xref: /netbsd-src/external/gpl3/binutils.old/dist/gas/atof-generic.c (revision e992f068c547fd6e84b3f104dc2340adcc955732)
1 /* atof_generic.c - turn a string of digits into a Flonum
2    Copyright (C) 1987-2022 Free Software Foundation, Inc.
3 
4    This file is part of GAS, the GNU Assembler.
5 
6    GAS is free software; you can redistribute it and/or modify
7    it under the terms of the GNU General Public License as published by
8    the Free Software Foundation; either version 3, or (at your option)
9    any later version.
10 
11    GAS is distributed in the hope that it will be useful, but WITHOUT
12    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13    or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
14    License for more details.
15 
16    You should have received a copy of the GNU General Public License
17    along with GAS; see the file COPYING.  If not, write to the Free
18    Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19    02110-1301, USA.  */
20 
21 #include "as.h"
22 #include "safe-ctype.h"
23 #include <limits.h>
24 
25 #ifdef TRACE
26 static void flonum_print (const FLONUM_TYPE *);
27 #endif
28 
29 #define ASSUME_DECIMAL_MARK_IS_DOT
30 
31 /***********************************************************************\
32  *									*
33  *	Given a string of decimal digits , with optional decimal	*
34  *	mark and optional decimal exponent (place value) of the		*
35  *	lowest_order decimal digit: produce a floating point		*
36  *	number. The number is 'generic' floating point: our		*
37  *	caller will encode it for a specific machine architecture.	*
38  *									*
39  *	Assumptions							*
40  *		uses base (radix) 2					*
41  *		this machine uses 2's complement binary integers	*
42  *		target flonums use "      "         "       "		*
43  *		target flonums exponents fit in a long			*
44  *									*
45  \***********************************************************************/
46 
47 /*
48 
49   Syntax:
50 
51   <flonum> ::= <optional-sign> <decimal-number> <optional-exponent>
52   <optional-sign> ::= '+' | '-' | {empty}
53   <decimal-number> ::= <integer>
54   | <integer> <radix-character>
55   | <integer> <radix-character> <integer>
56   | <radix-character> <integer>
57 
58   <optional-exponent> ::= {empty}
59   | <exponent-character> <optional-sign> <integer>
60 
61   <integer> ::= <digit> | <digit> <integer>
62   <digit> ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
63   <exponent-character> ::= {one character from "string_of_decimal_exponent_marks"}
64   <radix-character> ::= {one character from "string_of_decimal_marks"}
65 
66   */
67 
68 int
atof_generic(char ** address_of_string_pointer,const char * string_of_decimal_marks,const char * string_of_decimal_exponent_marks,FLONUM_TYPE * address_of_generic_floating_point_number)69 atof_generic (/* return pointer to just AFTER number we read.  */
70 	      char **address_of_string_pointer,
71 	      /* At most one per number.  */
72 	      const char *string_of_decimal_marks,
73 	      const char *string_of_decimal_exponent_marks,
74 	      FLONUM_TYPE *address_of_generic_floating_point_number)
75 {
76   int return_value = 0;		/* 0 means OK.  */
77   char *first_digit;
78   unsigned int number_of_digits_before_decimal;
79   unsigned int number_of_digits_after_decimal;
80   unsigned long decimal_exponent;
81   unsigned int number_of_digits_available;
82   char digits_sign_char;
83 
84   /*
85    * Scan the input string, abstracting (1)digits (2)decimal mark (3) exponent.
86    * It would be simpler to modify the string, but we don't; just to be nice
87    * to caller.
88    * We need to know how many digits we have, so we can allocate space for
89    * the digits' value.
90    */
91 
92   char *p;
93   char c;
94   int seen_significant_digit;
95 
96 #ifdef ASSUME_DECIMAL_MARK_IS_DOT
97   gas_assert (string_of_decimal_marks[0] == '.'
98 	  && string_of_decimal_marks[1] == 0);
99 #define IS_DECIMAL_MARK(c)	((c) == '.')
100 #else
101 #define IS_DECIMAL_MARK(c)	(0 != strchr (string_of_decimal_marks, (c)))
102 #endif
103 
104   first_digit = *address_of_string_pointer;
105   c = *first_digit;
106 
107   if (c == '-' || c == '+')
108     {
109       digits_sign_char = c;
110       first_digit++;
111     }
112   else
113     digits_sign_char = '+';
114 
115   switch (first_digit[0])
116     {
117     case 's':
118     case 'S':
119     case 'q':
120     case 'Q':
121       if (!strncasecmp ("nan", first_digit + 1, 3))
122 	{
123 	  address_of_generic_floating_point_number->sign =
124 	    digits_sign_char == '+' ? TOUPPER (first_digit[0])
125 				    : TOLOWER (first_digit[0]);
126 	  address_of_generic_floating_point_number->exponent = 0;
127 	  address_of_generic_floating_point_number->leader =
128 	    address_of_generic_floating_point_number->low;
129 	  *address_of_string_pointer = first_digit + 4;
130 	  return 0;
131 	}
132       break;
133 
134     case 'n':
135     case 'N':
136       if (!strncasecmp ("nan", first_digit, 3))
137 	{
138 	  address_of_generic_floating_point_number->sign =
139 	    digits_sign_char == '+' ? 0 : 'q';
140 	  address_of_generic_floating_point_number->exponent = 0;
141 	  address_of_generic_floating_point_number->leader =
142 	    address_of_generic_floating_point_number->low;
143 	  *address_of_string_pointer = first_digit + 3;
144 	  return 0;
145 	}
146       break;
147 
148     case 'i':
149     case 'I':
150       if (!strncasecmp ("inf", first_digit, 3))
151 	{
152 	  address_of_generic_floating_point_number->sign =
153 	    digits_sign_char == '+' ? 'P' : 'N';
154 	  address_of_generic_floating_point_number->exponent = 0;
155 	  address_of_generic_floating_point_number->leader =
156 	    address_of_generic_floating_point_number->low;
157 
158 	  first_digit += 3;
159 	  if (!strncasecmp ("inity", first_digit, 5))
160 	    first_digit += 5;
161 
162 	  *address_of_string_pointer = first_digit;
163 
164 	  return 0;
165 	}
166       break;
167     }
168 
169   number_of_digits_before_decimal = 0;
170   number_of_digits_after_decimal = 0;
171   decimal_exponent = 0;
172   seen_significant_digit = 0;
173   for (p = first_digit;
174        (((c = *p) != '\0')
175 	&& (!c || !IS_DECIMAL_MARK (c))
176 	&& (!c || !strchr (string_of_decimal_exponent_marks, c)));
177        p++)
178     {
179       if (ISDIGIT (c))
180 	{
181 	  if (seen_significant_digit || c > '0')
182 	    {
183 	      ++number_of_digits_before_decimal;
184 	      seen_significant_digit = 1;
185 	    }
186 	  else
187 	    {
188 	      first_digit++;
189 	    }
190 	}
191       else
192 	{
193 	  break;		/* p -> char after pre-decimal digits.  */
194 	}
195     }				/* For each digit before decimal mark.  */
196 
197 #ifndef OLD_FLOAT_READS
198   /* Ignore trailing 0's after the decimal point.  The original code here
199      (ifdef'd out) does not do this, and numbers like
200     	4.29496729600000000000e+09	(2**31)
201      come out inexact for some reason related to length of the digit
202      string.  */
203 
204   /* The case number_of_digits_before_decimal = 0 is handled for
205      deleting zeros after decimal.  In this case the decimal mark and
206      the first zero digits after decimal mark are skipped.  */
207   seen_significant_digit = 0;
208   unsigned long subtract_decimal_exponent = 0;
209 
210   if (c && IS_DECIMAL_MARK (c))
211     {
212       unsigned int zeros = 0;	/* Length of current string of zeros.  */
213 
214       if (number_of_digits_before_decimal == 0)
215 	/* Skip decimal mark.  */
216 	first_digit++;
217 
218       for (p++; (c = *p) && ISDIGIT (c); p++)
219 	{
220 	  if (c == '0')
221 	    {
222 	      if (number_of_digits_before_decimal == 0
223 		  && !seen_significant_digit)
224 		{
225 		  /* Skip '0' and the decimal mark.  */
226 		  first_digit++;
227 		  subtract_decimal_exponent--;
228 		}
229 	      else
230 		zeros++;
231 	    }
232 	  else
233 	    {
234 	      seen_significant_digit = 1;
235 	      number_of_digits_after_decimal += 1 + zeros;
236 	      zeros = 0;
237 	    }
238 	}
239     }
240 #else
241   if (c && IS_DECIMAL_MARK (c))
242     {
243       for (p++;
244 	   (((c = *p) != '\0')
245 	    && (!c || !strchr (string_of_decimal_exponent_marks, c)));
246 	   p++)
247 	{
248 	  if (ISDIGIT (c))
249 	    {
250 	      /* This may be retracted below.  */
251 	      number_of_digits_after_decimal++;
252 
253 	      if ( /* seen_significant_digit || */ c > '0')
254 		{
255 		  seen_significant_digit = true;
256 		}
257 	    }
258 	  else
259 	    {
260 	      if (!seen_significant_digit)
261 		{
262 		  number_of_digits_after_decimal = 0;
263 		}
264 	      break;
265 	    }
266 	}			/* For each digit after decimal mark.  */
267     }
268 
269   while (number_of_digits_after_decimal
270 	 && first_digit[number_of_digits_before_decimal
271 			+ number_of_digits_after_decimal] == '0')
272     --number_of_digits_after_decimal;
273 #endif
274 
275   if (flag_m68k_mri)
276     {
277       while (c == '_')
278 	c = *++p;
279     }
280   if (c && strchr (string_of_decimal_exponent_marks, c))
281     {
282       char digits_exponent_sign_char;
283 
284       c = *++p;
285       if (flag_m68k_mri)
286 	{
287 	  while (c == '_')
288 	    c = *++p;
289 	}
290       if (c && strchr ("+-", c))
291 	{
292 	  digits_exponent_sign_char = c;
293 	  c = *++p;
294 	}
295       else
296 	{
297 	  digits_exponent_sign_char = '+';
298 	}
299 
300       for (; (c); c = *++p)
301 	{
302 	  if (ISDIGIT (c))
303 	    {
304 	      if (decimal_exponent > LONG_MAX / 10
305 		  || (decimal_exponent == LONG_MAX / 10
306 		      && c > '0' + (char) (LONG_MAX - LONG_MAX / 10 * 10)))
307 		return_value = ERROR_EXPONENT_OVERFLOW;
308 	      decimal_exponent = decimal_exponent * 10 + c - '0';
309 	    }
310 	  else
311 	    {
312 	      break;
313 	    }
314 	}
315 
316       if (digits_exponent_sign_char == '-')
317 	{
318 	  decimal_exponent = -decimal_exponent;
319 	}
320     }
321 
322 #ifndef OLD_FLOAT_READS
323   /* Subtract_decimal_exponent != 0 when number_of_digits_before_decimal = 0
324      and first digit after decimal is '0'.  */
325   decimal_exponent += subtract_decimal_exponent;
326 #endif
327 
328   *address_of_string_pointer = p;
329 
330   number_of_digits_available =
331     number_of_digits_before_decimal + number_of_digits_after_decimal;
332   if (number_of_digits_available == 0)
333     {
334       address_of_generic_floating_point_number->exponent = 0;	/* Not strictly necessary */
335       address_of_generic_floating_point_number->leader
336 	= -1 + address_of_generic_floating_point_number->low;
337       address_of_generic_floating_point_number->sign = digits_sign_char;
338       /* We have just concocted (+/-)0.0E0 */
339 
340     }
341   else
342     {
343       int count;		/* Number of useful digits left to scan.  */
344 
345       LITTLENUM_TYPE *temporary_binary_low = NULL;
346       LITTLENUM_TYPE *power_binary_low = NULL;
347       LITTLENUM_TYPE *digits_binary_low;
348       unsigned int precision;
349       unsigned int maximum_useful_digits;
350       unsigned int number_of_digits_to_use;
351       unsigned int more_than_enough_bits_for_digits;
352       unsigned int more_than_enough_littlenums_for_digits;
353       unsigned int size_of_digits_in_littlenums;
354       unsigned int size_of_digits_in_chars;
355       FLONUM_TYPE power_of_10_flonum;
356       FLONUM_TYPE digits_flonum;
357 
358       precision = (address_of_generic_floating_point_number->high
359 		   - address_of_generic_floating_point_number->low
360 		   + 1);	/* Number of destination littlenums.  */
361 
362       /* precision includes two littlenums worth of guard bits,
363 	 so this gives us 10 decimal guard digits here.  */
364       maximum_useful_digits = (precision
365 			       * LITTLENUM_NUMBER_OF_BITS
366 			       * 1000000 / 3321928
367 			       + 1);	/* round up.  */
368 
369       if (number_of_digits_available > maximum_useful_digits)
370 	{
371 	  number_of_digits_to_use = maximum_useful_digits;
372 	}
373       else
374 	{
375 	  number_of_digits_to_use = number_of_digits_available;
376 	}
377 
378       /* Cast these to SIGNED LONG first, otherwise, on systems with
379 	 LONG wider than INT (such as Alpha OSF/1), unsignedness may
380 	 cause unexpected results.  */
381       decimal_exponent += ((long) number_of_digits_before_decimal
382 			   - (long) number_of_digits_to_use);
383 
384       more_than_enough_bits_for_digits
385 	= (number_of_digits_to_use * 3321928 / 1000000 + 1);
386 
387       more_than_enough_littlenums_for_digits
388 	= (more_than_enough_bits_for_digits
389 	   / LITTLENUM_NUMBER_OF_BITS)
390 	+ 2;
391 
392       /* Compute (digits) part. In "12.34E56" this is the "1234" part.
393 	 Arithmetic is exact here. If no digits are supplied then this
394 	 part is a 0 valued binary integer.  Allocate room to build up
395 	 the binary number as littlenums.  We want this memory to
396 	 disappear when we leave this function.  Assume no alignment
397 	 problems => (room for n objects) == n * (room for 1
398 	 object).  */
399 
400       size_of_digits_in_littlenums = more_than_enough_littlenums_for_digits;
401       size_of_digits_in_chars = size_of_digits_in_littlenums
402 	* sizeof (LITTLENUM_TYPE);
403 
404       digits_binary_low = (LITTLENUM_TYPE *)
405 	xmalloc (size_of_digits_in_chars);
406 
407       memset ((char *) digits_binary_low, '\0', size_of_digits_in_chars);
408 
409       /* Digits_binary_low[] is allocated and zeroed.  */
410 
411       /*
412        * Parse the decimal digits as if * digits_low was in the units position.
413        * Emit a binary number into digits_binary_low[].
414        *
415        * Use a large-precision version of:
416        * (((1st-digit) * 10 + 2nd-digit) * 10 + 3rd-digit ...) * 10 + last-digit
417        */
418 
419       for (p = first_digit, count = number_of_digits_to_use; count; p++, --count)
420 	{
421 	  c = *p;
422 	  if (ISDIGIT (c))
423 	    {
424 	      /*
425 	       * Multiply by 10. Assume can never overflow.
426 	       * Add this digit to digits_binary_low[].
427 	       */
428 
429 	      long carry;
430 	      LITTLENUM_TYPE *littlenum_pointer;
431 	      LITTLENUM_TYPE *littlenum_limit;
432 
433 	      littlenum_limit = digits_binary_low
434 		+ more_than_enough_littlenums_for_digits
435 		- 1;
436 
437 	      carry = c - '0';	/* char -> binary */
438 
439 	      for (littlenum_pointer = digits_binary_low;
440 		   littlenum_pointer <= littlenum_limit;
441 		   littlenum_pointer++)
442 		{
443 		  long work;
444 
445 		  work = carry + 10 * (long) (*littlenum_pointer);
446 		  *littlenum_pointer = work & LITTLENUM_MASK;
447 		  carry = work >> LITTLENUM_NUMBER_OF_BITS;
448 		}
449 
450 	      if (carry != 0)
451 		{
452 		  /*
453 		   * We have a GROSS internal error.
454 		   * This should never happen.
455 		   */
456 		  as_fatal (_("failed sanity check"));
457 		}
458 	    }
459 	  else
460 	    {
461 	      ++count;		/* '.' doesn't alter digits used count.  */
462 	    }
463 	}
464 
465       /*
466        * Digits_binary_low[] properly encodes the value of the digits.
467        * Forget about any high-order littlenums that are 0.
468        */
469       while (digits_binary_low[size_of_digits_in_littlenums - 1] == 0
470 	     && size_of_digits_in_littlenums >= 2)
471 	size_of_digits_in_littlenums--;
472 
473       digits_flonum.low = digits_binary_low;
474       digits_flonum.high = digits_binary_low + size_of_digits_in_littlenums - 1;
475       digits_flonum.leader = digits_flonum.high;
476       digits_flonum.exponent = 0;
477       /*
478        * The value of digits_flonum . sign should not be important.
479        * We have already decided the output's sign.
480        * We trust that the sign won't influence the other parts of the number!
481        * So we give it a value for these reasons:
482        * (1) courtesy to humans reading/debugging
483        *     these numbers so they don't get excited about strange values
484        * (2) in future there may be more meaning attached to sign,
485        *     and what was
486        *     harmless noise may become disruptive, ill-conditioned (or worse)
487        *     input.
488        */
489       digits_flonum.sign = '+';
490 
491       {
492 	/*
493 	 * Compute the mantissa (& exponent) of the power of 10.
494 	 * If successful, then multiply the power of 10 by the digits
495 	 * giving return_binary_mantissa and return_binary_exponent.
496 	 */
497 
498 	int decimal_exponent_is_negative;
499 	/* This refers to the "-56" in "12.34E-56".  */
500 	/* FALSE: decimal_exponent is positive (or 0) */
501 	/* TRUE:  decimal_exponent is negative */
502 	FLONUM_TYPE temporary_flonum;
503 	unsigned int size_of_power_in_littlenums;
504 	unsigned int size_of_power_in_chars;
505 
506 	size_of_power_in_littlenums = precision;
507 	/* Precision has a built-in fudge factor so we get a few guard bits.  */
508 
509 	decimal_exponent_is_negative = (long) decimal_exponent < 0;
510 	if (decimal_exponent_is_negative)
511 	  {
512 	    decimal_exponent = -decimal_exponent;
513 	  }
514 
515 	/* From now on: the decimal exponent is > 0. Its sign is separate.  */
516 
517 	size_of_power_in_chars = size_of_power_in_littlenums
518 	  * sizeof (LITTLENUM_TYPE) + 2;
519 
520 	power_binary_low = (LITTLENUM_TYPE *) xmalloc (size_of_power_in_chars);
521 	temporary_binary_low = (LITTLENUM_TYPE *) xmalloc (size_of_power_in_chars);
522 
523 	memset ((char *) power_binary_low, '\0', size_of_power_in_chars);
524 	*power_binary_low = 1;
525 	power_of_10_flonum.exponent = 0;
526 	power_of_10_flonum.low = power_binary_low;
527 	power_of_10_flonum.leader = power_binary_low;
528 	power_of_10_flonum.high = power_binary_low + size_of_power_in_littlenums - 1;
529 	power_of_10_flonum.sign = '+';
530 	temporary_flonum.low = temporary_binary_low;
531 	temporary_flonum.high = temporary_binary_low + size_of_power_in_littlenums - 1;
532 	/*
533 	 * (power) == 1.
534 	 * Space for temporary_flonum allocated.
535 	 */
536 
537 	/*
538 	 * ...
539 	 *
540 	 * WHILE	more bits
541 	 * DO	find next bit (with place value)
542 	 *	multiply into power mantissa
543 	 * OD
544 	 */
545 	{
546 	  int place_number_limit;
547 	  /* Any 10^(2^n) whose "n" exceeds this */
548 	  /* value will fall off the end of */
549 	  /* flonum_XXXX_powers_of_ten[].  */
550 	  int place_number;
551 	  const FLONUM_TYPE *multiplicand;	/* -> 10^(2^n) */
552 
553 	  place_number_limit = table_size_of_flonum_powers_of_ten;
554 
555 	  multiplicand = (decimal_exponent_is_negative
556 			  ? flonum_negative_powers_of_ten
557 			  : flonum_positive_powers_of_ten);
558 
559 	  for (place_number = 1;/* Place value of this bit of exponent.  */
560 	       decimal_exponent;/* Quit when no more 1 bits in exponent.  */
561 	       decimal_exponent >>= 1, place_number++)
562 	    {
563 	      if (decimal_exponent & 1)
564 		{
565 		  if (place_number > place_number_limit)
566 		    {
567 		      /* The decimal exponent has a magnitude so great
568 			 that our tables can't help us fragment it.
569 			 Although this routine is in error because it
570 			 can't imagine a number that big, signal an
571 			 error as if it is the user's fault for
572 			 presenting such a big number.  */
573 		      return_value = ERROR_EXPONENT_OVERFLOW;
574 		      /* quit out of loop gracefully */
575 		      decimal_exponent = 0;
576 		    }
577 		  else
578 		    {
579 #ifdef TRACE
580 		      printf ("before multiply, place_number = %d., power_of_10_flonum:\n",
581 			      place_number);
582 
583 		      flonum_print (&power_of_10_flonum);
584 		      (void) putchar ('\n');
585 #endif
586 #ifdef TRACE
587 		      printf ("multiplier:\n");
588 		      flonum_print (multiplicand + place_number);
589 		      (void) putchar ('\n');
590 #endif
591 		      flonum_multip (multiplicand + place_number,
592 				     &power_of_10_flonum, &temporary_flonum);
593 #ifdef TRACE
594 		      printf ("after multiply:\n");
595 		      flonum_print (&temporary_flonum);
596 		      (void) putchar ('\n');
597 #endif
598 		      flonum_copy (&temporary_flonum, &power_of_10_flonum);
599 #ifdef TRACE
600 		      printf ("after copy:\n");
601 		      flonum_print (&power_of_10_flonum);
602 		      (void) putchar ('\n');
603 #endif
604 		    } /* If this bit of decimal_exponent was computable.*/
605 		} /* If this bit of decimal_exponent was set.  */
606 	    } /* For each bit of binary representation of exponent */
607 #ifdef TRACE
608 	  printf ("after computing power_of_10_flonum:\n");
609 	  flonum_print (&power_of_10_flonum);
610 	  (void) putchar ('\n');
611 #endif
612 	}
613       }
614 
615       /*
616        * power_of_10_flonum is power of ten in binary (mantissa) , (exponent).
617        * It may be the number 1, in which case we don't NEED to multiply.
618        *
619        * Multiply (decimal digits) by power_of_10_flonum.
620        */
621 
622       flonum_multip (&power_of_10_flonum, &digits_flonum, address_of_generic_floating_point_number);
623       /* Assert sign of the number we made is '+'.  */
624       address_of_generic_floating_point_number->sign = digits_sign_char;
625 
626       free (temporary_binary_low);
627       free (power_binary_low);
628       free (digits_binary_low);
629     }
630   return return_value;
631 }
632 
633 #ifdef TRACE
634 static void
flonum_print(f)635 flonum_print (f)
636      const FLONUM_TYPE *f;
637 {
638   LITTLENUM_TYPE *lp;
639   char littlenum_format[10];
640   sprintf (littlenum_format, " %%0%dx", sizeof (LITTLENUM_TYPE) * 2);
641 #define print_littlenum(LP)	(printf (littlenum_format, LP))
642   printf ("flonum @%p %c e%ld", f, f->sign, f->exponent);
643   if (f->low < f->high)
644     for (lp = f->high; lp >= f->low; lp--)
645       print_littlenum (*lp);
646   else
647     for (lp = f->low; lp <= f->high; lp++)
648       print_littlenum (*lp);
649   printf ("\n");
650   fflush (stdout);
651 }
652 #endif
653 
654 /* end of atof_generic.c */
655