xref: /netbsd-src/external/gpl3/binutils.old/dist/gas/atof-generic.c (revision d16b7486a53dcb8072b60ec6fcb4373a2d0c27b7)
1 /* atof_generic.c - turn a string of digits into a Flonum
2    Copyright (C) 1987-2020 Free Software Foundation, Inc.
3 
4    This file is part of GAS, the GNU Assembler.
5 
6    GAS is free software; you can redistribute it and/or modify
7    it under the terms of the GNU General Public License as published by
8    the Free Software Foundation; either version 3, or (at your option)
9    any later version.
10 
11    GAS is distributed in the hope that it will be useful, but WITHOUT
12    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13    or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
14    License for more details.
15 
16    You should have received a copy of the GNU General Public License
17    along with GAS; see the file COPYING.  If not, write to the Free
18    Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19    02110-1301, USA.  */
20 
21 #include "as.h"
22 #include "safe-ctype.h"
23 
24 #ifndef FALSE
25 #define FALSE (0)
26 #endif
27 #ifndef TRUE
28 #define TRUE  (1)
29 #endif
30 
31 #ifdef TRACE
32 static void flonum_print (const FLONUM_TYPE *);
33 #endif
34 
35 #define ASSUME_DECIMAL_MARK_IS_DOT
36 
37 /***********************************************************************\
38  *									*
39  *	Given a string of decimal digits , with optional decimal	*
40  *	mark and optional decimal exponent (place value) of the		*
41  *	lowest_order decimal digit: produce a floating point		*
42  *	number. The number is 'generic' floating point: our		*
43  *	caller will encode it for a specific machine architecture.	*
44  *									*
45  *	Assumptions							*
46  *		uses base (radix) 2					*
47  *		this machine uses 2's complement binary integers	*
48  *		target flonums use "      "         "       "		*
49  *		target flonums exponents fit in a long			*
50  *									*
51  \***********************************************************************/
52 
53 /*
54 
55   Syntax:
56 
57   <flonum> ::= <optional-sign> <decimal-number> <optional-exponent>
58   <optional-sign> ::= '+' | '-' | {empty}
59   <decimal-number> ::= <integer>
60   | <integer> <radix-character>
61   | <integer> <radix-character> <integer>
62   | <radix-character> <integer>
63 
64   <optional-exponent> ::= {empty}
65   | <exponent-character> <optional-sign> <integer>
66 
67   <integer> ::= <digit> | <digit> <integer>
68   <digit> ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
69   <exponent-character> ::= {one character from "string_of_decimal_exponent_marks"}
70   <radix-character> ::= {one character from "string_of_decimal_marks"}
71 
72   */
73 
74 int
75 atof_generic (/* return pointer to just AFTER number we read.  */
76 	      char **address_of_string_pointer,
77 	      /* At most one per number.  */
78 	      const char *string_of_decimal_marks,
79 	      const char *string_of_decimal_exponent_marks,
80 	      FLONUM_TYPE *address_of_generic_floating_point_number)
81 {
82   int return_value;		/* 0 means OK.  */
83   char *first_digit;
84   unsigned int number_of_digits_before_decimal;
85   unsigned int number_of_digits_after_decimal;
86   long decimal_exponent;
87   unsigned int number_of_digits_available;
88   char digits_sign_char;
89 
90   /*
91    * Scan the input string, abstracting (1)digits (2)decimal mark (3) exponent.
92    * It would be simpler to modify the string, but we don't; just to be nice
93    * to caller.
94    * We need to know how many digits we have, so we can allocate space for
95    * the digits' value.
96    */
97 
98   char *p;
99   char c;
100   int seen_significant_digit;
101 
102 #ifdef ASSUME_DECIMAL_MARK_IS_DOT
103   gas_assert (string_of_decimal_marks[0] == '.'
104 	  && string_of_decimal_marks[1] == 0);
105 #define IS_DECIMAL_MARK(c)	((c) == '.')
106 #else
107 #define IS_DECIMAL_MARK(c)	(0 != strchr (string_of_decimal_marks, (c)))
108 #endif
109 
110   first_digit = *address_of_string_pointer;
111   c = *first_digit;
112 
113   if (c == '-' || c == '+')
114     {
115       digits_sign_char = c;
116       first_digit++;
117     }
118   else
119     digits_sign_char = '+';
120 
121   switch (first_digit[0])
122     {
123     case 's':
124     case 'S':
125       if (!strncasecmp ("snan", first_digit, 4))
126 	{
127 	  address_of_generic_floating_point_number->sign = 0;
128 	  address_of_generic_floating_point_number->exponent = 0;
129 	  address_of_generic_floating_point_number->leader =
130 	    address_of_generic_floating_point_number->low;
131 	  *address_of_string_pointer = first_digit + 4;
132 	  return 0;
133 	}
134       break;
135 
136     case 'q':
137     case 'Q':
138       if (!strncasecmp ("qnan", first_digit, 4))
139 	{
140 	  address_of_generic_floating_point_number->sign = 0;
141 	  address_of_generic_floating_point_number->exponent = 0;
142 	  address_of_generic_floating_point_number->leader =
143 	    address_of_generic_floating_point_number->low;
144 	  *address_of_string_pointer = first_digit + 4;
145 	  return 0;
146 	}
147       break;
148 
149     case 'n':
150     case 'N':
151       if (!strncasecmp ("nan", first_digit, 3))
152 	{
153 	  address_of_generic_floating_point_number->sign = 0;
154 	  address_of_generic_floating_point_number->exponent = 0;
155 	  address_of_generic_floating_point_number->leader =
156 	    address_of_generic_floating_point_number->low;
157 	  *address_of_string_pointer = first_digit + 3;
158 	  return 0;
159 	}
160       break;
161 
162     case 'i':
163     case 'I':
164       if (!strncasecmp ("inf", first_digit, 3))
165 	{
166 	  address_of_generic_floating_point_number->sign =
167 	    digits_sign_char == '+' ? 'P' : 'N';
168 	  address_of_generic_floating_point_number->exponent = 0;
169 	  address_of_generic_floating_point_number->leader =
170 	    address_of_generic_floating_point_number->low;
171 
172 	  first_digit += 3;
173 	  if (!strncasecmp ("inity", first_digit, 5))
174 	    first_digit += 5;
175 
176 	  *address_of_string_pointer = first_digit;
177 
178 	  return 0;
179 	}
180       break;
181     }
182 
183   number_of_digits_before_decimal = 0;
184   number_of_digits_after_decimal = 0;
185   decimal_exponent = 0;
186   seen_significant_digit = 0;
187   for (p = first_digit;
188        (((c = *p) != '\0')
189 	&& (!c || !IS_DECIMAL_MARK (c))
190 	&& (!c || !strchr (string_of_decimal_exponent_marks, c)));
191        p++)
192     {
193       if (ISDIGIT (c))
194 	{
195 	  if (seen_significant_digit || c > '0')
196 	    {
197 	      ++number_of_digits_before_decimal;
198 	      seen_significant_digit = 1;
199 	    }
200 	  else
201 	    {
202 	      first_digit++;
203 	    }
204 	}
205       else
206 	{
207 	  break;		/* p -> char after pre-decimal digits.  */
208 	}
209     }				/* For each digit before decimal mark.  */
210 
211 #ifndef OLD_FLOAT_READS
212   /* Ignore trailing 0's after the decimal point.  The original code here
213      (ifdef'd out) does not do this, and numbers like
214     	4.29496729600000000000e+09	(2**31)
215      come out inexact for some reason related to length of the digit
216      string.  */
217 
218   /* The case number_of_digits_before_decimal = 0 is handled for
219      deleting zeros after decimal.  In this case the decimal mark and
220      the first zero digits after decimal mark are skipped.  */
221   seen_significant_digit = 0;
222   signed long subtract_decimal_exponent = 0;
223 
224   if (c && IS_DECIMAL_MARK (c))
225     {
226       unsigned int zeros = 0;	/* Length of current string of zeros.  */
227 
228       if (number_of_digits_before_decimal == 0)
229 	/* Skip decimal mark.  */
230 	first_digit++;
231 
232       for (p++; (c = *p) && ISDIGIT (c); p++)
233 	{
234 	  if (c == '0')
235 	    {
236 	      if (number_of_digits_before_decimal == 0
237 		  && !seen_significant_digit)
238 		{
239 		  /* Skip '0' and the decimal mark.  */
240 		  first_digit++;
241 		  subtract_decimal_exponent--;
242 		}
243 	      else
244 		zeros++;
245 	    }
246 	  else
247 	    {
248 	      seen_significant_digit = 1;
249 	      number_of_digits_after_decimal += 1 + zeros;
250 	      zeros = 0;
251 	    }
252 	}
253     }
254 #else
255   if (c && IS_DECIMAL_MARK (c))
256     {
257       for (p++;
258 	   (((c = *p) != '\0')
259 	    && (!c || !strchr (string_of_decimal_exponent_marks, c)));
260 	   p++)
261 	{
262 	  if (ISDIGIT (c))
263 	    {
264 	      /* This may be retracted below.  */
265 	      number_of_digits_after_decimal++;
266 
267 	      if ( /* seen_significant_digit || */ c > '0')
268 		{
269 		  seen_significant_digit = TRUE;
270 		}
271 	    }
272 	  else
273 	    {
274 	      if (!seen_significant_digit)
275 		{
276 		  number_of_digits_after_decimal = 0;
277 		}
278 	      break;
279 	    }
280 	}			/* For each digit after decimal mark.  */
281     }
282 
283   while (number_of_digits_after_decimal
284 	 && first_digit[number_of_digits_before_decimal
285 			+ number_of_digits_after_decimal] == '0')
286     --number_of_digits_after_decimal;
287 #endif
288 
289   if (flag_m68k_mri)
290     {
291       while (c == '_')
292 	c = *++p;
293     }
294   if (c && strchr (string_of_decimal_exponent_marks, c))
295     {
296       char digits_exponent_sign_char;
297 
298       c = *++p;
299       if (flag_m68k_mri)
300 	{
301 	  while (c == '_')
302 	    c = *++p;
303 	}
304       if (c && strchr ("+-", c))
305 	{
306 	  digits_exponent_sign_char = c;
307 	  c = *++p;
308 	}
309       else
310 	{
311 	  digits_exponent_sign_char = '+';
312 	}
313 
314       for (; (c); c = *++p)
315 	{
316 	  if (ISDIGIT (c))
317 	    {
318 	      decimal_exponent = decimal_exponent * 10 + c - '0';
319 	      /*
320 	       * BUG! If we overflow here, we lose!
321 	       */
322 	    }
323 	  else
324 	    {
325 	      break;
326 	    }
327 	}
328 
329       if (digits_exponent_sign_char == '-')
330 	{
331 	  decimal_exponent = -decimal_exponent;
332 	}
333     }
334 
335 #ifndef OLD_FLOAT_READS
336   /* Subtract_decimal_exponent != 0 when number_of_digits_before_decimal = 0
337      and first digit after decimal is '0'.  */
338   decimal_exponent += subtract_decimal_exponent;
339 #endif
340 
341   *address_of_string_pointer = p;
342 
343   number_of_digits_available =
344     number_of_digits_before_decimal + number_of_digits_after_decimal;
345   return_value = 0;
346   if (number_of_digits_available == 0)
347     {
348       address_of_generic_floating_point_number->exponent = 0;	/* Not strictly necessary */
349       address_of_generic_floating_point_number->leader
350 	= -1 + address_of_generic_floating_point_number->low;
351       address_of_generic_floating_point_number->sign = digits_sign_char;
352       /* We have just concocted (+/-)0.0E0 */
353 
354     }
355   else
356     {
357       int count;		/* Number of useful digits left to scan.  */
358 
359       LITTLENUM_TYPE *temporary_binary_low = NULL;
360       LITTLENUM_TYPE *power_binary_low = NULL;
361       LITTLENUM_TYPE *digits_binary_low;
362       unsigned int precision;
363       unsigned int maximum_useful_digits;
364       unsigned int number_of_digits_to_use;
365       unsigned int more_than_enough_bits_for_digits;
366       unsigned int more_than_enough_littlenums_for_digits;
367       unsigned int size_of_digits_in_littlenums;
368       unsigned int size_of_digits_in_chars;
369       FLONUM_TYPE power_of_10_flonum;
370       FLONUM_TYPE digits_flonum;
371 
372       precision = (address_of_generic_floating_point_number->high
373 		   - address_of_generic_floating_point_number->low
374 		   + 1);	/* Number of destination littlenums.  */
375 
376       /* precision includes two littlenums worth of guard bits,
377 	 so this gives us 10 decimal guard digits here.  */
378       maximum_useful_digits = (precision
379 			       * LITTLENUM_NUMBER_OF_BITS
380 			       * 1000000 / 3321928
381 			       + 1);	/* round up.  */
382 
383       if (number_of_digits_available > maximum_useful_digits)
384 	{
385 	  number_of_digits_to_use = maximum_useful_digits;
386 	}
387       else
388 	{
389 	  number_of_digits_to_use = number_of_digits_available;
390 	}
391 
392       /* Cast these to SIGNED LONG first, otherwise, on systems with
393 	 LONG wider than INT (such as Alpha OSF/1), unsignedness may
394 	 cause unexpected results.  */
395       decimal_exponent += ((long) number_of_digits_before_decimal
396 			   - (long) number_of_digits_to_use);
397 
398       more_than_enough_bits_for_digits
399 	= (number_of_digits_to_use * 3321928 / 1000000 + 1);
400 
401       more_than_enough_littlenums_for_digits
402 	= (more_than_enough_bits_for_digits
403 	   / LITTLENUM_NUMBER_OF_BITS)
404 	+ 2;
405 
406       /* Compute (digits) part. In "12.34E56" this is the "1234" part.
407 	 Arithmetic is exact here. If no digits are supplied then this
408 	 part is a 0 valued binary integer.  Allocate room to build up
409 	 the binary number as littlenums.  We want this memory to
410 	 disappear when we leave this function.  Assume no alignment
411 	 problems => (room for n objects) == n * (room for 1
412 	 object).  */
413 
414       size_of_digits_in_littlenums = more_than_enough_littlenums_for_digits;
415       size_of_digits_in_chars = size_of_digits_in_littlenums
416 	* sizeof (LITTLENUM_TYPE);
417 
418       digits_binary_low = (LITTLENUM_TYPE *)
419 	xmalloc (size_of_digits_in_chars);
420 
421       memset ((char *) digits_binary_low, '\0', size_of_digits_in_chars);
422 
423       /* Digits_binary_low[] is allocated and zeroed.  */
424 
425       /*
426        * Parse the decimal digits as if * digits_low was in the units position.
427        * Emit a binary number into digits_binary_low[].
428        *
429        * Use a large-precision version of:
430        * (((1st-digit) * 10 + 2nd-digit) * 10 + 3rd-digit ...) * 10 + last-digit
431        */
432 
433       for (p = first_digit, count = number_of_digits_to_use; count; p++, --count)
434 	{
435 	  c = *p;
436 	  if (ISDIGIT (c))
437 	    {
438 	      /*
439 	       * Multiply by 10. Assume can never overflow.
440 	       * Add this digit to digits_binary_low[].
441 	       */
442 
443 	      long carry;
444 	      LITTLENUM_TYPE *littlenum_pointer;
445 	      LITTLENUM_TYPE *littlenum_limit;
446 
447 	      littlenum_limit = digits_binary_low
448 		+ more_than_enough_littlenums_for_digits
449 		- 1;
450 
451 	      carry = c - '0';	/* char -> binary */
452 
453 	      for (littlenum_pointer = digits_binary_low;
454 		   littlenum_pointer <= littlenum_limit;
455 		   littlenum_pointer++)
456 		{
457 		  long work;
458 
459 		  work = carry + 10 * (long) (*littlenum_pointer);
460 		  *littlenum_pointer = work & LITTLENUM_MASK;
461 		  carry = work >> LITTLENUM_NUMBER_OF_BITS;
462 		}
463 
464 	      if (carry != 0)
465 		{
466 		  /*
467 		   * We have a GROSS internal error.
468 		   * This should never happen.
469 		   */
470 		  as_fatal (_("failed sanity check"));
471 		}
472 	    }
473 	  else
474 	    {
475 	      ++count;		/* '.' doesn't alter digits used count.  */
476 	    }
477 	}
478 
479       /*
480        * Digits_binary_low[] properly encodes the value of the digits.
481        * Forget about any high-order littlenums that are 0.
482        */
483       while (digits_binary_low[size_of_digits_in_littlenums - 1] == 0
484 	     && size_of_digits_in_littlenums >= 2)
485 	size_of_digits_in_littlenums--;
486 
487       digits_flonum.low = digits_binary_low;
488       digits_flonum.high = digits_binary_low + size_of_digits_in_littlenums - 1;
489       digits_flonum.leader = digits_flonum.high;
490       digits_flonum.exponent = 0;
491       /*
492        * The value of digits_flonum . sign should not be important.
493        * We have already decided the output's sign.
494        * We trust that the sign won't influence the other parts of the number!
495        * So we give it a value for these reasons:
496        * (1) courtesy to humans reading/debugging
497        *     these numbers so they don't get excited about strange values
498        * (2) in future there may be more meaning attached to sign,
499        *     and what was
500        *     harmless noise may become disruptive, ill-conditioned (or worse)
501        *     input.
502        */
503       digits_flonum.sign = '+';
504 
505       {
506 	/*
507 	 * Compute the mantissa (& exponent) of the power of 10.
508 	 * If successful, then multiply the power of 10 by the digits
509 	 * giving return_binary_mantissa and return_binary_exponent.
510 	 */
511 
512 	int decimal_exponent_is_negative;
513 	/* This refers to the "-56" in "12.34E-56".  */
514 	/* FALSE: decimal_exponent is positive (or 0) */
515 	/* TRUE:  decimal_exponent is negative */
516 	FLONUM_TYPE temporary_flonum;
517 	unsigned int size_of_power_in_littlenums;
518 	unsigned int size_of_power_in_chars;
519 
520 	size_of_power_in_littlenums = precision;
521 	/* Precision has a built-in fudge factor so we get a few guard bits.  */
522 
523 	decimal_exponent_is_negative = decimal_exponent < 0;
524 	if (decimal_exponent_is_negative)
525 	  {
526 	    decimal_exponent = -decimal_exponent;
527 	  }
528 
529 	/* From now on: the decimal exponent is > 0. Its sign is separate.  */
530 
531 	size_of_power_in_chars = size_of_power_in_littlenums
532 	  * sizeof (LITTLENUM_TYPE) + 2;
533 
534 	power_binary_low = (LITTLENUM_TYPE *) xmalloc (size_of_power_in_chars);
535 	temporary_binary_low = (LITTLENUM_TYPE *) xmalloc (size_of_power_in_chars);
536 
537 	memset ((char *) power_binary_low, '\0', size_of_power_in_chars);
538 	*power_binary_low = 1;
539 	power_of_10_flonum.exponent = 0;
540 	power_of_10_flonum.low = power_binary_low;
541 	power_of_10_flonum.leader = power_binary_low;
542 	power_of_10_flonum.high = power_binary_low + size_of_power_in_littlenums - 1;
543 	power_of_10_flonum.sign = '+';
544 	temporary_flonum.low = temporary_binary_low;
545 	temporary_flonum.high = temporary_binary_low + size_of_power_in_littlenums - 1;
546 	/*
547 	 * (power) == 1.
548 	 * Space for temporary_flonum allocated.
549 	 */
550 
551 	/*
552 	 * ...
553 	 *
554 	 * WHILE	more bits
555 	 * DO	find next bit (with place value)
556 	 *	multiply into power mantissa
557 	 * OD
558 	 */
559 	{
560 	  int place_number_limit;
561 	  /* Any 10^(2^n) whose "n" exceeds this */
562 	  /* value will fall off the end of */
563 	  /* flonum_XXXX_powers_of_ten[].  */
564 	  int place_number;
565 	  const FLONUM_TYPE *multiplicand;	/* -> 10^(2^n) */
566 
567 	  place_number_limit = table_size_of_flonum_powers_of_ten;
568 
569 	  multiplicand = (decimal_exponent_is_negative
570 			  ? flonum_negative_powers_of_ten
571 			  : flonum_positive_powers_of_ten);
572 
573 	  for (place_number = 1;/* Place value of this bit of exponent.  */
574 	       decimal_exponent;/* Quit when no more 1 bits in exponent.  */
575 	       decimal_exponent >>= 1, place_number++)
576 	    {
577 	      if (decimal_exponent & 1)
578 		{
579 		  if (place_number > place_number_limit)
580 		    {
581 		      /* The decimal exponent has a magnitude so great
582 			 that our tables can't help us fragment it.
583 			 Although this routine is in error because it
584 			 can't imagine a number that big, signal an
585 			 error as if it is the user's fault for
586 			 presenting such a big number.  */
587 		      return_value = ERROR_EXPONENT_OVERFLOW;
588 		      /* quit out of loop gracefully */
589 		      decimal_exponent = 0;
590 		    }
591 		  else
592 		    {
593 #ifdef TRACE
594 		      printf ("before multiply, place_number = %d., power_of_10_flonum:\n",
595 			      place_number);
596 
597 		      flonum_print (&power_of_10_flonum);
598 		      (void) putchar ('\n');
599 #endif
600 #ifdef TRACE
601 		      printf ("multiplier:\n");
602 		      flonum_print (multiplicand + place_number);
603 		      (void) putchar ('\n');
604 #endif
605 		      flonum_multip (multiplicand + place_number,
606 				     &power_of_10_flonum, &temporary_flonum);
607 #ifdef TRACE
608 		      printf ("after multiply:\n");
609 		      flonum_print (&temporary_flonum);
610 		      (void) putchar ('\n');
611 #endif
612 		      flonum_copy (&temporary_flonum, &power_of_10_flonum);
613 #ifdef TRACE
614 		      printf ("after copy:\n");
615 		      flonum_print (&power_of_10_flonum);
616 		      (void) putchar ('\n');
617 #endif
618 		    } /* If this bit of decimal_exponent was computable.*/
619 		} /* If this bit of decimal_exponent was set.  */
620 	    } /* For each bit of binary representation of exponent */
621 #ifdef TRACE
622 	  printf ("after computing power_of_10_flonum:\n");
623 	  flonum_print (&power_of_10_flonum);
624 	  (void) putchar ('\n');
625 #endif
626 	}
627       }
628 
629       /*
630        * power_of_10_flonum is power of ten in binary (mantissa) , (exponent).
631        * It may be the number 1, in which case we don't NEED to multiply.
632        *
633        * Multiply (decimal digits) by power_of_10_flonum.
634        */
635 
636       flonum_multip (&power_of_10_flonum, &digits_flonum, address_of_generic_floating_point_number);
637       /* Assert sign of the number we made is '+'.  */
638       address_of_generic_floating_point_number->sign = digits_sign_char;
639 
640       if (temporary_binary_low)
641 	free (temporary_binary_low);
642       if (power_binary_low)
643 	free (power_binary_low);
644       free (digits_binary_low);
645     }
646   return return_value;
647 }
648 
649 #ifdef TRACE
650 static void
651 flonum_print (f)
652      const FLONUM_TYPE *f;
653 {
654   LITTLENUM_TYPE *lp;
655   char littlenum_format[10];
656   sprintf (littlenum_format, " %%0%dx", sizeof (LITTLENUM_TYPE) * 2);
657 #define print_littlenum(LP)	(printf (littlenum_format, LP))
658   printf ("flonum @%p %c e%ld", f, f->sign, f->exponent);
659   if (f->low < f->high)
660     for (lp = f->high; lp >= f->low; lp--)
661       print_littlenum (*lp);
662   else
663     for (lp = f->low; lp <= f->high; lp++)
664       print_littlenum (*lp);
665   printf ("\n");
666   fflush (stdout);
667 }
668 #endif
669 
670 /* end of atof_generic.c */
671