1 // layout.cc -- lay out output file sections for gold 2 3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011, 2012 4 // Free Software Foundation, Inc. 5 // Written by Ian Lance Taylor <iant@google.com>. 6 7 // This file is part of gold. 8 9 // This program is free software; you can redistribute it and/or modify 10 // it under the terms of the GNU General Public License as published by 11 // the Free Software Foundation; either version 3 of the License, or 12 // (at your option) any later version. 13 14 // This program is distributed in the hope that it will be useful, 15 // but WITHOUT ANY WARRANTY; without even the implied warranty of 16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 // GNU General Public License for more details. 18 19 // You should have received a copy of the GNU General Public License 20 // along with this program; if not, write to the Free Software 21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, 22 // MA 02110-1301, USA. 23 24 #include "gold.h" 25 26 #include <cerrno> 27 #include <cstring> 28 #include <algorithm> 29 #include <iostream> 30 #include <fstream> 31 #include <utility> 32 #include <fcntl.h> 33 #include <fnmatch.h> 34 #include <unistd.h> 35 #include "libiberty.h" 36 #include "md5.h" 37 #include "sha1.h" 38 39 #include "parameters.h" 40 #include "options.h" 41 #include "mapfile.h" 42 #include "script.h" 43 #include "script-sections.h" 44 #include "output.h" 45 #include "symtab.h" 46 #include "dynobj.h" 47 #include "ehframe.h" 48 #include "gdb-index.h" 49 #include "compressed_output.h" 50 #include "reduced_debug_output.h" 51 #include "object.h" 52 #include "reloc.h" 53 #include "descriptors.h" 54 #include "plugin.h" 55 #include "incremental.h" 56 #include "layout.h" 57 58 namespace gold 59 { 60 61 // Class Free_list. 62 63 // The total number of free lists used. 64 unsigned int Free_list::num_lists = 0; 65 // The total number of free list nodes used. 66 unsigned int Free_list::num_nodes = 0; 67 // The total number of calls to Free_list::remove. 68 unsigned int Free_list::num_removes = 0; 69 // The total number of nodes visited during calls to Free_list::remove. 70 unsigned int Free_list::num_remove_visits = 0; 71 // The total number of calls to Free_list::allocate. 72 unsigned int Free_list::num_allocates = 0; 73 // The total number of nodes visited during calls to Free_list::allocate. 74 unsigned int Free_list::num_allocate_visits = 0; 75 76 // Initialize the free list. Creates a single free list node that 77 // describes the entire region of length LEN. If EXTEND is true, 78 // allocate() is allowed to extend the region beyond its initial 79 // length. 80 81 void 82 Free_list::init(off_t len, bool extend) 83 { 84 this->list_.push_front(Free_list_node(0, len)); 85 this->last_remove_ = this->list_.begin(); 86 this->extend_ = extend; 87 this->length_ = len; 88 ++Free_list::num_lists; 89 ++Free_list::num_nodes; 90 } 91 92 // Remove a chunk from the free list. Because we start with a single 93 // node that covers the entire section, and remove chunks from it one 94 // at a time, we do not need to coalesce chunks or handle cases that 95 // span more than one free node. We expect to remove chunks from the 96 // free list in order, and we expect to have only a few chunks of free 97 // space left (corresponding to files that have changed since the last 98 // incremental link), so a simple linear list should provide sufficient 99 // performance. 100 101 void 102 Free_list::remove(off_t start, off_t end) 103 { 104 if (start == end) 105 return; 106 gold_assert(start < end); 107 108 ++Free_list::num_removes; 109 110 Iterator p = this->last_remove_; 111 if (p->start_ > start) 112 p = this->list_.begin(); 113 114 for (; p != this->list_.end(); ++p) 115 { 116 ++Free_list::num_remove_visits; 117 // Find a node that wholly contains the indicated region. 118 if (p->start_ <= start && p->end_ >= end) 119 { 120 // Case 1: the indicated region spans the whole node. 121 // Add some fuzz to avoid creating tiny free chunks. 122 if (p->start_ + 3 >= start && p->end_ <= end + 3) 123 p = this->list_.erase(p); 124 // Case 2: remove a chunk from the start of the node. 125 else if (p->start_ + 3 >= start) 126 p->start_ = end; 127 // Case 3: remove a chunk from the end of the node. 128 else if (p->end_ <= end + 3) 129 p->end_ = start; 130 // Case 4: remove a chunk from the middle, and split 131 // the node into two. 132 else 133 { 134 Free_list_node newnode(p->start_, start); 135 p->start_ = end; 136 this->list_.insert(p, newnode); 137 ++Free_list::num_nodes; 138 } 139 this->last_remove_ = p; 140 return; 141 } 142 } 143 144 // Did not find a node containing the given chunk. This could happen 145 // because a small chunk was already removed due to the fuzz. 146 gold_debug(DEBUG_INCREMENTAL, 147 "Free_list::remove(%d,%d) not found", 148 static_cast<int>(start), static_cast<int>(end)); 149 } 150 151 // Allocate a chunk of size LEN from the free list. Returns -1ULL 152 // if a sufficiently large chunk of free space is not found. 153 // We use a simple first-fit algorithm. 154 155 off_t 156 Free_list::allocate(off_t len, uint64_t align, off_t minoff) 157 { 158 gold_debug(DEBUG_INCREMENTAL, 159 "Free_list::allocate(%08lx, %d, %08lx)", 160 static_cast<long>(len), static_cast<int>(align), 161 static_cast<long>(minoff)); 162 if (len == 0) 163 return align_address(minoff, align); 164 165 ++Free_list::num_allocates; 166 167 // We usually want to drop free chunks smaller than 4 bytes. 168 // If we need to guarantee a minimum hole size, though, we need 169 // to keep track of all free chunks. 170 const int fuzz = this->min_hole_ > 0 ? 0 : 3; 171 172 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p) 173 { 174 ++Free_list::num_allocate_visits; 175 off_t start = p->start_ > minoff ? p->start_ : minoff; 176 start = align_address(start, align); 177 off_t end = start + len; 178 if (end > p->end_ && p->end_ == this->length_ && this->extend_) 179 { 180 this->length_ = end; 181 p->end_ = end; 182 } 183 if (end == p->end_ || (end <= p->end_ - this->min_hole_)) 184 { 185 if (p->start_ + fuzz >= start && p->end_ <= end + fuzz) 186 this->list_.erase(p); 187 else if (p->start_ + fuzz >= start) 188 p->start_ = end; 189 else if (p->end_ <= end + fuzz) 190 p->end_ = start; 191 else 192 { 193 Free_list_node newnode(p->start_, start); 194 p->start_ = end; 195 this->list_.insert(p, newnode); 196 ++Free_list::num_nodes; 197 } 198 return start; 199 } 200 } 201 if (this->extend_) 202 { 203 off_t start = align_address(this->length_, align); 204 this->length_ = start + len; 205 return start; 206 } 207 return -1; 208 } 209 210 // Dump the free list (for debugging). 211 void 212 Free_list::dump() 213 { 214 gold_info("Free list:\n start end length\n"); 215 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p) 216 gold_info(" %08lx %08lx %08lx", static_cast<long>(p->start_), 217 static_cast<long>(p->end_), 218 static_cast<long>(p->end_ - p->start_)); 219 } 220 221 // Print the statistics for the free lists. 222 void 223 Free_list::print_stats() 224 { 225 fprintf(stderr, _("%s: total free lists: %u\n"), 226 program_name, Free_list::num_lists); 227 fprintf(stderr, _("%s: total free list nodes: %u\n"), 228 program_name, Free_list::num_nodes); 229 fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"), 230 program_name, Free_list::num_removes); 231 fprintf(stderr, _("%s: nodes visited: %u\n"), 232 program_name, Free_list::num_remove_visits); 233 fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"), 234 program_name, Free_list::num_allocates); 235 fprintf(stderr, _("%s: nodes visited: %u\n"), 236 program_name, Free_list::num_allocate_visits); 237 } 238 239 // Layout::Relaxation_debug_check methods. 240 241 // Check that sections and special data are in reset states. 242 // We do not save states for Output_sections and special Output_data. 243 // So we check that they have not assigned any addresses or offsets. 244 // clean_up_after_relaxation simply resets their addresses and offsets. 245 void 246 Layout::Relaxation_debug_check::check_output_data_for_reset_values( 247 const Layout::Section_list& sections, 248 const Layout::Data_list& special_outputs) 249 { 250 for(Layout::Section_list::const_iterator p = sections.begin(); 251 p != sections.end(); 252 ++p) 253 gold_assert((*p)->address_and_file_offset_have_reset_values()); 254 255 for(Layout::Data_list::const_iterator p = special_outputs.begin(); 256 p != special_outputs.end(); 257 ++p) 258 gold_assert((*p)->address_and_file_offset_have_reset_values()); 259 } 260 261 // Save information of SECTIONS for checking later. 262 263 void 264 Layout::Relaxation_debug_check::read_sections( 265 const Layout::Section_list& sections) 266 { 267 for(Layout::Section_list::const_iterator p = sections.begin(); 268 p != sections.end(); 269 ++p) 270 { 271 Output_section* os = *p; 272 Section_info info; 273 info.output_section = os; 274 info.address = os->is_address_valid() ? os->address() : 0; 275 info.data_size = os->is_data_size_valid() ? os->data_size() : -1; 276 info.offset = os->is_offset_valid()? os->offset() : -1 ; 277 this->section_infos_.push_back(info); 278 } 279 } 280 281 // Verify SECTIONS using previously recorded information. 282 283 void 284 Layout::Relaxation_debug_check::verify_sections( 285 const Layout::Section_list& sections) 286 { 287 size_t i = 0; 288 for(Layout::Section_list::const_iterator p = sections.begin(); 289 p != sections.end(); 290 ++p, ++i) 291 { 292 Output_section* os = *p; 293 uint64_t address = os->is_address_valid() ? os->address() : 0; 294 off_t data_size = os->is_data_size_valid() ? os->data_size() : -1; 295 off_t offset = os->is_offset_valid()? os->offset() : -1 ; 296 297 if (i >= this->section_infos_.size()) 298 { 299 gold_fatal("Section_info of %s missing.\n", os->name()); 300 } 301 const Section_info& info = this->section_infos_[i]; 302 if (os != info.output_section) 303 gold_fatal("Section order changed. Expecting %s but see %s\n", 304 info.output_section->name(), os->name()); 305 if (address != info.address 306 || data_size != info.data_size 307 || offset != info.offset) 308 gold_fatal("Section %s changed.\n", os->name()); 309 } 310 } 311 312 // Layout_task_runner methods. 313 314 // Lay out the sections. This is called after all the input objects 315 // have been read. 316 317 void 318 Layout_task_runner::run(Workqueue* workqueue, const Task* task) 319 { 320 Layout* layout = this->layout_; 321 off_t file_size = layout->finalize(this->input_objects_, 322 this->symtab_, 323 this->target_, 324 task); 325 326 // Now we know the final size of the output file and we know where 327 // each piece of information goes. 328 329 if (this->mapfile_ != NULL) 330 { 331 this->mapfile_->print_discarded_sections(this->input_objects_); 332 layout->print_to_mapfile(this->mapfile_); 333 } 334 335 Output_file* of; 336 if (layout->incremental_base() == NULL) 337 { 338 of = new Output_file(parameters->options().output_file_name()); 339 if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF) 340 of->set_is_temporary(); 341 of->open(file_size); 342 } 343 else 344 { 345 of = layout->incremental_base()->output_file(); 346 347 // Apply the incremental relocations for symbols whose values 348 // have changed. We do this before we resize the file and start 349 // writing anything else to it, so that we can read the old 350 // incremental information from the file before (possibly) 351 // overwriting it. 352 if (parameters->incremental_update()) 353 layout->incremental_base()->apply_incremental_relocs(this->symtab_, 354 this->layout_, 355 of); 356 357 of->resize(file_size); 358 } 359 360 // Queue up the final set of tasks. 361 gold::queue_final_tasks(this->options_, this->input_objects_, 362 this->symtab_, layout, workqueue, of); 363 } 364 365 // Layout methods. 366 367 Layout::Layout(int number_of_input_files, Script_options* script_options) 368 : number_of_input_files_(number_of_input_files), 369 script_options_(script_options), 370 namepool_(), 371 sympool_(), 372 dynpool_(), 373 signatures_(), 374 section_name_map_(), 375 segment_list_(), 376 section_list_(), 377 unattached_section_list_(), 378 special_output_list_(), 379 section_headers_(NULL), 380 tls_segment_(NULL), 381 relro_segment_(NULL), 382 interp_segment_(NULL), 383 increase_relro_(0), 384 symtab_section_(NULL), 385 symtab_xindex_(NULL), 386 dynsym_section_(NULL), 387 dynsym_xindex_(NULL), 388 dynamic_section_(NULL), 389 dynamic_symbol_(NULL), 390 dynamic_data_(NULL), 391 eh_frame_section_(NULL), 392 eh_frame_data_(NULL), 393 added_eh_frame_data_(false), 394 eh_frame_hdr_section_(NULL), 395 gdb_index_data_(NULL), 396 build_id_note_(NULL), 397 debug_abbrev_(NULL), 398 debug_info_(NULL), 399 group_signatures_(), 400 output_file_size_(-1), 401 have_added_input_section_(false), 402 sections_are_attached_(false), 403 input_requires_executable_stack_(false), 404 input_with_gnu_stack_note_(false), 405 input_without_gnu_stack_note_(false), 406 has_static_tls_(false), 407 any_postprocessing_sections_(false), 408 resized_signatures_(false), 409 have_stabstr_section_(false), 410 section_ordering_specified_(false), 411 incremental_inputs_(NULL), 412 record_output_section_data_from_script_(false), 413 script_output_section_data_list_(), 414 segment_states_(NULL), 415 relaxation_debug_check_(NULL), 416 section_order_map_(), 417 input_section_position_(), 418 input_section_glob_(), 419 incremental_base_(NULL), 420 free_list_() 421 { 422 // Make space for more than enough segments for a typical file. 423 // This is just for efficiency--it's OK if we wind up needing more. 424 this->segment_list_.reserve(12); 425 426 // We expect two unattached Output_data objects: the file header and 427 // the segment headers. 428 this->special_output_list_.reserve(2); 429 430 // Initialize structure needed for an incremental build. 431 if (parameters->incremental()) 432 this->incremental_inputs_ = new Incremental_inputs; 433 434 // The section name pool is worth optimizing in all cases, because 435 // it is small, but there are often overlaps due to .rel sections. 436 this->namepool_.set_optimize(); 437 } 438 439 // For incremental links, record the base file to be modified. 440 441 void 442 Layout::set_incremental_base(Incremental_binary* base) 443 { 444 this->incremental_base_ = base; 445 this->free_list_.init(base->output_file()->filesize(), true); 446 } 447 448 // Hash a key we use to look up an output section mapping. 449 450 size_t 451 Layout::Hash_key::operator()(const Layout::Key& k) const 452 { 453 return k.first + k.second.first + k.second.second; 454 } 455 456 // These are the debug sections that are actually used by gdb. 457 // Currently, we've checked versions of gdb up to and including 7.4. 458 // We only check the part of the name that follows ".debug_" or 459 // ".zdebug_". 460 461 static const char* gdb_sections[] = 462 { 463 "abbrev", 464 "addr", // Fission extension 465 // "aranges", // not used by gdb as of 7.4 466 "frame", 467 "info", 468 "types", 469 "line", 470 "loc", 471 "macinfo", 472 "macro", 473 // "pubnames", // not used by gdb as of 7.4 474 // "pubtypes", // not used by gdb as of 7.4 475 "ranges", 476 "str", 477 }; 478 479 // This is the minimum set of sections needed for line numbers. 480 481 static const char* lines_only_debug_sections[] = 482 { 483 "abbrev", 484 // "addr", // Fission extension 485 // "aranges", // not used by gdb as of 7.4 486 // "frame", 487 "info", 488 // "types", 489 "line", 490 // "loc", 491 // "macinfo", 492 // "macro", 493 // "pubnames", // not used by gdb as of 7.4 494 // "pubtypes", // not used by gdb as of 7.4 495 // "ranges", 496 "str", 497 }; 498 499 // These sections are the DWARF fast-lookup tables, and are not needed 500 // when building a .gdb_index section. 501 502 static const char* gdb_fast_lookup_sections[] = 503 { 504 "aranges", 505 "pubnames", 506 "pubtypes", 507 }; 508 509 // Returns whether the given debug section is in the list of 510 // debug-sections-used-by-some-version-of-gdb. SUFFIX is the 511 // portion of the name following ".debug_" or ".zdebug_". 512 513 static inline bool 514 is_gdb_debug_section(const char* suffix) 515 { 516 // We can do this faster: binary search or a hashtable. But why bother? 517 for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i) 518 if (strcmp(suffix, gdb_sections[i]) == 0) 519 return true; 520 return false; 521 } 522 523 // Returns whether the given section is needed for lines-only debugging. 524 525 static inline bool 526 is_lines_only_debug_section(const char* suffix) 527 { 528 // We can do this faster: binary search or a hashtable. But why bother? 529 for (size_t i = 0; 530 i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections); 531 ++i) 532 if (strcmp(suffix, lines_only_debug_sections[i]) == 0) 533 return true; 534 return false; 535 } 536 537 // Returns whether the given section is a fast-lookup section that 538 // will not be needed when building a .gdb_index section. 539 540 static inline bool 541 is_gdb_fast_lookup_section(const char* suffix) 542 { 543 // We can do this faster: binary search or a hashtable. But why bother? 544 for (size_t i = 0; 545 i < sizeof(gdb_fast_lookup_sections)/sizeof(*gdb_fast_lookup_sections); 546 ++i) 547 if (strcmp(suffix, gdb_fast_lookup_sections[i]) == 0) 548 return true; 549 return false; 550 } 551 552 // Sometimes we compress sections. This is typically done for 553 // sections that are not part of normal program execution (such as 554 // .debug_* sections), and where the readers of these sections know 555 // how to deal with compressed sections. This routine doesn't say for 556 // certain whether we'll compress -- it depends on commandline options 557 // as well -- just whether this section is a candidate for compression. 558 // (The Output_compressed_section class decides whether to compress 559 // a given section, and picks the name of the compressed section.) 560 561 static bool 562 is_compressible_debug_section(const char* secname) 563 { 564 return (is_prefix_of(".debug", secname)); 565 } 566 567 // We may see compressed debug sections in input files. Return TRUE 568 // if this is the name of a compressed debug section. 569 570 bool 571 is_compressed_debug_section(const char* secname) 572 { 573 return (is_prefix_of(".zdebug", secname)); 574 } 575 576 // Whether to include this section in the link. 577 578 template<int size, bool big_endian> 579 bool 580 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name, 581 const elfcpp::Shdr<size, big_endian>& shdr) 582 { 583 if (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE) 584 return false; 585 586 switch (shdr.get_sh_type()) 587 { 588 case elfcpp::SHT_NULL: 589 case elfcpp::SHT_SYMTAB: 590 case elfcpp::SHT_DYNSYM: 591 case elfcpp::SHT_HASH: 592 case elfcpp::SHT_DYNAMIC: 593 case elfcpp::SHT_SYMTAB_SHNDX: 594 return false; 595 596 case elfcpp::SHT_STRTAB: 597 // Discard the sections which have special meanings in the ELF 598 // ABI. Keep others (e.g., .stabstr). We could also do this by 599 // checking the sh_link fields of the appropriate sections. 600 return (strcmp(name, ".dynstr") != 0 601 && strcmp(name, ".strtab") != 0 602 && strcmp(name, ".shstrtab") != 0); 603 604 case elfcpp::SHT_RELA: 605 case elfcpp::SHT_REL: 606 case elfcpp::SHT_GROUP: 607 // If we are emitting relocations these should be handled 608 // elsewhere. 609 gold_assert(!parameters->options().relocatable() 610 && !parameters->options().emit_relocs()); 611 return false; 612 613 case elfcpp::SHT_PROGBITS: 614 if (parameters->options().strip_debug() 615 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0) 616 { 617 if (is_debug_info_section(name)) 618 return false; 619 } 620 if (parameters->options().strip_debug_non_line() 621 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0) 622 { 623 // Debugging sections can only be recognized by name. 624 if (is_prefix_of(".debug_", name) 625 && !is_lines_only_debug_section(name + 7)) 626 return false; 627 if (is_prefix_of(".zdebug_", name) 628 && !is_lines_only_debug_section(name + 8)) 629 return false; 630 } 631 if (parameters->options().strip_debug_gdb() 632 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0) 633 { 634 // Debugging sections can only be recognized by name. 635 if (is_prefix_of(".debug_", name) 636 && !is_gdb_debug_section(name + 7)) 637 return false; 638 if (is_prefix_of(".zdebug_", name) 639 && !is_gdb_debug_section(name + 8)) 640 return false; 641 } 642 if (parameters->options().gdb_index() 643 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0) 644 { 645 // When building .gdb_index, we can strip .debug_pubnames, 646 // .debug_pubtypes, and .debug_aranges sections. 647 if (is_prefix_of(".debug_", name) 648 && is_gdb_fast_lookup_section(name + 7)) 649 return false; 650 if (is_prefix_of(".zdebug_", name) 651 && is_gdb_fast_lookup_section(name + 8)) 652 return false; 653 } 654 if (parameters->options().strip_lto_sections() 655 && !parameters->options().relocatable() 656 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0) 657 { 658 // Ignore LTO sections containing intermediate code. 659 if (is_prefix_of(".gnu.lto_", name)) 660 return false; 661 } 662 // The GNU linker strips .gnu_debuglink sections, so we do too. 663 // This is a feature used to keep debugging information in 664 // separate files. 665 if (strcmp(name, ".gnu_debuglink") == 0) 666 return false; 667 return true; 668 669 default: 670 return true; 671 } 672 } 673 674 // Return an output section named NAME, or NULL if there is none. 675 676 Output_section* 677 Layout::find_output_section(const char* name) const 678 { 679 for (Section_list::const_iterator p = this->section_list_.begin(); 680 p != this->section_list_.end(); 681 ++p) 682 if (strcmp((*p)->name(), name) == 0) 683 return *p; 684 return NULL; 685 } 686 687 // Return an output segment of type TYPE, with segment flags SET set 688 // and segment flags CLEAR clear. Return NULL if there is none. 689 690 Output_segment* 691 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set, 692 elfcpp::Elf_Word clear) const 693 { 694 for (Segment_list::const_iterator p = this->segment_list_.begin(); 695 p != this->segment_list_.end(); 696 ++p) 697 if (static_cast<elfcpp::PT>((*p)->type()) == type 698 && ((*p)->flags() & set) == set 699 && ((*p)->flags() & clear) == 0) 700 return *p; 701 return NULL; 702 } 703 704 // When we put a .ctors or .dtors section with more than one word into 705 // a .init_array or .fini_array section, we need to reverse the words 706 // in the .ctors/.dtors section. This is because .init_array executes 707 // constructors front to back, where .ctors executes them back to 708 // front, and vice-versa for .fini_array/.dtors. Although we do want 709 // to remap .ctors/.dtors into .init_array/.fini_array because it can 710 // be more efficient, we don't want to change the order in which 711 // constructors/destructors are run. This set just keeps track of 712 // these sections which need to be reversed. It is only changed by 713 // Layout::layout. It should be a private member of Layout, but that 714 // would require layout.h to #include object.h to get the definition 715 // of Section_id. 716 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array; 717 718 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a 719 // .init_array/.fini_array section. 720 721 bool 722 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const 723 { 724 return (ctors_sections_in_init_array.find(Section_id(relobj, shndx)) 725 != ctors_sections_in_init_array.end()); 726 } 727 728 // Return the output section to use for section NAME with type TYPE 729 // and section flags FLAGS. NAME must be canonicalized in the string 730 // pool, and NAME_KEY is the key. ORDER is where this should appear 731 // in the output sections. IS_RELRO is true for a relro section. 732 733 Output_section* 734 Layout::get_output_section(const char* name, Stringpool::Key name_key, 735 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags, 736 Output_section_order order, bool is_relro) 737 { 738 elfcpp::Elf_Word lookup_type = type; 739 740 // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and 741 // PREINIT_ARRAY like PROGBITS. This ensures that we combine 742 // .init_array, .fini_array, and .preinit_array sections by name 743 // whatever their type in the input file. We do this because the 744 // types are not always right in the input files. 745 if (lookup_type == elfcpp::SHT_INIT_ARRAY 746 || lookup_type == elfcpp::SHT_FINI_ARRAY 747 || lookup_type == elfcpp::SHT_PREINIT_ARRAY) 748 lookup_type = elfcpp::SHT_PROGBITS; 749 750 elfcpp::Elf_Xword lookup_flags = flags; 751 752 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine 753 // read-write with read-only sections. Some other ELF linkers do 754 // not do this. FIXME: Perhaps there should be an option 755 // controlling this. 756 lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR); 757 758 const Key key(name_key, std::make_pair(lookup_type, lookup_flags)); 759 const std::pair<Key, Output_section*> v(key, NULL); 760 std::pair<Section_name_map::iterator, bool> ins( 761 this->section_name_map_.insert(v)); 762 763 if (!ins.second) 764 return ins.first->second; 765 else 766 { 767 // This is the first time we've seen this name/type/flags 768 // combination. For compatibility with the GNU linker, we 769 // combine sections with contents and zero flags with sections 770 // with non-zero flags. This is a workaround for cases where 771 // assembler code forgets to set section flags. FIXME: Perhaps 772 // there should be an option to control this. 773 Output_section* os = NULL; 774 775 if (lookup_type == elfcpp::SHT_PROGBITS) 776 { 777 if (flags == 0) 778 { 779 Output_section* same_name = this->find_output_section(name); 780 if (same_name != NULL 781 && (same_name->type() == elfcpp::SHT_PROGBITS 782 || same_name->type() == elfcpp::SHT_INIT_ARRAY 783 || same_name->type() == elfcpp::SHT_FINI_ARRAY 784 || same_name->type() == elfcpp::SHT_PREINIT_ARRAY) 785 && (same_name->flags() & elfcpp::SHF_TLS) == 0) 786 os = same_name; 787 } 788 else if ((flags & elfcpp::SHF_TLS) == 0) 789 { 790 elfcpp::Elf_Xword zero_flags = 0; 791 const Key zero_key(name_key, std::make_pair(lookup_type, 792 zero_flags)); 793 Section_name_map::iterator p = 794 this->section_name_map_.find(zero_key); 795 if (p != this->section_name_map_.end()) 796 os = p->second; 797 } 798 } 799 800 if (os == NULL) 801 os = this->make_output_section(name, type, flags, order, is_relro); 802 803 ins.first->second = os; 804 return os; 805 } 806 } 807 808 // Pick the output section to use for section NAME, in input file 809 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a 810 // linker created section. IS_INPUT_SECTION is true if we are 811 // choosing an output section for an input section found in a input 812 // file. ORDER is where this section should appear in the output 813 // sections. IS_RELRO is true for a relro section. This will return 814 // NULL if the input section should be discarded. 815 816 Output_section* 817 Layout::choose_output_section(const Relobj* relobj, const char* name, 818 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags, 819 bool is_input_section, Output_section_order order, 820 bool is_relro) 821 { 822 // We should not see any input sections after we have attached 823 // sections to segments. 824 gold_assert(!is_input_section || !this->sections_are_attached_); 825 826 // Some flags in the input section should not be automatically 827 // copied to the output section. 828 flags &= ~ (elfcpp::SHF_INFO_LINK 829 | elfcpp::SHF_GROUP 830 | elfcpp::SHF_MERGE 831 | elfcpp::SHF_STRINGS); 832 833 // We only clear the SHF_LINK_ORDER flag in for 834 // a non-relocatable link. 835 if (!parameters->options().relocatable()) 836 flags &= ~elfcpp::SHF_LINK_ORDER; 837 838 if (this->script_options_->saw_sections_clause()) 839 { 840 // We are using a SECTIONS clause, so the output section is 841 // chosen based only on the name. 842 843 Script_sections* ss = this->script_options_->script_sections(); 844 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str(); 845 Output_section** output_section_slot; 846 Script_sections::Section_type script_section_type; 847 const char* orig_name = name; 848 name = ss->output_section_name(file_name, name, &output_section_slot, 849 &script_section_type); 850 if (name == NULL) 851 { 852 gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' " 853 "because it is not allowed by the " 854 "SECTIONS clause of the linker script"), 855 orig_name); 856 // The SECTIONS clause says to discard this input section. 857 return NULL; 858 } 859 860 // We can only handle script section types ST_NONE and ST_NOLOAD. 861 switch (script_section_type) 862 { 863 case Script_sections::ST_NONE: 864 break; 865 case Script_sections::ST_NOLOAD: 866 flags &= elfcpp::SHF_ALLOC; 867 break; 868 default: 869 gold_unreachable(); 870 } 871 872 // If this is an orphan section--one not mentioned in the linker 873 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the 874 // default processing below. 875 876 if (output_section_slot != NULL) 877 { 878 if (*output_section_slot != NULL) 879 { 880 (*output_section_slot)->update_flags_for_input_section(flags); 881 return *output_section_slot; 882 } 883 884 // We don't put sections found in the linker script into 885 // SECTION_NAME_MAP_. That keeps us from getting confused 886 // if an orphan section is mapped to a section with the same 887 // name as one in the linker script. 888 889 name = this->namepool_.add(name, false, NULL); 890 891 Output_section* os = this->make_output_section(name, type, flags, 892 order, is_relro); 893 894 os->set_found_in_sections_clause(); 895 896 // Special handling for NOLOAD sections. 897 if (script_section_type == Script_sections::ST_NOLOAD) 898 { 899 os->set_is_noload(); 900 901 // The constructor of Output_section sets addresses of non-ALLOC 902 // sections to 0 by default. We don't want that for NOLOAD 903 // sections even if they have no SHF_ALLOC flag. 904 if ((os->flags() & elfcpp::SHF_ALLOC) == 0 905 && os->is_address_valid()) 906 { 907 gold_assert(os->address() == 0 908 && !os->is_offset_valid() 909 && !os->is_data_size_valid()); 910 os->reset_address_and_file_offset(); 911 } 912 } 913 914 *output_section_slot = os; 915 return os; 916 } 917 } 918 919 // FIXME: Handle SHF_OS_NONCONFORMING somewhere. 920 921 size_t len = strlen(name); 922 char* uncompressed_name = NULL; 923 924 // Compressed debug sections should be mapped to the corresponding 925 // uncompressed section. 926 if (is_compressed_debug_section(name)) 927 { 928 uncompressed_name = new char[len]; 929 uncompressed_name[0] = '.'; 930 gold_assert(name[0] == '.' && name[1] == 'z'); 931 strncpy(&uncompressed_name[1], &name[2], len - 2); 932 uncompressed_name[len - 1] = '\0'; 933 len -= 1; 934 name = uncompressed_name; 935 } 936 937 // Turn NAME from the name of the input section into the name of the 938 // output section. 939 if (is_input_section 940 && !this->script_options_->saw_sections_clause() 941 && !parameters->options().relocatable()) 942 name = Layout::output_section_name(relobj, name, &len); 943 944 Stringpool::Key name_key; 945 name = this->namepool_.add_with_length(name, len, true, &name_key); 946 947 if (uncompressed_name != NULL) 948 delete[] uncompressed_name; 949 950 // Find or make the output section. The output section is selected 951 // based on the section name, type, and flags. 952 return this->get_output_section(name, name_key, type, flags, order, is_relro); 953 } 954 955 // For incremental links, record the initial fixed layout of a section 956 // from the base file, and return a pointer to the Output_section. 957 958 template<int size, bool big_endian> 959 Output_section* 960 Layout::init_fixed_output_section(const char* name, 961 elfcpp::Shdr<size, big_endian>& shdr) 962 { 963 unsigned int sh_type = shdr.get_sh_type(); 964 965 // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY, 966 // PRE_INIT_ARRAY, and NOTE sections. 967 // All others will be created from scratch and reallocated. 968 if (!can_incremental_update(sh_type)) 969 return NULL; 970 971 // If we're generating a .gdb_index section, we need to regenerate 972 // it from scratch. 973 if (parameters->options().gdb_index() 974 && sh_type == elfcpp::SHT_PROGBITS 975 && strcmp(name, ".gdb_index") == 0) 976 return NULL; 977 978 typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr(); 979 typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset(); 980 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size(); 981 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags(); 982 typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign = 983 shdr.get_sh_addralign(); 984 985 // Make the output section. 986 Stringpool::Key name_key; 987 name = this->namepool_.add(name, true, &name_key); 988 Output_section* os = this->get_output_section(name, name_key, sh_type, 989 sh_flags, ORDER_INVALID, false); 990 os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign); 991 if (sh_type != elfcpp::SHT_NOBITS) 992 this->free_list_.remove(sh_offset, sh_offset + sh_size); 993 return os; 994 } 995 996 // Return the output section to use for input section SHNDX, with name 997 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the 998 // index of a relocation section which applies to this section, or 0 999 // if none, or -1U if more than one. RELOC_TYPE is the type of the 1000 // relocation section if there is one. Set *OFF to the offset of this 1001 // input section without the output section. Return NULL if the 1002 // section should be discarded. Set *OFF to -1 if the section 1003 // contents should not be written directly to the output file, but 1004 // will instead receive special handling. 1005 1006 template<int size, bool big_endian> 1007 Output_section* 1008 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx, 1009 const char* name, const elfcpp::Shdr<size, big_endian>& shdr, 1010 unsigned int reloc_shndx, unsigned int, off_t* off) 1011 { 1012 *off = 0; 1013 1014 if (!this->include_section(object, name, shdr)) 1015 return NULL; 1016 1017 elfcpp::Elf_Word sh_type = shdr.get_sh_type(); 1018 1019 // In a relocatable link a grouped section must not be combined with 1020 // any other sections. 1021 Output_section* os; 1022 if (parameters->options().relocatable() 1023 && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0) 1024 { 1025 name = this->namepool_.add(name, true, NULL); 1026 os = this->make_output_section(name, sh_type, shdr.get_sh_flags(), 1027 ORDER_INVALID, false); 1028 } 1029 else 1030 { 1031 os = this->choose_output_section(object, name, sh_type, 1032 shdr.get_sh_flags(), true, 1033 ORDER_INVALID, false); 1034 if (os == NULL) 1035 return NULL; 1036 } 1037 1038 // By default the GNU linker sorts input sections whose names match 1039 // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*. The 1040 // sections are sorted by name. This is used to implement 1041 // constructor priority ordering. We are compatible. When we put 1042 // .ctor sections in .init_array and .dtor sections in .fini_array, 1043 // we must also sort plain .ctor and .dtor sections. 1044 if (!this->script_options_->saw_sections_clause() 1045 && !parameters->options().relocatable() 1046 && (is_prefix_of(".ctors.", name) 1047 || is_prefix_of(".dtors.", name) 1048 || is_prefix_of(".init_array.", name) 1049 || is_prefix_of(".fini_array.", name) 1050 || (parameters->options().ctors_in_init_array() 1051 && (strcmp(name, ".ctors") == 0 1052 || strcmp(name, ".dtors") == 0)))) 1053 os->set_must_sort_attached_input_sections(); 1054 1055 // If this is a .ctors or .ctors.* section being mapped to a 1056 // .init_array section, or a .dtors or .dtors.* section being mapped 1057 // to a .fini_array section, we will need to reverse the words if 1058 // there is more than one. Record this section for later. See 1059 // ctors_sections_in_init_array above. 1060 if (!this->script_options_->saw_sections_clause() 1061 && !parameters->options().relocatable() 1062 && shdr.get_sh_size() > size / 8 1063 && (((strcmp(name, ".ctors") == 0 1064 || is_prefix_of(".ctors.", name)) 1065 && strcmp(os->name(), ".init_array") == 0) 1066 || ((strcmp(name, ".dtors") == 0 1067 || is_prefix_of(".dtors.", name)) 1068 && strcmp(os->name(), ".fini_array") == 0))) 1069 ctors_sections_in_init_array.insert(Section_id(object, shndx)); 1070 1071 // FIXME: Handle SHF_LINK_ORDER somewhere. 1072 1073 elfcpp::Elf_Xword orig_flags = os->flags(); 1074 1075 *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx, 1076 this->script_options_->saw_sections_clause()); 1077 1078 // If the flags changed, we may have to change the order. 1079 if ((orig_flags & elfcpp::SHF_ALLOC) != 0) 1080 { 1081 orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR); 1082 elfcpp::Elf_Xword new_flags = 1083 os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR); 1084 if (orig_flags != new_flags) 1085 os->set_order(this->default_section_order(os, false)); 1086 } 1087 1088 this->have_added_input_section_ = true; 1089 1090 return os; 1091 } 1092 1093 // Handle a relocation section when doing a relocatable link. 1094 1095 template<int size, bool big_endian> 1096 Output_section* 1097 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object, 1098 unsigned int, 1099 const elfcpp::Shdr<size, big_endian>& shdr, 1100 Output_section* data_section, 1101 Relocatable_relocs* rr) 1102 { 1103 gold_assert(parameters->options().relocatable() 1104 || parameters->options().emit_relocs()); 1105 1106 int sh_type = shdr.get_sh_type(); 1107 1108 std::string name; 1109 if (sh_type == elfcpp::SHT_REL) 1110 name = ".rel"; 1111 else if (sh_type == elfcpp::SHT_RELA) 1112 name = ".rela"; 1113 else 1114 gold_unreachable(); 1115 name += data_section->name(); 1116 1117 // In a relocatable link relocs for a grouped section must not be 1118 // combined with other reloc sections. 1119 Output_section* os; 1120 if (!parameters->options().relocatable() 1121 || (data_section->flags() & elfcpp::SHF_GROUP) == 0) 1122 os = this->choose_output_section(object, name.c_str(), sh_type, 1123 shdr.get_sh_flags(), false, 1124 ORDER_INVALID, false); 1125 else 1126 { 1127 const char* n = this->namepool_.add(name.c_str(), true, NULL); 1128 os = this->make_output_section(n, sh_type, shdr.get_sh_flags(), 1129 ORDER_INVALID, false); 1130 } 1131 1132 os->set_should_link_to_symtab(); 1133 os->set_info_section(data_section); 1134 1135 Output_section_data* posd; 1136 if (sh_type == elfcpp::SHT_REL) 1137 { 1138 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size); 1139 posd = new Output_relocatable_relocs<elfcpp::SHT_REL, 1140 size, 1141 big_endian>(rr); 1142 } 1143 else if (sh_type == elfcpp::SHT_RELA) 1144 { 1145 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size); 1146 posd = new Output_relocatable_relocs<elfcpp::SHT_RELA, 1147 size, 1148 big_endian>(rr); 1149 } 1150 else 1151 gold_unreachable(); 1152 1153 os->add_output_section_data(posd); 1154 rr->set_output_data(posd); 1155 1156 return os; 1157 } 1158 1159 // Handle a group section when doing a relocatable link. 1160 1161 template<int size, bool big_endian> 1162 void 1163 Layout::layout_group(Symbol_table* symtab, 1164 Sized_relobj_file<size, big_endian>* object, 1165 unsigned int, 1166 const char* group_section_name, 1167 const char* signature, 1168 const elfcpp::Shdr<size, big_endian>& shdr, 1169 elfcpp::Elf_Word flags, 1170 std::vector<unsigned int>* shndxes) 1171 { 1172 gold_assert(parameters->options().relocatable()); 1173 gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP); 1174 group_section_name = this->namepool_.add(group_section_name, true, NULL); 1175 Output_section* os = this->make_output_section(group_section_name, 1176 elfcpp::SHT_GROUP, 1177 shdr.get_sh_flags(), 1178 ORDER_INVALID, false); 1179 1180 // We need to find a symbol with the signature in the symbol table. 1181 // If we don't find one now, we need to look again later. 1182 Symbol* sym = symtab->lookup(signature, NULL); 1183 if (sym != NULL) 1184 os->set_info_symndx(sym); 1185 else 1186 { 1187 // Reserve some space to minimize reallocations. 1188 if (this->group_signatures_.empty()) 1189 this->group_signatures_.reserve(this->number_of_input_files_ * 16); 1190 1191 // We will wind up using a symbol whose name is the signature. 1192 // So just put the signature in the symbol name pool to save it. 1193 signature = symtab->canonicalize_name(signature); 1194 this->group_signatures_.push_back(Group_signature(os, signature)); 1195 } 1196 1197 os->set_should_link_to_symtab(); 1198 os->set_entsize(4); 1199 1200 section_size_type entry_count = 1201 convert_to_section_size_type(shdr.get_sh_size() / 4); 1202 Output_section_data* posd = 1203 new Output_data_group<size, big_endian>(object, entry_count, flags, 1204 shndxes); 1205 os->add_output_section_data(posd); 1206 } 1207 1208 // Special GNU handling of sections name .eh_frame. They will 1209 // normally hold exception frame data as defined by the C++ ABI 1210 // (http://codesourcery.com/cxx-abi/). 1211 1212 template<int size, bool big_endian> 1213 Output_section* 1214 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object, 1215 const unsigned char* symbols, 1216 off_t symbols_size, 1217 const unsigned char* symbol_names, 1218 off_t symbol_names_size, 1219 unsigned int shndx, 1220 const elfcpp::Shdr<size, big_endian>& shdr, 1221 unsigned int reloc_shndx, unsigned int reloc_type, 1222 off_t* off) 1223 { 1224 gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS 1225 || shdr.get_sh_type() == elfcpp::SHT_X86_64_UNWIND); 1226 gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0); 1227 1228 Output_section* os = this->make_eh_frame_section(object); 1229 if (os == NULL) 1230 return NULL; 1231 1232 gold_assert(this->eh_frame_section_ == os); 1233 1234 elfcpp::Elf_Xword orig_flags = os->flags(); 1235 1236 if (!parameters->incremental() 1237 && this->eh_frame_data_->add_ehframe_input_section(object, 1238 symbols, 1239 symbols_size, 1240 symbol_names, 1241 symbol_names_size, 1242 shndx, 1243 reloc_shndx, 1244 reloc_type)) 1245 { 1246 os->update_flags_for_input_section(shdr.get_sh_flags()); 1247 1248 // A writable .eh_frame section is a RELRO section. 1249 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)) 1250 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))) 1251 { 1252 os->set_is_relro(); 1253 os->set_order(ORDER_RELRO); 1254 } 1255 1256 // We found a .eh_frame section we are going to optimize, so now 1257 // we can add the set of optimized sections to the output 1258 // section. We need to postpone adding this until we've found a 1259 // section we can optimize so that the .eh_frame section in 1260 // crtbegin.o winds up at the start of the output section. 1261 if (!this->added_eh_frame_data_) 1262 { 1263 os->add_output_section_data(this->eh_frame_data_); 1264 this->added_eh_frame_data_ = true; 1265 } 1266 *off = -1; 1267 } 1268 else 1269 { 1270 // We couldn't handle this .eh_frame section for some reason. 1271 // Add it as a normal section. 1272 bool saw_sections_clause = this->script_options_->saw_sections_clause(); 1273 *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr, 1274 reloc_shndx, saw_sections_clause); 1275 this->have_added_input_section_ = true; 1276 1277 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)) 1278 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))) 1279 os->set_order(this->default_section_order(os, false)); 1280 } 1281 1282 return os; 1283 } 1284 1285 // Create and return the magic .eh_frame section. Create 1286 // .eh_frame_hdr also if appropriate. OBJECT is the object with the 1287 // input .eh_frame section; it may be NULL. 1288 1289 Output_section* 1290 Layout::make_eh_frame_section(const Relobj* object) 1291 { 1292 // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than 1293 // SHT_PROGBITS. 1294 Output_section* os = this->choose_output_section(object, ".eh_frame", 1295 elfcpp::SHT_PROGBITS, 1296 elfcpp::SHF_ALLOC, false, 1297 ORDER_EHFRAME, false); 1298 if (os == NULL) 1299 return NULL; 1300 1301 if (this->eh_frame_section_ == NULL) 1302 { 1303 this->eh_frame_section_ = os; 1304 this->eh_frame_data_ = new Eh_frame(); 1305 1306 // For incremental linking, we do not optimize .eh_frame sections 1307 // or create a .eh_frame_hdr section. 1308 if (parameters->options().eh_frame_hdr() && !parameters->incremental()) 1309 { 1310 Output_section* hdr_os = 1311 this->choose_output_section(NULL, ".eh_frame_hdr", 1312 elfcpp::SHT_PROGBITS, 1313 elfcpp::SHF_ALLOC, false, 1314 ORDER_EHFRAME, false); 1315 1316 if (hdr_os != NULL) 1317 { 1318 Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os, 1319 this->eh_frame_data_); 1320 hdr_os->add_output_section_data(hdr_posd); 1321 1322 hdr_os->set_after_input_sections(); 1323 1324 if (!this->script_options_->saw_phdrs_clause()) 1325 { 1326 Output_segment* hdr_oseg; 1327 hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME, 1328 elfcpp::PF_R); 1329 hdr_oseg->add_output_section_to_nonload(hdr_os, 1330 elfcpp::PF_R); 1331 } 1332 1333 this->eh_frame_data_->set_eh_frame_hdr(hdr_posd); 1334 } 1335 } 1336 } 1337 1338 return os; 1339 } 1340 1341 // Add an exception frame for a PLT. This is called from target code. 1342 1343 void 1344 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data, 1345 size_t cie_length, const unsigned char* fde_data, 1346 size_t fde_length) 1347 { 1348 if (parameters->incremental()) 1349 { 1350 // FIXME: Maybe this could work some day.... 1351 return; 1352 } 1353 Output_section* os = this->make_eh_frame_section(NULL); 1354 if (os == NULL) 1355 return; 1356 this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length, 1357 fde_data, fde_length); 1358 if (!this->added_eh_frame_data_) 1359 { 1360 os->add_output_section_data(this->eh_frame_data_); 1361 this->added_eh_frame_data_ = true; 1362 } 1363 } 1364 1365 // Scan a .debug_info or .debug_types section, and add summary 1366 // information to the .gdb_index section. 1367 1368 template<int size, bool big_endian> 1369 void 1370 Layout::add_to_gdb_index(bool is_type_unit, 1371 Sized_relobj<size, big_endian>* object, 1372 const unsigned char* symbols, 1373 off_t symbols_size, 1374 unsigned int shndx, 1375 unsigned int reloc_shndx, 1376 unsigned int reloc_type) 1377 { 1378 if (this->gdb_index_data_ == NULL) 1379 { 1380 Output_section* os = this->choose_output_section(NULL, ".gdb_index", 1381 elfcpp::SHT_PROGBITS, 0, 1382 false, ORDER_INVALID, 1383 false); 1384 if (os == NULL) 1385 return; 1386 1387 this->gdb_index_data_ = new Gdb_index(os); 1388 os->add_output_section_data(this->gdb_index_data_); 1389 os->set_after_input_sections(); 1390 } 1391 1392 this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols, 1393 symbols_size, shndx, reloc_shndx, 1394 reloc_type); 1395 } 1396 1397 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return 1398 // the output section. 1399 1400 Output_section* 1401 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type, 1402 elfcpp::Elf_Xword flags, 1403 Output_section_data* posd, 1404 Output_section_order order, bool is_relro) 1405 { 1406 Output_section* os = this->choose_output_section(NULL, name, type, flags, 1407 false, order, is_relro); 1408 if (os != NULL) 1409 os->add_output_section_data(posd); 1410 return os; 1411 } 1412 1413 // Map section flags to segment flags. 1414 1415 elfcpp::Elf_Word 1416 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags) 1417 { 1418 elfcpp::Elf_Word ret = elfcpp::PF_R; 1419 if ((flags & elfcpp::SHF_WRITE) != 0) 1420 ret |= elfcpp::PF_W; 1421 if ((flags & elfcpp::SHF_EXECINSTR) != 0) 1422 ret |= elfcpp::PF_X; 1423 return ret; 1424 } 1425 1426 // Make a new Output_section, and attach it to segments as 1427 // appropriate. ORDER is the order in which this section should 1428 // appear in the output segment. IS_RELRO is true if this is a relro 1429 // (read-only after relocations) section. 1430 1431 Output_section* 1432 Layout::make_output_section(const char* name, elfcpp::Elf_Word type, 1433 elfcpp::Elf_Xword flags, 1434 Output_section_order order, bool is_relro) 1435 { 1436 Output_section* os; 1437 if ((flags & elfcpp::SHF_ALLOC) == 0 1438 && strcmp(parameters->options().compress_debug_sections(), "none") != 0 1439 && is_compressible_debug_section(name)) 1440 os = new Output_compressed_section(¶meters->options(), name, type, 1441 flags); 1442 else if ((flags & elfcpp::SHF_ALLOC) == 0 1443 && parameters->options().strip_debug_non_line() 1444 && strcmp(".debug_abbrev", name) == 0) 1445 { 1446 os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section( 1447 name, type, flags); 1448 if (this->debug_info_) 1449 this->debug_info_->set_abbreviations(this->debug_abbrev_); 1450 } 1451 else if ((flags & elfcpp::SHF_ALLOC) == 0 1452 && parameters->options().strip_debug_non_line() 1453 && strcmp(".debug_info", name) == 0) 1454 { 1455 os = this->debug_info_ = new Output_reduced_debug_info_section( 1456 name, type, flags); 1457 if (this->debug_abbrev_) 1458 this->debug_info_->set_abbreviations(this->debug_abbrev_); 1459 } 1460 else 1461 { 1462 // Sometimes .init_array*, .preinit_array* and .fini_array* do 1463 // not have correct section types. Force them here. 1464 if (type == elfcpp::SHT_PROGBITS) 1465 { 1466 if (is_prefix_of(".init_array", name)) 1467 type = elfcpp::SHT_INIT_ARRAY; 1468 else if (is_prefix_of(".preinit_array", name)) 1469 type = elfcpp::SHT_PREINIT_ARRAY; 1470 else if (is_prefix_of(".fini_array", name)) 1471 type = elfcpp::SHT_FINI_ARRAY; 1472 } 1473 1474 // FIXME: const_cast is ugly. 1475 Target* target = const_cast<Target*>(¶meters->target()); 1476 os = target->make_output_section(name, type, flags); 1477 } 1478 1479 // With -z relro, we have to recognize the special sections by name. 1480 // There is no other way. 1481 bool is_relro_local = false; 1482 if (!this->script_options_->saw_sections_clause() 1483 && parameters->options().relro() 1484 && (flags & elfcpp::SHF_ALLOC) != 0 1485 && (flags & elfcpp::SHF_WRITE) != 0) 1486 { 1487 if (type == elfcpp::SHT_PROGBITS) 1488 { 1489 if ((flags & elfcpp::SHF_TLS) != 0) 1490 is_relro = true; 1491 else if (strcmp(name, ".data.rel.ro") == 0) 1492 is_relro = true; 1493 else if (strcmp(name, ".data.rel.ro.local") == 0) 1494 { 1495 is_relro = true; 1496 is_relro_local = true; 1497 } 1498 else if (strcmp(name, ".ctors") == 0 1499 || strcmp(name, ".dtors") == 0 1500 || strcmp(name, ".jcr") == 0) 1501 is_relro = true; 1502 } 1503 else if (type == elfcpp::SHT_INIT_ARRAY 1504 || type == elfcpp::SHT_FINI_ARRAY 1505 || type == elfcpp::SHT_PREINIT_ARRAY) 1506 is_relro = true; 1507 } 1508 1509 if (is_relro) 1510 os->set_is_relro(); 1511 1512 if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0) 1513 order = this->default_section_order(os, is_relro_local); 1514 1515 os->set_order(order); 1516 1517 parameters->target().new_output_section(os); 1518 1519 this->section_list_.push_back(os); 1520 1521 // The GNU linker by default sorts some sections by priority, so we 1522 // do the same. We need to know that this might happen before we 1523 // attach any input sections. 1524 if (!this->script_options_->saw_sections_clause() 1525 && !parameters->options().relocatable() 1526 && (strcmp(name, ".init_array") == 0 1527 || strcmp(name, ".fini_array") == 0 1528 || (!parameters->options().ctors_in_init_array() 1529 && (strcmp(name, ".ctors") == 0 1530 || strcmp(name, ".dtors") == 0)))) 1531 os->set_may_sort_attached_input_sections(); 1532 1533 // Check for .stab*str sections, as .stab* sections need to link to 1534 // them. 1535 if (type == elfcpp::SHT_STRTAB 1536 && !this->have_stabstr_section_ 1537 && strncmp(name, ".stab", 5) == 0 1538 && strcmp(name + strlen(name) - 3, "str") == 0) 1539 this->have_stabstr_section_ = true; 1540 1541 // During a full incremental link, we add patch space to most 1542 // PROGBITS and NOBITS sections. Flag those that may be 1543 // arbitrarily padded. 1544 if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS) 1545 && order != ORDER_INTERP 1546 && order != ORDER_INIT 1547 && order != ORDER_PLT 1548 && order != ORDER_FINI 1549 && order != ORDER_RELRO_LAST 1550 && order != ORDER_NON_RELRO_FIRST 1551 && strcmp(name, ".eh_frame") != 0 1552 && strcmp(name, ".ctors") != 0 1553 && strcmp(name, ".dtors") != 0 1554 && strcmp(name, ".jcr") != 0) 1555 { 1556 os->set_is_patch_space_allowed(); 1557 1558 // Certain sections require "holes" to be filled with 1559 // specific fill patterns. These fill patterns may have 1560 // a minimum size, so we must prevent allocations from the 1561 // free list that leave a hole smaller than the minimum. 1562 if (strcmp(name, ".debug_info") == 0) 1563 os->set_free_space_fill(new Output_fill_debug_info(false)); 1564 else if (strcmp(name, ".debug_types") == 0) 1565 os->set_free_space_fill(new Output_fill_debug_info(true)); 1566 else if (strcmp(name, ".debug_line") == 0) 1567 os->set_free_space_fill(new Output_fill_debug_line()); 1568 } 1569 1570 // If we have already attached the sections to segments, then we 1571 // need to attach this one now. This happens for sections created 1572 // directly by the linker. 1573 if (this->sections_are_attached_) 1574 this->attach_section_to_segment(¶meters->target(), os); 1575 1576 return os; 1577 } 1578 1579 // Return the default order in which a section should be placed in an 1580 // output segment. This function captures a lot of the ideas in 1581 // ld/scripttempl/elf.sc in the GNU linker. Note that the order of a 1582 // linker created section is normally set when the section is created; 1583 // this function is used for input sections. 1584 1585 Output_section_order 1586 Layout::default_section_order(Output_section* os, bool is_relro_local) 1587 { 1588 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0); 1589 bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0; 1590 bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0; 1591 bool is_bss = false; 1592 1593 switch (os->type()) 1594 { 1595 default: 1596 case elfcpp::SHT_PROGBITS: 1597 break; 1598 case elfcpp::SHT_NOBITS: 1599 is_bss = true; 1600 break; 1601 case elfcpp::SHT_RELA: 1602 case elfcpp::SHT_REL: 1603 if (!is_write) 1604 return ORDER_DYNAMIC_RELOCS; 1605 break; 1606 case elfcpp::SHT_HASH: 1607 case elfcpp::SHT_DYNAMIC: 1608 case elfcpp::SHT_SHLIB: 1609 case elfcpp::SHT_DYNSYM: 1610 case elfcpp::SHT_GNU_HASH: 1611 case elfcpp::SHT_GNU_verdef: 1612 case elfcpp::SHT_GNU_verneed: 1613 case elfcpp::SHT_GNU_versym: 1614 if (!is_write) 1615 return ORDER_DYNAMIC_LINKER; 1616 break; 1617 case elfcpp::SHT_NOTE: 1618 return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE; 1619 } 1620 1621 if ((os->flags() & elfcpp::SHF_TLS) != 0) 1622 return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA; 1623 1624 if (!is_bss && !is_write) 1625 { 1626 if (is_execinstr) 1627 { 1628 if (strcmp(os->name(), ".init") == 0) 1629 return ORDER_INIT; 1630 else if (strcmp(os->name(), ".fini") == 0) 1631 return ORDER_FINI; 1632 } 1633 return is_execinstr ? ORDER_TEXT : ORDER_READONLY; 1634 } 1635 1636 if (os->is_relro()) 1637 return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO; 1638 1639 if (os->is_small_section()) 1640 return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA; 1641 if (os->is_large_section()) 1642 return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA; 1643 1644 return is_bss ? ORDER_BSS : ORDER_DATA; 1645 } 1646 1647 // Attach output sections to segments. This is called after we have 1648 // seen all the input sections. 1649 1650 void 1651 Layout::attach_sections_to_segments(const Target* target) 1652 { 1653 for (Section_list::iterator p = this->section_list_.begin(); 1654 p != this->section_list_.end(); 1655 ++p) 1656 this->attach_section_to_segment(target, *p); 1657 1658 this->sections_are_attached_ = true; 1659 } 1660 1661 // Attach an output section to a segment. 1662 1663 void 1664 Layout::attach_section_to_segment(const Target* target, Output_section* os) 1665 { 1666 if ((os->flags() & elfcpp::SHF_ALLOC) == 0) 1667 this->unattached_section_list_.push_back(os); 1668 else 1669 this->attach_allocated_section_to_segment(target, os); 1670 } 1671 1672 // Attach an allocated output section to a segment. 1673 1674 void 1675 Layout::attach_allocated_section_to_segment(const Target* target, 1676 Output_section* os) 1677 { 1678 elfcpp::Elf_Xword flags = os->flags(); 1679 gold_assert((flags & elfcpp::SHF_ALLOC) != 0); 1680 1681 if (parameters->options().relocatable()) 1682 return; 1683 1684 // If we have a SECTIONS clause, we can't handle the attachment to 1685 // segments until after we've seen all the sections. 1686 if (this->script_options_->saw_sections_clause()) 1687 return; 1688 1689 gold_assert(!this->script_options_->saw_phdrs_clause()); 1690 1691 // This output section goes into a PT_LOAD segment. 1692 1693 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags); 1694 1695 // Check for --section-start. 1696 uint64_t addr; 1697 bool is_address_set = parameters->options().section_start(os->name(), &addr); 1698 1699 // In general the only thing we really care about for PT_LOAD 1700 // segments is whether or not they are writable or executable, 1701 // so that is how we search for them. 1702 // Large data sections also go into their own PT_LOAD segment. 1703 // People who need segments sorted on some other basis will 1704 // have to use a linker script. 1705 1706 Segment_list::const_iterator p; 1707 for (p = this->segment_list_.begin(); 1708 p != this->segment_list_.end(); 1709 ++p) 1710 { 1711 if ((*p)->type() != elfcpp::PT_LOAD) 1712 continue; 1713 if (!parameters->options().omagic() 1714 && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W)) 1715 continue; 1716 if ((target->isolate_execinstr() || parameters->options().rosegment()) 1717 && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X)) 1718 continue; 1719 // If -Tbss was specified, we need to separate the data and BSS 1720 // segments. 1721 if (parameters->options().user_set_Tbss()) 1722 { 1723 if ((os->type() == elfcpp::SHT_NOBITS) 1724 == (*p)->has_any_data_sections()) 1725 continue; 1726 } 1727 if (os->is_large_data_section() && !(*p)->is_large_data_segment()) 1728 continue; 1729 1730 if (is_address_set) 1731 { 1732 if ((*p)->are_addresses_set()) 1733 continue; 1734 1735 (*p)->add_initial_output_data(os); 1736 (*p)->update_flags_for_output_section(seg_flags); 1737 (*p)->set_addresses(addr, addr); 1738 break; 1739 } 1740 1741 (*p)->add_output_section_to_load(this, os, seg_flags); 1742 break; 1743 } 1744 1745 if (p == this->segment_list_.end()) 1746 { 1747 Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD, 1748 seg_flags); 1749 if (os->is_large_data_section()) 1750 oseg->set_is_large_data_segment(); 1751 oseg->add_output_section_to_load(this, os, seg_flags); 1752 if (is_address_set) 1753 oseg->set_addresses(addr, addr); 1754 } 1755 1756 // If we see a loadable SHT_NOTE section, we create a PT_NOTE 1757 // segment. 1758 if (os->type() == elfcpp::SHT_NOTE) 1759 { 1760 // See if we already have an equivalent PT_NOTE segment. 1761 for (p = this->segment_list_.begin(); 1762 p != segment_list_.end(); 1763 ++p) 1764 { 1765 if ((*p)->type() == elfcpp::PT_NOTE 1766 && (((*p)->flags() & elfcpp::PF_W) 1767 == (seg_flags & elfcpp::PF_W))) 1768 { 1769 (*p)->add_output_section_to_nonload(os, seg_flags); 1770 break; 1771 } 1772 } 1773 1774 if (p == this->segment_list_.end()) 1775 { 1776 Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE, 1777 seg_flags); 1778 oseg->add_output_section_to_nonload(os, seg_flags); 1779 } 1780 } 1781 1782 // If we see a loadable SHF_TLS section, we create a PT_TLS 1783 // segment. There can only be one such segment. 1784 if ((flags & elfcpp::SHF_TLS) != 0) 1785 { 1786 if (this->tls_segment_ == NULL) 1787 this->make_output_segment(elfcpp::PT_TLS, seg_flags); 1788 this->tls_segment_->add_output_section_to_nonload(os, seg_flags); 1789 } 1790 1791 // If -z relro is in effect, and we see a relro section, we create a 1792 // PT_GNU_RELRO segment. There can only be one such segment. 1793 if (os->is_relro() && parameters->options().relro()) 1794 { 1795 gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W)); 1796 if (this->relro_segment_ == NULL) 1797 this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags); 1798 this->relro_segment_->add_output_section_to_nonload(os, seg_flags); 1799 } 1800 1801 // If we see a section named .interp, put it into a PT_INTERP 1802 // segment. This seems broken to me, but this is what GNU ld does, 1803 // and glibc expects it. 1804 if (strcmp(os->name(), ".interp") == 0 1805 && !this->script_options_->saw_phdrs_clause()) 1806 { 1807 if (this->interp_segment_ == NULL) 1808 this->make_output_segment(elfcpp::PT_INTERP, seg_flags); 1809 else 1810 gold_warning(_("multiple '.interp' sections in input files " 1811 "may cause confusing PT_INTERP segment")); 1812 this->interp_segment_->add_output_section_to_nonload(os, seg_flags); 1813 } 1814 } 1815 1816 // Make an output section for a script. 1817 1818 Output_section* 1819 Layout::make_output_section_for_script( 1820 const char* name, 1821 Script_sections::Section_type section_type) 1822 { 1823 name = this->namepool_.add(name, false, NULL); 1824 elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC; 1825 if (section_type == Script_sections::ST_NOLOAD) 1826 sh_flags = 0; 1827 Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS, 1828 sh_flags, ORDER_INVALID, 1829 false); 1830 os->set_found_in_sections_clause(); 1831 if (section_type == Script_sections::ST_NOLOAD) 1832 os->set_is_noload(); 1833 return os; 1834 } 1835 1836 // Return the number of segments we expect to see. 1837 1838 size_t 1839 Layout::expected_segment_count() const 1840 { 1841 size_t ret = this->segment_list_.size(); 1842 1843 // If we didn't see a SECTIONS clause in a linker script, we should 1844 // already have the complete list of segments. Otherwise we ask the 1845 // SECTIONS clause how many segments it expects, and add in the ones 1846 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.) 1847 1848 if (!this->script_options_->saw_sections_clause()) 1849 return ret; 1850 else 1851 { 1852 const Script_sections* ss = this->script_options_->script_sections(); 1853 return ret + ss->expected_segment_count(this); 1854 } 1855 } 1856 1857 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK 1858 // is whether we saw a .note.GNU-stack section in the object file. 1859 // GNU_STACK_FLAGS is the section flags. The flags give the 1860 // protection required for stack memory. We record this in an 1861 // executable as a PT_GNU_STACK segment. If an object file does not 1862 // have a .note.GNU-stack segment, we must assume that it is an old 1863 // object. On some targets that will force an executable stack. 1864 1865 void 1866 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags, 1867 const Object* obj) 1868 { 1869 if (!seen_gnu_stack) 1870 { 1871 this->input_without_gnu_stack_note_ = true; 1872 if (parameters->options().warn_execstack() 1873 && parameters->target().is_default_stack_executable()) 1874 gold_warning(_("%s: missing .note.GNU-stack section" 1875 " implies executable stack"), 1876 obj->name().c_str()); 1877 } 1878 else 1879 { 1880 this->input_with_gnu_stack_note_ = true; 1881 if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0) 1882 { 1883 this->input_requires_executable_stack_ = true; 1884 if (parameters->options().warn_execstack() 1885 || parameters->options().is_stack_executable()) 1886 gold_warning(_("%s: requires executable stack"), 1887 obj->name().c_str()); 1888 } 1889 } 1890 } 1891 1892 // Create automatic note sections. 1893 1894 void 1895 Layout::create_notes() 1896 { 1897 this->create_gold_note(); 1898 this->create_executable_stack_info(); 1899 this->create_build_id(); 1900 } 1901 1902 // Create the dynamic sections which are needed before we read the 1903 // relocs. 1904 1905 void 1906 Layout::create_initial_dynamic_sections(Symbol_table* symtab) 1907 { 1908 if (parameters->doing_static_link()) 1909 return; 1910 1911 this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic", 1912 elfcpp::SHT_DYNAMIC, 1913 (elfcpp::SHF_ALLOC 1914 | elfcpp::SHF_WRITE), 1915 false, ORDER_RELRO, 1916 true); 1917 1918 // A linker script may discard .dynamic, so check for NULL. 1919 if (this->dynamic_section_ != NULL) 1920 { 1921 this->dynamic_symbol_ = 1922 symtab->define_in_output_data("_DYNAMIC", NULL, 1923 Symbol_table::PREDEFINED, 1924 this->dynamic_section_, 0, 0, 1925 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL, 1926 elfcpp::STV_HIDDEN, 0, false, false); 1927 1928 this->dynamic_data_ = new Output_data_dynamic(&this->dynpool_); 1929 1930 this->dynamic_section_->add_output_section_data(this->dynamic_data_); 1931 } 1932 } 1933 1934 // For each output section whose name can be represented as C symbol, 1935 // define __start and __stop symbols for the section. This is a GNU 1936 // extension. 1937 1938 void 1939 Layout::define_section_symbols(Symbol_table* symtab) 1940 { 1941 for (Section_list::const_iterator p = this->section_list_.begin(); 1942 p != this->section_list_.end(); 1943 ++p) 1944 { 1945 const char* const name = (*p)->name(); 1946 if (is_cident(name)) 1947 { 1948 const std::string name_string(name); 1949 const std::string start_name(cident_section_start_prefix 1950 + name_string); 1951 const std::string stop_name(cident_section_stop_prefix 1952 + name_string); 1953 1954 symtab->define_in_output_data(start_name.c_str(), 1955 NULL, // version 1956 Symbol_table::PREDEFINED, 1957 *p, 1958 0, // value 1959 0, // symsize 1960 elfcpp::STT_NOTYPE, 1961 elfcpp::STB_GLOBAL, 1962 elfcpp::STV_DEFAULT, 1963 0, // nonvis 1964 false, // offset_is_from_end 1965 true); // only_if_ref 1966 1967 symtab->define_in_output_data(stop_name.c_str(), 1968 NULL, // version 1969 Symbol_table::PREDEFINED, 1970 *p, 1971 0, // value 1972 0, // symsize 1973 elfcpp::STT_NOTYPE, 1974 elfcpp::STB_GLOBAL, 1975 elfcpp::STV_DEFAULT, 1976 0, // nonvis 1977 true, // offset_is_from_end 1978 true); // only_if_ref 1979 } 1980 } 1981 } 1982 1983 // Define symbols for group signatures. 1984 1985 void 1986 Layout::define_group_signatures(Symbol_table* symtab) 1987 { 1988 for (Group_signatures::iterator p = this->group_signatures_.begin(); 1989 p != this->group_signatures_.end(); 1990 ++p) 1991 { 1992 Symbol* sym = symtab->lookup(p->signature, NULL); 1993 if (sym != NULL) 1994 p->section->set_info_symndx(sym); 1995 else 1996 { 1997 // Force the name of the group section to the group 1998 // signature, and use the group's section symbol as the 1999 // signature symbol. 2000 if (strcmp(p->section->name(), p->signature) != 0) 2001 { 2002 const char* name = this->namepool_.add(p->signature, 2003 true, NULL); 2004 p->section->set_name(name); 2005 } 2006 p->section->set_needs_symtab_index(); 2007 p->section->set_info_section_symndx(p->section); 2008 } 2009 } 2010 2011 this->group_signatures_.clear(); 2012 } 2013 2014 // Find the first read-only PT_LOAD segment, creating one if 2015 // necessary. 2016 2017 Output_segment* 2018 Layout::find_first_load_seg(const Target* target) 2019 { 2020 Output_segment* best = NULL; 2021 for (Segment_list::const_iterator p = this->segment_list_.begin(); 2022 p != this->segment_list_.end(); 2023 ++p) 2024 { 2025 if ((*p)->type() == elfcpp::PT_LOAD 2026 && ((*p)->flags() & elfcpp::PF_R) != 0 2027 && (parameters->options().omagic() 2028 || ((*p)->flags() & elfcpp::PF_W) == 0) 2029 && (!target->isolate_execinstr() 2030 || ((*p)->flags() & elfcpp::PF_X) == 0)) 2031 { 2032 if (best == NULL || this->segment_precedes(*p, best)) 2033 best = *p; 2034 } 2035 } 2036 if (best != NULL) 2037 return best; 2038 2039 gold_assert(!this->script_options_->saw_phdrs_clause()); 2040 2041 Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD, 2042 elfcpp::PF_R); 2043 return load_seg; 2044 } 2045 2046 // Save states of all current output segments. Store saved states 2047 // in SEGMENT_STATES. 2048 2049 void 2050 Layout::save_segments(Segment_states* segment_states) 2051 { 2052 for (Segment_list::const_iterator p = this->segment_list_.begin(); 2053 p != this->segment_list_.end(); 2054 ++p) 2055 { 2056 Output_segment* segment = *p; 2057 // Shallow copy. 2058 Output_segment* copy = new Output_segment(*segment); 2059 (*segment_states)[segment] = copy; 2060 } 2061 } 2062 2063 // Restore states of output segments and delete any segment not found in 2064 // SEGMENT_STATES. 2065 2066 void 2067 Layout::restore_segments(const Segment_states* segment_states) 2068 { 2069 // Go through the segment list and remove any segment added in the 2070 // relaxation loop. 2071 this->tls_segment_ = NULL; 2072 this->relro_segment_ = NULL; 2073 Segment_list::iterator list_iter = this->segment_list_.begin(); 2074 while (list_iter != this->segment_list_.end()) 2075 { 2076 Output_segment* segment = *list_iter; 2077 Segment_states::const_iterator states_iter = 2078 segment_states->find(segment); 2079 if (states_iter != segment_states->end()) 2080 { 2081 const Output_segment* copy = states_iter->second; 2082 // Shallow copy to restore states. 2083 *segment = *copy; 2084 2085 // Also fix up TLS and RELRO segment pointers as appropriate. 2086 if (segment->type() == elfcpp::PT_TLS) 2087 this->tls_segment_ = segment; 2088 else if (segment->type() == elfcpp::PT_GNU_RELRO) 2089 this->relro_segment_ = segment; 2090 2091 ++list_iter; 2092 } 2093 else 2094 { 2095 list_iter = this->segment_list_.erase(list_iter); 2096 // This is a segment created during section layout. It should be 2097 // safe to remove it since we should have removed all pointers to it. 2098 delete segment; 2099 } 2100 } 2101 } 2102 2103 // Clean up after relaxation so that sections can be laid out again. 2104 2105 void 2106 Layout::clean_up_after_relaxation() 2107 { 2108 // Restore the segments to point state just prior to the relaxation loop. 2109 Script_sections* script_section = this->script_options_->script_sections(); 2110 script_section->release_segments(); 2111 this->restore_segments(this->segment_states_); 2112 2113 // Reset section addresses and file offsets 2114 for (Section_list::iterator p = this->section_list_.begin(); 2115 p != this->section_list_.end(); 2116 ++p) 2117 { 2118 (*p)->restore_states(); 2119 2120 // If an input section changes size because of relaxation, 2121 // we need to adjust the section offsets of all input sections. 2122 // after such a section. 2123 if ((*p)->section_offsets_need_adjustment()) 2124 (*p)->adjust_section_offsets(); 2125 2126 (*p)->reset_address_and_file_offset(); 2127 } 2128 2129 // Reset special output object address and file offsets. 2130 for (Data_list::iterator p = this->special_output_list_.begin(); 2131 p != this->special_output_list_.end(); 2132 ++p) 2133 (*p)->reset_address_and_file_offset(); 2134 2135 // A linker script may have created some output section data objects. 2136 // They are useless now. 2137 for (Output_section_data_list::const_iterator p = 2138 this->script_output_section_data_list_.begin(); 2139 p != this->script_output_section_data_list_.end(); 2140 ++p) 2141 delete *p; 2142 this->script_output_section_data_list_.clear(); 2143 } 2144 2145 // Prepare for relaxation. 2146 2147 void 2148 Layout::prepare_for_relaxation() 2149 { 2150 // Create an relaxation debug check if in debugging mode. 2151 if (is_debugging_enabled(DEBUG_RELAXATION)) 2152 this->relaxation_debug_check_ = new Relaxation_debug_check(); 2153 2154 // Save segment states. 2155 this->segment_states_ = new Segment_states(); 2156 this->save_segments(this->segment_states_); 2157 2158 for(Section_list::const_iterator p = this->section_list_.begin(); 2159 p != this->section_list_.end(); 2160 ++p) 2161 (*p)->save_states(); 2162 2163 if (is_debugging_enabled(DEBUG_RELAXATION)) 2164 this->relaxation_debug_check_->check_output_data_for_reset_values( 2165 this->section_list_, this->special_output_list_); 2166 2167 // Also enable recording of output section data from scripts. 2168 this->record_output_section_data_from_script_ = true; 2169 } 2170 2171 // Relaxation loop body: If target has no relaxation, this runs only once 2172 // Otherwise, the target relaxation hook is called at the end of 2173 // each iteration. If the hook returns true, it means re-layout of 2174 // section is required. 2175 // 2176 // The number of segments created by a linking script without a PHDRS 2177 // clause may be affected by section sizes and alignments. There is 2178 // a remote chance that relaxation causes different number of PT_LOAD 2179 // segments are created and sections are attached to different segments. 2180 // Therefore, we always throw away all segments created during section 2181 // layout. In order to be able to restart the section layout, we keep 2182 // a copy of the segment list right before the relaxation loop and use 2183 // that to restore the segments. 2184 // 2185 // PASS is the current relaxation pass number. 2186 // SYMTAB is a symbol table. 2187 // PLOAD_SEG is the address of a pointer for the load segment. 2188 // PHDR_SEG is a pointer to the PHDR segment. 2189 // SEGMENT_HEADERS points to the output segment header. 2190 // FILE_HEADER points to the output file header. 2191 // PSHNDX is the address to store the output section index. 2192 2193 off_t inline 2194 Layout::relaxation_loop_body( 2195 int pass, 2196 Target* target, 2197 Symbol_table* symtab, 2198 Output_segment** pload_seg, 2199 Output_segment* phdr_seg, 2200 Output_segment_headers* segment_headers, 2201 Output_file_header* file_header, 2202 unsigned int* pshndx) 2203 { 2204 // If this is not the first iteration, we need to clean up after 2205 // relaxation so that we can lay out the sections again. 2206 if (pass != 0) 2207 this->clean_up_after_relaxation(); 2208 2209 // If there is a SECTIONS clause, put all the input sections into 2210 // the required order. 2211 Output_segment* load_seg; 2212 if (this->script_options_->saw_sections_clause()) 2213 load_seg = this->set_section_addresses_from_script(symtab); 2214 else if (parameters->options().relocatable()) 2215 load_seg = NULL; 2216 else 2217 load_seg = this->find_first_load_seg(target); 2218 2219 if (parameters->options().oformat_enum() 2220 != General_options::OBJECT_FORMAT_ELF) 2221 load_seg = NULL; 2222 2223 // If the user set the address of the text segment, that may not be 2224 // compatible with putting the segment headers and file headers into 2225 // that segment. 2226 if (parameters->options().user_set_Ttext() 2227 && parameters->options().Ttext() % target->common_pagesize() != 0) 2228 { 2229 load_seg = NULL; 2230 phdr_seg = NULL; 2231 } 2232 2233 gold_assert(phdr_seg == NULL 2234 || load_seg != NULL 2235 || this->script_options_->saw_sections_clause()); 2236 2237 // If the address of the load segment we found has been set by 2238 // --section-start rather than by a script, then adjust the VMA and 2239 // LMA downward if possible to include the file and section headers. 2240 uint64_t header_gap = 0; 2241 if (load_seg != NULL 2242 && load_seg->are_addresses_set() 2243 && !this->script_options_->saw_sections_clause() 2244 && !parameters->options().relocatable()) 2245 { 2246 file_header->finalize_data_size(); 2247 segment_headers->finalize_data_size(); 2248 size_t sizeof_headers = (file_header->data_size() 2249 + segment_headers->data_size()); 2250 const uint64_t abi_pagesize = target->abi_pagesize(); 2251 uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers; 2252 hdr_paddr &= ~(abi_pagesize - 1); 2253 uint64_t subtract = load_seg->paddr() - hdr_paddr; 2254 if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract) 2255 load_seg = NULL; 2256 else 2257 { 2258 load_seg->set_addresses(load_seg->vaddr() - subtract, 2259 load_seg->paddr() - subtract); 2260 header_gap = subtract - sizeof_headers; 2261 } 2262 } 2263 2264 // Lay out the segment headers. 2265 if (!parameters->options().relocatable()) 2266 { 2267 gold_assert(segment_headers != NULL); 2268 if (header_gap != 0 && load_seg != NULL) 2269 { 2270 Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1); 2271 load_seg->add_initial_output_data(z); 2272 } 2273 if (load_seg != NULL) 2274 load_seg->add_initial_output_data(segment_headers); 2275 if (phdr_seg != NULL) 2276 phdr_seg->add_initial_output_data(segment_headers); 2277 } 2278 2279 // Lay out the file header. 2280 if (load_seg != NULL) 2281 load_seg->add_initial_output_data(file_header); 2282 2283 if (this->script_options_->saw_phdrs_clause() 2284 && !parameters->options().relocatable()) 2285 { 2286 // Support use of FILEHDRS and PHDRS attachments in a PHDRS 2287 // clause in a linker script. 2288 Script_sections* ss = this->script_options_->script_sections(); 2289 ss->put_headers_in_phdrs(file_header, segment_headers); 2290 } 2291 2292 // We set the output section indexes in set_segment_offsets and 2293 // set_section_indexes. 2294 *pshndx = 1; 2295 2296 // Set the file offsets of all the segments, and all the sections 2297 // they contain. 2298 off_t off; 2299 if (!parameters->options().relocatable()) 2300 off = this->set_segment_offsets(target, load_seg, pshndx); 2301 else 2302 off = this->set_relocatable_section_offsets(file_header, pshndx); 2303 2304 // Verify that the dummy relaxation does not change anything. 2305 if (is_debugging_enabled(DEBUG_RELAXATION)) 2306 { 2307 if (pass == 0) 2308 this->relaxation_debug_check_->read_sections(this->section_list_); 2309 else 2310 this->relaxation_debug_check_->verify_sections(this->section_list_); 2311 } 2312 2313 *pload_seg = load_seg; 2314 return off; 2315 } 2316 2317 // Search the list of patterns and find the postion of the given section 2318 // name in the output section. If the section name matches a glob 2319 // pattern and a non-glob name, then the non-glob position takes 2320 // precedence. Return 0 if no match is found. 2321 2322 unsigned int 2323 Layout::find_section_order_index(const std::string& section_name) 2324 { 2325 Unordered_map<std::string, unsigned int>::iterator map_it; 2326 map_it = this->input_section_position_.find(section_name); 2327 if (map_it != this->input_section_position_.end()) 2328 return map_it->second; 2329 2330 // Absolute match failed. Linear search the glob patterns. 2331 std::vector<std::string>::iterator it; 2332 for (it = this->input_section_glob_.begin(); 2333 it != this->input_section_glob_.end(); 2334 ++it) 2335 { 2336 if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0) 2337 { 2338 map_it = this->input_section_position_.find(*it); 2339 gold_assert(map_it != this->input_section_position_.end()); 2340 return map_it->second; 2341 } 2342 } 2343 return 0; 2344 } 2345 2346 // Read the sequence of input sections from the file specified with 2347 // option --section-ordering-file. 2348 2349 void 2350 Layout::read_layout_from_file() 2351 { 2352 const char* filename = parameters->options().section_ordering_file(); 2353 std::ifstream in; 2354 std::string line; 2355 2356 in.open(filename); 2357 if (!in) 2358 gold_fatal(_("unable to open --section-ordering-file file %s: %s"), 2359 filename, strerror(errno)); 2360 2361 std::getline(in, line); // this chops off the trailing \n, if any 2362 unsigned int position = 1; 2363 this->set_section_ordering_specified(); 2364 2365 while (in) 2366 { 2367 if (!line.empty() && line[line.length() - 1] == '\r') // Windows 2368 line.resize(line.length() - 1); 2369 // Ignore comments, beginning with '#' 2370 if (line[0] == '#') 2371 { 2372 std::getline(in, line); 2373 continue; 2374 } 2375 this->input_section_position_[line] = position; 2376 // Store all glob patterns in a vector. 2377 if (is_wildcard_string(line.c_str())) 2378 this->input_section_glob_.push_back(line); 2379 position++; 2380 std::getline(in, line); 2381 } 2382 } 2383 2384 // Finalize the layout. When this is called, we have created all the 2385 // output sections and all the output segments which are based on 2386 // input sections. We have several things to do, and we have to do 2387 // them in the right order, so that we get the right results correctly 2388 // and efficiently. 2389 2390 // 1) Finalize the list of output segments and create the segment 2391 // table header. 2392 2393 // 2) Finalize the dynamic symbol table and associated sections. 2394 2395 // 3) Determine the final file offset of all the output segments. 2396 2397 // 4) Determine the final file offset of all the SHF_ALLOC output 2398 // sections. 2399 2400 // 5) Create the symbol table sections and the section name table 2401 // section. 2402 2403 // 6) Finalize the symbol table: set symbol values to their final 2404 // value and make a final determination of which symbols are going 2405 // into the output symbol table. 2406 2407 // 7) Create the section table header. 2408 2409 // 8) Determine the final file offset of all the output sections which 2410 // are not SHF_ALLOC, including the section table header. 2411 2412 // 9) Finalize the ELF file header. 2413 2414 // This function returns the size of the output file. 2415 2416 off_t 2417 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab, 2418 Target* target, const Task* task) 2419 { 2420 target->finalize_sections(this, input_objects, symtab); 2421 2422 this->count_local_symbols(task, input_objects); 2423 2424 this->link_stabs_sections(); 2425 2426 Output_segment* phdr_seg = NULL; 2427 if (!parameters->options().relocatable() && !parameters->doing_static_link()) 2428 { 2429 // There was a dynamic object in the link. We need to create 2430 // some information for the dynamic linker. 2431 2432 // Create the PT_PHDR segment which will hold the program 2433 // headers. 2434 if (!this->script_options_->saw_phdrs_clause()) 2435 phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R); 2436 2437 // Create the dynamic symbol table, including the hash table. 2438 Output_section* dynstr; 2439 std::vector<Symbol*> dynamic_symbols; 2440 unsigned int local_dynamic_count; 2441 Versions versions(*this->script_options()->version_script_info(), 2442 &this->dynpool_); 2443 this->create_dynamic_symtab(input_objects, symtab, &dynstr, 2444 &local_dynamic_count, &dynamic_symbols, 2445 &versions); 2446 2447 // Create the .interp section to hold the name of the 2448 // interpreter, and put it in a PT_INTERP segment. Don't do it 2449 // if we saw a .interp section in an input file. 2450 if ((!parameters->options().shared() 2451 || parameters->options().dynamic_linker() != NULL) 2452 && this->interp_segment_ == NULL) 2453 this->create_interp(target); 2454 2455 // Finish the .dynamic section to hold the dynamic data, and put 2456 // it in a PT_DYNAMIC segment. 2457 this->finish_dynamic_section(input_objects, symtab); 2458 2459 // We should have added everything we need to the dynamic string 2460 // table. 2461 this->dynpool_.set_string_offsets(); 2462 2463 // Create the version sections. We can't do this until the 2464 // dynamic string table is complete. 2465 this->create_version_sections(&versions, symtab, local_dynamic_count, 2466 dynamic_symbols, dynstr); 2467 2468 // Set the size of the _DYNAMIC symbol. We can't do this until 2469 // after we call create_version_sections. 2470 this->set_dynamic_symbol_size(symtab); 2471 } 2472 2473 // Create segment headers. 2474 Output_segment_headers* segment_headers = 2475 (parameters->options().relocatable() 2476 ? NULL 2477 : new Output_segment_headers(this->segment_list_)); 2478 2479 // Lay out the file header. 2480 Output_file_header* file_header = new Output_file_header(target, symtab, 2481 segment_headers); 2482 2483 this->special_output_list_.push_back(file_header); 2484 if (segment_headers != NULL) 2485 this->special_output_list_.push_back(segment_headers); 2486 2487 // Find approriate places for orphan output sections if we are using 2488 // a linker script. 2489 if (this->script_options_->saw_sections_clause()) 2490 this->place_orphan_sections_in_script(); 2491 2492 Output_segment* load_seg; 2493 off_t off; 2494 unsigned int shndx; 2495 int pass = 0; 2496 2497 // Take a snapshot of the section layout as needed. 2498 if (target->may_relax()) 2499 this->prepare_for_relaxation(); 2500 2501 // Run the relaxation loop to lay out sections. 2502 do 2503 { 2504 off = this->relaxation_loop_body(pass, target, symtab, &load_seg, 2505 phdr_seg, segment_headers, file_header, 2506 &shndx); 2507 pass++; 2508 } 2509 while (target->may_relax() 2510 && target->relax(pass, input_objects, symtab, this, task)); 2511 2512 // If there is a load segment that contains the file and program headers, 2513 // provide a symbol __ehdr_start pointing there. 2514 // A program can use this to examine itself robustly. 2515 if (load_seg != NULL) 2516 symtab->define_in_output_segment("__ehdr_start", NULL, 2517 Symbol_table::PREDEFINED, load_seg, 0, 0, 2518 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL, 2519 elfcpp::STV_DEFAULT, 0, 2520 Symbol::SEGMENT_START, true); 2521 2522 // Set the file offsets of all the non-data sections we've seen so 2523 // far which don't have to wait for the input sections. We need 2524 // this in order to finalize local symbols in non-allocated 2525 // sections. 2526 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS); 2527 2528 // Set the section indexes of all unallocated sections seen so far, 2529 // in case any of them are somehow referenced by a symbol. 2530 shndx = this->set_section_indexes(shndx); 2531 2532 // Create the symbol table sections. 2533 this->create_symtab_sections(input_objects, symtab, shndx, &off); 2534 if (!parameters->doing_static_link()) 2535 this->assign_local_dynsym_offsets(input_objects); 2536 2537 // Process any symbol assignments from a linker script. This must 2538 // be called after the symbol table has been finalized. 2539 this->script_options_->finalize_symbols(symtab, this); 2540 2541 // Create the incremental inputs sections. 2542 if (this->incremental_inputs_) 2543 { 2544 this->incremental_inputs_->finalize(); 2545 this->create_incremental_info_sections(symtab); 2546 } 2547 2548 // Create the .shstrtab section. 2549 Output_section* shstrtab_section = this->create_shstrtab(); 2550 2551 // Set the file offsets of the rest of the non-data sections which 2552 // don't have to wait for the input sections. 2553 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS); 2554 2555 // Now that all sections have been created, set the section indexes 2556 // for any sections which haven't been done yet. 2557 shndx = this->set_section_indexes(shndx); 2558 2559 // Create the section table header. 2560 this->create_shdrs(shstrtab_section, &off); 2561 2562 // If there are no sections which require postprocessing, we can 2563 // handle the section names now, and avoid a resize later. 2564 if (!this->any_postprocessing_sections_) 2565 { 2566 off = this->set_section_offsets(off, 2567 POSTPROCESSING_SECTIONS_PASS); 2568 off = 2569 this->set_section_offsets(off, 2570 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS); 2571 } 2572 2573 file_header->set_section_info(this->section_headers_, shstrtab_section); 2574 2575 // Now we know exactly where everything goes in the output file 2576 // (except for non-allocated sections which require postprocessing). 2577 Output_data::layout_complete(); 2578 2579 this->output_file_size_ = off; 2580 2581 return off; 2582 } 2583 2584 // Create a note header following the format defined in the ELF ABI. 2585 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name 2586 // of the section to create, DESCSZ is the size of the descriptor. 2587 // ALLOCATE is true if the section should be allocated in memory. 2588 // This returns the new note section. It sets *TRAILING_PADDING to 2589 // the number of trailing zero bytes required. 2590 2591 Output_section* 2592 Layout::create_note(const char* name, int note_type, 2593 const char* section_name, size_t descsz, 2594 bool allocate, size_t* trailing_padding) 2595 { 2596 // Authorities all agree that the values in a .note field should 2597 // be aligned on 4-byte boundaries for 32-bit binaries. However, 2598 // they differ on what the alignment is for 64-bit binaries. 2599 // The GABI says unambiguously they take 8-byte alignment: 2600 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section 2601 // Other documentation says alignment should always be 4 bytes: 2602 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format 2603 // GNU ld and GNU readelf both support the latter (at least as of 2604 // version 2.16.91), and glibc always generates the latter for 2605 // .note.ABI-tag (as of version 1.6), so that's the one we go with 2606 // here. 2607 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default. 2608 const int size = parameters->target().get_size(); 2609 #else 2610 const int size = 32; 2611 #endif 2612 2613 // The contents of the .note section. 2614 size_t namesz = strlen(name) + 1; 2615 size_t aligned_namesz = align_address(namesz, size / 8); 2616 size_t aligned_descsz = align_address(descsz, size / 8); 2617 2618 size_t notehdrsz = 3 * (size / 8) + aligned_namesz; 2619 2620 unsigned char* buffer = new unsigned char[notehdrsz]; 2621 memset(buffer, 0, notehdrsz); 2622 2623 bool is_big_endian = parameters->target().is_big_endian(); 2624 2625 if (size == 32) 2626 { 2627 if (!is_big_endian) 2628 { 2629 elfcpp::Swap<32, false>::writeval(buffer, namesz); 2630 elfcpp::Swap<32, false>::writeval(buffer + 4, descsz); 2631 elfcpp::Swap<32, false>::writeval(buffer + 8, note_type); 2632 } 2633 else 2634 { 2635 elfcpp::Swap<32, true>::writeval(buffer, namesz); 2636 elfcpp::Swap<32, true>::writeval(buffer + 4, descsz); 2637 elfcpp::Swap<32, true>::writeval(buffer + 8, note_type); 2638 } 2639 } 2640 else if (size == 64) 2641 { 2642 if (!is_big_endian) 2643 { 2644 elfcpp::Swap<64, false>::writeval(buffer, namesz); 2645 elfcpp::Swap<64, false>::writeval(buffer + 8, descsz); 2646 elfcpp::Swap<64, false>::writeval(buffer + 16, note_type); 2647 } 2648 else 2649 { 2650 elfcpp::Swap<64, true>::writeval(buffer, namesz); 2651 elfcpp::Swap<64, true>::writeval(buffer + 8, descsz); 2652 elfcpp::Swap<64, true>::writeval(buffer + 16, note_type); 2653 } 2654 } 2655 else 2656 gold_unreachable(); 2657 2658 memcpy(buffer + 3 * (size / 8), name, namesz); 2659 2660 elfcpp::Elf_Xword flags = 0; 2661 Output_section_order order = ORDER_INVALID; 2662 if (allocate) 2663 { 2664 flags = elfcpp::SHF_ALLOC; 2665 order = ORDER_RO_NOTE; 2666 } 2667 Output_section* os = this->choose_output_section(NULL, section_name, 2668 elfcpp::SHT_NOTE, 2669 flags, false, order, false); 2670 if (os == NULL) 2671 return NULL; 2672 2673 Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz, 2674 size / 8, 2675 "** note header"); 2676 os->add_output_section_data(posd); 2677 2678 *trailing_padding = aligned_descsz - descsz; 2679 2680 return os; 2681 } 2682 2683 // For an executable or shared library, create a note to record the 2684 // version of gold used to create the binary. 2685 2686 void 2687 Layout::create_gold_note() 2688 { 2689 if (parameters->options().relocatable() 2690 || parameters->incremental_update()) 2691 return; 2692 2693 std::string desc = std::string("gold ") + gold::get_version_string(); 2694 2695 size_t trailing_padding; 2696 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION, 2697 ".note.gnu.gold-version", desc.size(), 2698 false, &trailing_padding); 2699 if (os == NULL) 2700 return; 2701 2702 Output_section_data* posd = new Output_data_const(desc, 4); 2703 os->add_output_section_data(posd); 2704 2705 if (trailing_padding > 0) 2706 { 2707 posd = new Output_data_zero_fill(trailing_padding, 0); 2708 os->add_output_section_data(posd); 2709 } 2710 } 2711 2712 // Record whether the stack should be executable. This can be set 2713 // from the command line using the -z execstack or -z noexecstack 2714 // options. Otherwise, if any input file has a .note.GNU-stack 2715 // section with the SHF_EXECINSTR flag set, the stack should be 2716 // executable. Otherwise, if at least one input file a 2717 // .note.GNU-stack section, and some input file has no .note.GNU-stack 2718 // section, we use the target default for whether the stack should be 2719 // executable. Otherwise, we don't generate a stack note. When 2720 // generating a object file, we create a .note.GNU-stack section with 2721 // the appropriate marking. When generating an executable or shared 2722 // library, we create a PT_GNU_STACK segment. 2723 2724 void 2725 Layout::create_executable_stack_info() 2726 { 2727 bool is_stack_executable; 2728 if (parameters->options().is_execstack_set()) 2729 is_stack_executable = parameters->options().is_stack_executable(); 2730 else if (!this->input_with_gnu_stack_note_) 2731 return; 2732 else 2733 { 2734 if (this->input_requires_executable_stack_) 2735 is_stack_executable = true; 2736 else if (this->input_without_gnu_stack_note_) 2737 is_stack_executable = 2738 parameters->target().is_default_stack_executable(); 2739 else 2740 is_stack_executable = false; 2741 } 2742 2743 if (parameters->options().relocatable()) 2744 { 2745 const char* name = this->namepool_.add(".note.GNU-stack", false, NULL); 2746 elfcpp::Elf_Xword flags = 0; 2747 if (is_stack_executable) 2748 flags |= elfcpp::SHF_EXECINSTR; 2749 this->make_output_section(name, elfcpp::SHT_PROGBITS, flags, 2750 ORDER_INVALID, false); 2751 } 2752 else 2753 { 2754 if (this->script_options_->saw_phdrs_clause()) 2755 return; 2756 int flags = elfcpp::PF_R | elfcpp::PF_W; 2757 if (is_stack_executable) 2758 flags |= elfcpp::PF_X; 2759 this->make_output_segment(elfcpp::PT_GNU_STACK, flags); 2760 } 2761 } 2762 2763 // If --build-id was used, set up the build ID note. 2764 2765 void 2766 Layout::create_build_id() 2767 { 2768 if (!parameters->options().user_set_build_id()) 2769 return; 2770 2771 const char* style = parameters->options().build_id(); 2772 if (strcmp(style, "none") == 0) 2773 return; 2774 2775 // Set DESCSZ to the size of the note descriptor. When possible, 2776 // set DESC to the note descriptor contents. 2777 size_t descsz; 2778 std::string desc; 2779 if (strcmp(style, "md5") == 0) 2780 descsz = 128 / 8; 2781 else if (strcmp(style, "sha1") == 0) 2782 descsz = 160 / 8; 2783 else if (strcmp(style, "uuid") == 0) 2784 { 2785 const size_t uuidsz = 128 / 8; 2786 2787 char buffer[uuidsz]; 2788 memset(buffer, 0, uuidsz); 2789 2790 int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY); 2791 if (descriptor < 0) 2792 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"), 2793 strerror(errno)); 2794 else 2795 { 2796 ssize_t got = ::read(descriptor, buffer, uuidsz); 2797 release_descriptor(descriptor, true); 2798 if (got < 0) 2799 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno)); 2800 else if (static_cast<size_t>(got) != uuidsz) 2801 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"), 2802 uuidsz, got); 2803 } 2804 2805 desc.assign(buffer, uuidsz); 2806 descsz = uuidsz; 2807 } 2808 else if (strncmp(style, "0x", 2) == 0) 2809 { 2810 hex_init(); 2811 const char* p = style + 2; 2812 while (*p != '\0') 2813 { 2814 if (hex_p(p[0]) && hex_p(p[1])) 2815 { 2816 char c = (hex_value(p[0]) << 4) | hex_value(p[1]); 2817 desc += c; 2818 p += 2; 2819 } 2820 else if (*p == '-' || *p == ':') 2821 ++p; 2822 else 2823 gold_fatal(_("--build-id argument '%s' not a valid hex number"), 2824 style); 2825 } 2826 descsz = desc.size(); 2827 } 2828 else 2829 gold_fatal(_("unrecognized --build-id argument '%s'"), style); 2830 2831 // Create the note. 2832 size_t trailing_padding; 2833 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID, 2834 ".note.gnu.build-id", descsz, true, 2835 &trailing_padding); 2836 if (os == NULL) 2837 return; 2838 2839 if (!desc.empty()) 2840 { 2841 // We know the value already, so we fill it in now. 2842 gold_assert(desc.size() == descsz); 2843 2844 Output_section_data* posd = new Output_data_const(desc, 4); 2845 os->add_output_section_data(posd); 2846 2847 if (trailing_padding != 0) 2848 { 2849 posd = new Output_data_zero_fill(trailing_padding, 0); 2850 os->add_output_section_data(posd); 2851 } 2852 } 2853 else 2854 { 2855 // We need to compute a checksum after we have completed the 2856 // link. 2857 gold_assert(trailing_padding == 0); 2858 this->build_id_note_ = new Output_data_zero_fill(descsz, 4); 2859 os->add_output_section_data(this->build_id_note_); 2860 } 2861 } 2862 2863 // If we have both .stabXX and .stabXXstr sections, then the sh_link 2864 // field of the former should point to the latter. I'm not sure who 2865 // started this, but the GNU linker does it, and some tools depend 2866 // upon it. 2867 2868 void 2869 Layout::link_stabs_sections() 2870 { 2871 if (!this->have_stabstr_section_) 2872 return; 2873 2874 for (Section_list::iterator p = this->section_list_.begin(); 2875 p != this->section_list_.end(); 2876 ++p) 2877 { 2878 if ((*p)->type() != elfcpp::SHT_STRTAB) 2879 continue; 2880 2881 const char* name = (*p)->name(); 2882 if (strncmp(name, ".stab", 5) != 0) 2883 continue; 2884 2885 size_t len = strlen(name); 2886 if (strcmp(name + len - 3, "str") != 0) 2887 continue; 2888 2889 std::string stab_name(name, len - 3); 2890 Output_section* stab_sec; 2891 stab_sec = this->find_output_section(stab_name.c_str()); 2892 if (stab_sec != NULL) 2893 stab_sec->set_link_section(*p); 2894 } 2895 } 2896 2897 // Create .gnu_incremental_inputs and related sections needed 2898 // for the next run of incremental linking to check what has changed. 2899 2900 void 2901 Layout::create_incremental_info_sections(Symbol_table* symtab) 2902 { 2903 Incremental_inputs* incr = this->incremental_inputs_; 2904 2905 gold_assert(incr != NULL); 2906 2907 // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections. 2908 incr->create_data_sections(symtab); 2909 2910 // Add the .gnu_incremental_inputs section. 2911 const char* incremental_inputs_name = 2912 this->namepool_.add(".gnu_incremental_inputs", false, NULL); 2913 Output_section* incremental_inputs_os = 2914 this->make_output_section(incremental_inputs_name, 2915 elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0, 2916 ORDER_INVALID, false); 2917 incremental_inputs_os->add_output_section_data(incr->inputs_section()); 2918 2919 // Add the .gnu_incremental_symtab section. 2920 const char* incremental_symtab_name = 2921 this->namepool_.add(".gnu_incremental_symtab", false, NULL); 2922 Output_section* incremental_symtab_os = 2923 this->make_output_section(incremental_symtab_name, 2924 elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0, 2925 ORDER_INVALID, false); 2926 incremental_symtab_os->add_output_section_data(incr->symtab_section()); 2927 incremental_symtab_os->set_entsize(4); 2928 2929 // Add the .gnu_incremental_relocs section. 2930 const char* incremental_relocs_name = 2931 this->namepool_.add(".gnu_incremental_relocs", false, NULL); 2932 Output_section* incremental_relocs_os = 2933 this->make_output_section(incremental_relocs_name, 2934 elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0, 2935 ORDER_INVALID, false); 2936 incremental_relocs_os->add_output_section_data(incr->relocs_section()); 2937 incremental_relocs_os->set_entsize(incr->relocs_entsize()); 2938 2939 // Add the .gnu_incremental_got_plt section. 2940 const char* incremental_got_plt_name = 2941 this->namepool_.add(".gnu_incremental_got_plt", false, NULL); 2942 Output_section* incremental_got_plt_os = 2943 this->make_output_section(incremental_got_plt_name, 2944 elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0, 2945 ORDER_INVALID, false); 2946 incremental_got_plt_os->add_output_section_data(incr->got_plt_section()); 2947 2948 // Add the .gnu_incremental_strtab section. 2949 const char* incremental_strtab_name = 2950 this->namepool_.add(".gnu_incremental_strtab", false, NULL); 2951 Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name, 2952 elfcpp::SHT_STRTAB, 0, 2953 ORDER_INVALID, false); 2954 Output_data_strtab* strtab_data = 2955 new Output_data_strtab(incr->get_stringpool()); 2956 incremental_strtab_os->add_output_section_data(strtab_data); 2957 2958 incremental_inputs_os->set_after_input_sections(); 2959 incremental_symtab_os->set_after_input_sections(); 2960 incremental_relocs_os->set_after_input_sections(); 2961 incremental_got_plt_os->set_after_input_sections(); 2962 2963 incremental_inputs_os->set_link_section(incremental_strtab_os); 2964 incremental_symtab_os->set_link_section(incremental_inputs_os); 2965 incremental_relocs_os->set_link_section(incremental_inputs_os); 2966 incremental_got_plt_os->set_link_section(incremental_inputs_os); 2967 } 2968 2969 // Return whether SEG1 should be before SEG2 in the output file. This 2970 // is based entirely on the segment type and flags. When this is 2971 // called the segment addresses have normally not yet been set. 2972 2973 bool 2974 Layout::segment_precedes(const Output_segment* seg1, 2975 const Output_segment* seg2) 2976 { 2977 elfcpp::Elf_Word type1 = seg1->type(); 2978 elfcpp::Elf_Word type2 = seg2->type(); 2979 2980 // The single PT_PHDR segment is required to precede any loadable 2981 // segment. We simply make it always first. 2982 if (type1 == elfcpp::PT_PHDR) 2983 { 2984 gold_assert(type2 != elfcpp::PT_PHDR); 2985 return true; 2986 } 2987 if (type2 == elfcpp::PT_PHDR) 2988 return false; 2989 2990 // The single PT_INTERP segment is required to precede any loadable 2991 // segment. We simply make it always second. 2992 if (type1 == elfcpp::PT_INTERP) 2993 { 2994 gold_assert(type2 != elfcpp::PT_INTERP); 2995 return true; 2996 } 2997 if (type2 == elfcpp::PT_INTERP) 2998 return false; 2999 3000 // We then put PT_LOAD segments before any other segments. 3001 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD) 3002 return true; 3003 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD) 3004 return false; 3005 3006 // We put the PT_TLS segment last except for the PT_GNU_RELRO 3007 // segment, because that is where the dynamic linker expects to find 3008 // it (this is just for efficiency; other positions would also work 3009 // correctly). 3010 if (type1 == elfcpp::PT_TLS 3011 && type2 != elfcpp::PT_TLS 3012 && type2 != elfcpp::PT_GNU_RELRO) 3013 return false; 3014 if (type2 == elfcpp::PT_TLS 3015 && type1 != elfcpp::PT_TLS 3016 && type1 != elfcpp::PT_GNU_RELRO) 3017 return true; 3018 3019 // We put the PT_GNU_RELRO segment last, because that is where the 3020 // dynamic linker expects to find it (as with PT_TLS, this is just 3021 // for efficiency). 3022 if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO) 3023 return false; 3024 if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO) 3025 return true; 3026 3027 const elfcpp::Elf_Word flags1 = seg1->flags(); 3028 const elfcpp::Elf_Word flags2 = seg2->flags(); 3029 3030 // The order of non-PT_LOAD segments is unimportant. We simply sort 3031 // by the numeric segment type and flags values. There should not 3032 // be more than one segment with the same type and flags. 3033 if (type1 != elfcpp::PT_LOAD) 3034 { 3035 if (type1 != type2) 3036 return type1 < type2; 3037 gold_assert(flags1 != flags2); 3038 return flags1 < flags2; 3039 } 3040 3041 // If the addresses are set already, sort by load address. 3042 if (seg1->are_addresses_set()) 3043 { 3044 if (!seg2->are_addresses_set()) 3045 return true; 3046 3047 unsigned int section_count1 = seg1->output_section_count(); 3048 unsigned int section_count2 = seg2->output_section_count(); 3049 if (section_count1 == 0 && section_count2 > 0) 3050 return true; 3051 if (section_count1 > 0 && section_count2 == 0) 3052 return false; 3053 3054 uint64_t paddr1 = (seg1->are_addresses_set() 3055 ? seg1->paddr() 3056 : seg1->first_section_load_address()); 3057 uint64_t paddr2 = (seg2->are_addresses_set() 3058 ? seg2->paddr() 3059 : seg2->first_section_load_address()); 3060 3061 if (paddr1 != paddr2) 3062 return paddr1 < paddr2; 3063 } 3064 else if (seg2->are_addresses_set()) 3065 return false; 3066 3067 // A segment which holds large data comes after a segment which does 3068 // not hold large data. 3069 if (seg1->is_large_data_segment()) 3070 { 3071 if (!seg2->is_large_data_segment()) 3072 return false; 3073 } 3074 else if (seg2->is_large_data_segment()) 3075 return true; 3076 3077 // Otherwise, we sort PT_LOAD segments based on the flags. Readonly 3078 // segments come before writable segments. Then writable segments 3079 // with data come before writable segments without data. Then 3080 // executable segments come before non-executable segments. Then 3081 // the unlikely case of a non-readable segment comes before the 3082 // normal case of a readable segment. If there are multiple 3083 // segments with the same type and flags, we require that the 3084 // address be set, and we sort by virtual address and then physical 3085 // address. 3086 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W)) 3087 return (flags1 & elfcpp::PF_W) == 0; 3088 if ((flags1 & elfcpp::PF_W) != 0 3089 && seg1->has_any_data_sections() != seg2->has_any_data_sections()) 3090 return seg1->has_any_data_sections(); 3091 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X)) 3092 return (flags1 & elfcpp::PF_X) != 0; 3093 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R)) 3094 return (flags1 & elfcpp::PF_R) == 0; 3095 3096 // We shouldn't get here--we shouldn't create segments which we 3097 // can't distinguish. Unless of course we are using a weird linker 3098 // script or overlapping --section-start options. 3099 gold_assert(this->script_options_->saw_phdrs_clause() 3100 || parameters->options().any_section_start()); 3101 return false; 3102 } 3103 3104 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE. 3105 3106 static off_t 3107 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize) 3108 { 3109 uint64_t unsigned_off = off; 3110 uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1)) 3111 | (addr & (abi_pagesize - 1))); 3112 if (aligned_off < unsigned_off) 3113 aligned_off += abi_pagesize; 3114 return aligned_off; 3115 } 3116 3117 // Set the file offsets of all the segments, and all the sections they 3118 // contain. They have all been created. LOAD_SEG must be be laid out 3119 // first. Return the offset of the data to follow. 3120 3121 off_t 3122 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg, 3123 unsigned int* pshndx) 3124 { 3125 // Sort them into the final order. We use a stable sort so that we 3126 // don't randomize the order of indistinguishable segments created 3127 // by linker scripts. 3128 std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(), 3129 Layout::Compare_segments(this)); 3130 3131 // Find the PT_LOAD segments, and set their addresses and offsets 3132 // and their section's addresses and offsets. 3133 uint64_t start_addr; 3134 if (parameters->options().user_set_Ttext()) 3135 start_addr = parameters->options().Ttext(); 3136 else if (parameters->options().output_is_position_independent()) 3137 start_addr = 0; 3138 else 3139 start_addr = target->default_text_segment_address(); 3140 3141 uint64_t addr = start_addr; 3142 off_t off = 0; 3143 3144 // If LOAD_SEG is NULL, then the file header and segment headers 3145 // will not be loadable. But they still need to be at offset 0 in 3146 // the file. Set their offsets now. 3147 if (load_seg == NULL) 3148 { 3149 for (Data_list::iterator p = this->special_output_list_.begin(); 3150 p != this->special_output_list_.end(); 3151 ++p) 3152 { 3153 off = align_address(off, (*p)->addralign()); 3154 (*p)->set_address_and_file_offset(0, off); 3155 off += (*p)->data_size(); 3156 } 3157 } 3158 3159 unsigned int increase_relro = this->increase_relro_; 3160 if (this->script_options_->saw_sections_clause()) 3161 increase_relro = 0; 3162 3163 const bool check_sections = parameters->options().check_sections(); 3164 Output_segment* last_load_segment = NULL; 3165 3166 unsigned int shndx_begin = *pshndx; 3167 unsigned int shndx_load_seg = *pshndx; 3168 3169 for (Segment_list::iterator p = this->segment_list_.begin(); 3170 p != this->segment_list_.end(); 3171 ++p) 3172 { 3173 if ((*p)->type() == elfcpp::PT_LOAD) 3174 { 3175 if (target->isolate_execinstr()) 3176 { 3177 // When we hit the segment that should contain the 3178 // file headers, reset the file offset so we place 3179 // it and subsequent segments appropriately. 3180 // We'll fix up the preceding segments below. 3181 if (load_seg == *p) 3182 { 3183 if (off == 0) 3184 load_seg = NULL; 3185 else 3186 { 3187 off = 0; 3188 shndx_load_seg = *pshndx; 3189 } 3190 } 3191 } 3192 else 3193 { 3194 // Verify that the file headers fall into the first segment. 3195 if (load_seg != NULL && load_seg != *p) 3196 gold_unreachable(); 3197 load_seg = NULL; 3198 } 3199 3200 bool are_addresses_set = (*p)->are_addresses_set(); 3201 if (are_addresses_set) 3202 { 3203 // When it comes to setting file offsets, we care about 3204 // the physical address. 3205 addr = (*p)->paddr(); 3206 } 3207 else if (parameters->options().user_set_Ttext() 3208 && ((*p)->flags() & elfcpp::PF_W) == 0) 3209 { 3210 are_addresses_set = true; 3211 } 3212 else if (parameters->options().user_set_Tdata() 3213 && ((*p)->flags() & elfcpp::PF_W) != 0 3214 && (!parameters->options().user_set_Tbss() 3215 || (*p)->has_any_data_sections())) 3216 { 3217 addr = parameters->options().Tdata(); 3218 are_addresses_set = true; 3219 } 3220 else if (parameters->options().user_set_Tbss() 3221 && ((*p)->flags() & elfcpp::PF_W) != 0 3222 && !(*p)->has_any_data_sections()) 3223 { 3224 addr = parameters->options().Tbss(); 3225 are_addresses_set = true; 3226 } 3227 3228 uint64_t orig_addr = addr; 3229 uint64_t orig_off = off; 3230 3231 uint64_t aligned_addr = 0; 3232 uint64_t abi_pagesize = target->abi_pagesize(); 3233 uint64_t common_pagesize = target->common_pagesize(); 3234 3235 if (!parameters->options().nmagic() 3236 && !parameters->options().omagic()) 3237 (*p)->set_minimum_p_align(common_pagesize); 3238 3239 if (!are_addresses_set) 3240 { 3241 // Skip the address forward one page, maintaining the same 3242 // position within the page. This lets us store both segments 3243 // overlapping on a single page in the file, but the loader will 3244 // put them on different pages in memory. We will revisit this 3245 // decision once we know the size of the segment. 3246 3247 addr = align_address(addr, (*p)->maximum_alignment()); 3248 aligned_addr = addr; 3249 3250 if (load_seg == *p) 3251 { 3252 // This is the segment that will contain the file 3253 // headers, so its offset will have to be exactly zero. 3254 gold_assert(orig_off == 0); 3255 3256 // If the target wants a fixed minimum distance from the 3257 // text segment to the read-only segment, move up now. 3258 uint64_t min_addr = start_addr + target->rosegment_gap(); 3259 if (addr < min_addr) 3260 addr = min_addr; 3261 3262 // But this is not the first segment! To make its 3263 // address congruent with its offset, that address better 3264 // be aligned to the ABI-mandated page size. 3265 addr = align_address(addr, abi_pagesize); 3266 aligned_addr = addr; 3267 } 3268 else 3269 { 3270 if ((addr & (abi_pagesize - 1)) != 0) 3271 addr = addr + abi_pagesize; 3272 3273 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1)); 3274 } 3275 } 3276 3277 if (!parameters->options().nmagic() 3278 && !parameters->options().omagic()) 3279 off = align_file_offset(off, addr, abi_pagesize); 3280 else 3281 { 3282 // This is -N or -n with a section script which prevents 3283 // us from using a load segment. We need to ensure that 3284 // the file offset is aligned to the alignment of the 3285 // segment. This is because the linker script 3286 // implicitly assumed a zero offset. If we don't align 3287 // here, then the alignment of the sections in the 3288 // linker script may not match the alignment of the 3289 // sections in the set_section_addresses call below, 3290 // causing an error about dot moving backward. 3291 off = align_address(off, (*p)->maximum_alignment()); 3292 } 3293 3294 unsigned int shndx_hold = *pshndx; 3295 bool has_relro = false; 3296 uint64_t new_addr = (*p)->set_section_addresses(this, false, addr, 3297 &increase_relro, 3298 &has_relro, 3299 &off, pshndx); 3300 3301 // Now that we know the size of this segment, we may be able 3302 // to save a page in memory, at the cost of wasting some 3303 // file space, by instead aligning to the start of a new 3304 // page. Here we use the real machine page size rather than 3305 // the ABI mandated page size. If the segment has been 3306 // aligned so that the relro data ends at a page boundary, 3307 // we do not try to realign it. 3308 3309 if (!are_addresses_set 3310 && !has_relro 3311 && aligned_addr != addr 3312 && !parameters->incremental()) 3313 { 3314 uint64_t first_off = (common_pagesize 3315 - (aligned_addr 3316 & (common_pagesize - 1))); 3317 uint64_t last_off = new_addr & (common_pagesize - 1); 3318 if (first_off > 0 3319 && last_off > 0 3320 && ((aligned_addr & ~ (common_pagesize - 1)) 3321 != (new_addr & ~ (common_pagesize - 1))) 3322 && first_off + last_off <= common_pagesize) 3323 { 3324 *pshndx = shndx_hold; 3325 addr = align_address(aligned_addr, common_pagesize); 3326 addr = align_address(addr, (*p)->maximum_alignment()); 3327 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1)); 3328 off = align_file_offset(off, addr, abi_pagesize); 3329 3330 increase_relro = this->increase_relro_; 3331 if (this->script_options_->saw_sections_clause()) 3332 increase_relro = 0; 3333 has_relro = false; 3334 3335 new_addr = (*p)->set_section_addresses(this, true, addr, 3336 &increase_relro, 3337 &has_relro, 3338 &off, pshndx); 3339 } 3340 } 3341 3342 addr = new_addr; 3343 3344 // Implement --check-sections. We know that the segments 3345 // are sorted by LMA. 3346 if (check_sections && last_load_segment != NULL) 3347 { 3348 gold_assert(last_load_segment->paddr() <= (*p)->paddr()); 3349 if (last_load_segment->paddr() + last_load_segment->memsz() 3350 > (*p)->paddr()) 3351 { 3352 unsigned long long lb1 = last_load_segment->paddr(); 3353 unsigned long long le1 = lb1 + last_load_segment->memsz(); 3354 unsigned long long lb2 = (*p)->paddr(); 3355 unsigned long long le2 = lb2 + (*p)->memsz(); 3356 gold_error(_("load segment overlap [0x%llx -> 0x%llx] and " 3357 "[0x%llx -> 0x%llx]"), 3358 lb1, le1, lb2, le2); 3359 } 3360 } 3361 last_load_segment = *p; 3362 } 3363 } 3364 3365 if (load_seg != NULL && target->isolate_execinstr()) 3366 { 3367 // Process the early segments again, setting their file offsets 3368 // so they land after the segments starting at LOAD_SEG. 3369 off = align_file_offset(off, 0, target->abi_pagesize()); 3370 3371 for (Segment_list::iterator p = this->segment_list_.begin(); 3372 *p != load_seg; 3373 ++p) 3374 { 3375 if ((*p)->type() == elfcpp::PT_LOAD) 3376 { 3377 // We repeat the whole job of assigning addresses and 3378 // offsets, but we really only want to change the offsets and 3379 // must ensure that the addresses all come out the same as 3380 // they did the first time through. 3381 bool has_relro = false; 3382 const uint64_t old_addr = (*p)->vaddr(); 3383 const uint64_t old_end = old_addr + (*p)->memsz(); 3384 uint64_t new_addr = (*p)->set_section_addresses(this, true, 3385 old_addr, 3386 &increase_relro, 3387 &has_relro, 3388 &off, 3389 &shndx_begin); 3390 gold_assert(new_addr == old_end); 3391 } 3392 } 3393 3394 gold_assert(shndx_begin == shndx_load_seg); 3395 } 3396 3397 // Handle the non-PT_LOAD segments, setting their offsets from their 3398 // section's offsets. 3399 for (Segment_list::iterator p = this->segment_list_.begin(); 3400 p != this->segment_list_.end(); 3401 ++p) 3402 { 3403 if ((*p)->type() != elfcpp::PT_LOAD) 3404 (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO 3405 ? increase_relro 3406 : 0); 3407 } 3408 3409 // Set the TLS offsets for each section in the PT_TLS segment. 3410 if (this->tls_segment_ != NULL) 3411 this->tls_segment_->set_tls_offsets(); 3412 3413 return off; 3414 } 3415 3416 // Set the offsets of all the allocated sections when doing a 3417 // relocatable link. This does the same jobs as set_segment_offsets, 3418 // only for a relocatable link. 3419 3420 off_t 3421 Layout::set_relocatable_section_offsets(Output_data* file_header, 3422 unsigned int* pshndx) 3423 { 3424 off_t off = 0; 3425 3426 file_header->set_address_and_file_offset(0, 0); 3427 off += file_header->data_size(); 3428 3429 for (Section_list::iterator p = this->section_list_.begin(); 3430 p != this->section_list_.end(); 3431 ++p) 3432 { 3433 // We skip unallocated sections here, except that group sections 3434 // have to come first. 3435 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0 3436 && (*p)->type() != elfcpp::SHT_GROUP) 3437 continue; 3438 3439 off = align_address(off, (*p)->addralign()); 3440 3441 // The linker script might have set the address. 3442 if (!(*p)->is_address_valid()) 3443 (*p)->set_address(0); 3444 (*p)->set_file_offset(off); 3445 (*p)->finalize_data_size(); 3446 off += (*p)->data_size(); 3447 3448 (*p)->set_out_shndx(*pshndx); 3449 ++*pshndx; 3450 } 3451 3452 return off; 3453 } 3454 3455 // Set the file offset of all the sections not associated with a 3456 // segment. 3457 3458 off_t 3459 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass) 3460 { 3461 off_t startoff = off; 3462 off_t maxoff = off; 3463 3464 for (Section_list::iterator p = this->unattached_section_list_.begin(); 3465 p != this->unattached_section_list_.end(); 3466 ++p) 3467 { 3468 // The symtab section is handled in create_symtab_sections. 3469 if (*p == this->symtab_section_) 3470 continue; 3471 3472 // If we've already set the data size, don't set it again. 3473 if ((*p)->is_offset_valid() && (*p)->is_data_size_valid()) 3474 continue; 3475 3476 if (pass == BEFORE_INPUT_SECTIONS_PASS 3477 && (*p)->requires_postprocessing()) 3478 { 3479 (*p)->create_postprocessing_buffer(); 3480 this->any_postprocessing_sections_ = true; 3481 } 3482 3483 if (pass == BEFORE_INPUT_SECTIONS_PASS 3484 && (*p)->after_input_sections()) 3485 continue; 3486 else if (pass == POSTPROCESSING_SECTIONS_PASS 3487 && (!(*p)->after_input_sections() 3488 || (*p)->type() == elfcpp::SHT_STRTAB)) 3489 continue; 3490 else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS 3491 && (!(*p)->after_input_sections() 3492 || (*p)->type() != elfcpp::SHT_STRTAB)) 3493 continue; 3494 3495 if (!parameters->incremental_update()) 3496 { 3497 off = align_address(off, (*p)->addralign()); 3498 (*p)->set_file_offset(off); 3499 (*p)->finalize_data_size(); 3500 } 3501 else 3502 { 3503 // Incremental update: allocate file space from free list. 3504 (*p)->pre_finalize_data_size(); 3505 off_t current_size = (*p)->current_data_size(); 3506 off = this->allocate(current_size, (*p)->addralign(), startoff); 3507 if (off == -1) 3508 { 3509 if (is_debugging_enabled(DEBUG_INCREMENTAL)) 3510 this->free_list_.dump(); 3511 gold_assert((*p)->output_section() != NULL); 3512 gold_fallback(_("out of patch space for section %s; " 3513 "relink with --incremental-full"), 3514 (*p)->output_section()->name()); 3515 } 3516 (*p)->set_file_offset(off); 3517 (*p)->finalize_data_size(); 3518 if ((*p)->data_size() > current_size) 3519 { 3520 gold_assert((*p)->output_section() != NULL); 3521 gold_fallback(_("%s: section changed size; " 3522 "relink with --incremental-full"), 3523 (*p)->output_section()->name()); 3524 } 3525 gold_debug(DEBUG_INCREMENTAL, 3526 "set_section_offsets: %08lx %08lx %s", 3527 static_cast<long>(off), 3528 static_cast<long>((*p)->data_size()), 3529 ((*p)->output_section() != NULL 3530 ? (*p)->output_section()->name() : "(special)")); 3531 } 3532 3533 off += (*p)->data_size(); 3534 if (off > maxoff) 3535 maxoff = off; 3536 3537 // At this point the name must be set. 3538 if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS) 3539 this->namepool_.add((*p)->name(), false, NULL); 3540 } 3541 return maxoff; 3542 } 3543 3544 // Set the section indexes of all the sections not associated with a 3545 // segment. 3546 3547 unsigned int 3548 Layout::set_section_indexes(unsigned int shndx) 3549 { 3550 for (Section_list::iterator p = this->unattached_section_list_.begin(); 3551 p != this->unattached_section_list_.end(); 3552 ++p) 3553 { 3554 if (!(*p)->has_out_shndx()) 3555 { 3556 (*p)->set_out_shndx(shndx); 3557 ++shndx; 3558 } 3559 } 3560 return shndx; 3561 } 3562 3563 // Set the section addresses according to the linker script. This is 3564 // only called when we see a SECTIONS clause. This returns the 3565 // program segment which should hold the file header and segment 3566 // headers, if any. It will return NULL if they should not be in a 3567 // segment. 3568 3569 Output_segment* 3570 Layout::set_section_addresses_from_script(Symbol_table* symtab) 3571 { 3572 Script_sections* ss = this->script_options_->script_sections(); 3573 gold_assert(ss->saw_sections_clause()); 3574 return this->script_options_->set_section_addresses(symtab, this); 3575 } 3576 3577 // Place the orphan sections in the linker script. 3578 3579 void 3580 Layout::place_orphan_sections_in_script() 3581 { 3582 Script_sections* ss = this->script_options_->script_sections(); 3583 gold_assert(ss->saw_sections_clause()); 3584 3585 // Place each orphaned output section in the script. 3586 for (Section_list::iterator p = this->section_list_.begin(); 3587 p != this->section_list_.end(); 3588 ++p) 3589 { 3590 if (!(*p)->found_in_sections_clause()) 3591 ss->place_orphan(*p); 3592 } 3593 } 3594 3595 // Count the local symbols in the regular symbol table and the dynamic 3596 // symbol table, and build the respective string pools. 3597 3598 void 3599 Layout::count_local_symbols(const Task* task, 3600 const Input_objects* input_objects) 3601 { 3602 // First, figure out an upper bound on the number of symbols we'll 3603 // be inserting into each pool. This helps us create the pools with 3604 // the right size, to avoid unnecessary hashtable resizing. 3605 unsigned int symbol_count = 0; 3606 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin(); 3607 p != input_objects->relobj_end(); 3608 ++p) 3609 symbol_count += (*p)->local_symbol_count(); 3610 3611 // Go from "upper bound" to "estimate." We overcount for two 3612 // reasons: we double-count symbols that occur in more than one 3613 // object file, and we count symbols that are dropped from the 3614 // output. Add it all together and assume we overcount by 100%. 3615 symbol_count /= 2; 3616 3617 // We assume all symbols will go into both the sympool and dynpool. 3618 this->sympool_.reserve(symbol_count); 3619 this->dynpool_.reserve(symbol_count); 3620 3621 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin(); 3622 p != input_objects->relobj_end(); 3623 ++p) 3624 { 3625 Task_lock_obj<Object> tlo(task, *p); 3626 (*p)->count_local_symbols(&this->sympool_, &this->dynpool_); 3627 } 3628 } 3629 3630 // Create the symbol table sections. Here we also set the final 3631 // values of the symbols. At this point all the loadable sections are 3632 // fully laid out. SHNUM is the number of sections so far. 3633 3634 void 3635 Layout::create_symtab_sections(const Input_objects* input_objects, 3636 Symbol_table* symtab, 3637 unsigned int shnum, 3638 off_t* poff) 3639 { 3640 int symsize; 3641 unsigned int align; 3642 if (parameters->target().get_size() == 32) 3643 { 3644 symsize = elfcpp::Elf_sizes<32>::sym_size; 3645 align = 4; 3646 } 3647 else if (parameters->target().get_size() == 64) 3648 { 3649 symsize = elfcpp::Elf_sizes<64>::sym_size; 3650 align = 8; 3651 } 3652 else 3653 gold_unreachable(); 3654 3655 // Compute file offsets relative to the start of the symtab section. 3656 off_t off = 0; 3657 3658 // Save space for the dummy symbol at the start of the section. We 3659 // never bother to write this out--it will just be left as zero. 3660 off += symsize; 3661 unsigned int local_symbol_index = 1; 3662 3663 // Add STT_SECTION symbols for each Output section which needs one. 3664 for (Section_list::iterator p = this->section_list_.begin(); 3665 p != this->section_list_.end(); 3666 ++p) 3667 { 3668 if (!(*p)->needs_symtab_index()) 3669 (*p)->set_symtab_index(-1U); 3670 else 3671 { 3672 (*p)->set_symtab_index(local_symbol_index); 3673 ++local_symbol_index; 3674 off += symsize; 3675 } 3676 } 3677 3678 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin(); 3679 p != input_objects->relobj_end(); 3680 ++p) 3681 { 3682 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index, 3683 off, symtab); 3684 off += (index - local_symbol_index) * symsize; 3685 local_symbol_index = index; 3686 } 3687 3688 unsigned int local_symcount = local_symbol_index; 3689 gold_assert(static_cast<off_t>(local_symcount * symsize) == off); 3690 3691 off_t dynoff; 3692 size_t dyn_global_index; 3693 size_t dyncount; 3694 if (this->dynsym_section_ == NULL) 3695 { 3696 dynoff = 0; 3697 dyn_global_index = 0; 3698 dyncount = 0; 3699 } 3700 else 3701 { 3702 dyn_global_index = this->dynsym_section_->info(); 3703 off_t locsize = dyn_global_index * this->dynsym_section_->entsize(); 3704 dynoff = this->dynsym_section_->offset() + locsize; 3705 dyncount = (this->dynsym_section_->data_size() - locsize) / symsize; 3706 gold_assert(static_cast<off_t>(dyncount * symsize) 3707 == this->dynsym_section_->data_size() - locsize); 3708 } 3709 3710 off_t global_off = off; 3711 off = symtab->finalize(off, dynoff, dyn_global_index, dyncount, 3712 &this->sympool_, &local_symcount); 3713 3714 if (!parameters->options().strip_all()) 3715 { 3716 this->sympool_.set_string_offsets(); 3717 3718 const char* symtab_name = this->namepool_.add(".symtab", false, NULL); 3719 Output_section* osymtab = this->make_output_section(symtab_name, 3720 elfcpp::SHT_SYMTAB, 3721 0, ORDER_INVALID, 3722 false); 3723 this->symtab_section_ = osymtab; 3724 3725 Output_section_data* pos = new Output_data_fixed_space(off, align, 3726 "** symtab"); 3727 osymtab->add_output_section_data(pos); 3728 3729 // We generate a .symtab_shndx section if we have more than 3730 // SHN_LORESERVE sections. Technically it is possible that we 3731 // don't need one, because it is possible that there are no 3732 // symbols in any of sections with indexes larger than 3733 // SHN_LORESERVE. That is probably unusual, though, and it is 3734 // easier to always create one than to compute section indexes 3735 // twice (once here, once when writing out the symbols). 3736 if (shnum >= elfcpp::SHN_LORESERVE) 3737 { 3738 const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx", 3739 false, NULL); 3740 Output_section* osymtab_xindex = 3741 this->make_output_section(symtab_xindex_name, 3742 elfcpp::SHT_SYMTAB_SHNDX, 0, 3743 ORDER_INVALID, false); 3744 3745 size_t symcount = off / symsize; 3746 this->symtab_xindex_ = new Output_symtab_xindex(symcount); 3747 3748 osymtab_xindex->add_output_section_data(this->symtab_xindex_); 3749 3750 osymtab_xindex->set_link_section(osymtab); 3751 osymtab_xindex->set_addralign(4); 3752 osymtab_xindex->set_entsize(4); 3753 3754 osymtab_xindex->set_after_input_sections(); 3755 3756 // This tells the driver code to wait until the symbol table 3757 // has written out before writing out the postprocessing 3758 // sections, including the .symtab_shndx section. 3759 this->any_postprocessing_sections_ = true; 3760 } 3761 3762 const char* strtab_name = this->namepool_.add(".strtab", false, NULL); 3763 Output_section* ostrtab = this->make_output_section(strtab_name, 3764 elfcpp::SHT_STRTAB, 3765 0, ORDER_INVALID, 3766 false); 3767 3768 Output_section_data* pstr = new Output_data_strtab(&this->sympool_); 3769 ostrtab->add_output_section_data(pstr); 3770 3771 off_t symtab_off; 3772 if (!parameters->incremental_update()) 3773 symtab_off = align_address(*poff, align); 3774 else 3775 { 3776 symtab_off = this->allocate(off, align, *poff); 3777 if (off == -1) 3778 gold_fallback(_("out of patch space for symbol table; " 3779 "relink with --incremental-full")); 3780 gold_debug(DEBUG_INCREMENTAL, 3781 "create_symtab_sections: %08lx %08lx .symtab", 3782 static_cast<long>(symtab_off), 3783 static_cast<long>(off)); 3784 } 3785 3786 symtab->set_file_offset(symtab_off + global_off); 3787 osymtab->set_file_offset(symtab_off); 3788 osymtab->finalize_data_size(); 3789 osymtab->set_link_section(ostrtab); 3790 osymtab->set_info(local_symcount); 3791 osymtab->set_entsize(symsize); 3792 3793 if (symtab_off + off > *poff) 3794 *poff = symtab_off + off; 3795 } 3796 } 3797 3798 // Create the .shstrtab section, which holds the names of the 3799 // sections. At the time this is called, we have created all the 3800 // output sections except .shstrtab itself. 3801 3802 Output_section* 3803 Layout::create_shstrtab() 3804 { 3805 // FIXME: We don't need to create a .shstrtab section if we are 3806 // stripping everything. 3807 3808 const char* name = this->namepool_.add(".shstrtab", false, NULL); 3809 3810 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0, 3811 ORDER_INVALID, false); 3812 3813 if (strcmp(parameters->options().compress_debug_sections(), "none") != 0) 3814 { 3815 // We can't write out this section until we've set all the 3816 // section names, and we don't set the names of compressed 3817 // output sections until relocations are complete. FIXME: With 3818 // the current names we use, this is unnecessary. 3819 os->set_after_input_sections(); 3820 } 3821 3822 Output_section_data* posd = new Output_data_strtab(&this->namepool_); 3823 os->add_output_section_data(posd); 3824 3825 return os; 3826 } 3827 3828 // Create the section headers. SIZE is 32 or 64. OFF is the file 3829 // offset. 3830 3831 void 3832 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff) 3833 { 3834 Output_section_headers* oshdrs; 3835 oshdrs = new Output_section_headers(this, 3836 &this->segment_list_, 3837 &this->section_list_, 3838 &this->unattached_section_list_, 3839 &this->namepool_, 3840 shstrtab_section); 3841 off_t off; 3842 if (!parameters->incremental_update()) 3843 off = align_address(*poff, oshdrs->addralign()); 3844 else 3845 { 3846 oshdrs->pre_finalize_data_size(); 3847 off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff); 3848 if (off == -1) 3849 gold_fallback(_("out of patch space for section header table; " 3850 "relink with --incremental-full")); 3851 gold_debug(DEBUG_INCREMENTAL, 3852 "create_shdrs: %08lx %08lx (section header table)", 3853 static_cast<long>(off), 3854 static_cast<long>(off + oshdrs->data_size())); 3855 } 3856 oshdrs->set_address_and_file_offset(0, off); 3857 off += oshdrs->data_size(); 3858 if (off > *poff) 3859 *poff = off; 3860 this->section_headers_ = oshdrs; 3861 } 3862 3863 // Count the allocated sections. 3864 3865 size_t 3866 Layout::allocated_output_section_count() const 3867 { 3868 size_t section_count = 0; 3869 for (Segment_list::const_iterator p = this->segment_list_.begin(); 3870 p != this->segment_list_.end(); 3871 ++p) 3872 section_count += (*p)->output_section_count(); 3873 return section_count; 3874 } 3875 3876 // Create the dynamic symbol table. 3877 3878 void 3879 Layout::create_dynamic_symtab(const Input_objects* input_objects, 3880 Symbol_table* symtab, 3881 Output_section** pdynstr, 3882 unsigned int* plocal_dynamic_count, 3883 std::vector<Symbol*>* pdynamic_symbols, 3884 Versions* pversions) 3885 { 3886 // Count all the symbols in the dynamic symbol table, and set the 3887 // dynamic symbol indexes. 3888 3889 // Skip symbol 0, which is always all zeroes. 3890 unsigned int index = 1; 3891 3892 // Add STT_SECTION symbols for each Output section which needs one. 3893 for (Section_list::iterator p = this->section_list_.begin(); 3894 p != this->section_list_.end(); 3895 ++p) 3896 { 3897 if (!(*p)->needs_dynsym_index()) 3898 (*p)->set_dynsym_index(-1U); 3899 else 3900 { 3901 (*p)->set_dynsym_index(index); 3902 ++index; 3903 } 3904 } 3905 3906 // Count the local symbols that need to go in the dynamic symbol table, 3907 // and set the dynamic symbol indexes. 3908 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin(); 3909 p != input_objects->relobj_end(); 3910 ++p) 3911 { 3912 unsigned int new_index = (*p)->set_local_dynsym_indexes(index); 3913 index = new_index; 3914 } 3915 3916 unsigned int local_symcount = index; 3917 *plocal_dynamic_count = local_symcount; 3918 3919 index = symtab->set_dynsym_indexes(index, pdynamic_symbols, 3920 &this->dynpool_, pversions); 3921 3922 int symsize; 3923 unsigned int align; 3924 const int size = parameters->target().get_size(); 3925 if (size == 32) 3926 { 3927 symsize = elfcpp::Elf_sizes<32>::sym_size; 3928 align = 4; 3929 } 3930 else if (size == 64) 3931 { 3932 symsize = elfcpp::Elf_sizes<64>::sym_size; 3933 align = 8; 3934 } 3935 else 3936 gold_unreachable(); 3937 3938 // Create the dynamic symbol table section. 3939 3940 Output_section* dynsym = this->choose_output_section(NULL, ".dynsym", 3941 elfcpp::SHT_DYNSYM, 3942 elfcpp::SHF_ALLOC, 3943 false, 3944 ORDER_DYNAMIC_LINKER, 3945 false); 3946 3947 // Check for NULL as a linker script may discard .dynsym. 3948 if (dynsym != NULL) 3949 { 3950 Output_section_data* odata = new Output_data_fixed_space(index * symsize, 3951 align, 3952 "** dynsym"); 3953 dynsym->add_output_section_data(odata); 3954 3955 dynsym->set_info(local_symcount); 3956 dynsym->set_entsize(symsize); 3957 dynsym->set_addralign(align); 3958 3959 this->dynsym_section_ = dynsym; 3960 } 3961 3962 Output_data_dynamic* const odyn = this->dynamic_data_; 3963 if (odyn != NULL) 3964 { 3965 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym); 3966 odyn->add_constant(elfcpp::DT_SYMENT, symsize); 3967 } 3968 3969 // If there are more than SHN_LORESERVE allocated sections, we 3970 // create a .dynsym_shndx section. It is possible that we don't 3971 // need one, because it is possible that there are no dynamic 3972 // symbols in any of the sections with indexes larger than 3973 // SHN_LORESERVE. This is probably unusual, though, and at this 3974 // time we don't know the actual section indexes so it is 3975 // inconvenient to check. 3976 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE) 3977 { 3978 Output_section* dynsym_xindex = 3979 this->choose_output_section(NULL, ".dynsym_shndx", 3980 elfcpp::SHT_SYMTAB_SHNDX, 3981 elfcpp::SHF_ALLOC, 3982 false, ORDER_DYNAMIC_LINKER, false); 3983 3984 if (dynsym_xindex != NULL) 3985 { 3986 this->dynsym_xindex_ = new Output_symtab_xindex(index); 3987 3988 dynsym_xindex->add_output_section_data(this->dynsym_xindex_); 3989 3990 dynsym_xindex->set_link_section(dynsym); 3991 dynsym_xindex->set_addralign(4); 3992 dynsym_xindex->set_entsize(4); 3993 3994 dynsym_xindex->set_after_input_sections(); 3995 3996 // This tells the driver code to wait until the symbol table 3997 // has written out before writing out the postprocessing 3998 // sections, including the .dynsym_shndx section. 3999 this->any_postprocessing_sections_ = true; 4000 } 4001 } 4002 4003 // Create the dynamic string table section. 4004 4005 Output_section* dynstr = this->choose_output_section(NULL, ".dynstr", 4006 elfcpp::SHT_STRTAB, 4007 elfcpp::SHF_ALLOC, 4008 false, 4009 ORDER_DYNAMIC_LINKER, 4010 false); 4011 4012 if (dynstr != NULL) 4013 { 4014 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_); 4015 dynstr->add_output_section_data(strdata); 4016 4017 if (dynsym != NULL) 4018 dynsym->set_link_section(dynstr); 4019 if (this->dynamic_section_ != NULL) 4020 this->dynamic_section_->set_link_section(dynstr); 4021 4022 if (odyn != NULL) 4023 { 4024 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr); 4025 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr); 4026 } 4027 4028 *pdynstr = dynstr; 4029 } 4030 4031 // Create the hash tables. 4032 4033 if (strcmp(parameters->options().hash_style(), "sysv") == 0 4034 || strcmp(parameters->options().hash_style(), "both") == 0) 4035 { 4036 unsigned char* phash; 4037 unsigned int hashlen; 4038 Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount, 4039 &phash, &hashlen); 4040 4041 Output_section* hashsec = 4042 this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH, 4043 elfcpp::SHF_ALLOC, false, 4044 ORDER_DYNAMIC_LINKER, false); 4045 4046 Output_section_data* hashdata = new Output_data_const_buffer(phash, 4047 hashlen, 4048 align, 4049 "** hash"); 4050 if (hashsec != NULL && hashdata != NULL) 4051 hashsec->add_output_section_data(hashdata); 4052 4053 if (hashsec != NULL) 4054 { 4055 if (dynsym != NULL) 4056 hashsec->set_link_section(dynsym); 4057 hashsec->set_entsize(4); 4058 } 4059 4060 if (odyn != NULL) 4061 odyn->add_section_address(elfcpp::DT_HASH, hashsec); 4062 } 4063 4064 if (strcmp(parameters->options().hash_style(), "gnu") == 0 4065 || strcmp(parameters->options().hash_style(), "both") == 0) 4066 { 4067 unsigned char* phash; 4068 unsigned int hashlen; 4069 Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount, 4070 &phash, &hashlen); 4071 4072 Output_section* hashsec = 4073 this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH, 4074 elfcpp::SHF_ALLOC, false, 4075 ORDER_DYNAMIC_LINKER, false); 4076 4077 Output_section_data* hashdata = new Output_data_const_buffer(phash, 4078 hashlen, 4079 align, 4080 "** hash"); 4081 if (hashsec != NULL && hashdata != NULL) 4082 hashsec->add_output_section_data(hashdata); 4083 4084 if (hashsec != NULL) 4085 { 4086 if (dynsym != NULL) 4087 hashsec->set_link_section(dynsym); 4088 4089 // For a 64-bit target, the entries in .gnu.hash do not have 4090 // a uniform size, so we only set the entry size for a 4091 // 32-bit target. 4092 if (parameters->target().get_size() == 32) 4093 hashsec->set_entsize(4); 4094 4095 if (odyn != NULL) 4096 odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec); 4097 } 4098 } 4099 } 4100 4101 // Assign offsets to each local portion of the dynamic symbol table. 4102 4103 void 4104 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects) 4105 { 4106 Output_section* dynsym = this->dynsym_section_; 4107 if (dynsym == NULL) 4108 return; 4109 4110 off_t off = dynsym->offset(); 4111 4112 // Skip the dummy symbol at the start of the section. 4113 off += dynsym->entsize(); 4114 4115 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin(); 4116 p != input_objects->relobj_end(); 4117 ++p) 4118 { 4119 unsigned int count = (*p)->set_local_dynsym_offset(off); 4120 off += count * dynsym->entsize(); 4121 } 4122 } 4123 4124 // Create the version sections. 4125 4126 void 4127 Layout::create_version_sections(const Versions* versions, 4128 const Symbol_table* symtab, 4129 unsigned int local_symcount, 4130 const std::vector<Symbol*>& dynamic_symbols, 4131 const Output_section* dynstr) 4132 { 4133 if (!versions->any_defs() && !versions->any_needs()) 4134 return; 4135 4136 switch (parameters->size_and_endianness()) 4137 { 4138 #ifdef HAVE_TARGET_32_LITTLE 4139 case Parameters::TARGET_32_LITTLE: 4140 this->sized_create_version_sections<32, false>(versions, symtab, 4141 local_symcount, 4142 dynamic_symbols, dynstr); 4143 break; 4144 #endif 4145 #ifdef HAVE_TARGET_32_BIG 4146 case Parameters::TARGET_32_BIG: 4147 this->sized_create_version_sections<32, true>(versions, symtab, 4148 local_symcount, 4149 dynamic_symbols, dynstr); 4150 break; 4151 #endif 4152 #ifdef HAVE_TARGET_64_LITTLE 4153 case Parameters::TARGET_64_LITTLE: 4154 this->sized_create_version_sections<64, false>(versions, symtab, 4155 local_symcount, 4156 dynamic_symbols, dynstr); 4157 break; 4158 #endif 4159 #ifdef HAVE_TARGET_64_BIG 4160 case Parameters::TARGET_64_BIG: 4161 this->sized_create_version_sections<64, true>(versions, symtab, 4162 local_symcount, 4163 dynamic_symbols, dynstr); 4164 break; 4165 #endif 4166 default: 4167 gold_unreachable(); 4168 } 4169 } 4170 4171 // Create the version sections, sized version. 4172 4173 template<int size, bool big_endian> 4174 void 4175 Layout::sized_create_version_sections( 4176 const Versions* versions, 4177 const Symbol_table* symtab, 4178 unsigned int local_symcount, 4179 const std::vector<Symbol*>& dynamic_symbols, 4180 const Output_section* dynstr) 4181 { 4182 Output_section* vsec = this->choose_output_section(NULL, ".gnu.version", 4183 elfcpp::SHT_GNU_versym, 4184 elfcpp::SHF_ALLOC, 4185 false, 4186 ORDER_DYNAMIC_LINKER, 4187 false); 4188 4189 // Check for NULL since a linker script may discard this section. 4190 if (vsec != NULL) 4191 { 4192 unsigned char* vbuf; 4193 unsigned int vsize; 4194 versions->symbol_section_contents<size, big_endian>(symtab, 4195 &this->dynpool_, 4196 local_symcount, 4197 dynamic_symbols, 4198 &vbuf, &vsize); 4199 4200 Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2, 4201 "** versions"); 4202 4203 vsec->add_output_section_data(vdata); 4204 vsec->set_entsize(2); 4205 vsec->set_link_section(this->dynsym_section_); 4206 } 4207 4208 Output_data_dynamic* const odyn = this->dynamic_data_; 4209 if (odyn != NULL && vsec != NULL) 4210 odyn->add_section_address(elfcpp::DT_VERSYM, vsec); 4211 4212 if (versions->any_defs()) 4213 { 4214 Output_section* vdsec; 4215 vdsec = this->choose_output_section(NULL, ".gnu.version_d", 4216 elfcpp::SHT_GNU_verdef, 4217 elfcpp::SHF_ALLOC, 4218 false, ORDER_DYNAMIC_LINKER, false); 4219 4220 if (vdsec != NULL) 4221 { 4222 unsigned char* vdbuf; 4223 unsigned int vdsize; 4224 unsigned int vdentries; 4225 versions->def_section_contents<size, big_endian>(&this->dynpool_, 4226 &vdbuf, &vdsize, 4227 &vdentries); 4228 4229 Output_section_data* vddata = 4230 new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs"); 4231 4232 vdsec->add_output_section_data(vddata); 4233 vdsec->set_link_section(dynstr); 4234 vdsec->set_info(vdentries); 4235 4236 if (odyn != NULL) 4237 { 4238 odyn->add_section_address(elfcpp::DT_VERDEF, vdsec); 4239 odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries); 4240 } 4241 } 4242 } 4243 4244 if (versions->any_needs()) 4245 { 4246 Output_section* vnsec; 4247 vnsec = this->choose_output_section(NULL, ".gnu.version_r", 4248 elfcpp::SHT_GNU_verneed, 4249 elfcpp::SHF_ALLOC, 4250 false, ORDER_DYNAMIC_LINKER, false); 4251 4252 if (vnsec != NULL) 4253 { 4254 unsigned char* vnbuf; 4255 unsigned int vnsize; 4256 unsigned int vnentries; 4257 versions->need_section_contents<size, big_endian>(&this->dynpool_, 4258 &vnbuf, &vnsize, 4259 &vnentries); 4260 4261 Output_section_data* vndata = 4262 new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs"); 4263 4264 vnsec->add_output_section_data(vndata); 4265 vnsec->set_link_section(dynstr); 4266 vnsec->set_info(vnentries); 4267 4268 if (odyn != NULL) 4269 { 4270 odyn->add_section_address(elfcpp::DT_VERNEED, vnsec); 4271 odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries); 4272 } 4273 } 4274 } 4275 } 4276 4277 // Create the .interp section and PT_INTERP segment. 4278 4279 void 4280 Layout::create_interp(const Target* target) 4281 { 4282 gold_assert(this->interp_segment_ == NULL); 4283 4284 const char* interp = parameters->options().dynamic_linker(); 4285 if (interp == NULL) 4286 { 4287 interp = target->dynamic_linker(); 4288 gold_assert(interp != NULL); 4289 } 4290 4291 size_t len = strlen(interp) + 1; 4292 4293 Output_section_data* odata = new Output_data_const(interp, len, 1); 4294 4295 Output_section* osec = this->choose_output_section(NULL, ".interp", 4296 elfcpp::SHT_PROGBITS, 4297 elfcpp::SHF_ALLOC, 4298 false, ORDER_INTERP, 4299 false); 4300 if (osec != NULL) 4301 osec->add_output_section_data(odata); 4302 } 4303 4304 // Add dynamic tags for the PLT and the dynamic relocs. This is 4305 // called by the target-specific code. This does nothing if not doing 4306 // a dynamic link. 4307 4308 // USE_REL is true for REL relocs rather than RELA relocs. 4309 4310 // If PLT_GOT is not NULL, then DT_PLTGOT points to it. 4311 4312 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL, 4313 // and we also set DT_PLTREL. We use PLT_REL's output section, since 4314 // some targets have multiple reloc sections in PLT_REL. 4315 4316 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA, 4317 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT. Again we use the output 4318 // section. 4319 4320 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an 4321 // executable. 4322 4323 void 4324 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got, 4325 const Output_data* plt_rel, 4326 const Output_data_reloc_generic* dyn_rel, 4327 bool add_debug, bool dynrel_includes_plt) 4328 { 4329 Output_data_dynamic* odyn = this->dynamic_data_; 4330 if (odyn == NULL) 4331 return; 4332 4333 if (plt_got != NULL && plt_got->output_section() != NULL) 4334 odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got); 4335 4336 if (plt_rel != NULL && plt_rel->output_section() != NULL) 4337 { 4338 odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section()); 4339 odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section()); 4340 odyn->add_constant(elfcpp::DT_PLTREL, 4341 use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA); 4342 } 4343 4344 if (dyn_rel != NULL && dyn_rel->output_section() != NULL) 4345 { 4346 odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA, 4347 dyn_rel->output_section()); 4348 if (plt_rel != NULL 4349 && plt_rel->output_section() != NULL 4350 && dynrel_includes_plt) 4351 odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ, 4352 dyn_rel->output_section(), 4353 plt_rel->output_section()); 4354 else 4355 odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ, 4356 dyn_rel->output_section()); 4357 const int size = parameters->target().get_size(); 4358 elfcpp::DT rel_tag; 4359 int rel_size; 4360 if (use_rel) 4361 { 4362 rel_tag = elfcpp::DT_RELENT; 4363 if (size == 32) 4364 rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size; 4365 else if (size == 64) 4366 rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size; 4367 else 4368 gold_unreachable(); 4369 } 4370 else 4371 { 4372 rel_tag = elfcpp::DT_RELAENT; 4373 if (size == 32) 4374 rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size; 4375 else if (size == 64) 4376 rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size; 4377 else 4378 gold_unreachable(); 4379 } 4380 odyn->add_constant(rel_tag, rel_size); 4381 4382 if (parameters->options().combreloc()) 4383 { 4384 size_t c = dyn_rel->relative_reloc_count(); 4385 if (c > 0) 4386 odyn->add_constant((use_rel 4387 ? elfcpp::DT_RELCOUNT 4388 : elfcpp::DT_RELACOUNT), 4389 c); 4390 } 4391 } 4392 4393 if (add_debug && !parameters->options().shared()) 4394 { 4395 // The value of the DT_DEBUG tag is filled in by the dynamic 4396 // linker at run time, and used by the debugger. 4397 odyn->add_constant(elfcpp::DT_DEBUG, 0); 4398 } 4399 } 4400 4401 // Finish the .dynamic section and PT_DYNAMIC segment. 4402 4403 void 4404 Layout::finish_dynamic_section(const Input_objects* input_objects, 4405 const Symbol_table* symtab) 4406 { 4407 if (!this->script_options_->saw_phdrs_clause() 4408 && this->dynamic_section_ != NULL) 4409 { 4410 Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC, 4411 (elfcpp::PF_R 4412 | elfcpp::PF_W)); 4413 oseg->add_output_section_to_nonload(this->dynamic_section_, 4414 elfcpp::PF_R | elfcpp::PF_W); 4415 } 4416 4417 Output_data_dynamic* const odyn = this->dynamic_data_; 4418 if (odyn == NULL) 4419 return; 4420 4421 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin(); 4422 p != input_objects->dynobj_end(); 4423 ++p) 4424 { 4425 if (!(*p)->is_needed() && (*p)->as_needed()) 4426 { 4427 // This dynamic object was linked with --as-needed, but it 4428 // is not needed. 4429 continue; 4430 } 4431 4432 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname()); 4433 } 4434 4435 if (parameters->options().shared()) 4436 { 4437 const char* soname = parameters->options().soname(); 4438 if (soname != NULL) 4439 odyn->add_string(elfcpp::DT_SONAME, soname); 4440 } 4441 4442 Symbol* sym = symtab->lookup(parameters->options().init()); 4443 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj()) 4444 odyn->add_symbol(elfcpp::DT_INIT, sym); 4445 4446 sym = symtab->lookup(parameters->options().fini()); 4447 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj()) 4448 odyn->add_symbol(elfcpp::DT_FINI, sym); 4449 4450 // Look for .init_array, .preinit_array and .fini_array by checking 4451 // section types. 4452 for(Layout::Section_list::const_iterator p = this->section_list_.begin(); 4453 p != this->section_list_.end(); 4454 ++p) 4455 switch((*p)->type()) 4456 { 4457 case elfcpp::SHT_FINI_ARRAY: 4458 odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p); 4459 odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p); 4460 break; 4461 case elfcpp::SHT_INIT_ARRAY: 4462 odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p); 4463 odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p); 4464 break; 4465 case elfcpp::SHT_PREINIT_ARRAY: 4466 odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p); 4467 odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p); 4468 break; 4469 default: 4470 break; 4471 } 4472 4473 // Add a DT_RPATH entry if needed. 4474 const General_options::Dir_list& rpath(parameters->options().rpath()); 4475 if (!rpath.empty()) 4476 { 4477 std::string rpath_val; 4478 for (General_options::Dir_list::const_iterator p = rpath.begin(); 4479 p != rpath.end(); 4480 ++p) 4481 { 4482 if (rpath_val.empty()) 4483 rpath_val = p->name(); 4484 else 4485 { 4486 // Eliminate duplicates. 4487 General_options::Dir_list::const_iterator q; 4488 for (q = rpath.begin(); q != p; ++q) 4489 if (q->name() == p->name()) 4490 break; 4491 if (q == p) 4492 { 4493 rpath_val += ':'; 4494 rpath_val += p->name(); 4495 } 4496 } 4497 } 4498 4499 odyn->add_string(elfcpp::DT_RPATH, rpath_val); 4500 if (parameters->options().enable_new_dtags()) 4501 odyn->add_string(elfcpp::DT_RUNPATH, rpath_val); 4502 } 4503 4504 // Look for text segments that have dynamic relocations. 4505 bool have_textrel = false; 4506 if (!this->script_options_->saw_sections_clause()) 4507 { 4508 for (Segment_list::const_iterator p = this->segment_list_.begin(); 4509 p != this->segment_list_.end(); 4510 ++p) 4511 { 4512 if ((*p)->type() == elfcpp::PT_LOAD 4513 && ((*p)->flags() & elfcpp::PF_W) == 0 4514 && (*p)->has_dynamic_reloc()) 4515 { 4516 have_textrel = true; 4517 break; 4518 } 4519 } 4520 } 4521 else 4522 { 4523 // We don't know the section -> segment mapping, so we are 4524 // conservative and just look for readonly sections with 4525 // relocations. If those sections wind up in writable segments, 4526 // then we have created an unnecessary DT_TEXTREL entry. 4527 for (Section_list::const_iterator p = this->section_list_.begin(); 4528 p != this->section_list_.end(); 4529 ++p) 4530 { 4531 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0 4532 && ((*p)->flags() & elfcpp::SHF_WRITE) == 0 4533 && (*p)->has_dynamic_reloc()) 4534 { 4535 have_textrel = true; 4536 break; 4537 } 4538 } 4539 } 4540 4541 if (parameters->options().filter() != NULL) 4542 odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter()); 4543 if (parameters->options().any_auxiliary()) 4544 { 4545 for (options::String_set::const_iterator p = 4546 parameters->options().auxiliary_begin(); 4547 p != parameters->options().auxiliary_end(); 4548 ++p) 4549 odyn->add_string(elfcpp::DT_AUXILIARY, *p); 4550 } 4551 4552 // Add a DT_FLAGS entry if necessary. 4553 unsigned int flags = 0; 4554 if (have_textrel) 4555 { 4556 // Add a DT_TEXTREL for compatibility with older loaders. 4557 odyn->add_constant(elfcpp::DT_TEXTREL, 0); 4558 flags |= elfcpp::DF_TEXTREL; 4559 4560 if (parameters->options().text()) 4561 gold_error(_("read-only segment has dynamic relocations")); 4562 else if (parameters->options().warn_shared_textrel() 4563 && parameters->options().shared()) 4564 gold_warning(_("shared library text segment is not shareable")); 4565 } 4566 if (parameters->options().shared() && this->has_static_tls()) 4567 flags |= elfcpp::DF_STATIC_TLS; 4568 if (parameters->options().origin()) 4569 flags |= elfcpp::DF_ORIGIN; 4570 if (parameters->options().Bsymbolic()) 4571 { 4572 flags |= elfcpp::DF_SYMBOLIC; 4573 // Add DT_SYMBOLIC for compatibility with older loaders. 4574 odyn->add_constant(elfcpp::DT_SYMBOLIC, 0); 4575 } 4576 if (parameters->options().now()) 4577 flags |= elfcpp::DF_BIND_NOW; 4578 if (flags != 0) 4579 odyn->add_constant(elfcpp::DT_FLAGS, flags); 4580 4581 flags = 0; 4582 if (parameters->options().initfirst()) 4583 flags |= elfcpp::DF_1_INITFIRST; 4584 if (parameters->options().interpose()) 4585 flags |= elfcpp::DF_1_INTERPOSE; 4586 if (parameters->options().loadfltr()) 4587 flags |= elfcpp::DF_1_LOADFLTR; 4588 if (parameters->options().nodefaultlib()) 4589 flags |= elfcpp::DF_1_NODEFLIB; 4590 if (parameters->options().nodelete()) 4591 flags |= elfcpp::DF_1_NODELETE; 4592 if (parameters->options().nodlopen()) 4593 flags |= elfcpp::DF_1_NOOPEN; 4594 if (parameters->options().nodump()) 4595 flags |= elfcpp::DF_1_NODUMP; 4596 if (!parameters->options().shared()) 4597 flags &= ~(elfcpp::DF_1_INITFIRST 4598 | elfcpp::DF_1_NODELETE 4599 | elfcpp::DF_1_NOOPEN); 4600 if (parameters->options().origin()) 4601 flags |= elfcpp::DF_1_ORIGIN; 4602 if (parameters->options().now()) 4603 flags |= elfcpp::DF_1_NOW; 4604 if (parameters->options().Bgroup()) 4605 flags |= elfcpp::DF_1_GROUP; 4606 if (flags != 0) 4607 odyn->add_constant(elfcpp::DT_FLAGS_1, flags); 4608 } 4609 4610 // Set the size of the _DYNAMIC symbol table to be the size of the 4611 // dynamic data. 4612 4613 void 4614 Layout::set_dynamic_symbol_size(const Symbol_table* symtab) 4615 { 4616 Output_data_dynamic* const odyn = this->dynamic_data_; 4617 if (odyn == NULL) 4618 return; 4619 odyn->finalize_data_size(); 4620 if (this->dynamic_symbol_ == NULL) 4621 return; 4622 off_t data_size = odyn->data_size(); 4623 const int size = parameters->target().get_size(); 4624 if (size == 32) 4625 symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size); 4626 else if (size == 64) 4627 symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size); 4628 else 4629 gold_unreachable(); 4630 } 4631 4632 // The mapping of input section name prefixes to output section names. 4633 // In some cases one prefix is itself a prefix of another prefix; in 4634 // such a case the longer prefix must come first. These prefixes are 4635 // based on the GNU linker default ELF linker script. 4636 4637 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 } 4638 #define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 } 4639 const Layout::Section_name_mapping Layout::section_name_mapping[] = 4640 { 4641 MAPPING_INIT(".text.", ".text"), 4642 MAPPING_INIT(".rodata.", ".rodata"), 4643 MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"), 4644 MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"), 4645 MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"), 4646 MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"), 4647 MAPPING_INIT(".data.", ".data"), 4648 MAPPING_INIT(".bss.", ".bss"), 4649 MAPPING_INIT(".tdata.", ".tdata"), 4650 MAPPING_INIT(".tbss.", ".tbss"), 4651 MAPPING_INIT(".init_array.", ".init_array"), 4652 MAPPING_INIT(".fini_array.", ".fini_array"), 4653 MAPPING_INIT(".sdata.", ".sdata"), 4654 MAPPING_INIT(".sbss.", ".sbss"), 4655 // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled 4656 // differently depending on whether it is creating a shared library. 4657 MAPPING_INIT(".sdata2.", ".sdata"), 4658 MAPPING_INIT(".sbss2.", ".sbss"), 4659 MAPPING_INIT(".lrodata.", ".lrodata"), 4660 MAPPING_INIT(".ldata.", ".ldata"), 4661 MAPPING_INIT(".lbss.", ".lbss"), 4662 MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"), 4663 MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"), 4664 MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"), 4665 MAPPING_INIT(".gnu.linkonce.t.", ".text"), 4666 MAPPING_INIT(".gnu.linkonce.r.", ".rodata"), 4667 MAPPING_INIT(".gnu.linkonce.d.", ".data"), 4668 MAPPING_INIT(".gnu.linkonce.b.", ".bss"), 4669 MAPPING_INIT(".gnu.linkonce.s.", ".sdata"), 4670 MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"), 4671 MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"), 4672 MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"), 4673 MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"), 4674 MAPPING_INIT(".gnu.linkonce.td.", ".tdata"), 4675 MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"), 4676 MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"), 4677 MAPPING_INIT(".gnu.linkonce.l.", ".ldata"), 4678 MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"), 4679 MAPPING_INIT(".ARM.extab", ".ARM.extab"), 4680 MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"), 4681 MAPPING_INIT(".ARM.exidx", ".ARM.exidx"), 4682 MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"), 4683 }; 4684 #undef MAPPING_INIT 4685 #undef MAPPING_INIT_EXACT 4686 4687 const int Layout::section_name_mapping_count = 4688 (sizeof(Layout::section_name_mapping) 4689 / sizeof(Layout::section_name_mapping[0])); 4690 4691 // Choose the output section name to use given an input section name. 4692 // Set *PLEN to the length of the name. *PLEN is initialized to the 4693 // length of NAME. 4694 4695 const char* 4696 Layout::output_section_name(const Relobj* relobj, const char* name, 4697 size_t* plen) 4698 { 4699 // gcc 4.3 generates the following sorts of section names when it 4700 // needs a section name specific to a function: 4701 // .text.FN 4702 // .rodata.FN 4703 // .sdata2.FN 4704 // .data.FN 4705 // .data.rel.FN 4706 // .data.rel.local.FN 4707 // .data.rel.ro.FN 4708 // .data.rel.ro.local.FN 4709 // .sdata.FN 4710 // .bss.FN 4711 // .sbss.FN 4712 // .tdata.FN 4713 // .tbss.FN 4714 4715 // The GNU linker maps all of those to the part before the .FN, 4716 // except that .data.rel.local.FN is mapped to .data, and 4717 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections 4718 // beginning with .data.rel.ro.local are grouped together. 4719 4720 // For an anonymous namespace, the string FN can contain a '.'. 4721 4722 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the 4723 // GNU linker maps to .rodata. 4724 4725 // The .data.rel.ro sections are used with -z relro. The sections 4726 // are recognized by name. We use the same names that the GNU 4727 // linker does for these sections. 4728 4729 // It is hard to handle this in a principled way, so we don't even 4730 // try. We use a table of mappings. If the input section name is 4731 // not found in the table, we simply use it as the output section 4732 // name. 4733 4734 const Section_name_mapping* psnm = section_name_mapping; 4735 for (int i = 0; i < section_name_mapping_count; ++i, ++psnm) 4736 { 4737 if (psnm->fromlen > 0) 4738 { 4739 if (strncmp(name, psnm->from, psnm->fromlen) == 0) 4740 { 4741 *plen = psnm->tolen; 4742 return psnm->to; 4743 } 4744 } 4745 else 4746 { 4747 if (strcmp(name, psnm->from) == 0) 4748 { 4749 *plen = psnm->tolen; 4750 return psnm->to; 4751 } 4752 } 4753 } 4754 4755 // As an additional complication, .ctors sections are output in 4756 // either .ctors or .init_array sections, and .dtors sections are 4757 // output in either .dtors or .fini_array sections. 4758 if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name)) 4759 { 4760 if (parameters->options().ctors_in_init_array()) 4761 { 4762 *plen = 11; 4763 return name[1] == 'c' ? ".init_array" : ".fini_array"; 4764 } 4765 else 4766 { 4767 *plen = 6; 4768 return name[1] == 'c' ? ".ctors" : ".dtors"; 4769 } 4770 } 4771 if (parameters->options().ctors_in_init_array() 4772 && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0)) 4773 { 4774 // To make .init_array/.fini_array work with gcc we must exclude 4775 // .ctors and .dtors sections from the crtbegin and crtend 4776 // files. 4777 if (relobj == NULL 4778 || (!Layout::match_file_name(relobj, "crtbegin") 4779 && !Layout::match_file_name(relobj, "crtend"))) 4780 { 4781 *plen = 11; 4782 return name[1] == 'c' ? ".init_array" : ".fini_array"; 4783 } 4784 } 4785 4786 return name; 4787 } 4788 4789 // Return true if RELOBJ is an input file whose base name matches 4790 // FILE_NAME. The base name must have an extension of ".o", and must 4791 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o". This is 4792 // to match crtbegin.o as well as crtbeginS.o without getting confused 4793 // by other possibilities. Overall matching the file name this way is 4794 // a dreadful hack, but the GNU linker does it in order to better 4795 // support gcc, and we need to be compatible. 4796 4797 bool 4798 Layout::match_file_name(const Relobj* relobj, const char* match) 4799 { 4800 const std::string& file_name(relobj->name()); 4801 const char* base_name = lbasename(file_name.c_str()); 4802 size_t match_len = strlen(match); 4803 if (strncmp(base_name, match, match_len) != 0) 4804 return false; 4805 size_t base_len = strlen(base_name); 4806 if (base_len != match_len + 2 && base_len != match_len + 3) 4807 return false; 4808 return memcmp(base_name + base_len - 2, ".o", 2) == 0; 4809 } 4810 4811 // Check if a comdat group or .gnu.linkonce section with the given 4812 // NAME is selected for the link. If there is already a section, 4813 // *KEPT_SECTION is set to point to the existing section and the 4814 // function returns false. Otherwise, OBJECT, SHNDX, IS_COMDAT, and 4815 // IS_GROUP_NAME are recorded for this NAME in the layout object, 4816 // *KEPT_SECTION is set to the internal copy and the function returns 4817 // true. 4818 4819 bool 4820 Layout::find_or_add_kept_section(const std::string& name, 4821 Relobj* object, 4822 unsigned int shndx, 4823 bool is_comdat, 4824 bool is_group_name, 4825 Kept_section** kept_section) 4826 { 4827 // It's normal to see a couple of entries here, for the x86 thunk 4828 // sections. If we see more than a few, we're linking a C++ 4829 // program, and we resize to get more space to minimize rehashing. 4830 if (this->signatures_.size() > 4 4831 && !this->resized_signatures_) 4832 { 4833 reserve_unordered_map(&this->signatures_, 4834 this->number_of_input_files_ * 64); 4835 this->resized_signatures_ = true; 4836 } 4837 4838 Kept_section candidate; 4839 std::pair<Signatures::iterator, bool> ins = 4840 this->signatures_.insert(std::make_pair(name, candidate)); 4841 4842 if (kept_section != NULL) 4843 *kept_section = &ins.first->second; 4844 if (ins.second) 4845 { 4846 // This is the first time we've seen this signature. 4847 ins.first->second.set_object(object); 4848 ins.first->second.set_shndx(shndx); 4849 if (is_comdat) 4850 ins.first->second.set_is_comdat(); 4851 if (is_group_name) 4852 ins.first->second.set_is_group_name(); 4853 return true; 4854 } 4855 4856 // We have already seen this signature. 4857 4858 if (ins.first->second.is_group_name()) 4859 { 4860 // We've already seen a real section group with this signature. 4861 // If the kept group is from a plugin object, and we're in the 4862 // replacement phase, accept the new one as a replacement. 4863 if (ins.first->second.object() == NULL 4864 && parameters->options().plugins()->in_replacement_phase()) 4865 { 4866 ins.first->second.set_object(object); 4867 ins.first->second.set_shndx(shndx); 4868 return true; 4869 } 4870 return false; 4871 } 4872 else if (is_group_name) 4873 { 4874 // This is a real section group, and we've already seen a 4875 // linkonce section with this signature. Record that we've seen 4876 // a section group, and don't include this section group. 4877 ins.first->second.set_is_group_name(); 4878 return false; 4879 } 4880 else 4881 { 4882 // We've already seen a linkonce section and this is a linkonce 4883 // section. These don't block each other--this may be the same 4884 // symbol name with different section types. 4885 return true; 4886 } 4887 } 4888 4889 // Store the allocated sections into the section list. 4890 4891 void 4892 Layout::get_allocated_sections(Section_list* section_list) const 4893 { 4894 for (Section_list::const_iterator p = this->section_list_.begin(); 4895 p != this->section_list_.end(); 4896 ++p) 4897 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0) 4898 section_list->push_back(*p); 4899 } 4900 4901 // Create an output segment. 4902 4903 Output_segment* 4904 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags) 4905 { 4906 gold_assert(!parameters->options().relocatable()); 4907 Output_segment* oseg = new Output_segment(type, flags); 4908 this->segment_list_.push_back(oseg); 4909 4910 if (type == elfcpp::PT_TLS) 4911 this->tls_segment_ = oseg; 4912 else if (type == elfcpp::PT_GNU_RELRO) 4913 this->relro_segment_ = oseg; 4914 else if (type == elfcpp::PT_INTERP) 4915 this->interp_segment_ = oseg; 4916 4917 return oseg; 4918 } 4919 4920 // Return the file offset of the normal symbol table. 4921 4922 off_t 4923 Layout::symtab_section_offset() const 4924 { 4925 if (this->symtab_section_ != NULL) 4926 return this->symtab_section_->offset(); 4927 return 0; 4928 } 4929 4930 // Return the section index of the normal symbol table. It may have 4931 // been stripped by the -s/--strip-all option. 4932 4933 unsigned int 4934 Layout::symtab_section_shndx() const 4935 { 4936 if (this->symtab_section_ != NULL) 4937 return this->symtab_section_->out_shndx(); 4938 return 0; 4939 } 4940 4941 // Write out the Output_sections. Most won't have anything to write, 4942 // since most of the data will come from input sections which are 4943 // handled elsewhere. But some Output_sections do have Output_data. 4944 4945 void 4946 Layout::write_output_sections(Output_file* of) const 4947 { 4948 for (Section_list::const_iterator p = this->section_list_.begin(); 4949 p != this->section_list_.end(); 4950 ++p) 4951 { 4952 if (!(*p)->after_input_sections()) 4953 (*p)->write(of); 4954 } 4955 } 4956 4957 // Write out data not associated with a section or the symbol table. 4958 4959 void 4960 Layout::write_data(const Symbol_table* symtab, Output_file* of) const 4961 { 4962 if (!parameters->options().strip_all()) 4963 { 4964 const Output_section* symtab_section = this->symtab_section_; 4965 for (Section_list::const_iterator p = this->section_list_.begin(); 4966 p != this->section_list_.end(); 4967 ++p) 4968 { 4969 if ((*p)->needs_symtab_index()) 4970 { 4971 gold_assert(symtab_section != NULL); 4972 unsigned int index = (*p)->symtab_index(); 4973 gold_assert(index > 0 && index != -1U); 4974 off_t off = (symtab_section->offset() 4975 + index * symtab_section->entsize()); 4976 symtab->write_section_symbol(*p, this->symtab_xindex_, of, off); 4977 } 4978 } 4979 } 4980 4981 const Output_section* dynsym_section = this->dynsym_section_; 4982 for (Section_list::const_iterator p = this->section_list_.begin(); 4983 p != this->section_list_.end(); 4984 ++p) 4985 { 4986 if ((*p)->needs_dynsym_index()) 4987 { 4988 gold_assert(dynsym_section != NULL); 4989 unsigned int index = (*p)->dynsym_index(); 4990 gold_assert(index > 0 && index != -1U); 4991 off_t off = (dynsym_section->offset() 4992 + index * dynsym_section->entsize()); 4993 symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off); 4994 } 4995 } 4996 4997 // Write out the Output_data which are not in an Output_section. 4998 for (Data_list::const_iterator p = this->special_output_list_.begin(); 4999 p != this->special_output_list_.end(); 5000 ++p) 5001 (*p)->write(of); 5002 } 5003 5004 // Write out the Output_sections which can only be written after the 5005 // input sections are complete. 5006 5007 void 5008 Layout::write_sections_after_input_sections(Output_file* of) 5009 { 5010 // Determine the final section offsets, and thus the final output 5011 // file size. Note we finalize the .shstrab last, to allow the 5012 // after_input_section sections to modify their section-names before 5013 // writing. 5014 if (this->any_postprocessing_sections_) 5015 { 5016 off_t off = this->output_file_size_; 5017 off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS); 5018 5019 // Now that we've finalized the names, we can finalize the shstrab. 5020 off = 5021 this->set_section_offsets(off, 5022 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS); 5023 5024 if (off > this->output_file_size_) 5025 { 5026 of->resize(off); 5027 this->output_file_size_ = off; 5028 } 5029 } 5030 5031 for (Section_list::const_iterator p = this->section_list_.begin(); 5032 p != this->section_list_.end(); 5033 ++p) 5034 { 5035 if ((*p)->after_input_sections()) 5036 (*p)->write(of); 5037 } 5038 5039 this->section_headers_->write(of); 5040 } 5041 5042 // If the build ID requires computing a checksum, do so here, and 5043 // write it out. We compute a checksum over the entire file because 5044 // that is simplest. 5045 5046 void 5047 Layout::write_build_id(Output_file* of) const 5048 { 5049 if (this->build_id_note_ == NULL) 5050 return; 5051 5052 const unsigned char* iv = of->get_input_view(0, this->output_file_size_); 5053 5054 unsigned char* ov = of->get_output_view(this->build_id_note_->offset(), 5055 this->build_id_note_->data_size()); 5056 5057 const char* style = parameters->options().build_id(); 5058 if (strcmp(style, "sha1") == 0) 5059 { 5060 sha1_ctx ctx; 5061 sha1_init_ctx(&ctx); 5062 sha1_process_bytes(iv, this->output_file_size_, &ctx); 5063 sha1_finish_ctx(&ctx, ov); 5064 } 5065 else if (strcmp(style, "md5") == 0) 5066 { 5067 md5_ctx ctx; 5068 md5_init_ctx(&ctx); 5069 md5_process_bytes(iv, this->output_file_size_, &ctx); 5070 md5_finish_ctx(&ctx, ov); 5071 } 5072 else 5073 gold_unreachable(); 5074 5075 of->write_output_view(this->build_id_note_->offset(), 5076 this->build_id_note_->data_size(), 5077 ov); 5078 5079 of->free_input_view(0, this->output_file_size_, iv); 5080 } 5081 5082 // Write out a binary file. This is called after the link is 5083 // complete. IN is the temporary output file we used to generate the 5084 // ELF code. We simply walk through the segments, read them from 5085 // their file offset in IN, and write them to their load address in 5086 // the output file. FIXME: with a bit more work, we could support 5087 // S-records and/or Intel hex format here. 5088 5089 void 5090 Layout::write_binary(Output_file* in) const 5091 { 5092 gold_assert(parameters->options().oformat_enum() 5093 == General_options::OBJECT_FORMAT_BINARY); 5094 5095 // Get the size of the binary file. 5096 uint64_t max_load_address = 0; 5097 for (Segment_list::const_iterator p = this->segment_list_.begin(); 5098 p != this->segment_list_.end(); 5099 ++p) 5100 { 5101 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0) 5102 { 5103 uint64_t max_paddr = (*p)->paddr() + (*p)->filesz(); 5104 if (max_paddr > max_load_address) 5105 max_load_address = max_paddr; 5106 } 5107 } 5108 5109 Output_file out(parameters->options().output_file_name()); 5110 out.open(max_load_address); 5111 5112 for (Segment_list::const_iterator p = this->segment_list_.begin(); 5113 p != this->segment_list_.end(); 5114 ++p) 5115 { 5116 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0) 5117 { 5118 const unsigned char* vin = in->get_input_view((*p)->offset(), 5119 (*p)->filesz()); 5120 unsigned char* vout = out.get_output_view((*p)->paddr(), 5121 (*p)->filesz()); 5122 memcpy(vout, vin, (*p)->filesz()); 5123 out.write_output_view((*p)->paddr(), (*p)->filesz(), vout); 5124 in->free_input_view((*p)->offset(), (*p)->filesz(), vin); 5125 } 5126 } 5127 5128 out.close(); 5129 } 5130 5131 // Print the output sections to the map file. 5132 5133 void 5134 Layout::print_to_mapfile(Mapfile* mapfile) const 5135 { 5136 for (Segment_list::const_iterator p = this->segment_list_.begin(); 5137 p != this->segment_list_.end(); 5138 ++p) 5139 (*p)->print_sections_to_mapfile(mapfile); 5140 } 5141 5142 // Print statistical information to stderr. This is used for --stats. 5143 5144 void 5145 Layout::print_stats() const 5146 { 5147 this->namepool_.print_stats("section name pool"); 5148 this->sympool_.print_stats("output symbol name pool"); 5149 this->dynpool_.print_stats("dynamic name pool"); 5150 5151 for (Section_list::const_iterator p = this->section_list_.begin(); 5152 p != this->section_list_.end(); 5153 ++p) 5154 (*p)->print_merge_stats(); 5155 } 5156 5157 // Write_sections_task methods. 5158 5159 // We can always run this task. 5160 5161 Task_token* 5162 Write_sections_task::is_runnable() 5163 { 5164 return NULL; 5165 } 5166 5167 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER 5168 // when finished. 5169 5170 void 5171 Write_sections_task::locks(Task_locker* tl) 5172 { 5173 tl->add(this, this->output_sections_blocker_); 5174 tl->add(this, this->final_blocker_); 5175 } 5176 5177 // Run the task--write out the data. 5178 5179 void 5180 Write_sections_task::run(Workqueue*) 5181 { 5182 this->layout_->write_output_sections(this->of_); 5183 } 5184 5185 // Write_data_task methods. 5186 5187 // We can always run this task. 5188 5189 Task_token* 5190 Write_data_task::is_runnable() 5191 { 5192 return NULL; 5193 } 5194 5195 // We need to unlock FINAL_BLOCKER when finished. 5196 5197 void 5198 Write_data_task::locks(Task_locker* tl) 5199 { 5200 tl->add(this, this->final_blocker_); 5201 } 5202 5203 // Run the task--write out the data. 5204 5205 void 5206 Write_data_task::run(Workqueue*) 5207 { 5208 this->layout_->write_data(this->symtab_, this->of_); 5209 } 5210 5211 // Write_symbols_task methods. 5212 5213 // We can always run this task. 5214 5215 Task_token* 5216 Write_symbols_task::is_runnable() 5217 { 5218 return NULL; 5219 } 5220 5221 // We need to unlock FINAL_BLOCKER when finished. 5222 5223 void 5224 Write_symbols_task::locks(Task_locker* tl) 5225 { 5226 tl->add(this, this->final_blocker_); 5227 } 5228 5229 // Run the task--write out the symbols. 5230 5231 void 5232 Write_symbols_task::run(Workqueue*) 5233 { 5234 this->symtab_->write_globals(this->sympool_, this->dynpool_, 5235 this->layout_->symtab_xindex(), 5236 this->layout_->dynsym_xindex(), this->of_); 5237 } 5238 5239 // Write_after_input_sections_task methods. 5240 5241 // We can only run this task after the input sections have completed. 5242 5243 Task_token* 5244 Write_after_input_sections_task::is_runnable() 5245 { 5246 if (this->input_sections_blocker_->is_blocked()) 5247 return this->input_sections_blocker_; 5248 return NULL; 5249 } 5250 5251 // We need to unlock FINAL_BLOCKER when finished. 5252 5253 void 5254 Write_after_input_sections_task::locks(Task_locker* tl) 5255 { 5256 tl->add(this, this->final_blocker_); 5257 } 5258 5259 // Run the task. 5260 5261 void 5262 Write_after_input_sections_task::run(Workqueue*) 5263 { 5264 this->layout_->write_sections_after_input_sections(this->of_); 5265 } 5266 5267 // Close_task_runner methods. 5268 5269 // Run the task--close the file. 5270 5271 void 5272 Close_task_runner::run(Workqueue*, const Task*) 5273 { 5274 // If we need to compute a checksum for the BUILD if, we do so here. 5275 this->layout_->write_build_id(this->of_); 5276 5277 // If we've been asked to create a binary file, we do so here. 5278 if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF) 5279 this->layout_->write_binary(this->of_); 5280 5281 this->of_->close(); 5282 } 5283 5284 // Instantiate the templates we need. We could use the configure 5285 // script to restrict this to only the ones for implemented targets. 5286 5287 #ifdef HAVE_TARGET_32_LITTLE 5288 template 5289 Output_section* 5290 Layout::init_fixed_output_section<32, false>( 5291 const char* name, 5292 elfcpp::Shdr<32, false>& shdr); 5293 #endif 5294 5295 #ifdef HAVE_TARGET_32_BIG 5296 template 5297 Output_section* 5298 Layout::init_fixed_output_section<32, true>( 5299 const char* name, 5300 elfcpp::Shdr<32, true>& shdr); 5301 #endif 5302 5303 #ifdef HAVE_TARGET_64_LITTLE 5304 template 5305 Output_section* 5306 Layout::init_fixed_output_section<64, false>( 5307 const char* name, 5308 elfcpp::Shdr<64, false>& shdr); 5309 #endif 5310 5311 #ifdef HAVE_TARGET_64_BIG 5312 template 5313 Output_section* 5314 Layout::init_fixed_output_section<64, true>( 5315 const char* name, 5316 elfcpp::Shdr<64, true>& shdr); 5317 #endif 5318 5319 #ifdef HAVE_TARGET_32_LITTLE 5320 template 5321 Output_section* 5322 Layout::layout<32, false>(Sized_relobj_file<32, false>* object, 5323 unsigned int shndx, 5324 const char* name, 5325 const elfcpp::Shdr<32, false>& shdr, 5326 unsigned int, unsigned int, off_t*); 5327 #endif 5328 5329 #ifdef HAVE_TARGET_32_BIG 5330 template 5331 Output_section* 5332 Layout::layout<32, true>(Sized_relobj_file<32, true>* object, 5333 unsigned int shndx, 5334 const char* name, 5335 const elfcpp::Shdr<32, true>& shdr, 5336 unsigned int, unsigned int, off_t*); 5337 #endif 5338 5339 #ifdef HAVE_TARGET_64_LITTLE 5340 template 5341 Output_section* 5342 Layout::layout<64, false>(Sized_relobj_file<64, false>* object, 5343 unsigned int shndx, 5344 const char* name, 5345 const elfcpp::Shdr<64, false>& shdr, 5346 unsigned int, unsigned int, off_t*); 5347 #endif 5348 5349 #ifdef HAVE_TARGET_64_BIG 5350 template 5351 Output_section* 5352 Layout::layout<64, true>(Sized_relobj_file<64, true>* object, 5353 unsigned int shndx, 5354 const char* name, 5355 const elfcpp::Shdr<64, true>& shdr, 5356 unsigned int, unsigned int, off_t*); 5357 #endif 5358 5359 #ifdef HAVE_TARGET_32_LITTLE 5360 template 5361 Output_section* 5362 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object, 5363 unsigned int reloc_shndx, 5364 const elfcpp::Shdr<32, false>& shdr, 5365 Output_section* data_section, 5366 Relocatable_relocs* rr); 5367 #endif 5368 5369 #ifdef HAVE_TARGET_32_BIG 5370 template 5371 Output_section* 5372 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object, 5373 unsigned int reloc_shndx, 5374 const elfcpp::Shdr<32, true>& shdr, 5375 Output_section* data_section, 5376 Relocatable_relocs* rr); 5377 #endif 5378 5379 #ifdef HAVE_TARGET_64_LITTLE 5380 template 5381 Output_section* 5382 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object, 5383 unsigned int reloc_shndx, 5384 const elfcpp::Shdr<64, false>& shdr, 5385 Output_section* data_section, 5386 Relocatable_relocs* rr); 5387 #endif 5388 5389 #ifdef HAVE_TARGET_64_BIG 5390 template 5391 Output_section* 5392 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object, 5393 unsigned int reloc_shndx, 5394 const elfcpp::Shdr<64, true>& shdr, 5395 Output_section* data_section, 5396 Relocatable_relocs* rr); 5397 #endif 5398 5399 #ifdef HAVE_TARGET_32_LITTLE 5400 template 5401 void 5402 Layout::layout_group<32, false>(Symbol_table* symtab, 5403 Sized_relobj_file<32, false>* object, 5404 unsigned int, 5405 const char* group_section_name, 5406 const char* signature, 5407 const elfcpp::Shdr<32, false>& shdr, 5408 elfcpp::Elf_Word flags, 5409 std::vector<unsigned int>* shndxes); 5410 #endif 5411 5412 #ifdef HAVE_TARGET_32_BIG 5413 template 5414 void 5415 Layout::layout_group<32, true>(Symbol_table* symtab, 5416 Sized_relobj_file<32, true>* object, 5417 unsigned int, 5418 const char* group_section_name, 5419 const char* signature, 5420 const elfcpp::Shdr<32, true>& shdr, 5421 elfcpp::Elf_Word flags, 5422 std::vector<unsigned int>* shndxes); 5423 #endif 5424 5425 #ifdef HAVE_TARGET_64_LITTLE 5426 template 5427 void 5428 Layout::layout_group<64, false>(Symbol_table* symtab, 5429 Sized_relobj_file<64, false>* object, 5430 unsigned int, 5431 const char* group_section_name, 5432 const char* signature, 5433 const elfcpp::Shdr<64, false>& shdr, 5434 elfcpp::Elf_Word flags, 5435 std::vector<unsigned int>* shndxes); 5436 #endif 5437 5438 #ifdef HAVE_TARGET_64_BIG 5439 template 5440 void 5441 Layout::layout_group<64, true>(Symbol_table* symtab, 5442 Sized_relobj_file<64, true>* object, 5443 unsigned int, 5444 const char* group_section_name, 5445 const char* signature, 5446 const elfcpp::Shdr<64, true>& shdr, 5447 elfcpp::Elf_Word flags, 5448 std::vector<unsigned int>* shndxes); 5449 #endif 5450 5451 #ifdef HAVE_TARGET_32_LITTLE 5452 template 5453 Output_section* 5454 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object, 5455 const unsigned char* symbols, 5456 off_t symbols_size, 5457 const unsigned char* symbol_names, 5458 off_t symbol_names_size, 5459 unsigned int shndx, 5460 const elfcpp::Shdr<32, false>& shdr, 5461 unsigned int reloc_shndx, 5462 unsigned int reloc_type, 5463 off_t* off); 5464 #endif 5465 5466 #ifdef HAVE_TARGET_32_BIG 5467 template 5468 Output_section* 5469 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object, 5470 const unsigned char* symbols, 5471 off_t symbols_size, 5472 const unsigned char* symbol_names, 5473 off_t symbol_names_size, 5474 unsigned int shndx, 5475 const elfcpp::Shdr<32, true>& shdr, 5476 unsigned int reloc_shndx, 5477 unsigned int reloc_type, 5478 off_t* off); 5479 #endif 5480 5481 #ifdef HAVE_TARGET_64_LITTLE 5482 template 5483 Output_section* 5484 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object, 5485 const unsigned char* symbols, 5486 off_t symbols_size, 5487 const unsigned char* symbol_names, 5488 off_t symbol_names_size, 5489 unsigned int shndx, 5490 const elfcpp::Shdr<64, false>& shdr, 5491 unsigned int reloc_shndx, 5492 unsigned int reloc_type, 5493 off_t* off); 5494 #endif 5495 5496 #ifdef HAVE_TARGET_64_BIG 5497 template 5498 Output_section* 5499 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object, 5500 const unsigned char* symbols, 5501 off_t symbols_size, 5502 const unsigned char* symbol_names, 5503 off_t symbol_names_size, 5504 unsigned int shndx, 5505 const elfcpp::Shdr<64, true>& shdr, 5506 unsigned int reloc_shndx, 5507 unsigned int reloc_type, 5508 off_t* off); 5509 #endif 5510 5511 #ifdef HAVE_TARGET_32_LITTLE 5512 template 5513 void 5514 Layout::add_to_gdb_index(bool is_type_unit, 5515 Sized_relobj<32, false>* object, 5516 const unsigned char* symbols, 5517 off_t symbols_size, 5518 unsigned int shndx, 5519 unsigned int reloc_shndx, 5520 unsigned int reloc_type); 5521 #endif 5522 5523 #ifdef HAVE_TARGET_32_BIG 5524 template 5525 void 5526 Layout::add_to_gdb_index(bool is_type_unit, 5527 Sized_relobj<32, true>* object, 5528 const unsigned char* symbols, 5529 off_t symbols_size, 5530 unsigned int shndx, 5531 unsigned int reloc_shndx, 5532 unsigned int reloc_type); 5533 #endif 5534 5535 #ifdef HAVE_TARGET_64_LITTLE 5536 template 5537 void 5538 Layout::add_to_gdb_index(bool is_type_unit, 5539 Sized_relobj<64, false>* object, 5540 const unsigned char* symbols, 5541 off_t symbols_size, 5542 unsigned int shndx, 5543 unsigned int reloc_shndx, 5544 unsigned int reloc_type); 5545 #endif 5546 5547 #ifdef HAVE_TARGET_64_BIG 5548 template 5549 void 5550 Layout::add_to_gdb_index(bool is_type_unit, 5551 Sized_relobj<64, true>* object, 5552 const unsigned char* symbols, 5553 off_t symbols_size, 5554 unsigned int shndx, 5555 unsigned int reloc_shndx, 5556 unsigned int reloc_type); 5557 #endif 5558 5559 } // End namespace gold. 5560