xref: /netbsd-src/external/gpl3/binutils.old/dist/gold/layout.cc (revision 92e958de60c71aa0f2452bd7074cbb006fe6546b)
1 // layout.cc -- lay out output file sections for gold
2 
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 // Free Software Foundation, Inc.
5 // Written by Ian Lance Taylor <iant@google.com>.
6 
7 // This file is part of gold.
8 
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13 
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 // GNU General Public License for more details.
18 
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23 
24 #include "gold.h"
25 
26 #include <cerrno>
27 #include <cstring>
28 #include <algorithm>
29 #include <iostream>
30 #include <fstream>
31 #include <utility>
32 #include <fcntl.h>
33 #include <fnmatch.h>
34 #include <unistd.h>
35 #include "libiberty.h"
36 #include "md5.h"
37 #include "sha1.h"
38 
39 #include "parameters.h"
40 #include "options.h"
41 #include "mapfile.h"
42 #include "script.h"
43 #include "script-sections.h"
44 #include "output.h"
45 #include "symtab.h"
46 #include "dynobj.h"
47 #include "ehframe.h"
48 #include "gdb-index.h"
49 #include "compressed_output.h"
50 #include "reduced_debug_output.h"
51 #include "object.h"
52 #include "reloc.h"
53 #include "descriptors.h"
54 #include "plugin.h"
55 #include "incremental.h"
56 #include "layout.h"
57 
58 namespace gold
59 {
60 
61 // Class Free_list.
62 
63 // The total number of free lists used.
64 unsigned int Free_list::num_lists = 0;
65 // The total number of free list nodes used.
66 unsigned int Free_list::num_nodes = 0;
67 // The total number of calls to Free_list::remove.
68 unsigned int Free_list::num_removes = 0;
69 // The total number of nodes visited during calls to Free_list::remove.
70 unsigned int Free_list::num_remove_visits = 0;
71 // The total number of calls to Free_list::allocate.
72 unsigned int Free_list::num_allocates = 0;
73 // The total number of nodes visited during calls to Free_list::allocate.
74 unsigned int Free_list::num_allocate_visits = 0;
75 
76 // Initialize the free list.  Creates a single free list node that
77 // describes the entire region of length LEN.  If EXTEND is true,
78 // allocate() is allowed to extend the region beyond its initial
79 // length.
80 
81 void
82 Free_list::init(off_t len, bool extend)
83 {
84   this->list_.push_front(Free_list_node(0, len));
85   this->last_remove_ = this->list_.begin();
86   this->extend_ = extend;
87   this->length_ = len;
88   ++Free_list::num_lists;
89   ++Free_list::num_nodes;
90 }
91 
92 // Remove a chunk from the free list.  Because we start with a single
93 // node that covers the entire section, and remove chunks from it one
94 // at a time, we do not need to coalesce chunks or handle cases that
95 // span more than one free node.  We expect to remove chunks from the
96 // free list in order, and we expect to have only a few chunks of free
97 // space left (corresponding to files that have changed since the last
98 // incremental link), so a simple linear list should provide sufficient
99 // performance.
100 
101 void
102 Free_list::remove(off_t start, off_t end)
103 {
104   if (start == end)
105     return;
106   gold_assert(start < end);
107 
108   ++Free_list::num_removes;
109 
110   Iterator p = this->last_remove_;
111   if (p->start_ > start)
112     p = this->list_.begin();
113 
114   for (; p != this->list_.end(); ++p)
115     {
116       ++Free_list::num_remove_visits;
117       // Find a node that wholly contains the indicated region.
118       if (p->start_ <= start && p->end_ >= end)
119 	{
120 	  // Case 1: the indicated region spans the whole node.
121 	  // Add some fuzz to avoid creating tiny free chunks.
122 	  if (p->start_ + 3 >= start && p->end_ <= end + 3)
123 	    p = this->list_.erase(p);
124 	  // Case 2: remove a chunk from the start of the node.
125 	  else if (p->start_ + 3 >= start)
126 	    p->start_ = end;
127 	  // Case 3: remove a chunk from the end of the node.
128 	  else if (p->end_ <= end + 3)
129 	    p->end_ = start;
130 	  // Case 4: remove a chunk from the middle, and split
131 	  // the node into two.
132 	  else
133 	    {
134 	      Free_list_node newnode(p->start_, start);
135 	      p->start_ = end;
136 	      this->list_.insert(p, newnode);
137 	      ++Free_list::num_nodes;
138 	    }
139 	  this->last_remove_ = p;
140 	  return;
141 	}
142     }
143 
144   // Did not find a node containing the given chunk.  This could happen
145   // because a small chunk was already removed due to the fuzz.
146   gold_debug(DEBUG_INCREMENTAL,
147 	     "Free_list::remove(%d,%d) not found",
148 	     static_cast<int>(start), static_cast<int>(end));
149 }
150 
151 // Allocate a chunk of size LEN from the free list.  Returns -1ULL
152 // if a sufficiently large chunk of free space is not found.
153 // We use a simple first-fit algorithm.
154 
155 off_t
156 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
157 {
158   gold_debug(DEBUG_INCREMENTAL,
159 	     "Free_list::allocate(%08lx, %d, %08lx)",
160 	     static_cast<long>(len), static_cast<int>(align),
161 	     static_cast<long>(minoff));
162   if (len == 0)
163     return align_address(minoff, align);
164 
165   ++Free_list::num_allocates;
166 
167   // We usually want to drop free chunks smaller than 4 bytes.
168   // If we need to guarantee a minimum hole size, though, we need
169   // to keep track of all free chunks.
170   const int fuzz = this->min_hole_ > 0 ? 0 : 3;
171 
172   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
173     {
174       ++Free_list::num_allocate_visits;
175       off_t start = p->start_ > minoff ? p->start_ : minoff;
176       start = align_address(start, align);
177       off_t end = start + len;
178       if (end > p->end_ && p->end_ == this->length_ && this->extend_)
179 	{
180 	  this->length_ = end;
181 	  p->end_ = end;
182 	}
183       if (end == p->end_ || (end <= p->end_ - this->min_hole_))
184 	{
185 	  if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
186 	    this->list_.erase(p);
187 	  else if (p->start_ + fuzz >= start)
188 	    p->start_ = end;
189 	  else if (p->end_ <= end + fuzz)
190 	    p->end_ = start;
191 	  else
192 	    {
193 	      Free_list_node newnode(p->start_, start);
194 	      p->start_ = end;
195 	      this->list_.insert(p, newnode);
196 	      ++Free_list::num_nodes;
197 	    }
198 	  return start;
199 	}
200     }
201   if (this->extend_)
202     {
203       off_t start = align_address(this->length_, align);
204       this->length_ = start + len;
205       return start;
206     }
207   return -1;
208 }
209 
210 // Dump the free list (for debugging).
211 void
212 Free_list::dump()
213 {
214   gold_info("Free list:\n     start      end   length\n");
215   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
216     gold_info("  %08lx %08lx %08lx", static_cast<long>(p->start_),
217 	      static_cast<long>(p->end_),
218 	      static_cast<long>(p->end_ - p->start_));
219 }
220 
221 // Print the statistics for the free lists.
222 void
223 Free_list::print_stats()
224 {
225   fprintf(stderr, _("%s: total free lists: %u\n"),
226 	  program_name, Free_list::num_lists);
227   fprintf(stderr, _("%s: total free list nodes: %u\n"),
228 	  program_name, Free_list::num_nodes);
229   fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
230 	  program_name, Free_list::num_removes);
231   fprintf(stderr, _("%s: nodes visited: %u\n"),
232 	  program_name, Free_list::num_remove_visits);
233   fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
234 	  program_name, Free_list::num_allocates);
235   fprintf(stderr, _("%s: nodes visited: %u\n"),
236 	  program_name, Free_list::num_allocate_visits);
237 }
238 
239 // Layout::Relaxation_debug_check methods.
240 
241 // Check that sections and special data are in reset states.
242 // We do not save states for Output_sections and special Output_data.
243 // So we check that they have not assigned any addresses or offsets.
244 // clean_up_after_relaxation simply resets their addresses and offsets.
245 void
246 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
247     const Layout::Section_list& sections,
248     const Layout::Data_list& special_outputs)
249 {
250   for(Layout::Section_list::const_iterator p = sections.begin();
251       p != sections.end();
252       ++p)
253     gold_assert((*p)->address_and_file_offset_have_reset_values());
254 
255   for(Layout::Data_list::const_iterator p = special_outputs.begin();
256       p != special_outputs.end();
257       ++p)
258     gold_assert((*p)->address_and_file_offset_have_reset_values());
259 }
260 
261 // Save information of SECTIONS for checking later.
262 
263 void
264 Layout::Relaxation_debug_check::read_sections(
265     const Layout::Section_list& sections)
266 {
267   for(Layout::Section_list::const_iterator p = sections.begin();
268       p != sections.end();
269       ++p)
270     {
271       Output_section* os = *p;
272       Section_info info;
273       info.output_section = os;
274       info.address = os->is_address_valid() ? os->address() : 0;
275       info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
276       info.offset = os->is_offset_valid()? os->offset() : -1 ;
277       this->section_infos_.push_back(info);
278     }
279 }
280 
281 // Verify SECTIONS using previously recorded information.
282 
283 void
284 Layout::Relaxation_debug_check::verify_sections(
285     const Layout::Section_list& sections)
286 {
287   size_t i = 0;
288   for(Layout::Section_list::const_iterator p = sections.begin();
289       p != sections.end();
290       ++p, ++i)
291     {
292       Output_section* os = *p;
293       uint64_t address = os->is_address_valid() ? os->address() : 0;
294       off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
295       off_t offset = os->is_offset_valid()? os->offset() : -1 ;
296 
297       if (i >= this->section_infos_.size())
298 	{
299 	  gold_fatal("Section_info of %s missing.\n", os->name());
300 	}
301       const Section_info& info = this->section_infos_[i];
302       if (os != info.output_section)
303 	gold_fatal("Section order changed.  Expecting %s but see %s\n",
304 		   info.output_section->name(), os->name());
305       if (address != info.address
306 	  || data_size != info.data_size
307 	  || offset != info.offset)
308 	gold_fatal("Section %s changed.\n", os->name());
309     }
310 }
311 
312 // Layout_task_runner methods.
313 
314 // Lay out the sections.  This is called after all the input objects
315 // have been read.
316 
317 void
318 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
319 {
320   Layout* layout = this->layout_;
321   off_t file_size = layout->finalize(this->input_objects_,
322 				     this->symtab_,
323 				     this->target_,
324 				     task);
325 
326   // Now we know the final size of the output file and we know where
327   // each piece of information goes.
328 
329   if (this->mapfile_ != NULL)
330     {
331       this->mapfile_->print_discarded_sections(this->input_objects_);
332       layout->print_to_mapfile(this->mapfile_);
333     }
334 
335   Output_file* of;
336   if (layout->incremental_base() == NULL)
337     {
338       of = new Output_file(parameters->options().output_file_name());
339       if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
340 	of->set_is_temporary();
341       of->open(file_size);
342     }
343   else
344     {
345       of = layout->incremental_base()->output_file();
346 
347       // Apply the incremental relocations for symbols whose values
348       // have changed.  We do this before we resize the file and start
349       // writing anything else to it, so that we can read the old
350       // incremental information from the file before (possibly)
351       // overwriting it.
352       if (parameters->incremental_update())
353 	layout->incremental_base()->apply_incremental_relocs(this->symtab_,
354 							     this->layout_,
355 							     of);
356 
357       of->resize(file_size);
358     }
359 
360   // Queue up the final set of tasks.
361   gold::queue_final_tasks(this->options_, this->input_objects_,
362 			  this->symtab_, layout, workqueue, of);
363 }
364 
365 // Layout methods.
366 
367 Layout::Layout(int number_of_input_files, Script_options* script_options)
368   : number_of_input_files_(number_of_input_files),
369     script_options_(script_options),
370     namepool_(),
371     sympool_(),
372     dynpool_(),
373     signatures_(),
374     section_name_map_(),
375     segment_list_(),
376     section_list_(),
377     unattached_section_list_(),
378     special_output_list_(),
379     section_headers_(NULL),
380     tls_segment_(NULL),
381     relro_segment_(NULL),
382     interp_segment_(NULL),
383     increase_relro_(0),
384     symtab_section_(NULL),
385     symtab_xindex_(NULL),
386     dynsym_section_(NULL),
387     dynsym_xindex_(NULL),
388     dynamic_section_(NULL),
389     dynamic_symbol_(NULL),
390     dynamic_data_(NULL),
391     eh_frame_section_(NULL),
392     eh_frame_data_(NULL),
393     added_eh_frame_data_(false),
394     eh_frame_hdr_section_(NULL),
395     gdb_index_data_(NULL),
396     build_id_note_(NULL),
397     debug_abbrev_(NULL),
398     debug_info_(NULL),
399     group_signatures_(),
400     output_file_size_(-1),
401     have_added_input_section_(false),
402     sections_are_attached_(false),
403     input_requires_executable_stack_(false),
404     input_with_gnu_stack_note_(false),
405     input_without_gnu_stack_note_(false),
406     has_static_tls_(false),
407     any_postprocessing_sections_(false),
408     resized_signatures_(false),
409     have_stabstr_section_(false),
410     section_ordering_specified_(false),
411     incremental_inputs_(NULL),
412     record_output_section_data_from_script_(false),
413     script_output_section_data_list_(),
414     segment_states_(NULL),
415     relaxation_debug_check_(NULL),
416     section_order_map_(),
417     input_section_position_(),
418     input_section_glob_(),
419     incremental_base_(NULL),
420     free_list_()
421 {
422   // Make space for more than enough segments for a typical file.
423   // This is just for efficiency--it's OK if we wind up needing more.
424   this->segment_list_.reserve(12);
425 
426   // We expect two unattached Output_data objects: the file header and
427   // the segment headers.
428   this->special_output_list_.reserve(2);
429 
430   // Initialize structure needed for an incremental build.
431   if (parameters->incremental())
432     this->incremental_inputs_ = new Incremental_inputs;
433 
434   // The section name pool is worth optimizing in all cases, because
435   // it is small, but there are often overlaps due to .rel sections.
436   this->namepool_.set_optimize();
437 }
438 
439 // For incremental links, record the base file to be modified.
440 
441 void
442 Layout::set_incremental_base(Incremental_binary* base)
443 {
444   this->incremental_base_ = base;
445   this->free_list_.init(base->output_file()->filesize(), true);
446 }
447 
448 // Hash a key we use to look up an output section mapping.
449 
450 size_t
451 Layout::Hash_key::operator()(const Layout::Key& k) const
452 {
453  return k.first + k.second.first + k.second.second;
454 }
455 
456 // These are the debug sections that are actually used by gdb.
457 // Currently, we've checked versions of gdb up to and including 7.4.
458 // We only check the part of the name that follows ".debug_" or
459 // ".zdebug_".
460 
461 static const char* gdb_sections[] =
462 {
463   "abbrev",
464   "addr",         // Fission extension
465   // "aranges",   // not used by gdb as of 7.4
466   "frame",
467   "info",
468   "types",
469   "line",
470   "loc",
471   "macinfo",
472   "macro",
473   // "pubnames",  // not used by gdb as of 7.4
474   // "pubtypes",  // not used by gdb as of 7.4
475   "ranges",
476   "str",
477 };
478 
479 // This is the minimum set of sections needed for line numbers.
480 
481 static const char* lines_only_debug_sections[] =
482 {
483   "abbrev",
484   // "addr",      // Fission extension
485   // "aranges",   // not used by gdb as of 7.4
486   // "frame",
487   "info",
488   // "types",
489   "line",
490   // "loc",
491   // "macinfo",
492   // "macro",
493   // "pubnames",  // not used by gdb as of 7.4
494   // "pubtypes",  // not used by gdb as of 7.4
495   // "ranges",
496   "str",
497 };
498 
499 // These sections are the DWARF fast-lookup tables, and are not needed
500 // when building a .gdb_index section.
501 
502 static const char* gdb_fast_lookup_sections[] =
503 {
504   "aranges",
505   "pubnames",
506   "pubtypes",
507 };
508 
509 // Returns whether the given debug section is in the list of
510 // debug-sections-used-by-some-version-of-gdb.  SUFFIX is the
511 // portion of the name following ".debug_" or ".zdebug_".
512 
513 static inline bool
514 is_gdb_debug_section(const char* suffix)
515 {
516   // We can do this faster: binary search or a hashtable.  But why bother?
517   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
518     if (strcmp(suffix, gdb_sections[i]) == 0)
519       return true;
520   return false;
521 }
522 
523 // Returns whether the given section is needed for lines-only debugging.
524 
525 static inline bool
526 is_lines_only_debug_section(const char* suffix)
527 {
528   // We can do this faster: binary search or a hashtable.  But why bother?
529   for (size_t i = 0;
530        i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
531        ++i)
532     if (strcmp(suffix, lines_only_debug_sections[i]) == 0)
533       return true;
534   return false;
535 }
536 
537 // Returns whether the given section is a fast-lookup section that
538 // will not be needed when building a .gdb_index section.
539 
540 static inline bool
541 is_gdb_fast_lookup_section(const char* suffix)
542 {
543   // We can do this faster: binary search or a hashtable.  But why bother?
544   for (size_t i = 0;
545        i < sizeof(gdb_fast_lookup_sections)/sizeof(*gdb_fast_lookup_sections);
546        ++i)
547     if (strcmp(suffix, gdb_fast_lookup_sections[i]) == 0)
548       return true;
549   return false;
550 }
551 
552 // Sometimes we compress sections.  This is typically done for
553 // sections that are not part of normal program execution (such as
554 // .debug_* sections), and where the readers of these sections know
555 // how to deal with compressed sections.  This routine doesn't say for
556 // certain whether we'll compress -- it depends on commandline options
557 // as well -- just whether this section is a candidate for compression.
558 // (The Output_compressed_section class decides whether to compress
559 // a given section, and picks the name of the compressed section.)
560 
561 static bool
562 is_compressible_debug_section(const char* secname)
563 {
564   return (is_prefix_of(".debug", secname));
565 }
566 
567 // We may see compressed debug sections in input files.  Return TRUE
568 // if this is the name of a compressed debug section.
569 
570 bool
571 is_compressed_debug_section(const char* secname)
572 {
573   return (is_prefix_of(".zdebug", secname));
574 }
575 
576 // Whether to include this section in the link.
577 
578 template<int size, bool big_endian>
579 bool
580 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
581 			const elfcpp::Shdr<size, big_endian>& shdr)
582 {
583   if (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE)
584     return false;
585 
586   switch (shdr.get_sh_type())
587     {
588     case elfcpp::SHT_NULL:
589     case elfcpp::SHT_SYMTAB:
590     case elfcpp::SHT_DYNSYM:
591     case elfcpp::SHT_HASH:
592     case elfcpp::SHT_DYNAMIC:
593     case elfcpp::SHT_SYMTAB_SHNDX:
594       return false;
595 
596     case elfcpp::SHT_STRTAB:
597       // Discard the sections which have special meanings in the ELF
598       // ABI.  Keep others (e.g., .stabstr).  We could also do this by
599       // checking the sh_link fields of the appropriate sections.
600       return (strcmp(name, ".dynstr") != 0
601 	      && strcmp(name, ".strtab") != 0
602 	      && strcmp(name, ".shstrtab") != 0);
603 
604     case elfcpp::SHT_RELA:
605     case elfcpp::SHT_REL:
606     case elfcpp::SHT_GROUP:
607       // If we are emitting relocations these should be handled
608       // elsewhere.
609       gold_assert(!parameters->options().relocatable()
610 		  && !parameters->options().emit_relocs());
611       return false;
612 
613     case elfcpp::SHT_PROGBITS:
614       if (parameters->options().strip_debug()
615 	  && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
616 	{
617 	  if (is_debug_info_section(name))
618 	    return false;
619 	}
620       if (parameters->options().strip_debug_non_line()
621 	  && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
622 	{
623 	  // Debugging sections can only be recognized by name.
624 	  if (is_prefix_of(".debug_", name)
625 	      && !is_lines_only_debug_section(name + 7))
626 	    return false;
627 	  if (is_prefix_of(".zdebug_", name)
628 	      && !is_lines_only_debug_section(name + 8))
629 	    return false;
630 	}
631       if (parameters->options().strip_debug_gdb()
632 	  && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
633 	{
634 	  // Debugging sections can only be recognized by name.
635 	  if (is_prefix_of(".debug_", name)
636 	      && !is_gdb_debug_section(name + 7))
637 	    return false;
638 	  if (is_prefix_of(".zdebug_", name)
639 	      && !is_gdb_debug_section(name + 8))
640 	    return false;
641 	}
642       if (parameters->options().gdb_index()
643 	  && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
644 	{
645 	  // When building .gdb_index, we can strip .debug_pubnames,
646 	  // .debug_pubtypes, and .debug_aranges sections.
647 	  if (is_prefix_of(".debug_", name)
648 	      && is_gdb_fast_lookup_section(name + 7))
649 	    return false;
650 	  if (is_prefix_of(".zdebug_", name)
651 	      && is_gdb_fast_lookup_section(name + 8))
652 	    return false;
653 	}
654       if (parameters->options().strip_lto_sections()
655 	  && !parameters->options().relocatable()
656 	  && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
657 	{
658 	  // Ignore LTO sections containing intermediate code.
659 	  if (is_prefix_of(".gnu.lto_", name))
660 	    return false;
661 	}
662       // The GNU linker strips .gnu_debuglink sections, so we do too.
663       // This is a feature used to keep debugging information in
664       // separate files.
665       if (strcmp(name, ".gnu_debuglink") == 0)
666 	return false;
667       return true;
668 
669     default:
670       return true;
671     }
672 }
673 
674 // Return an output section named NAME, or NULL if there is none.
675 
676 Output_section*
677 Layout::find_output_section(const char* name) const
678 {
679   for (Section_list::const_iterator p = this->section_list_.begin();
680        p != this->section_list_.end();
681        ++p)
682     if (strcmp((*p)->name(), name) == 0)
683       return *p;
684   return NULL;
685 }
686 
687 // Return an output segment of type TYPE, with segment flags SET set
688 // and segment flags CLEAR clear.  Return NULL if there is none.
689 
690 Output_segment*
691 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
692 			    elfcpp::Elf_Word clear) const
693 {
694   for (Segment_list::const_iterator p = this->segment_list_.begin();
695        p != this->segment_list_.end();
696        ++p)
697     if (static_cast<elfcpp::PT>((*p)->type()) == type
698 	&& ((*p)->flags() & set) == set
699 	&& ((*p)->flags() & clear) == 0)
700       return *p;
701   return NULL;
702 }
703 
704 // When we put a .ctors or .dtors section with more than one word into
705 // a .init_array or .fini_array section, we need to reverse the words
706 // in the .ctors/.dtors section.  This is because .init_array executes
707 // constructors front to back, where .ctors executes them back to
708 // front, and vice-versa for .fini_array/.dtors.  Although we do want
709 // to remap .ctors/.dtors into .init_array/.fini_array because it can
710 // be more efficient, we don't want to change the order in which
711 // constructors/destructors are run.  This set just keeps track of
712 // these sections which need to be reversed.  It is only changed by
713 // Layout::layout.  It should be a private member of Layout, but that
714 // would require layout.h to #include object.h to get the definition
715 // of Section_id.
716 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
717 
718 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
719 // .init_array/.fini_array section.
720 
721 bool
722 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
723 {
724   return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
725 	  != ctors_sections_in_init_array.end());
726 }
727 
728 // Return the output section to use for section NAME with type TYPE
729 // and section flags FLAGS.  NAME must be canonicalized in the string
730 // pool, and NAME_KEY is the key.  ORDER is where this should appear
731 // in the output sections.  IS_RELRO is true for a relro section.
732 
733 Output_section*
734 Layout::get_output_section(const char* name, Stringpool::Key name_key,
735 			   elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
736 			   Output_section_order order, bool is_relro)
737 {
738   elfcpp::Elf_Word lookup_type = type;
739 
740   // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
741   // PREINIT_ARRAY like PROGBITS.  This ensures that we combine
742   // .init_array, .fini_array, and .preinit_array sections by name
743   // whatever their type in the input file.  We do this because the
744   // types are not always right in the input files.
745   if (lookup_type == elfcpp::SHT_INIT_ARRAY
746       || lookup_type == elfcpp::SHT_FINI_ARRAY
747       || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
748     lookup_type = elfcpp::SHT_PROGBITS;
749 
750   elfcpp::Elf_Xword lookup_flags = flags;
751 
752   // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
753   // read-write with read-only sections.  Some other ELF linkers do
754   // not do this.  FIXME: Perhaps there should be an option
755   // controlling this.
756   lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
757 
758   const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
759   const std::pair<Key, Output_section*> v(key, NULL);
760   std::pair<Section_name_map::iterator, bool> ins(
761     this->section_name_map_.insert(v));
762 
763   if (!ins.second)
764     return ins.first->second;
765   else
766     {
767       // This is the first time we've seen this name/type/flags
768       // combination.  For compatibility with the GNU linker, we
769       // combine sections with contents and zero flags with sections
770       // with non-zero flags.  This is a workaround for cases where
771       // assembler code forgets to set section flags.  FIXME: Perhaps
772       // there should be an option to control this.
773       Output_section* os = NULL;
774 
775       if (lookup_type == elfcpp::SHT_PROGBITS)
776 	{
777 	  if (flags == 0)
778 	    {
779 	      Output_section* same_name = this->find_output_section(name);
780 	      if (same_name != NULL
781 		  && (same_name->type() == elfcpp::SHT_PROGBITS
782 		      || same_name->type() == elfcpp::SHT_INIT_ARRAY
783 		      || same_name->type() == elfcpp::SHT_FINI_ARRAY
784 		      || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
785 		  && (same_name->flags() & elfcpp::SHF_TLS) == 0)
786 		os = same_name;
787 	    }
788 	  else if ((flags & elfcpp::SHF_TLS) == 0)
789 	    {
790 	      elfcpp::Elf_Xword zero_flags = 0;
791 	      const Key zero_key(name_key, std::make_pair(lookup_type,
792 							  zero_flags));
793 	      Section_name_map::iterator p =
794 		  this->section_name_map_.find(zero_key);
795 	      if (p != this->section_name_map_.end())
796 		os = p->second;
797 	    }
798 	}
799 
800       if (os == NULL)
801 	os = this->make_output_section(name, type, flags, order, is_relro);
802 
803       ins.first->second = os;
804       return os;
805     }
806 }
807 
808 // Pick the output section to use for section NAME, in input file
809 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
810 // linker created section.  IS_INPUT_SECTION is true if we are
811 // choosing an output section for an input section found in a input
812 // file.  ORDER is where this section should appear in the output
813 // sections.  IS_RELRO is true for a relro section.  This will return
814 // NULL if the input section should be discarded.
815 
816 Output_section*
817 Layout::choose_output_section(const Relobj* relobj, const char* name,
818 			      elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
819 			      bool is_input_section, Output_section_order order,
820 			      bool is_relro)
821 {
822   // We should not see any input sections after we have attached
823   // sections to segments.
824   gold_assert(!is_input_section || !this->sections_are_attached_);
825 
826   // Some flags in the input section should not be automatically
827   // copied to the output section.
828   flags &= ~ (elfcpp::SHF_INFO_LINK
829 	      | elfcpp::SHF_GROUP
830 	      | elfcpp::SHF_MERGE
831 	      | elfcpp::SHF_STRINGS);
832 
833   // We only clear the SHF_LINK_ORDER flag in for
834   // a non-relocatable link.
835   if (!parameters->options().relocatable())
836     flags &= ~elfcpp::SHF_LINK_ORDER;
837 
838   if (this->script_options_->saw_sections_clause())
839     {
840       // We are using a SECTIONS clause, so the output section is
841       // chosen based only on the name.
842 
843       Script_sections* ss = this->script_options_->script_sections();
844       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
845       Output_section** output_section_slot;
846       Script_sections::Section_type script_section_type;
847       const char* orig_name = name;
848       name = ss->output_section_name(file_name, name, &output_section_slot,
849 				     &script_section_type);
850       if (name == NULL)
851 	{
852 	  gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
853 				     "because it is not allowed by the "
854 				     "SECTIONS clause of the linker script"),
855 		     orig_name);
856 	  // The SECTIONS clause says to discard this input section.
857 	  return NULL;
858 	}
859 
860       // We can only handle script section types ST_NONE and ST_NOLOAD.
861       switch (script_section_type)
862 	{
863 	case Script_sections::ST_NONE:
864 	  break;
865 	case Script_sections::ST_NOLOAD:
866 	  flags &= elfcpp::SHF_ALLOC;
867 	  break;
868 	default:
869 	  gold_unreachable();
870 	}
871 
872       // If this is an orphan section--one not mentioned in the linker
873       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
874       // default processing below.
875 
876       if (output_section_slot != NULL)
877 	{
878 	  if (*output_section_slot != NULL)
879 	    {
880 	      (*output_section_slot)->update_flags_for_input_section(flags);
881 	      return *output_section_slot;
882 	    }
883 
884 	  // We don't put sections found in the linker script into
885 	  // SECTION_NAME_MAP_.  That keeps us from getting confused
886 	  // if an orphan section is mapped to a section with the same
887 	  // name as one in the linker script.
888 
889 	  name = this->namepool_.add(name, false, NULL);
890 
891 	  Output_section* os = this->make_output_section(name, type, flags,
892 							 order, is_relro);
893 
894 	  os->set_found_in_sections_clause();
895 
896 	  // Special handling for NOLOAD sections.
897 	  if (script_section_type == Script_sections::ST_NOLOAD)
898 	    {
899 	      os->set_is_noload();
900 
901 	      // The constructor of Output_section sets addresses of non-ALLOC
902 	      // sections to 0 by default.  We don't want that for NOLOAD
903 	      // sections even if they have no SHF_ALLOC flag.
904 	      if ((os->flags() & elfcpp::SHF_ALLOC) == 0
905 		  && os->is_address_valid())
906 		{
907 		  gold_assert(os->address() == 0
908 			      && !os->is_offset_valid()
909 			      && !os->is_data_size_valid());
910 		  os->reset_address_and_file_offset();
911 		}
912 	    }
913 
914 	  *output_section_slot = os;
915 	  return os;
916 	}
917     }
918 
919   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
920 
921   size_t len = strlen(name);
922   char* uncompressed_name = NULL;
923 
924   // Compressed debug sections should be mapped to the corresponding
925   // uncompressed section.
926   if (is_compressed_debug_section(name))
927     {
928       uncompressed_name = new char[len];
929       uncompressed_name[0] = '.';
930       gold_assert(name[0] == '.' && name[1] == 'z');
931       strncpy(&uncompressed_name[1], &name[2], len - 2);
932       uncompressed_name[len - 1] = '\0';
933       len -= 1;
934       name = uncompressed_name;
935     }
936 
937   // Turn NAME from the name of the input section into the name of the
938   // output section.
939   if (is_input_section
940       && !this->script_options_->saw_sections_clause()
941       && !parameters->options().relocatable())
942     name = Layout::output_section_name(relobj, name, &len);
943 
944   Stringpool::Key name_key;
945   name = this->namepool_.add_with_length(name, len, true, &name_key);
946 
947   if (uncompressed_name != NULL)
948     delete[] uncompressed_name;
949 
950   // Find or make the output section.  The output section is selected
951   // based on the section name, type, and flags.
952   return this->get_output_section(name, name_key, type, flags, order, is_relro);
953 }
954 
955 // For incremental links, record the initial fixed layout of a section
956 // from the base file, and return a pointer to the Output_section.
957 
958 template<int size, bool big_endian>
959 Output_section*
960 Layout::init_fixed_output_section(const char* name,
961 				  elfcpp::Shdr<size, big_endian>& shdr)
962 {
963   unsigned int sh_type = shdr.get_sh_type();
964 
965   // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
966   // PRE_INIT_ARRAY, and NOTE sections.
967   // All others will be created from scratch and reallocated.
968   if (!can_incremental_update(sh_type))
969     return NULL;
970 
971   // If we're generating a .gdb_index section, we need to regenerate
972   // it from scratch.
973   if (parameters->options().gdb_index()
974       && sh_type == elfcpp::SHT_PROGBITS
975       && strcmp(name, ".gdb_index") == 0)
976     return NULL;
977 
978   typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
979   typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
980   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
981   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
982   typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
983       shdr.get_sh_addralign();
984 
985   // Make the output section.
986   Stringpool::Key name_key;
987   name = this->namepool_.add(name, true, &name_key);
988   Output_section* os = this->get_output_section(name, name_key, sh_type,
989 						sh_flags, ORDER_INVALID, false);
990   os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
991   if (sh_type != elfcpp::SHT_NOBITS)
992     this->free_list_.remove(sh_offset, sh_offset + sh_size);
993   return os;
994 }
995 
996 // Return the output section to use for input section SHNDX, with name
997 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
998 // index of a relocation section which applies to this section, or 0
999 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
1000 // relocation section if there is one.  Set *OFF to the offset of this
1001 // input section without the output section.  Return NULL if the
1002 // section should be discarded.  Set *OFF to -1 if the section
1003 // contents should not be written directly to the output file, but
1004 // will instead receive special handling.
1005 
1006 template<int size, bool big_endian>
1007 Output_section*
1008 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
1009 	       const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
1010 	       unsigned int reloc_shndx, unsigned int, off_t* off)
1011 {
1012   *off = 0;
1013 
1014   if (!this->include_section(object, name, shdr))
1015     return NULL;
1016 
1017   elfcpp::Elf_Word sh_type = shdr.get_sh_type();
1018 
1019   // In a relocatable link a grouped section must not be combined with
1020   // any other sections.
1021   Output_section* os;
1022   if (parameters->options().relocatable()
1023       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
1024     {
1025       name = this->namepool_.add(name, true, NULL);
1026       os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
1027 				     ORDER_INVALID, false);
1028     }
1029   else
1030     {
1031       os = this->choose_output_section(object, name, sh_type,
1032 				       shdr.get_sh_flags(), true,
1033 				       ORDER_INVALID, false);
1034       if (os == NULL)
1035 	return NULL;
1036     }
1037 
1038   // By default the GNU linker sorts input sections whose names match
1039   // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*.  The
1040   // sections are sorted by name.  This is used to implement
1041   // constructor priority ordering.  We are compatible.  When we put
1042   // .ctor sections in .init_array and .dtor sections in .fini_array,
1043   // we must also sort plain .ctor and .dtor sections.
1044   if (!this->script_options_->saw_sections_clause()
1045       && !parameters->options().relocatable()
1046       && (is_prefix_of(".ctors.", name)
1047 	  || is_prefix_of(".dtors.", name)
1048 	  || is_prefix_of(".init_array.", name)
1049 	  || is_prefix_of(".fini_array.", name)
1050 	  || (parameters->options().ctors_in_init_array()
1051 	      && (strcmp(name, ".ctors") == 0
1052 		  || strcmp(name, ".dtors") == 0))))
1053     os->set_must_sort_attached_input_sections();
1054 
1055   // If this is a .ctors or .ctors.* section being mapped to a
1056   // .init_array section, or a .dtors or .dtors.* section being mapped
1057   // to a .fini_array section, we will need to reverse the words if
1058   // there is more than one.  Record this section for later.  See
1059   // ctors_sections_in_init_array above.
1060   if (!this->script_options_->saw_sections_clause()
1061       && !parameters->options().relocatable()
1062       && shdr.get_sh_size() > size / 8
1063       && (((strcmp(name, ".ctors") == 0
1064 	    || is_prefix_of(".ctors.", name))
1065 	   && strcmp(os->name(), ".init_array") == 0)
1066 	  || ((strcmp(name, ".dtors") == 0
1067 	       || is_prefix_of(".dtors.", name))
1068 	      && strcmp(os->name(), ".fini_array") == 0)))
1069     ctors_sections_in_init_array.insert(Section_id(object, shndx));
1070 
1071   // FIXME: Handle SHF_LINK_ORDER somewhere.
1072 
1073   elfcpp::Elf_Xword orig_flags = os->flags();
1074 
1075   *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1076 			       this->script_options_->saw_sections_clause());
1077 
1078   // If the flags changed, we may have to change the order.
1079   if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1080     {
1081       orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1082       elfcpp::Elf_Xword new_flags =
1083 	os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1084       if (orig_flags != new_flags)
1085 	os->set_order(this->default_section_order(os, false));
1086     }
1087 
1088   this->have_added_input_section_ = true;
1089 
1090   return os;
1091 }
1092 
1093 // Handle a relocation section when doing a relocatable link.
1094 
1095 template<int size, bool big_endian>
1096 Output_section*
1097 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
1098 		     unsigned int,
1099 		     const elfcpp::Shdr<size, big_endian>& shdr,
1100 		     Output_section* data_section,
1101 		     Relocatable_relocs* rr)
1102 {
1103   gold_assert(parameters->options().relocatable()
1104 	      || parameters->options().emit_relocs());
1105 
1106   int sh_type = shdr.get_sh_type();
1107 
1108   std::string name;
1109   if (sh_type == elfcpp::SHT_REL)
1110     name = ".rel";
1111   else if (sh_type == elfcpp::SHT_RELA)
1112     name = ".rela";
1113   else
1114     gold_unreachable();
1115   name += data_section->name();
1116 
1117   // In a relocatable link relocs for a grouped section must not be
1118   // combined with other reloc sections.
1119   Output_section* os;
1120   if (!parameters->options().relocatable()
1121       || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
1122     os = this->choose_output_section(object, name.c_str(), sh_type,
1123 				     shdr.get_sh_flags(), false,
1124 				     ORDER_INVALID, false);
1125   else
1126     {
1127       const char* n = this->namepool_.add(name.c_str(), true, NULL);
1128       os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1129 				     ORDER_INVALID, false);
1130     }
1131 
1132   os->set_should_link_to_symtab();
1133   os->set_info_section(data_section);
1134 
1135   Output_section_data* posd;
1136   if (sh_type == elfcpp::SHT_REL)
1137     {
1138       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1139       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1140 					   size,
1141 					   big_endian>(rr);
1142     }
1143   else if (sh_type == elfcpp::SHT_RELA)
1144     {
1145       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1146       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1147 					   size,
1148 					   big_endian>(rr);
1149     }
1150   else
1151     gold_unreachable();
1152 
1153   os->add_output_section_data(posd);
1154   rr->set_output_data(posd);
1155 
1156   return os;
1157 }
1158 
1159 // Handle a group section when doing a relocatable link.
1160 
1161 template<int size, bool big_endian>
1162 void
1163 Layout::layout_group(Symbol_table* symtab,
1164 		     Sized_relobj_file<size, big_endian>* object,
1165 		     unsigned int,
1166 		     const char* group_section_name,
1167 		     const char* signature,
1168 		     const elfcpp::Shdr<size, big_endian>& shdr,
1169 		     elfcpp::Elf_Word flags,
1170 		     std::vector<unsigned int>* shndxes)
1171 {
1172   gold_assert(parameters->options().relocatable());
1173   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1174   group_section_name = this->namepool_.add(group_section_name, true, NULL);
1175   Output_section* os = this->make_output_section(group_section_name,
1176 						 elfcpp::SHT_GROUP,
1177 						 shdr.get_sh_flags(),
1178 						 ORDER_INVALID, false);
1179 
1180   // We need to find a symbol with the signature in the symbol table.
1181   // If we don't find one now, we need to look again later.
1182   Symbol* sym = symtab->lookup(signature, NULL);
1183   if (sym != NULL)
1184     os->set_info_symndx(sym);
1185   else
1186     {
1187       // Reserve some space to minimize reallocations.
1188       if (this->group_signatures_.empty())
1189 	this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1190 
1191       // We will wind up using a symbol whose name is the signature.
1192       // So just put the signature in the symbol name pool to save it.
1193       signature = symtab->canonicalize_name(signature);
1194       this->group_signatures_.push_back(Group_signature(os, signature));
1195     }
1196 
1197   os->set_should_link_to_symtab();
1198   os->set_entsize(4);
1199 
1200   section_size_type entry_count =
1201     convert_to_section_size_type(shdr.get_sh_size() / 4);
1202   Output_section_data* posd =
1203     new Output_data_group<size, big_endian>(object, entry_count, flags,
1204 					    shndxes);
1205   os->add_output_section_data(posd);
1206 }
1207 
1208 // Special GNU handling of sections name .eh_frame.  They will
1209 // normally hold exception frame data as defined by the C++ ABI
1210 // (http://codesourcery.com/cxx-abi/).
1211 
1212 template<int size, bool big_endian>
1213 Output_section*
1214 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1215 			const unsigned char* symbols,
1216 			off_t symbols_size,
1217 			const unsigned char* symbol_names,
1218 			off_t symbol_names_size,
1219 			unsigned int shndx,
1220 			const elfcpp::Shdr<size, big_endian>& shdr,
1221 			unsigned int reloc_shndx, unsigned int reloc_type,
1222 			off_t* off)
1223 {
1224   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1225 	      || shdr.get_sh_type() == elfcpp::SHT_X86_64_UNWIND);
1226   gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1227 
1228   Output_section* os = this->make_eh_frame_section(object);
1229   if (os == NULL)
1230     return NULL;
1231 
1232   gold_assert(this->eh_frame_section_ == os);
1233 
1234   elfcpp::Elf_Xword orig_flags = os->flags();
1235 
1236   if (!parameters->incremental()
1237       && this->eh_frame_data_->add_ehframe_input_section(object,
1238 							 symbols,
1239 							 symbols_size,
1240 							 symbol_names,
1241 							 symbol_names_size,
1242 							 shndx,
1243 							 reloc_shndx,
1244 							 reloc_type))
1245     {
1246       os->update_flags_for_input_section(shdr.get_sh_flags());
1247 
1248       // A writable .eh_frame section is a RELRO section.
1249       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1250 	  != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1251 	{
1252 	  os->set_is_relro();
1253 	  os->set_order(ORDER_RELRO);
1254 	}
1255 
1256       // We found a .eh_frame section we are going to optimize, so now
1257       // we can add the set of optimized sections to the output
1258       // section.  We need to postpone adding this until we've found a
1259       // section we can optimize so that the .eh_frame section in
1260       // crtbegin.o winds up at the start of the output section.
1261       if (!this->added_eh_frame_data_)
1262 	{
1263 	  os->add_output_section_data(this->eh_frame_data_);
1264 	  this->added_eh_frame_data_ = true;
1265 	}
1266       *off = -1;
1267     }
1268   else
1269     {
1270       // We couldn't handle this .eh_frame section for some reason.
1271       // Add it as a normal section.
1272       bool saw_sections_clause = this->script_options_->saw_sections_clause();
1273       *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1274 				   reloc_shndx, saw_sections_clause);
1275       this->have_added_input_section_ = true;
1276 
1277       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1278 	  != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1279 	os->set_order(this->default_section_order(os, false));
1280     }
1281 
1282   return os;
1283 }
1284 
1285 // Create and return the magic .eh_frame section.  Create
1286 // .eh_frame_hdr also if appropriate.  OBJECT is the object with the
1287 // input .eh_frame section; it may be NULL.
1288 
1289 Output_section*
1290 Layout::make_eh_frame_section(const Relobj* object)
1291 {
1292   // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than
1293   // SHT_PROGBITS.
1294   Output_section* os = this->choose_output_section(object, ".eh_frame",
1295 						   elfcpp::SHT_PROGBITS,
1296 						   elfcpp::SHF_ALLOC, false,
1297 						   ORDER_EHFRAME, false);
1298   if (os == NULL)
1299     return NULL;
1300 
1301   if (this->eh_frame_section_ == NULL)
1302     {
1303       this->eh_frame_section_ = os;
1304       this->eh_frame_data_ = new Eh_frame();
1305 
1306       // For incremental linking, we do not optimize .eh_frame sections
1307       // or create a .eh_frame_hdr section.
1308       if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1309 	{
1310 	  Output_section* hdr_os =
1311 	    this->choose_output_section(NULL, ".eh_frame_hdr",
1312 					elfcpp::SHT_PROGBITS,
1313 					elfcpp::SHF_ALLOC, false,
1314 					ORDER_EHFRAME, false);
1315 
1316 	  if (hdr_os != NULL)
1317 	    {
1318 	      Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1319 							this->eh_frame_data_);
1320 	      hdr_os->add_output_section_data(hdr_posd);
1321 
1322 	      hdr_os->set_after_input_sections();
1323 
1324 	      if (!this->script_options_->saw_phdrs_clause())
1325 		{
1326 		  Output_segment* hdr_oseg;
1327 		  hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1328 						       elfcpp::PF_R);
1329 		  hdr_oseg->add_output_section_to_nonload(hdr_os,
1330 							  elfcpp::PF_R);
1331 		}
1332 
1333 	      this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1334 	    }
1335 	}
1336     }
1337 
1338   return os;
1339 }
1340 
1341 // Add an exception frame for a PLT.  This is called from target code.
1342 
1343 void
1344 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1345 			     size_t cie_length, const unsigned char* fde_data,
1346 			     size_t fde_length)
1347 {
1348   if (parameters->incremental())
1349     {
1350       // FIXME: Maybe this could work some day....
1351       return;
1352     }
1353   Output_section* os = this->make_eh_frame_section(NULL);
1354   if (os == NULL)
1355     return;
1356   this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1357 					    fde_data, fde_length);
1358   if (!this->added_eh_frame_data_)
1359     {
1360       os->add_output_section_data(this->eh_frame_data_);
1361       this->added_eh_frame_data_ = true;
1362     }
1363 }
1364 
1365 // Scan a .debug_info or .debug_types section, and add summary
1366 // information to the .gdb_index section.
1367 
1368 template<int size, bool big_endian>
1369 void
1370 Layout::add_to_gdb_index(bool is_type_unit,
1371 			 Sized_relobj<size, big_endian>* object,
1372 			 const unsigned char* symbols,
1373 			 off_t symbols_size,
1374 			 unsigned int shndx,
1375 			 unsigned int reloc_shndx,
1376 			 unsigned int reloc_type)
1377 {
1378   if (this->gdb_index_data_ == NULL)
1379     {
1380       Output_section* os = this->choose_output_section(NULL, ".gdb_index",
1381 						       elfcpp::SHT_PROGBITS, 0,
1382 						       false, ORDER_INVALID,
1383 						       false);
1384       if (os == NULL)
1385 	return;
1386 
1387       this->gdb_index_data_ = new Gdb_index(os);
1388       os->add_output_section_data(this->gdb_index_data_);
1389       os->set_after_input_sections();
1390     }
1391 
1392   this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
1393 					 symbols_size, shndx, reloc_shndx,
1394 					 reloc_type);
1395 }
1396 
1397 // Add POSD to an output section using NAME, TYPE, and FLAGS.  Return
1398 // the output section.
1399 
1400 Output_section*
1401 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1402 				elfcpp::Elf_Xword flags,
1403 				Output_section_data* posd,
1404 				Output_section_order order, bool is_relro)
1405 {
1406   Output_section* os = this->choose_output_section(NULL, name, type, flags,
1407 						   false, order, is_relro);
1408   if (os != NULL)
1409     os->add_output_section_data(posd);
1410   return os;
1411 }
1412 
1413 // Map section flags to segment flags.
1414 
1415 elfcpp::Elf_Word
1416 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1417 {
1418   elfcpp::Elf_Word ret = elfcpp::PF_R;
1419   if ((flags & elfcpp::SHF_WRITE) != 0)
1420     ret |= elfcpp::PF_W;
1421   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1422     ret |= elfcpp::PF_X;
1423   return ret;
1424 }
1425 
1426 // Make a new Output_section, and attach it to segments as
1427 // appropriate.  ORDER is the order in which this section should
1428 // appear in the output segment.  IS_RELRO is true if this is a relro
1429 // (read-only after relocations) section.
1430 
1431 Output_section*
1432 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1433 			    elfcpp::Elf_Xword flags,
1434 			    Output_section_order order, bool is_relro)
1435 {
1436   Output_section* os;
1437   if ((flags & elfcpp::SHF_ALLOC) == 0
1438       && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1439       && is_compressible_debug_section(name))
1440     os = new Output_compressed_section(&parameters->options(), name, type,
1441 				       flags);
1442   else if ((flags & elfcpp::SHF_ALLOC) == 0
1443 	   && parameters->options().strip_debug_non_line()
1444 	   && strcmp(".debug_abbrev", name) == 0)
1445     {
1446       os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1447 	  name, type, flags);
1448       if (this->debug_info_)
1449 	this->debug_info_->set_abbreviations(this->debug_abbrev_);
1450     }
1451   else if ((flags & elfcpp::SHF_ALLOC) == 0
1452 	   && parameters->options().strip_debug_non_line()
1453 	   && strcmp(".debug_info", name) == 0)
1454     {
1455       os = this->debug_info_ = new Output_reduced_debug_info_section(
1456 	  name, type, flags);
1457       if (this->debug_abbrev_)
1458 	this->debug_info_->set_abbreviations(this->debug_abbrev_);
1459     }
1460   else
1461     {
1462       // Sometimes .init_array*, .preinit_array* and .fini_array* do
1463       // not have correct section types.  Force them here.
1464       if (type == elfcpp::SHT_PROGBITS)
1465 	{
1466 	  if (is_prefix_of(".init_array", name))
1467 	    type = elfcpp::SHT_INIT_ARRAY;
1468 	  else if (is_prefix_of(".preinit_array", name))
1469 	    type = elfcpp::SHT_PREINIT_ARRAY;
1470 	  else if (is_prefix_of(".fini_array", name))
1471 	    type = elfcpp::SHT_FINI_ARRAY;
1472 	}
1473 
1474       // FIXME: const_cast is ugly.
1475       Target* target = const_cast<Target*>(&parameters->target());
1476       os = target->make_output_section(name, type, flags);
1477     }
1478 
1479   // With -z relro, we have to recognize the special sections by name.
1480   // There is no other way.
1481   bool is_relro_local = false;
1482   if (!this->script_options_->saw_sections_clause()
1483       && parameters->options().relro()
1484       && (flags & elfcpp::SHF_ALLOC) != 0
1485       && (flags & elfcpp::SHF_WRITE) != 0)
1486     {
1487       if (type == elfcpp::SHT_PROGBITS)
1488 	{
1489 	  if ((flags & elfcpp::SHF_TLS) != 0)
1490 	    is_relro = true;
1491 	  else if (strcmp(name, ".data.rel.ro") == 0)
1492 	    is_relro = true;
1493 	  else if (strcmp(name, ".data.rel.ro.local") == 0)
1494 	    {
1495 	      is_relro = true;
1496 	      is_relro_local = true;
1497 	    }
1498 	  else if (strcmp(name, ".ctors") == 0
1499 		   || strcmp(name, ".dtors") == 0
1500 		   || strcmp(name, ".jcr") == 0)
1501 	    is_relro = true;
1502 	}
1503       else if (type == elfcpp::SHT_INIT_ARRAY
1504 	       || type == elfcpp::SHT_FINI_ARRAY
1505 	       || type == elfcpp::SHT_PREINIT_ARRAY)
1506 	is_relro = true;
1507     }
1508 
1509   if (is_relro)
1510     os->set_is_relro();
1511 
1512   if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1513     order = this->default_section_order(os, is_relro_local);
1514 
1515   os->set_order(order);
1516 
1517   parameters->target().new_output_section(os);
1518 
1519   this->section_list_.push_back(os);
1520 
1521   // The GNU linker by default sorts some sections by priority, so we
1522   // do the same.  We need to know that this might happen before we
1523   // attach any input sections.
1524   if (!this->script_options_->saw_sections_clause()
1525       && !parameters->options().relocatable()
1526       && (strcmp(name, ".init_array") == 0
1527 	  || strcmp(name, ".fini_array") == 0
1528 	  || (!parameters->options().ctors_in_init_array()
1529 	      && (strcmp(name, ".ctors") == 0
1530 		  || strcmp(name, ".dtors") == 0))))
1531     os->set_may_sort_attached_input_sections();
1532 
1533   // Check for .stab*str sections, as .stab* sections need to link to
1534   // them.
1535   if (type == elfcpp::SHT_STRTAB
1536       && !this->have_stabstr_section_
1537       && strncmp(name, ".stab", 5) == 0
1538       && strcmp(name + strlen(name) - 3, "str") == 0)
1539     this->have_stabstr_section_ = true;
1540 
1541   // During a full incremental link, we add patch space to most
1542   // PROGBITS and NOBITS sections.  Flag those that may be
1543   // arbitrarily padded.
1544   if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1545       && order != ORDER_INTERP
1546       && order != ORDER_INIT
1547       && order != ORDER_PLT
1548       && order != ORDER_FINI
1549       && order != ORDER_RELRO_LAST
1550       && order != ORDER_NON_RELRO_FIRST
1551       && strcmp(name, ".eh_frame") != 0
1552       && strcmp(name, ".ctors") != 0
1553       && strcmp(name, ".dtors") != 0
1554       && strcmp(name, ".jcr") != 0)
1555     {
1556       os->set_is_patch_space_allowed();
1557 
1558       // Certain sections require "holes" to be filled with
1559       // specific fill patterns.  These fill patterns may have
1560       // a minimum size, so we must prevent allocations from the
1561       // free list that leave a hole smaller than the minimum.
1562       if (strcmp(name, ".debug_info") == 0)
1563 	os->set_free_space_fill(new Output_fill_debug_info(false));
1564       else if (strcmp(name, ".debug_types") == 0)
1565 	os->set_free_space_fill(new Output_fill_debug_info(true));
1566       else if (strcmp(name, ".debug_line") == 0)
1567 	os->set_free_space_fill(new Output_fill_debug_line());
1568     }
1569 
1570   // If we have already attached the sections to segments, then we
1571   // need to attach this one now.  This happens for sections created
1572   // directly by the linker.
1573   if (this->sections_are_attached_)
1574     this->attach_section_to_segment(&parameters->target(), os);
1575 
1576   return os;
1577 }
1578 
1579 // Return the default order in which a section should be placed in an
1580 // output segment.  This function captures a lot of the ideas in
1581 // ld/scripttempl/elf.sc in the GNU linker.  Note that the order of a
1582 // linker created section is normally set when the section is created;
1583 // this function is used for input sections.
1584 
1585 Output_section_order
1586 Layout::default_section_order(Output_section* os, bool is_relro_local)
1587 {
1588   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1589   bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1590   bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1591   bool is_bss = false;
1592 
1593   switch (os->type())
1594     {
1595     default:
1596     case elfcpp::SHT_PROGBITS:
1597       break;
1598     case elfcpp::SHT_NOBITS:
1599       is_bss = true;
1600       break;
1601     case elfcpp::SHT_RELA:
1602     case elfcpp::SHT_REL:
1603       if (!is_write)
1604 	return ORDER_DYNAMIC_RELOCS;
1605       break;
1606     case elfcpp::SHT_HASH:
1607     case elfcpp::SHT_DYNAMIC:
1608     case elfcpp::SHT_SHLIB:
1609     case elfcpp::SHT_DYNSYM:
1610     case elfcpp::SHT_GNU_HASH:
1611     case elfcpp::SHT_GNU_verdef:
1612     case elfcpp::SHT_GNU_verneed:
1613     case elfcpp::SHT_GNU_versym:
1614       if (!is_write)
1615 	return ORDER_DYNAMIC_LINKER;
1616       break;
1617     case elfcpp::SHT_NOTE:
1618       return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1619     }
1620 
1621   if ((os->flags() & elfcpp::SHF_TLS) != 0)
1622     return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1623 
1624   if (!is_bss && !is_write)
1625     {
1626       if (is_execinstr)
1627 	{
1628 	  if (strcmp(os->name(), ".init") == 0)
1629 	    return ORDER_INIT;
1630 	  else if (strcmp(os->name(), ".fini") == 0)
1631 	    return ORDER_FINI;
1632 	}
1633       return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1634     }
1635 
1636   if (os->is_relro())
1637     return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1638 
1639   if (os->is_small_section())
1640     return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1641   if (os->is_large_section())
1642     return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1643 
1644   return is_bss ? ORDER_BSS : ORDER_DATA;
1645 }
1646 
1647 // Attach output sections to segments.  This is called after we have
1648 // seen all the input sections.
1649 
1650 void
1651 Layout::attach_sections_to_segments(const Target* target)
1652 {
1653   for (Section_list::iterator p = this->section_list_.begin();
1654        p != this->section_list_.end();
1655        ++p)
1656     this->attach_section_to_segment(target, *p);
1657 
1658   this->sections_are_attached_ = true;
1659 }
1660 
1661 // Attach an output section to a segment.
1662 
1663 void
1664 Layout::attach_section_to_segment(const Target* target, Output_section* os)
1665 {
1666   if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1667     this->unattached_section_list_.push_back(os);
1668   else
1669     this->attach_allocated_section_to_segment(target, os);
1670 }
1671 
1672 // Attach an allocated output section to a segment.
1673 
1674 void
1675 Layout::attach_allocated_section_to_segment(const Target* target,
1676 					    Output_section* os)
1677 {
1678   elfcpp::Elf_Xword flags = os->flags();
1679   gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1680 
1681   if (parameters->options().relocatable())
1682     return;
1683 
1684   // If we have a SECTIONS clause, we can't handle the attachment to
1685   // segments until after we've seen all the sections.
1686   if (this->script_options_->saw_sections_clause())
1687     return;
1688 
1689   gold_assert(!this->script_options_->saw_phdrs_clause());
1690 
1691   // This output section goes into a PT_LOAD segment.
1692 
1693   elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1694 
1695   // Check for --section-start.
1696   uint64_t addr;
1697   bool is_address_set = parameters->options().section_start(os->name(), &addr);
1698 
1699   // In general the only thing we really care about for PT_LOAD
1700   // segments is whether or not they are writable or executable,
1701   // so that is how we search for them.
1702   // Large data sections also go into their own PT_LOAD segment.
1703   // People who need segments sorted on some other basis will
1704   // have to use a linker script.
1705 
1706   Segment_list::const_iterator p;
1707   for (p = this->segment_list_.begin();
1708        p != this->segment_list_.end();
1709        ++p)
1710     {
1711       if ((*p)->type() != elfcpp::PT_LOAD)
1712 	continue;
1713       if (!parameters->options().omagic()
1714 	  && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1715 	continue;
1716       if ((target->isolate_execinstr() || parameters->options().rosegment())
1717 	  && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
1718 	continue;
1719       // If -Tbss was specified, we need to separate the data and BSS
1720       // segments.
1721       if (parameters->options().user_set_Tbss())
1722 	{
1723 	  if ((os->type() == elfcpp::SHT_NOBITS)
1724 	      == (*p)->has_any_data_sections())
1725 	    continue;
1726 	}
1727       if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1728 	continue;
1729 
1730       if (is_address_set)
1731 	{
1732 	  if ((*p)->are_addresses_set())
1733 	    continue;
1734 
1735 	  (*p)->add_initial_output_data(os);
1736 	  (*p)->update_flags_for_output_section(seg_flags);
1737 	  (*p)->set_addresses(addr, addr);
1738 	  break;
1739 	}
1740 
1741       (*p)->add_output_section_to_load(this, os, seg_flags);
1742       break;
1743     }
1744 
1745   if (p == this->segment_list_.end())
1746     {
1747       Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1748 						       seg_flags);
1749       if (os->is_large_data_section())
1750 	oseg->set_is_large_data_segment();
1751       oseg->add_output_section_to_load(this, os, seg_flags);
1752       if (is_address_set)
1753 	oseg->set_addresses(addr, addr);
1754     }
1755 
1756   // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1757   // segment.
1758   if (os->type() == elfcpp::SHT_NOTE)
1759     {
1760       // See if we already have an equivalent PT_NOTE segment.
1761       for (p = this->segment_list_.begin();
1762 	   p != segment_list_.end();
1763 	   ++p)
1764 	{
1765 	  if ((*p)->type() == elfcpp::PT_NOTE
1766 	      && (((*p)->flags() & elfcpp::PF_W)
1767 		  == (seg_flags & elfcpp::PF_W)))
1768 	    {
1769 	      (*p)->add_output_section_to_nonload(os, seg_flags);
1770 	      break;
1771 	    }
1772 	}
1773 
1774       if (p == this->segment_list_.end())
1775 	{
1776 	  Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1777 							   seg_flags);
1778 	  oseg->add_output_section_to_nonload(os, seg_flags);
1779 	}
1780     }
1781 
1782   // If we see a loadable SHF_TLS section, we create a PT_TLS
1783   // segment.  There can only be one such segment.
1784   if ((flags & elfcpp::SHF_TLS) != 0)
1785     {
1786       if (this->tls_segment_ == NULL)
1787 	this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1788       this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
1789     }
1790 
1791   // If -z relro is in effect, and we see a relro section, we create a
1792   // PT_GNU_RELRO segment.  There can only be one such segment.
1793   if (os->is_relro() && parameters->options().relro())
1794     {
1795       gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
1796       if (this->relro_segment_ == NULL)
1797 	this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
1798       this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
1799     }
1800 
1801   // If we see a section named .interp, put it into a PT_INTERP
1802   // segment.  This seems broken to me, but this is what GNU ld does,
1803   // and glibc expects it.
1804   if (strcmp(os->name(), ".interp") == 0
1805       && !this->script_options_->saw_phdrs_clause())
1806     {
1807       if (this->interp_segment_ == NULL)
1808 	this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
1809       else
1810 	gold_warning(_("multiple '.interp' sections in input files "
1811 		       "may cause confusing PT_INTERP segment"));
1812       this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
1813     }
1814 }
1815 
1816 // Make an output section for a script.
1817 
1818 Output_section*
1819 Layout::make_output_section_for_script(
1820     const char* name,
1821     Script_sections::Section_type section_type)
1822 {
1823   name = this->namepool_.add(name, false, NULL);
1824   elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
1825   if (section_type == Script_sections::ST_NOLOAD)
1826     sh_flags = 0;
1827   Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
1828 						 sh_flags, ORDER_INVALID,
1829 						 false);
1830   os->set_found_in_sections_clause();
1831   if (section_type == Script_sections::ST_NOLOAD)
1832     os->set_is_noload();
1833   return os;
1834 }
1835 
1836 // Return the number of segments we expect to see.
1837 
1838 size_t
1839 Layout::expected_segment_count() const
1840 {
1841   size_t ret = this->segment_list_.size();
1842 
1843   // If we didn't see a SECTIONS clause in a linker script, we should
1844   // already have the complete list of segments.  Otherwise we ask the
1845   // SECTIONS clause how many segments it expects, and add in the ones
1846   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1847 
1848   if (!this->script_options_->saw_sections_clause())
1849     return ret;
1850   else
1851     {
1852       const Script_sections* ss = this->script_options_->script_sections();
1853       return ret + ss->expected_segment_count(this);
1854     }
1855 }
1856 
1857 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
1858 // is whether we saw a .note.GNU-stack section in the object file.
1859 // GNU_STACK_FLAGS is the section flags.  The flags give the
1860 // protection required for stack memory.  We record this in an
1861 // executable as a PT_GNU_STACK segment.  If an object file does not
1862 // have a .note.GNU-stack segment, we must assume that it is an old
1863 // object.  On some targets that will force an executable stack.
1864 
1865 void
1866 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
1867 			 const Object* obj)
1868 {
1869   if (!seen_gnu_stack)
1870     {
1871       this->input_without_gnu_stack_note_ = true;
1872       if (parameters->options().warn_execstack()
1873 	  && parameters->target().is_default_stack_executable())
1874 	gold_warning(_("%s: missing .note.GNU-stack section"
1875 		       " implies executable stack"),
1876 		     obj->name().c_str());
1877     }
1878   else
1879     {
1880       this->input_with_gnu_stack_note_ = true;
1881       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
1882 	{
1883 	  this->input_requires_executable_stack_ = true;
1884 	  if (parameters->options().warn_execstack()
1885 	      || parameters->options().is_stack_executable())
1886 	    gold_warning(_("%s: requires executable stack"),
1887 			 obj->name().c_str());
1888 	}
1889     }
1890 }
1891 
1892 // Create automatic note sections.
1893 
1894 void
1895 Layout::create_notes()
1896 {
1897   this->create_gold_note();
1898   this->create_executable_stack_info();
1899   this->create_build_id();
1900 }
1901 
1902 // Create the dynamic sections which are needed before we read the
1903 // relocs.
1904 
1905 void
1906 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
1907 {
1908   if (parameters->doing_static_link())
1909     return;
1910 
1911   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
1912 						       elfcpp::SHT_DYNAMIC,
1913 						       (elfcpp::SHF_ALLOC
1914 							| elfcpp::SHF_WRITE),
1915 						       false, ORDER_RELRO,
1916 						       true);
1917 
1918   // A linker script may discard .dynamic, so check for NULL.
1919   if (this->dynamic_section_ != NULL)
1920     {
1921       this->dynamic_symbol_ =
1922 	symtab->define_in_output_data("_DYNAMIC", NULL,
1923 				      Symbol_table::PREDEFINED,
1924 				      this->dynamic_section_, 0, 0,
1925 				      elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
1926 				      elfcpp::STV_HIDDEN, 0, false, false);
1927 
1928       this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
1929 
1930       this->dynamic_section_->add_output_section_data(this->dynamic_data_);
1931     }
1932 }
1933 
1934 // For each output section whose name can be represented as C symbol,
1935 // define __start and __stop symbols for the section.  This is a GNU
1936 // extension.
1937 
1938 void
1939 Layout::define_section_symbols(Symbol_table* symtab)
1940 {
1941   for (Section_list::const_iterator p = this->section_list_.begin();
1942        p != this->section_list_.end();
1943        ++p)
1944     {
1945       const char* const name = (*p)->name();
1946       if (is_cident(name))
1947 	{
1948 	  const std::string name_string(name);
1949 	  const std::string start_name(cident_section_start_prefix
1950 				       + name_string);
1951 	  const std::string stop_name(cident_section_stop_prefix
1952 				      + name_string);
1953 
1954 	  symtab->define_in_output_data(start_name.c_str(),
1955 					NULL, // version
1956 					Symbol_table::PREDEFINED,
1957 					*p,
1958 					0, // value
1959 					0, // symsize
1960 					elfcpp::STT_NOTYPE,
1961 					elfcpp::STB_GLOBAL,
1962 					elfcpp::STV_DEFAULT,
1963 					0, // nonvis
1964 					false, // offset_is_from_end
1965 					true); // only_if_ref
1966 
1967 	  symtab->define_in_output_data(stop_name.c_str(),
1968 					NULL, // version
1969 					Symbol_table::PREDEFINED,
1970 					*p,
1971 					0, // value
1972 					0, // symsize
1973 					elfcpp::STT_NOTYPE,
1974 					elfcpp::STB_GLOBAL,
1975 					elfcpp::STV_DEFAULT,
1976 					0, // nonvis
1977 					true, // offset_is_from_end
1978 					true); // only_if_ref
1979 	}
1980     }
1981 }
1982 
1983 // Define symbols for group signatures.
1984 
1985 void
1986 Layout::define_group_signatures(Symbol_table* symtab)
1987 {
1988   for (Group_signatures::iterator p = this->group_signatures_.begin();
1989        p != this->group_signatures_.end();
1990        ++p)
1991     {
1992       Symbol* sym = symtab->lookup(p->signature, NULL);
1993       if (sym != NULL)
1994 	p->section->set_info_symndx(sym);
1995       else
1996 	{
1997 	  // Force the name of the group section to the group
1998 	  // signature, and use the group's section symbol as the
1999 	  // signature symbol.
2000 	  if (strcmp(p->section->name(), p->signature) != 0)
2001 	    {
2002 	      const char* name = this->namepool_.add(p->signature,
2003 						     true, NULL);
2004 	      p->section->set_name(name);
2005 	    }
2006 	  p->section->set_needs_symtab_index();
2007 	  p->section->set_info_section_symndx(p->section);
2008 	}
2009     }
2010 
2011   this->group_signatures_.clear();
2012 }
2013 
2014 // Find the first read-only PT_LOAD segment, creating one if
2015 // necessary.
2016 
2017 Output_segment*
2018 Layout::find_first_load_seg(const Target* target)
2019 {
2020   Output_segment* best = NULL;
2021   for (Segment_list::const_iterator p = this->segment_list_.begin();
2022        p != this->segment_list_.end();
2023        ++p)
2024     {
2025       if ((*p)->type() == elfcpp::PT_LOAD
2026 	  && ((*p)->flags() & elfcpp::PF_R) != 0
2027 	  && (parameters->options().omagic()
2028 	      || ((*p)->flags() & elfcpp::PF_W) == 0)
2029 	  && (!target->isolate_execinstr()
2030 	      || ((*p)->flags() & elfcpp::PF_X) == 0))
2031 	{
2032 	  if (best == NULL || this->segment_precedes(*p, best))
2033 	    best = *p;
2034 	}
2035     }
2036   if (best != NULL)
2037     return best;
2038 
2039   gold_assert(!this->script_options_->saw_phdrs_clause());
2040 
2041   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
2042 						       elfcpp::PF_R);
2043   return load_seg;
2044 }
2045 
2046 // Save states of all current output segments.  Store saved states
2047 // in SEGMENT_STATES.
2048 
2049 void
2050 Layout::save_segments(Segment_states* segment_states)
2051 {
2052   for (Segment_list::const_iterator p = this->segment_list_.begin();
2053        p != this->segment_list_.end();
2054        ++p)
2055     {
2056       Output_segment* segment = *p;
2057       // Shallow copy.
2058       Output_segment* copy = new Output_segment(*segment);
2059       (*segment_states)[segment] = copy;
2060     }
2061 }
2062 
2063 // Restore states of output segments and delete any segment not found in
2064 // SEGMENT_STATES.
2065 
2066 void
2067 Layout::restore_segments(const Segment_states* segment_states)
2068 {
2069   // Go through the segment list and remove any segment added in the
2070   // relaxation loop.
2071   this->tls_segment_ = NULL;
2072   this->relro_segment_ = NULL;
2073   Segment_list::iterator list_iter = this->segment_list_.begin();
2074   while (list_iter != this->segment_list_.end())
2075     {
2076       Output_segment* segment = *list_iter;
2077       Segment_states::const_iterator states_iter =
2078 	  segment_states->find(segment);
2079       if (states_iter != segment_states->end())
2080 	{
2081 	  const Output_segment* copy = states_iter->second;
2082 	  // Shallow copy to restore states.
2083 	  *segment = *copy;
2084 
2085 	  // Also fix up TLS and RELRO segment pointers as appropriate.
2086 	  if (segment->type() == elfcpp::PT_TLS)
2087 	    this->tls_segment_ = segment;
2088 	  else if (segment->type() == elfcpp::PT_GNU_RELRO)
2089 	    this->relro_segment_ = segment;
2090 
2091 	  ++list_iter;
2092 	}
2093       else
2094 	{
2095 	  list_iter = this->segment_list_.erase(list_iter);
2096 	  // This is a segment created during section layout.  It should be
2097 	  // safe to remove it since we should have removed all pointers to it.
2098 	  delete segment;
2099 	}
2100     }
2101 }
2102 
2103 // Clean up after relaxation so that sections can be laid out again.
2104 
2105 void
2106 Layout::clean_up_after_relaxation()
2107 {
2108   // Restore the segments to point state just prior to the relaxation loop.
2109   Script_sections* script_section = this->script_options_->script_sections();
2110   script_section->release_segments();
2111   this->restore_segments(this->segment_states_);
2112 
2113   // Reset section addresses and file offsets
2114   for (Section_list::iterator p = this->section_list_.begin();
2115        p != this->section_list_.end();
2116        ++p)
2117     {
2118       (*p)->restore_states();
2119 
2120       // If an input section changes size because of relaxation,
2121       // we need to adjust the section offsets of all input sections.
2122       // after such a section.
2123       if ((*p)->section_offsets_need_adjustment())
2124 	(*p)->adjust_section_offsets();
2125 
2126       (*p)->reset_address_and_file_offset();
2127     }
2128 
2129   // Reset special output object address and file offsets.
2130   for (Data_list::iterator p = this->special_output_list_.begin();
2131        p != this->special_output_list_.end();
2132        ++p)
2133     (*p)->reset_address_and_file_offset();
2134 
2135   // A linker script may have created some output section data objects.
2136   // They are useless now.
2137   for (Output_section_data_list::const_iterator p =
2138 	 this->script_output_section_data_list_.begin();
2139        p != this->script_output_section_data_list_.end();
2140        ++p)
2141     delete *p;
2142   this->script_output_section_data_list_.clear();
2143 }
2144 
2145 // Prepare for relaxation.
2146 
2147 void
2148 Layout::prepare_for_relaxation()
2149 {
2150   // Create an relaxation debug check if in debugging mode.
2151   if (is_debugging_enabled(DEBUG_RELAXATION))
2152     this->relaxation_debug_check_ = new Relaxation_debug_check();
2153 
2154   // Save segment states.
2155   this->segment_states_ = new Segment_states();
2156   this->save_segments(this->segment_states_);
2157 
2158   for(Section_list::const_iterator p = this->section_list_.begin();
2159       p != this->section_list_.end();
2160       ++p)
2161     (*p)->save_states();
2162 
2163   if (is_debugging_enabled(DEBUG_RELAXATION))
2164     this->relaxation_debug_check_->check_output_data_for_reset_values(
2165 	this->section_list_, this->special_output_list_);
2166 
2167   // Also enable recording of output section data from scripts.
2168   this->record_output_section_data_from_script_ = true;
2169 }
2170 
2171 // Relaxation loop body:  If target has no relaxation, this runs only once
2172 // Otherwise, the target relaxation hook is called at the end of
2173 // each iteration.  If the hook returns true, it means re-layout of
2174 // section is required.
2175 //
2176 // The number of segments created by a linking script without a PHDRS
2177 // clause may be affected by section sizes and alignments.  There is
2178 // a remote chance that relaxation causes different number of PT_LOAD
2179 // segments are created and sections are attached to different segments.
2180 // Therefore, we always throw away all segments created during section
2181 // layout.  In order to be able to restart the section layout, we keep
2182 // a copy of the segment list right before the relaxation loop and use
2183 // that to restore the segments.
2184 //
2185 // PASS is the current relaxation pass number.
2186 // SYMTAB is a symbol table.
2187 // PLOAD_SEG is the address of a pointer for the load segment.
2188 // PHDR_SEG is a pointer to the PHDR segment.
2189 // SEGMENT_HEADERS points to the output segment header.
2190 // FILE_HEADER points to the output file header.
2191 // PSHNDX is the address to store the output section index.
2192 
2193 off_t inline
2194 Layout::relaxation_loop_body(
2195     int pass,
2196     Target* target,
2197     Symbol_table* symtab,
2198     Output_segment** pload_seg,
2199     Output_segment* phdr_seg,
2200     Output_segment_headers* segment_headers,
2201     Output_file_header* file_header,
2202     unsigned int* pshndx)
2203 {
2204   // If this is not the first iteration, we need to clean up after
2205   // relaxation so that we can lay out the sections again.
2206   if (pass != 0)
2207     this->clean_up_after_relaxation();
2208 
2209   // If there is a SECTIONS clause, put all the input sections into
2210   // the required order.
2211   Output_segment* load_seg;
2212   if (this->script_options_->saw_sections_clause())
2213     load_seg = this->set_section_addresses_from_script(symtab);
2214   else if (parameters->options().relocatable())
2215     load_seg = NULL;
2216   else
2217     load_seg = this->find_first_load_seg(target);
2218 
2219   if (parameters->options().oformat_enum()
2220       != General_options::OBJECT_FORMAT_ELF)
2221     load_seg = NULL;
2222 
2223   // If the user set the address of the text segment, that may not be
2224   // compatible with putting the segment headers and file headers into
2225   // that segment.
2226   if (parameters->options().user_set_Ttext()
2227       && parameters->options().Ttext() % target->common_pagesize() != 0)
2228     {
2229       load_seg = NULL;
2230       phdr_seg = NULL;
2231     }
2232 
2233   gold_assert(phdr_seg == NULL
2234 	      || load_seg != NULL
2235 	      || this->script_options_->saw_sections_clause());
2236 
2237   // If the address of the load segment we found has been set by
2238   // --section-start rather than by a script, then adjust the VMA and
2239   // LMA downward if possible to include the file and section headers.
2240   uint64_t header_gap = 0;
2241   if (load_seg != NULL
2242       && load_seg->are_addresses_set()
2243       && !this->script_options_->saw_sections_clause()
2244       && !parameters->options().relocatable())
2245     {
2246       file_header->finalize_data_size();
2247       segment_headers->finalize_data_size();
2248       size_t sizeof_headers = (file_header->data_size()
2249 			       + segment_headers->data_size());
2250       const uint64_t abi_pagesize = target->abi_pagesize();
2251       uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2252       hdr_paddr &= ~(abi_pagesize - 1);
2253       uint64_t subtract = load_seg->paddr() - hdr_paddr;
2254       if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2255 	load_seg = NULL;
2256       else
2257 	{
2258 	  load_seg->set_addresses(load_seg->vaddr() - subtract,
2259 				  load_seg->paddr() - subtract);
2260 	  header_gap = subtract - sizeof_headers;
2261 	}
2262     }
2263 
2264   // Lay out the segment headers.
2265   if (!parameters->options().relocatable())
2266     {
2267       gold_assert(segment_headers != NULL);
2268       if (header_gap != 0 && load_seg != NULL)
2269 	{
2270 	  Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2271 	  load_seg->add_initial_output_data(z);
2272 	}
2273       if (load_seg != NULL)
2274 	load_seg->add_initial_output_data(segment_headers);
2275       if (phdr_seg != NULL)
2276 	phdr_seg->add_initial_output_data(segment_headers);
2277     }
2278 
2279   // Lay out the file header.
2280   if (load_seg != NULL)
2281     load_seg->add_initial_output_data(file_header);
2282 
2283   if (this->script_options_->saw_phdrs_clause()
2284       && !parameters->options().relocatable())
2285     {
2286       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2287       // clause in a linker script.
2288       Script_sections* ss = this->script_options_->script_sections();
2289       ss->put_headers_in_phdrs(file_header, segment_headers);
2290     }
2291 
2292   // We set the output section indexes in set_segment_offsets and
2293   // set_section_indexes.
2294   *pshndx = 1;
2295 
2296   // Set the file offsets of all the segments, and all the sections
2297   // they contain.
2298   off_t off;
2299   if (!parameters->options().relocatable())
2300     off = this->set_segment_offsets(target, load_seg, pshndx);
2301   else
2302     off = this->set_relocatable_section_offsets(file_header, pshndx);
2303 
2304    // Verify that the dummy relaxation does not change anything.
2305   if (is_debugging_enabled(DEBUG_RELAXATION))
2306     {
2307       if (pass == 0)
2308 	this->relaxation_debug_check_->read_sections(this->section_list_);
2309       else
2310 	this->relaxation_debug_check_->verify_sections(this->section_list_);
2311     }
2312 
2313   *pload_seg = load_seg;
2314   return off;
2315 }
2316 
2317 // Search the list of patterns and find the postion of the given section
2318 // name in the output section.  If the section name matches a glob
2319 // pattern and a non-glob name, then the non-glob position takes
2320 // precedence.  Return 0 if no match is found.
2321 
2322 unsigned int
2323 Layout::find_section_order_index(const std::string& section_name)
2324 {
2325   Unordered_map<std::string, unsigned int>::iterator map_it;
2326   map_it = this->input_section_position_.find(section_name);
2327   if (map_it != this->input_section_position_.end())
2328     return map_it->second;
2329 
2330   // Absolute match failed.  Linear search the glob patterns.
2331   std::vector<std::string>::iterator it;
2332   for (it = this->input_section_glob_.begin();
2333        it != this->input_section_glob_.end();
2334        ++it)
2335     {
2336        if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2337 	 {
2338 	   map_it = this->input_section_position_.find(*it);
2339 	   gold_assert(map_it != this->input_section_position_.end());
2340 	   return map_it->second;
2341 	 }
2342     }
2343   return 0;
2344 }
2345 
2346 // Read the sequence of input sections from the file specified with
2347 // option --section-ordering-file.
2348 
2349 void
2350 Layout::read_layout_from_file()
2351 {
2352   const char* filename = parameters->options().section_ordering_file();
2353   std::ifstream in;
2354   std::string line;
2355 
2356   in.open(filename);
2357   if (!in)
2358     gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2359 	       filename, strerror(errno));
2360 
2361   std::getline(in, line);   // this chops off the trailing \n, if any
2362   unsigned int position = 1;
2363   this->set_section_ordering_specified();
2364 
2365   while (in)
2366     {
2367       if (!line.empty() && line[line.length() - 1] == '\r')   // Windows
2368 	line.resize(line.length() - 1);
2369       // Ignore comments, beginning with '#'
2370       if (line[0] == '#')
2371 	{
2372 	  std::getline(in, line);
2373 	  continue;
2374 	}
2375       this->input_section_position_[line] = position;
2376       // Store all glob patterns in a vector.
2377       if (is_wildcard_string(line.c_str()))
2378 	this->input_section_glob_.push_back(line);
2379       position++;
2380       std::getline(in, line);
2381     }
2382 }
2383 
2384 // Finalize the layout.  When this is called, we have created all the
2385 // output sections and all the output segments which are based on
2386 // input sections.  We have several things to do, and we have to do
2387 // them in the right order, so that we get the right results correctly
2388 // and efficiently.
2389 
2390 // 1) Finalize the list of output segments and create the segment
2391 // table header.
2392 
2393 // 2) Finalize the dynamic symbol table and associated sections.
2394 
2395 // 3) Determine the final file offset of all the output segments.
2396 
2397 // 4) Determine the final file offset of all the SHF_ALLOC output
2398 // sections.
2399 
2400 // 5) Create the symbol table sections and the section name table
2401 // section.
2402 
2403 // 6) Finalize the symbol table: set symbol values to their final
2404 // value and make a final determination of which symbols are going
2405 // into the output symbol table.
2406 
2407 // 7) Create the section table header.
2408 
2409 // 8) Determine the final file offset of all the output sections which
2410 // are not SHF_ALLOC, including the section table header.
2411 
2412 // 9) Finalize the ELF file header.
2413 
2414 // This function returns the size of the output file.
2415 
2416 off_t
2417 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2418 		 Target* target, const Task* task)
2419 {
2420   target->finalize_sections(this, input_objects, symtab);
2421 
2422   this->count_local_symbols(task, input_objects);
2423 
2424   this->link_stabs_sections();
2425 
2426   Output_segment* phdr_seg = NULL;
2427   if (!parameters->options().relocatable() && !parameters->doing_static_link())
2428     {
2429       // There was a dynamic object in the link.  We need to create
2430       // some information for the dynamic linker.
2431 
2432       // Create the PT_PHDR segment which will hold the program
2433       // headers.
2434       if (!this->script_options_->saw_phdrs_clause())
2435 	phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2436 
2437       // Create the dynamic symbol table, including the hash table.
2438       Output_section* dynstr;
2439       std::vector<Symbol*> dynamic_symbols;
2440       unsigned int local_dynamic_count;
2441       Versions versions(*this->script_options()->version_script_info(),
2442 			&this->dynpool_);
2443       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2444 				  &local_dynamic_count, &dynamic_symbols,
2445 				  &versions);
2446 
2447       // Create the .interp section to hold the name of the
2448       // interpreter, and put it in a PT_INTERP segment.  Don't do it
2449       // if we saw a .interp section in an input file.
2450       if ((!parameters->options().shared()
2451 	   || parameters->options().dynamic_linker() != NULL)
2452 	  && this->interp_segment_ == NULL)
2453 	this->create_interp(target);
2454 
2455       // Finish the .dynamic section to hold the dynamic data, and put
2456       // it in a PT_DYNAMIC segment.
2457       this->finish_dynamic_section(input_objects, symtab);
2458 
2459       // We should have added everything we need to the dynamic string
2460       // table.
2461       this->dynpool_.set_string_offsets();
2462 
2463       // Create the version sections.  We can't do this until the
2464       // dynamic string table is complete.
2465       this->create_version_sections(&versions, symtab, local_dynamic_count,
2466 				    dynamic_symbols, dynstr);
2467 
2468       // Set the size of the _DYNAMIC symbol.  We can't do this until
2469       // after we call create_version_sections.
2470       this->set_dynamic_symbol_size(symtab);
2471     }
2472 
2473   // Create segment headers.
2474   Output_segment_headers* segment_headers =
2475     (parameters->options().relocatable()
2476      ? NULL
2477      : new Output_segment_headers(this->segment_list_));
2478 
2479   // Lay out the file header.
2480   Output_file_header* file_header = new Output_file_header(target, symtab,
2481 							   segment_headers);
2482 
2483   this->special_output_list_.push_back(file_header);
2484   if (segment_headers != NULL)
2485     this->special_output_list_.push_back(segment_headers);
2486 
2487   // Find approriate places for orphan output sections if we are using
2488   // a linker script.
2489   if (this->script_options_->saw_sections_clause())
2490     this->place_orphan_sections_in_script();
2491 
2492   Output_segment* load_seg;
2493   off_t off;
2494   unsigned int shndx;
2495   int pass = 0;
2496 
2497   // Take a snapshot of the section layout as needed.
2498   if (target->may_relax())
2499     this->prepare_for_relaxation();
2500 
2501   // Run the relaxation loop to lay out sections.
2502   do
2503     {
2504       off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2505 				       phdr_seg, segment_headers, file_header,
2506 				       &shndx);
2507       pass++;
2508     }
2509   while (target->may_relax()
2510 	 && target->relax(pass, input_objects, symtab, this, task));
2511 
2512   // If there is a load segment that contains the file and program headers,
2513   // provide a symbol __ehdr_start pointing there.
2514   // A program can use this to examine itself robustly.
2515   if (load_seg != NULL)
2516     symtab->define_in_output_segment("__ehdr_start", NULL,
2517 				     Symbol_table::PREDEFINED, load_seg, 0, 0,
2518 				     elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2519 				     elfcpp::STV_DEFAULT, 0,
2520 				     Symbol::SEGMENT_START, true);
2521 
2522   // Set the file offsets of all the non-data sections we've seen so
2523   // far which don't have to wait for the input sections.  We need
2524   // this in order to finalize local symbols in non-allocated
2525   // sections.
2526   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2527 
2528   // Set the section indexes of all unallocated sections seen so far,
2529   // in case any of them are somehow referenced by a symbol.
2530   shndx = this->set_section_indexes(shndx);
2531 
2532   // Create the symbol table sections.
2533   this->create_symtab_sections(input_objects, symtab, shndx, &off);
2534   if (!parameters->doing_static_link())
2535     this->assign_local_dynsym_offsets(input_objects);
2536 
2537   // Process any symbol assignments from a linker script.  This must
2538   // be called after the symbol table has been finalized.
2539   this->script_options_->finalize_symbols(symtab, this);
2540 
2541   // Create the incremental inputs sections.
2542   if (this->incremental_inputs_)
2543     {
2544       this->incremental_inputs_->finalize();
2545       this->create_incremental_info_sections(symtab);
2546     }
2547 
2548   // Create the .shstrtab section.
2549   Output_section* shstrtab_section = this->create_shstrtab();
2550 
2551   // Set the file offsets of the rest of the non-data sections which
2552   // don't have to wait for the input sections.
2553   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2554 
2555   // Now that all sections have been created, set the section indexes
2556   // for any sections which haven't been done yet.
2557   shndx = this->set_section_indexes(shndx);
2558 
2559   // Create the section table header.
2560   this->create_shdrs(shstrtab_section, &off);
2561 
2562   // If there are no sections which require postprocessing, we can
2563   // handle the section names now, and avoid a resize later.
2564   if (!this->any_postprocessing_sections_)
2565     {
2566       off = this->set_section_offsets(off,
2567 				      POSTPROCESSING_SECTIONS_PASS);
2568       off =
2569 	  this->set_section_offsets(off,
2570 				    STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2571     }
2572 
2573   file_header->set_section_info(this->section_headers_, shstrtab_section);
2574 
2575   // Now we know exactly where everything goes in the output file
2576   // (except for non-allocated sections which require postprocessing).
2577   Output_data::layout_complete();
2578 
2579   this->output_file_size_ = off;
2580 
2581   return off;
2582 }
2583 
2584 // Create a note header following the format defined in the ELF ABI.
2585 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2586 // of the section to create, DESCSZ is the size of the descriptor.
2587 // ALLOCATE is true if the section should be allocated in memory.
2588 // This returns the new note section.  It sets *TRAILING_PADDING to
2589 // the number of trailing zero bytes required.
2590 
2591 Output_section*
2592 Layout::create_note(const char* name, int note_type,
2593 		    const char* section_name, size_t descsz,
2594 		    bool allocate, size_t* trailing_padding)
2595 {
2596   // Authorities all agree that the values in a .note field should
2597   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
2598   // they differ on what the alignment is for 64-bit binaries.
2599   // The GABI says unambiguously they take 8-byte alignment:
2600   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2601   // Other documentation says alignment should always be 4 bytes:
2602   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2603   // GNU ld and GNU readelf both support the latter (at least as of
2604   // version 2.16.91), and glibc always generates the latter for
2605   // .note.ABI-tag (as of version 1.6), so that's the one we go with
2606   // here.
2607 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
2608   const int size = parameters->target().get_size();
2609 #else
2610   const int size = 32;
2611 #endif
2612 
2613   // The contents of the .note section.
2614   size_t namesz = strlen(name) + 1;
2615   size_t aligned_namesz = align_address(namesz, size / 8);
2616   size_t aligned_descsz = align_address(descsz, size / 8);
2617 
2618   size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2619 
2620   unsigned char* buffer = new unsigned char[notehdrsz];
2621   memset(buffer, 0, notehdrsz);
2622 
2623   bool is_big_endian = parameters->target().is_big_endian();
2624 
2625   if (size == 32)
2626     {
2627       if (!is_big_endian)
2628 	{
2629 	  elfcpp::Swap<32, false>::writeval(buffer, namesz);
2630 	  elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2631 	  elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2632 	}
2633       else
2634 	{
2635 	  elfcpp::Swap<32, true>::writeval(buffer, namesz);
2636 	  elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2637 	  elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2638 	}
2639     }
2640   else if (size == 64)
2641     {
2642       if (!is_big_endian)
2643 	{
2644 	  elfcpp::Swap<64, false>::writeval(buffer, namesz);
2645 	  elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2646 	  elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2647 	}
2648       else
2649 	{
2650 	  elfcpp::Swap<64, true>::writeval(buffer, namesz);
2651 	  elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2652 	  elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2653 	}
2654     }
2655   else
2656     gold_unreachable();
2657 
2658   memcpy(buffer + 3 * (size / 8), name, namesz);
2659 
2660   elfcpp::Elf_Xword flags = 0;
2661   Output_section_order order = ORDER_INVALID;
2662   if (allocate)
2663     {
2664       flags = elfcpp::SHF_ALLOC;
2665       order = ORDER_RO_NOTE;
2666     }
2667   Output_section* os = this->choose_output_section(NULL, section_name,
2668 						   elfcpp::SHT_NOTE,
2669 						   flags, false, order, false);
2670   if (os == NULL)
2671     return NULL;
2672 
2673   Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2674 							   size / 8,
2675 							   "** note header");
2676   os->add_output_section_data(posd);
2677 
2678   *trailing_padding = aligned_descsz - descsz;
2679 
2680   return os;
2681 }
2682 
2683 // For an executable or shared library, create a note to record the
2684 // version of gold used to create the binary.
2685 
2686 void
2687 Layout::create_gold_note()
2688 {
2689   if (parameters->options().relocatable()
2690       || parameters->incremental_update())
2691     return;
2692 
2693   std::string desc = std::string("gold ") + gold::get_version_string();
2694 
2695   size_t trailing_padding;
2696   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2697 					 ".note.gnu.gold-version", desc.size(),
2698 					 false, &trailing_padding);
2699   if (os == NULL)
2700     return;
2701 
2702   Output_section_data* posd = new Output_data_const(desc, 4);
2703   os->add_output_section_data(posd);
2704 
2705   if (trailing_padding > 0)
2706     {
2707       posd = new Output_data_zero_fill(trailing_padding, 0);
2708       os->add_output_section_data(posd);
2709     }
2710 }
2711 
2712 // Record whether the stack should be executable.  This can be set
2713 // from the command line using the -z execstack or -z noexecstack
2714 // options.  Otherwise, if any input file has a .note.GNU-stack
2715 // section with the SHF_EXECINSTR flag set, the stack should be
2716 // executable.  Otherwise, if at least one input file a
2717 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2718 // section, we use the target default for whether the stack should be
2719 // executable.  Otherwise, we don't generate a stack note.  When
2720 // generating a object file, we create a .note.GNU-stack section with
2721 // the appropriate marking.  When generating an executable or shared
2722 // library, we create a PT_GNU_STACK segment.
2723 
2724 void
2725 Layout::create_executable_stack_info()
2726 {
2727   bool is_stack_executable;
2728   if (parameters->options().is_execstack_set())
2729     is_stack_executable = parameters->options().is_stack_executable();
2730   else if (!this->input_with_gnu_stack_note_)
2731     return;
2732   else
2733     {
2734       if (this->input_requires_executable_stack_)
2735 	is_stack_executable = true;
2736       else if (this->input_without_gnu_stack_note_)
2737 	is_stack_executable =
2738 	  parameters->target().is_default_stack_executable();
2739       else
2740 	is_stack_executable = false;
2741     }
2742 
2743   if (parameters->options().relocatable())
2744     {
2745       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
2746       elfcpp::Elf_Xword flags = 0;
2747       if (is_stack_executable)
2748 	flags |= elfcpp::SHF_EXECINSTR;
2749       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
2750 				ORDER_INVALID, false);
2751     }
2752   else
2753     {
2754       if (this->script_options_->saw_phdrs_clause())
2755 	return;
2756       int flags = elfcpp::PF_R | elfcpp::PF_W;
2757       if (is_stack_executable)
2758 	flags |= elfcpp::PF_X;
2759       this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
2760     }
2761 }
2762 
2763 // If --build-id was used, set up the build ID note.
2764 
2765 void
2766 Layout::create_build_id()
2767 {
2768   if (!parameters->options().user_set_build_id())
2769     return;
2770 
2771   const char* style = parameters->options().build_id();
2772   if (strcmp(style, "none") == 0)
2773     return;
2774 
2775   // Set DESCSZ to the size of the note descriptor.  When possible,
2776   // set DESC to the note descriptor contents.
2777   size_t descsz;
2778   std::string desc;
2779   if (strcmp(style, "md5") == 0)
2780     descsz = 128 / 8;
2781   else if (strcmp(style, "sha1") == 0)
2782     descsz = 160 / 8;
2783   else if (strcmp(style, "uuid") == 0)
2784     {
2785       const size_t uuidsz = 128 / 8;
2786 
2787       char buffer[uuidsz];
2788       memset(buffer, 0, uuidsz);
2789 
2790       int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
2791       if (descriptor < 0)
2792 	gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
2793 		   strerror(errno));
2794       else
2795 	{
2796 	  ssize_t got = ::read(descriptor, buffer, uuidsz);
2797 	  release_descriptor(descriptor, true);
2798 	  if (got < 0)
2799 	    gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
2800 	  else if (static_cast<size_t>(got) != uuidsz)
2801 	    gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
2802 		       uuidsz, got);
2803 	}
2804 
2805       desc.assign(buffer, uuidsz);
2806       descsz = uuidsz;
2807     }
2808   else if (strncmp(style, "0x", 2) == 0)
2809     {
2810       hex_init();
2811       const char* p = style + 2;
2812       while (*p != '\0')
2813 	{
2814 	  if (hex_p(p[0]) && hex_p(p[1]))
2815 	    {
2816 	      char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
2817 	      desc += c;
2818 	      p += 2;
2819 	    }
2820 	  else if (*p == '-' || *p == ':')
2821 	    ++p;
2822 	  else
2823 	    gold_fatal(_("--build-id argument '%s' not a valid hex number"),
2824 		       style);
2825 	}
2826       descsz = desc.size();
2827     }
2828   else
2829     gold_fatal(_("unrecognized --build-id argument '%s'"), style);
2830 
2831   // Create the note.
2832   size_t trailing_padding;
2833   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
2834 					 ".note.gnu.build-id", descsz, true,
2835 					 &trailing_padding);
2836   if (os == NULL)
2837     return;
2838 
2839   if (!desc.empty())
2840     {
2841       // We know the value already, so we fill it in now.
2842       gold_assert(desc.size() == descsz);
2843 
2844       Output_section_data* posd = new Output_data_const(desc, 4);
2845       os->add_output_section_data(posd);
2846 
2847       if (trailing_padding != 0)
2848 	{
2849 	  posd = new Output_data_zero_fill(trailing_padding, 0);
2850 	  os->add_output_section_data(posd);
2851 	}
2852     }
2853   else
2854     {
2855       // We need to compute a checksum after we have completed the
2856       // link.
2857       gold_assert(trailing_padding == 0);
2858       this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
2859       os->add_output_section_data(this->build_id_note_);
2860     }
2861 }
2862 
2863 // If we have both .stabXX and .stabXXstr sections, then the sh_link
2864 // field of the former should point to the latter.  I'm not sure who
2865 // started this, but the GNU linker does it, and some tools depend
2866 // upon it.
2867 
2868 void
2869 Layout::link_stabs_sections()
2870 {
2871   if (!this->have_stabstr_section_)
2872     return;
2873 
2874   for (Section_list::iterator p = this->section_list_.begin();
2875        p != this->section_list_.end();
2876        ++p)
2877     {
2878       if ((*p)->type() != elfcpp::SHT_STRTAB)
2879 	continue;
2880 
2881       const char* name = (*p)->name();
2882       if (strncmp(name, ".stab", 5) != 0)
2883 	continue;
2884 
2885       size_t len = strlen(name);
2886       if (strcmp(name + len - 3, "str") != 0)
2887 	continue;
2888 
2889       std::string stab_name(name, len - 3);
2890       Output_section* stab_sec;
2891       stab_sec = this->find_output_section(stab_name.c_str());
2892       if (stab_sec != NULL)
2893 	stab_sec->set_link_section(*p);
2894     }
2895 }
2896 
2897 // Create .gnu_incremental_inputs and related sections needed
2898 // for the next run of incremental linking to check what has changed.
2899 
2900 void
2901 Layout::create_incremental_info_sections(Symbol_table* symtab)
2902 {
2903   Incremental_inputs* incr = this->incremental_inputs_;
2904 
2905   gold_assert(incr != NULL);
2906 
2907   // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
2908   incr->create_data_sections(symtab);
2909 
2910   // Add the .gnu_incremental_inputs section.
2911   const char* incremental_inputs_name =
2912     this->namepool_.add(".gnu_incremental_inputs", false, NULL);
2913   Output_section* incremental_inputs_os =
2914     this->make_output_section(incremental_inputs_name,
2915 			      elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
2916 			      ORDER_INVALID, false);
2917   incremental_inputs_os->add_output_section_data(incr->inputs_section());
2918 
2919   // Add the .gnu_incremental_symtab section.
2920   const char* incremental_symtab_name =
2921     this->namepool_.add(".gnu_incremental_symtab", false, NULL);
2922   Output_section* incremental_symtab_os =
2923     this->make_output_section(incremental_symtab_name,
2924 			      elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
2925 			      ORDER_INVALID, false);
2926   incremental_symtab_os->add_output_section_data(incr->symtab_section());
2927   incremental_symtab_os->set_entsize(4);
2928 
2929   // Add the .gnu_incremental_relocs section.
2930   const char* incremental_relocs_name =
2931     this->namepool_.add(".gnu_incremental_relocs", false, NULL);
2932   Output_section* incremental_relocs_os =
2933     this->make_output_section(incremental_relocs_name,
2934 			      elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
2935 			      ORDER_INVALID, false);
2936   incremental_relocs_os->add_output_section_data(incr->relocs_section());
2937   incremental_relocs_os->set_entsize(incr->relocs_entsize());
2938 
2939   // Add the .gnu_incremental_got_plt section.
2940   const char* incremental_got_plt_name =
2941     this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
2942   Output_section* incremental_got_plt_os =
2943     this->make_output_section(incremental_got_plt_name,
2944 			      elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
2945 			      ORDER_INVALID, false);
2946   incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
2947 
2948   // Add the .gnu_incremental_strtab section.
2949   const char* incremental_strtab_name =
2950     this->namepool_.add(".gnu_incremental_strtab", false, NULL);
2951   Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
2952 							elfcpp::SHT_STRTAB, 0,
2953 							ORDER_INVALID, false);
2954   Output_data_strtab* strtab_data =
2955       new Output_data_strtab(incr->get_stringpool());
2956   incremental_strtab_os->add_output_section_data(strtab_data);
2957 
2958   incremental_inputs_os->set_after_input_sections();
2959   incremental_symtab_os->set_after_input_sections();
2960   incremental_relocs_os->set_after_input_sections();
2961   incremental_got_plt_os->set_after_input_sections();
2962 
2963   incremental_inputs_os->set_link_section(incremental_strtab_os);
2964   incremental_symtab_os->set_link_section(incremental_inputs_os);
2965   incremental_relocs_os->set_link_section(incremental_inputs_os);
2966   incremental_got_plt_os->set_link_section(incremental_inputs_os);
2967 }
2968 
2969 // Return whether SEG1 should be before SEG2 in the output file.  This
2970 // is based entirely on the segment type and flags.  When this is
2971 // called the segment addresses have normally not yet been set.
2972 
2973 bool
2974 Layout::segment_precedes(const Output_segment* seg1,
2975 			 const Output_segment* seg2)
2976 {
2977   elfcpp::Elf_Word type1 = seg1->type();
2978   elfcpp::Elf_Word type2 = seg2->type();
2979 
2980   // The single PT_PHDR segment is required to precede any loadable
2981   // segment.  We simply make it always first.
2982   if (type1 == elfcpp::PT_PHDR)
2983     {
2984       gold_assert(type2 != elfcpp::PT_PHDR);
2985       return true;
2986     }
2987   if (type2 == elfcpp::PT_PHDR)
2988     return false;
2989 
2990   // The single PT_INTERP segment is required to precede any loadable
2991   // segment.  We simply make it always second.
2992   if (type1 == elfcpp::PT_INTERP)
2993     {
2994       gold_assert(type2 != elfcpp::PT_INTERP);
2995       return true;
2996     }
2997   if (type2 == elfcpp::PT_INTERP)
2998     return false;
2999 
3000   // We then put PT_LOAD segments before any other segments.
3001   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
3002     return true;
3003   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
3004     return false;
3005 
3006   // We put the PT_TLS segment last except for the PT_GNU_RELRO
3007   // segment, because that is where the dynamic linker expects to find
3008   // it (this is just for efficiency; other positions would also work
3009   // correctly).
3010   if (type1 == elfcpp::PT_TLS
3011       && type2 != elfcpp::PT_TLS
3012       && type2 != elfcpp::PT_GNU_RELRO)
3013     return false;
3014   if (type2 == elfcpp::PT_TLS
3015       && type1 != elfcpp::PT_TLS
3016       && type1 != elfcpp::PT_GNU_RELRO)
3017     return true;
3018 
3019   // We put the PT_GNU_RELRO segment last, because that is where the
3020   // dynamic linker expects to find it (as with PT_TLS, this is just
3021   // for efficiency).
3022   if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
3023     return false;
3024   if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
3025     return true;
3026 
3027   const elfcpp::Elf_Word flags1 = seg1->flags();
3028   const elfcpp::Elf_Word flags2 = seg2->flags();
3029 
3030   // The order of non-PT_LOAD segments is unimportant.  We simply sort
3031   // by the numeric segment type and flags values.  There should not
3032   // be more than one segment with the same type and flags.
3033   if (type1 != elfcpp::PT_LOAD)
3034     {
3035       if (type1 != type2)
3036 	return type1 < type2;
3037       gold_assert(flags1 != flags2);
3038       return flags1 < flags2;
3039     }
3040 
3041   // If the addresses are set already, sort by load address.
3042   if (seg1->are_addresses_set())
3043     {
3044       if (!seg2->are_addresses_set())
3045 	return true;
3046 
3047       unsigned int section_count1 = seg1->output_section_count();
3048       unsigned int section_count2 = seg2->output_section_count();
3049       if (section_count1 == 0 && section_count2 > 0)
3050 	return true;
3051       if (section_count1 > 0 && section_count2 == 0)
3052 	return false;
3053 
3054       uint64_t paddr1 =	(seg1->are_addresses_set()
3055 			 ? seg1->paddr()
3056 			 : seg1->first_section_load_address());
3057       uint64_t paddr2 =	(seg2->are_addresses_set()
3058 			 ? seg2->paddr()
3059 			 : seg2->first_section_load_address());
3060 
3061       if (paddr1 != paddr2)
3062 	return paddr1 < paddr2;
3063     }
3064   else if (seg2->are_addresses_set())
3065     return false;
3066 
3067   // A segment which holds large data comes after a segment which does
3068   // not hold large data.
3069   if (seg1->is_large_data_segment())
3070     {
3071       if (!seg2->is_large_data_segment())
3072 	return false;
3073     }
3074   else if (seg2->is_large_data_segment())
3075     return true;
3076 
3077   // Otherwise, we sort PT_LOAD segments based on the flags.  Readonly
3078   // segments come before writable segments.  Then writable segments
3079   // with data come before writable segments without data.  Then
3080   // executable segments come before non-executable segments.  Then
3081   // the unlikely case of a non-readable segment comes before the
3082   // normal case of a readable segment.  If there are multiple
3083   // segments with the same type and flags, we require that the
3084   // address be set, and we sort by virtual address and then physical
3085   // address.
3086   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
3087     return (flags1 & elfcpp::PF_W) == 0;
3088   if ((flags1 & elfcpp::PF_W) != 0
3089       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
3090     return seg1->has_any_data_sections();
3091   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
3092     return (flags1 & elfcpp::PF_X) != 0;
3093   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
3094     return (flags1 & elfcpp::PF_R) == 0;
3095 
3096   // We shouldn't get here--we shouldn't create segments which we
3097   // can't distinguish.  Unless of course we are using a weird linker
3098   // script or overlapping --section-start options.
3099   gold_assert(this->script_options_->saw_phdrs_clause()
3100 	      || parameters->options().any_section_start());
3101   return false;
3102 }
3103 
3104 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3105 
3106 static off_t
3107 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
3108 {
3109   uint64_t unsigned_off = off;
3110   uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
3111 			  | (addr & (abi_pagesize - 1)));
3112   if (aligned_off < unsigned_off)
3113     aligned_off += abi_pagesize;
3114   return aligned_off;
3115 }
3116 
3117 // Set the file offsets of all the segments, and all the sections they
3118 // contain.  They have all been created.  LOAD_SEG must be be laid out
3119 // first.  Return the offset of the data to follow.
3120 
3121 off_t
3122 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3123 			    unsigned int* pshndx)
3124 {
3125   // Sort them into the final order.  We use a stable sort so that we
3126   // don't randomize the order of indistinguishable segments created
3127   // by linker scripts.
3128   std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3129 		   Layout::Compare_segments(this));
3130 
3131   // Find the PT_LOAD segments, and set their addresses and offsets
3132   // and their section's addresses and offsets.
3133   uint64_t start_addr;
3134   if (parameters->options().user_set_Ttext())
3135     start_addr = parameters->options().Ttext();
3136   else if (parameters->options().output_is_position_independent())
3137     start_addr = 0;
3138   else
3139     start_addr = target->default_text_segment_address();
3140 
3141   uint64_t addr = start_addr;
3142   off_t off = 0;
3143 
3144   // If LOAD_SEG is NULL, then the file header and segment headers
3145   // will not be loadable.  But they still need to be at offset 0 in
3146   // the file.  Set their offsets now.
3147   if (load_seg == NULL)
3148     {
3149       for (Data_list::iterator p = this->special_output_list_.begin();
3150 	   p != this->special_output_list_.end();
3151 	   ++p)
3152 	{
3153 	  off = align_address(off, (*p)->addralign());
3154 	  (*p)->set_address_and_file_offset(0, off);
3155 	  off += (*p)->data_size();
3156 	}
3157     }
3158 
3159   unsigned int increase_relro = this->increase_relro_;
3160   if (this->script_options_->saw_sections_clause())
3161     increase_relro = 0;
3162 
3163   const bool check_sections = parameters->options().check_sections();
3164   Output_segment* last_load_segment = NULL;
3165 
3166   unsigned int shndx_begin = *pshndx;
3167   unsigned int shndx_load_seg = *pshndx;
3168 
3169   for (Segment_list::iterator p = this->segment_list_.begin();
3170        p != this->segment_list_.end();
3171        ++p)
3172     {
3173       if ((*p)->type() == elfcpp::PT_LOAD)
3174 	{
3175 	  if (target->isolate_execinstr())
3176 	    {
3177 	      // When we hit the segment that should contain the
3178 	      // file headers, reset the file offset so we place
3179 	      // it and subsequent segments appropriately.
3180 	      // We'll fix up the preceding segments below.
3181 	      if (load_seg == *p)
3182 		{
3183 		  if (off == 0)
3184 		    load_seg = NULL;
3185 		  else
3186 		    {
3187 		      off = 0;
3188 		      shndx_load_seg = *pshndx;
3189 		    }
3190 		}
3191 	    }
3192 	  else
3193 	    {
3194 	      // Verify that the file headers fall into the first segment.
3195 	      if (load_seg != NULL && load_seg != *p)
3196 		gold_unreachable();
3197 	      load_seg = NULL;
3198 	    }
3199 
3200 	  bool are_addresses_set = (*p)->are_addresses_set();
3201 	  if (are_addresses_set)
3202 	    {
3203 	      // When it comes to setting file offsets, we care about
3204 	      // the physical address.
3205 	      addr = (*p)->paddr();
3206 	    }
3207 	  else if (parameters->options().user_set_Ttext()
3208 		   && ((*p)->flags() & elfcpp::PF_W) == 0)
3209 	    {
3210 	      are_addresses_set = true;
3211 	    }
3212 	  else if (parameters->options().user_set_Tdata()
3213 		   && ((*p)->flags() & elfcpp::PF_W) != 0
3214 		   && (!parameters->options().user_set_Tbss()
3215 		       || (*p)->has_any_data_sections()))
3216 	    {
3217 	      addr = parameters->options().Tdata();
3218 	      are_addresses_set = true;
3219 	    }
3220 	  else if (parameters->options().user_set_Tbss()
3221 		   && ((*p)->flags() & elfcpp::PF_W) != 0
3222 		   && !(*p)->has_any_data_sections())
3223 	    {
3224 	      addr = parameters->options().Tbss();
3225 	      are_addresses_set = true;
3226 	    }
3227 
3228 	  uint64_t orig_addr = addr;
3229 	  uint64_t orig_off = off;
3230 
3231 	  uint64_t aligned_addr = 0;
3232 	  uint64_t abi_pagesize = target->abi_pagesize();
3233 	  uint64_t common_pagesize = target->common_pagesize();
3234 
3235 	  if (!parameters->options().nmagic()
3236 	      && !parameters->options().omagic())
3237 	    (*p)->set_minimum_p_align(common_pagesize);
3238 
3239 	  if (!are_addresses_set)
3240 	    {
3241 	      // Skip the address forward one page, maintaining the same
3242 	      // position within the page.  This lets us store both segments
3243 	      // overlapping on a single page in the file, but the loader will
3244 	      // put them on different pages in memory. We will revisit this
3245 	      // decision once we know the size of the segment.
3246 
3247 	      addr = align_address(addr, (*p)->maximum_alignment());
3248 	      aligned_addr = addr;
3249 
3250 	      if (load_seg == *p)
3251 		{
3252 		  // This is the segment that will contain the file
3253 		  // headers, so its offset will have to be exactly zero.
3254 		  gold_assert(orig_off == 0);
3255 
3256 		  // If the target wants a fixed minimum distance from the
3257 		  // text segment to the read-only segment, move up now.
3258 		  uint64_t min_addr = start_addr + target->rosegment_gap();
3259 		  if (addr < min_addr)
3260 		    addr = min_addr;
3261 
3262 		  // But this is not the first segment!  To make its
3263 		  // address congruent with its offset, that address better
3264 		  // be aligned to the ABI-mandated page size.
3265 		  addr = align_address(addr, abi_pagesize);
3266 		  aligned_addr = addr;
3267 		}
3268 	      else
3269 		{
3270 		  if ((addr & (abi_pagesize - 1)) != 0)
3271 		    addr = addr + abi_pagesize;
3272 
3273 		  off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3274 		}
3275 	    }
3276 
3277 	  if (!parameters->options().nmagic()
3278 	      && !parameters->options().omagic())
3279 	    off = align_file_offset(off, addr, abi_pagesize);
3280 	  else
3281 	    {
3282 	      // This is -N or -n with a section script which prevents
3283 	      // us from using a load segment.  We need to ensure that
3284 	      // the file offset is aligned to the alignment of the
3285 	      // segment.  This is because the linker script
3286 	      // implicitly assumed a zero offset.  If we don't align
3287 	      // here, then the alignment of the sections in the
3288 	      // linker script may not match the alignment of the
3289 	      // sections in the set_section_addresses call below,
3290 	      // causing an error about dot moving backward.
3291 	      off = align_address(off, (*p)->maximum_alignment());
3292 	    }
3293 
3294 	  unsigned int shndx_hold = *pshndx;
3295 	  bool has_relro = false;
3296 	  uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
3297 							  &increase_relro,
3298 							  &has_relro,
3299 							  &off, pshndx);
3300 
3301 	  // Now that we know the size of this segment, we may be able
3302 	  // to save a page in memory, at the cost of wasting some
3303 	  // file space, by instead aligning to the start of a new
3304 	  // page.  Here we use the real machine page size rather than
3305 	  // the ABI mandated page size.  If the segment has been
3306 	  // aligned so that the relro data ends at a page boundary,
3307 	  // we do not try to realign it.
3308 
3309 	  if (!are_addresses_set
3310 	      && !has_relro
3311 	      && aligned_addr != addr
3312 	      && !parameters->incremental())
3313 	    {
3314 	      uint64_t first_off = (common_pagesize
3315 				    - (aligned_addr
3316 				       & (common_pagesize - 1)));
3317 	      uint64_t last_off = new_addr & (common_pagesize - 1);
3318 	      if (first_off > 0
3319 		  && last_off > 0
3320 		  && ((aligned_addr & ~ (common_pagesize - 1))
3321 		      != (new_addr & ~ (common_pagesize - 1)))
3322 		  && first_off + last_off <= common_pagesize)
3323 		{
3324 		  *pshndx = shndx_hold;
3325 		  addr = align_address(aligned_addr, common_pagesize);
3326 		  addr = align_address(addr, (*p)->maximum_alignment());
3327 		  off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3328 		  off = align_file_offset(off, addr, abi_pagesize);
3329 
3330 		  increase_relro = this->increase_relro_;
3331 		  if (this->script_options_->saw_sections_clause())
3332 		    increase_relro = 0;
3333 		  has_relro = false;
3334 
3335 		  new_addr = (*p)->set_section_addresses(this, true, addr,
3336 							 &increase_relro,
3337 							 &has_relro,
3338 							 &off, pshndx);
3339 		}
3340 	    }
3341 
3342 	  addr = new_addr;
3343 
3344 	  // Implement --check-sections.  We know that the segments
3345 	  // are sorted by LMA.
3346 	  if (check_sections && last_load_segment != NULL)
3347 	    {
3348 	      gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3349 	      if (last_load_segment->paddr() + last_load_segment->memsz()
3350 		  > (*p)->paddr())
3351 		{
3352 		  unsigned long long lb1 = last_load_segment->paddr();
3353 		  unsigned long long le1 = lb1 + last_load_segment->memsz();
3354 		  unsigned long long lb2 = (*p)->paddr();
3355 		  unsigned long long le2 = lb2 + (*p)->memsz();
3356 		  gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3357 			       "[0x%llx -> 0x%llx]"),
3358 			     lb1, le1, lb2, le2);
3359 		}
3360 	    }
3361 	  last_load_segment = *p;
3362 	}
3363     }
3364 
3365   if (load_seg != NULL && target->isolate_execinstr())
3366     {
3367       // Process the early segments again, setting their file offsets
3368       // so they land after the segments starting at LOAD_SEG.
3369       off = align_file_offset(off, 0, target->abi_pagesize());
3370 
3371       for (Segment_list::iterator p = this->segment_list_.begin();
3372 	   *p != load_seg;
3373 	   ++p)
3374 	{
3375 	  if ((*p)->type() == elfcpp::PT_LOAD)
3376 	    {
3377 	      // We repeat the whole job of assigning addresses and
3378 	      // offsets, but we really only want to change the offsets and
3379 	      // must ensure that the addresses all come out the same as
3380 	      // they did the first time through.
3381 	      bool has_relro = false;
3382 	      const uint64_t old_addr = (*p)->vaddr();
3383 	      const uint64_t old_end = old_addr + (*p)->memsz();
3384 	      uint64_t new_addr = (*p)->set_section_addresses(this, true,
3385 							      old_addr,
3386 							      &increase_relro,
3387 							      &has_relro,
3388 							      &off,
3389 							      &shndx_begin);
3390 	      gold_assert(new_addr == old_end);
3391 	    }
3392 	}
3393 
3394       gold_assert(shndx_begin == shndx_load_seg);
3395     }
3396 
3397   // Handle the non-PT_LOAD segments, setting their offsets from their
3398   // section's offsets.
3399   for (Segment_list::iterator p = this->segment_list_.begin();
3400        p != this->segment_list_.end();
3401        ++p)
3402     {
3403       if ((*p)->type() != elfcpp::PT_LOAD)
3404 	(*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3405 			 ? increase_relro
3406 			 : 0);
3407     }
3408 
3409   // Set the TLS offsets for each section in the PT_TLS segment.
3410   if (this->tls_segment_ != NULL)
3411     this->tls_segment_->set_tls_offsets();
3412 
3413   return off;
3414 }
3415 
3416 // Set the offsets of all the allocated sections when doing a
3417 // relocatable link.  This does the same jobs as set_segment_offsets,
3418 // only for a relocatable link.
3419 
3420 off_t
3421 Layout::set_relocatable_section_offsets(Output_data* file_header,
3422 					unsigned int* pshndx)
3423 {
3424   off_t off = 0;
3425 
3426   file_header->set_address_and_file_offset(0, 0);
3427   off += file_header->data_size();
3428 
3429   for (Section_list::iterator p = this->section_list_.begin();
3430        p != this->section_list_.end();
3431        ++p)
3432     {
3433       // We skip unallocated sections here, except that group sections
3434       // have to come first.
3435       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3436 	  && (*p)->type() != elfcpp::SHT_GROUP)
3437 	continue;
3438 
3439       off = align_address(off, (*p)->addralign());
3440 
3441       // The linker script might have set the address.
3442       if (!(*p)->is_address_valid())
3443 	(*p)->set_address(0);
3444       (*p)->set_file_offset(off);
3445       (*p)->finalize_data_size();
3446       off += (*p)->data_size();
3447 
3448       (*p)->set_out_shndx(*pshndx);
3449       ++*pshndx;
3450     }
3451 
3452   return off;
3453 }
3454 
3455 // Set the file offset of all the sections not associated with a
3456 // segment.
3457 
3458 off_t
3459 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3460 {
3461   off_t startoff = off;
3462   off_t maxoff = off;
3463 
3464   for (Section_list::iterator p = this->unattached_section_list_.begin();
3465        p != this->unattached_section_list_.end();
3466        ++p)
3467     {
3468       // The symtab section is handled in create_symtab_sections.
3469       if (*p == this->symtab_section_)
3470 	continue;
3471 
3472       // If we've already set the data size, don't set it again.
3473       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3474 	continue;
3475 
3476       if (pass == BEFORE_INPUT_SECTIONS_PASS
3477 	  && (*p)->requires_postprocessing())
3478 	{
3479 	  (*p)->create_postprocessing_buffer();
3480 	  this->any_postprocessing_sections_ = true;
3481 	}
3482 
3483       if (pass == BEFORE_INPUT_SECTIONS_PASS
3484 	  && (*p)->after_input_sections())
3485 	continue;
3486       else if (pass == POSTPROCESSING_SECTIONS_PASS
3487 	       && (!(*p)->after_input_sections()
3488 		   || (*p)->type() == elfcpp::SHT_STRTAB))
3489 	continue;
3490       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3491 	       && (!(*p)->after_input_sections()
3492 		   || (*p)->type() != elfcpp::SHT_STRTAB))
3493 	continue;
3494 
3495       if (!parameters->incremental_update())
3496 	{
3497 	  off = align_address(off, (*p)->addralign());
3498 	  (*p)->set_file_offset(off);
3499 	  (*p)->finalize_data_size();
3500 	}
3501       else
3502 	{
3503 	  // Incremental update: allocate file space from free list.
3504 	  (*p)->pre_finalize_data_size();
3505 	  off_t current_size = (*p)->current_data_size();
3506 	  off = this->allocate(current_size, (*p)->addralign(), startoff);
3507 	  if (off == -1)
3508 	    {
3509 	      if (is_debugging_enabled(DEBUG_INCREMENTAL))
3510 		this->free_list_.dump();
3511 	      gold_assert((*p)->output_section() != NULL);
3512 	      gold_fallback(_("out of patch space for section %s; "
3513 			      "relink with --incremental-full"),
3514 			    (*p)->output_section()->name());
3515 	    }
3516 	  (*p)->set_file_offset(off);
3517 	  (*p)->finalize_data_size();
3518 	  if ((*p)->data_size() > current_size)
3519 	    {
3520 	      gold_assert((*p)->output_section() != NULL);
3521 	      gold_fallback(_("%s: section changed size; "
3522 			      "relink with --incremental-full"),
3523 			    (*p)->output_section()->name());
3524 	    }
3525 	  gold_debug(DEBUG_INCREMENTAL,
3526 		     "set_section_offsets: %08lx %08lx %s",
3527 		     static_cast<long>(off),
3528 		     static_cast<long>((*p)->data_size()),
3529 		     ((*p)->output_section() != NULL
3530 		      ? (*p)->output_section()->name() : "(special)"));
3531 	}
3532 
3533       off += (*p)->data_size();
3534       if (off > maxoff)
3535 	maxoff = off;
3536 
3537       // At this point the name must be set.
3538       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3539 	this->namepool_.add((*p)->name(), false, NULL);
3540     }
3541   return maxoff;
3542 }
3543 
3544 // Set the section indexes of all the sections not associated with a
3545 // segment.
3546 
3547 unsigned int
3548 Layout::set_section_indexes(unsigned int shndx)
3549 {
3550   for (Section_list::iterator p = this->unattached_section_list_.begin();
3551        p != this->unattached_section_list_.end();
3552        ++p)
3553     {
3554       if (!(*p)->has_out_shndx())
3555 	{
3556 	  (*p)->set_out_shndx(shndx);
3557 	  ++shndx;
3558 	}
3559     }
3560   return shndx;
3561 }
3562 
3563 // Set the section addresses according to the linker script.  This is
3564 // only called when we see a SECTIONS clause.  This returns the
3565 // program segment which should hold the file header and segment
3566 // headers, if any.  It will return NULL if they should not be in a
3567 // segment.
3568 
3569 Output_segment*
3570 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3571 {
3572   Script_sections* ss = this->script_options_->script_sections();
3573   gold_assert(ss->saw_sections_clause());
3574   return this->script_options_->set_section_addresses(symtab, this);
3575 }
3576 
3577 // Place the orphan sections in the linker script.
3578 
3579 void
3580 Layout::place_orphan_sections_in_script()
3581 {
3582   Script_sections* ss = this->script_options_->script_sections();
3583   gold_assert(ss->saw_sections_clause());
3584 
3585   // Place each orphaned output section in the script.
3586   for (Section_list::iterator p = this->section_list_.begin();
3587        p != this->section_list_.end();
3588        ++p)
3589     {
3590       if (!(*p)->found_in_sections_clause())
3591 	ss->place_orphan(*p);
3592     }
3593 }
3594 
3595 // Count the local symbols in the regular symbol table and the dynamic
3596 // symbol table, and build the respective string pools.
3597 
3598 void
3599 Layout::count_local_symbols(const Task* task,
3600 			    const Input_objects* input_objects)
3601 {
3602   // First, figure out an upper bound on the number of symbols we'll
3603   // be inserting into each pool.  This helps us create the pools with
3604   // the right size, to avoid unnecessary hashtable resizing.
3605   unsigned int symbol_count = 0;
3606   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3607        p != input_objects->relobj_end();
3608        ++p)
3609     symbol_count += (*p)->local_symbol_count();
3610 
3611   // Go from "upper bound" to "estimate."  We overcount for two
3612   // reasons: we double-count symbols that occur in more than one
3613   // object file, and we count symbols that are dropped from the
3614   // output.  Add it all together and assume we overcount by 100%.
3615   symbol_count /= 2;
3616 
3617   // We assume all symbols will go into both the sympool and dynpool.
3618   this->sympool_.reserve(symbol_count);
3619   this->dynpool_.reserve(symbol_count);
3620 
3621   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3622        p != input_objects->relobj_end();
3623        ++p)
3624     {
3625       Task_lock_obj<Object> tlo(task, *p);
3626       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3627     }
3628 }
3629 
3630 // Create the symbol table sections.  Here we also set the final
3631 // values of the symbols.  At this point all the loadable sections are
3632 // fully laid out.  SHNUM is the number of sections so far.
3633 
3634 void
3635 Layout::create_symtab_sections(const Input_objects* input_objects,
3636 			       Symbol_table* symtab,
3637 			       unsigned int shnum,
3638 			       off_t* poff)
3639 {
3640   int symsize;
3641   unsigned int align;
3642   if (parameters->target().get_size() == 32)
3643     {
3644       symsize = elfcpp::Elf_sizes<32>::sym_size;
3645       align = 4;
3646     }
3647   else if (parameters->target().get_size() == 64)
3648     {
3649       symsize = elfcpp::Elf_sizes<64>::sym_size;
3650       align = 8;
3651     }
3652   else
3653     gold_unreachable();
3654 
3655   // Compute file offsets relative to the start of the symtab section.
3656   off_t off = 0;
3657 
3658   // Save space for the dummy symbol at the start of the section.  We
3659   // never bother to write this out--it will just be left as zero.
3660   off += symsize;
3661   unsigned int local_symbol_index = 1;
3662 
3663   // Add STT_SECTION symbols for each Output section which needs one.
3664   for (Section_list::iterator p = this->section_list_.begin();
3665        p != this->section_list_.end();
3666        ++p)
3667     {
3668       if (!(*p)->needs_symtab_index())
3669 	(*p)->set_symtab_index(-1U);
3670       else
3671 	{
3672 	  (*p)->set_symtab_index(local_symbol_index);
3673 	  ++local_symbol_index;
3674 	  off += symsize;
3675 	}
3676     }
3677 
3678   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3679        p != input_objects->relobj_end();
3680        ++p)
3681     {
3682       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
3683 							off, symtab);
3684       off += (index - local_symbol_index) * symsize;
3685       local_symbol_index = index;
3686     }
3687 
3688   unsigned int local_symcount = local_symbol_index;
3689   gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
3690 
3691   off_t dynoff;
3692   size_t dyn_global_index;
3693   size_t dyncount;
3694   if (this->dynsym_section_ == NULL)
3695     {
3696       dynoff = 0;
3697       dyn_global_index = 0;
3698       dyncount = 0;
3699     }
3700   else
3701     {
3702       dyn_global_index = this->dynsym_section_->info();
3703       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
3704       dynoff = this->dynsym_section_->offset() + locsize;
3705       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
3706       gold_assert(static_cast<off_t>(dyncount * symsize)
3707 		  == this->dynsym_section_->data_size() - locsize);
3708     }
3709 
3710   off_t global_off = off;
3711   off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
3712 			 &this->sympool_, &local_symcount);
3713 
3714   if (!parameters->options().strip_all())
3715     {
3716       this->sympool_.set_string_offsets();
3717 
3718       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
3719       Output_section* osymtab = this->make_output_section(symtab_name,
3720 							  elfcpp::SHT_SYMTAB,
3721 							  0, ORDER_INVALID,
3722 							  false);
3723       this->symtab_section_ = osymtab;
3724 
3725       Output_section_data* pos = new Output_data_fixed_space(off, align,
3726 							     "** symtab");
3727       osymtab->add_output_section_data(pos);
3728 
3729       // We generate a .symtab_shndx section if we have more than
3730       // SHN_LORESERVE sections.  Technically it is possible that we
3731       // don't need one, because it is possible that there are no
3732       // symbols in any of sections with indexes larger than
3733       // SHN_LORESERVE.  That is probably unusual, though, and it is
3734       // easier to always create one than to compute section indexes
3735       // twice (once here, once when writing out the symbols).
3736       if (shnum >= elfcpp::SHN_LORESERVE)
3737 	{
3738 	  const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
3739 							       false, NULL);
3740 	  Output_section* osymtab_xindex =
3741 	    this->make_output_section(symtab_xindex_name,
3742 				      elfcpp::SHT_SYMTAB_SHNDX, 0,
3743 				      ORDER_INVALID, false);
3744 
3745 	  size_t symcount = off / symsize;
3746 	  this->symtab_xindex_ = new Output_symtab_xindex(symcount);
3747 
3748 	  osymtab_xindex->add_output_section_data(this->symtab_xindex_);
3749 
3750 	  osymtab_xindex->set_link_section(osymtab);
3751 	  osymtab_xindex->set_addralign(4);
3752 	  osymtab_xindex->set_entsize(4);
3753 
3754 	  osymtab_xindex->set_after_input_sections();
3755 
3756 	  // This tells the driver code to wait until the symbol table
3757 	  // has written out before writing out the postprocessing
3758 	  // sections, including the .symtab_shndx section.
3759 	  this->any_postprocessing_sections_ = true;
3760 	}
3761 
3762       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
3763       Output_section* ostrtab = this->make_output_section(strtab_name,
3764 							  elfcpp::SHT_STRTAB,
3765 							  0, ORDER_INVALID,
3766 							  false);
3767 
3768       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
3769       ostrtab->add_output_section_data(pstr);
3770 
3771       off_t symtab_off;
3772       if (!parameters->incremental_update())
3773 	symtab_off = align_address(*poff, align);
3774       else
3775 	{
3776 	  symtab_off = this->allocate(off, align, *poff);
3777 	  if (off == -1)
3778 	    gold_fallback(_("out of patch space for symbol table; "
3779 			    "relink with --incremental-full"));
3780 	  gold_debug(DEBUG_INCREMENTAL,
3781 		     "create_symtab_sections: %08lx %08lx .symtab",
3782 		     static_cast<long>(symtab_off),
3783 		     static_cast<long>(off));
3784 	}
3785 
3786       symtab->set_file_offset(symtab_off + global_off);
3787       osymtab->set_file_offset(symtab_off);
3788       osymtab->finalize_data_size();
3789       osymtab->set_link_section(ostrtab);
3790       osymtab->set_info(local_symcount);
3791       osymtab->set_entsize(symsize);
3792 
3793       if (symtab_off + off > *poff)
3794 	*poff = symtab_off + off;
3795     }
3796 }
3797 
3798 // Create the .shstrtab section, which holds the names of the
3799 // sections.  At the time this is called, we have created all the
3800 // output sections except .shstrtab itself.
3801 
3802 Output_section*
3803 Layout::create_shstrtab()
3804 {
3805   // FIXME: We don't need to create a .shstrtab section if we are
3806   // stripping everything.
3807 
3808   const char* name = this->namepool_.add(".shstrtab", false, NULL);
3809 
3810   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
3811 						 ORDER_INVALID, false);
3812 
3813   if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
3814     {
3815       // We can't write out this section until we've set all the
3816       // section names, and we don't set the names of compressed
3817       // output sections until relocations are complete.  FIXME: With
3818       // the current names we use, this is unnecessary.
3819       os->set_after_input_sections();
3820     }
3821 
3822   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
3823   os->add_output_section_data(posd);
3824 
3825   return os;
3826 }
3827 
3828 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
3829 // offset.
3830 
3831 void
3832 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
3833 {
3834   Output_section_headers* oshdrs;
3835   oshdrs = new Output_section_headers(this,
3836 				      &this->segment_list_,
3837 				      &this->section_list_,
3838 				      &this->unattached_section_list_,
3839 				      &this->namepool_,
3840 				      shstrtab_section);
3841   off_t off;
3842   if (!parameters->incremental_update())
3843     off = align_address(*poff, oshdrs->addralign());
3844   else
3845     {
3846       oshdrs->pre_finalize_data_size();
3847       off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
3848       if (off == -1)
3849 	  gold_fallback(_("out of patch space for section header table; "
3850 			  "relink with --incremental-full"));
3851       gold_debug(DEBUG_INCREMENTAL,
3852 		 "create_shdrs: %08lx %08lx (section header table)",
3853 		 static_cast<long>(off),
3854 		 static_cast<long>(off + oshdrs->data_size()));
3855     }
3856   oshdrs->set_address_and_file_offset(0, off);
3857   off += oshdrs->data_size();
3858   if (off > *poff)
3859     *poff = off;
3860   this->section_headers_ = oshdrs;
3861 }
3862 
3863 // Count the allocated sections.
3864 
3865 size_t
3866 Layout::allocated_output_section_count() const
3867 {
3868   size_t section_count = 0;
3869   for (Segment_list::const_iterator p = this->segment_list_.begin();
3870        p != this->segment_list_.end();
3871        ++p)
3872     section_count += (*p)->output_section_count();
3873   return section_count;
3874 }
3875 
3876 // Create the dynamic symbol table.
3877 
3878 void
3879 Layout::create_dynamic_symtab(const Input_objects* input_objects,
3880 			      Symbol_table* symtab,
3881 			      Output_section** pdynstr,
3882 			      unsigned int* plocal_dynamic_count,
3883 			      std::vector<Symbol*>* pdynamic_symbols,
3884 			      Versions* pversions)
3885 {
3886   // Count all the symbols in the dynamic symbol table, and set the
3887   // dynamic symbol indexes.
3888 
3889   // Skip symbol 0, which is always all zeroes.
3890   unsigned int index = 1;
3891 
3892   // Add STT_SECTION symbols for each Output section which needs one.
3893   for (Section_list::iterator p = this->section_list_.begin();
3894        p != this->section_list_.end();
3895        ++p)
3896     {
3897       if (!(*p)->needs_dynsym_index())
3898 	(*p)->set_dynsym_index(-1U);
3899       else
3900 	{
3901 	  (*p)->set_dynsym_index(index);
3902 	  ++index;
3903 	}
3904     }
3905 
3906   // Count the local symbols that need to go in the dynamic symbol table,
3907   // and set the dynamic symbol indexes.
3908   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3909        p != input_objects->relobj_end();
3910        ++p)
3911     {
3912       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
3913       index = new_index;
3914     }
3915 
3916   unsigned int local_symcount = index;
3917   *plocal_dynamic_count = local_symcount;
3918 
3919   index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
3920 				     &this->dynpool_, pversions);
3921 
3922   int symsize;
3923   unsigned int align;
3924   const int size = parameters->target().get_size();
3925   if (size == 32)
3926     {
3927       symsize = elfcpp::Elf_sizes<32>::sym_size;
3928       align = 4;
3929     }
3930   else if (size == 64)
3931     {
3932       symsize = elfcpp::Elf_sizes<64>::sym_size;
3933       align = 8;
3934     }
3935   else
3936     gold_unreachable();
3937 
3938   // Create the dynamic symbol table section.
3939 
3940   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
3941 						       elfcpp::SHT_DYNSYM,
3942 						       elfcpp::SHF_ALLOC,
3943 						       false,
3944 						       ORDER_DYNAMIC_LINKER,
3945 						       false);
3946 
3947   // Check for NULL as a linker script may discard .dynsym.
3948   if (dynsym != NULL)
3949     {
3950       Output_section_data* odata = new Output_data_fixed_space(index * symsize,
3951 							       align,
3952 							       "** dynsym");
3953       dynsym->add_output_section_data(odata);
3954 
3955       dynsym->set_info(local_symcount);
3956       dynsym->set_entsize(symsize);
3957       dynsym->set_addralign(align);
3958 
3959       this->dynsym_section_ = dynsym;
3960     }
3961 
3962   Output_data_dynamic* const odyn = this->dynamic_data_;
3963   if (odyn != NULL)
3964     {
3965       odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
3966       odyn->add_constant(elfcpp::DT_SYMENT, symsize);
3967     }
3968 
3969   // If there are more than SHN_LORESERVE allocated sections, we
3970   // create a .dynsym_shndx section.  It is possible that we don't
3971   // need one, because it is possible that there are no dynamic
3972   // symbols in any of the sections with indexes larger than
3973   // SHN_LORESERVE.  This is probably unusual, though, and at this
3974   // time we don't know the actual section indexes so it is
3975   // inconvenient to check.
3976   if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
3977     {
3978       Output_section* dynsym_xindex =
3979 	this->choose_output_section(NULL, ".dynsym_shndx",
3980 				    elfcpp::SHT_SYMTAB_SHNDX,
3981 				    elfcpp::SHF_ALLOC,
3982 				    false, ORDER_DYNAMIC_LINKER, false);
3983 
3984       if (dynsym_xindex != NULL)
3985 	{
3986 	  this->dynsym_xindex_ = new Output_symtab_xindex(index);
3987 
3988 	  dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
3989 
3990 	  dynsym_xindex->set_link_section(dynsym);
3991 	  dynsym_xindex->set_addralign(4);
3992 	  dynsym_xindex->set_entsize(4);
3993 
3994 	  dynsym_xindex->set_after_input_sections();
3995 
3996 	  // This tells the driver code to wait until the symbol table
3997 	  // has written out before writing out the postprocessing
3998 	  // sections, including the .dynsym_shndx section.
3999 	  this->any_postprocessing_sections_ = true;
4000 	}
4001     }
4002 
4003   // Create the dynamic string table section.
4004 
4005   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
4006 						       elfcpp::SHT_STRTAB,
4007 						       elfcpp::SHF_ALLOC,
4008 						       false,
4009 						       ORDER_DYNAMIC_LINKER,
4010 						       false);
4011 
4012   if (dynstr != NULL)
4013     {
4014       Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
4015       dynstr->add_output_section_data(strdata);
4016 
4017       if (dynsym != NULL)
4018 	dynsym->set_link_section(dynstr);
4019       if (this->dynamic_section_ != NULL)
4020 	this->dynamic_section_->set_link_section(dynstr);
4021 
4022       if (odyn != NULL)
4023 	{
4024 	  odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
4025 	  odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
4026 	}
4027 
4028       *pdynstr = dynstr;
4029     }
4030 
4031   // Create the hash tables.
4032 
4033   if (strcmp(parameters->options().hash_style(), "sysv") == 0
4034       || strcmp(parameters->options().hash_style(), "both") == 0)
4035     {
4036       unsigned char* phash;
4037       unsigned int hashlen;
4038       Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
4039 				    &phash, &hashlen);
4040 
4041       Output_section* hashsec =
4042 	this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
4043 				    elfcpp::SHF_ALLOC, false,
4044 				    ORDER_DYNAMIC_LINKER, false);
4045 
4046       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4047 								   hashlen,
4048 								   align,
4049 								   "** hash");
4050       if (hashsec != NULL && hashdata != NULL)
4051 	hashsec->add_output_section_data(hashdata);
4052 
4053       if (hashsec != NULL)
4054 	{
4055 	  if (dynsym != NULL)
4056 	    hashsec->set_link_section(dynsym);
4057 	  hashsec->set_entsize(4);
4058 	}
4059 
4060       if (odyn != NULL)
4061 	odyn->add_section_address(elfcpp::DT_HASH, hashsec);
4062     }
4063 
4064   if (strcmp(parameters->options().hash_style(), "gnu") == 0
4065       || strcmp(parameters->options().hash_style(), "both") == 0)
4066     {
4067       unsigned char* phash;
4068       unsigned int hashlen;
4069       Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
4070 				    &phash, &hashlen);
4071 
4072       Output_section* hashsec =
4073 	this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
4074 				    elfcpp::SHF_ALLOC, false,
4075 				    ORDER_DYNAMIC_LINKER, false);
4076 
4077       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4078 								   hashlen,
4079 								   align,
4080 								   "** hash");
4081       if (hashsec != NULL && hashdata != NULL)
4082 	hashsec->add_output_section_data(hashdata);
4083 
4084       if (hashsec != NULL)
4085 	{
4086 	  if (dynsym != NULL)
4087 	    hashsec->set_link_section(dynsym);
4088 
4089 	  // For a 64-bit target, the entries in .gnu.hash do not have
4090 	  // a uniform size, so we only set the entry size for a
4091 	  // 32-bit target.
4092 	  if (parameters->target().get_size() == 32)
4093 	    hashsec->set_entsize(4);
4094 
4095 	  if (odyn != NULL)
4096 	    odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
4097 	}
4098     }
4099 }
4100 
4101 // Assign offsets to each local portion of the dynamic symbol table.
4102 
4103 void
4104 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
4105 {
4106   Output_section* dynsym = this->dynsym_section_;
4107   if (dynsym == NULL)
4108     return;
4109 
4110   off_t off = dynsym->offset();
4111 
4112   // Skip the dummy symbol at the start of the section.
4113   off += dynsym->entsize();
4114 
4115   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4116        p != input_objects->relobj_end();
4117        ++p)
4118     {
4119       unsigned int count = (*p)->set_local_dynsym_offset(off);
4120       off += count * dynsym->entsize();
4121     }
4122 }
4123 
4124 // Create the version sections.
4125 
4126 void
4127 Layout::create_version_sections(const Versions* versions,
4128 				const Symbol_table* symtab,
4129 				unsigned int local_symcount,
4130 				const std::vector<Symbol*>& dynamic_symbols,
4131 				const Output_section* dynstr)
4132 {
4133   if (!versions->any_defs() && !versions->any_needs())
4134     return;
4135 
4136   switch (parameters->size_and_endianness())
4137     {
4138 #ifdef HAVE_TARGET_32_LITTLE
4139     case Parameters::TARGET_32_LITTLE:
4140       this->sized_create_version_sections<32, false>(versions, symtab,
4141 						     local_symcount,
4142 						     dynamic_symbols, dynstr);
4143       break;
4144 #endif
4145 #ifdef HAVE_TARGET_32_BIG
4146     case Parameters::TARGET_32_BIG:
4147       this->sized_create_version_sections<32, true>(versions, symtab,
4148 						    local_symcount,
4149 						    dynamic_symbols, dynstr);
4150       break;
4151 #endif
4152 #ifdef HAVE_TARGET_64_LITTLE
4153     case Parameters::TARGET_64_LITTLE:
4154       this->sized_create_version_sections<64, false>(versions, symtab,
4155 						     local_symcount,
4156 						     dynamic_symbols, dynstr);
4157       break;
4158 #endif
4159 #ifdef HAVE_TARGET_64_BIG
4160     case Parameters::TARGET_64_BIG:
4161       this->sized_create_version_sections<64, true>(versions, symtab,
4162 						    local_symcount,
4163 						    dynamic_symbols, dynstr);
4164       break;
4165 #endif
4166     default:
4167       gold_unreachable();
4168     }
4169 }
4170 
4171 // Create the version sections, sized version.
4172 
4173 template<int size, bool big_endian>
4174 void
4175 Layout::sized_create_version_sections(
4176     const Versions* versions,
4177     const Symbol_table* symtab,
4178     unsigned int local_symcount,
4179     const std::vector<Symbol*>& dynamic_symbols,
4180     const Output_section* dynstr)
4181 {
4182   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
4183 						     elfcpp::SHT_GNU_versym,
4184 						     elfcpp::SHF_ALLOC,
4185 						     false,
4186 						     ORDER_DYNAMIC_LINKER,
4187 						     false);
4188 
4189   // Check for NULL since a linker script may discard this section.
4190   if (vsec != NULL)
4191     {
4192       unsigned char* vbuf;
4193       unsigned int vsize;
4194       versions->symbol_section_contents<size, big_endian>(symtab,
4195 							  &this->dynpool_,
4196 							  local_symcount,
4197 							  dynamic_symbols,
4198 							  &vbuf, &vsize);
4199 
4200       Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4201 								"** versions");
4202 
4203       vsec->add_output_section_data(vdata);
4204       vsec->set_entsize(2);
4205       vsec->set_link_section(this->dynsym_section_);
4206     }
4207 
4208   Output_data_dynamic* const odyn = this->dynamic_data_;
4209   if (odyn != NULL && vsec != NULL)
4210     odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4211 
4212   if (versions->any_defs())
4213     {
4214       Output_section* vdsec;
4215       vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4216 					  elfcpp::SHT_GNU_verdef,
4217 					  elfcpp::SHF_ALLOC,
4218 					  false, ORDER_DYNAMIC_LINKER, false);
4219 
4220       if (vdsec != NULL)
4221 	{
4222 	  unsigned char* vdbuf;
4223 	  unsigned int vdsize;
4224 	  unsigned int vdentries;
4225 	  versions->def_section_contents<size, big_endian>(&this->dynpool_,
4226 							   &vdbuf, &vdsize,
4227 							   &vdentries);
4228 
4229 	  Output_section_data* vddata =
4230 	    new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4231 
4232 	  vdsec->add_output_section_data(vddata);
4233 	  vdsec->set_link_section(dynstr);
4234 	  vdsec->set_info(vdentries);
4235 
4236 	  if (odyn != NULL)
4237 	    {
4238 	      odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4239 	      odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4240 	    }
4241 	}
4242     }
4243 
4244   if (versions->any_needs())
4245     {
4246       Output_section* vnsec;
4247       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4248 					  elfcpp::SHT_GNU_verneed,
4249 					  elfcpp::SHF_ALLOC,
4250 					  false, ORDER_DYNAMIC_LINKER, false);
4251 
4252       if (vnsec != NULL)
4253 	{
4254 	  unsigned char* vnbuf;
4255 	  unsigned int vnsize;
4256 	  unsigned int vnentries;
4257 	  versions->need_section_contents<size, big_endian>(&this->dynpool_,
4258 							    &vnbuf, &vnsize,
4259 							    &vnentries);
4260 
4261 	  Output_section_data* vndata =
4262 	    new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4263 
4264 	  vnsec->add_output_section_data(vndata);
4265 	  vnsec->set_link_section(dynstr);
4266 	  vnsec->set_info(vnentries);
4267 
4268 	  if (odyn != NULL)
4269 	    {
4270 	      odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4271 	      odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
4272 	    }
4273 	}
4274     }
4275 }
4276 
4277 // Create the .interp section and PT_INTERP segment.
4278 
4279 void
4280 Layout::create_interp(const Target* target)
4281 {
4282   gold_assert(this->interp_segment_ == NULL);
4283 
4284   const char* interp = parameters->options().dynamic_linker();
4285   if (interp == NULL)
4286     {
4287       interp = target->dynamic_linker();
4288       gold_assert(interp != NULL);
4289     }
4290 
4291   size_t len = strlen(interp) + 1;
4292 
4293   Output_section_data* odata = new Output_data_const(interp, len, 1);
4294 
4295   Output_section* osec = this->choose_output_section(NULL, ".interp",
4296 						     elfcpp::SHT_PROGBITS,
4297 						     elfcpp::SHF_ALLOC,
4298 						     false, ORDER_INTERP,
4299 						     false);
4300   if (osec != NULL)
4301     osec->add_output_section_data(odata);
4302 }
4303 
4304 // Add dynamic tags for the PLT and the dynamic relocs.  This is
4305 // called by the target-specific code.  This does nothing if not doing
4306 // a dynamic link.
4307 
4308 // USE_REL is true for REL relocs rather than RELA relocs.
4309 
4310 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
4311 
4312 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4313 // and we also set DT_PLTREL.  We use PLT_REL's output section, since
4314 // some targets have multiple reloc sections in PLT_REL.
4315 
4316 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4317 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.  Again we use the output
4318 // section.
4319 
4320 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4321 // executable.
4322 
4323 void
4324 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4325 				const Output_data* plt_rel,
4326 				const Output_data_reloc_generic* dyn_rel,
4327 				bool add_debug, bool dynrel_includes_plt)
4328 {
4329   Output_data_dynamic* odyn = this->dynamic_data_;
4330   if (odyn == NULL)
4331     return;
4332 
4333   if (plt_got != NULL && plt_got->output_section() != NULL)
4334     odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4335 
4336   if (plt_rel != NULL && plt_rel->output_section() != NULL)
4337     {
4338       odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4339       odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4340       odyn->add_constant(elfcpp::DT_PLTREL,
4341 			 use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4342     }
4343 
4344   if (dyn_rel != NULL && dyn_rel->output_section() != NULL)
4345     {
4346       odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4347 				dyn_rel->output_section());
4348       if (plt_rel != NULL
4349 	  && plt_rel->output_section() != NULL
4350 	  && dynrel_includes_plt)
4351 	odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
4352 			       dyn_rel->output_section(),
4353 			       plt_rel->output_section());
4354       else
4355 	odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
4356 			       dyn_rel->output_section());
4357       const int size = parameters->target().get_size();
4358       elfcpp::DT rel_tag;
4359       int rel_size;
4360       if (use_rel)
4361 	{
4362 	  rel_tag = elfcpp::DT_RELENT;
4363 	  if (size == 32)
4364 	    rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4365 	  else if (size == 64)
4366 	    rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4367 	  else
4368 	    gold_unreachable();
4369 	}
4370       else
4371 	{
4372 	  rel_tag = elfcpp::DT_RELAENT;
4373 	  if (size == 32)
4374 	    rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4375 	  else if (size == 64)
4376 	    rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4377 	  else
4378 	    gold_unreachable();
4379 	}
4380       odyn->add_constant(rel_tag, rel_size);
4381 
4382       if (parameters->options().combreloc())
4383 	{
4384 	  size_t c = dyn_rel->relative_reloc_count();
4385 	  if (c > 0)
4386 	    odyn->add_constant((use_rel
4387 				? elfcpp::DT_RELCOUNT
4388 				: elfcpp::DT_RELACOUNT),
4389 			       c);
4390 	}
4391     }
4392 
4393   if (add_debug && !parameters->options().shared())
4394     {
4395       // The value of the DT_DEBUG tag is filled in by the dynamic
4396       // linker at run time, and used by the debugger.
4397       odyn->add_constant(elfcpp::DT_DEBUG, 0);
4398     }
4399 }
4400 
4401 // Finish the .dynamic section and PT_DYNAMIC segment.
4402 
4403 void
4404 Layout::finish_dynamic_section(const Input_objects* input_objects,
4405 			       const Symbol_table* symtab)
4406 {
4407   if (!this->script_options_->saw_phdrs_clause()
4408       && this->dynamic_section_ != NULL)
4409     {
4410       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4411 						       (elfcpp::PF_R
4412 							| elfcpp::PF_W));
4413       oseg->add_output_section_to_nonload(this->dynamic_section_,
4414 					  elfcpp::PF_R | elfcpp::PF_W);
4415     }
4416 
4417   Output_data_dynamic* const odyn = this->dynamic_data_;
4418   if (odyn == NULL)
4419     return;
4420 
4421   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4422        p != input_objects->dynobj_end();
4423        ++p)
4424     {
4425       if (!(*p)->is_needed() && (*p)->as_needed())
4426 	{
4427 	  // This dynamic object was linked with --as-needed, but it
4428 	  // is not needed.
4429 	  continue;
4430 	}
4431 
4432       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4433     }
4434 
4435   if (parameters->options().shared())
4436     {
4437       const char* soname = parameters->options().soname();
4438       if (soname != NULL)
4439 	odyn->add_string(elfcpp::DT_SONAME, soname);
4440     }
4441 
4442   Symbol* sym = symtab->lookup(parameters->options().init());
4443   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4444     odyn->add_symbol(elfcpp::DT_INIT, sym);
4445 
4446   sym = symtab->lookup(parameters->options().fini());
4447   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4448     odyn->add_symbol(elfcpp::DT_FINI, sym);
4449 
4450   // Look for .init_array, .preinit_array and .fini_array by checking
4451   // section types.
4452   for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4453       p != this->section_list_.end();
4454       ++p)
4455     switch((*p)->type())
4456       {
4457       case elfcpp::SHT_FINI_ARRAY:
4458 	odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4459 	odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
4460 	break;
4461       case elfcpp::SHT_INIT_ARRAY:
4462 	odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4463 	odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
4464 	break;
4465       case elfcpp::SHT_PREINIT_ARRAY:
4466 	odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4467 	odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
4468 	break;
4469       default:
4470 	break;
4471       }
4472 
4473   // Add a DT_RPATH entry if needed.
4474   const General_options::Dir_list& rpath(parameters->options().rpath());
4475   if (!rpath.empty())
4476     {
4477       std::string rpath_val;
4478       for (General_options::Dir_list::const_iterator p = rpath.begin();
4479 	   p != rpath.end();
4480 	   ++p)
4481 	{
4482 	  if (rpath_val.empty())
4483 	    rpath_val = p->name();
4484 	  else
4485 	    {
4486 	      // Eliminate duplicates.
4487 	      General_options::Dir_list::const_iterator q;
4488 	      for (q = rpath.begin(); q != p; ++q)
4489 		if (q->name() == p->name())
4490 		  break;
4491 	      if (q == p)
4492 		{
4493 		  rpath_val += ':';
4494 		  rpath_val += p->name();
4495 		}
4496 	    }
4497 	}
4498 
4499       odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4500       if (parameters->options().enable_new_dtags())
4501 	odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4502     }
4503 
4504   // Look for text segments that have dynamic relocations.
4505   bool have_textrel = false;
4506   if (!this->script_options_->saw_sections_clause())
4507     {
4508       for (Segment_list::const_iterator p = this->segment_list_.begin();
4509 	   p != this->segment_list_.end();
4510 	   ++p)
4511 	{
4512 	  if ((*p)->type() == elfcpp::PT_LOAD
4513 	      && ((*p)->flags() & elfcpp::PF_W) == 0
4514 	      && (*p)->has_dynamic_reloc())
4515 	    {
4516 	      have_textrel = true;
4517 	      break;
4518 	    }
4519 	}
4520     }
4521   else
4522     {
4523       // We don't know the section -> segment mapping, so we are
4524       // conservative and just look for readonly sections with
4525       // relocations.  If those sections wind up in writable segments,
4526       // then we have created an unnecessary DT_TEXTREL entry.
4527       for (Section_list::const_iterator p = this->section_list_.begin();
4528 	   p != this->section_list_.end();
4529 	   ++p)
4530 	{
4531 	  if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4532 	      && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4533 	      && (*p)->has_dynamic_reloc())
4534 	    {
4535 	      have_textrel = true;
4536 	      break;
4537 	    }
4538 	}
4539     }
4540 
4541   if (parameters->options().filter() != NULL)
4542     odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
4543   if (parameters->options().any_auxiliary())
4544     {
4545       for (options::String_set::const_iterator p =
4546 	     parameters->options().auxiliary_begin();
4547 	   p != parameters->options().auxiliary_end();
4548 	   ++p)
4549 	odyn->add_string(elfcpp::DT_AUXILIARY, *p);
4550     }
4551 
4552   // Add a DT_FLAGS entry if necessary.
4553   unsigned int flags = 0;
4554   if (have_textrel)
4555     {
4556       // Add a DT_TEXTREL for compatibility with older loaders.
4557       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4558       flags |= elfcpp::DF_TEXTREL;
4559 
4560       if (parameters->options().text())
4561 	gold_error(_("read-only segment has dynamic relocations"));
4562       else if (parameters->options().warn_shared_textrel()
4563 	       && parameters->options().shared())
4564 	gold_warning(_("shared library text segment is not shareable"));
4565     }
4566   if (parameters->options().shared() && this->has_static_tls())
4567     flags |= elfcpp::DF_STATIC_TLS;
4568   if (parameters->options().origin())
4569     flags |= elfcpp::DF_ORIGIN;
4570   if (parameters->options().Bsymbolic())
4571     {
4572       flags |= elfcpp::DF_SYMBOLIC;
4573       // Add DT_SYMBOLIC for compatibility with older loaders.
4574       odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4575     }
4576   if (parameters->options().now())
4577     flags |= elfcpp::DF_BIND_NOW;
4578   if (flags != 0)
4579     odyn->add_constant(elfcpp::DT_FLAGS, flags);
4580 
4581   flags = 0;
4582   if (parameters->options().initfirst())
4583     flags |= elfcpp::DF_1_INITFIRST;
4584   if (parameters->options().interpose())
4585     flags |= elfcpp::DF_1_INTERPOSE;
4586   if (parameters->options().loadfltr())
4587     flags |= elfcpp::DF_1_LOADFLTR;
4588   if (parameters->options().nodefaultlib())
4589     flags |= elfcpp::DF_1_NODEFLIB;
4590   if (parameters->options().nodelete())
4591     flags |= elfcpp::DF_1_NODELETE;
4592   if (parameters->options().nodlopen())
4593     flags |= elfcpp::DF_1_NOOPEN;
4594   if (parameters->options().nodump())
4595     flags |= elfcpp::DF_1_NODUMP;
4596   if (!parameters->options().shared())
4597     flags &= ~(elfcpp::DF_1_INITFIRST
4598 	       | elfcpp::DF_1_NODELETE
4599 	       | elfcpp::DF_1_NOOPEN);
4600   if (parameters->options().origin())
4601     flags |= elfcpp::DF_1_ORIGIN;
4602   if (parameters->options().now())
4603     flags |= elfcpp::DF_1_NOW;
4604   if (parameters->options().Bgroup())
4605     flags |= elfcpp::DF_1_GROUP;
4606   if (flags != 0)
4607     odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4608 }
4609 
4610 // Set the size of the _DYNAMIC symbol table to be the size of the
4611 // dynamic data.
4612 
4613 void
4614 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4615 {
4616   Output_data_dynamic* const odyn = this->dynamic_data_;
4617   if (odyn == NULL)
4618     return;
4619   odyn->finalize_data_size();
4620   if (this->dynamic_symbol_ == NULL)
4621     return;
4622   off_t data_size = odyn->data_size();
4623   const int size = parameters->target().get_size();
4624   if (size == 32)
4625     symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
4626   else if (size == 64)
4627     symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
4628   else
4629     gold_unreachable();
4630 }
4631 
4632 // The mapping of input section name prefixes to output section names.
4633 // In some cases one prefix is itself a prefix of another prefix; in
4634 // such a case the longer prefix must come first.  These prefixes are
4635 // based on the GNU linker default ELF linker script.
4636 
4637 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
4638 #define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 }
4639 const Layout::Section_name_mapping Layout::section_name_mapping[] =
4640 {
4641   MAPPING_INIT(".text.", ".text"),
4642   MAPPING_INIT(".rodata.", ".rodata"),
4643   MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"),
4644   MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"),
4645   MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"),
4646   MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"),
4647   MAPPING_INIT(".data.", ".data"),
4648   MAPPING_INIT(".bss.", ".bss"),
4649   MAPPING_INIT(".tdata.", ".tdata"),
4650   MAPPING_INIT(".tbss.", ".tbss"),
4651   MAPPING_INIT(".init_array.", ".init_array"),
4652   MAPPING_INIT(".fini_array.", ".fini_array"),
4653   MAPPING_INIT(".sdata.", ".sdata"),
4654   MAPPING_INIT(".sbss.", ".sbss"),
4655   // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
4656   // differently depending on whether it is creating a shared library.
4657   MAPPING_INIT(".sdata2.", ".sdata"),
4658   MAPPING_INIT(".sbss2.", ".sbss"),
4659   MAPPING_INIT(".lrodata.", ".lrodata"),
4660   MAPPING_INIT(".ldata.", ".ldata"),
4661   MAPPING_INIT(".lbss.", ".lbss"),
4662   MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
4663   MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
4664   MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
4665   MAPPING_INIT(".gnu.linkonce.t.", ".text"),
4666   MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
4667   MAPPING_INIT(".gnu.linkonce.d.", ".data"),
4668   MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
4669   MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
4670   MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
4671   MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
4672   MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
4673   MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
4674   MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
4675   MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
4676   MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
4677   MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
4678   MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
4679   MAPPING_INIT(".ARM.extab", ".ARM.extab"),
4680   MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
4681   MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
4682   MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
4683 };
4684 #undef MAPPING_INIT
4685 #undef MAPPING_INIT_EXACT
4686 
4687 const int Layout::section_name_mapping_count =
4688   (sizeof(Layout::section_name_mapping)
4689    / sizeof(Layout::section_name_mapping[0]));
4690 
4691 // Choose the output section name to use given an input section name.
4692 // Set *PLEN to the length of the name.  *PLEN is initialized to the
4693 // length of NAME.
4694 
4695 const char*
4696 Layout::output_section_name(const Relobj* relobj, const char* name,
4697 			    size_t* plen)
4698 {
4699   // gcc 4.3 generates the following sorts of section names when it
4700   // needs a section name specific to a function:
4701   //   .text.FN
4702   //   .rodata.FN
4703   //   .sdata2.FN
4704   //   .data.FN
4705   //   .data.rel.FN
4706   //   .data.rel.local.FN
4707   //   .data.rel.ro.FN
4708   //   .data.rel.ro.local.FN
4709   //   .sdata.FN
4710   //   .bss.FN
4711   //   .sbss.FN
4712   //   .tdata.FN
4713   //   .tbss.FN
4714 
4715   // The GNU linker maps all of those to the part before the .FN,
4716   // except that .data.rel.local.FN is mapped to .data, and
4717   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
4718   // beginning with .data.rel.ro.local are grouped together.
4719 
4720   // For an anonymous namespace, the string FN can contain a '.'.
4721 
4722   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
4723   // GNU linker maps to .rodata.
4724 
4725   // The .data.rel.ro sections are used with -z relro.  The sections
4726   // are recognized by name.  We use the same names that the GNU
4727   // linker does for these sections.
4728 
4729   // It is hard to handle this in a principled way, so we don't even
4730   // try.  We use a table of mappings.  If the input section name is
4731   // not found in the table, we simply use it as the output section
4732   // name.
4733 
4734   const Section_name_mapping* psnm = section_name_mapping;
4735   for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
4736     {
4737       if (psnm->fromlen > 0)
4738 	{
4739 	  if (strncmp(name, psnm->from, psnm->fromlen) == 0)
4740 	    {
4741 	      *plen = psnm->tolen;
4742 	      return psnm->to;
4743 	    }
4744 	}
4745       else
4746 	{
4747 	  if (strcmp(name, psnm->from) == 0)
4748 	    {
4749 	      *plen = psnm->tolen;
4750 	      return psnm->to;
4751 	    }
4752 	}
4753     }
4754 
4755   // As an additional complication, .ctors sections are output in
4756   // either .ctors or .init_array sections, and .dtors sections are
4757   // output in either .dtors or .fini_array sections.
4758   if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
4759     {
4760       if (parameters->options().ctors_in_init_array())
4761 	{
4762 	  *plen = 11;
4763 	  return name[1] == 'c' ? ".init_array" : ".fini_array";
4764 	}
4765       else
4766 	{
4767 	  *plen = 6;
4768 	  return name[1] == 'c' ? ".ctors" : ".dtors";
4769 	}
4770     }
4771   if (parameters->options().ctors_in_init_array()
4772       && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
4773     {
4774       // To make .init_array/.fini_array work with gcc we must exclude
4775       // .ctors and .dtors sections from the crtbegin and crtend
4776       // files.
4777       if (relobj == NULL
4778 	  || (!Layout::match_file_name(relobj, "crtbegin")
4779 	      && !Layout::match_file_name(relobj, "crtend")))
4780 	{
4781 	  *plen = 11;
4782 	  return name[1] == 'c' ? ".init_array" : ".fini_array";
4783 	}
4784     }
4785 
4786   return name;
4787 }
4788 
4789 // Return true if RELOBJ is an input file whose base name matches
4790 // FILE_NAME.  The base name must have an extension of ".o", and must
4791 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o".  This is
4792 // to match crtbegin.o as well as crtbeginS.o without getting confused
4793 // by other possibilities.  Overall matching the file name this way is
4794 // a dreadful hack, but the GNU linker does it in order to better
4795 // support gcc, and we need to be compatible.
4796 
4797 bool
4798 Layout::match_file_name(const Relobj* relobj, const char* match)
4799 {
4800   const std::string& file_name(relobj->name());
4801   const char* base_name = lbasename(file_name.c_str());
4802   size_t match_len = strlen(match);
4803   if (strncmp(base_name, match, match_len) != 0)
4804     return false;
4805   size_t base_len = strlen(base_name);
4806   if (base_len != match_len + 2 && base_len != match_len + 3)
4807     return false;
4808   return memcmp(base_name + base_len - 2, ".o", 2) == 0;
4809 }
4810 
4811 // Check if a comdat group or .gnu.linkonce section with the given
4812 // NAME is selected for the link.  If there is already a section,
4813 // *KEPT_SECTION is set to point to the existing section and the
4814 // function returns false.  Otherwise, OBJECT, SHNDX, IS_COMDAT, and
4815 // IS_GROUP_NAME are recorded for this NAME in the layout object,
4816 // *KEPT_SECTION is set to the internal copy and the function returns
4817 // true.
4818 
4819 bool
4820 Layout::find_or_add_kept_section(const std::string& name,
4821 				 Relobj* object,
4822 				 unsigned int shndx,
4823 				 bool is_comdat,
4824 				 bool is_group_name,
4825 				 Kept_section** kept_section)
4826 {
4827   // It's normal to see a couple of entries here, for the x86 thunk
4828   // sections.  If we see more than a few, we're linking a C++
4829   // program, and we resize to get more space to minimize rehashing.
4830   if (this->signatures_.size() > 4
4831       && !this->resized_signatures_)
4832     {
4833       reserve_unordered_map(&this->signatures_,
4834 			    this->number_of_input_files_ * 64);
4835       this->resized_signatures_ = true;
4836     }
4837 
4838   Kept_section candidate;
4839   std::pair<Signatures::iterator, bool> ins =
4840     this->signatures_.insert(std::make_pair(name, candidate));
4841 
4842   if (kept_section != NULL)
4843     *kept_section = &ins.first->second;
4844   if (ins.second)
4845     {
4846       // This is the first time we've seen this signature.
4847       ins.first->second.set_object(object);
4848       ins.first->second.set_shndx(shndx);
4849       if (is_comdat)
4850 	ins.first->second.set_is_comdat();
4851       if (is_group_name)
4852 	ins.first->second.set_is_group_name();
4853       return true;
4854     }
4855 
4856   // We have already seen this signature.
4857 
4858   if (ins.first->second.is_group_name())
4859     {
4860       // We've already seen a real section group with this signature.
4861       // If the kept group is from a plugin object, and we're in the
4862       // replacement phase, accept the new one as a replacement.
4863       if (ins.first->second.object() == NULL
4864 	  && parameters->options().plugins()->in_replacement_phase())
4865 	{
4866 	  ins.first->second.set_object(object);
4867 	  ins.first->second.set_shndx(shndx);
4868 	  return true;
4869 	}
4870       return false;
4871     }
4872   else if (is_group_name)
4873     {
4874       // This is a real section group, and we've already seen a
4875       // linkonce section with this signature.  Record that we've seen
4876       // a section group, and don't include this section group.
4877       ins.first->second.set_is_group_name();
4878       return false;
4879     }
4880   else
4881     {
4882       // We've already seen a linkonce section and this is a linkonce
4883       // section.  These don't block each other--this may be the same
4884       // symbol name with different section types.
4885       return true;
4886     }
4887 }
4888 
4889 // Store the allocated sections into the section list.
4890 
4891 void
4892 Layout::get_allocated_sections(Section_list* section_list) const
4893 {
4894   for (Section_list::const_iterator p = this->section_list_.begin();
4895        p != this->section_list_.end();
4896        ++p)
4897     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
4898       section_list->push_back(*p);
4899 }
4900 
4901 // Create an output segment.
4902 
4903 Output_segment*
4904 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
4905 {
4906   gold_assert(!parameters->options().relocatable());
4907   Output_segment* oseg = new Output_segment(type, flags);
4908   this->segment_list_.push_back(oseg);
4909 
4910   if (type == elfcpp::PT_TLS)
4911     this->tls_segment_ = oseg;
4912   else if (type == elfcpp::PT_GNU_RELRO)
4913     this->relro_segment_ = oseg;
4914   else if (type == elfcpp::PT_INTERP)
4915     this->interp_segment_ = oseg;
4916 
4917   return oseg;
4918 }
4919 
4920 // Return the file offset of the normal symbol table.
4921 
4922 off_t
4923 Layout::symtab_section_offset() const
4924 {
4925   if (this->symtab_section_ != NULL)
4926     return this->symtab_section_->offset();
4927   return 0;
4928 }
4929 
4930 // Return the section index of the normal symbol table.  It may have
4931 // been stripped by the -s/--strip-all option.
4932 
4933 unsigned int
4934 Layout::symtab_section_shndx() const
4935 {
4936   if (this->symtab_section_ != NULL)
4937     return this->symtab_section_->out_shndx();
4938   return 0;
4939 }
4940 
4941 // Write out the Output_sections.  Most won't have anything to write,
4942 // since most of the data will come from input sections which are
4943 // handled elsewhere.  But some Output_sections do have Output_data.
4944 
4945 void
4946 Layout::write_output_sections(Output_file* of) const
4947 {
4948   for (Section_list::const_iterator p = this->section_list_.begin();
4949        p != this->section_list_.end();
4950        ++p)
4951     {
4952       if (!(*p)->after_input_sections())
4953 	(*p)->write(of);
4954     }
4955 }
4956 
4957 // Write out data not associated with a section or the symbol table.
4958 
4959 void
4960 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
4961 {
4962   if (!parameters->options().strip_all())
4963     {
4964       const Output_section* symtab_section = this->symtab_section_;
4965       for (Section_list::const_iterator p = this->section_list_.begin();
4966 	   p != this->section_list_.end();
4967 	   ++p)
4968 	{
4969 	  if ((*p)->needs_symtab_index())
4970 	    {
4971 	      gold_assert(symtab_section != NULL);
4972 	      unsigned int index = (*p)->symtab_index();
4973 	      gold_assert(index > 0 && index != -1U);
4974 	      off_t off = (symtab_section->offset()
4975 			   + index * symtab_section->entsize());
4976 	      symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
4977 	    }
4978 	}
4979     }
4980 
4981   const Output_section* dynsym_section = this->dynsym_section_;
4982   for (Section_list::const_iterator p = this->section_list_.begin();
4983        p != this->section_list_.end();
4984        ++p)
4985     {
4986       if ((*p)->needs_dynsym_index())
4987 	{
4988 	  gold_assert(dynsym_section != NULL);
4989 	  unsigned int index = (*p)->dynsym_index();
4990 	  gold_assert(index > 0 && index != -1U);
4991 	  off_t off = (dynsym_section->offset()
4992 		       + index * dynsym_section->entsize());
4993 	  symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
4994 	}
4995     }
4996 
4997   // Write out the Output_data which are not in an Output_section.
4998   for (Data_list::const_iterator p = this->special_output_list_.begin();
4999        p != this->special_output_list_.end();
5000        ++p)
5001     (*p)->write(of);
5002 }
5003 
5004 // Write out the Output_sections which can only be written after the
5005 // input sections are complete.
5006 
5007 void
5008 Layout::write_sections_after_input_sections(Output_file* of)
5009 {
5010   // Determine the final section offsets, and thus the final output
5011   // file size.  Note we finalize the .shstrab last, to allow the
5012   // after_input_section sections to modify their section-names before
5013   // writing.
5014   if (this->any_postprocessing_sections_)
5015     {
5016       off_t off = this->output_file_size_;
5017       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
5018 
5019       // Now that we've finalized the names, we can finalize the shstrab.
5020       off =
5021 	this->set_section_offsets(off,
5022 				  STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
5023 
5024       if (off > this->output_file_size_)
5025 	{
5026 	  of->resize(off);
5027 	  this->output_file_size_ = off;
5028 	}
5029     }
5030 
5031   for (Section_list::const_iterator p = this->section_list_.begin();
5032        p != this->section_list_.end();
5033        ++p)
5034     {
5035       if ((*p)->after_input_sections())
5036 	(*p)->write(of);
5037     }
5038 
5039   this->section_headers_->write(of);
5040 }
5041 
5042 // If the build ID requires computing a checksum, do so here, and
5043 // write it out.  We compute a checksum over the entire file because
5044 // that is simplest.
5045 
5046 void
5047 Layout::write_build_id(Output_file* of) const
5048 {
5049   if (this->build_id_note_ == NULL)
5050     return;
5051 
5052   const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
5053 
5054   unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
5055 					  this->build_id_note_->data_size());
5056 
5057   const char* style = parameters->options().build_id();
5058   if (strcmp(style, "sha1") == 0)
5059     {
5060       sha1_ctx ctx;
5061       sha1_init_ctx(&ctx);
5062       sha1_process_bytes(iv, this->output_file_size_, &ctx);
5063       sha1_finish_ctx(&ctx, ov);
5064     }
5065   else if (strcmp(style, "md5") == 0)
5066     {
5067       md5_ctx ctx;
5068       md5_init_ctx(&ctx);
5069       md5_process_bytes(iv, this->output_file_size_, &ctx);
5070       md5_finish_ctx(&ctx, ov);
5071     }
5072   else
5073     gold_unreachable();
5074 
5075   of->write_output_view(this->build_id_note_->offset(),
5076 			this->build_id_note_->data_size(),
5077 			ov);
5078 
5079   of->free_input_view(0, this->output_file_size_, iv);
5080 }
5081 
5082 // Write out a binary file.  This is called after the link is
5083 // complete.  IN is the temporary output file we used to generate the
5084 // ELF code.  We simply walk through the segments, read them from
5085 // their file offset in IN, and write them to their load address in
5086 // the output file.  FIXME: with a bit more work, we could support
5087 // S-records and/or Intel hex format here.
5088 
5089 void
5090 Layout::write_binary(Output_file* in) const
5091 {
5092   gold_assert(parameters->options().oformat_enum()
5093 	      == General_options::OBJECT_FORMAT_BINARY);
5094 
5095   // Get the size of the binary file.
5096   uint64_t max_load_address = 0;
5097   for (Segment_list::const_iterator p = this->segment_list_.begin();
5098        p != this->segment_list_.end();
5099        ++p)
5100     {
5101       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5102 	{
5103 	  uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
5104 	  if (max_paddr > max_load_address)
5105 	    max_load_address = max_paddr;
5106 	}
5107     }
5108 
5109   Output_file out(parameters->options().output_file_name());
5110   out.open(max_load_address);
5111 
5112   for (Segment_list::const_iterator p = this->segment_list_.begin();
5113        p != this->segment_list_.end();
5114        ++p)
5115     {
5116       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5117 	{
5118 	  const unsigned char* vin = in->get_input_view((*p)->offset(),
5119 							(*p)->filesz());
5120 	  unsigned char* vout = out.get_output_view((*p)->paddr(),
5121 						    (*p)->filesz());
5122 	  memcpy(vout, vin, (*p)->filesz());
5123 	  out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
5124 	  in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
5125 	}
5126     }
5127 
5128   out.close();
5129 }
5130 
5131 // Print the output sections to the map file.
5132 
5133 void
5134 Layout::print_to_mapfile(Mapfile* mapfile) const
5135 {
5136   for (Segment_list::const_iterator p = this->segment_list_.begin();
5137        p != this->segment_list_.end();
5138        ++p)
5139     (*p)->print_sections_to_mapfile(mapfile);
5140 }
5141 
5142 // Print statistical information to stderr.  This is used for --stats.
5143 
5144 void
5145 Layout::print_stats() const
5146 {
5147   this->namepool_.print_stats("section name pool");
5148   this->sympool_.print_stats("output symbol name pool");
5149   this->dynpool_.print_stats("dynamic name pool");
5150 
5151   for (Section_list::const_iterator p = this->section_list_.begin();
5152        p != this->section_list_.end();
5153        ++p)
5154     (*p)->print_merge_stats();
5155 }
5156 
5157 // Write_sections_task methods.
5158 
5159 // We can always run this task.
5160 
5161 Task_token*
5162 Write_sections_task::is_runnable()
5163 {
5164   return NULL;
5165 }
5166 
5167 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
5168 // when finished.
5169 
5170 void
5171 Write_sections_task::locks(Task_locker* tl)
5172 {
5173   tl->add(this, this->output_sections_blocker_);
5174   tl->add(this, this->final_blocker_);
5175 }
5176 
5177 // Run the task--write out the data.
5178 
5179 void
5180 Write_sections_task::run(Workqueue*)
5181 {
5182   this->layout_->write_output_sections(this->of_);
5183 }
5184 
5185 // Write_data_task methods.
5186 
5187 // We can always run this task.
5188 
5189 Task_token*
5190 Write_data_task::is_runnable()
5191 {
5192   return NULL;
5193 }
5194 
5195 // We need to unlock FINAL_BLOCKER when finished.
5196 
5197 void
5198 Write_data_task::locks(Task_locker* tl)
5199 {
5200   tl->add(this, this->final_blocker_);
5201 }
5202 
5203 // Run the task--write out the data.
5204 
5205 void
5206 Write_data_task::run(Workqueue*)
5207 {
5208   this->layout_->write_data(this->symtab_, this->of_);
5209 }
5210 
5211 // Write_symbols_task methods.
5212 
5213 // We can always run this task.
5214 
5215 Task_token*
5216 Write_symbols_task::is_runnable()
5217 {
5218   return NULL;
5219 }
5220 
5221 // We need to unlock FINAL_BLOCKER when finished.
5222 
5223 void
5224 Write_symbols_task::locks(Task_locker* tl)
5225 {
5226   tl->add(this, this->final_blocker_);
5227 }
5228 
5229 // Run the task--write out the symbols.
5230 
5231 void
5232 Write_symbols_task::run(Workqueue*)
5233 {
5234   this->symtab_->write_globals(this->sympool_, this->dynpool_,
5235 			       this->layout_->symtab_xindex(),
5236 			       this->layout_->dynsym_xindex(), this->of_);
5237 }
5238 
5239 // Write_after_input_sections_task methods.
5240 
5241 // We can only run this task after the input sections have completed.
5242 
5243 Task_token*
5244 Write_after_input_sections_task::is_runnable()
5245 {
5246   if (this->input_sections_blocker_->is_blocked())
5247     return this->input_sections_blocker_;
5248   return NULL;
5249 }
5250 
5251 // We need to unlock FINAL_BLOCKER when finished.
5252 
5253 void
5254 Write_after_input_sections_task::locks(Task_locker* tl)
5255 {
5256   tl->add(this, this->final_blocker_);
5257 }
5258 
5259 // Run the task.
5260 
5261 void
5262 Write_after_input_sections_task::run(Workqueue*)
5263 {
5264   this->layout_->write_sections_after_input_sections(this->of_);
5265 }
5266 
5267 // Close_task_runner methods.
5268 
5269 // Run the task--close the file.
5270 
5271 void
5272 Close_task_runner::run(Workqueue*, const Task*)
5273 {
5274   // If we need to compute a checksum for the BUILD if, we do so here.
5275   this->layout_->write_build_id(this->of_);
5276 
5277   // If we've been asked to create a binary file, we do so here.
5278   if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
5279     this->layout_->write_binary(this->of_);
5280 
5281   this->of_->close();
5282 }
5283 
5284 // Instantiate the templates we need.  We could use the configure
5285 // script to restrict this to only the ones for implemented targets.
5286 
5287 #ifdef HAVE_TARGET_32_LITTLE
5288 template
5289 Output_section*
5290 Layout::init_fixed_output_section<32, false>(
5291     const char* name,
5292     elfcpp::Shdr<32, false>& shdr);
5293 #endif
5294 
5295 #ifdef HAVE_TARGET_32_BIG
5296 template
5297 Output_section*
5298 Layout::init_fixed_output_section<32, true>(
5299     const char* name,
5300     elfcpp::Shdr<32, true>& shdr);
5301 #endif
5302 
5303 #ifdef HAVE_TARGET_64_LITTLE
5304 template
5305 Output_section*
5306 Layout::init_fixed_output_section<64, false>(
5307     const char* name,
5308     elfcpp::Shdr<64, false>& shdr);
5309 #endif
5310 
5311 #ifdef HAVE_TARGET_64_BIG
5312 template
5313 Output_section*
5314 Layout::init_fixed_output_section<64, true>(
5315     const char* name,
5316     elfcpp::Shdr<64, true>& shdr);
5317 #endif
5318 
5319 #ifdef HAVE_TARGET_32_LITTLE
5320 template
5321 Output_section*
5322 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
5323 			  unsigned int shndx,
5324 			  const char* name,
5325 			  const elfcpp::Shdr<32, false>& shdr,
5326 			  unsigned int, unsigned int, off_t*);
5327 #endif
5328 
5329 #ifdef HAVE_TARGET_32_BIG
5330 template
5331 Output_section*
5332 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
5333 			 unsigned int shndx,
5334 			 const char* name,
5335 			 const elfcpp::Shdr<32, true>& shdr,
5336 			 unsigned int, unsigned int, off_t*);
5337 #endif
5338 
5339 #ifdef HAVE_TARGET_64_LITTLE
5340 template
5341 Output_section*
5342 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
5343 			  unsigned int shndx,
5344 			  const char* name,
5345 			  const elfcpp::Shdr<64, false>& shdr,
5346 			  unsigned int, unsigned int, off_t*);
5347 #endif
5348 
5349 #ifdef HAVE_TARGET_64_BIG
5350 template
5351 Output_section*
5352 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
5353 			 unsigned int shndx,
5354 			 const char* name,
5355 			 const elfcpp::Shdr<64, true>& shdr,
5356 			 unsigned int, unsigned int, off_t*);
5357 #endif
5358 
5359 #ifdef HAVE_TARGET_32_LITTLE
5360 template
5361 Output_section*
5362 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
5363 				unsigned int reloc_shndx,
5364 				const elfcpp::Shdr<32, false>& shdr,
5365 				Output_section* data_section,
5366 				Relocatable_relocs* rr);
5367 #endif
5368 
5369 #ifdef HAVE_TARGET_32_BIG
5370 template
5371 Output_section*
5372 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
5373 			       unsigned int reloc_shndx,
5374 			       const elfcpp::Shdr<32, true>& shdr,
5375 			       Output_section* data_section,
5376 			       Relocatable_relocs* rr);
5377 #endif
5378 
5379 #ifdef HAVE_TARGET_64_LITTLE
5380 template
5381 Output_section*
5382 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
5383 				unsigned int reloc_shndx,
5384 				const elfcpp::Shdr<64, false>& shdr,
5385 				Output_section* data_section,
5386 				Relocatable_relocs* rr);
5387 #endif
5388 
5389 #ifdef HAVE_TARGET_64_BIG
5390 template
5391 Output_section*
5392 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
5393 			       unsigned int reloc_shndx,
5394 			       const elfcpp::Shdr<64, true>& shdr,
5395 			       Output_section* data_section,
5396 			       Relocatable_relocs* rr);
5397 #endif
5398 
5399 #ifdef HAVE_TARGET_32_LITTLE
5400 template
5401 void
5402 Layout::layout_group<32, false>(Symbol_table* symtab,
5403 				Sized_relobj_file<32, false>* object,
5404 				unsigned int,
5405 				const char* group_section_name,
5406 				const char* signature,
5407 				const elfcpp::Shdr<32, false>& shdr,
5408 				elfcpp::Elf_Word flags,
5409 				std::vector<unsigned int>* shndxes);
5410 #endif
5411 
5412 #ifdef HAVE_TARGET_32_BIG
5413 template
5414 void
5415 Layout::layout_group<32, true>(Symbol_table* symtab,
5416 			       Sized_relobj_file<32, true>* object,
5417 			       unsigned int,
5418 			       const char* group_section_name,
5419 			       const char* signature,
5420 			       const elfcpp::Shdr<32, true>& shdr,
5421 			       elfcpp::Elf_Word flags,
5422 			       std::vector<unsigned int>* shndxes);
5423 #endif
5424 
5425 #ifdef HAVE_TARGET_64_LITTLE
5426 template
5427 void
5428 Layout::layout_group<64, false>(Symbol_table* symtab,
5429 				Sized_relobj_file<64, false>* object,
5430 				unsigned int,
5431 				const char* group_section_name,
5432 				const char* signature,
5433 				const elfcpp::Shdr<64, false>& shdr,
5434 				elfcpp::Elf_Word flags,
5435 				std::vector<unsigned int>* shndxes);
5436 #endif
5437 
5438 #ifdef HAVE_TARGET_64_BIG
5439 template
5440 void
5441 Layout::layout_group<64, true>(Symbol_table* symtab,
5442 			       Sized_relobj_file<64, true>* object,
5443 			       unsigned int,
5444 			       const char* group_section_name,
5445 			       const char* signature,
5446 			       const elfcpp::Shdr<64, true>& shdr,
5447 			       elfcpp::Elf_Word flags,
5448 			       std::vector<unsigned int>* shndxes);
5449 #endif
5450 
5451 #ifdef HAVE_TARGET_32_LITTLE
5452 template
5453 Output_section*
5454 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
5455 				   const unsigned char* symbols,
5456 				   off_t symbols_size,
5457 				   const unsigned char* symbol_names,
5458 				   off_t symbol_names_size,
5459 				   unsigned int shndx,
5460 				   const elfcpp::Shdr<32, false>& shdr,
5461 				   unsigned int reloc_shndx,
5462 				   unsigned int reloc_type,
5463 				   off_t* off);
5464 #endif
5465 
5466 #ifdef HAVE_TARGET_32_BIG
5467 template
5468 Output_section*
5469 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
5470 				  const unsigned char* symbols,
5471 				  off_t symbols_size,
5472 				  const unsigned char* symbol_names,
5473 				  off_t symbol_names_size,
5474 				  unsigned int shndx,
5475 				  const elfcpp::Shdr<32, true>& shdr,
5476 				  unsigned int reloc_shndx,
5477 				  unsigned int reloc_type,
5478 				  off_t* off);
5479 #endif
5480 
5481 #ifdef HAVE_TARGET_64_LITTLE
5482 template
5483 Output_section*
5484 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
5485 				   const unsigned char* symbols,
5486 				   off_t symbols_size,
5487 				   const unsigned char* symbol_names,
5488 				   off_t symbol_names_size,
5489 				   unsigned int shndx,
5490 				   const elfcpp::Shdr<64, false>& shdr,
5491 				   unsigned int reloc_shndx,
5492 				   unsigned int reloc_type,
5493 				   off_t* off);
5494 #endif
5495 
5496 #ifdef HAVE_TARGET_64_BIG
5497 template
5498 Output_section*
5499 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
5500 				  const unsigned char* symbols,
5501 				  off_t symbols_size,
5502 				  const unsigned char* symbol_names,
5503 				  off_t symbol_names_size,
5504 				  unsigned int shndx,
5505 				  const elfcpp::Shdr<64, true>& shdr,
5506 				  unsigned int reloc_shndx,
5507 				  unsigned int reloc_type,
5508 				  off_t* off);
5509 #endif
5510 
5511 #ifdef HAVE_TARGET_32_LITTLE
5512 template
5513 void
5514 Layout::add_to_gdb_index(bool is_type_unit,
5515 			 Sized_relobj<32, false>* object,
5516 			 const unsigned char* symbols,
5517 			 off_t symbols_size,
5518 			 unsigned int shndx,
5519 			 unsigned int reloc_shndx,
5520 			 unsigned int reloc_type);
5521 #endif
5522 
5523 #ifdef HAVE_TARGET_32_BIG
5524 template
5525 void
5526 Layout::add_to_gdb_index(bool is_type_unit,
5527 			 Sized_relobj<32, true>* object,
5528 			 const unsigned char* symbols,
5529 			 off_t symbols_size,
5530 			 unsigned int shndx,
5531 			 unsigned int reloc_shndx,
5532 			 unsigned int reloc_type);
5533 #endif
5534 
5535 #ifdef HAVE_TARGET_64_LITTLE
5536 template
5537 void
5538 Layout::add_to_gdb_index(bool is_type_unit,
5539 			 Sized_relobj<64, false>* object,
5540 			 const unsigned char* symbols,
5541 			 off_t symbols_size,
5542 			 unsigned int shndx,
5543 			 unsigned int reloc_shndx,
5544 			 unsigned int reloc_type);
5545 #endif
5546 
5547 #ifdef HAVE_TARGET_64_BIG
5548 template
5549 void
5550 Layout::add_to_gdb_index(bool is_type_unit,
5551 			 Sized_relobj<64, true>* object,
5552 			 const unsigned char* symbols,
5553 			 off_t symbols_size,
5554 			 unsigned int shndx,
5555 			 unsigned int reloc_shndx,
5556 			 unsigned int reloc_type);
5557 #endif
5558 
5559 } // End namespace gold.
5560