
902   const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
903   Output_section** output_section_slot;
904   Script_sections::Section_type script_section_type;
905   bool keep;
906 
907   name = ss->output_section_name(file_name, name, &output_section_slot,
908 				 &script_section_type, &keep, true);
909   return name != NULL && keep;
910 }
911 
912 // Clear the input section flags that should not be copied to the
913 // output section.
914 
915 elfcpp::Elf_Xword
get_output_section_flags(elfcpp::Elf_Xword input_section_flags)916 Layout::get_output_section_flags(elfcpp::Elf_Xword input_section_flags)
917 {
918   // Some flags in the input section should not be automatically
919   // copied to the output section.
920   input_section_flags &= ~ (elfcpp::SHF_INFO_LINK
921 			    | elfcpp::SHF_GROUP
922 			    | elfcpp::SHF_COMPRESSED
923 			    | elfcpp::SHF_MERGE
924 			    | elfcpp::SHF_STRINGS);
925 
926   // We only clear the SHF_LINK_ORDER flag in for
927   // a non-relocatable link.
928   if (!parameters->options().relocatable())
929     input_section_flags &= ~elfcpp::SHF_LINK_ORDER;
930 
931   return input_section_flags;
932 }
933 
934 // Pick the output section to use for section NAME, in input file
935 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
936 // linker created section.  IS_INPUT_SECTION is true if we are
937 // choosing an output section for an input section found in a input
938 // file.  ORDER is where this section should appear in the output
939 // sections.  IS_RELRO is true for a relro section.  This will return
940 // NULL if the input section should be discarded.  MATCH_INPUT_SPEC
941 // is true if the section name should be matched against input specs
942 // in a linker script.
943 
944 Output_section*
choose_output_section(const Relobj * relobj,const char * name,elfcpp::Elf_Word type,elfcpp::Elf_Xword flags,bool is_input_section,Output_section_order order,bool is_relro,bool is_reloc,bool match_input_spec)945 Layout::choose_output_section(const Relobj* relobj, const char* name,
946 			      elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
947 			      bool is_input_section, Output_section_order order,
948 			      bool is_relro, bool is_reloc,
949 			      bool match_input_spec)
950 {
951   // We should not see any input sections after we have attached
952   // sections to segments.
953   gold_assert(!is_input_section || !this->sections_are_attached_);
954 
955   flags = this->get_output_section_flags(flags);
956 
957   if (this->script_options_->saw_sections_clause() && !is_reloc)
958     {
959       // We are using a SECTIONS clause, so the output section is
960       // chosen based only on the name.
961 
962       Script_sections* ss = this->script_options_->script_sections();
963       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
964       Output_section** output_section_slot;
965       Script_sections::Section_type script_section_type;
966       const char* orig_name = name;
967       bool keep;
968       name = ss->output_section_name(file_name, name, &output_section_slot,
969 				     &script_section_type, &keep,
970 				     match_input_spec);
971 
972       if (name == NULL)
973 	{
974 	  gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
975 				     "because it is not allowed by the "
976 				     "SECTIONS clause of the linker script"),
977 		     orig_name);
978 	  // The SECTIONS clause says to discard this input section.
979 	  return NULL;
980 	}
981 
982       // We can only handle script section types ST_NONE and ST_NOLOAD.
983       switch (script_section_type)
984 	{
985 	case Script_sections::ST_NONE:
986 	  break;
987 	case Script_sections::ST_NOLOAD:
988 	  flags &= elfcpp::SHF_ALLOC;
989 	  break;
990 	default:
991 	  gold_unreachable();
992 	}
993 
994       // If this is an orphan section--one not mentioned in the linker
995       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
996       // default processing below.
997 
998       if (output_section_slot != NULL)
999 	{
1000 	  if (*output_section_slot != NULL)
1001 	    {
1002 	      (*output_section_slot)->update_flags_for_input_section(flags);
1003 	      return *output_section_slot;
1004 	    }
1005 
1006 	  // We don't put sections found in the linker script into
1007 	  // SECTION_NAME_MAP_.  That keeps us from getting confused
1008 	  // if an orphan section is mapped to a section with the same
1009 	  // name as one in the linker script.
1010 
1011 	  name = this->namepool_.add(name, false, NULL);
1012 
1013 	  Output_section* os = this->make_output_section(name, type, flags,
1014 							 order, is_relro);
1015 
1016 	  os->set_found_in_sections_clause();
1017 
1018 	  // Special handling for NOLOAD sections.
1019 	  if (script_section_type == Script_sections::ST_NOLOAD)
1020 	    {
1021 	      os->set_is_noload();
1022 
1023 	      // The constructor of Output_section sets addresses of non-ALLOC
1024 	      // sections to 0 by default.  We don't want that for NOLOAD
1025 	      // sections even if they have no SHF_ALLOC flag.
1026 	      if ((os->flags() & elfcpp::SHF_ALLOC) == 0
1027 		  && os->is_address_valid())
1028 		{
1029 		  gold_assert(os->address() == 0
1030 			      && !os->is_offset_valid()
1031 			      && !os->is_data_size_valid());
1032 		  os->reset_address_and_file_offset();
1033 		}
1034 	    }
1035 
1036 	  *output_section_slot = os;
1037 	  return os;
1038 	}
1039     }
1040 
1041   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
1042 
1043   size_t len = strlen(name);
1044   std::string uncompressed_name;
1045 
1046   // Compressed debug sections should be mapped to the corresponding
1047   // uncompressed section.
1048   if (is_compressed_debug_section(name))
1049     {
1050       uncompressed_name =
1051 	  corresponding_uncompressed_section_name(std::string(name, len));
1052       name = uncompressed_name.c_str();
1053       len = uncompressed_name.length();
1054     }
1055 
1056   // Turn NAME from the name of the input section into the name of the
1057   // output section.
1058   if (is_input_section
1059       && !this->script_options_->saw_sections_clause()
1060       && !parameters->options().relocatable())
1061     {
1062       const char *orig_name = name;
1063       name = parameters->target().output_section_name(relobj, name, &len);
1064       if (name == NULL)
1065 	name = Layout::output_section_name(relobj, orig_name, &len);
1066     }
1067 
1068   Stringpool::Key name_key;
1069   name = this->namepool_.add_with_length(name, len, true, &name_key);
1070 
1071   // Find or make the output section.  The output section is selected
1072   // based on the section name, type, and flags.
1073   return this->get_output_section(name, name_key, type, flags, order, is_relro);
1074 }
1075 
1076 // For incremental links, record the initial fixed layout of a section
1077 // from the base file, and return a pointer to the Output_section.
1078 
1079 template<int size, bool big_endian>
1080 Output_section*
init_fixed_output_section(const char * name,elfcpp::Shdr<size,big_endian> & shdr)1081 Layout::init_fixed_output_section(const char* name,
1082 				  elfcpp::Shdr<size, big_endian>& shdr)
1083 {
1084   unsigned int sh_type = shdr.get_sh_type();
1085 
1086   // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
1087   // PRE_INIT_ARRAY, and NOTE sections.
1088   // All others will be created from scratch and reallocated.
1089   if (!can_incremental_update(sh_type))
1090     return NULL;
1091 
1092   // If we're generating a .gdb_index section, we need to regenerate
1093   // it from scratch.
1094   if (parameters->options().gdb_index()
1095       && sh_type == elfcpp::SHT_PROGBITS
1096       && strcmp(name, ".gdb_index") == 0)
1097     return NULL;
1098 
1099   typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
1100   typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
1101   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1102   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags =
1103       this->get_output_section_flags(shdr.get_sh_flags());
1104   typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
1105       shdr.get_sh_addralign();
1106 
1107   // Make the output section.
1108   Stringpool::Key name_key;
1109   name = this->namepool_.add(name, true, &name_key);
1110   Output_section* os = this->get_output_section(name, name_key, sh_type,
1111 						sh_flags, ORDER_INVALID, false);
1112   os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
1113   if (sh_type != elfcpp::SHT_NOBITS)
1114     this->free_list_.remove(sh_offset, sh_offset + sh_size);
1115   return os;
1116 }
1117 
1118 // Return the index by which an input section should be ordered.  This
1119 // is used to sort some .text sections, for compatibility with GNU ld.
1120 
1121 int
special_ordering_of_input_section(const char * name)1122 Layout::special_ordering_of_input_section(const char* name)
1123 {
1124   // The GNU linker has some special handling for some sections that
1125   // wind up in the .text section.  Sections that start with these
1126   // prefixes must appear first, and must appear in the order listed
1127   // here.
1128   static const char* const text_section_sort[] =
1129   {
1130     ".text.unlikely",
1131     ".text.exit",
1132     ".text.startup",
1133     ".text.hot",
1134     ".text.sorted"
1135   };
1136 
1137   for (size_t i = 0;
1138        i < sizeof(text_section_sort) / sizeof(text_section_sort[0]);
1139        i++)
1140     if (is_prefix_of(text_section_sort[i], name))
1141       return i;
1142 
1143   return -1;
1144 }
1145 
1146 // Return the output section to use for input section SHNDX, with name
1147 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
1148 // index of a relocation section which applies to this section, or 0
1149 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
1150 // relocation section if there is one.  Set *OFF to the offset of this
1151 // input section without the output section.  Return NULL if the
1152 // section should be discarded.  Set *OFF to -1 if the section
1153 // contents should not be written directly to the output file, but
1154 // will instead receive special handling.
1155 
1156 template<int size, bool big_endian>
1157 Output_section*
layout(Sized_relobj_file<size,big_endian> * object,unsigned int shndx,const char * name,const elfcpp::Shdr<size,big_endian> & shdr,unsigned int sh_type,unsigned int reloc_shndx,unsigned int,off_t * off)1158 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
1159 	       const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
1160 	       unsigned int sh_type, unsigned int reloc_shndx,
1161 	       unsigned int, off_t* off)
1162 {
1163   *off = 0;
1164 
1165   if (!this->include_section(object, name, shdr))
1166     return NULL;
1167 
1168   // In a relocatable link a grouped section must not be combined with
1169   // any other sections.
1170   Output_section* os;
1171   if (parameters->options().relocatable()
1172       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
1173     {
1174       // Some flags in the input section should not be automatically
1175       // copied to the output section.
1176       elfcpp::Elf_Xword sh_flags = (shdr.get_sh_flags()
1177 				    & ~ elfcpp::SHF_COMPRESSED);
1178       name = this->namepool_.add(name, true, NULL);
1179       os = this->make_output_section(name, sh_type, sh_flags, ORDER_INVALID,
1180 				     false);
1181     }
1182   else
1183     {
1184       // Get the section flags and mask out any flags that do not
1185       // take part in section matching.
1186       elfcpp::Elf_Xword sh_flags
1187 	  = (this->get_output_section_flags(shdr.get_sh_flags())
1188 	     & ~object->osabi().ignored_sh_flags());
1189 
1190       // All ".text.unlikely.*" sections can be moved to a unique
1191       // segment with --text-unlikely-segment option.
1192       bool text_unlikely_segment
1193 	  = (parameters->options().text_unlikely_segment()
1194 	     && is_prefix_of(".text.unlikely",
1195 			     object->section_name(shndx).c_str()));
1196       if (text_unlikely_segment)
1197 	{
1198 	  Stringpool::Key name_key;
1199 	  const char* os_name = this->namepool_.add(".text.unlikely", true,
1200 						    &name_key);
1201 	  os = this->get_output_section(os_name, name_key, sh_type, sh_flags,
1202 					ORDER_INVALID, false);
1203 	  // Map this output section to a unique segment.  This is done to
1204 	  // separate "text" that is not likely to be executed from "text"
1205 	  // that is likely executed.
1206 	  os->set_is_unique_segment();
1207 	}
1208       else
1209 	{
1210 	  // Plugins can choose to place one or more subsets of sections in
1211 	  // unique segments and this is done by mapping these section subsets
1212 	  // to unique output sections.  Check if this section needs to be
1213 	  // remapped to a unique output section.
1214 	  Section_segment_map::iterator it
1215 	    = this->section_segment_map_.find(Const_section_id(object, shndx));
1216 	  if (it == this->section_segment_map_.end())
1217 	    {
1218 	      os = this->choose_output_section(object, name, sh_type,
1219 					       sh_flags, true, ORDER_INVALID,
1220 					       false, false, true);
1221 	    }
1222 	  else
1223 	    {
1224 	      // We know the name of the output section, directly call
1225 	      // get_output_section here by-passing choose_output_section.
1226 	      const char* os_name = it->second->name;
1227 	      Stringpool::Key name_key;
1228 	      os_name = this->namepool_.add(os_name, true, &name_key);
1229 	      os = this->get_output_section(os_name, name_key, sh_type,
1230 					    sh_flags, ORDER_INVALID, false);
1231 	      if (!os->is_unique_segment())
1232 		{
1233 		  os->set_is_unique_segment();
1234 		  os->set_extra_segment_flags(it->second->flags);
1235 		  os->set_segment_alignment(it->second->align);
1236 		}
1237 	    }
1238 	  }
1239       if (os == NULL)
1240 	return NULL;
1241     }
1242 
1243   // By default the GNU linker sorts input sections whose names match
1244   // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*.  The
1245   // sections are sorted by name.  This is used to implement
1246   // constructor priority ordering.  We are compatible.  When we put
1247   // .ctor sections in .init_array and .dtor sections in .fini_array,
1248   // we must also sort plain .ctor and .dtor sections.
1249   if (!this->script_options_->saw_sections_clause()
1250       && !parameters->options().relocatable()
1251       && (is_prefix_of(".ctors.", name)
1252 	  || is_prefix_of(".dtors.", name)
1253 	  || is_prefix_of(".init_array.", name)
1254 	  || is_prefix_of(".fini_array.", name)
1255 	  || (parameters->options().ctors_in_init_array()
1256 	      && (strcmp(name, ".ctors") == 0
1257 		  || strcmp(name, ".dtors") == 0))))
1258     os->set_must_sort_attached_input_sections();
1259 
1260   // By default the GNU linker sorts some special text sections ahead
1261   // of others.  We are compatible.
1262   if (parameters->options().text_reorder()
1263       && !this->script_options_->saw_sections_clause()
1264       && !this->is_section_ordering_specified()
1265       && !parameters->options().relocatable()
1266       && Layout::special_ordering_of_input_section(name) >= 0)
1267     os->set_must_sort_attached_input_sections();
1268 
1269   // If this is a .ctors or .ctors.* section being mapped to a
1270   // .init_array section, or a .dtors or .dtors.* section being mapped
1271   // to a .fini_array section, we will need to reverse the words if
1272   // there is more than one.  Record this section for later.  See
1273   // ctors_sections_in_init_array above.
1274   if (!this->script_options_->saw_sections_clause()
1275       && !parameters->options().relocatable()
1276       && shdr.get_sh_size() > size / 8
1277       && (((strcmp(name, ".ctors") == 0
1278 	    || is_prefix_of(".ctors.", name))
1279 	   && strcmp(os->name(), ".init_array") == 0)
1280 	  || ((strcmp(name, ".dtors") == 0
1281 	       || is_prefix_of(".dtors.", name))
1282 	      && strcmp(os->name(), ".fini_array") == 0)))
1283     ctors_sections_in_init_array.insert(Section_id(object, shndx));
1284 
1285   // FIXME: Handle SHF_LINK_ORDER somewhere.
1286 
1287   elfcpp::Elf_Xword orig_flags = os->flags();
1288 
1289   *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1290 			       this->script_options_->saw_sections_clause());
1291 
1292   // If the flags changed, we may have to change the order.
1293   if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1294     {
1295       orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1296       elfcpp::Elf_Xword new_flags =
1297 	os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1298       if (orig_flags != new_flags)
1299 	os->set_order(this->default_section_order(os, false));
1300     }
1301 
1302   this->have_added_input_section_ = true;
1303 
1304   return os;
1305 }
1306 
1307 // Maps section SECN to SEGMENT s.
1308 void
insert_section_segment_map(Const_section_id secn,Unique_segment_info * s)1309 Layout::insert_section_segment_map(Const_section_id secn,
1310 				   Unique_segment_info *s)
1311 {
1312   gold_assert(this->unique_segment_for_sections_specified_);
1313   this->section_segment_map_[secn] = s;
1314 }
1315 
1316 // Handle a relocation section when doing a relocatable link.
1317 
1318 template<int size, bool big_endian>
1319 Output_section*
layout_reloc(Sized_relobj_file<size,big_endian> *,unsigned int,const elfcpp::Shdr<size,big_endian> & shdr,Output_section * data_section,Relocatable_relocs * rr)1320 Layout::layout_reloc(Sized_relobj_file<size, big_endian>*,
1321 		     unsigned int,
1322 		     const elfcpp::Shdr<size, big_endian>& shdr,
1323 		     Output_section* data_section,
1324 		     Relocatable_relocs* rr)
1325 {
1326   gold_assert(parameters->options().relocatable()
1327 	      || parameters->options().emit_relocs());
1328 
1329   int sh_type = shdr.get_sh_type();
1330 
1331   std::string name;
1332   if (sh_type == elfcpp::SHT_REL)
1333     name = ".rel";
1334   else if (sh_type == elfcpp::SHT_RELA)
1335     name = ".rela";
1336   else
1337     gold_unreachable();
1338   name += data_section->name();
1339 
1340   // If the output data section already has a reloc section, use that;
1341   // otherwise, make a new one.
1342   Output_section* os = data_section->reloc_section();
1343   if (os == NULL)
1344     {
1345       const char* n = this->namepool_.add(name.c_str(), true, NULL);
1346       os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1347 				     ORDER_INVALID, false);
1348       os->set_should_link_to_symtab();
1349       os->set_info_section(data_section);
1350       data_section->set_reloc_section(os);
1351     }
1352 
1353   Output_section_data* posd;
1354   if (sh_type == elfcpp::SHT_REL)
1355     {
1356       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1357       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1358 					   size,
1359 					   big_endian>(rr);
1360     }
1361   else if (sh_type == elfcpp::SHT_RELA)
1362     {
1363       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1364       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1365 					   size,
1366 					   big_endian>(rr);
1367     }
1368   else
1369     gold_unreachable();
1370 
1371   os->add_output_section_data(posd);
1372   rr->set_output_data(posd);
1373 
1374   return os;
1375 }
1376 
1377 // Handle a group section when doing a relocatable link.
1378 
1379 template<int size, bool big_endian>
1380 void
layout_group(Symbol_table * symtab,Sized_relobj_file<size,big_endian> * object,unsigned int,const char * group_section_name,const char * signature,const elfcpp::Shdr<size,big_endian> & shdr,elfcpp::Elf_Word flags,std::vector<unsigned int> * shndxes)1381 Layout::layout_group(Symbol_table* symtab,
1382 		     Sized_relobj_file<size, big_endian>* object,
1383 		     unsigned int,
1384 		     const char* group_section_name,
1385 		     const char* signature,
1386 		     const elfcpp::Shdr<size, big_endian>& shdr,
1387 		     elfcpp::Elf_Word flags,
1388 		     std::vector<unsigned int>* shndxes)
1389 {
1390   gold_assert(parameters->options().relocatable());
1391   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1392   group_section_name = this->namepool_.add(group_section_name, true, NULL);
1393   Output_section* os = this->make_output_section(group_section_name,
1394 						 elfcpp::SHT_GROUP,
1395 						 shdr.get_sh_flags(),
1396 						 ORDER_INVALID, false);
1397 
1398   // We need to find a symbol with the signature in the symbol table.
1399   // If we don't find one now, we need to look again later.
1400   Symbol* sym = symtab->lookup(signature, NULL);
1401   if (sym != NULL)
1402     os->set_info_symndx(sym);
1403   else
1404     {
1405       // Reserve some space to minimize reallocations.
1406       if (this->group_signatures_.empty())
1407 	this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1408 
1409       // We will wind up using a symbol whose name is the signature.
1410       // So just put the signature in the symbol name pool to save it.
1411       signature = symtab->canonicalize_name(signature);
1412       this->group_signatures_.push_back(Group_signature(os, signature));
1413     }
1414 
1415   os->set_should_link_to_symtab();
1416   os->set_entsize(4);
1417 
1418   section_size_type entry_count =
1419     convert_to_section_size_type(shdr.get_sh_size() / 4);
1420   Output_section_data* posd =
1421     new Output_data_group<size, big_endian>(object, entry_count, flags,
1422 					    shndxes);
1423   os->add_output_section_data(posd);
1424 }
1425 
1426 // Special GNU handling of sections name .eh_frame.  They will
1427 // normally hold exception frame data as defined by the C++ ABI
1428 // (http://codesourcery.com/cxx-abi/).
1429 
1430 template<int size, bool big_endian>
1431 Output_section*
layout_eh_frame(Sized_relobj_file<size,big_endian> * object,const unsigned char * symbols,off_t symbols_size,const unsigned char * symbol_names,off_t symbol_names_size,unsigned int shndx,const elfcpp::Shdr<size,big_endian> & shdr,unsigned int reloc_shndx,unsigned int reloc_type,off_t * off)1432 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1433 			const unsigned char* symbols,
1434 			off_t symbols_size,
1435 			const unsigned char* symbol_names,
1436 			off_t symbol_names_size,
1437 			unsigned int shndx,
1438 			const elfcpp::Shdr<size, big_endian>& shdr,
1439 			unsigned int reloc_shndx, unsigned int reloc_type,
1440 			off_t* off)
1441 {
1442   const unsigned int unwind_section_type =
1443       parameters->target().unwind_section_type();
1444 
1445   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1446 	      || shdr.get_sh_type() == unwind_section_type);
1447   gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1448 
1449   Output_section* os = this->make_eh_frame_section(object);
1450   if (os == NULL)
1451     return NULL;
1452 
1453   gold_assert(this->eh_frame_section_ == os);
1454 
1455   elfcpp::Elf_Xword orig_flags = os->flags();
1456 
1457   Eh_frame::Eh_frame_section_disposition disp =
1458       Eh_frame::EH_UNRECOGNIZED_SECTION;
1459   if (!parameters->incremental())
1460     {
1461       disp = this->eh_frame_data_->add_ehframe_input_section(object,
1462 							     symbols,
1463 							     symbols_size,
1464 							     symbol_names,
1465 							     symbol_names_size,
1466 							     shndx,
1467 							     reloc_shndx,
1468 							     reloc_type);
1469     }
1470 
1471   if (disp == Eh_frame::EH_OPTIMIZABLE_SECTION)
1472     {
1473       os->update_flags_for_input_section(shdr.get_sh_flags());
1474 
1475       // A writable .eh_frame section is a RELRO section.
1476       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1477 	  != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1478 	{
1479 	  os->set_is_relro();
1480 	  os->set_order(ORDER_RELRO);
1481 	}
1482 
1483       *off = -1;
1484       return os;
1485     }
1486 
1487   if (disp == Eh_frame::EH_END_MARKER_SECTION && !this->added_eh_frame_data_)
1488     {
1489       // We found the end marker section, so now we can add the set of
1490       // optimized sections to the output section.  We need to postpone
1491       // adding this until we've found a section we can optimize so that
1492       // the .eh_frame section in crtbeginT.o winds up at the start of
1493       // the output section.
1494       os->add_output_section_data(this->eh_frame_data_);
1495       this->added_eh_frame_data_ = true;
1496      }
1497 
1498   // We couldn't handle this .eh_frame section for some reason.
1499   // Add it as a normal section.
1500   bool saw_sections_clause = this->script_options_->saw_sections_clause();
1501   *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1502 			       reloc_shndx, saw_sections_clause);
1503   this->have_added_input_section_ = true;
1504 
1505   if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1506       != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1507     os->set_order(this->default_section_order(os, false));
1508 
1509   return os;
1510 }
1511 
1512 void
finalize_eh_frame_section()1513 Layout::finalize_eh_frame_section()
1514 {
1515   // If we never found an end marker section, we need to add the
1516   // optimized eh sections to the output section now.
1517   if (!parameters->incremental()
1518       && this->eh_frame_section_ != NULL
1519       && !this->added_eh_frame_data_)
1520     {
1521       this->eh_frame_section_->add_output_section_data(this->eh_frame_data_);
1522       this->added_eh_frame_data_ = true;
1523     }
1524 }
1525 
1526 // Create and return the magic .eh_frame section.  Create
1527 // .eh_frame_hdr also if appropriate.  OBJECT is the object with the
1528 // input .eh_frame section; it may be NULL.
1529 
1530 Output_section*
make_eh_frame_section(const Relobj * object)1531 Layout::make_eh_frame_section(const Relobj* object)
1532 {
1533   const unsigned int unwind_section_type =
1534       parameters->target().unwind_section_type();
1535 
1536   Output_section* os = this->choose_output_section(object, ".eh_frame",
1537 						   unwind_section_type,
1538 						   elfcpp::SHF_ALLOC, false,
1539 						   ORDER_EHFRAME, false, false,
1540 						   false);
1541   if (os == NULL)
1542     return NULL;
1543 
1544   if (this->eh_frame_section_ == NULL)
1545     {
1546       this->eh_frame_section_ = os;
1547       this->eh_frame_data_ = new Eh_frame();
1548 
1549       // For incremental linking, we do not optimize .eh_frame sections
1550       // or create a .eh_frame_hdr section.
1551       if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1552 	{
1553 	  Output_section* hdr_os =
1554 	    this->choose_output_section(NULL, ".eh_frame_hdr",
1555 					unwind_section_type,
1556 					elfcpp::SHF_ALLOC, false,
1557 					ORDER_EHFRAME, false, false,
1558 					false);
1559 
1560 	  if (hdr_os != NULL)
1561 	    {
1562 	      Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1563 							this->eh_frame_data_);
1564 	      hdr_os->add_output_section_data(hdr_posd);
1565 
1566 	      hdr_os->set_after_input_sections();
1567 
1568 	      if (!this->script_options_->saw_phdrs_clause())
1569 		{
1570 		  Output_segment* hdr_oseg;
1571 		  hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1572 						       elfcpp::PF_R);
1573 		  hdr_oseg->add_output_section_to_nonload(hdr_os,
1574 							  elfcpp::PF_R);
1575 		}
1576 
1577 	      this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1578 	    }
1579 	}
1580     }
1581 
1582   return os;
1583 }
1584 
1585 // Add an exception frame for a PLT.  This is called from target code.
1586 
1587 void
add_eh_frame_for_plt(Output_data * plt,const unsigned char * cie_data,size_t cie_length,const unsigned char * fde_data,size_t fde_length)1588 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1589 			     size_t cie_length, const unsigned char* fde_data,
1590 			     size_t fde_length)
1591 {
1592   if (parameters->incremental())
1593     {
1594       // FIXME: Maybe this could work some day....
1595       return;
1596     }
1597   Output_section* os = this->make_eh_frame_section(NULL);
1598   if (os == NULL)
1599     return;
1600   this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1601 					    fde_data, fde_length);
1602   if (!this->added_eh_frame_data_)
1603     {
1604       os->add_output_section_data(this->eh_frame_data_);
1605       this->added_eh_frame_data_ = true;
1606     }
1607 }
1608 
1609 // Remove all post-map .eh_frame information for a PLT.
1610 
1611 void
remove_eh_frame_for_plt(Output_data * plt,const unsigned char * cie_data,size_t cie_length)1612 Layout::remove_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1613 				size_t cie_length)
1614 {
1615   if (parameters->incremental())
1616     {
1617       // FIXME: Maybe this could work some day....
1618       return;
1619     }
1620   this->eh_frame_data_->remove_ehframe_for_plt(plt, cie_data, cie_length);
1621 }
1622 
1623 // Scan a .debug_info or .debug_types section, and add summary
1624 // information to the .gdb_index section.
1625 
1626 template<int size, bool big_endian>
1627 void
add_to_gdb_index(bool is_type_unit,Sized_relobj<size,big_endian> * object,const unsigned char * symbols,off_t symbols_size,unsigned int shndx,unsigned int reloc_shndx,unsigned int reloc_type)1628 Layout::add_to_gdb_index(bool is_type_unit,
1629 			 Sized_relobj<size, big_endian>* object,
1630 			 const unsigned char* symbols,
1631 			 off_t symbols_size,
1632 			 unsigned int shndx,
1633 			 unsigned int reloc_shndx,
1634 			 unsigned int reloc_type)
1635 {
1636   if (this->gdb_index_data_ == NULL)
1637     {
1638       Output_section* os = this->choose_output_section(NULL, ".gdb_index",
1639 						       elfcpp::SHT_PROGBITS, 0,
1640 						       false, ORDER_INVALID,
1641 						       false, false, false);
1642       if (os == NULL)
1643 	return;
1644 
1645       this->gdb_index_data_ = new Gdb_index(os);
1646       os->add_output_section_data(this->gdb_index_data_);
1647       os->set_after_input_sections();
1648     }
1649 
1650   this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
1651 					 symbols_size, shndx, reloc_shndx,
1652 					 reloc_type);
1653 }
1654 
1655 // Add POSD to an output section using NAME, TYPE, and FLAGS.  Return
1656 // the output section.
1657 
1658 Output_section*
add_output_section_data(const char * name,elfcpp::Elf_Word type,elfcpp::Elf_Xword flags,Output_section_data * posd,Output_section_order order,bool is_relro)1659 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1660 				elfcpp::Elf_Xword flags,
1661 				Output_section_data* posd,
1662 				Output_section_order order, bool is_relro)
1663 {
1664   Output_section* os = this->choose_output_section(NULL, name, type, flags,
1665 						   false, order, is_relro,
1666 						   false, false);
1667   if (os != NULL)
1668     os->add_output_section_data(posd);
1669   return os;
1670 }
1671 
1672 // Map section flags to segment flags.
1673 
1674 elfcpp::Elf_Word
section_flags_to_segment(elfcpp::Elf_Xword flags)1675 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1676 {
1677   elfcpp::Elf_Word ret = elfcpp::PF_R;
1678   if ((flags & elfcpp::SHF_WRITE) != 0)
1679     ret |= elfcpp::PF_W;
1680   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1681     ret |= elfcpp::PF_X;
1682   return ret;
1683 }
1684 
1685 // Make a new Output_section, and attach it to segments as
1686 // appropriate.  ORDER is the order in which this section should
1687 // appear in the output segment.  IS_RELRO is true if this is a relro
1688 // (read-only after relocations) section.
1689 
1690 Output_section*
make_output_section(const char * name,elfcpp::Elf_Word type,elfcpp::Elf_Xword flags,Output_section_order order,bool is_relro)1691 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1692 			    elfcpp::Elf_Xword flags,
1693 			    Output_section_order order, bool is_relro)
1694 {
1695   Output_section* os;
1696   if ((flags & elfcpp::SHF_ALLOC) == 0
1697       && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1698       && is_compressible_debug_section(name))
1699     os = new Output_compressed_section(&parameters->options(), name, type,
1700 				       flags);
1701   else if ((flags & elfcpp::SHF_ALLOC) == 0
1702 	   && parameters->options().strip_debug_non_line()
1703 	   && strcmp(".debug_abbrev", name) == 0)
1704     {
1705       os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1706 	  name, type, flags);
1707       if (this->debug_info_)
1708 	this->debug_info_->set_abbreviations(this->debug_abbrev_);
1709     }
1710   else if ((flags & elfcpp::SHF_ALLOC) == 0
1711 	   && parameters->options().strip_debug_non_line()
1712 	   && strcmp(".debug_info", name) == 0)
1713     {
1714       os = this->debug_info_ = new Output_reduced_debug_info_section(
1715 	  name, type, flags);
1716       if (this->debug_abbrev_)
1717 	this->debug_info_->set_abbreviations(this->debug_abbrev_);
1718     }
1719   else
1720     {
1721       // Sometimes .init_array*, .preinit_array* and .fini_array* do
1722       // not have correct section types.  Force them here.
1723       if (type == elfcpp::SHT_PROGBITS)
1724 	{
1725 	  if (is_prefix_of(".init_array", name))
1726 	    type = elfcpp::SHT_INIT_ARRAY;
1727 	  else if (is_prefix_of(".preinit_array", name))
1728 	    type = elfcpp::SHT_PREINIT_ARRAY;
1729 	  else if (is_prefix_of(".fini_array", name))
1730 	    type = elfcpp::SHT_FINI_ARRAY;
1731 	}
1732 
1733       // FIXME: const_cast is ugly.
1734       Target* target = const_cast<Target*>(&parameters->target());
1735       os = target->make_output_section(name, type, flags);
1736     }
1737 
1738   // With -z relro, we have to recognize the special sections by name.
1739   // There is no other way.
1740   bool is_relro_local = false;
1741   if (!this->script_options_->saw_sections_clause()
1742       && parameters->options().relro()
1743       && (flags & elfcpp::SHF_ALLOC) != 0
1744       && (flags & elfcpp::SHF_WRITE) != 0)
1745     {
1746       if (type == elfcpp::SHT_PROGBITS)
1747 	{
1748 	  if ((flags & elfcpp::SHF_TLS) != 0)
1749 	    is_relro = true;
1750 	  else if (strcmp(name, ".data.rel.ro") == 0)
1751 	    is_relro = true;
1752 	  else if (strcmp(name, ".data.rel.ro.local") == 0)
1753 	    {
1754 	      is_relro = true;
1755 	      is_relro_local = true;
1756 	    }
1757 	  else if (strcmp(name, ".ctors") == 0
1758 		   || strcmp(name, ".dtors") == 0
1759 		   || strcmp(name, ".jcr") == 0)
1760 	    is_relro = true;
1761 	}
1762       else if (type == elfcpp::SHT_INIT_ARRAY
1763 	       || type == elfcpp::SHT_FINI_ARRAY
1764 	       || type == elfcpp::SHT_PREINIT_ARRAY)
1765 	is_relro = true;
1766     }
1767 
1768   if (is_relro)
1769     os->set_is_relro();
1770 
1771   if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1772     order = this->default_section_order(os, is_relro_local);
1773 
1774   os->set_order(order);
1775 
1776   parameters->target().new_output_section(os);
1777 
1778   this->section_list_.push_back(os);
1779 
1780   // The GNU linker by default sorts some sections by priority, so we
1781   // do the same.  We need to know that this might happen before we
1782   // attach any input sections.
1783   if (!this->script_options_->saw_sections_clause()
1784       && !parameters->options().relocatable()
1785       && (strcmp(name, ".init_array") == 0
1786 	  || strcmp(name, ".fini_array") == 0
1787 	  || (!parameters->options().ctors_in_init_array()
1788 	      && (strcmp(name, ".ctors") == 0
1789 		  || strcmp(name, ".dtors") == 0))))
1790     os->set_may_sort_attached_input_sections();
1791 
1792   // The GNU linker by default sorts .text.{unlikely,exit,startup,hot}
1793   // sections before other .text sections.  We are compatible.  We
1794   // need to know that this might happen before we attach any input
1795   // sections.
1796   if (parameters->options().text_reorder()
1797       && !this->script_options_->saw_sections_clause()
1798       && !this->is_section_ordering_specified()
1799       && !parameters->options().relocatable()
1800       && strcmp(name, ".text") == 0)
1801     os->set_may_sort_attached_input_sections();
1802 
1803   // GNU linker sorts section by name with --sort-section=name.
1804   if (strcmp(parameters->options().sort_section(), "name") == 0)
1805       os->set_must_sort_attached_input_sections();
1806 
1807   // Check for .stab*str sections, as .stab* sections need to link to
1808   // them.
1809   if (type == elfcpp::SHT_STRTAB
1810       && !this->have_stabstr_section_
1811       && strncmp(name, ".stab", 5) == 0
1812       && strcmp(name + strlen(name) - 3, "str") == 0)
1813     this->have_stabstr_section_ = true;
1814 
1815   // During a full incremental link, we add patch space to most
1816   // PROGBITS and NOBITS sections.  Flag those that may be
1817   // arbitrarily padded.
1818   if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1819       && order != ORDER_INTERP
1820       && order != ORDER_INIT
1821       && order != ORDER_PLT
1822       && order != ORDER_FINI
1823       && order != ORDER_RELRO_LAST
1824       && order != ORDER_NON_RELRO_FIRST
1825       && strcmp(name, ".eh_frame") != 0
1826       && strcmp(name, ".ctors") != 0
1827       && strcmp(name, ".dtors") != 0
1828       && strcmp(name, ".jcr") != 0)
1829     {
1830       os->set_is_patch_space_allowed();
1831 
1832       // Certain sections require "holes" to be filled with
1833       // specific fill patterns.  These fill patterns may have
1834       // a minimum size, so we must prevent allocations from the
1835       // free list that leave a hole smaller than the minimum.
1836       if (strcmp(name, ".debug_info") == 0)
1837 	os->set_free_space_fill(new Output_fill_debug_info(false));
1838       else if (strcmp(name, ".debug_types") == 0)
1839 	os->set_free_space_fill(new Output_fill_debug_info(true));
1840       else if (strcmp(name, ".debug_line") == 0)
1841 	os->set_free_space_fill(new Output_fill_debug_line());
1842     }
1843 
1844   // If we have already attached the sections to segments, then we
1845   // need to attach this one now.  This happens for sections created
1846   // directly by the linker.
1847   if (this->sections_are_attached_)
1848     this->attach_section_to_segment(&parameters->target(), os);
1849 
1850   return os;
1851 }
1852 
1853 // Return the default order in which a section should be placed in an
1854 // output segment.  This function captures a lot of the ideas in
1855 // ld/scripttempl/elf.sc in the GNU linker.  Note that the order of a
1856 // linker created section is normally set when the section is created;
1857 // this function is used for input sections.
1858 
1859 Output_section_order
default_section_order(Output_section * os,bool is_relro_local)1860 Layout::default_section_order(Output_section* os, bool is_relro_local)
1861 {
1862   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1863   bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1864   bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1865   bool is_bss = false;
1866 
1867   switch (os->type())
1868     {
1869     default:
1870     case elfcpp::SHT_PROGBITS:
1871       break;
1872     case elfcpp::SHT_NOBITS:
1873       is_bss = true;
1874       break;
1875     case elfcpp::SHT_RELA:
1876     case elfcpp::SHT_REL:
1877       if (!is_write)
1878 	return ORDER_DYNAMIC_RELOCS;
1879       break;
1880     case elfcpp::SHT_HASH:
1881     case elfcpp::SHT_DYNAMIC:
1882     case elfcpp::SHT_SHLIB:
1883     case elfcpp::SHT_DYNSYM:
1884     case elfcpp::SHT_GNU_HASH:
1885     case elfcpp::SHT_GNU_verdef:
1886     case elfcpp::SHT_GNU_verneed:
1887     case elfcpp::SHT_GNU_versym:
1888       if (!is_write)
1889 	return ORDER_DYNAMIC_LINKER;
1890       break;
1891     case elfcpp::SHT_NOTE:
1892       return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1893     }
1894 
1895   if ((os->flags() & elfcpp::SHF_TLS) != 0)
1896     return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1897 
1898   if (!is_bss && !is_write)
1899     {
1900       if (is_execinstr)
1901 	{
1902 	  if (strcmp(os->name(), ".init") == 0)
1903 	    return ORDER_INIT;
1904 	  else if (strcmp(os->name(), ".fini") == 0)
1905 	    return ORDER_FINI;
1906 	  else if (parameters->options().keep_text_section_prefix())
1907 	    {
1908 	      // -z,keep-text-section-prefix introduces additional
1909 	      // output sections.
1910 	      if (strcmp(os->name(), ".text.hot") == 0)
1911 		return ORDER_TEXT_HOT;
1912 	      else if (strcmp(os->name(), ".text.startup") == 0)
1913 		return ORDER_TEXT_STARTUP;
1914 	      else if (strcmp(os->name(), ".text.exit") == 0)
1915 		return ORDER_TEXT_EXIT;
1916 	      else if (strcmp(os->name(), ".text.unlikely") == 0)
1917 		return ORDER_TEXT_UNLIKELY;
1918 	    }
1919 	}
1920       return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1921     }
1922 
1923   if (os->is_relro())
1924     return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1925 
1926   if (os->is_small_section())
1927     return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1928   if (os->is_large_section())
1929     return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1930 
1931   return is_bss ? ORDER_BSS : ORDER_DATA;
1932 }
1933 
1934 // Attach output sections to segments.  This is called after we have
1935 // seen all the input sections.
1936 
1937 void
attach_sections_to_segments(const Target * target)1938 Layout::attach_sections_to_segments(const Target* target)
1939 {
1940   for (Section_list::iterator p = this->section_list_.begin();
1941        p != this->section_list_.end();
1942        ++p)
1943     this->attach_section_to_segment(target, *p);
1944 
1945   this->sections_are_attached_ = true;
1946 }
1947 
1948 // Attach an output section to a segment.
1949 
1950 void
attach_section_to_segment(const Target * target,Output_section * os)1951 Layout::attach_section_to_segment(const Target* target, Output_section* os)
1952 {
1953   if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1954     this->unattached_section_list_.push_back(os);
1955   else
1956     this->attach_allocated_section_to_segment(target, os);
1957 }
1958 
1959 // Attach an allocated output section to a segment.
1960 
1961 void
attach_allocated_section_to_segment(const Target * target,Output_section * os)1962 Layout::attach_allocated_section_to_segment(const Target* target,
1963 					    Output_section* os)
1964 {
1965   elfcpp::Elf_Xword flags = os->flags();
1966   gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1967 
1968   if (parameters->options().relocatable())
1969     return;
1970 
1971   // If we have a SECTIONS clause, we can't handle the attachment to
1972   // segments until after we've seen all the sections.
1973   if (this->script_options_->saw_sections_clause())
1974     return;
1975 
1976   gold_assert(!this->script_options_->saw_phdrs_clause());
1977 
1978   // This output section goes into a PT_LOAD segment.
1979 
1980   elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1981 
1982   // If this output section's segment has extra flags that need to be set,
1983   // coming from a linker plugin, do that.
1984   seg_flags |= os->extra_segment_flags();
1985 
1986   // Check for --section-start.
1987   uint64_t addr;
1988   bool is_address_set = parameters->options().section_start(os->name(), &addr);
1989 
1990   // In general the only thing we really care about for PT_LOAD
1991   // segments is whether or not they are writable or executable,
1992   // so that is how we search for them.
1993   // Large data sections also go into their own PT_LOAD segment.
1994   // People who need segments sorted on some other basis will
1995   // have to use a linker script.
1996 
1997   Segment_list::const_iterator p;
1998   if (!os->is_unique_segment())
1999     {
2000       for (p = this->segment_list_.begin();
2001 	   p != this->segment_list_.end();
2002 	   ++p)
2003 	{
2004 	  if ((*p)->type() != elfcpp::PT_LOAD)
2005 	    continue;
2006 	  if ((*p)->is_unique_segment())
2007 	    continue;
2008 	  if (!parameters->options().omagic()
2009 	      && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
2010 	    continue;
2011 	  if ((target->isolate_execinstr() || parameters->options().rosegment())
2012 	      && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
2013 	    continue;
2014 	  // If -Tbss was specified, we need to separate the data and BSS
2015 	  // segments.
2016 	  if (parameters->options().user_set_Tbss())
2017 	    {
2018 	      if ((os->type() == elfcpp::SHT_NOBITS)
2019 		  == (*p)->has_any_data_sections())
2020 		continue;
2021 	    }
2022 	  if (os->is_large_data_section() && !(*p)->is_large_data_segment())
2023 	    continue;
2024 
2025 	  if (is_address_set)
2026 	    {
2027 	      if ((*p)->are_addresses_set())
2028 		continue;
2029 
2030 	      (*p)->add_initial_output_data(os);
2031 	      (*p)->update_flags_for_output_section(seg_flags);
2032 	      (*p)->set_addresses(addr, addr);
2033 	      break;
2034 	    }
2035 
2036 	  (*p)->add_output_section_to_load(this, os, seg_flags);
2037 	  break;
2038 	}
2039     }
2040 
2041   if (p == this->segment_list_.end()
2042       || os->is_unique_segment())
2043     {
2044       Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
2045 						       seg_flags);
2046       if (os->is_large_data_section())
2047 	oseg->set_is_large_data_segment();
2048       oseg->add_output_section_to_load(this, os, seg_flags);
2049       if (is_address_set)
2050 	oseg->set_addresses(addr, addr);
2051       // Check if segment should be marked unique.  For segments marked
2052       // unique by linker plugins, set the new alignment if specified.
2053       if (os->is_unique_segment())
2054 	{
2055 	  oseg->set_is_unique_segment();
2056 	  if (os->segment_alignment() != 0)
2057 	    oseg->set_minimum_p_align(os->segment_alignment());
2058 	}
2059     }
2060 
2061   // If we see a loadable SHT_NOTE section, we create a PT_NOTE
2062   // segment.
2063   if (os->type() == elfcpp::SHT_NOTE)
2064     {
2065       uint64_t os_align = os->addralign();
2066 
2067       // See if we already have an equivalent PT_NOTE segment.
2068       for (p = this->segment_list_.begin();
2069 	   p != segment_list_.end();
2070 	   ++p)
2071 	{
2072 	  if ((*p)->type() == elfcpp::PT_NOTE
2073 	      && (*p)->align() == os_align
2074 	      && (((*p)->flags() & elfcpp::PF_W)
2075 		  == (seg_flags & elfcpp::PF_W)))
2076 	    {
2077 	      (*p)->add_output_section_to_nonload(os, seg_flags);
2078 	      break;
2079 	    }
2080 	}
2081 
2082       if (p == this->segment_list_.end())
2083 	{
2084 	  Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
2085 							   seg_flags);
2086 	  oseg->add_output_section_to_nonload(os, seg_flags);
2087 	  oseg->set_align(os_align);
2088 	}
2089     }
2090 
2091   // If we see a loadable SHF_TLS section, we create a PT_TLS
2092   // segment.  There can only be one such segment.
2093   if ((flags & elfcpp::SHF_TLS) != 0)
2094     {
2095       if (this->tls_segment_ == NULL)
2096 	this->make_output_segment(elfcpp::PT_TLS, seg_flags);
2097       this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
2098     }
2099 
2100   // If -z relro is in effect, and we see a relro section, we create a
2101   // PT_GNU_RELRO segment.  There can only be one such segment.
2102   if (os->is_relro() && parameters->options().relro())
2103     {
2104       gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
2105       if (this->relro_segment_ == NULL)
2106 	this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
2107       this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
2108     }
2109 
2110   // If we see a section named .interp, put it into a PT_INTERP
2111   // segment.  This seems broken to me, but this is what GNU ld does,
2112   // and glibc expects it.
2113   if (strcmp(os->name(), ".interp") == 0
2114       && !this->script_options_->saw_phdrs_clause())
2115     {
2116       if (this->interp_segment_ == NULL)
2117 	this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
2118       else
2119 	gold_warning(_("multiple '.interp' sections in input files "
2120 		       "may cause confusing PT_INTERP segment"));
2121       this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
2122     }
2123 }
2124 
2125 // Make an output section for a script.
2126 
2127 Output_section*
make_output_section_for_script(const char * name,Script_sections::Section_type section_type)2128 Layout::make_output_section_for_script(
2129     const char* name,
2130     Script_sections::Section_type section_type)
2131 {
2132   name = this->namepool_.add(name, false, NULL);
2133   elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
2134   if (section_type == Script_sections::ST_NOLOAD)
2135     sh_flags = 0;
2136   Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
2137 						 sh_flags, ORDER_INVALID,
2138 						 false);
2139   os->set_found_in_sections_clause();
2140   if (section_type == Script_sections::ST_NOLOAD)
2141     os->set_is_noload();
2142   return os;
2143 }
2144 
2145 // Return the number of segments we expect to see.
2146 
2147 size_t
expected_segment_count() const2148 Layout::expected_segment_count() const
2149 {
2150   size_t ret = this->segment_list_.size();
2151 
2152   // If we didn't see a SECTIONS clause in a linker script, we should
2153   // already have the complete list of segments.  Otherwise we ask the
2154   // SECTIONS clause how many segments it expects, and add in the ones
2155   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
2156 
2157   if (!this->script_options_->saw_sections_clause())
2158     return ret;
2159   else
2160     {
2161       const Script_sections* ss = this->script_options_->script_sections();
2162       return ret + ss->expected_segment_count(this);
2163     }
2164 }
2165 
2166 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
2167 // is whether we saw a .note.GNU-stack section in the object file.
2168 // GNU_STACK_FLAGS is the section flags.  The flags give the
2169 // protection required for stack memory.  We record this in an
2170 // executable as a PT_GNU_STACK segment.  If an object file does not
2171 // have a .note.GNU-stack segment, we must assume that it is an old
2172 // object.  On some targets that will force an executable stack.
2173 
2174 void
layout_gnu_stack(bool seen_gnu_stack,uint64_t gnu_stack_flags,const Object * obj)2175 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
2176 			 const Object* obj)
2177 {
2178   if (!seen_gnu_stack)
2179     {
2180       this->input_without_gnu_stack_note_ = true;
2181       if (parameters->options().warn_execstack()
2182 	  && parameters->target().is_default_stack_executable())
2183 	gold_warning(_("%s: missing .note.GNU-stack section"
2184 		       " implies executable stack"),
2185 		     obj->name().c_str());
2186     }
2187   else
2188     {
2189       this->input_with_gnu_stack_note_ = true;
2190       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
2191 	{
2192 	  this->input_requires_executable_stack_ = true;
2193 	  if (parameters->options().warn_execstack())
2194 	    gold_warning(_("%s: requires executable stack"),
2195 			 obj->name().c_str());
2196 	}
2197     }
2198 }
2199 
2200 // Read a value with given size and endianness.
2201 
2202 static inline uint64_t
read_sized_value(size_t size,const unsigned char * buf,bool is_big_endian,const Object * object)2203 read_sized_value(size_t size, const unsigned char* buf, bool is_big_endian,
2204 		 const Object* object)
2205 {
2206   uint64_t val = 0;
2207   if (size == 4)
2208     {
2209       if (is_big_endian)
2210 	val = elfcpp::Swap<32, true>::readval(buf);
2211       else
2212 	val = elfcpp::Swap<32, false>::readval(buf);
2213     }
2214   else if (size == 8)
2215     {
2216       if (is_big_endian)
2217 	val = elfcpp::Swap<64, true>::readval(buf);
2218       else
2219 	val = elfcpp::Swap<64, false>::readval(buf);
2220     }
2221   else
2222     {
2223       gold_warning(_("%s: in .note.gnu.property section, "
2224 		     "pr_datasz must be 4 or 8"),
2225 		   object->name().c_str());
2226     }
2227   return val;
2228 }
2229 
2230 // Write a value with given size and endianness.
2231 
2232 static inline void
write_sized_value(uint64_t value,size_t size,unsigned char * buf,bool is_big_endian)2233 write_sized_value(uint64_t value, size_t size, unsigned char* buf,
2234 		  bool is_big_endian)
2235 {
2236   if (size == 4)
2237     {
2238       if (is_big_endian)
2239 	elfcpp::Swap<32, true>::writeval(buf, static_cast<uint32_t>(value));
2240       else
2241 	elfcpp::Swap<32, false>::writeval(buf, static_cast<uint32_t>(value));
2242     }
2243   else if (size == 8)
2244     {
2245       if (is_big_endian)
2246 	elfcpp::Swap<64, true>::writeval(buf, value);
2247       else
2248 	elfcpp::Swap<64, false>::writeval(buf, value);
2249     }
2250   else
2251     {
2252       // We will have already complained about this.
2253     }
2254 }
2255 
2256 // Handle the .note.gnu.property section at layout time.
2257 
2258 void
layout_gnu_property(unsigned int note_type,unsigned int pr_type,size_t pr_datasz,const unsigned char * pr_data,const Object * object)2259 Layout::layout_gnu_property(unsigned int note_type,
2260 			    unsigned int pr_type,
2261 			    size_t pr_datasz,
2262 			    const unsigned char* pr_data,
2263 			    const Object* object)
2264 {
2265   // We currently support only the one note type.
2266   gold_assert(note_type == elfcpp::NT_GNU_PROPERTY_TYPE_0);
2267 
2268   if (pr_type >= elfcpp::GNU_PROPERTY_LOPROC
2269       && pr_type < elfcpp::GNU_PROPERTY_HIPROC)
2270     {
2271       // Target-dependent property value; call the target to record.
2272       const int size = parameters->target().get_size();
2273       const bool is_big_endian = parameters->target().is_big_endian();
2274       if (size == 32)
2275 	{
2276 	  if (is_big_endian)
2277 	    {
2278 #ifdef HAVE_TARGET_32_BIG
2279 	      parameters->sized_target<32, true>()->
2280 		  record_gnu_property(note_type, pr_type, pr_datasz, pr_data,
2281 				      object);
2282 #else
2283 	      gold_unreachable();
2284 #endif
2285 	    }
2286 	  else
2287 	    {
2288 #ifdef HAVE_TARGET_32_LITTLE
2289 	      parameters->sized_target<32, false>()->
2290 		  record_gnu_property(note_type, pr_type, pr_datasz, pr_data,
2291 				      object);
2292 #else
2293 	      gold_unreachable();
2294 #endif
2295 	    }
2296 	}
2297       else if (size == 64)
2298 	{
2299 	  if (is_big_endian)
2300 	    {
2301 #ifdef HAVE_TARGET_64_BIG
2302 	      parameters->sized_target<64, true>()->
2303 		  record_gnu_property(note_type, pr_type, pr_datasz, pr_data,
2304 				      object);
2305 #else
2306 	      gold_unreachable();
2307 #endif
2308 	    }
2309 	  else
2310 	    {
2311 #ifdef HAVE_TARGET_64_LITTLE
2312 	      parameters->sized_target<64, false>()->
2313 		  record_gnu_property(note_type, pr_type, pr_datasz, pr_data,
2314 				      object);
2315 #else
2316 	      gold_unreachable();
2317 #endif
2318 	    }
2319 	}
2320       else
2321 	gold_unreachable();
2322       return;
2323     }
2324 
2325   Gnu_properties::iterator pprop = this->gnu_properties_.find(pr_type);
2326   if (pprop == this->gnu_properties_.end())
2327     {
2328       Gnu_property prop;
2329       prop.pr_datasz = pr_datasz;
2330       prop.pr_data = new unsigned char[pr_datasz];
2331       memcpy(prop.pr_data, pr_data, pr_datasz);
2332       this->gnu_properties_[pr_type] = prop;
2333     }
2334   else
2335     {
2336       const bool is_big_endian = parameters->target().is_big_endian();
2337       switch (pr_type)
2338 	{
2339 	case elfcpp::GNU_PROPERTY_STACK_SIZE:
2340 	  // Record the maximum value seen.
2341 	  {
2342 	    uint64_t val1 = read_sized_value(pprop->second.pr_datasz,
2343 					     pprop->second.pr_data,
2344 					     is_big_endian, object);
2345 	    uint64_t val2 = read_sized_value(pr_datasz, pr_data,
2346 					     is_big_endian, object);
2347 	    if (val2 > val1)
2348 	      write_sized_value(val2, pprop->second.pr_datasz,
2349 				pprop->second.pr_data, is_big_endian);
2350 	  }
2351 	  break;
2352 	case elfcpp::GNU_PROPERTY_NO_COPY_ON_PROTECTED:
2353 	  // No data to merge.
2354 	  break;
2355 	default:
2356 	  gold_warning(_("%s: unknown program property type %d "
2357 			 "in .note.gnu.property section"),
2358 		       object->name().c_str(), pr_type);
2359 	}
2360     }
2361 }
2362 
2363 // Merge per-object properties with program properties.
2364 // This lets the target identify objects that are missing certain
2365 // properties, in cases where properties must be ANDed together.
2366 
2367 void
merge_gnu_properties(const Object * object)2368 Layout::merge_gnu_properties(const Object* object)
2369 {
2370   const int size = parameters->target().get_size();
2371   const bool is_big_endian = parameters->target().is_big_endian();
2372   if (size == 32)
2373     {
2374       if (is_big_endian)
2375 	{
2376 #ifdef HAVE_TARGET_32_BIG
2377 	  parameters->sized_target<32, true>()->merge_gnu_properties(object);
2378 #else
2379 	  gold_unreachable();
2380 #endif
2381 	}
2382       else
2383 	{
2384 #ifdef HAVE_TARGET_32_LITTLE
2385 	  parameters->sized_target<32, false>()->merge_gnu_properties(object);
2386 #else
2387 	  gold_unreachable();
2388 #endif
2389 	}
2390     }
2391   else if (size == 64)
2392     {
2393       if (is_big_endian)
2394 	{
2395 #ifdef HAVE_TARGET_64_BIG
2396 	  parameters->sized_target<64, true>()->merge_gnu_properties(object);
2397 #else
2398 	  gold_unreachable();
2399 #endif
2400 	}
2401       else
2402 	{
2403 #ifdef HAVE_TARGET_64_LITTLE
2404 	  parameters->sized_target<64, false>()->merge_gnu_properties(object);
2405 #else
2406 	  gold_unreachable();
2407 #endif
2408 	}
2409     }
2410   else
2411     gold_unreachable();
2412 }
2413 
2414 // Add a target-specific property for the output .note.gnu.property section.
2415 
2416 void
add_gnu_property(unsigned int note_type,unsigned int pr_type,size_t pr_datasz,const unsigned char * pr_data)2417 Layout::add_gnu_property(unsigned int note_type,
2418 			 unsigned int pr_type,
2419 			 size_t pr_datasz,
2420 			 const unsigned char* pr_data)
2421 {
2422   gold_assert(note_type == elfcpp::NT_GNU_PROPERTY_TYPE_0);
2423 
2424   Gnu_property prop;
2425   prop.pr_datasz = pr_datasz;
2426   prop.pr_data = new unsigned char[pr_datasz];
2427   memcpy(prop.pr_data, pr_data, pr_datasz);
2428   this->gnu_properties_[pr_type] = prop;
2429 }
2430 
2431 // Create automatic note sections.
2432 
2433 void
create_notes()2434 Layout::create_notes()
2435 {
2436   this->create_gnu_properties_note();
2437   this->create_gold_note();
2438   this->create_stack_segment();
2439   this->create_build_id();
2440 }
2441 
2442 // Create the dynamic sections which are needed before we read the
2443 // relocs.
2444 
2445 void
create_initial_dynamic_sections(Symbol_table * symtab)2446 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
2447 {
2448   if (parameters->doing_static_link())
2449     return;
2450 
2451   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
2452 						       elfcpp::SHT_DYNAMIC,
2453 						       (elfcpp::SHF_ALLOC
2454 							| elfcpp::SHF_WRITE),
2455 						       false, ORDER_RELRO,
2456 						       true, false, false);
2457 
2458   // A linker script may discard .dynamic, so check for NULL.
2459   if (this->dynamic_section_ != NULL)
2460     {
2461       this->dynamic_symbol_ =
2462 	symtab->define_in_output_data("_DYNAMIC", NULL,
2463 				      Symbol_table::PREDEFINED,
2464 				      this->dynamic_section_, 0, 0,
2465 				      elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
2466 				      elfcpp::STV_HIDDEN, 0, false, false);
2467 
2468       this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
2469 
2470       this->dynamic_section_->add_output_section_data(this->dynamic_data_);
2471     }
2472 }
2473 
2474 // For each output section whose name can be represented as C symbol,
2475 // define __start and __stop symbols for the section.  This is a GNU
2476 // extension.
2477 
2478 void
define_section_symbols(Symbol_table * symtab)2479 Layout::define_section_symbols(Symbol_table* symtab)
2480 {
2481   const elfcpp::STV visibility = parameters->options().start_stop_visibility_enum();
2482   for (Section_list::const_iterator p = this->section_list_.begin();
2483        p != this->section_list_.end();
2484        ++p)
2485     {
2486       const char* const name = (*p)->name();
2487       if (is_cident(name))
2488 	{
2489 	  const std::string name_string(name);
2490 	  const std::string start_name(cident_section_start_prefix
2491 				       + name_string);
2492 	  const std::string stop_name(cident_section_stop_prefix
2493 				      + name_string);
2494 
2495 	  symtab->define_in_output_data(start_name.c_str(),
2496 					NULL, // version
2497 					Symbol_table::PREDEFINED,
2498 					*p,
2499 					0, // value
2500 					0, // symsize
2501 					elfcpp::STT_NOTYPE,
2502 					elfcpp::STB_GLOBAL,
2503 					visibility,
2504 					0, // nonvis
2505 					false, // offset_is_from_end
2506 					true); // only_if_ref
2507 
2508 	  symtab->define_in_output_data(stop_name.c_str(),
2509 					NULL, // version
2510 					Symbol_table::PREDEFINED,
2511 					*p,
2512 					0, // value
2513 					0, // symsize
2514 					elfcpp::STT_NOTYPE,
2515 					elfcpp::STB_GLOBAL,
2516 					visibility,
2517 					0, // nonvis
2518 					true, // offset_is_from_end
2519 					true); // only_if_ref
2520 	}
2521     }
2522 }
2523 
2524 // Define symbols for group signatures.
2525 
2526 void
define_group_signatures(Symbol_table * symtab)2527 Layout::define_group_signatures(Symbol_table* symtab)
2528 {
2529   for (Group_signatures::iterator p = this->group_signatures_.begin();
2530        p != this->group_signatures_.end();
2531        ++p)
2532     {
2533       Symbol* sym = symtab->lookup(p->signature, NULL);
2534       if (sym != NULL)
2535 	p->section->set_info_symndx(sym);
2536       else
2537 	{
2538 	  // Force the name of the group section to the group
2539 	  // signature, and use the group's section symbol as the
2540 	  // signature symbol.
2541 	  if (strcmp(p->section->name(), p->signature) != 0)
2542 	    {
2543 	      const char* name = this->namepool_.add(p->signature,
2544 						     true, NULL);
2545 	      p->section->set_name(name);
2546 	    }
2547 	  p->section->set_needs_symtab_index();
2548 	  p->section->set_info_section_symndx(p->section);
2549 	}
2550     }
2551 
2552   this->group_signatures_.clear();
2553 }
2554 
2555 // Find the first read-only PT_LOAD segment, creating one if
2556 // necessary.
2557 
2558 Output_segment*
find_first_load_seg(const Target * target)2559 Layout::find_first_load_seg(const Target* target)
2560 {
2561   Output_segment* best = NULL;
2562   for (Segment_list::const_iterator p = this->segment_list_.begin();
2563        p != this->segment_list_.end();
2564        ++p)
2565     {
2566       if ((*p)->type() == elfcpp::PT_LOAD
2567 	  && ((*p)->flags() & elfcpp::PF_R) != 0
2568 	  && (parameters->options().omagic()
2569 	      || ((*p)->flags() & elfcpp::PF_W) == 0)
2570 	  && (!target->isolate_execinstr()
2571 	      || ((*p)->flags() & elfcpp::PF_X) == 0))
2572 	{
2573 	  if (best == NULL || this->segment_precedes(*p, best))
2574 	    best = *p;
2575 	}
2576     }
2577   if (best != NULL)
2578     return best;
2579 
2580   gold_assert(!this->script_options_->saw_phdrs_clause());
2581 
2582   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
2583 						       elfcpp::PF_R);
2584   return load_seg;
2585 }
2586 
2587 // Save states of all current output segments.  Store saved states
2588 // in SEGMENT_STATES.
2589 
2590 void
save_segments(Segment_states * segment_states)2591 Layout::save_segments(Segment_states* segment_states)
2592 {
2593   for (Segment_list::const_iterator p = this->segment_list_.begin();
2594        p != this->segment_list_.end();
2595        ++p)
2596     {
2597       Output_segment* segment = *p;
2598       // Shallow copy.
2599       Output_segment* copy = new Output_segment(*segment);
2600       (*segment_states)[segment] = copy;
2601     }
2602 }
2603 
2604 // Restore states of output segments and delete any segment not found in
2605 // SEGMENT_STATES.
2606 
2607 void
restore_segments(const Segment_states * segment_states)2608 Layout::restore_segments(const Segment_states* segment_states)
2609 {
2610   // Go through the segment list and remove any segment added in the
2611   // relaxation loop.
2612   this->tls_segment_ = NULL;
2613   this->relro_segment_ = NULL;
2614   Segment_list::iterator list_iter = this->segment_list_.begin();
2615   while (list_iter != this->segment_list_.end())
2616     {
2617       Output_segment* segment = *list_iter;
2618       Segment_states::const_iterator states_iter =
2619 	  segment_states->find(segment);
2620       if (states_iter != segment_states->end())
2621 	{
2622 	  const Output_segment* copy = states_iter->second;
2623 	  // Shallow copy to restore states.
2624 	  *segment = *copy;
2625 
2626 	  // Also fix up TLS and RELRO segment pointers as appropriate.
2627 	  if (segment->type() == elfcpp::PT_TLS)
2628 	    this->tls_segment_ = segment;
2629 	  else if (segment->type() == elfcpp::PT_GNU_RELRO)
2630 	    this->relro_segment_ = segment;
2631 
2632 	  ++list_iter;
2633 	}
2634       else
2635 	{
2636 	  list_iter = this->segment_list_.erase(list_iter);
2637 	  // This is a segment created during section layout.  It should be
2638 	  // safe to remove it since we should have removed all pointers to it.
2639 	  delete segment;
2640 	}
2641     }
2642 }
2643 
2644 // Clean up after relaxation so that sections can be laid out again.
2645 
2646 void
clean_up_after_relaxation()2647 Layout::clean_up_after_relaxation()
2648 {
2649   // Restore the segments to point state just prior to the relaxation loop.
2650   Script_sections* script_section = this->script_options_->script_sections();
2651   script_section->release_segments();
2652   this->restore_segments(this->segment_states_);
2653 
2654   // Reset section addresses and file offsets
2655   for (Section_list::iterator p = this->section_list_.begin();
2656        p != this->section_list_.end();
2657        ++p)
2658     {
2659       (*p)->restore_states();
2660 
2661       // If an input section changes size because of relaxation,
2662       // we need to adjust the section offsets of all input sections.
2663       // after such a section.
2664       if ((*p)->section_offsets_need_adjustment())
2665 	(*p)->adjust_section_offsets();
2666 
2667       (*p)->reset_address_and_file_offset();
2668     }
2669 
2670   // Reset special output object address and file offsets.
2671   for (Data_list::iterator p = this->special_output_list_.begin();
2672        p != this->special_output_list_.end();
2673        ++p)
2674     (*p)->reset_address_and_file_offset();
2675 
2676   // A linker script may have created some output section data objects.
2677   // They are useless now.
2678   for (Output_section_data_list::const_iterator p =
2679 	 this->script_output_section_data_list_.begin();
2680        p != this->script_output_section_data_list_.end();
2681        ++p)
2682     delete *p;
2683   this->script_output_section_data_list_.clear();
2684 
2685   // Special-case fill output objects are recreated each time through
2686   // the relaxation loop.
2687   this->reset_relax_output();
2688 }
2689 
2690 void
reset_relax_output()2691 Layout::reset_relax_output()
2692 {
2693   for (Data_list::const_iterator p = this->relax_output_list_.begin();
2694        p != this->relax_output_list_.end();
2695        ++p)
2696     delete *p;
2697   this->relax_output_list_.clear();
2698 }
2699 
2700 // Prepare for relaxation.
2701 
2702 void
prepare_for_relaxation()2703 Layout::prepare_for_relaxation()
2704 {
2705   // Create an relaxation debug check if in debugging mode.
2706   if (is_debugging_enabled(DEBUG_RELAXATION))
2707     this->relaxation_debug_check_ = new Relaxation_debug_check();
2708 
2709   // Save segment states.
2710   this->segment_states_ = new Segment_states();
2711   this->save_segments(this->segment_states_);
2712 
2713   for(Section_list::const_iterator p = this->section_list_.begin();
2714       p != this->section_list_.end();
2715       ++p)
2716     (*p)->save_states();
2717 
2718   if (is_debugging_enabled(DEBUG_RELAXATION))
2719     this->relaxation_debug_check_->check_output_data_for_reset_values(
2720 	this->section_list_, this->special_output_list_,
2721 	this->relax_output_list_);
2722 
2723   // Also enable recording of output section data from scripts.
2724   this->record_output_section_data_from_script_ = true;
2725 }
2726 
2727 // If the user set the address of the text segment, that may not be
2728 // compatible with putting the segment headers and file headers into
2729 // that segment.  For isolate_execinstr() targets, it's the rodata
2730 // segment rather than text where we might put the headers.
2731 static inline bool
load_seg_unusable_for_headers(const Target * target)2732 load_seg_unusable_for_headers(const Target* target)
2733 {
2734   const General_options& options = parameters->options();
2735   if (target->isolate_execinstr())
2736     return (options.user_set_Trodata_segment()
2737 	    && options.Trodata_segment() % target->abi_pagesize() != 0);
2738   else
2739     return (options.user_set_Ttext()
2740 	    && options.Ttext() % target->abi_pagesize() != 0);
2741 }
2742 
2743 // Relaxation loop body:  If target has no relaxation, this runs only once
2744 // Otherwise, the target relaxation hook is called at the end of
2745 // each iteration.  If the hook returns true, it means re-layout of
2746 // section is required.
2747 //
2748 // The number of segments created by a linking script without a PHDRS
2749 // clause may be affected by section sizes and alignments.  There is
2750 // a remote chance that relaxation causes different number of PT_LOAD
2751 // segments are created and sections are attached to different segments.
2752 // Therefore, we always throw away all segments created during section
2753 // layout.  In order to be able to restart the section layout, we keep
2754 // a copy of the segment list right before the relaxation loop and use
2755 // that to restore the segments.
2756 //
2757 // PASS is the current relaxation pass number.
2758 // SYMTAB is a symbol table.
2759 // PLOAD_SEG is the address of a pointer for the load segment.
2760 // PHDR_SEG is a pointer to the PHDR segment.
2761 // SEGMENT_HEADERS points to the output segment header.
2762 // FILE_HEADER points to the output file header.
2763 // PSHNDX is the address to store the output section index.
2764 
2765 off_t inline
relaxation_loop_body(int pass,Target * target,Symbol_table * symtab,Output_segment ** pload_seg,Output_segment * phdr_seg,Output_segment_headers * segment_headers,Output_file_header * file_header,unsigned int * pshndx)2766 Layout::relaxation_loop_body(
2767     int pass,
2768     Target* target,
2769     Symbol_table* symtab,
2770     Output_segment** pload_seg,
2771     Output_segment* phdr_seg,
2772     Output_segment_headers* segment_headers,
2773     Output_file_header* file_header,
2774     unsigned int* pshndx)
2775 {
2776   // If this is not the first iteration, we need to clean up after
2777   // relaxation so that we can lay out the sections again.
2778   if (pass != 0)
2779     this->clean_up_after_relaxation();
2780 
2781   // If there is a SECTIONS clause, put all the input sections into
2782   // the required order.
2783   Output_segment* load_seg;
2784   if (this->script_options_->saw_sections_clause())
2785     load_seg = this->set_section_addresses_from_script(symtab);
2786   else if (parameters->options().relocatable())
2787     load_seg = NULL;
2788   else
2789     load_seg = this->find_first_load_seg(target);
2790 
2791   if (parameters->options().oformat_enum()
2792       != General_options::OBJECT_FORMAT_ELF)
2793     load_seg = NULL;
2794 
2795   if (load_seg_unusable_for_headers(target))
2796     {
2797       load_seg = NULL;
2798       phdr_seg = NULL;
2799     }
2800 
2801   gold_assert(phdr_seg == NULL
2802 	      || load_seg != NULL
2803 	      || this->script_options_->saw_sections_clause());
2804 
2805   // If the address of the load segment we found has been set by
2806   // --section-start rather than by a script, then adjust the VMA and
2807   // LMA downward if possible to include the file and section headers.
2808   uint64_t header_gap = 0;
2809   if (load_seg != NULL
2810       && load_seg->are_addresses_set()
2811       && !this->script_options_->saw_sections_clause()
2812       && !parameters->options().relocatable())
2813     {
2814       file_header->finalize_data_size();
2815       segment_headers->finalize_data_size();
2816       size_t sizeof_headers = (file_header->data_size()
2817 			       + segment_headers->data_size());
2818       const uint64_t abi_pagesize = target->abi_pagesize();
2819       uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2820       hdr_paddr &= ~(abi_pagesize - 1);
2821       uint64_t subtract = load_seg->paddr() - hdr_paddr;
2822       if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2823 	load_seg = NULL;
2824       else
2825 	{
2826 	  load_seg->set_addresses(load_seg->vaddr() - subtract,
2827 				  load_seg->paddr() - subtract);
2828 	  header_gap = subtract - sizeof_headers;
2829 	}
2830     }
2831 
2832   // Lay out the segment headers.
2833   if (!parameters->options().relocatable())
2834     {
2835       gold_assert(segment_headers != NULL);
2836       if (header_gap != 0 && load_seg != NULL)
2837 	{
2838 	  Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2839 	  load_seg->add_initial_output_data(z);
2840 	}
2841       if (load_seg != NULL)
2842 	load_seg->add_initial_output_data(segment_headers);
2843       if (phdr_seg != NULL)
2844 	phdr_seg->add_initial_output_data(segment_headers);
2845     }
2846 
2847   // Lay out the file header.
2848   if (load_seg != NULL)
2849     load_seg->add_initial_output_data(file_header);
2850 
2851   if (this->script_options_->saw_phdrs_clause()
2852       && !parameters->options().relocatable())
2853     {
2854       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2855       // clause in a linker script.
2856       Script_sections* ss = this->script_options_->script_sections();
2857       ss->put_headers_in_phdrs(file_header, segment_headers);
2858     }
2859 
2860   // We set the output section indexes in set_segment_offsets and
2861   // set_section_indexes.
2862   *pshndx = 1;
2863 
2864   // Set the file offsets of all the segments, and all the sections
2865   // they contain.
2866   off_t off;
2867   if (!parameters->options().relocatable())
2868     off = this->set_segment_offsets(target, load_seg, pshndx);
2869   else
2870     off = this->set_relocatable_section_offsets(file_header, pshndx);
2871 
2872    // Verify that the dummy relaxation does not change anything.
2873   if (is_debugging_enabled(DEBUG_RELAXATION))
2874     {
2875       if (pass == 0)
2876 	this->relaxation_debug_check_->read_sections(this->section_list_);
2877       else
2878 	this->relaxation_debug_check_->verify_sections(this->section_list_);
2879     }
2880 
2881   *pload_seg = load_seg;
2882   return off;
2883 }
2884 
2885 // Search the list of patterns and find the position of the given section
2886 // name in the output section.  If the section name matches a glob
2887 // pattern and a non-glob name, then the non-glob position takes
2888 // precedence.  Return 0 if no match is found.
2889 
2890 unsigned int
find_section_order_index(const std::string & section_name)2891 Layout::find_section_order_index(const std::string& section_name)
2892 {
2893   Unordered_map<std::string, unsigned int>::iterator map_it;
2894   map_it = this->input_section_position_.find(section_name);
2895   if (map_it != this->input_section_position_.end())
2896     return map_it->second;
2897 
2898   // Absolute match failed.  Linear search the glob patterns.
2899   std::vector<std::string>::iterator it;
2900   for (it = this->input_section_glob_.begin();
2901        it != this->input_section_glob_.end();
2902        ++it)
2903     {
2904        if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2905 	 {
2906 	   map_it = this->input_section_position_.find(*it);
2907 	   gold_assert(map_it != this->input_section_position_.end());
2908 	   return map_it->second;
2909 	 }
2910     }
2911   return 0;
2912 }
2913 
2914 // Read the sequence of input sections from the file specified with
2915 // option --section-ordering-file.
2916 
2917 void
read_layout_from_file()2918 Layout::read_layout_from_file()
2919 {
2920   const char* filename = parameters->options().section_ordering_file();
2921   std::ifstream in;
2922   std::string line;
2923 
2924   in.open(filename);
2925   if (!in)
2926     gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2927 	       filename, strerror(errno));
2928 
2929   File_read::record_file_read(filename);
2930 
2931   std::getline(in, line);   // this chops off the trailing \n, if any
2932   unsigned int position = 1;
2933   this->set_section_ordering_specified();
2934 
2935   while (in)
2936     {
2937       if (!line.empty() && line[line.length() - 1] == '\r')   // Windows
2938 	line.resize(line.length() - 1);
2939       // Ignore comments, beginning with '#'
2940       if (line[0] == '#')
2941 	{
2942 	  std::getline(in, line);
2943 	  continue;
2944 	}
2945       this->input_section_position_[line] = position;
2946       // Store all glob patterns in a vector.
2947       if (is_wildcard_string(line.c_str()))
2948 	this->input_section_glob_.push_back(line);
2949       position++;
2950       std::getline(in, line);
2951     }
2952 }
2953 
2954 // Finalize the layout.  When this is called, we have created all the
2955 // output sections and all the output segments which are based on
2956 // input sections.  We have several things to do, and we have to do
2957 // them in the right order, so that we get the right results correctly
2958 // and efficiently.
2959 
2960 // 1) Finalize the list of output segments and create the segment
2961 // table header.
2962 
2963 // 2) Finalize the dynamic symbol table and associated sections.
2964 
2965 // 3) Determine the final file offset of all the output segments.
2966 
2967 // 4) Determine the final file offset of all the SHF_ALLOC output
2968 // sections.
2969 
2970 // 5) Create the symbol table sections and the section name table
2971 // section.
2972 
2973 // 6) Finalize the symbol table: set symbol values to their final
2974 // value and make a final determination of which symbols are going
2975 // into the output symbol table.
2976 
2977 // 7) Create the section table header.
2978 
2979 // 8) Determine the final file offset of all the output sections which
2980 // are not SHF_ALLOC, including the section table header.
2981 
2982 // 9) Finalize the ELF file header.
2983 
2984 // This function returns the size of the output file.
2985 
2986 off_t
finalize(const Input_objects * input_objects,Symbol_table * symtab,Target * target,const Task * task)2987 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2988 		 Target* target, const Task* task)
2989 {
2990   unsigned int local_dynamic_count = 0;
2991   unsigned int forced_local_dynamic_count = 0;
2992 
2993   target->finalize_sections(this, input_objects, symtab);
2994 
2995   this->count_local_symbols(task, input_objects);
2996 
2997   this->link_stabs_sections();
2998 
2999   Output_segment* phdr_seg = NULL;
3000   if (!parameters->options().relocatable() && !parameters->doing_static_link())
3001     {
3002       // There was a dynamic object in the link.  We need to create
3003       // some information for the dynamic linker.
3004 
3005       // Create the PT_PHDR segment which will hold the program
3006       // headers.
3007       if (!this->script_options_->saw_phdrs_clause())
3008 	phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
3009 
3010       // Create the dynamic symbol table, including the hash table.
3011       Output_section* dynstr;
3012       std::vector<Symbol*> dynamic_symbols;
3013       Versions versions(*this->script_options()->version_script_info(),
3014 			&this->dynpool_);
3015       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
3016 				  &local_dynamic_count,
3017 				  &forced_local_dynamic_count,
3018 				  &dynamic_symbols,
3019 				  &versions);
3020 
3021       // Create the .interp section to hold the name of the
3022       // interpreter, and put it in a PT_INTERP segment.  Don't do it
3023       // if we saw a .interp section in an input file.
3024       if ((!parameters->options().shared()
3025 	   || parameters->options().dynamic_linker() != NULL)
3026 	  && this->interp_segment_ == NULL)
3027 	this->create_interp(target);
3028 
3029       // Finish the .dynamic section to hold the dynamic data, and put
3030       // it in a PT_DYNAMIC segment.
3031       this->finish_dynamic_section(input_objects, symtab);
3032 
3033       // We should have added everything we need to the dynamic string
3034       // table.
3035       this->dynpool_.set_string_offsets();
3036 
3037       // Create the version sections.  We can't do this until the
3038       // dynamic string table is complete.
3039       this->create_version_sections(&versions, symtab,
3040 				    (local_dynamic_count
3041 				     + forced_local_dynamic_count),
3042 				    dynamic_symbols, dynstr);
3043 
3044       // Set the size of the _DYNAMIC symbol.  We can't do this until
3045       // after we call create_version_sections.
3046       this->set_dynamic_symbol_size(symtab);
3047     }
3048 
3049   // Create segment headers.
3050   Output_segment_headers* segment_headers =
3051     (parameters->options().relocatable()
3052      ? NULL
3053      : new Output_segment_headers(this->segment_list_));
3054 
3055   // Lay out the file header.
3056   Output_file_header* file_header = new Output_file_header(target, symtab,
3057 							   segment_headers);
3058 
3059   this->special_output_list_.push_back(file_header);
3060   if (segment_headers != NULL)
3061     this->special_output_list_.push_back(segment_headers);
3062 
3063   // Find approriate places for orphan output sections if we are using
3064   // a linker script.
3065   if (this->script_options_->saw_sections_clause())
3066     this->place_orphan_sections_in_script();
3067 
3068   Output_segment* load_seg;
3069   off_t off;
3070   unsigned int shndx;
3071   int pass = 0;
3072 
3073   // Take a snapshot of the section layout as needed.
3074   if (target->may_relax())
3075     this->prepare_for_relaxation();
3076 
3077   // Run the relaxation loop to lay out sections.
3078   do
3079     {
3080       off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
3081 				       phdr_seg, segment_headers, file_header,
3082 				       &shndx);
3083       pass++;
3084     }
3085   while (target->may_relax()
3086 	 && target->relax(pass, input_objects, symtab, this, task));
3087 
3088   // If there is a load segment that contains the file and program headers,
3089   // provide a symbol __ehdr_start pointing there.
3090   // A program can use this to examine itself robustly.
3091   Symbol *ehdr_start = symtab->lookup("__ehdr_start");
3092   if (ehdr_start != NULL && ehdr_start->is_predefined())
3093     {
3094       if (load_seg != NULL)
3095 	ehdr_start->set_output_segment(load_seg, Symbol::SEGMENT_START);
3096       else
3097 	ehdr_start->set_undefined();
3098     }
3099 
3100   // Set the file offsets of all the non-data sections we've seen so
3101   // far which don't have to wait for the input sections.  We need
3102   // this in order to finalize local symbols in non-allocated
3103   // sections.
3104   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
3105 
3106   // Set the section indexes of all unallocated sections seen so far,
3107   // in case any of them are somehow referenced by a symbol.
3108   shndx = this->set_section_indexes(shndx);
3109 
3110   // Create the symbol table sections.
3111   this->create_symtab_sections(input_objects, symtab, shndx, &off,
3112 			       local_dynamic_count);
3113   if (!parameters->doing_static_link())
3114     this->assign_local_dynsym_offsets(input_objects);
3115 
3116   // Process any symbol assignments from a linker script.  This must
3117   // be called after the symbol table has been finalized.
3118   this->script_options_->finalize_symbols(symtab, this);
3119 
3120   // Create the incremental inputs sections.
3121   if (this->incremental_inputs_)
3122     {
3123       this->incremental_inputs_->finalize();
3124       this->create_incremental_info_sections(symtab);
3125     }
3126 
3127   // Create the .shstrtab section.
3128   Output_section* shstrtab_section = this->create_shstrtab();
3129 
3130   // Set the file offsets of the rest of the non-data sections which
3131   // don't have to wait for the input sections.
3132   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
3133 
3134   // Now that all sections have been created, set the section indexes
3135   // for any sections which haven't been done yet.
3136   shndx = this->set_section_indexes(shndx);
3137 
3138   // Create the section table header.
3139   this->create_shdrs(shstrtab_section, &off);
3140 
3141   // If there are no sections which require postprocessing, we can
3142   // handle the section names now, and avoid a resize later.
3143   if (!this->any_postprocessing_sections_)
3144     {
3145       off = this->set_section_offsets(off,
3146 				      POSTPROCESSING_SECTIONS_PASS);
3147       off =
3148 	  this->set_section_offsets(off,
3149 				    STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
3150     }
3151 
3152   file_header->set_section_info(this->section_headers_, shstrtab_section);
3153 
3154   // Now we know exactly where everything goes in the output file
3155   // (except for non-allocated sections which require postprocessing).
3156   Output_data::layout_complete();
3157 
3158   this->output_file_size_ = off;
3159 
3160   return off;
3161 }
3162 
3163 // Create a note header following the format defined in the ELF ABI.
3164 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
3165 // of the section to create, DESCSZ is the size of the descriptor.
3166 // ALLOCATE is true if the section should be allocated in memory.
3167 // This returns the new note section.  It sets *TRAILING_PADDING to
3168 // the number of trailing zero bytes required.
3169 
3170 Output_section*
create_note(const char * name,int note_type,const char * section_name,size_t descsz,bool allocate,size_t * trailing_padding)3171 Layout::create_note(const char* name, int note_type,
3172 		    const char* section_name, size_t descsz,
3173 		    bool allocate, size_t* trailing_padding)
3174 {
3175   // Authorities all agree that the values in a .note field should
3176   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
3177   // they differ on what the alignment is for 64-bit binaries.
3178   // The GABI says unambiguously they take 8-byte alignment:
3179   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
3180   // Other documentation says alignment should always be 4 bytes:
3181   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
3182   // GNU ld and GNU readelf both support the latter (at least as of
3183   // version 2.16.91), and glibc always generates the latter for
3184   // .note.ABI-tag (as of version 1.6), so that's the one we go with
3185   // here.
3186 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
3187   const int size = parameters->target().get_size();
3188 #else
3189   const int size = 32;
3190 #endif
3191   // The NT_GNU_PROPERTY_TYPE_0 note is aligned to the pointer size.
3192   const int addralign = ((note_type == elfcpp::NT_GNU_PROPERTY_TYPE_0
3193 			 ? parameters->target().get_size()
3194 			 : size) / 8);
3195 
3196   // The contents of the .note section.
3197   size_t namesz = strlen(name) + 1;
3198   size_t aligned_namesz = align_address(namesz, size / 8);
3199   size_t aligned_descsz = align_address(descsz, size / 8);
3200 
3201   size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
3202 
3203   unsigned char* buffer = new unsigned char[notehdrsz];
3204   memset(buffer, 0, notehdrsz);
3205 
3206   bool is_big_endian = parameters->target().is_big_endian();
3207 
3208   if (size == 32)
3209     {
3210       if (!is_big_endian)
3211 	{
3212 	  elfcpp::Swap<32, false>::writeval(buffer, namesz);
3213 	  elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
3214 	  elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
3215 	}
3216       else
3217 	{
3218 	  elfcpp::Swap<32, true>::writeval(buffer, namesz);
3219 	  elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
3220 	  elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
3221 	}
3222     }
3223   else if (size == 64)
3224     {
3225       if (!is_big_endian)
3226 	{
3227 	  elfcpp::Swap<64, false>::writeval(buffer, namesz);
3228 	  elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
3229 	  elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
3230 	}
3231       else
3232 	{
3233 	  elfcpp::Swap<64, true>::writeval(buffer, namesz);
3234 	  elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
3235 	  elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
3236 	}
3237     }
3238   else
3239     gold_unreachable();
3240 
3241   memcpy(buffer + 3 * (size / 8), name, namesz);
3242 
3243   elfcpp::Elf_Xword flags = 0;
3244   Output_section_order order = ORDER_INVALID;
3245   if (allocate)
3246     {
3247       flags = elfcpp::SHF_ALLOC;
3248       order = (note_type == elfcpp::NT_GNU_PROPERTY_TYPE_0
3249 	       ?  ORDER_PROPERTY_NOTE : ORDER_RO_NOTE);
3250     }
3251   Output_section* os = this->choose_output_section(NULL, section_name,
3252 						   elfcpp::SHT_NOTE,
3253 						   flags, false, order, false,
3254 						   false, true);
3255   if (os == NULL)
3256     return NULL;
3257 
3258   Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
3259 							   addralign,
3260 							   "** note header");
3261   os->add_output_section_data(posd);
3262 
3263   *trailing_padding = aligned_descsz - descsz;
3264 
3265   return os;
3266 }
3267 
3268 // Create a .note.gnu.property section to record program properties
3269 // accumulated from the input files.
3270 
3271 void
create_gnu_properties_note()3272 Layout::create_gnu_properties_note()
3273 {
3274   parameters->target().finalize_gnu_properties(this);
3275 
3276   if (this->gnu_properties_.empty())
3277     return;
3278 
3279   const unsigned int size = parameters->target().get_size();
3280   const bool is_big_endian = parameters->target().is_big_endian();
3281 
3282   // Compute the total size of the properties array.
3283   size_t descsz = 0;
3284   for (Gnu_properties::const_iterator prop = this->gnu_properties_.begin();
3285        prop != this->gnu_properties_.end();
3286        ++prop)
3287     {
3288       descsz = align_address(descsz + 8 + prop->second.pr_datasz, size / 8);
3289     }
3290 
3291   // Create the note section.
3292   size_t trailing_padding;
3293   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_PROPERTY_TYPE_0,
3294 					 ".note.gnu.property", descsz,
3295 					 true, &trailing_padding);
3296   if (os == NULL)
3297     return;
3298   gold_assert(trailing_padding == 0);
3299 
3300   // Allocate and fill the properties array.
3301   unsigned char* desc = new unsigned char[descsz];
3302   unsigned char* p = desc;
3303   for (Gnu_properties::const_iterator prop = this->gnu_properties_.begin();
3304        prop != this->gnu_properties_.end();
3305        ++prop)
3306     {
3307       size_t datasz = prop->second.pr_datasz;
3308       size_t aligned_datasz = align_address(prop->second.pr_datasz, size / 8);
3309       write_sized_value(prop->first, 4, p, is_big_endian);
3310       write_sized_value(datasz, 4, p + 4, is_big_endian);
3311       memcpy(p + 8, prop->second.pr_data, datasz);
3312       if (aligned_datasz > datasz)
3313 	memset(p + 8 + datasz, 0, aligned_datasz - datasz);
3314       p += 8 + aligned_datasz;
3315     }
3316   Output_section_data* posd = new Output_data_const(desc, descsz, 4);
3317   os->add_output_section_data(posd);
3318 }
3319 
3320 // For an executable or shared library, create a note to record the
3321 // version of gold used to create the binary.
3322 
3323 void
create_gold_note()3324 Layout::create_gold_note()
3325 {
3326   if (parameters->options().relocatable()
3327       || parameters->incremental_update())
3328     return;
3329 
3330   std::string desc = std::string("gold ") + gold::get_version_string();
3331 
3332   size_t trailing_padding;
3333   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
3334 					 ".note.gnu.gold-version", desc.size(),
3335 					 false, &trailing_padding);
3336   if (os == NULL)
3337     return;
3338 
3339   Output_section_data* posd = new Output_data_const(desc, 4);
3340   os->add_output_section_data(posd);
3341 
3342   if (trailing_padding > 0)
3343     {
3344       posd = new Output_data_zero_fill(trailing_padding, 0);
3345       os->add_output_section_data(posd);
3346     }
3347 }
3348 
3349 // Record whether the stack should be executable.  This can be set
3350 // from the command line using the -z execstack or -z noexecstack
3351 // options.  Otherwise, if any input file has a .note.GNU-stack
3352 // section with the SHF_EXECINSTR flag set, the stack should be
3353 // executable.  Otherwise, if at least one input file a
3354 // .note.GNU-stack section, and some input file has no .note.GNU-stack
3355 // section, we use the target default for whether the stack should be
3356 // executable.  If -z stack-size was used to set a p_memsz value for
3357 // PT_GNU_STACK, we generate the segment regardless.  Otherwise, we
3358 // don't generate a stack note.  When generating a object file, we
3359 // create a .note.GNU-stack section with the appropriate marking.
3360 // When generating an executable or shared library, we create a
3361 // PT_GNU_STACK segment.
3362 
3363 void
create_stack_segment()3364 Layout::create_stack_segment()
3365 {
3366   bool is_stack_executable;
3367   if (parameters->options().is_execstack_set())
3368     {
3369       is_stack_executable = parameters->options().is_stack_executable();
3370       if (!is_stack_executable
3371 	  && this->input_requires_executable_stack_
3372 	  && parameters->options().warn_execstack())
3373 	gold_warning(_("one or more inputs require executable stack, "
3374 		       "but -z noexecstack was given"));
3375     }
3376   else if (!this->input_with_gnu_stack_note_
3377 	   && (!parameters->options().user_set_stack_size()
3378 	       || parameters->options().relocatable()))
3379     return;
3380   else
3381     {
3382       if (this->input_requires_executable_stack_)
3383 	is_stack_executable = true;
3384       else if (this->input_without_gnu_stack_note_)
3385 	is_stack_executable =
3386 	  parameters->target().is_default_stack_executable();
3387       else
3388 	is_stack_executable = false;
3389     }
3390 
3391   if (parameters->options().relocatable())
3392     {
3393       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
3394       elfcpp::Elf_Xword flags = 0;
3395       if (is_stack_executable)
3396 	flags |= elfcpp::SHF_EXECINSTR;
3397       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
3398 				ORDER_INVALID, false);
3399     }
3400   else
3401     {
3402       if (this->script_options_->saw_phdrs_clause())
3403 	return;
3404       int flags = elfcpp::PF_R | elfcpp::PF_W;
3405       if (is_stack_executable)
3406 	flags |= elfcpp::PF_X;
3407       Output_segment* seg =
3408 	this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
3409       seg->set_size(parameters->options().stack_size());
3410       // BFD lets targets override this default alignment, but the only
3411       // targets that do so are ones that Gold does not support so far.
3412       seg->set_minimum_p_align(16);
3413     }
3414 }
3415 
3416 // If --build-id was used, set up the build ID note.
3417 
3418 void
create_build_id()3419 Layout::create_build_id()
3420 {
3421   if (!parameters->options().user_set_build_id())
3422     return;
3423 
3424   const char* style = parameters->options().build_id();
3425   if (strcmp(style, "none") == 0)
3426     return;
3427 
3428   // Set DESCSZ to the size of the note descriptor.  When possible,
3429   // set DESC to the note descriptor contents.
3430   size_t descsz;
3431   std::string desc;
3432   if (strcmp(style, "md5") == 0)
3433     descsz = 128 / 8;
3434   else if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
3435     descsz = 160 / 8;
3436   else if (strcmp(style, "uuid") == 0)
3437     {
3438 #ifndef __MINGW32__
3439       const size_t uuidsz = 128 / 8;
3440 
3441       char buffer[uuidsz];
3442       memset(buffer, 0, uuidsz);
3443 
3444       int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
3445       if (descriptor < 0)
3446 	gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
3447 		   strerror(errno));
3448       else
3449 	{
3450 	  ssize_t got = ::read(descriptor, buffer, uuidsz);
3451 	  release_descriptor(descriptor, true);
3452 	  if (got < 0)
3453 	    gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
3454 	  else if (static_cast<size_t>(got) != uuidsz)
3455 	    gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
3456 		       uuidsz, got);
3457 	}
3458 
3459       desc.assign(buffer, uuidsz);
3460       descsz = uuidsz;
3461 #else // __MINGW32__
3462       UUID uuid;
3463       typedef RPC_STATUS (RPC_ENTRY *UuidCreateFn)(UUID *Uuid);
3464 
3465       HMODULE rpc_library = LoadLibrary("rpcrt4.dll");
3466       if (!rpc_library)
3467 	gold_error(_("--build-id=uuid failed: could not load rpcrt4.dll"));
3468       else
3469 	{
3470 	  UuidCreateFn uuid_create = reinterpret_cast<UuidCreateFn>(
3471 	      GetProcAddress(rpc_library, "UuidCreate"));
3472 	  if (!uuid_create)
3473 	    gold_error(_("--build-id=uuid failed: could not find UuidCreate"));
3474 	  else if (uuid_create(&uuid) != RPC_S_OK)
3475 	    gold_error(_("__build_id=uuid failed: call UuidCreate() failed"));
3476 	  FreeLibrary(rpc_library);
3477 	}
3478       desc.assign(reinterpret_cast<const char *>(&uuid), sizeof(UUID));
3479       descsz = sizeof(UUID);
3480 #endif // __MINGW32__
3481     }
3482   else if (strncmp(style, "0x", 2) == 0)
3483     {
3484       hex_init();
3485       const char* p = style + 2;
3486       while (*p != '\0')
3487 	{
3488 	  if (hex_p(p[0]) && hex_p(p[1]))
3489 	    {
3490 	      char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
3491 	      desc += c;
3492 	      p += 2;
3493 	    }
3494 	  else if (*p == '-' || *p == ':')
3495 	    ++p;
3496 	  else
3497 	    gold_fatal(_("--build-id argument '%s' not a valid hex number"),
3498 		       style);
3499 	}
3500       descsz = desc.size();
3501     }
3502   else
3503     gold_fatal(_("unrecognized --build-id argument '%s'"), style);
3504 
3505   // Create the note.
3506   size_t trailing_padding;
3507   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
3508 					 ".note.gnu.build-id", descsz, true,
3509 					 &trailing_padding);
3510   if (os == NULL)
3511     return;
3512 
3513   if (!desc.empty())
3514     {
3515       // We know the value already, so we fill it in now.
3516       gold_assert(desc.size() == descsz);
3517 
3518       Output_section_data* posd = new Output_data_const(desc, 4);
3519       os->add_output_section_data(posd);
3520 
3521       if (trailing_padding != 0)
3522 	{
3523 	  posd = new Output_data_zero_fill(trailing_padding, 0);
3524 	  os->add_output_section_data(posd);
3525 	}
3526     }
3527   else
3528     {
3529       // We need to compute a checksum after we have completed the
3530       // link.
3531       gold_assert(trailing_padding == 0);
3532       this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
3533       os->add_output_section_data(this->build_id_note_);
3534     }
3535 }
3536 
3537 // If we have both .stabXX and .stabXXstr sections, then the sh_link
3538 // field of the former should point to the latter.  I'm not sure who
3539 // started this, but the GNU linker does it, and some tools depend
3540 // upon it.
3541 
3542 void
link_stabs_sections()3543 Layout::link_stabs_sections()
3544 {
3545   if (!this->have_stabstr_section_)
3546     return;
3547 
3548   for (Section_list::iterator p = this->section_list_.begin();
3549        p != this->section_list_.end();
3550        ++p)
3551     {
3552       if ((*p)->type() != elfcpp::SHT_STRTAB)
3553 	continue;
3554 
3555       const char* name = (*p)->name();
3556       if (strncmp(name, ".stab", 5) != 0)
3557 	continue;
3558 
3559       size_t len = strlen(name);
3560       if (strcmp(name + len - 3, "str") != 0)
3561 	continue;
3562 
3563       std::string stab_name(name, len - 3);
3564       Output_section* stab_sec;
3565       stab_sec = this->find_output_section(stab_name.c_str());
3566       if (stab_sec != NULL)
3567 	stab_sec->set_link_section(*p);
3568     }
3569 }
3570 
3571 // Create .gnu_incremental_inputs and related sections needed
3572 // for the next run of incremental linking to check what has changed.
3573 
3574 void
create_incremental_info_sections(Symbol_table * symtab)3575 Layout::create_incremental_info_sections(Symbol_table* symtab)
3576 {
3577   Incremental_inputs* incr = this->incremental_inputs_;
3578 
3579   gold_assert(incr != NULL);
3580 
3581   // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
3582   incr->create_data_sections(symtab);
3583 
3584   // Add the .gnu_incremental_inputs section.
3585   const char* incremental_inputs_name =
3586     this->namepool_.add(".gnu_incremental_inputs", false, NULL);
3587   Output_section* incremental_inputs_os =
3588     this->make_output_section(incremental_inputs_name,
3589 			      elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
3590 			      ORDER_INVALID, false);
3591   incremental_inputs_os->add_output_section_data(incr->inputs_section());
3592 
3593   // Add the .gnu_incremental_symtab section.
3594   const char* incremental_symtab_name =
3595     this->namepool_.add(".gnu_incremental_symtab", false, NULL);
3596   Output_section* incremental_symtab_os =
3597     this->make_output_section(incremental_symtab_name,
3598 			      elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
3599 			      ORDER_INVALID, false);
3600   incremental_symtab_os->add_output_section_data(incr->symtab_section());
3601   incremental_symtab_os->set_entsize(4);
3602 
3603   // Add the .gnu_incremental_relocs section.
3604   const char* incremental_relocs_name =
3605     this->namepool_.add(".gnu_incremental_relocs", false, NULL);
3606   Output_section* incremental_relocs_os =
3607     this->make_output_section(incremental_relocs_name,
3608 			      elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
3609 			      ORDER_INVALID, false);
3610   incremental_relocs_os->add_output_section_data(incr->relocs_section());
3611   incremental_relocs_os->set_entsize(incr->relocs_entsize());
3612 
3613   // Add the .gnu_incremental_got_plt section.
3614   const char* incremental_got_plt_name =
3615     this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
3616   Output_section* incremental_got_plt_os =
3617     this->make_output_section(incremental_got_plt_name,
3618 			      elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
3619 			      ORDER_INVALID, false);
3620   incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
3621 
3622   // Add the .gnu_incremental_strtab section.
3623   const char* incremental_strtab_name =
3624     this->namepool_.add(".gnu_incremental_strtab", false, NULL);
3625   Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
3626 							elfcpp::SHT_STRTAB, 0,
3627 							ORDER_INVALID, false);
3628   Output_data_strtab* strtab_data =
3629       new Output_data_strtab(incr->get_stringpool());
3630   incremental_strtab_os->add_output_section_data(strtab_data);
3631 
3632   incremental_inputs_os->set_after_input_sections();
3633   incremental_symtab_os->set_after_input_sections();
3634   incremental_relocs_os->set_after_input_sections();
3635   incremental_got_plt_os->set_after_input_sections();
3636 
3637   incremental_inputs_os->set_link_section(incremental_strtab_os);
3638   incremental_symtab_os->set_link_section(incremental_inputs_os);
3639   incremental_relocs_os->set_link_section(incremental_inputs_os);
3640   incremental_got_plt_os->set_link_section(incremental_inputs_os);
3641 }
3642 
3643 // Return whether SEG1 should be before SEG2 in the output file.  This
3644 // is based entirely on the segment type and flags.  When this is
3645 // called the segment addresses have normally not yet been set.
3646 
3647 bool
segment_precedes(const Output_segment * seg1,const Output_segment * seg2)3648 Layout::segment_precedes(const Output_segment* seg1,
3649 			 const Output_segment* seg2)
3650 {
3651   // In order to produce a stable ordering if we're called with the same pointer
3652   // return false.
3653   if (seg1 == seg2)
3654     return false;
3655 
3656   elfcpp::Elf_Word type1 = seg1->type();
3657   elfcpp::Elf_Word type2 = seg2->type();
3658 
3659   // The single PT_PHDR segment is required to precede any loadable
3660   // segment.  We simply make it always first.
3661   if (type1 == elfcpp::PT_PHDR)
3662     {
3663       gold_assert(type2 != elfcpp::PT_PHDR);
3664       return true;
3665     }
3666   if (type2 == elfcpp::PT_PHDR)
3667     return false;
3668 
3669   // The single PT_INTERP segment is required to precede any loadable
3670   // segment.  We simply make it always second.
3671   if (type1 == elfcpp::PT_INTERP)
3672     {
3673       gold_assert(type2 != elfcpp::PT_INTERP);
3674       return true;
3675     }
3676   if (type2 == elfcpp::PT_INTERP)
3677     return false;
3678 
3679   // We then put PT_LOAD segments before any other segments.
3680   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
3681     return true;
3682   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
3683     return false;
3684 
3685   // We put the PT_TLS segment last except for the PT_GNU_RELRO
3686   // segment, because that is where the dynamic linker expects to find
3687   // it (this is just for efficiency; other positions would also work
3688   // correctly).
3689   if (type1 == elfcpp::PT_TLS
3690       && type2 != elfcpp::PT_TLS
3691       && type2 != elfcpp::PT_GNU_RELRO)
3692     return false;
3693   if (type2 == elfcpp::PT_TLS
3694       && type1 != elfcpp::PT_TLS
3695       && type1 != elfcpp::PT_GNU_RELRO)
3696     return true;
3697 
3698   // We put the PT_GNU_RELRO segment last, because that is where the
3699   // dynamic linker expects to find it (as with PT_TLS, this is just
3700   // for efficiency).
3701   if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
3702     return false;
3703   if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
3704     return true;
3705 
3706   const elfcpp::Elf_Word flags1 = seg1->flags();
3707   const elfcpp::Elf_Word flags2 = seg2->flags();
3708 
3709   // The order of non-PT_LOAD segments is unimportant.  We simply sort
3710   // by the numeric segment type and flags values.  There should not
3711   // be more than one segment with the same type and flags, except
3712   // when a linker script specifies such.
3713   if (type1 != elfcpp::PT_LOAD)
3714     {
3715       if (type1 != type2)
3716 	return type1 < type2;
3717       uint64_t align1 = seg1->align();
3718       uint64_t align2 = seg2->align();
3719       // Place segments with larger alignments first.
3720       if (align1 != align2)
3721 	return align1 > align2;
3722       gold_assert(flags1 != flags2
3723 		  || this->script_options_->saw_phdrs_clause());
3724       return flags1 < flags2;
3725     }
3726 
3727   // If the addresses are set already, sort by load address.
3728   if (seg1->are_addresses_set())
3729     {
3730       if (!seg2->are_addresses_set())
3731 	return true;
3732 
3733       unsigned int section_count1 = seg1->output_section_count();
3734       unsigned int section_count2 = seg2->output_section_count();
3735       if (section_count1 == 0 && section_count2 > 0)
3736 	return true;
3737       if (section_count1 > 0 && section_count2 == 0)
3738 	return false;
3739 
3740       uint64_t paddr1 =	(seg1->are_addresses_set()
3741 			 ? seg1->paddr()
3742 			 : seg1->first_section_load_address());
3743       uint64_t paddr2 =	(seg2->are_addresses_set()
3744 			 ? seg2->paddr()
3745 			 : seg2->first_section_load_address());
3746 
3747       if (paddr1 != paddr2)
3748 	return paddr1 < paddr2;
3749     }
3750   else if (seg2->are_addresses_set())
3751     return false;
3752 
3753   // A segment which holds large data comes after a segment which does
3754   // not hold large data.
3755   if (seg1->is_large_data_segment())
3756     {
3757       if (!seg2->is_large_data_segment())
3758 	return false;
3759     }
3760   else if (seg2->is_large_data_segment())
3761     return true;
3762 
3763   // Otherwise, we sort PT_LOAD segments based on the flags.  Readonly
3764   // segments come before writable segments.  Then writable segments
3765   // with data come before writable segments without data.  Then
3766   // executable segments come before non-executable segments.  Then
3767   // the unlikely case of a non-readable segment comes before the
3768   // normal case of a readable segment.  If there are multiple
3769   // segments with the same type and flags, we require that the
3770   // address be set, and we sort by virtual address and then physical
3771   // address.
3772   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
3773     return (flags1 & elfcpp::PF_W) == 0;
3774   if ((flags1 & elfcpp::PF_W) != 0
3775       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
3776     return seg1->has_any_data_sections();
3777   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
3778     return (flags1 & elfcpp::PF_X) != 0;
3779   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
3780     return (flags1 & elfcpp::PF_R) == 0;
3781 
3782   // We shouldn't get here--we shouldn't create segments which we
3783   // can't distinguish.  Unless of course we are using a weird linker
3784   // script or overlapping --section-start options.  We could also get
3785   // here if plugins want unique segments for subsets of sections.
3786   gold_assert(this->script_options_->saw_phdrs_clause()
3787 	      || parameters->options().any_section_start()
3788 	      || this->is_unique_segment_for_sections_specified()
3789 	      || parameters->options().text_unlikely_segment());
3790   return false;
3791 }
3792 
3793 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3794 
3795 static off_t
align_file_offset(off_t off,uint64_t addr,uint64_t abi_pagesize)3796 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
3797 {
3798   uint64_t unsigned_off = off;
3799   uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
3800 			  | (addr & (abi_pagesize - 1)));
3801   if (aligned_off < unsigned_off)
3802     aligned_off += abi_pagesize;
3803   return aligned_off;
3804 }
3805 
3806 // On targets where the text segment contains only executable code,
3807 // a non-executable segment is never the text segment.
3808 
3809 static inline bool
is_text_segment(const Target * target,const Output_segment * seg)3810 is_text_segment(const Target* target, const Output_segment* seg)
3811 {
3812   elfcpp::Elf_Xword flags = seg->flags();
3813   if ((flags & elfcpp::PF_W) != 0)
3814     return false;
3815   if ((flags & elfcpp::PF_X) == 0)
3816     return !target->isolate_execinstr();
3817   return true;
3818 }
3819 
3820 // Set the file offsets of all the segments, and all the sections they
3821 // contain.  They have all been created.  LOAD_SEG must be laid out
3822 // first.  Return the offset of the data to follow.
3823 
3824 off_t
set_segment_offsets(const Target * target,Output_segment * load_seg,unsigned int * pshndx)3825 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3826 			    unsigned int* pshndx)
3827 {
3828   // Sort them into the final order.  We use a stable sort so that we
3829   // don't randomize the order of indistinguishable segments created
3830   // by linker scripts.
3831   std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3832 		   Layout::Compare_segments(this));
3833 
3834   // Find the PT_LOAD segments, and set their addresses and offsets
3835   // and their section's addresses and offsets.
3836   uint64_t start_addr;
3837   if (parameters->options().user_set_Ttext())
3838     start_addr = parameters->options().Ttext();
3839   else if (parameters->options().output_is_position_independent())
3840     start_addr = 0;
3841   else
3842     start_addr = target->default_text_segment_address();
3843 
3844   uint64_t addr = start_addr;
3845   off_t off = 0;
3846 
3847   // If LOAD_SEG is NULL, then the file header and segment headers
3848   // will not be loadable.  But they still need to be at offset 0 in
3849   // the file.  Set their offsets now.
3850   if (load_seg == NULL)
3851     {
3852       for (Data_list::iterator p = this->special_output_list_.begin();
3853 	   p != this->special_output_list_.end();
3854 	   ++p)
3855 	{
3856 	  off = align_address(off, (*p)->addralign());
3857 	  (*p)->set_address_and_file_offset(0, off);
3858 	  off += (*p)->data_size();
3859 	}
3860     }
3861 
3862   unsigned int increase_relro = this->increase_relro_;
3863   if (this->script_options_->saw_sections_clause())
3864     increase_relro = 0;
3865 
3866   const bool check_sections = parameters->options().check_sections();
3867   Output_segment* last_load_segment = NULL;
3868 
3869   unsigned int shndx_begin = *pshndx;
3870   unsigned int shndx_load_seg = *pshndx;
3871 
3872   for (Segment_list::iterator p = this->segment_list_.begin();
3873        p != this->segment_list_.end();
3874        ++p)
3875     {
3876       if ((*p)->type() == elfcpp::PT_LOAD)
3877 	{
3878 	  if (target->isolate_execinstr())
3879 	    {
3880 	      // When we hit the segment that should contain the
3881 	      // file headers, reset the file offset so we place
3882 	      // it and subsequent segments appropriately.
3883 	      // We'll fix up the preceding segments below.
3884 	      if (load_seg == *p)
3885 		{
3886 		  if (off == 0)
3887 		    load_seg = NULL;
3888 		  else
3889 		    {
3890 		      off = 0;
3891 		      shndx_load_seg = *pshndx;
3892 		    }
3893 		}
3894 	    }
3895 	  else
3896 	    {
3897 	      // Verify that the file headers fall into the first segment.
3898 	      if (load_seg != NULL && load_seg != *p)
3899 		gold_unreachable();
3900 	      load_seg = NULL;
3901 	    }
3902 
3903 	  bool are_addresses_set = (*p)->are_addresses_set();
3904 	  if (are_addresses_set)
3905 	    {
3906 	      // When it comes to setting file offsets, we care about
3907 	      // the physical address.
3908 	      addr = (*p)->paddr();
3909 	    }
3910 	  else if (parameters->options().user_set_Ttext()
3911 		   && (parameters->options().omagic()
3912 		       || is_text_segment(target, *p)))
3913 	    {
3914 	      are_addresses_set = true;
3915 	    }
3916 	  else if (parameters->options().user_set_Trodata_segment()
3917 		   && ((*p)->flags() & (elfcpp::PF_W | elfcpp::PF_X)) == 0)
3918 	    {
3919 	      addr = parameters->options().Trodata_segment();
3920 	      are_addresses_set = true;
3921 	    }
3922 	  else if (parameters->options().user_set_Tdata()
3923 		   && ((*p)->flags() & elfcpp::PF_W) != 0
3924 		   && (!parameters->options().user_set_Tbss()
3925 		       || (*p)->has_any_data_sections()))
3926 	    {
3927 	      addr = parameters->options().Tdata();
3928 	      are_addresses_set = true;
3929 	    }
3930 	  else if (parameters->options().user_set_Tbss()
3931 		   && ((*p)->flags() & elfcpp::PF_W) != 0
3932 		   && !(*p)->has_any_data_sections())
3933 	    {
3934 	      addr = parameters->options().Tbss();
3935 	      are_addresses_set = true;
3936 	    }
3937 
3938 	  uint64_t orig_addr = addr;
3939 	  uint64_t orig_off = off;
3940 
3941 	  uint64_t aligned_addr = 0;
3942 	  uint64_t abi_pagesize = target->abi_pagesize();
3943 	  uint64_t common_pagesize = target->common_pagesize();
3944 
3945 	  if (!parameters->options().nmagic()
3946 	      && !parameters->options().omagic())
3947 	    (*p)->set_minimum_p_align(abi_pagesize);
3948 
3949 	  if (!are_addresses_set)
3950 	    {
3951 	      // Skip the address forward one page, maintaining the same
3952 	      // position within the page.  This lets us store both segments
3953 	      // overlapping on a single page in the file, but the loader will
3954 	      // put them on different pages in memory. We will revisit this
3955 	      // decision once we know the size of the segment.
3956 
3957 	      uint64_t max_align = (*p)->maximum_alignment();
3958 	      if (max_align > abi_pagesize)
3959 		addr = align_address(addr, max_align);
3960 	      aligned_addr = addr;
3961 
3962 	      if (load_seg == *p)
3963 		{
3964 		  // This is the segment that will contain the file
3965 		  // headers, so its offset will have to be exactly zero.
3966 		  gold_assert(orig_off == 0);
3967 
3968 		  // If the target wants a fixed minimum distance from the
3969 		  // text segment to the read-only segment, move up now.
3970 		  uint64_t min_addr =
3971 		    start_addr + (parameters->options().user_set_rosegment_gap()
3972 				  ? parameters->options().rosegment_gap()
3973 				  : target->rosegment_gap());
3974 		  if (addr < min_addr)
3975 		    addr = min_addr;
3976 
3977 		  // But this is not the first segment!  To make its
3978 		  // address congruent with its offset, that address better
3979 		  // be aligned to the ABI-mandated page size.
3980 		  addr = align_address(addr, abi_pagesize);
3981 		  aligned_addr = addr;
3982 		}
3983 	      else
3984 		{
3985 		  if ((addr & (abi_pagesize - 1)) != 0)
3986 		    addr = addr + abi_pagesize;
3987 
3988 		  off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3989 		}
3990 	    }
3991 
3992 	  if (!parameters->options().nmagic()
3993 	      && !parameters->options().omagic())
3994 	    {
3995 	      // Here we are also taking care of the case when
3996 	      // the maximum segment alignment is larger than the page size.
3997 	      off = align_file_offset(off, addr,
3998 				      std::max(abi_pagesize,
3999 					       (*p)->maximum_alignment()));
4000 	    }
4001 	  else
4002 	    {
4003 	      // This is -N or -n with a section script which prevents
4004 	      // us from using a load segment.  We need to ensure that
4005 	      // the file offset is aligned to the alignment of the
4006 	      // segment.  This is because the linker script
4007 	      // implicitly assumed a zero offset.  If we don't align
4008 	      // here, then the alignment of the sections in the
4009 	      // linker script may not match the alignment of the
4010 	      // sections in the set_section_addresses call below,
4011 	      // causing an error about dot moving backward.
4012 	      off = align_address(off, (*p)->maximum_alignment());
4013 	    }
4014 
4015 	  unsigned int shndx_hold = *pshndx;
4016 	  bool has_relro = false;
4017 	  uint64_t new_addr = (*p)->set_section_addresses(target, this,
4018 							  false, addr,
4019 							  &increase_relro,
4020 							  &has_relro,
4021 							  &off, pshndx);
4022 
4023 	  // Now that we know the size of this segment, we may be able
4024 	  // to save a page in memory, at the cost of wasting some
4025 	  // file space, by instead aligning to the start of a new
4026 	  // page.  Here we use the real machine page size rather than
4027 	  // the ABI mandated page size.  If the segment has been
4028 	  // aligned so that the relro data ends at a page boundary,
4029 	  // we do not try to realign it.
4030 
4031 	  if (!are_addresses_set
4032 	      && !has_relro
4033 	      && aligned_addr != addr
4034 	      && !parameters->incremental())
4035 	    {
4036 	      uint64_t first_off = (common_pagesize
4037 				    - (aligned_addr
4038 				       & (common_pagesize - 1)));
4039 	      uint64_t last_off = new_addr & (common_pagesize - 1);
4040 	      if (first_off > 0
4041 		  && last_off > 0
4042 		  && ((aligned_addr & ~ (common_pagesize - 1))
4043 		      != (new_addr & ~ (common_pagesize - 1)))
4044 		  && first_off + last_off <= common_pagesize)
4045 		{
4046 		  *pshndx = shndx_hold;
4047 		  addr = align_address(aligned_addr, common_pagesize);
4048 		  addr = align_address(addr, (*p)->maximum_alignment());
4049 		  if ((addr & (abi_pagesize - 1)) != 0)
4050 		    addr = addr + abi_pagesize;
4051 		  off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
4052 		  off = align_file_offset(off, addr, abi_pagesize);
4053 
4054 		  increase_relro = this->increase_relro_;
4055 		  if (this->script_options_->saw_sections_clause())
4056 		    increase_relro = 0;
4057 		  has_relro = false;
4058 
4059 		  new_addr = (*p)->set_section_addresses(target, this,
4060 							 true, addr,
4061 							 &increase_relro,
4062 							 &has_relro,
4063 							 &off, pshndx);
4064 		}
4065 	    }
4066 
4067 	  addr = new_addr;
4068 
4069 	  // Implement --check-sections.  We know that the segments
4070 	  // are sorted by LMA.
4071 	  if (check_sections && last_load_segment != NULL)
4072 	    {
4073 	      gold_assert(last_load_segment->paddr() <= (*p)->paddr());
4074 	      if (last_load_segment->paddr() + last_load_segment->memsz()
4075 		  > (*p)->paddr())
4076 		{
4077 		  unsigned long long lb1 = last_load_segment->paddr();
4078 		  unsigned long long le1 = lb1 + last_load_segment->memsz();
4079 		  unsigned long long lb2 = (*p)->paddr();
4080 		  unsigned long long le2 = lb2 + (*p)->memsz();
4081 		  gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
4082 			       "[0x%llx -> 0x%llx]"),
4083 			     lb1, le1, lb2, le2);
4084 		}
4085 	    }
4086 	  last_load_segment = *p;
4087 	}
4088     }
4089 
4090   if (load_seg != NULL && target->isolate_execinstr())
4091     {
4092       // Process the early segments again, setting their file offsets
4093       // so they land after the segments starting at LOAD_SEG.
4094       off = align_file_offset(off, 0, target->abi_pagesize());
4095 
4096       this->reset_relax_output();
4097 
4098       for (Segment_list::iterator p = this->segment_list_.begin();
4099 	   *p != load_seg;
4100 	   ++p)
4101 	{
4102 	  if ((*p)->type() == elfcpp::PT_LOAD)
4103 	    {
4104 	      // We repeat the whole job of assigning addresses and
4105 	      // offsets, but we really only want to change the offsets and
4106 	      // must ensure that the addresses all come out the same as
4107 	      // they did the first time through.
4108 	      bool has_relro = false;
4109 	      const uint64_t old_addr = (*p)->vaddr();
4110 	      const uint64_t old_end = old_addr + (*p)->memsz();
4111 	      uint64_t new_addr = (*p)->set_section_addresses(target, this,
4112 							      true, old_addr,
4113 							      &increase_relro,
4114 							      &has_relro,
4115 							      &off,
4116 							      &shndx_begin);
4117 	      gold_assert(new_addr == old_end);
4118 	    }
4119 	}
4120 
4121       gold_assert(shndx_begin == shndx_load_seg);
4122     }
4123 
4124   // Handle the non-PT_LOAD segments, setting their offsets from their
4125   // section's offsets.
4126   for (Segment_list::iterator p = this->segment_list_.begin();
4127        p != this->segment_list_.end();
4128        ++p)
4129     {
4130       // PT_GNU_STACK was set up correctly when it was created.
4131       if ((*p)->type() != elfcpp::PT_LOAD
4132 	  && (*p)->type() != elfcpp::PT_GNU_STACK)
4133 	(*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
4134 			 ? increase_relro
4135 			 : 0);
4136     }
4137 
4138   // Set the TLS offsets for each section in the PT_TLS segment.
4139   if (this->tls_segment_ != NULL)
4140     this->tls_segment_->set_tls_offsets();
4141 
4142   return off;
4143 }
4144 
4145 // Set the offsets of all the allocated sections when doing a
4146 // relocatable link.  This does the same jobs as set_segment_offsets,
4147 // only for a relocatable link.
4148 
4149 off_t
set_relocatable_section_offsets(Output_data * file_header,unsigned int * pshndx)4150 Layout::set_relocatable_section_offsets(Output_data* file_header,
4151 					unsigned int* pshndx)
4152 {
4153   off_t off = 0;
4154 
4155   file_header->set_address_and_file_offset(0, 0);
4156   off += file_header->data_size();
4157 
4158   for (Section_list::iterator p = this->section_list_.begin();
4159        p != this->section_list_.end();
4160        ++p)
4161     {
4162       // We skip unallocated sections here, except that group sections
4163       // have to come first.
4164       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
4165 	  && (*p)->type() != elfcpp::SHT_GROUP)
4166 	continue;
4167 
4168       off = align_address(off, (*p)->addralign());
4169 
4170       // The linker script might have set the address.
4171       if (!(*p)->is_address_valid())
4172 	(*p)->set_address(0);
4173       (*p)->set_file_offset(off);
4174       (*p)->finalize_data_size();
4175       if ((*p)->type() != elfcpp::SHT_NOBITS)
4176 	off += (*p)->data_size();
4177 
4178       (*p)->set_out_shndx(*pshndx);
4179       ++*pshndx;
4180     }
4181 
4182   return off;
4183 }
4184 
4185 // Set the file offset of all the sections not associated with a
4186 // segment.
4187 
4188 off_t
set_section_offsets(off_t off,Layout::Section_offset_pass pass)4189 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
4190 {
4191   off_t startoff = off;
4192   off_t maxoff = off;
4193 
4194   for (Section_list::iterator p = this->unattached_section_list_.begin();
4195        p != this->unattached_section_list_.end();
4196        ++p)
4197     {
4198       // The symtab section is handled in create_symtab_sections.
4199       if (*p == this->symtab_section_)
4200 	continue;
4201 
4202       // If we've already set the data size, don't set it again.
4203       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
4204 	continue;
4205 
4206       if (pass == BEFORE_INPUT_SECTIONS_PASS
4207 	  && (*p)->requires_postprocessing())
4208 	{
4209 	  (*p)->create_postprocessing_buffer();
4210 	  this->any_postprocessing_sections_ = true;
4211 	}
4212 
4213       if (pass == BEFORE_INPUT_SECTIONS_PASS
4214 	  && (*p)->after_input_sections())
4215 	continue;
4216       else if (pass == POSTPROCESSING_SECTIONS_PASS
4217 	       && (!(*p)->after_input_sections()
4218 		   || (*p)->type() == elfcpp::SHT_STRTAB))
4219 	continue;
4220       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
4221 	       && (!(*p)->after_input_sections()
4222 		   || (*p)->type() != elfcpp::SHT_STRTAB))
4223 	continue;
4224 
4225       if (!parameters->incremental_update())
4226 	{
4227 	  off = align_address(off, (*p)->addralign());
4228 	  (*p)->set_file_offset(off);
4229 	  (*p)->finalize_data_size();
4230 	}
4231       else
4232 	{
4233 	  // Incremental update: allocate file space from free list.
4234 	  (*p)->pre_finalize_data_size();
4235 	  off_t current_size = (*p)->current_data_size();
4236 	  off = this->allocate(current_size, (*p)->addralign(), startoff);
4237 	  if (off == -1)
4238 	    {
4239 	      if (is_debugging_enabled(DEBUG_INCREMENTAL))
4240 		this->free_list_.dump();
4241 	      gold_assert((*p)->output_section() != NULL);
4242 	      gold_fallback(_("out of patch space for section %s; "
4243 			      "relink with --incremental-full"),
4244 			    (*p)->output_section()->name());
4245 	    }
4246 	  (*p)->set_file_offset(off);
4247 	  (*p)->finalize_data_size();
4248 	  if ((*p)->data_size() > current_size)
4249 	    {
4250 	      gold_assert((*p)->output_section() != NULL);
4251 	      gold_fallback(_("%s: section changed size; "
4252 			      "relink with --incremental-full"),
4253 			    (*p)->output_section()->name());
4254 	    }
4255 	  gold_debug(DEBUG_INCREMENTAL,
4256 		     "set_section_offsets: %08lx %08lx %s",
4257 		     static_cast<long>(off),
4258 		     static_cast<long>((*p)->data_size()),
4259 		     ((*p)->output_section() != NULL
4260 		      ? (*p)->output_section()->name() : "(special)"));
4261 	}
4262 
4263       off += (*p)->data_size();
4264       if (off > maxoff)
4265 	maxoff = off;
4266 
4267       // At this point the name must be set.
4268       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
4269 	this->namepool_.add((*p)->name(), false, NULL);
4270     }
4271   return maxoff;
4272 }
4273 
4274 // Set the section indexes of all the sections not associated with a
4275 // segment.
4276 
4277 unsigned int
set_section_indexes(unsigned int shndx)4278 Layout::set_section_indexes(unsigned int shndx)
4279 {
4280   for (Section_list::iterator p = this->unattached_section_list_.begin();
4281        p != this->unattached_section_list_.end();
4282        ++p)
4283     {
4284       if (!(*p)->has_out_shndx())
4285 	{
4286 	  (*p)->set_out_shndx(shndx);
4287 	  ++shndx;
4288 	}
4289     }
4290   return shndx;
4291 }
4292 
4293 // Set the section addresses according to the linker script.  This is
4294 // only called when we see a SECTIONS clause.  This returns the
4295 // program segment which should hold the file header and segment
4296 // headers, if any.  It will return NULL if they should not be in a
4297 // segment.
4298 
4299 Output_segment*
set_section_addresses_from_script(Symbol_table * symtab)4300 Layout::set_section_addresses_from_script(Symbol_table* symtab)
4301 {
4302   Script_sections* ss = this->script_options_->script_sections();
4303   gold_assert(ss->saw_sections_clause());
4304   return this->script_options_->set_section_addresses(symtab, this);
4305 }
4306 
4307 // Place the orphan sections in the linker script.
4308 
4309 void
place_orphan_sections_in_script()4310 Layout::place_orphan_sections_in_script()
4311 {
4312   Script_sections* ss = this->script_options_->script_sections();
4313   gold_assert(ss->saw_sections_clause());
4314 
4315   // Place each orphaned output section in the script.
4316   for (Section_list::iterator p = this->section_list_.begin();
4317        p != this->section_list_.end();
4318        ++p)
4319     {
4320       if (!(*p)->found_in_sections_clause())
4321 	ss->place_orphan(*p);
4322     }
4323 }
4324 
4325 // Count the local symbols in the regular symbol table and the dynamic
4326 // symbol table, and build the respective string pools.
4327 
4328 void
count_local_symbols(const Task * task,const Input_objects * input_objects)4329 Layout::count_local_symbols(const Task* task,
4330 			    const Input_objects* input_objects)
4331 {
4332   // First, figure out an upper bound on the number of symbols we'll
4333   // be inserting into each pool.  This helps us create the pools with
4334   // the right size, to avoid unnecessary hashtable resizing.
4335   unsigned int symbol_count = 0;
4336   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4337        p != input_objects->relobj_end();
4338        ++p)
4339     symbol_count += (*p)->local_symbol_count();
4340 
4341   // Go from "upper bound" to "estimate."  We overcount for two
4342   // reasons: we double-count symbols that occur in more than one
4343   // object file, and we count symbols that are dropped from the
4344   // output.  Add it all together and assume we overcount by 100%.
4345   symbol_count /= 2;
4346 
4347   // We assume all symbols will go into both the sympool and dynpool.
4348   this->sympool_.reserve(symbol_count);
4349   this->dynpool_.reserve(symbol_count);
4350 
4351   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4352        p != input_objects->relobj_end();
4353        ++p)
4354     {
4355       Task_lock_obj<Object> tlo(task, *p);
4356       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
4357     }
4358 }
4359 
4360 // Create the symbol table sections.  Here we also set the final
4361 // values of the symbols.  At this point all the loadable sections are
4362 // fully laid out.  SHNUM is the number of sections so far.
4363 
4364 void
create_symtab_sections(const Input_objects * input_objects,Symbol_table * symtab,unsigned int shnum,off_t * poff,unsigned int local_dynamic_count)4365 Layout::create_symtab_sections(const Input_objects* input_objects,
4366 			       Symbol_table* symtab,
4367 			       unsigned int shnum,
4368 			       off_t* poff,
4369 			       unsigned int local_dynamic_count)
4370 {
4371   int symsize;
4372   unsigned int align;
4373   if (parameters->target().get_size() == 32)
4374     {
4375       symsize = elfcpp::Elf_sizes<32>::sym_size;
4376       align = 4;
4377     }
4378   else if (parameters->target().get_size() == 64)
4379     {
4380       symsize = elfcpp::Elf_sizes<64>::sym_size;
4381       align = 8;
4382     }
4383   else
4384     gold_unreachable();
4385 
4386   // Compute file offsets relative to the start of the symtab section.
4387   off_t off = 0;
4388 
4389   // Save space for the dummy symbol at the start of the section.  We
4390   // never bother to write this out--it will just be left as zero.
4391   off += symsize;
4392   unsigned int local_symbol_index = 1;
4393 
4394   // Add STT_SECTION symbols for each Output section which needs one.
4395   for (Section_list::iterator p = this->section_list_.begin();
4396        p != this->section_list_.end();
4397        ++p)
4398     {
4399       if (!(*p)->needs_symtab_index())
4400 	(*p)->set_symtab_index(-1U);
4401       else
4402 	{
4403 	  (*p)->set_symtab_index(local_symbol_index);
4404 	  ++local_symbol_index;
4405 	  off += symsize;
4406 	}
4407     }
4408 
4409   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4410        p != input_objects->relobj_end();
4411        ++p)
4412     {
4413       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
4414 							off, symtab);
4415       off += (index - local_symbol_index) * symsize;
4416       local_symbol_index = index;
4417     }
4418 
4419   unsigned int local_symcount = local_symbol_index;
4420   gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
4421 
4422   off_t dynoff;
4423   size_t dyncount;
4424   if (this->dynsym_section_ == NULL)
4425     {
4426       dynoff = 0;
4427       dyncount = 0;
4428     }
4429   else
4430     {
4431       off_t locsize = local_dynamic_count * this->dynsym_section_->entsize();
4432       dynoff = this->dynsym_section_->offset() + locsize;
4433       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
4434       gold_assert(static_cast<off_t>(dyncount * symsize)
4435 		  == this->dynsym_section_->data_size() - locsize);
4436     }
4437 
4438   off_t global_off = off;
4439   off = symtab->finalize(off, dynoff, local_dynamic_count, dyncount,
4440 			 &this->sympool_, &local_symcount);
4441 
4442   if (!parameters->options().strip_all())
4443     {
4444       this->sympool_.set_string_offsets();
4445 
4446       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
4447       Output_section* osymtab = this->make_output_section(symtab_name,
4448 							  elfcpp::SHT_SYMTAB,
4449 							  0, ORDER_INVALID,
4450 							  false);
4451       this->symtab_section_ = osymtab;
4452 
4453       Output_section_data* pos = new Output_data_fixed_space(off, align,
4454 							     "** symtab");
4455       osymtab->add_output_section_data(pos);
4456 
4457       // We generate a .symtab_shndx section if we have more than
4458       // SHN_LORESERVE sections.  Technically it is possible that we
4459       // don't need one, because it is possible that there are no
4460       // symbols in any of sections with indexes larger than
4461       // SHN_LORESERVE.  That is probably unusual, though, and it is
4462       // easier to always create one than to compute section indexes
4463       // twice (once here, once when writing out the symbols).
4464       if (shnum >= elfcpp::SHN_LORESERVE)
4465 	{
4466 	  const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
4467 							       false, NULL);
4468 	  Output_section* osymtab_xindex =
4469 	    this->make_output_section(symtab_xindex_name,
4470 				      elfcpp::SHT_SYMTAB_SHNDX, 0,
4471 				      ORDER_INVALID, false);
4472 
4473 	  size_t symcount = off / symsize;
4474 	  this->symtab_xindex_ = new Output_symtab_xindex(symcount);
4475 
4476 	  osymtab_xindex->add_output_section_data(this->symtab_xindex_);
4477 
4478 	  osymtab_xindex->set_link_section(osymtab);
4479 	  osymtab_xindex->set_addralign(4);
4480 	  osymtab_xindex->set_entsize(4);
4481 
4482 	  osymtab_xindex->set_after_input_sections();
4483 
4484 	  // This tells the driver code to wait until the symbol table
4485 	  // has written out before writing out the postprocessing
4486 	  // sections, including the .symtab_shndx section.
4487 	  this->any_postprocessing_sections_ = true;
4488 	}
4489 
4490       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
4491       Output_section* ostrtab = this->make_output_section(strtab_name,
4492 							  elfcpp::SHT_STRTAB,
4493 							  0, ORDER_INVALID,
4494 							  false);
4495 
4496       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
4497       ostrtab->add_output_section_data(pstr);
4498 
4499       off_t symtab_off;
4500       if (!parameters->incremental_update())
4501 	symtab_off = align_address(*poff, align);
4502       else
4503 	{
4504 	  symtab_off = this->allocate(off, align, *poff);
4505 	  if (off == -1)
4506 	    gold_fallback(_("out of patch space for symbol table; "
4507 			    "relink with --incremental-full"));
4508 	  gold_debug(DEBUG_INCREMENTAL,
4509 		     "create_symtab_sections: %08lx %08lx .symtab",
4510 		     static_cast<long>(symtab_off),
4511 		     static_cast<long>(off));
4512 	}
4513 
4514       symtab->set_file_offset(symtab_off + global_off);
4515       osymtab->set_file_offset(symtab_off);
4516       osymtab->finalize_data_size();
4517       osymtab->set_link_section(ostrtab);
4518       osymtab->set_info(local_symcount);
4519       osymtab->set_entsize(symsize);
4520 
4521       if (symtab_off + off > *poff)
4522 	*poff = symtab_off + off;
4523     }
4524 }
4525 
4526 // Create the .shstrtab section, which holds the names of the
4527 // sections.  At the time this is called, we have created all the
4528 // output sections except .shstrtab itself.
4529 
4530 Output_section*
create_shstrtab()4531 Layout::create_shstrtab()
4532 {
4533   // FIXME: We don't need to create a .shstrtab section if we are
4534   // stripping everything.
4535 
4536   const char* name = this->namepool_.add(".shstrtab", false, NULL);
4537 
4538   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
4539 						 ORDER_INVALID, false);
4540 
4541   if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
4542     {
4543       // We can't write out this section until we've set all the
4544       // section names, and we don't set the names of compressed
4545       // output sections until relocations are complete.  FIXME: With
4546       // the current names we use, this is unnecessary.
4547       os->set_after_input_sections();
4548     }
4549 
4550   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
4551   os->add_output_section_data(posd);
4552 
4553   return os;
4554 }
4555 
4556 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
4557 // offset.
4558 
4559 void
create_shdrs(const Output_section * shstrtab_section,off_t * poff)4560 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
4561 {
4562   Output_section_headers* oshdrs;
4563   oshdrs = new Output_section_headers(this,
4564 				      &this->segment_list_,
4565 				      &this->section_list_,
4566 				      &this->unattached_section_list_,
4567 				      &this->namepool_,
4568 				      shstrtab_section);
4569   off_t off;
4570   if (!parameters->incremental_update())
4571     off = align_address(*poff, oshdrs->addralign());
4572   else
4573     {
4574       oshdrs->pre_finalize_data_size();
4575       off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
4576       if (off == -1)
4577 	  gold_fallback(_("out of patch space for section header table; "
4578 			  "relink with --incremental-full"));
4579       gold_debug(DEBUG_INCREMENTAL,
4580 		 "create_shdrs: %08lx %08lx (section header table)",
4581 		 static_cast<long>(off),
4582 		 static_cast<long>(off + oshdrs->data_size()));
4583     }
4584   oshdrs->set_address_and_file_offset(0, off);
4585   off += oshdrs->data_size();
4586   if (off > *poff)
4587     *poff = off;
4588   this->section_headers_ = oshdrs;
4589 }
4590 
4591 // Count the allocated sections.
4592 
4593 size_t
allocated_output_section_count() const4594 Layout::allocated_output_section_count() const
4595 {
4596   size_t section_count = 0;
4597   for (Segment_list::const_iterator p = this->segment_list_.begin();
4598        p != this->segment_list_.end();
4599        ++p)
4600     section_count += (*p)->output_section_count();
4601   return section_count;
4602 }
4603 
4604 // Create the dynamic symbol table.
4605 // *PLOCAL_DYNAMIC_COUNT will be set to the number of local symbols
4606 // from input objects, and *PFORCED_LOCAL_DYNAMIC_COUNT will be set
4607 // to the number of global symbols that have been forced local.
4608 // We need to remember the former because the forced-local symbols are
4609 // written along with the global symbols in Symtab::write_globals().
4610 
4611 void
create_dynamic_symtab(const Input_objects * input_objects,Symbol_table * symtab,Output_section ** pdynstr,unsigned int * plocal_dynamic_count,unsigned int * pforced_local_dynamic_count,std::vector<Symbol * > * pdynamic_symbols,Versions * pversions)4612 Layout::create_dynamic_symtab(const Input_objects* input_objects,
4613 			      Symbol_table* symtab,
4614 			      Output_section** pdynstr,
4615 			      unsigned int* plocal_dynamic_count,
4616 			      unsigned int* pforced_local_dynamic_count,
4617 			      std::vector<Symbol*>* pdynamic_symbols,
4618 			      Versions* pversions)
4619 {
4620   // Count all the symbols in the dynamic symbol table, and set the
4621   // dynamic symbol indexes.
4622 
4623   // Skip symbol 0, which is always all zeroes.
4624   unsigned int index = 1;
4625 
4626   // Add STT_SECTION symbols for each Output section which needs one.
4627   for (Section_list::iterator p = this->section_list_.begin();
4628        p != this->section_list_.end();
4629        ++p)
4630     {
4631       if (!(*p)->needs_dynsym_index())
4632 	(*p)->set_dynsym_index(-1U);
4633       else
4634 	{
4635 	  (*p)->set_dynsym_index(index);
4636 	  ++index;
4637 	}
4638     }
4639 
4640   // Count the local symbols that need to go in the dynamic symbol table,
4641   // and set the dynamic symbol indexes.
4642   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4643        p != input_objects->relobj_end();
4644        ++p)
4645     {
4646       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
4647       index = new_index;
4648     }
4649 
4650   unsigned int local_symcount = index;
4651   unsigned int forced_local_count = 0;
4652 
4653   index = symtab->set_dynsym_indexes(index, &forced_local_count,
4654 				     pdynamic_symbols, &this->dynpool_,
4655 				     pversions);
4656 
4657   *plocal_dynamic_count = local_symcount;
4658   *pforced_local_dynamic_count = forced_local_count;
4659 
4660   int symsize;
4661   unsigned int align;
4662   const int size = parameters->target().get_size();
4663   if (size == 32)
4664     {
4665       symsize = elfcpp::Elf_sizes<32>::sym_size;
4666       align = 4;
4667     }
4668   else if (size == 64)
4669     {
4670       symsize = elfcpp::Elf_sizes<64>::sym_size;
4671       align = 8;
4672     }
4673   else
4674     gold_unreachable();
4675 
4676   // Create the dynamic symbol table section.
4677 
4678   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
4679 						       elfcpp::SHT_DYNSYM,
4680 						       elfcpp::SHF_ALLOC,
4681 						       false,
4682 						       ORDER_DYNAMIC_LINKER,
4683 						       false, false, false);
4684 
4685   // Check for NULL as a linker script may discard .dynsym.
4686   if (dynsym != NULL)
4687     {
4688       Output_section_data* odata = new Output_data_fixed_space(index * symsize,
4689 							       align,
4690 							       "** dynsym");
4691       dynsym->add_output_section_data(odata);
4692 
4693       dynsym->set_info(local_symcount + forced_local_count);
4694       dynsym->set_entsize(symsize);
4695       dynsym->set_addralign(align);
4696 
4697       this->dynsym_section_ = dynsym;
4698     }
4699 
4700   Output_data_dynamic* const odyn = this->dynamic_data_;
4701   if (odyn != NULL)
4702     {
4703       odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
4704       odyn->add_constant(elfcpp::DT_SYMENT, symsize);
4705     }
4706 
4707   // If there are more than SHN_LORESERVE allocated sections, we
4708   // create a .dynsym_shndx section.  It is possible that we don't
4709   // need one, because it is possible that there are no dynamic
4710   // symbols in any of the sections with indexes larger than
4711   // SHN_LORESERVE.  This is probably unusual, though, and at this
4712   // time we don't know the actual section indexes so it is
4713   // inconvenient to check.
4714   if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
4715     {
4716       Output_section* dynsym_xindex =
4717 	this->choose_output_section(NULL, ".dynsym_shndx",
4718 				    elfcpp::SHT_SYMTAB_SHNDX,
4719 				    elfcpp::SHF_ALLOC,
4720 				    false, ORDER_DYNAMIC_LINKER, false, false,
4721 				    false);
4722 
4723       if (dynsym_xindex != NULL)
4724 	{
4725 	  this->dynsym_xindex_ = new Output_symtab_xindex(index);
4726 
4727 	  dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
4728 
4729 	  dynsym_xindex->set_link_section(dynsym);
4730 	  dynsym_xindex->set_addralign(4);
4731 	  dynsym_xindex->set_entsize(4);
4732 
4733 	  dynsym_xindex->set_after_input_sections();
4734 
4735 	  // This tells the driver code to wait until the symbol table
4736 	  // has written out before writing out the postprocessing
4737 	  // sections, including the .dynsym_shndx section.
4738 	  this->any_postprocessing_sections_ = true;
4739 	}
4740     }
4741 
4742   // Create the dynamic string table section.
4743 
4744   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
4745 						       elfcpp::SHT_STRTAB,
4746 						       elfcpp::SHF_ALLOC,
4747 						       false,
4748 						       ORDER_DYNAMIC_LINKER,
4749 						       false, false, false);
4750   *pdynstr = dynstr;
4751   if (dynstr != NULL)
4752     {
4753       Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
4754       dynstr->add_output_section_data(strdata);
4755 
4756       if (dynsym != NULL)
4757 	dynsym->set_link_section(dynstr);
4758       if (this->dynamic_section_ != NULL)
4759 	this->dynamic_section_->set_link_section(dynstr);
4760 
4761       if (odyn != NULL)
4762 	{
4763 	  odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
4764 	  odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
4765 	}
4766     }
4767 
4768   // Create the hash tables.  The Gnu-style hash table must be
4769   // built first, because it changes the order of the symbols
4770   // in the dynamic symbol table.
4771 
4772   if (strcmp(parameters->options().hash_style(), "gnu") == 0
4773       || strcmp(parameters->options().hash_style(), "both") == 0)
4774     {
4775       unsigned char* phash;
4776       unsigned int hashlen;
4777       Dynobj::create_gnu_hash_table(*pdynamic_symbols,
4778 				    local_symcount + forced_local_count,
4779 				    &phash, &hashlen);
4780 
4781       Output_section* hashsec =
4782 	this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
4783 				    elfcpp::SHF_ALLOC, false,
4784 				    ORDER_DYNAMIC_LINKER, false, false,
4785 				    false);
4786 
4787       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4788 								   hashlen,
4789 								   align,
4790 								   "** hash");
4791       if (hashsec != NULL && hashdata != NULL)
4792 	hashsec->add_output_section_data(hashdata);
4793 
4794       if (hashsec != NULL)
4795 	{
4796 	  if (dynsym != NULL)
4797 	    hashsec->set_link_section(dynsym);
4798 
4799 	  // For a 64-bit target, the entries in .gnu.hash do not have
4800 	  // a uniform size, so we only set the entry size for a
4801 	  // 32-bit target.
4802 	  if (parameters->target().get_size() == 32)
4803 	    hashsec->set_entsize(4);
4804 
4805 	  if (odyn != NULL)
4806 	    odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
4807 	}
4808     }
4809 
4810   if (strcmp(parameters->options().hash_style(), "sysv") == 0
4811       || strcmp(parameters->options().hash_style(), "both") == 0)
4812     {
4813       unsigned char* phash;
4814       unsigned int hashlen;
4815       Dynobj::create_elf_hash_table(*pdynamic_symbols,
4816 				    local_symcount + forced_local_count,
4817 				    &phash, &hashlen);
4818 
4819       Output_section* hashsec =
4820 	this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
4821 				    elfcpp::SHF_ALLOC, false,
4822 				    ORDER_DYNAMIC_LINKER, false, false,
4823 				    false);
4824 
4825       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4826 								   hashlen,
4827 								   align,
4828 								   "** hash");
4829       if (hashsec != NULL && hashdata != NULL)
4830 	hashsec->add_output_section_data(hashdata);
4831 
4832       if (hashsec != NULL)
4833 	{
4834 	  if (dynsym != NULL)
4835 	    hashsec->set_link_section(dynsym);
4836 	  hashsec->set_entsize(parameters->target().hash_entry_size() / 8);
4837 	}
4838 
4839       if (odyn != NULL)
4840 	odyn->add_section_address(elfcpp::DT_HASH, hashsec);
4841     }
4842 }
4843 
4844 // Assign offsets to each local portion of the dynamic symbol table.
4845 
4846 void
assign_local_dynsym_offsets(const Input_objects * input_objects)4847 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
4848 {
4849   Output_section* dynsym = this->dynsym_section_;
4850   if (dynsym == NULL)
4851     return;
4852 
4853   off_t off = dynsym->offset();
4854 
4855   // Skip the dummy symbol at the start of the section.
4856   off += dynsym->entsize();
4857 
4858   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4859        p != input_objects->relobj_end();
4860        ++p)
4861     {
4862       unsigned int count = (*p)->set_local_dynsym_offset(off);
4863       off += count * dynsym->entsize();
4864     }
4865 }
4866 
4867 // Create the version sections.
4868 
4869 void
create_version_sections(const Versions * versions,const Symbol_table * symtab,unsigned int local_symcount,const std::vector<Symbol * > & dynamic_symbols,const Output_section * dynstr)4870 Layout::create_version_sections(const Versions* versions,
4871 				const Symbol_table* symtab,
4872 				unsigned int local_symcount,
4873 				const std::vector<Symbol*>& dynamic_symbols,
4874 				const Output_section* dynstr)
4875 {
4876   if (!versions->any_defs() && !versions->any_needs())
4877     return;
4878 
4879   switch (parameters->size_and_endianness())
4880     {
4881 #ifdef HAVE_TARGET_32_LITTLE
4882     case Parameters::TARGET_32_LITTLE:
4883       this->sized_create_version_sections<32, false>(versions, symtab,
4884 						     local_symcount,
4885 						     dynamic_symbols, dynstr);
4886       break;
4887 #endif
4888 #ifdef HAVE_TARGET_32_BIG
4889     case Parameters::TARGET_32_BIG:
4890       this->sized_create_version_sections<32, true>(versions, symtab,
4891 						    local_symcount,
4892 						    dynamic_symbols, dynstr);
4893       break;
4894 #endif
4895 #ifdef HAVE_TARGET_64_LITTLE
4896     case Parameters::TARGET_64_LITTLE:
4897       this->sized_create_version_sections<64, false>(versions, symtab,
4898 						     local_symcount,
4899 						     dynamic_symbols, dynstr);
4900       break;
4901 #endif
4902 #ifdef HAVE_TARGET_64_BIG
4903     case Parameters::TARGET_64_BIG:
4904       this->sized_create_version_sections<64, true>(versions, symtab,
4905 						    local_symcount,
4906 						    dynamic_symbols, dynstr);
4907       break;
4908 #endif
4909     default:
4910       gold_unreachable();
4911     }
4912 }
4913 
4914 // Create the version sections, sized version.
4915 
4916 template<int size, bool big_endian>
4917 void
sized_create_version_sections(const Versions * versions,const Symbol_table * symtab,unsigned int local_symcount,const std::vector<Symbol * > & dynamic_symbols,const Output_section * dynstr)4918 Layout::sized_create_version_sections(
4919     const Versions* versions,
4920     const Symbol_table* symtab,
4921     unsigned int local_symcount,
4922     const std::vector<Symbol*>& dynamic_symbols,
4923     const Output_section* dynstr)
4924 {
4925   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
4926 						     elfcpp::SHT_GNU_versym,
4927 						     elfcpp::SHF_ALLOC,
4928 						     false,
4929 						     ORDER_DYNAMIC_LINKER,
4930 						     false, false, false);
4931 
4932   // Check for NULL since a linker script may discard this section.
4933   if (vsec != NULL)
4934     {
4935       unsigned char* vbuf;
4936       unsigned int vsize;
4937       versions->symbol_section_contents<size, big_endian>(symtab,
4938 							  &this->dynpool_,
4939 							  local_symcount,
4940 							  dynamic_symbols,
4941 							  &vbuf, &vsize);
4942 
4943       Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4944 								"** versions");
4945 
4946       vsec->add_output_section_data(vdata);
4947       vsec->set_entsize(2);
4948       vsec->set_link_section(this->dynsym_section_);
4949     }
4950 
4951   Output_data_dynamic* const odyn = this->dynamic_data_;
4952   if (odyn != NULL && vsec != NULL)
4953     odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4954 
4955   if (versions->any_defs())
4956     {
4957       Output_section* vdsec;
4958       vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4959 					  elfcpp::SHT_GNU_verdef,
4960 					  elfcpp::SHF_ALLOC,
4961 					  false, ORDER_DYNAMIC_LINKER, false,
4962 					  false, false);
4963 
4964       if (vdsec != NULL)
4965 	{
4966 	  unsigned char* vdbuf;
4967 	  unsigned int vdsize;
4968 	  unsigned int vdentries;
4969 	  versions->def_section_contents<size, big_endian>(&this->dynpool_,
4970 							   &vdbuf, &vdsize,
4971 							   &vdentries);
4972 
4973 	  Output_section_data* vddata =
4974 	    new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4975 
4976 	  vdsec->add_output_section_data(vddata);
4977 	  vdsec->set_link_section(dynstr);
4978 	  vdsec->set_info(vdentries);
4979 
4980 	  if (odyn != NULL)
4981 	    {
4982 	      odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4983 	      odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4984 	    }
4985 	}
4986     }
4987 
4988   if (versions->any_needs())
4989     {
4990       Output_section* vnsec;
4991       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4992 					  elfcpp::SHT_GNU_verneed,
4993 					  elfcpp::SHF_ALLOC,
4994 					  false, ORDER_DYNAMIC_LINKER, false,
4995 					  false, false);
4996 
4997       if (vnsec != NULL)
4998 	{
4999 	  unsigned char* vnbuf;
5000 	  unsigned int vnsize;
5001 	  unsigned int vnentries;
5002 	  versions->need_section_contents<size, big_endian>(&this->dynpool_,
5003 							    &vnbuf, &vnsize,
5004 							    &vnentries);
5005 
5006 	  Output_section_data* vndata =
5007 	    new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
5008 
5009 	  vnsec->add_output_section_data(vndata);
5010 	  vnsec->set_link_section(dynstr);
5011 	  vnsec->set_info(vnentries);
5012 
5013 	  if (odyn != NULL)
5014 	    {
5015 	      odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
5016 	      odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
5017 	    }
5018 	}
5019     }
5020 }
5021 
5022 // Create the .interp section and PT_INTERP segment.
5023 
5024 void
create_interp(const Target * target)5025 Layout::create_interp(const Target* target)
5026 {
5027   gold_assert(this->interp_segment_ == NULL);
5028 
5029   const char* interp = parameters->options().dynamic_linker();
5030   if (interp == NULL)
5031     {
5032       interp = target->dynamic_linker();
5033       gold_assert(interp != NULL);
5034     }
5035 
5036   size_t len = strlen(interp) + 1;
5037 
5038   Output_section_data* odata = new Output_data_const(interp, len, 1);
5039 
5040   Output_section* osec = this->choose_output_section(NULL, ".interp",
5041 						     elfcpp::SHT_PROGBITS,
5042 						     elfcpp::SHF_ALLOC,
5043 						     false, ORDER_INTERP,
5044 						     false, false, false);
5045   if (osec != NULL)
5046     osec->add_output_section_data(odata);
5047 }
5048 
5049 // Add dynamic tags for the PLT and the dynamic relocs.  This is
5050 // called by the target-specific code.  This does nothing if not doing
5051 // a dynamic link.
5052 
5053 // USE_REL is true for REL relocs rather than RELA relocs.
5054 
5055 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
5056 
5057 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
5058 // and we also set DT_PLTREL.  We use PLT_REL's output section, since
5059 // some targets have multiple reloc sections in PLT_REL.
5060 
5061 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
5062 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.  Again we use the output
5063 // section.
5064 
5065 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
5066 // executable.
5067 
5068 void
add_target_dynamic_tags(bool use_rel,const Output_data * plt_got,const Output_data * plt_rel,const Output_data_reloc_generic * dyn_rel,bool add_debug,bool dynrel_includes_plt)5069 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
5070 				const Output_data* plt_rel,
5071 				const Output_data_reloc_generic* dyn_rel,
5072 				bool add_debug, bool dynrel_includes_plt)
5073 {
5074   Output_data_dynamic* odyn = this->dynamic_data_;
5075   if (odyn == NULL)
5076     return;
5077 
5078   if (plt_got != NULL && plt_got->output_section() != NULL)
5079     odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
5080 
5081   if (plt_rel != NULL && plt_rel->output_section() != NULL)
5082     {
5083       odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
5084       odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
5085       odyn->add_constant(elfcpp::DT_PLTREL,
5086 			 use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
5087     }
5088 
5089   if ((dyn_rel != NULL && dyn_rel->output_section() != NULL)
5090       || (dynrel_includes_plt
5091 	  && plt_rel != NULL
5092 	  && plt_rel->output_section() != NULL))
5093     {
5094       bool have_dyn_rel = dyn_rel != NULL && dyn_rel->output_section() != NULL;
5095       bool have_plt_rel = plt_rel != NULL && plt_rel->output_section() != NULL;
5096       odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
5097 				(have_dyn_rel
5098 				 ? dyn_rel->output_section()
5099 				 : plt_rel->output_section()));
5100       elfcpp::DT size_tag = use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ;
5101       if (have_dyn_rel && have_plt_rel && dynrel_includes_plt)
5102 	odyn->add_section_size(size_tag,
5103 			       dyn_rel->output_section(),
5104 			       plt_rel->output_section());
5105       else if (have_dyn_rel)
5106 	odyn->add_section_size(size_tag, dyn_rel->output_section());
5107       else
5108 	odyn->add_section_size(size_tag, plt_rel->output_section());
5109       const int size = parameters->target().get_size();
5110       elfcpp::DT rel_tag;
5111       int rel_size;
5112       if (use_rel)
5113 	{
5114 	  rel_tag = elfcpp::DT_RELENT;
5115 	  if (size == 32)
5116 	    rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
5117 	  else if (size == 64)
5118 	    rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
5119 	  else
5120 	    gold_unreachable();
5121 	}
5122       else
5123 	{
5124 	  rel_tag = elfcpp::DT_RELAENT;
5125 	  if (size == 32)
5126 	    rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
5127 	  else if (size == 64)
5128 	    rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
5129 	  else
5130 	    gold_unreachable();
5131 	}
5132       odyn->add_constant(rel_tag, rel_size);
5133 
5134       if (parameters->options().combreloc() && have_dyn_rel)
5135 	{
5136 	  size_t c = dyn_rel->relative_reloc_count();
5137 	  if (c > 0)
5138 	    odyn->add_constant((use_rel
5139 				? elfcpp::DT_RELCOUNT
5140 				: elfcpp::DT_RELACOUNT),
5141 			       c);
5142 	}
5143     }
5144 
5145   if (add_debug && !parameters->options().shared())
5146     {
5147       // The value of the DT_DEBUG tag is filled in by the dynamic
5148       // linker at run time, and used by the debugger.
5149       odyn->add_constant(elfcpp::DT_DEBUG, 0);
5150     }
5151 }
5152 
5153 void
add_target_specific_dynamic_tag(elfcpp::DT tag,unsigned int val)5154 Layout::add_target_specific_dynamic_tag(elfcpp::DT tag, unsigned int val)
5155 {
5156   Output_data_dynamic* odyn = this->dynamic_data_;
5157   if (odyn == NULL)
5158     return;
5159   odyn->add_constant(tag, val);
5160 }
5161 
5162 // Finish the .dynamic section and PT_DYNAMIC segment.
5163 
5164 void
finish_dynamic_section(const Input_objects * input_objects,const Symbol_table * symtab)5165 Layout::finish_dynamic_section(const Input_objects* input_objects,
5166 			       const Symbol_table* symtab)
5167 {
5168   if (!this->script_options_->saw_phdrs_clause()
5169       && this->dynamic_section_ != NULL)
5170     {
5171       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
5172 						       (elfcpp::PF_R
5173 							| elfcpp::PF_W));
5174       oseg->add_output_section_to_nonload(this->dynamic_section_,
5175 					  elfcpp::PF_R | elfcpp::PF_W);
5176     }
5177 
5178   Output_data_dynamic* const odyn = this->dynamic_data_;
5179   if (odyn == NULL)
5180     return;
5181 
5182   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
5183        p != input_objects->dynobj_end();
5184        ++p)
5185     {
5186       if (!(*p)->is_needed() && (*p)->as_needed())
5187 	{
5188 	  // This dynamic object was linked with --as-needed, but it
5189 	  // is not needed.
5190 	  continue;
5191 	}
5192 
5193       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
5194     }
5195 
5196   if (parameters->options().shared())
5197     {
5198       const char* soname = parameters->options().soname();
5199       if (soname != NULL)
5200 	odyn->add_string(elfcpp::DT_SONAME, soname);
5201     }
5202 
5203   Symbol* sym = symtab->lookup(parameters->options().init());
5204   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
5205     odyn->add_symbol(elfcpp::DT_INIT, sym);
5206 
5207   sym = symtab->lookup(parameters->options().fini());
5208   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
5209     odyn->add_symbol(elfcpp::DT_FINI, sym);
5210 
5211   // Look for .init_array, .preinit_array and .fini_array by checking
5212   // section types.
5213   for(Layout::Section_list::const_iterator p = this->section_list_.begin();
5214       p != this->section_list_.end();
5215       ++p)
5216     switch((*p)->type())
5217       {
5218       case elfcpp::SHT_FINI_ARRAY:
5219 	odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
5220 	odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
5221 	break;
5222       case elfcpp::SHT_INIT_ARRAY:
5223 	odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
5224 	odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
5225 	break;
5226       case elfcpp::SHT_PREINIT_ARRAY:
5227 	odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
5228 	odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
5229 	break;
5230       default:
5231 	break;
5232       }
5233 
5234   // Add a DT_RPATH entry if needed.
5235   const General_options::Dir_list& rpath(parameters->options().rpath());
5236   if (!rpath.empty())
5237     {
5238       std::string rpath_val;
5239       for (General_options::Dir_list::const_iterator p = rpath.begin();
5240 	   p != rpath.end();
5241 	   ++p)
5242 	{
5243 	  if (rpath_val.empty())
5244 	    rpath_val = p->name();
5245 	  else
5246 	    {
5247 	      // Eliminate duplicates.
5248 	      General_options::Dir_list::const_iterator q;
5249 	      for (q = rpath.begin(); q != p; ++q)
5250 		if (q->name() == p->name())
5251 		  break;
5252 	      if (q == p)
5253 		{
5254 		  rpath_val += ':';
5255 		  rpath_val += p->name();
5256 		}
5257 	    }
5258 	}
5259 
5260       if (!parameters->options().enable_new_dtags())
5261 	odyn->add_string(elfcpp::DT_RPATH, rpath_val);
5262       else
5263 	odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
5264     }
5265 
5266   // Look for text segments that have dynamic relocations.
5267   bool have_textrel = false;
5268   if (!this->script_options_->saw_sections_clause())
5269     {
5270       for (Segment_list::const_iterator p = this->segment_list_.begin();
5271 	   p != this->segment_list_.end();
5272 	   ++p)
5273 	{
5274 	  if ((*p)->type() == elfcpp::PT_LOAD
5275 	      && ((*p)->flags() & elfcpp::PF_W) == 0
5276 	      && (*p)->has_dynamic_reloc())
5277 	    {
5278 	      have_textrel = true;
5279 	      break;
5280 	    }
5281 	}
5282     }
5283   else
5284     {
5285       // We don't know the section -> segment mapping, so we are
5286       // conservative and just look for readonly sections with
5287       // relocations.  If those sections wind up in writable segments,
5288       // then we have created an unnecessary DT_TEXTREL entry.
5289       for (Section_list::const_iterator p = this->section_list_.begin();
5290 	   p != this->section_list_.end();
5291 	   ++p)
5292 	{
5293 	  if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
5294 	      && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
5295 	      && (*p)->has_dynamic_reloc())
5296 	    {
5297 	      have_textrel = true;
5298 	      break;
5299 	    }
5300 	}
5301     }
5302 
5303   if (parameters->options().filter() != NULL)
5304     odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
5305   if (parameters->options().any_auxiliary())
5306     {
5307       for (options::String_set::const_iterator p =
5308 	     parameters->options().auxiliary_begin();
5309 	   p != parameters->options().auxiliary_end();
5310 	   ++p)
5311 	odyn->add_string(elfcpp::DT_AUXILIARY, *p);
5312     }
5313 
5314   // Add a DT_FLAGS entry if necessary.
5315   unsigned int flags = 0;
5316   if (have_textrel)
5317     {
5318       // Add a DT_TEXTREL for compatibility with older loaders.
5319       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
5320       flags |= elfcpp::DF_TEXTREL;
5321 
5322       if (parameters->options().text())
5323 	gold_error(_("read-only segment has dynamic relocations"));
5324       else if (parameters->options().warn_shared_textrel()
5325 	       && parameters->options().shared())
5326 	gold_warning(_("shared library text segment is not shareable"));
5327     }
5328   if (parameters->options().shared() && this->has_static_tls())
5329     flags |= elfcpp::DF_STATIC_TLS;
5330   if (parameters->options().origin())
5331     flags |= elfcpp::DF_ORIGIN;
5332   if (parameters->options().Bsymbolic()
5333       && !parameters->options().have_dynamic_list())
5334     {
5335       flags |= elfcpp::DF_SYMBOLIC;
5336       // Add DT_SYMBOLIC for compatibility with older loaders.
5337       odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
5338     }
5339   if (parameters->options().now())
5340     flags |= elfcpp::DF_BIND_NOW;
5341   if (flags != 0)
5342     odyn->add_constant(elfcpp::DT_FLAGS, flags);
5343 
5344   flags = 0;
5345   if (parameters->options().global())
5346     flags |= elfcpp::DF_1_GLOBAL;
5347   if (parameters->options().initfirst())
5348     flags |= elfcpp::DF_1_INITFIRST;
5349   if (parameters->options().interpose())
5350     flags |= elfcpp::DF_1_INTERPOSE;
5351   if (parameters->options().loadfltr())
5352     flags |= elfcpp::DF_1_LOADFLTR;
5353   if (parameters->options().nodefaultlib())
5354     flags |= elfcpp::DF_1_NODEFLIB;
5355   if (parameters->options().nodelete())
5356     flags |= elfcpp::DF_1_NODELETE;
5357   if (parameters->options().nodlopen())
5358     flags |= elfcpp::DF_1_NOOPEN;
5359   if (parameters->options().nodump())
5360     flags |= elfcpp::DF_1_NODUMP;
5361   if (!parameters->options().shared())
5362     flags &= ~(elfcpp::DF_1_INITFIRST
5363 	       | elfcpp::DF_1_NODELETE
5364 	       | elfcpp::DF_1_NOOPEN);
5365   if (parameters->options().origin())
5366     flags |= elfcpp::DF_1_ORIGIN;
5367   if (parameters->options().now())
5368     flags |= elfcpp::DF_1_NOW;
5369   if (parameters->options().Bgroup())
5370     flags |= elfcpp::DF_1_GROUP;
5371   if (parameters->options().pie())
5372     flags |= elfcpp::DF_1_PIE;
5373   if (flags != 0)
5374     odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
5375 
5376   flags = 0;
5377   if (parameters->options().unique())
5378     flags |= elfcpp::DF_GNU_1_UNIQUE;
5379   if (flags != 0)
5380     odyn->add_constant(elfcpp::DT_GNU_FLAGS_1, flags);
5381 }
5382 
5383 // Set the size of the _DYNAMIC symbol table to be the size of the
5384 // dynamic data.
5385 
5386 void
set_dynamic_symbol_size(const Symbol_table * symtab)5387 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
5388 {
5389   Output_data_dynamic* const odyn = this->dynamic_data_;
5390   if (odyn == NULL)
5391     return;
5392   odyn->finalize_data_size();
5393   if (this->dynamic_symbol_ == NULL)
5394     return;
5395   off_t data_size = odyn->data_size();
5396   const int size = parameters->target().get_size();
5397   if (size == 32)
5398     symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
5399   else if (size == 64)
5400     symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
5401   else
5402     gold_unreachable();
5403 }
5404 
5405 // The mapping of input section name prefixes to output section names.
5406 // In some cases one prefix is itself a prefix of another prefix; in
5407 // such a case the longer prefix must come first.  These prefixes are
5408 // based on the GNU linker default ELF linker script.
5409 
5410 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
5411 #define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 }
5412 const Layout::Section_name_mapping Layout::section_name_mapping[] =
5413 {
5414   MAPPING_INIT(".text.", ".text"),
5415   MAPPING_INIT(".rodata.", ".rodata"),
5416   MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"),
5417   MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"),
5418   MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"),
5419   MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"),
5420   MAPPING_INIT(".data.", ".data"),
5421   MAPPING_INIT(".bss.", ".bss"),
5422   MAPPING_INIT(".tdata.", ".tdata"),
5423   MAPPING_INIT(".tbss.", ".tbss"),
5424   MAPPING_INIT(".init_array.", ".init_array"),
5425   MAPPING_INIT(".fini_array.", ".fini_array"),
5426   MAPPING_INIT(".sdata.", ".sdata"),
5427   MAPPING_INIT(".sbss.", ".sbss"),
5428   // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
5429   // differently depending on whether it is creating a shared library.
5430   MAPPING_INIT(".sdata2.", ".sdata"),
5431   MAPPING_INIT(".sbss2.", ".sbss"),
5432   MAPPING_INIT(".lrodata.", ".lrodata"),
5433   MAPPING_INIT(".ldata.", ".ldata"),
5434   MAPPING_INIT(".lbss.", ".lbss"),
5435   MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
5436   MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
5437   MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
5438   MAPPING_INIT(".gnu.linkonce.t.", ".text"),
5439   MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
5440   MAPPING_INIT(".gnu.linkonce.d.", ".data"),
5441   MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
5442   MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
5443   MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
5444   MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
5445   MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
5446   MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
5447   MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
5448   MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
5449   MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
5450   MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
5451   MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
5452   MAPPING_INIT(".ARM.extab", ".ARM.extab"),
5453   MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
5454   MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
5455   MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
5456   MAPPING_INIT(".gnu.build.attributes.", ".gnu.build.attributes"),
5457 };
5458 
5459 // Mapping for ".text" section prefixes with -z,keep-text-section-prefix.
5460 const Layout::Section_name_mapping Layout::text_section_name_mapping[] =
5461 {
5462   MAPPING_INIT(".text.hot.", ".text.hot"),
5463   MAPPING_INIT_EXACT(".text.hot", ".text.hot"),
5464   MAPPING_INIT(".text.unlikely.", ".text.unlikely"),
5465   MAPPING_INIT_EXACT(".text.unlikely", ".text.unlikely"),
5466   MAPPING_INIT(".text.startup.", ".text.startup"),
5467   MAPPING_INIT_EXACT(".text.startup", ".text.startup"),
5468   MAPPING_INIT(".text.exit.", ".text.exit"),
5469   MAPPING_INIT_EXACT(".text.exit", ".text.exit"),
5470   MAPPING_INIT(".text.", ".text"),
5471 };
5472 #undef MAPPING_INIT
5473 #undef MAPPING_INIT_EXACT
5474 
5475 const int Layout::section_name_mapping_count =
5476   (sizeof(Layout::section_name_mapping)
5477    / sizeof(Layout::section_name_mapping[0]));
5478 
5479 const int Layout::text_section_name_mapping_count =
5480   (sizeof(Layout::text_section_name_mapping)
5481    / sizeof(Layout::text_section_name_mapping[0]));
5482 
5483 // Find section name NAME in PSNM and return the mapped name if found
5484 // with the length set in PLEN.
5485 const char *
match_section_name(const Layout::Section_name_mapping * psnm,const int count,const char * name,size_t * plen)5486 Layout::match_section_name(const Layout::Section_name_mapping* psnm,
5487 			   const int count,
5488 			   const char* name, size_t* plen)
5489 {
5490   for (int i = 0; i < count; ++i, ++psnm)
5491     {
5492       if (psnm->fromlen > 0)
5493 	{
5494 	  if (strncmp(name, psnm->from, psnm->fromlen) == 0)
5495 	    {
5496 	      *plen = psnm->tolen;
5497 	      return psnm->to;
5498 	    }
5499 	}
5500       else
5501 	{
5502 	  if (strcmp(name, psnm->from) == 0)
5503 	    {
5504 	      *plen = psnm->tolen;
5505 	      return psnm->to;
5506 	    }
5507 	}
5508     }
5509   return NULL;
5510 }
5511 
5512 // Choose the output section name to use given an input section name.
5513 // Set *PLEN to the length of the name.  *PLEN is initialized to the
5514 // length of NAME.
5515 
5516 const char*
output_section_name(const Relobj * relobj,const char * name,size_t * plen)5517 Layout::output_section_name(const Relobj* relobj, const char* name,
5518 			    size_t* plen)
5519 {
5520   // gcc 4.3 generates the following sorts of section names when it
5521   // needs a section name specific to a function:
5522   //   .text.FN
5523   //   .rodata.FN
5524   //   .sdata2.FN
5525   //   .data.FN
5526   //   .data.rel.FN
5527   //   .data.rel.local.FN
5528   //   .data.rel.ro.FN
5529   //   .data.rel.ro.local.FN
5530   //   .sdata.FN
5531   //   .bss.FN
5532   //   .sbss.FN
5533   //   .tdata.FN
5534   //   .tbss.FN
5535 
5536   // The GNU linker maps all of those to the part before the .FN,
5537   // except that .data.rel.local.FN is mapped to .data, and
5538   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
5539   // beginning with .data.rel.ro.local are grouped together.
5540 
5541   // For an anonymous namespace, the string FN can contain a '.'.
5542 
5543   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
5544   // GNU linker maps to .rodata.
5545 
5546   // The .data.rel.ro sections are used with -z relro.  The sections
5547   // are recognized by name.  We use the same names that the GNU
5548   // linker does for these sections.
5549 
5550   // It is hard to handle this in a principled way, so we don't even
5551   // try.  We use a table of mappings.  If the input section name is
5552   // not found in the table, we simply use it as the output section
5553   // name.
5554 
5555   if (parameters->options().keep_text_section_prefix()
5556       && is_prefix_of(".text", name))
5557     {
5558       const char* match = match_section_name(text_section_name_mapping,
5559 					     text_section_name_mapping_count,
5560 					     name, plen);
5561       if (match != NULL)
5562 	return match;
5563     }
5564 
5565   const char* match = match_section_name(section_name_mapping,
5566 					 section_name_mapping_count, name, plen);
5567   if (match != NULL)
5568     return match;
5569 
5570   // As an additional complication, .ctors sections are output in
5571   // either .ctors or .init_array sections, and .dtors sections are
5572   // output in either .dtors or .fini_array sections.
5573   if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
5574     {
5575       if (parameters->options().ctors_in_init_array())
5576 	{
5577 	  *plen = 11;
5578 	  return name[1] == 'c' ? ".init_array" : ".fini_array";
5579 	}
5580       else
5581 	{
5582 	  *plen = 6;
5583 	  return name[1] == 'c' ? ".ctors" : ".dtors";
5584 	}
5585     }
5586   if (parameters->options().ctors_in_init_array()
5587       && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
5588     {
5589       // To make .init_array/.fini_array work with gcc we must exclude
5590       // .ctors and .dtors sections from the crtbegin and crtend
5591       // files.
5592       if (relobj == NULL
5593 	  || (!Layout::match_file_name(relobj, "crtbegin")
5594 	      && !Layout::match_file_name(relobj, "crtend")))
5595 	{
5596 	  *plen = 11;
5597 	  return name[1] == 'c' ? ".init_array" : ".fini_array";
5598 	}
5599     }
5600 
5601   return name;
5602 }
5603 
5604 // Return true if RELOBJ is an input file whose base name matches
5605 // FILE_NAME.  The base name must have an extension of ".o", and must
5606 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o".  This is
5607 // to match crtbegin.o as well as crtbeginS.o without getting confused
5608 // by other possibilities.  Overall matching the file name this way is
5609 // a dreadful hack, but the GNU linker does it in order to better
5610 // support gcc, and we need to be compatible.
5611 
5612 bool
match_file_name(const Relobj * relobj,const char * match)5613 Layout::match_file_name(const Relobj* relobj, const char* match)
5614 {
5615   const std::string& file_name(relobj->name());
5616   const char* base_name = lbasename(file_name.c_str());
5617   size_t match_len = strlen(match);
5618   if (strncmp(base_name, match, match_len) != 0)
5619     return false;
5620   size_t base_len = strlen(base_name);
5621   if (base_len != match_len + 2 && base_len != match_len + 3)
5622     return false;
5623   return memcmp(base_name + base_len - 2, ".o", 2) == 0;
5624 }
5625 
5626 // Check if a comdat group or .gnu.linkonce section with the given
5627 // NAME is selected for the link.  If there is already a section,
5628 // *KEPT_SECTION is set to point to the existing section and the
5629 // function returns false.  Otherwise, OBJECT, SHNDX, IS_COMDAT, and
5630 // IS_GROUP_NAME are recorded for this NAME in the layout object,
5631 // *KEPT_SECTION is set to the internal copy and the function returns
5632 // true.
5633 
5634 bool
find_or_add_kept_section(const std::string & name,Relobj * object,unsigned int shndx,bool is_comdat,bool is_group_name,Kept_section ** kept_section)5635 Layout::find_or_add_kept_section(const std::string& name,
5636 				 Relobj* object,
5637 				 unsigned int shndx,
5638 				 bool is_comdat,
5639 				 bool is_group_name,
5640 				 Kept_section** kept_section)
5641 {
5642   // It's normal to see a couple of entries here, for the x86 thunk
5643   // sections.  If we see more than a few, we're linking a C++
5644   // program, and we resize to get more space to minimize rehashing.
5645   if (this->signatures_.size() > 4
5646       && !this->resized_signatures_)
5647     {
5648       reserve_unordered_map(&this->signatures_,
5649 			    this->number_of_input_files_ * 64);
5650       this->resized_signatures_ = true;
5651     }
5652 
5653   Kept_section candidate;
5654   std::pair<Signatures::iterator, bool> ins =
5655     this->signatures_.insert(std::make_pair(name, candidate));
5656 
5657   if (kept_section != NULL)
5658     *kept_section = &ins.first->second;
5659   if (ins.second)
5660     {
5661       // This is the first time we've seen this signature.
5662       ins.first->second.set_object(object);
5663       ins.first->second.set_shndx(shndx);
5664       if (is_comdat)
5665 	ins.first->second.set_is_comdat();
5666       if (is_group_name)
5667 	ins.first->second.set_is_group_name();
5668       return true;
5669     }
5670 
5671   // We have already seen this signature.
5672 
5673   if (ins.first->second.is_group_name())
5674     {
5675       // We've already seen a real section group with this signature.
5676       // If the kept group is from a plugin object, and we're in the
5677       // replacement phase, accept the new one as a replacement.
5678       if (ins.first->second.object() == NULL
5679 	  && parameters->options().plugins()->in_replacement_phase())
5680 	{
5681 	  ins.first->second.set_object(object);
5682 	  ins.first->second.set_shndx(shndx);
5683 	  return true;
5684 	}
5685       return false;
5686     }
5687   else if (is_group_name)
5688     {
5689       // This is a real section group, and we've already seen a
5690       // linkonce section with this signature.  Record that we've seen
5691       // a section group, and don't include this section group.
5692       ins.first->second.set_is_group_name();
5693       return false;
5694     }
5695   else
5696     {
5697       // We've already seen a linkonce section and this is a linkonce
5698       // section.  These don't block each other--this may be the same
5699       // symbol name with different section types.
5700       return true;
5701     }
5702 }
5703 
5704 // Store the allocated sections into the section list.
5705 
5706 void
get_allocated_sections(Section_list * section_list) const5707 Layout::get_allocated_sections(Section_list* section_list) const
5708 {
5709   for (Section_list::const_iterator p = this->section_list_.begin();
5710        p != this->section_list_.end();
5711        ++p)
5712     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
5713       section_list->push_back(*p);
5714 }
5715 
5716 // Store the executable sections into the section list.
5717 
5718 void
get_executable_sections(Section_list * section_list) const5719 Layout::get_executable_sections(Section_list* section_list) const
5720 {
5721   for (Section_list::const_iterator p = this->section_list_.begin();
5722        p != this->section_list_.end();
5723        ++p)
5724     if (((*p)->flags() & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5725 	== (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5726       section_list->push_back(*p);
5727 }
5728 
5729 // Create an output segment.
5730 
5731 Output_segment*
make_output_segment(elfcpp::Elf_Word type,elfcpp::Elf_Word flags)5732 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
5733 {
5734   gold_assert(!parameters->options().relocatable());
5735   Output_segment* oseg = new Output_segment(type, flags);
5736   this->segment_list_.push_back(oseg);
5737 
5738   if (type == elfcpp::PT_TLS)
5739     this->tls_segment_ = oseg;
5740   else if (type == elfcpp::PT_GNU_RELRO)
5741     this->relro_segment_ = oseg;
5742   else if (type == elfcpp::PT_INTERP)
5743     this->interp_segment_ = oseg;
5744 
5745   return oseg;
5746 }
5747 
5748 // Return the file offset of the normal symbol table.
5749 
5750 off_t
symtab_section_offset() const5751 Layout::symtab_section_offset() const
5752 {
5753   if (this->symtab_section_ != NULL)
5754     return this->symtab_section_->offset();
5755   return 0;
5756 }
5757 
5758 // Return the section index of the normal symbol table.  It may have
5759 // been stripped by the -s/--strip-all option.
5760 
5761 unsigned int
symtab_section_shndx() const5762 Layout::symtab_section_shndx() const
5763 {
5764   if (this->symtab_section_ != NULL)
5765     return this->symtab_section_->out_shndx();
5766   return 0;
5767 }
5768 
5769 // Write out the Output_sections.  Most won't have anything to write,
5770 // since most of the data will come from input sections which are
5771 // handled elsewhere.  But some Output_sections do have Output_data.
5772 
5773 void
write_output_sections(Output_file * of) const5774 Layout::write_output_sections(Output_file* of) const
5775 {
5776   for (Section_list::const_iterator p = this->section_list_.begin();
5777        p != this->section_list_.end();
5778        ++p)
5779     {
5780       if (!(*p)->after_input_sections())
5781 	(*p)->write(of);
5782     }
5783 }
5784 
5785 // Write out data not associated with a section or the symbol table.
5786 
5787 void
write_data(const Symbol_table * symtab,Output_file * of) const5788 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
5789 {
5790   if (!parameters->options().strip_all())
5791     {
5792       const Output_section* symtab_section = this->symtab_section_;
5793       for (Section_list::const_iterator p = this->section_list_.begin();
5794 	   p != this->section_list_.end();
5795 	   ++p)
5796 	{
5797 	  if ((*p)->needs_symtab_index())
5798 	    {
5799 	      gold_assert(symtab_section != NULL);
5800 	      unsigned int index = (*p)->symtab_index();
5801 	      gold_assert(index > 0 && index != -1U);
5802 	      off_t off = (symtab_section->offset()
5803 			   + index * symtab_section->entsize());
5804 	      symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
5805 	    }
5806 	}
5807     }
5808 
5809   const Output_section* dynsym_section = this->dynsym_section_;
5810   for (Section_list::const_iterator p = this->section_list_.begin();
5811        p != this->section_list_.end();
5812        ++p)
5813     {
5814       if ((*p)->needs_dynsym_index())
5815 	{
5816 	  gold_assert(dynsym_section != NULL);
5817 	  unsigned int index = (*p)->dynsym_index();
5818 	  gold_assert(index > 0 && index != -1U);
5819 	  off_t off = (dynsym_section->offset()
5820 		       + index * dynsym_section->entsize());
5821 	  symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
5822 	}
5823     }
5824 
5825   // Write out the Output_data which are not in an Output_section.
5826   for (Data_list::const_iterator p = this->special_output_list_.begin();
5827        p != this->special_output_list_.end();
5828        ++p)
5829     (*p)->write(of);
5830 
5831   // Write out the Output_data which are not in an Output_section
5832   // and are regenerated in each iteration of relaxation.
5833   for (Data_list::const_iterator p = this->relax_output_list_.begin();
5834        p != this->relax_output_list_.end();
5835        ++p)
5836     (*p)->write(of);
5837 }
5838 
5839 // Write out the Output_sections which can only be written after the
5840 // input sections are complete.
5841 
5842 void
write_sections_after_input_sections(Output_file * of)5843 Layout::write_sections_after_input_sections(Output_file* of)
5844 {
5845   // Determine the final section offsets, and thus the final output
5846   // file size.  Note we finalize the .shstrab last, to allow the
5847   // after_input_section sections to modify their section-names before
5848   // writing.
5849   if (this->any_postprocessing_sections_)
5850     {
5851       off_t off = this->output_file_size_;
5852       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
5853 
5854       // Now that we've finalized the names, we can finalize the shstrab.
5855       off =
5856 	this->set_section_offsets(off,
5857 				  STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
5858 
5859       if (off > this->output_file_size_)
5860 	{
5861 	  of->resize(off);
5862 	  this->output_file_size_ = off;
5863 	}
5864     }
5865 
5866   for (Section_list::const_iterator p = this->section_list_.begin();
5867        p != this->section_list_.end();
5868        ++p)
5869     {
5870       if ((*p)->after_input_sections())
5871 	(*p)->write(of);
5872     }
5873 
5874   this->section_headers_->write(of);
5875 }
5876 
5877 // If a tree-style build ID was requested, the parallel part of that computation
5878 // is already done, and the final hash-of-hashes is computed here.  For other
5879 // types of build IDs, all the work is done here.
5880 
5881 void
write_build_id(Output_file * of,unsigned char * array_of_hashes,size_t size_of_hashes) const5882 Layout::write_build_id(Output_file* of, unsigned char* array_of_hashes,
5883 		       size_t size_of_hashes) const
5884 {
5885   if (this->build_id_note_ == NULL)
5886     return;
5887 
5888   unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
5889 					  this->build_id_note_->data_size());
5890 
5891   if (array_of_hashes == NULL)
5892     {
5893       const size_t output_file_size = this->output_file_size();
5894       const unsigned char* iv = of->get_input_view(0, output_file_size);
5895       const char* style = parameters->options().build_id();
5896 
5897       // If we get here with style == "tree" then the output must be
5898       // too small for chunking, and we use SHA-1 in that case.
5899       if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
5900 	sha1_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5901       else if (strcmp(style, "md5") == 0)
5902 	md5_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5903       else
5904 	gold_unreachable();
5905 
5906       of->free_input_view(0, output_file_size, iv);
5907     }
5908   else
5909     {
5910       // Non-overlapping substrings of the output file have been hashed.
5911       // Compute SHA-1 hash of the hashes.
5912       sha1_buffer(reinterpret_cast<const char*>(array_of_hashes),
5913 		  size_of_hashes, ov);
5914       delete[] array_of_hashes;
5915     }
5916 
5917   of->write_output_view(this->build_id_note_->offset(),
5918 			this->build_id_note_->data_size(),
5919 			ov);
5920 }
5921 
5922 // Write out a binary file.  This is called after the link is
5923 // complete.  IN is the temporary output file we used to generate the
5924 // ELF code.  We simply walk through the segments, read them from
5925 // their file offset in IN, and write them to their load address in
5926 // the output file.  FIXME: with a bit more work, we could support
5927 // S-records and/or Intel hex format here.
5928 
5929 void
write_binary(Output_file * in) const5930 Layout::write_binary(Output_file* in) const
5931 {
5932   gold_assert(parameters->options().oformat_enum()
5933 	      == General_options::OBJECT_FORMAT_BINARY);
5934 
5935   // Get the size of the binary file.
5936   uint64_t max_load_address = 0;
5937   for (Segment_list::const_iterator p = this->segment_list_.begin();
5938        p != this->segment_list_.end();
5939        ++p)
5940     {
5941       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5942 	{
5943 	  uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
5944 	  if (max_paddr > max_load_address)
5945 	    max_load_address = max_paddr;
5946 	}
5947     }
5948 
5949   Output_file out(parameters->options().output_file_name());
5950   out.open(max_load_address);
5951 
5952   for (Segment_list::const_iterator p = this->segment_list_.begin();
5953        p != this->segment_list_.end();
5954        ++p)
5955     {
5956       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5957 	{
5958 	  const unsigned char* vin = in->get_input_view((*p)->offset(),
5959 							(*p)->filesz());
5960 	  unsigned char* vout = out.get_output_view((*p)->paddr(),
5961 						    (*p)->filesz());
5962 	  memcpy(vout, vin, (*p)->filesz());
5963 	  out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
5964 	  in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
5965 	}
5966     }
5967 
5968   out.close();
5969 }
5970 
5971 // Print the output sections to the map file.
5972 
5973 void
print_to_mapfile(Mapfile * mapfile) const5974 Layout::print_to_mapfile(Mapfile* mapfile) const
5975 {
5976   for (Segment_list::const_iterator p = this->segment_list_.begin();
5977        p != this->segment_list_.end();
5978        ++p)
5979     (*p)->print_sections_to_mapfile(mapfile);
5980   for (Section_list::const_iterator p = this->unattached_section_list_.begin();
5981        p != this->unattached_section_list_.end();
5982        ++p)
5983     (*p)->print_to_mapfile(mapfile);
5984 }
5985 
5986 // Print statistical information to stderr.  This is used for --stats.
5987 
5988 void
print_stats() const5989 Layout::print_stats() const
5990 {
5991   this->namepool_.print_stats("section name pool");
5992   this->sympool_.print_stats("output symbol name pool");
5993   this->dynpool_.print_stats("dynamic name pool");
5994 
5995   for (Section_list::const_iterator p = this->section_list_.begin();
5996        p != this->section_list_.end();
5997        ++p)
5998     (*p)->print_merge_stats();
5999 }
6000 
6001 // Write_sections_task methods.
6002 
6003 // We can always run this task.
6004 
6005 Task_token*
is_runnable()6006 Write_sections_task::is_runnable()
6007 {
6008   return NULL;
6009 }
6010 
6011 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
6012 // when finished.
6013 
6014 void
locks(Task_locker * tl)6015 Write_sections_task::locks(Task_locker* tl)
6016 {
6017   tl->add(this, this->output_sections_blocker_);
6018   if (this->input_sections_blocker_ != NULL)
6019     tl->add(this, this->input_sections_blocker_);
6020   tl->add(this, this->final_blocker_);
6021 }
6022 
6023 // Run the task--write out the data.
6024 
6025 void
run(Workqueue *)6026 Write_sections_task::run(Workqueue*)
6027 {
6028   this->layout_->write_output_sections(this->of_);
6029 }
6030 
6031 // Write_data_task methods.
6032 
6033 // We can always run this task.
6034 
6035 Task_token*
is_runnable()6036 Write_data_task::is_runnable()
6037 {
6038   return NULL;
6039 }
6040 
6041 // We need to unlock FINAL_BLOCKER when finished.
6042 
6043 void
locks(Task_locker * tl)6044 Write_data_task::locks(Task_locker* tl)
6045 {
6046   tl->add(this, this->final_blocker_);
6047 }
6048 
6049 // Run the task--write out the data.
6050 
6051 void
run(Workqueue *)6052 Write_data_task::run(Workqueue*)
6053 {
6054   this->layout_->write_data(this->symtab_, this->of_);
6055 }
6056 
6057 // Write_symbols_task methods.
6058 
6059 // We can always run this task.
6060 
6061 Task_token*
is_runnable()6062 Write_symbols_task::is_runnable()
6063 {
6064   return NULL;
6065 }
6066 
6067 // We need to unlock FINAL_BLOCKER when finished.
6068 
6069 void
locks(Task_locker * tl)6070 Write_symbols_task::locks(Task_locker* tl)
6071 {
6072   tl->add(this, this->final_blocker_);
6073 }
6074 
6075 // Run the task--write out the symbols.
6076 
6077 void
run(Workqueue *)6078 Write_symbols_task::run(Workqueue*)
6079 {
6080   this->symtab_->write_globals(this->sympool_, this->dynpool_,
6081 			       this->layout_->symtab_xindex(),
6082 			       this->layout_->dynsym_xindex(), this->of_);
6083 }
6084 
6085 // Write_after_input_sections_task methods.
6086 
6087 // We can only run this task after the input sections have completed.
6088 
6089 Task_token*
is_runnable()6090 Write_after_input_sections_task::is_runnable()
6091 {
6092   if (this->input_sections_blocker_->is_blocked())
6093     return this->input_sections_blocker_;
6094   return NULL;
6095 }
6096 
6097 // We need to unlock FINAL_BLOCKER when finished.
6098 
6099 void
locks(Task_locker * tl)6100 Write_after_input_sections_task::locks(Task_locker* tl)
6101 {
6102   tl->add(this, this->final_blocker_);
6103 }
6104 
6105 // Run the task.
6106 
6107 void
run(Workqueue *)6108 Write_after_input_sections_task::run(Workqueue*)
6109 {
6110   this->layout_->write_sections_after_input_sections(this->of_);
6111 }
6112 
6113 // Build IDs can be computed as a "flat" sha1 or md5 of a string of bytes,
6114 // or as a "tree" where each chunk of the string is hashed and then those
6115 // hashes are put into a (much smaller) string which is hashed with sha1.
6116 // We compute a checksum over the entire file because that is simplest.
6117 
6118 void
run(Workqueue * workqueue,const Task *)6119 Build_id_task_runner::run(Workqueue* workqueue, const Task*)
6120 {
6121   Task_token* post_hash_tasks_blocker = new Task_token(true);
6122   const Layout* layout = this->layout_;
6123   Output_file* of = this->of_;
6124   const size_t filesize = (layout->output_file_size() <= 0 ? 0
6125 			   : static_cast<size_t>(layout->output_file_size()));
6126   unsigned char* array_of_hashes = NULL;
6127   size_t size_of_hashes = 0;
6128 
6129   if (strcmp(this->options_->build_id(), "tree") == 0
6130       && this->options_->build_id_chunk_size_for_treehash() > 0
6131       && filesize > 0
6132       && (filesize >= this->options_->build_id_min_file_size_for_treehash()))
6133     {
6134       static const size_t MD5_OUTPUT_SIZE_IN_BYTES = 16;
6135       const size_t chunk_size =
6136 	  this->options_->build_id_chunk_size_for_treehash();
6137       const size_t num_hashes = ((filesize - 1) / chunk_size) + 1;
6138       post_hash_tasks_blocker->add_blockers(num_hashes);
6139       size_of_hashes = num_hashes * MD5_OUTPUT_SIZE_IN_BYTES;
6140       array_of_hashes = new unsigned char[size_of_hashes];
6141       unsigned char *dst = array_of_hashes;
6142       for (size_t i = 0, src_offset = 0; i < num_hashes;
6143 	   i++, dst += MD5_OUTPUT_SIZE_IN_BYTES, src_offset += chunk_size)
6144 	{
6145 	  size_t size = std::min(chunk_size, filesize - src_offset);
6146 	  workqueue->queue(new Hash_task(of,
6147 					 src_offset,
6148 					 size,
6149 					 dst,
6150 					 post_hash_tasks_blocker));
6151 	}
6152     }
6153 
6154   // Queue the final task to write the build id and close the output file.
6155   workqueue->queue(new Task_function(new Close_task_runner(this->options_,
6156 							   layout,
6157 							   of,
6158 							   array_of_hashes,
6159 							   size_of_hashes),
6160 				     post_hash_tasks_blocker,
6161 				     "Task_function Close_task_runner"));
6162 }
6163 
6164 // Close_task_runner methods.
6165 
6166 // Finish up the build ID computation, if necessary, and write a binary file,
6167 // if necessary.  Then close the output file.
6168 
6169 void
run(Workqueue *,const Task *)6170 Close_task_runner::run(Workqueue*, const Task*)
6171 {
6172   // At this point the multi-threaded part of the build ID computation,
6173   // if any, is done.  See Build_id_task_runner.
6174   this->layout_->write_build_id(this->of_, this->array_of_hashes_,
6175 				this->size_of_hashes_);
6176 
6177   // If we've been asked to create a binary file, we do so here.
6178   if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
6179     this->layout_->write_binary(this->of_);
6180 
6181   if (this->options_->dependency_file())
6182     File_read::write_dependency_file(this->options_->dependency_file(),
6183 				     this->options_->output_file_name());
6184 
6185   this->of_->close();
6186 }
6187 
6188 // Instantiate the templates we need.  We could use the configure
6189 // script to restrict this to only the ones for implemented targets.
6190 
6191 #ifdef HAVE_TARGET_32_LITTLE
6192 template
6193 Output_section*
6194 Layout::init_fixed_output_section<32, false>(
6195     const char* name,
6196     elfcpp::Shdr<32, false>& shdr);
6197 #endif
6198 
6199 #ifdef HAVE_TARGET_32_BIG
6200 template
6201 Output_section*
6202 Layout::init_fixed_output_section<32, true>(
6203     const char* name,
6204     elfcpp::Shdr<32, true>& shdr);
6205 #endif
6206 
6207 #ifdef HAVE_TARGET_64_LITTLE
6208 template
6209 Output_section*
6210 Layout::init_fixed_output_section<64, false>(
6211     const char* name,
6212     elfcpp::Shdr<64, false>& shdr);
6213 #endif
6214 
6215 #ifdef HAVE_TARGET_64_BIG
6216 template
6217 Output_section*
6218 Layout::init_fixed_output_section<64, true>(
6219     const char* name,
6220     elfcpp::Shdr<64, true>& shdr);
6221 #endif
6222 
6223 #ifdef HAVE_TARGET_32_LITTLE
6224 template
6225 Output_section*
6226 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
6227 			  unsigned int shndx,
6228 			  const char* name,
6229 			  const elfcpp::Shdr<32, false>& shdr,
6230 			  unsigned int, unsigned int, unsigned int, off_t*);
6231 #endif
6232 
6233 #ifdef HAVE_TARGET_32_BIG
6234 template
6235 Output_section*
6236 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
6237 			 unsigned int shndx,
6238 			 const char* name,
6239 			 const elfcpp::Shdr<32, true>& shdr,
6240 			 unsigned int, unsigned int, unsigned int, off_t*);
6241 #endif
6242 
6243 #ifdef HAVE_TARGET_64_LITTLE
6244 template
6245 Output_section*
6246 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
6247 			  unsigned int shndx,
6248 			  const char* name,
6249 			  const elfcpp::Shdr<64, false>& shdr,
6250 			  unsigned int, unsigned int, unsigned int, off_t*);
6251 #endif
6252 
6253 #ifdef HAVE_TARGET_64_BIG
6254 template
6255 Output_section*
6256 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
6257 			 unsigned int shndx,
6258 			 const char* name,
6259 			 const elfcpp::Shdr<64, true>& shdr,
6260 			 unsigned int, unsigned int, unsigned int, off_t*);
6261 #endif
6262 
6263 #ifdef HAVE_TARGET_32_LITTLE
6264 template
6265 Output_section*
6266 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
6267 				unsigned int reloc_shndx,
6268 				const elfcpp::Shdr<32, false>& shdr,
6269 				Output_section* data_section,
6270 				Relocatable_relocs* rr);
6271 #endif
6272 
6273 #ifdef HAVE_TARGET_32_BIG
6274 template
6275 Output_section*
6276 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
6277 			       unsigned int reloc_shndx,
6278 			       const elfcpp::Shdr<32, true>& shdr,
6279 			       Output_section* data_section,
6280 			       Relocatable_relocs* rr);
6281 #endif
6282 
6283 #ifdef HAVE_TARGET_64_LITTLE
6284 template
6285 Output_section*
6286 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
6287 				unsigned int reloc_shndx,
6288 				const elfcpp::Shdr<64, false>& shdr,
6289 				Output_section* data_section,
6290 				Relocatable_relocs* rr);
6291 #endif
6292 
6293 #ifdef HAVE_TARGET_64_BIG
6294 template
6295 Output_section*
6296 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
6297 			       unsigned int reloc_shndx,
6298 			       const elfcpp::Shdr<64, true>& shdr,
6299 			       Output_section* data_section,
6300 			       Relocatable_relocs* rr);
6301 #endif
6302 
6303 #ifdef HAVE_TARGET_32_LITTLE
6304 template
6305 void
6306 Layout::layout_group<32, false>(Symbol_table* symtab,
6307 				Sized_relobj_file<32, false>* object,
6308 				unsigned int,
6309 				const char* group_section_name,
6310 				const char* signature,
6311 				const elfcpp::Shdr<32, false>& shdr,
6312 				elfcpp::Elf_Word flags,
6313 				std::vector<unsigned int>* shndxes);
6314 #endif
6315 
6316 #ifdef HAVE_TARGET_32_BIG
6317 template
6318 void
6319 Layout::layout_group<32, true>(Symbol_table* symtab,
6320 			       Sized_relobj_file<32, true>* object,
6321 			       unsigned int,
6322 			       const char* group_section_name,
6323 			       const char* signature,
6324 			       const elfcpp::Shdr<32, true>& shdr,
6325 			       elfcpp::Elf_Word flags,
6326 			       std::vector<unsigned int>* shndxes);
6327 #endif
6328 
6329 #ifdef HAVE_TARGET_64_LITTLE
6330 template
6331 void
6332 Layout::layout_group<64, false>(Symbol_table* symtab,
6333 				Sized_relobj_file<64, false>* object,
6334 				unsigned int,
6335 				const char* group_section_name,
6336 				const char* signature,
6337 				const elfcpp::Shdr<64, false>& shdr,
6338 				elfcpp::Elf_Word flags,
6339 				std::vector<unsigned int>* shndxes);
6340 #endif
6341 
6342 #ifdef HAVE_TARGET_64_BIG
6343 template
6344 void
6345 Layout::layout_group<64, true>(Symbol_table* symtab,
6346 			       Sized_relobj_file<64, true>* object,
6347 			       unsigned int,
6348 			       const char* group_section_name,
6349 			       const char* signature,
6350 			       const elfcpp::Shdr<64, true>& shdr,
6351 			       elfcpp::Elf_Word flags,
6352 			       std::vector<unsigned int>* shndxes);
6353 #endif
6354 
6355 #ifdef HAVE_TARGET_32_LITTLE
6356 template
6357 Output_section*
6358 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
6359 				   const unsigned char* symbols,
6360 				   off_t symbols_size,
6361 				   const unsigned char* symbol_names,
6362 				   off_t symbol_names_size,
6363 				   unsigned int shndx,
6364 				   const elfcpp::Shdr<32, false>& shdr,
6365 				   unsigned int reloc_shndx,
6366 				   unsigned int reloc_type,
6367 				   off_t* off);
6368 #endif
6369 
6370 #ifdef HAVE_TARGET_32_BIG
6371 template
6372 Output_section*
6373 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
6374 				  const unsigned char* symbols,
6375 				  off_t symbols_size,
6376 				  const unsigned char* symbol_names,
6377 				  off_t symbol_names_size,
6378 				  unsigned int shndx,
6379 				  const elfcpp::Shdr<32, true>& shdr,
6380 				  unsigned int reloc_shndx,
6381 				  unsigned int reloc_type,
6382 				  off_t* off);
6383 #endif
6384 
6385 #ifdef HAVE_TARGET_64_LITTLE
6386 template
6387 Output_section*
6388 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
6389 				   const unsigned char* symbols,
6390 				   off_t symbols_size,
6391 				   const unsigned char* symbol_names,
6392 				   off_t symbol_names_size,
6393 				   unsigned int shndx,
6394 				   const elfcpp::Shdr<64, false>& shdr,
6395 				   unsigned int reloc_shndx,
6396 				   unsigned int reloc_type,
6397 				   off_t* off);
6398 #endif
6399 
6400 #ifdef HAVE_TARGET_64_BIG
6401 template
6402 Output_section*
6403 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
6404 				  const unsigned char* symbols,
6405 				  off_t symbols_size,
6406 				  const unsigned char* symbol_names,
6407 				  off_t symbol_names_size,
6408 				  unsigned int shndx,
6409 				  const elfcpp::Shdr<64, true>& shdr,
6410 				  unsigned int reloc_shndx,
6411 				  unsigned int reloc_type,
6412 				  off_t* off);
6413 #endif
6414 
6415 #ifdef HAVE_TARGET_32_LITTLE
6416 template
6417 void
6418 Layout::add_to_gdb_index(bool is_type_unit,
6419 			 Sized_relobj<32, false>* object,
6420 			 const unsigned char* symbols,
6421 			 off_t symbols_size,
6422 			 unsigned int shndx,
6423 			 unsigned int reloc_shndx,
6424 			 unsigned int reloc_type);
6425 #endif
6426 
6427 #ifdef HAVE_TARGET_32_BIG
6428 template
6429 void
6430 Layout::add_to_gdb_index(bool is_type_unit,
6431 			 Sized_relobj<32, true>* object,
6432 			 const unsigned char* symbols,
6433 			 off_t symbols_size,
6434 			 unsigned int shndx,
6435 			 unsigned int reloc_shndx,
6436 			 unsigned int reloc_type);
6437 #endif
6438 
6439 #ifdef HAVE_TARGET_64_LITTLE
6440 template
6441 void
6442 Layout::add_to_gdb_index(bool is_type_unit,
6443 			 Sized_relobj<64, false>* object,
6444 			 const unsigned char* symbols,
6445 			 off_t symbols_size,
6446 			 unsigned int shndx,
6447 			 unsigned int reloc_shndx,
6448 			 unsigned int reloc_type);
6449 #endif
6450 
6451 #ifdef HAVE_TARGET_64_BIG
6452 template
6453 void
6454 Layout::add_to_gdb_index(bool is_type_unit,
6455 			 Sized_relobj<64, true>* object,
6456 			 const unsigned char* symbols,
6457 			 off_t symbols_size,
6458 			 unsigned int shndx,
6459 			 unsigned int reloc_shndx,
6460 			 unsigned int reloc_type);
6461 #endif
6462 
6463 } // End namespace gold.
6464