xref: /netbsd-src/external/gpl3/binutils.old/dist/gas/atof-generic.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /* atof_generic.c - turn a string of digits into a Flonum
2    Copyright (C) 1987-2016 Free Software Foundation, Inc.
3 
4    This file is part of GAS, the GNU Assembler.
5 
6    GAS is free software; you can redistribute it and/or modify
7    it under the terms of the GNU General Public License as published by
8    the Free Software Foundation; either version 3, or (at your option)
9    any later version.
10 
11    GAS is distributed in the hope that it will be useful, but WITHOUT
12    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13    or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
14    License for more details.
15 
16    You should have received a copy of the GNU General Public License
17    along with GAS; see the file COPYING.  If not, write to the Free
18    Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19    02110-1301, USA.  */
20 
21 #include "as.h"
22 #include "safe-ctype.h"
23 
24 #ifndef FALSE
25 #define FALSE (0)
26 #endif
27 #ifndef TRUE
28 #define TRUE  (1)
29 #endif
30 
31 #ifdef TRACE
32 static void flonum_print (const FLONUM_TYPE *);
33 #endif
34 
35 #define ASSUME_DECIMAL_MARK_IS_DOT
36 
37 /***********************************************************************\
38  *									*
39  *	Given a string of decimal digits , with optional decimal	*
40  *	mark and optional decimal exponent (place value) of the		*
41  *	lowest_order decimal digit: produce a floating point		*
42  *	number. The number is 'generic' floating point: our		*
43  *	caller will encode it for a specific machine architecture.	*
44  *									*
45  *	Assumptions							*
46  *		uses base (radix) 2					*
47  *		this machine uses 2's complement binary integers	*
48  *		target flonums use "      "         "       "		*
49  *		target flonums exponents fit in a long			*
50  *									*
51  \***********************************************************************/
52 
53 /*
54 
55   Syntax:
56 
57   <flonum> ::= <optional-sign> <decimal-number> <optional-exponent>
58   <optional-sign> ::= '+' | '-' | {empty}
59   <decimal-number> ::= <integer>
60   | <integer> <radix-character>
61   | <integer> <radix-character> <integer>
62   | <radix-character> <integer>
63 
64   <optional-exponent> ::= {empty}
65   | <exponent-character> <optional-sign> <integer>
66 
67   <integer> ::= <digit> | <digit> <integer>
68   <digit> ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
69   <exponent-character> ::= {one character from "string_of_decimal_exponent_marks"}
70   <radix-character> ::= {one character from "string_of_decimal_marks"}
71 
72   */
73 
74 int
75 atof_generic (/* return pointer to just AFTER number we read.  */
76 	      char **address_of_string_pointer,
77 	      /* At most one per number.  */
78 	      const char *string_of_decimal_marks,
79 	      const char *string_of_decimal_exponent_marks,
80 	      FLONUM_TYPE *address_of_generic_floating_point_number)
81 {
82   int return_value;		/* 0 means OK.  */
83   char *first_digit;
84   unsigned int number_of_digits_before_decimal;
85   unsigned int number_of_digits_after_decimal;
86   long decimal_exponent;
87   unsigned int number_of_digits_available;
88   char digits_sign_char;
89 
90   /*
91    * Scan the input string, abstracting (1)digits (2)decimal mark (3) exponent.
92    * It would be simpler to modify the string, but we don't; just to be nice
93    * to caller.
94    * We need to know how many digits we have, so we can allocate space for
95    * the digits' value.
96    */
97 
98   char *p;
99   char c;
100   int seen_significant_digit;
101 
102 #ifdef ASSUME_DECIMAL_MARK_IS_DOT
103   gas_assert (string_of_decimal_marks[0] == '.'
104 	  && string_of_decimal_marks[1] == 0);
105 #define IS_DECIMAL_MARK(c)	((c) == '.')
106 #else
107 #define IS_DECIMAL_MARK(c)	(0 != strchr (string_of_decimal_marks, (c)))
108 #endif
109 
110   first_digit = *address_of_string_pointer;
111   c = *first_digit;
112 
113   if (c == '-' || c == '+')
114     {
115       digits_sign_char = c;
116       first_digit++;
117     }
118   else
119     digits_sign_char = '+';
120 
121   switch (first_digit[0])
122     {
123     case 's':
124     case 'S':
125       if (!strncasecmp ("snan", first_digit, 4))
126 	{
127 	  address_of_generic_floating_point_number->sign = 0;
128 	  address_of_generic_floating_point_number->exponent = 0;
129 	  address_of_generic_floating_point_number->leader =
130 	    address_of_generic_floating_point_number->low;
131 	  *address_of_string_pointer = first_digit + 4;
132 	  return 0;
133 	}
134       break;
135 
136     case 'q':
137     case 'Q':
138       if (!strncasecmp ("qnan", first_digit, 4))
139 	{
140 	  address_of_generic_floating_point_number->sign = 0;
141 	  address_of_generic_floating_point_number->exponent = 0;
142 	  address_of_generic_floating_point_number->leader =
143 	    address_of_generic_floating_point_number->low;
144 	  *address_of_string_pointer = first_digit + 4;
145 	  return 0;
146 	}
147       break;
148 
149     case 'n':
150     case 'N':
151       if (!strncasecmp ("nan", first_digit, 3))
152 	{
153 	  address_of_generic_floating_point_number->sign = 0;
154 	  address_of_generic_floating_point_number->exponent = 0;
155 	  address_of_generic_floating_point_number->leader =
156 	    address_of_generic_floating_point_number->low;
157 	  *address_of_string_pointer = first_digit + 3;
158 	  return 0;
159 	}
160       break;
161 
162     case 'i':
163     case 'I':
164       if (!strncasecmp ("inf", first_digit, 3))
165 	{
166 	  address_of_generic_floating_point_number->sign =
167 	    digits_sign_char == '+' ? 'P' : 'N';
168 	  address_of_generic_floating_point_number->exponent = 0;
169 	  address_of_generic_floating_point_number->leader =
170 	    address_of_generic_floating_point_number->low;
171 
172 	  first_digit += 3;
173 	  if (!strncasecmp ("inity", first_digit, 5))
174 	    first_digit += 5;
175 
176 	  *address_of_string_pointer = first_digit;
177 
178 	  return 0;
179 	}
180       break;
181     }
182 
183   number_of_digits_before_decimal = 0;
184   number_of_digits_after_decimal = 0;
185   decimal_exponent = 0;
186   seen_significant_digit = 0;
187   for (p = first_digit;
188        (((c = *p) != '\0')
189 	&& (!c || !IS_DECIMAL_MARK (c))
190 	&& (!c || !strchr (string_of_decimal_exponent_marks, c)));
191        p++)
192     {
193       if (ISDIGIT (c))
194 	{
195 	  if (seen_significant_digit || c > '0')
196 	    {
197 	      ++number_of_digits_before_decimal;
198 	      seen_significant_digit = 1;
199 	    }
200 	  else
201 	    {
202 	      first_digit++;
203 	    }
204 	}
205       else
206 	{
207 	  break;		/* p -> char after pre-decimal digits.  */
208 	}
209     }				/* For each digit before decimal mark.  */
210 
211 #ifndef OLD_FLOAT_READS
212   /* Ignore trailing 0's after the decimal point.  The original code here
213    * (ifdef'd out) does not do this, and numbers like
214    *	4.29496729600000000000e+09	(2**31)
215    * come out inexact for some reason related to length of the digit
216    * string.
217    */
218   if (c && IS_DECIMAL_MARK (c))
219     {
220       unsigned int zeros = 0;	/* Length of current string of zeros */
221 
222       for (p++; (c = *p) && ISDIGIT (c); p++)
223 	{
224 	  if (c == '0')
225 	    {
226 	      zeros++;
227 	    }
228 	  else
229 	    {
230 	      number_of_digits_after_decimal += 1 + zeros;
231 	      zeros = 0;
232 	    }
233 	}
234     }
235 #else
236   if (c && IS_DECIMAL_MARK (c))
237     {
238       for (p++;
239 	   (((c = *p) != '\0')
240 	    && (!c || !strchr (string_of_decimal_exponent_marks, c)));
241 	   p++)
242 	{
243 	  if (ISDIGIT (c))
244 	    {
245 	      /* This may be retracted below.  */
246 	      number_of_digits_after_decimal++;
247 
248 	      if ( /* seen_significant_digit || */ c > '0')
249 		{
250 		  seen_significant_digit = TRUE;
251 		}
252 	    }
253 	  else
254 	    {
255 	      if (!seen_significant_digit)
256 		{
257 		  number_of_digits_after_decimal = 0;
258 		}
259 	      break;
260 	    }
261 	}			/* For each digit after decimal mark.  */
262     }
263 
264   while (number_of_digits_after_decimal
265 	 && first_digit[number_of_digits_before_decimal
266 			+ number_of_digits_after_decimal] == '0')
267     --number_of_digits_after_decimal;
268 #endif
269 
270   if (flag_m68k_mri)
271     {
272       while (c == '_')
273 	c = *++p;
274     }
275   if (c && strchr (string_of_decimal_exponent_marks, c))
276     {
277       char digits_exponent_sign_char;
278 
279       c = *++p;
280       if (flag_m68k_mri)
281 	{
282 	  while (c == '_')
283 	    c = *++p;
284 	}
285       if (c && strchr ("+-", c))
286 	{
287 	  digits_exponent_sign_char = c;
288 	  c = *++p;
289 	}
290       else
291 	{
292 	  digits_exponent_sign_char = '+';
293 	}
294 
295       for (; (c); c = *++p)
296 	{
297 	  if (ISDIGIT (c))
298 	    {
299 	      decimal_exponent = decimal_exponent * 10 + c - '0';
300 	      /*
301 	       * BUG! If we overflow here, we lose!
302 	       */
303 	    }
304 	  else
305 	    {
306 	      break;
307 	    }
308 	}
309 
310       if (digits_exponent_sign_char == '-')
311 	{
312 	  decimal_exponent = -decimal_exponent;
313 	}
314     }
315 
316   *address_of_string_pointer = p;
317 
318   number_of_digits_available =
319     number_of_digits_before_decimal + number_of_digits_after_decimal;
320   return_value = 0;
321   if (number_of_digits_available == 0)
322     {
323       address_of_generic_floating_point_number->exponent = 0;	/* Not strictly necessary */
324       address_of_generic_floating_point_number->leader
325 	= -1 + address_of_generic_floating_point_number->low;
326       address_of_generic_floating_point_number->sign = digits_sign_char;
327       /* We have just concocted (+/-)0.0E0 */
328 
329     }
330   else
331     {
332       int count;		/* Number of useful digits left to scan.  */
333 
334       LITTLENUM_TYPE *temporary_binary_low = NULL;
335       LITTLENUM_TYPE *power_binary_low = NULL;
336       LITTLENUM_TYPE *digits_binary_low;
337       unsigned int precision;
338       unsigned int maximum_useful_digits;
339       unsigned int number_of_digits_to_use;
340       unsigned int more_than_enough_bits_for_digits;
341       unsigned int more_than_enough_littlenums_for_digits;
342       unsigned int size_of_digits_in_littlenums;
343       unsigned int size_of_digits_in_chars;
344       FLONUM_TYPE power_of_10_flonum;
345       FLONUM_TYPE digits_flonum;
346 
347       precision = (address_of_generic_floating_point_number->high
348 		   - address_of_generic_floating_point_number->low
349 		   + 1);	/* Number of destination littlenums.  */
350 
351       /* Includes guard bits (two littlenums worth) */
352       maximum_useful_digits = (((precision - 2))
353 			       * ( (LITTLENUM_NUMBER_OF_BITS))
354 			       * 1000000 / 3321928)
355 	+ 2;			/* 2 :: guard digits.  */
356 
357       if (number_of_digits_available > maximum_useful_digits)
358 	{
359 	  number_of_digits_to_use = maximum_useful_digits;
360 	}
361       else
362 	{
363 	  number_of_digits_to_use = number_of_digits_available;
364 	}
365 
366       /* Cast these to SIGNED LONG first, otherwise, on systems with
367 	 LONG wider than INT (such as Alpha OSF/1), unsignedness may
368 	 cause unexpected results.  */
369       decimal_exponent += ((long) number_of_digits_before_decimal
370 			   - (long) number_of_digits_to_use);
371 
372       more_than_enough_bits_for_digits
373 	= (number_of_digits_to_use * 3321928 / 1000000 + 1);
374 
375       more_than_enough_littlenums_for_digits
376 	= (more_than_enough_bits_for_digits
377 	   / LITTLENUM_NUMBER_OF_BITS)
378 	+ 2;
379 
380       /* Compute (digits) part. In "12.34E56" this is the "1234" part.
381 	 Arithmetic is exact here. If no digits are supplied then this
382 	 part is a 0 valued binary integer.  Allocate room to build up
383 	 the binary number as littlenums.  We want this memory to
384 	 disappear when we leave this function.  Assume no alignment
385 	 problems => (room for n objects) == n * (room for 1
386 	 object).  */
387 
388       size_of_digits_in_littlenums = more_than_enough_littlenums_for_digits;
389       size_of_digits_in_chars = size_of_digits_in_littlenums
390 	* sizeof (LITTLENUM_TYPE);
391 
392       digits_binary_low = (LITTLENUM_TYPE *)
393 	xmalloc (size_of_digits_in_chars);
394 
395       memset ((char *) digits_binary_low, '\0', size_of_digits_in_chars);
396 
397       /* Digits_binary_low[] is allocated and zeroed.  */
398 
399       /*
400        * Parse the decimal digits as if * digits_low was in the units position.
401        * Emit a binary number into digits_binary_low[].
402        *
403        * Use a large-precision version of:
404        * (((1st-digit) * 10 + 2nd-digit) * 10 + 3rd-digit ...) * 10 + last-digit
405        */
406 
407       for (p = first_digit, count = number_of_digits_to_use; count; p++, --count)
408 	{
409 	  c = *p;
410 	  if (ISDIGIT (c))
411 	    {
412 	      /*
413 	       * Multiply by 10. Assume can never overflow.
414 	       * Add this digit to digits_binary_low[].
415 	       */
416 
417 	      long carry;
418 	      LITTLENUM_TYPE *littlenum_pointer;
419 	      LITTLENUM_TYPE *littlenum_limit;
420 
421 	      littlenum_limit = digits_binary_low
422 		+ more_than_enough_littlenums_for_digits
423 		- 1;
424 
425 	      carry = c - '0';	/* char -> binary */
426 
427 	      for (littlenum_pointer = digits_binary_low;
428 		   littlenum_pointer <= littlenum_limit;
429 		   littlenum_pointer++)
430 		{
431 		  long work;
432 
433 		  work = carry + 10 * (long) (*littlenum_pointer);
434 		  *littlenum_pointer = work & LITTLENUM_MASK;
435 		  carry = work >> LITTLENUM_NUMBER_OF_BITS;
436 		}
437 
438 	      if (carry != 0)
439 		{
440 		  /*
441 		   * We have a GROSS internal error.
442 		   * This should never happen.
443 		   */
444 		  as_fatal (_("failed sanity check"));
445 		}
446 	    }
447 	  else
448 	    {
449 	      ++count;		/* '.' doesn't alter digits used count.  */
450 	    }
451 	}
452 
453       /*
454        * Digits_binary_low[] properly encodes the value of the digits.
455        * Forget about any high-order littlenums that are 0.
456        */
457       while (digits_binary_low[size_of_digits_in_littlenums - 1] == 0
458 	     && size_of_digits_in_littlenums >= 2)
459 	size_of_digits_in_littlenums--;
460 
461       digits_flonum.low = digits_binary_low;
462       digits_flonum.high = digits_binary_low + size_of_digits_in_littlenums - 1;
463       digits_flonum.leader = digits_flonum.high;
464       digits_flonum.exponent = 0;
465       /*
466        * The value of digits_flonum . sign should not be important.
467        * We have already decided the output's sign.
468        * We trust that the sign won't influence the other parts of the number!
469        * So we give it a value for these reasons:
470        * (1) courtesy to humans reading/debugging
471        *     these numbers so they don't get excited about strange values
472        * (2) in future there may be more meaning attached to sign,
473        *     and what was
474        *     harmless noise may become disruptive, ill-conditioned (or worse)
475        *     input.
476        */
477       digits_flonum.sign = '+';
478 
479       {
480 	/*
481 	 * Compute the mantssa (& exponent) of the power of 10.
482 	 * If successful, then multiply the power of 10 by the digits
483 	 * giving return_binary_mantissa and return_binary_exponent.
484 	 */
485 
486 	int decimal_exponent_is_negative;
487 	/* This refers to the "-56" in "12.34E-56".  */
488 	/* FALSE: decimal_exponent is positive (or 0) */
489 	/* TRUE:  decimal_exponent is negative */
490 	FLONUM_TYPE temporary_flonum;
491 	unsigned int size_of_power_in_littlenums;
492 	unsigned int size_of_power_in_chars;
493 
494 	size_of_power_in_littlenums = precision;
495 	/* Precision has a built-in fudge factor so we get a few guard bits.  */
496 
497 	decimal_exponent_is_negative = decimal_exponent < 0;
498 	if (decimal_exponent_is_negative)
499 	  {
500 	    decimal_exponent = -decimal_exponent;
501 	  }
502 
503 	/* From now on: the decimal exponent is > 0. Its sign is separate.  */
504 
505 	size_of_power_in_chars = size_of_power_in_littlenums
506 	  * sizeof (LITTLENUM_TYPE) + 2;
507 
508 	power_binary_low = (LITTLENUM_TYPE *) xmalloc (size_of_power_in_chars);
509 	temporary_binary_low = (LITTLENUM_TYPE *) xmalloc (size_of_power_in_chars);
510 
511 	memset ((char *) power_binary_low, '\0', size_of_power_in_chars);
512 	*power_binary_low = 1;
513 	power_of_10_flonum.exponent = 0;
514 	power_of_10_flonum.low = power_binary_low;
515 	power_of_10_flonum.leader = power_binary_low;
516 	power_of_10_flonum.high = power_binary_low + size_of_power_in_littlenums - 1;
517 	power_of_10_flonum.sign = '+';
518 	temporary_flonum.low = temporary_binary_low;
519 	temporary_flonum.high = temporary_binary_low + size_of_power_in_littlenums - 1;
520 	/*
521 	 * (power) == 1.
522 	 * Space for temporary_flonum allocated.
523 	 */
524 
525 	/*
526 	 * ...
527 	 *
528 	 * WHILE	more bits
529 	 * DO	find next bit (with place value)
530 	 *	multiply into power mantissa
531 	 * OD
532 	 */
533 	{
534 	  int place_number_limit;
535 	  /* Any 10^(2^n) whose "n" exceeds this */
536 	  /* value will fall off the end of */
537 	  /* flonum_XXXX_powers_of_ten[].  */
538 	  int place_number;
539 	  const FLONUM_TYPE *multiplicand;	/* -> 10^(2^n) */
540 
541 	  place_number_limit = table_size_of_flonum_powers_of_ten;
542 
543 	  multiplicand = (decimal_exponent_is_negative
544 			  ? flonum_negative_powers_of_ten
545 			  : flonum_positive_powers_of_ten);
546 
547 	  for (place_number = 1;/* Place value of this bit of exponent.  */
548 	       decimal_exponent;/* Quit when no more 1 bits in exponent.  */
549 	       decimal_exponent >>= 1, place_number++)
550 	    {
551 	      if (decimal_exponent & 1)
552 		{
553 		  if (place_number > place_number_limit)
554 		    {
555 		      /* The decimal exponent has a magnitude so great
556 			 that our tables can't help us fragment it.
557 			 Although this routine is in error because it
558 			 can't imagine a number that big, signal an
559 			 error as if it is the user's fault for
560 			 presenting such a big number.  */
561 		      return_value = ERROR_EXPONENT_OVERFLOW;
562 		      /* quit out of loop gracefully */
563 		      decimal_exponent = 0;
564 		    }
565 		  else
566 		    {
567 #ifdef TRACE
568 		      printf ("before multiply, place_number = %d., power_of_10_flonum:\n",
569 			      place_number);
570 
571 		      flonum_print (&power_of_10_flonum);
572 		      (void) putchar ('\n');
573 #endif
574 #ifdef TRACE
575 		      printf ("multiplier:\n");
576 		      flonum_print (multiplicand + place_number);
577 		      (void) putchar ('\n');
578 #endif
579 		      flonum_multip (multiplicand + place_number,
580 				     &power_of_10_flonum, &temporary_flonum);
581 #ifdef TRACE
582 		      printf ("after multiply:\n");
583 		      flonum_print (&temporary_flonum);
584 		      (void) putchar ('\n');
585 #endif
586 		      flonum_copy (&temporary_flonum, &power_of_10_flonum);
587 #ifdef TRACE
588 		      printf ("after copy:\n");
589 		      flonum_print (&power_of_10_flonum);
590 		      (void) putchar ('\n');
591 #endif
592 		    } /* If this bit of decimal_exponent was computable.*/
593 		} /* If this bit of decimal_exponent was set.  */
594 	    } /* For each bit of binary representation of exponent */
595 #ifdef TRACE
596 	  printf ("after computing power_of_10_flonum:\n");
597 	  flonum_print (&power_of_10_flonum);
598 	  (void) putchar ('\n');
599 #endif
600 	}
601       }
602 
603       /*
604        * power_of_10_flonum is power of ten in binary (mantissa) , (exponent).
605        * It may be the number 1, in which case we don't NEED to multiply.
606        *
607        * Multiply (decimal digits) by power_of_10_flonum.
608        */
609 
610       flonum_multip (&power_of_10_flonum, &digits_flonum, address_of_generic_floating_point_number);
611       /* Assert sign of the number we made is '+'.  */
612       address_of_generic_floating_point_number->sign = digits_sign_char;
613 
614       if (temporary_binary_low)
615 	free (temporary_binary_low);
616       if (power_binary_low)
617 	free (power_binary_low);
618       free (digits_binary_low);
619     }
620   return return_value;
621 }
622 
623 #ifdef TRACE
624 static void
625 flonum_print (f)
626      const FLONUM_TYPE *f;
627 {
628   LITTLENUM_TYPE *lp;
629   char littlenum_format[10];
630   sprintf (littlenum_format, " %%0%dx", sizeof (LITTLENUM_TYPE) * 2);
631 #define print_littlenum(LP)	(printf (littlenum_format, LP))
632   printf ("flonum @%p %c e%ld", f, f->sign, f->exponent);
633   if (f->low < f->high)
634     for (lp = f->high; lp >= f->low; lp--)
635       print_littlenum (*lp);
636   else
637     for (lp = f->low; lp <= f->high; lp++)
638       print_littlenum (*lp);
639   printf ("\n");
640   fflush (stdout);
641 }
642 #endif
643 
644 /* end of atof_generic.c */
645