xref: /netbsd-src/external/gpl3/binutils.old/dist/bfd/peicode.h (revision e992f068c547fd6e84b3f104dc2340adcc955732)
1 /* Support for the generic parts of PE/PEI, for BFD.
2    Copyright (C) 1995-2022 Free Software Foundation, Inc.
3    Written by Cygnus Solutions.
4 
5    This file is part of BFD, the Binary File Descriptor library.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program; if not, write to the Free Software
19    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20    MA 02110-1301, USA.  */
21 
22 
23 /* Most of this hacked by  Steve Chamberlain,
24 			sac@cygnus.com
25 
26    PE/PEI rearrangement (and code added): Donn Terry
27 				       Softway Systems, Inc.  */
28 
29 /* Hey look, some documentation [and in a place you expect to find it]!
30 
31    The main reference for the pei format is "Microsoft Portable Executable
32    and Common Object File Format Specification 4.1".  Get it if you need to
33    do some serious hacking on this code.
34 
35    Another reference:
36    "Peering Inside the PE: A Tour of the Win32 Portable Executable
37    File Format", MSJ 1994, Volume 9.
38 
39    The *sole* difference between the pe format and the pei format is that the
40    latter has an MSDOS 2.0 .exe header on the front that prints the message
41    "This app must be run under Windows." (or some such).
42    (FIXME: Whether that statement is *really* true or not is unknown.
43    Are there more subtle differences between pe and pei formats?
44    For now assume there aren't.  If you find one, then for God sakes
45    document it here!)
46 
47    The Microsoft docs use the word "image" instead of "executable" because
48    the former can also refer to a DLL (shared library).  Confusion can arise
49    because the `i' in `pei' also refers to "image".  The `pe' format can
50    also create images (i.e. executables), it's just that to run on a win32
51    system you need to use the pei format.
52 
53    FIXME: Please add more docs here so the next poor fool that has to hack
54    on this code has a chance of getting something accomplished without
55    wasting too much time.  */
56 
57 #include "libpei.h"
58 
59 static bool (*pe_saved_coff_bfd_print_private_bfd_data) (bfd *, void *) =
60 #ifndef coff_bfd_print_private_bfd_data
61      NULL;
62 #else
63      coff_bfd_print_private_bfd_data;
64 #undef coff_bfd_print_private_bfd_data
65 #endif
66 
67 static bool pe_print_private_bfd_data (bfd *, void *);
68 #define coff_bfd_print_private_bfd_data pe_print_private_bfd_data
69 
70 static bool (*pe_saved_coff_bfd_copy_private_bfd_data) (bfd *, bfd *) =
71 #ifndef coff_bfd_copy_private_bfd_data
72      NULL;
73 #else
74      coff_bfd_copy_private_bfd_data;
75 #undef coff_bfd_copy_private_bfd_data
76 #endif
77 
78 static bool pe_bfd_copy_private_bfd_data (bfd *, bfd *);
79 #define coff_bfd_copy_private_bfd_data pe_bfd_copy_private_bfd_data
80 
81 #define coff_mkobject	   pe_mkobject
82 #define coff_mkobject_hook pe_mkobject_hook
83 
84 #ifdef COFF_IMAGE_WITH_PE
85 /* This structure contains static variables used by the ILF code.  */
86 typedef asection * asection_ptr;
87 
88 typedef struct
89 {
90   bfd *			abfd;
91   bfd_byte *		data;
92   struct bfd_in_memory * bim;
93   unsigned short	magic;
94 
95   arelent *		reltab;
96   unsigned int		relcount;
97 
98   coff_symbol_type *	sym_cache;
99   coff_symbol_type *	sym_ptr;
100   unsigned int		sym_index;
101 
102   unsigned int *	sym_table;
103   unsigned int *	table_ptr;
104 
105   combined_entry_type * native_syms;
106   combined_entry_type * native_ptr;
107 
108   coff_symbol_type **	sym_ptr_table;
109   coff_symbol_type **	sym_ptr_ptr;
110 
111   unsigned int		sec_index;
112 
113   char *		string_table;
114   char *		string_ptr;
115   char *		end_string_ptr;
116 
117   SYMENT *		esym_table;
118   SYMENT *		esym_ptr;
119 
120   struct internal_reloc * int_reltab;
121 }
122 pe_ILF_vars;
123 #endif /* COFF_IMAGE_WITH_PE */
124 
125 bfd_cleanup coff_real_object_p
126   (bfd *, unsigned, struct internal_filehdr *, struct internal_aouthdr *);
127 
128 #ifndef NO_COFF_RELOCS
129 static void
coff_swap_reloc_in(bfd * abfd,void * src,void * dst)130 coff_swap_reloc_in (bfd * abfd, void * src, void * dst)
131 {
132   RELOC *reloc_src = (RELOC *) src;
133   struct internal_reloc *reloc_dst = (struct internal_reloc *) dst;
134 
135   reloc_dst->r_vaddr  = H_GET_32 (abfd, reloc_src->r_vaddr);
136   reloc_dst->r_symndx = H_GET_S32 (abfd, reloc_src->r_symndx);
137   reloc_dst->r_type   = H_GET_16 (abfd, reloc_src->r_type);
138 #ifdef SWAP_IN_RELOC_OFFSET
139   reloc_dst->r_offset = SWAP_IN_RELOC_OFFSET (abfd, reloc_src->r_offset);
140 #endif
141 }
142 
143 static unsigned int
coff_swap_reloc_out(bfd * abfd,void * src,void * dst)144 coff_swap_reloc_out (bfd * abfd, void * src, void * dst)
145 {
146   struct internal_reloc *reloc_src = (struct internal_reloc *) src;
147   struct external_reloc *reloc_dst = (struct external_reloc *) dst;
148 
149   H_PUT_32 (abfd, reloc_src->r_vaddr, reloc_dst->r_vaddr);
150   H_PUT_32 (abfd, reloc_src->r_symndx, reloc_dst->r_symndx);
151   H_PUT_16 (abfd, reloc_src->r_type, reloc_dst->r_type);
152 
153 #ifdef SWAP_OUT_RELOC_OFFSET
154   SWAP_OUT_RELOC_OFFSET (abfd, reloc_src->r_offset, reloc_dst->r_offset);
155 #endif
156 #ifdef SWAP_OUT_RELOC_EXTRA
157   SWAP_OUT_RELOC_EXTRA (abfd, reloc_src, reloc_dst);
158 #endif
159   return RELSZ;
160 }
161 #endif /* not NO_COFF_RELOCS */
162 
163 #ifdef COFF_IMAGE_WITH_PE
164 #undef FILHDR
165 #define FILHDR struct external_PEI_IMAGE_hdr
166 #endif
167 
168 static void
coff_swap_filehdr_in(bfd * abfd,void * src,void * dst)169 coff_swap_filehdr_in (bfd * abfd, void * src, void * dst)
170 {
171   FILHDR *filehdr_src = (FILHDR *) src;
172   struct internal_filehdr *filehdr_dst = (struct internal_filehdr *) dst;
173 
174   filehdr_dst->f_magic  = H_GET_16 (abfd, filehdr_src->f_magic);
175   filehdr_dst->f_nscns  = H_GET_16 (abfd, filehdr_src->f_nscns);
176   filehdr_dst->f_timdat = H_GET_32 (abfd, filehdr_src->f_timdat);
177   filehdr_dst->f_nsyms  = H_GET_32 (abfd, filehdr_src->f_nsyms);
178   filehdr_dst->f_flags  = H_GET_16 (abfd, filehdr_src->f_flags);
179   filehdr_dst->f_symptr = H_GET_32 (abfd, filehdr_src->f_symptr);
180 
181   /* Other people's tools sometimes generate headers with an nsyms but
182      a zero symptr.  */
183   if (filehdr_dst->f_nsyms != 0 && filehdr_dst->f_symptr == 0)
184     {
185       filehdr_dst->f_nsyms = 0;
186       filehdr_dst->f_flags |= F_LSYMS;
187     }
188 
189   filehdr_dst->f_opthdr = H_GET_16 (abfd, filehdr_src-> f_opthdr);
190 }
191 
192 #ifdef COFF_IMAGE_WITH_PE
193 # define coff_swap_filehdr_out _bfd_XXi_only_swap_filehdr_out
194 #elif defined COFF_WITH_pex64
195 # define coff_swap_filehdr_out _bfd_pex64_only_swap_filehdr_out
196 #elif defined COFF_WITH_pep
197 # define coff_swap_filehdr_out _bfd_pep_only_swap_filehdr_out
198 #else
199 # define coff_swap_filehdr_out _bfd_pe_only_swap_filehdr_out
200 #endif
201 
202 static void
coff_swap_scnhdr_in(bfd * abfd,void * ext,void * in)203 coff_swap_scnhdr_in (bfd * abfd, void * ext, void * in)
204 {
205   SCNHDR *scnhdr_ext = (SCNHDR *) ext;
206   struct internal_scnhdr *scnhdr_int = (struct internal_scnhdr *) in;
207 
208   memcpy (scnhdr_int->s_name, scnhdr_ext->s_name, sizeof (scnhdr_int->s_name));
209 
210   scnhdr_int->s_vaddr   = GET_SCNHDR_VADDR (abfd, scnhdr_ext->s_vaddr);
211   scnhdr_int->s_paddr   = GET_SCNHDR_PADDR (abfd, scnhdr_ext->s_paddr);
212   scnhdr_int->s_size    = GET_SCNHDR_SIZE (abfd, scnhdr_ext->s_size);
213   scnhdr_int->s_scnptr  = GET_SCNHDR_SCNPTR (abfd, scnhdr_ext->s_scnptr);
214   scnhdr_int->s_relptr  = GET_SCNHDR_RELPTR (abfd, scnhdr_ext->s_relptr);
215   scnhdr_int->s_lnnoptr = GET_SCNHDR_LNNOPTR (abfd, scnhdr_ext->s_lnnoptr);
216   scnhdr_int->s_flags   = H_GET_32 (abfd, scnhdr_ext->s_flags);
217 
218   /* MS handles overflow of line numbers by carrying into the reloc
219      field (it appears).  Since it's supposed to be zero for PE
220      *IMAGE* format, that's safe.  This is still a bit iffy.  */
221 #ifdef COFF_IMAGE_WITH_PE
222   scnhdr_int->s_nlnno = (H_GET_16 (abfd, scnhdr_ext->s_nlnno)
223 			 + (H_GET_16 (abfd, scnhdr_ext->s_nreloc) << 16));
224   scnhdr_int->s_nreloc = 0;
225 #else
226   scnhdr_int->s_nreloc = H_GET_16 (abfd, scnhdr_ext->s_nreloc);
227   scnhdr_int->s_nlnno = H_GET_16 (abfd, scnhdr_ext->s_nlnno);
228 #endif
229 
230   if (scnhdr_int->s_vaddr != 0)
231     {
232       scnhdr_int->s_vaddr += pe_data (abfd)->pe_opthdr.ImageBase;
233       /* Do not cut upper 32-bits for 64-bit vma.  */
234 #if !defined(COFF_WITH_pex64) && !defined(COFF_WITH_peAArch64)
235       scnhdr_int->s_vaddr &= 0xffffffff;
236 #endif
237     }
238 
239 #ifndef COFF_NO_HACK_SCNHDR_SIZE
240   /* If this section holds uninitialized data and is from an object file
241      or from an executable image that has not initialized the field,
242      or if the image is an executable file and the physical size is padded,
243      use the virtual size (stored in s_paddr) instead.  */
244   if (scnhdr_int->s_paddr > 0
245       && (((scnhdr_int->s_flags & IMAGE_SCN_CNT_UNINITIALIZED_DATA) != 0
246 	   && (! bfd_pei_p (abfd) || scnhdr_int->s_size == 0))
247 	  || (bfd_pei_p (abfd) && (scnhdr_int->s_size > scnhdr_int->s_paddr))))
248   /* This code used to set scnhdr_int->s_paddr to 0.  However,
249      coff_set_alignment_hook stores s_paddr in virt_size, which
250      only works if it correctly holds the virtual size of the
251      section.  */
252     scnhdr_int->s_size = scnhdr_int->s_paddr;
253 #endif
254 }
255 
256 static bool
pe_mkobject(bfd * abfd)257 pe_mkobject (bfd * abfd)
258 {
259   pe_data_type *pe;
260   size_t amt = sizeof (pe_data_type);
261 
262   abfd->tdata.pe_obj_data = (struct pe_tdata *) bfd_zalloc (abfd, amt);
263 
264   if (abfd->tdata.pe_obj_data == 0)
265     return false;
266 
267   pe = pe_data (abfd);
268 
269   pe->coff.pe = 1;
270 
271   /* in_reloc_p is architecture dependent.  */
272   pe->in_reloc_p = in_reloc_p;
273 
274   /* Default DOS message string.  */
275   pe->dos_message[0]  = 0x0eba1f0e;
276   pe->dos_message[1]  = 0xcd09b400;
277   pe->dos_message[2]  = 0x4c01b821;
278   pe->dos_message[3]  = 0x685421cd;
279   pe->dos_message[4]  = 0x70207369;
280   pe->dos_message[5]  = 0x72676f72;
281   pe->dos_message[6]  = 0x63206d61;
282   pe->dos_message[7]  = 0x6f6e6e61;
283   pe->dos_message[8]  = 0x65622074;
284   pe->dos_message[9]  = 0x6e757220;
285   pe->dos_message[10] = 0x206e6920;
286   pe->dos_message[11] = 0x20534f44;
287   pe->dos_message[12] = 0x65646f6d;
288   pe->dos_message[13] = 0x0a0d0d2e;
289   pe->dos_message[14] = 0x24;
290   pe->dos_message[15] = 0x0;
291 
292   memset (& pe->pe_opthdr, 0, sizeof pe->pe_opthdr);
293   return true;
294 }
295 
296 /* Create the COFF backend specific information.  */
297 
298 static void *
pe_mkobject_hook(bfd * abfd,void * filehdr,void * aouthdr ATTRIBUTE_UNUSED)299 pe_mkobject_hook (bfd * abfd,
300 		  void * filehdr,
301 		  void * aouthdr ATTRIBUTE_UNUSED)
302 {
303   struct internal_filehdr *internal_f = (struct internal_filehdr *) filehdr;
304   pe_data_type *pe;
305 
306   if (! pe_mkobject (abfd))
307     return NULL;
308 
309   pe = pe_data (abfd);
310   pe->coff.sym_filepos = internal_f->f_symptr;
311   /* These members communicate important constants about the symbol
312      table to GDB's symbol-reading code.  These `constants'
313      unfortunately vary among coff implementations...  */
314   pe->coff.local_n_btmask = N_BTMASK;
315   pe->coff.local_n_btshft = N_BTSHFT;
316   pe->coff.local_n_tmask = N_TMASK;
317   pe->coff.local_n_tshift = N_TSHIFT;
318   pe->coff.local_symesz = SYMESZ;
319   pe->coff.local_auxesz = AUXESZ;
320   pe->coff.local_linesz = LINESZ;
321 
322   pe->coff.timestamp = internal_f->f_timdat;
323 
324   obj_raw_syment_count (abfd) =
325     obj_conv_table_size (abfd) =
326       internal_f->f_nsyms;
327 
328   pe->real_flags = internal_f->f_flags;
329 
330   if ((internal_f->f_flags & F_DLL) != 0)
331     pe->dll = 1;
332 
333   if ((internal_f->f_flags & IMAGE_FILE_DEBUG_STRIPPED) == 0)
334     abfd->flags |= HAS_DEBUG;
335 
336 #ifdef COFF_IMAGE_WITH_PE
337   if (aouthdr)
338     pe->pe_opthdr = ((struct internal_aouthdr *) aouthdr)->pe;
339 #endif
340 
341 #ifdef ARM
342   if (! _bfd_coff_arm_set_private_flags (abfd, internal_f->f_flags))
343     coff_data (abfd) ->flags = 0;
344 #endif
345 
346   memcpy (pe->dos_message, internal_f->pe.dos_message,
347 	  sizeof (pe->dos_message));
348 
349   return (void *) pe;
350 }
351 
352 static bool
pe_print_private_bfd_data(bfd * abfd,void * vfile)353 pe_print_private_bfd_data (bfd *abfd, void * vfile)
354 {
355   FILE *file = (FILE *) vfile;
356 
357   if (!_bfd_XX_print_private_bfd_data_common (abfd, vfile))
358     return false;
359 
360   if (pe_saved_coff_bfd_print_private_bfd_data == NULL)
361     return true;
362 
363   fputc ('\n', file);
364 
365   return pe_saved_coff_bfd_print_private_bfd_data (abfd, vfile);
366 }
367 
368 /* Copy any private info we understand from the input bfd
369    to the output bfd.  */
370 
371 static bool
pe_bfd_copy_private_bfd_data(bfd * ibfd,bfd * obfd)372 pe_bfd_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
373 {
374   /* PR binutils/716: Copy the large address aware flag.
375      XXX: Should we be copying other flags or other fields in the pe_data()
376      structure ?  */
377   if (pe_data (obfd) != NULL
378       && pe_data (ibfd) != NULL
379       && pe_data (ibfd)->real_flags & IMAGE_FILE_LARGE_ADDRESS_AWARE)
380     pe_data (obfd)->real_flags |= IMAGE_FILE_LARGE_ADDRESS_AWARE;
381 
382   if (!_bfd_XX_bfd_copy_private_bfd_data_common (ibfd, obfd))
383     return false;
384 
385   if (pe_saved_coff_bfd_copy_private_bfd_data)
386     return pe_saved_coff_bfd_copy_private_bfd_data (ibfd, obfd);
387 
388   return true;
389 }
390 
391 #define coff_bfd_copy_private_section_data \
392   _bfd_XX_bfd_copy_private_section_data
393 
394 #define coff_get_symbol_info _bfd_XX_get_symbol_info
395 
396 #ifdef COFF_IMAGE_WITH_PE
397 
398 /* Code to handle Microsoft's Image Library Format.
399    Also known as LINK6 format.
400    Documentation about this format can be found at:
401 
402    http://msdn.microsoft.com/library/specs/pecoff_section8.htm  */
403 
404 /* The following constants specify the sizes of the various data
405    structures that we have to create in order to build a bfd describing
406    an ILF object file.  The final "+ 1" in the definitions of SIZEOF_IDATA6
407    and SIZEOF_IDATA7 below is to allow for the possibility that we might
408    need a padding byte in order to ensure 16 bit alignment for the section's
409    contents.
410 
411    The value for SIZEOF_ILF_STRINGS is computed as follows:
412 
413       There will be NUM_ILF_SECTIONS section symbols.  Allow 9 characters
414       per symbol for their names (longest section name is .idata$x).
415 
416       There will be two symbols for the imported value, one the symbol name
417       and one with _imp__ prefixed.  Allowing for the terminating nul's this
418       is strlen (symbol_name) * 2 + 8 + 21 + strlen (source_dll).
419 
420       The strings in the string table must start STRING__SIZE_SIZE bytes into
421       the table in order to for the string lookup code in coffgen/coffcode to
422       work.  */
423 #define NUM_ILF_RELOCS		8
424 #define NUM_ILF_SECTIONS	6
425 #define NUM_ILF_SYMS		(2 + NUM_ILF_SECTIONS)
426 
427 #define SIZEOF_ILF_SYMS		 (NUM_ILF_SYMS * sizeof (* vars.sym_cache))
428 #define SIZEOF_ILF_SYM_TABLE	 (NUM_ILF_SYMS * sizeof (* vars.sym_table))
429 #define SIZEOF_ILF_NATIVE_SYMS	 (NUM_ILF_SYMS * sizeof (* vars.native_syms))
430 #define SIZEOF_ILF_SYM_PTR_TABLE (NUM_ILF_SYMS * sizeof (* vars.sym_ptr_table))
431 #define SIZEOF_ILF_EXT_SYMS	 (NUM_ILF_SYMS * sizeof (* vars.esym_table))
432 #define SIZEOF_ILF_RELOCS	 (NUM_ILF_RELOCS * sizeof (* vars.reltab))
433 #define SIZEOF_ILF_INT_RELOCS	 (NUM_ILF_RELOCS * sizeof (* vars.int_reltab))
434 #define SIZEOF_ILF_STRINGS	 (strlen (symbol_name) * 2 + 8 \
435 					+ 21 + strlen (source_dll) \
436 					+ NUM_ILF_SECTIONS * 9 \
437 					+ STRING_SIZE_SIZE)
438 #define SIZEOF_IDATA2		(5 * 4)
439 
440 /* For PEx64 idata4 & 5 have thumb size of 8 bytes.  */
441 #ifdef COFF_WITH_pex64
442 #define SIZEOF_IDATA4		(2 * 4)
443 #define SIZEOF_IDATA5		(2 * 4)
444 #else
445 #define SIZEOF_IDATA4		(1 * 4)
446 #define SIZEOF_IDATA5		(1 * 4)
447 #endif
448 
449 #define SIZEOF_IDATA6		(2 + strlen (symbol_name) + 1 + 1)
450 #define SIZEOF_IDATA7		(strlen (source_dll) + 1 + 1)
451 #define SIZEOF_ILF_SECTIONS	(NUM_ILF_SECTIONS * sizeof (struct coff_section_tdata))
452 
453 #define ILF_DATA_SIZE				\
454     + SIZEOF_ILF_SYMS				\
455     + SIZEOF_ILF_SYM_TABLE			\
456     + SIZEOF_ILF_NATIVE_SYMS			\
457     + SIZEOF_ILF_SYM_PTR_TABLE			\
458     + SIZEOF_ILF_EXT_SYMS			\
459     + SIZEOF_ILF_RELOCS				\
460     + SIZEOF_ILF_INT_RELOCS			\
461     + SIZEOF_ILF_STRINGS			\
462     + SIZEOF_IDATA2				\
463     + SIZEOF_IDATA4				\
464     + SIZEOF_IDATA5				\
465     + SIZEOF_IDATA6				\
466     + SIZEOF_IDATA7				\
467     + SIZEOF_ILF_SECTIONS			\
468     + MAX_TEXT_SECTION_SIZE
469 
470 /* Create an empty relocation against the given symbol.  */
471 
472 static void
pe_ILF_make_a_symbol_reloc(pe_ILF_vars * vars,bfd_vma address,bfd_reloc_code_real_type reloc,struct bfd_symbol ** sym,unsigned int sym_index)473 pe_ILF_make_a_symbol_reloc (pe_ILF_vars *		vars,
474 			    bfd_vma			address,
475 			    bfd_reloc_code_real_type	reloc,
476 			    struct bfd_symbol **	sym,
477 			    unsigned int		sym_index)
478 {
479   arelent * entry;
480   struct internal_reloc * internal;
481 
482   entry = vars->reltab + vars->relcount;
483   internal = vars->int_reltab + vars->relcount;
484 
485   entry->address     = address;
486   entry->addend      = 0;
487   entry->howto       = bfd_reloc_type_lookup (vars->abfd, reloc);
488   entry->sym_ptr_ptr = sym;
489 
490   internal->r_vaddr  = address;
491   internal->r_symndx = sym_index;
492   internal->r_type   = entry->howto ? entry->howto->type : 0;
493 
494   vars->relcount ++;
495 
496   BFD_ASSERT (vars->relcount <= NUM_ILF_RELOCS);
497 }
498 
499 /* Create an empty relocation against the given section.  */
500 
501 static void
pe_ILF_make_a_reloc(pe_ILF_vars * vars,bfd_vma address,bfd_reloc_code_real_type reloc,asection_ptr sec)502 pe_ILF_make_a_reloc (pe_ILF_vars *	       vars,
503 		     bfd_vma		       address,
504 		     bfd_reloc_code_real_type  reloc,
505 		     asection_ptr	       sec)
506 {
507   pe_ILF_make_a_symbol_reloc (vars, address, reloc, sec->symbol_ptr_ptr,
508 			      coff_section_data (vars->abfd, sec)->i);
509 }
510 
511 /* Move the queued relocs into the given section.  */
512 
513 static void
pe_ILF_save_relocs(pe_ILF_vars * vars,asection_ptr sec)514 pe_ILF_save_relocs (pe_ILF_vars * vars,
515 		    asection_ptr  sec)
516 {
517   /* Make sure that there is somewhere to store the internal relocs.  */
518   if (coff_section_data (vars->abfd, sec) == NULL)
519     /* We should probably return an error indication here.  */
520     abort ();
521 
522   coff_section_data (vars->abfd, sec)->relocs = vars->int_reltab;
523   coff_section_data (vars->abfd, sec)->keep_relocs = true;
524 
525   sec->relocation  = vars->reltab;
526   sec->reloc_count = vars->relcount;
527   sec->flags      |= SEC_RELOC;
528 
529   vars->reltab     += vars->relcount;
530   vars->int_reltab += vars->relcount;
531   vars->relcount   = 0;
532 
533   BFD_ASSERT ((bfd_byte *) vars->int_reltab < (bfd_byte *) vars->string_table);
534 }
535 
536 /* Create a global symbol and add it to the relevant tables.  */
537 
538 static void
pe_ILF_make_a_symbol(pe_ILF_vars * vars,const char * prefix,const char * symbol_name,asection_ptr section,flagword extra_flags)539 pe_ILF_make_a_symbol (pe_ILF_vars *  vars,
540 		      const char *   prefix,
541 		      const char *   symbol_name,
542 		      asection_ptr   section,
543 		      flagword       extra_flags)
544 {
545   coff_symbol_type * sym;
546   combined_entry_type * ent;
547   SYMENT * esym;
548   unsigned short sclass;
549 
550   if (extra_flags & BSF_LOCAL)
551     sclass = C_STAT;
552   else
553     sclass = C_EXT;
554 
555 #ifdef THUMBPEMAGIC
556   if (vars->magic == THUMBPEMAGIC)
557     {
558       if (extra_flags & BSF_FUNCTION)
559 	sclass = C_THUMBEXTFUNC;
560       else if (extra_flags & BSF_LOCAL)
561 	sclass = C_THUMBSTAT;
562       else
563 	sclass = C_THUMBEXT;
564     }
565 #endif
566 
567   BFD_ASSERT (vars->sym_index < NUM_ILF_SYMS);
568 
569   sym = vars->sym_ptr;
570   ent = vars->native_ptr;
571   esym = vars->esym_ptr;
572 
573   /* Copy the symbol's name into the string table.  */
574   sprintf (vars->string_ptr, "%s%s", prefix, symbol_name);
575 
576   if (section == NULL)
577     section = bfd_und_section_ptr;
578 
579   /* Initialise the external symbol.  */
580   H_PUT_32 (vars->abfd, vars->string_ptr - vars->string_table,
581 	    esym->e.e.e_offset);
582   H_PUT_16 (vars->abfd, section->target_index, esym->e_scnum);
583   esym->e_sclass[0] = sclass;
584 
585   /* The following initialisations are unnecessary - the memory is
586      zero initialised.  They are just kept here as reminders.  */
587 
588   /* Initialise the internal symbol structure.  */
589   ent->u.syment.n_sclass	  = sclass;
590   ent->u.syment.n_scnum		  = section->target_index;
591   ent->u.syment._n._n_n._n_offset = (uintptr_t) sym;
592   ent->is_sym = true;
593 
594   sym->symbol.the_bfd = vars->abfd;
595   sym->symbol.name    = vars->string_ptr;
596   sym->symbol.flags   = BSF_EXPORT | BSF_GLOBAL | extra_flags;
597   sym->symbol.section = section;
598   sym->native	      = ent;
599 
600   * vars->table_ptr = vars->sym_index;
601   * vars->sym_ptr_ptr = sym;
602 
603   /* Adjust pointers for the next symbol.  */
604   vars->sym_index ++;
605   vars->sym_ptr ++;
606   vars->sym_ptr_ptr ++;
607   vars->table_ptr ++;
608   vars->native_ptr ++;
609   vars->esym_ptr ++;
610   vars->string_ptr += strlen (symbol_name) + strlen (prefix) + 1;
611 
612   BFD_ASSERT (vars->string_ptr < vars->end_string_ptr);
613 }
614 
615 /* Create a section.  */
616 
617 static asection_ptr
pe_ILF_make_a_section(pe_ILF_vars * vars,const char * name,unsigned int size,flagword extra_flags)618 pe_ILF_make_a_section (pe_ILF_vars * vars,
619 		       const char *  name,
620 		       unsigned int  size,
621 		       flagword      extra_flags)
622 {
623   asection_ptr sec;
624   flagword     flags;
625   intptr_t alignment;
626 
627   sec = bfd_make_section_old_way (vars->abfd, name);
628   if (sec == NULL)
629     return NULL;
630 
631   flags = SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_KEEP | SEC_IN_MEMORY;
632 
633   bfd_set_section_flags (sec, flags | extra_flags);
634 
635   bfd_set_section_alignment (sec, 2);
636 
637   /* Check that we will not run out of space.  */
638   BFD_ASSERT (vars->data + size < vars->bim->buffer + vars->bim->size);
639 
640   /* Set the section size and contents.  The actual
641      contents are filled in by our parent.  */
642   bfd_set_section_size (sec, (bfd_size_type) size);
643   sec->contents = vars->data;
644   sec->target_index = vars->sec_index ++;
645 
646   /* Advance data pointer in the vars structure.  */
647   vars->data += size;
648 
649   /* Skip the padding byte if it was not needed.
650      The logic here is that if the string length is odd,
651      then the entire string length, including the null byte,
652      is even and so the extra, padding byte, is not needed.  */
653   if (size & 1)
654     vars->data --;
655 
656   /* PR 18758: See note in pe_ILF_buid_a_bfd.  We must make sure that we
657      preserve host alignment requirements.  The BFD_ASSERTs in this
658      functions will warn us if we run out of room, but we should
659      already have enough padding built in to ILF_DATA_SIZE.  */
660 #if GCC_VERSION >= 3000
661   alignment = __alignof__ (struct coff_section_tdata);
662 #else
663   alignment = 8;
664 #endif
665   vars->data
666     = (bfd_byte *) (((intptr_t) vars->data + alignment - 1) & -alignment);
667 
668   /* Create a coff_section_tdata structure for our use.  */
669   sec->used_by_bfd = (struct coff_section_tdata *) vars->data;
670   vars->data += sizeof (struct coff_section_tdata);
671 
672   BFD_ASSERT (vars->data <= vars->bim->buffer + vars->bim->size);
673 
674   /* Create a symbol to refer to this section.  */
675   pe_ILF_make_a_symbol (vars, "", name, sec, BSF_LOCAL);
676 
677   /* Cache the index to the symbol in the coff_section_data structure.  */
678   coff_section_data (vars->abfd, sec)->i = vars->sym_index - 1;
679 
680   return sec;
681 }
682 
683 /* This structure contains the code that goes into the .text section
684    in order to perform a jump into the DLL lookup table.  The entries
685    in the table are index by the magic number used to represent the
686    machine type in the PE file.  The contents of the data[] arrays in
687    these entries are stolen from the jtab[] arrays in ld/pe-dll.c.
688    The SIZE field says how many bytes in the DATA array are actually
689    used.  The OFFSET field says where in the data array the address
690    of the .idata$5 section should be placed.  */
691 #define MAX_TEXT_SECTION_SIZE 32
692 
693 typedef struct
694 {
695   unsigned short magic;
696   unsigned char  data[MAX_TEXT_SECTION_SIZE];
697   unsigned int   size;
698   unsigned int   offset;
699 }
700 jump_table;
701 
702 static const jump_table jtab[] =
703 {
704 #ifdef I386MAGIC
705   { I386MAGIC,
706     { 0xff, 0x25, 0x00, 0x00, 0x00, 0x00, 0x90, 0x90 },
707     8, 2
708   },
709 #endif
710 
711 #ifdef AMD64MAGIC
712   { AMD64MAGIC,
713     { 0xff, 0x25, 0x00, 0x00, 0x00, 0x00, 0x90, 0x90 },
714     8, 2
715   },
716 #endif
717 
718 #ifdef  MC68MAGIC
719   { MC68MAGIC,
720     { /* XXX fill me in */ },
721     0, 0
722   },
723 #endif
724 
725 #ifdef  MIPS_ARCH_MAGIC_WINCE
726   { MIPS_ARCH_MAGIC_WINCE,
727     { 0x00, 0x00, 0x08, 0x3c, 0x00, 0x00, 0x08, 0x8d,
728       0x08, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00 },
729     16, 0
730   },
731 #endif
732 
733 #ifdef  SH_ARCH_MAGIC_WINCE
734   { SH_ARCH_MAGIC_WINCE,
735     { 0x01, 0xd0, 0x02, 0x60, 0x2b, 0x40,
736       0x09, 0x00, 0x00, 0x00, 0x00, 0x00 },
737     12, 8
738   },
739 #endif
740 
741 #ifdef AARCH64MAGIC
742 /* We don't currently support jumping to DLLs, so if
743    someone does try emit a runtime trap.  Through UDF #0.  */
744   { AARCH64MAGIC,
745     { 0x00, 0x00, 0x00, 0x00 },
746     4, 0
747   },
748 
749 #endif
750 
751 #ifdef  ARMPEMAGIC
752   { ARMPEMAGIC,
753     { 0x00, 0xc0, 0x9f, 0xe5, 0x00, 0xf0,
754       0x9c, 0xe5, 0x00, 0x00, 0x00, 0x00},
755     12, 8
756   },
757 #endif
758 
759 #ifdef  THUMBPEMAGIC
760   { THUMBPEMAGIC,
761     { 0x40, 0xb4, 0x02, 0x4e, 0x36, 0x68, 0xb4, 0x46,
762       0x40, 0xbc, 0x60, 0x47, 0x00, 0x00, 0x00, 0x00 },
763     16, 12
764   },
765 #endif
766   { 0, { 0 }, 0, 0 }
767 };
768 
769 #ifndef NUM_ENTRIES
770 #define NUM_ENTRIES(a) (sizeof (a) / sizeof (a)[0])
771 #endif
772 
773 /* Build a full BFD from the information supplied in a ILF object.  */
774 
775 static bool
pe_ILF_build_a_bfd(bfd * abfd,unsigned int magic,char * symbol_name,char * source_dll,unsigned int ordinal,unsigned int types)776 pe_ILF_build_a_bfd (bfd *	    abfd,
777 		    unsigned int    magic,
778 		    char *	    symbol_name,
779 		    char *	    source_dll,
780 		    unsigned int    ordinal,
781 		    unsigned int    types)
782 {
783   bfd_byte *		   ptr;
784   pe_ILF_vars		   vars;
785   struct internal_filehdr  internal_f;
786   unsigned int		   import_type;
787   unsigned int		   import_name_type;
788   asection_ptr		   id4, id5, id6 = NULL, text = NULL;
789   coff_symbol_type **	   imp_sym;
790   unsigned int		   imp_index;
791   intptr_t alignment;
792 
793   /* Decode and verify the types field of the ILF structure.  */
794   import_type = types & 0x3;
795   import_name_type = (types & 0x1c) >> 2;
796 
797   switch (import_type)
798     {
799     case IMPORT_CODE:
800     case IMPORT_DATA:
801       break;
802 
803     case IMPORT_CONST:
804       /* XXX code yet to be written.  */
805       /* xgettext:c-format */
806       _bfd_error_handler (_("%pB: unhandled import type; %x"),
807 			  abfd, import_type);
808       return false;
809 
810     default:
811       /* xgettext:c-format */
812       _bfd_error_handler (_("%pB: unrecognized import type; %x"),
813 			  abfd, import_type);
814       return false;
815     }
816 
817   switch (import_name_type)
818     {
819     case IMPORT_ORDINAL:
820     case IMPORT_NAME:
821     case IMPORT_NAME_NOPREFIX:
822     case IMPORT_NAME_UNDECORATE:
823       break;
824 
825     default:
826       /* xgettext:c-format */
827       _bfd_error_handler (_("%pB: unrecognized import name type; %x"),
828 			  abfd, import_name_type);
829       return false;
830     }
831 
832   /* Initialise local variables.
833 
834      Note these are kept in a structure rather than being
835      declared as statics since bfd frowns on global variables.
836 
837      We are going to construct the contents of the BFD in memory,
838      so allocate all the space that we will need right now.  */
839   vars.bim
840     = (struct bfd_in_memory *) bfd_malloc ((bfd_size_type) sizeof (*vars.bim));
841   if (vars.bim == NULL)
842     return false;
843 
844   ptr = (bfd_byte *) bfd_zmalloc ((bfd_size_type) ILF_DATA_SIZE);
845   vars.bim->buffer = ptr;
846   vars.bim->size   = ILF_DATA_SIZE;
847   if (ptr == NULL)
848     goto error_return;
849 
850   /* Initialise the pointers to regions of the memory and the
851      other contents of the pe_ILF_vars structure as well.  */
852   vars.sym_cache = (coff_symbol_type *) ptr;
853   vars.sym_ptr   = (coff_symbol_type *) ptr;
854   vars.sym_index = 0;
855   ptr += SIZEOF_ILF_SYMS;
856 
857   vars.sym_table = (unsigned int *) ptr;
858   vars.table_ptr = (unsigned int *) ptr;
859   ptr += SIZEOF_ILF_SYM_TABLE;
860 
861   vars.native_syms = (combined_entry_type *) ptr;
862   vars.native_ptr  = (combined_entry_type *) ptr;
863   ptr += SIZEOF_ILF_NATIVE_SYMS;
864 
865   vars.sym_ptr_table = (coff_symbol_type **) ptr;
866   vars.sym_ptr_ptr   = (coff_symbol_type **) ptr;
867   ptr += SIZEOF_ILF_SYM_PTR_TABLE;
868 
869   vars.esym_table = (SYMENT *) ptr;
870   vars.esym_ptr   = (SYMENT *) ptr;
871   ptr += SIZEOF_ILF_EXT_SYMS;
872 
873   vars.reltab   = (arelent *) ptr;
874   vars.relcount = 0;
875   ptr += SIZEOF_ILF_RELOCS;
876 
877   vars.int_reltab  = (struct internal_reloc *) ptr;
878   ptr += SIZEOF_ILF_INT_RELOCS;
879 
880   vars.string_table = (char *) ptr;
881   vars.string_ptr   = (char *) ptr + STRING_SIZE_SIZE;
882   ptr += SIZEOF_ILF_STRINGS;
883   vars.end_string_ptr = (char *) ptr;
884 
885   /* The remaining space in bim->buffer is used
886      by the pe_ILF_make_a_section() function.  */
887 
888   /* PR 18758: Make sure that the data area is sufficiently aligned for
889      struct coff_section_tdata.  __alignof__ is a gcc extension, hence
890      the test of GCC_VERSION.  For other compilers we assume 8 byte
891      alignment.  */
892 #if GCC_VERSION >= 3000
893   alignment = __alignof__ (struct coff_section_tdata);
894 #else
895   alignment = 8;
896 #endif
897   ptr = (bfd_byte *) (((intptr_t) ptr + alignment - 1) & -alignment);
898 
899   vars.data = ptr;
900   vars.abfd = abfd;
901   vars.sec_index = 0;
902   vars.magic = magic;
903 
904   /* Create the initial .idata$<n> sections:
905      [.idata$2:  Import Directory Table -- not needed]
906      .idata$4:  Import Lookup Table
907      .idata$5:  Import Address Table
908 
909      Note we do not create a .idata$3 section as this is
910      created for us by the linker script.  */
911   id4 = pe_ILF_make_a_section (& vars, ".idata$4", SIZEOF_IDATA4, 0);
912   id5 = pe_ILF_make_a_section (& vars, ".idata$5", SIZEOF_IDATA5, 0);
913   if (id4 == NULL || id5 == NULL)
914     goto error_return;
915 
916   /* Fill in the contents of these sections.  */
917   if (import_name_type == IMPORT_ORDINAL)
918     {
919       if (ordinal == 0)
920 	/* See PR 20907 for a reproducer.  */
921 	goto error_return;
922 
923 #if defined(COFF_WITH_pex64) || defined(COFF_WITH_peAArch64)
924       ((unsigned int *) id4->contents)[0] = ordinal;
925       ((unsigned int *) id4->contents)[1] = 0x80000000;
926       ((unsigned int *) id5->contents)[0] = ordinal;
927       ((unsigned int *) id5->contents)[1] = 0x80000000;
928 #else
929       * (unsigned int *) id4->contents = ordinal | 0x80000000;
930       * (unsigned int *) id5->contents = ordinal | 0x80000000;
931 #endif
932     }
933   else
934     {
935       char * symbol;
936       unsigned int len;
937 
938       /* Create .idata$6 - the Hint Name Table.  */
939       id6 = pe_ILF_make_a_section (& vars, ".idata$6", SIZEOF_IDATA6, 0);
940       if (id6 == NULL)
941 	goto error_return;
942 
943       /* If necessary, trim the import symbol name.  */
944       symbol = symbol_name;
945 
946       /* As used by MS compiler, '_', '@', and '?' are alternative
947 	 forms of USER_LABEL_PREFIX, with '?' for c++ mangled names,
948 	 '@' used for fastcall (in C),  '_' everywhere else.  Only one
949 	 of these is used for a symbol.  We strip this leading char for
950 	 IMPORT_NAME_NOPREFIX and IMPORT_NAME_UNDECORATE as per the
951 	 PE COFF 6.0 spec (section 8.3, Import Name Type).  */
952 
953       if (import_name_type != IMPORT_NAME)
954 	{
955 	  char c = symbol[0];
956 
957 	  /* Check that we don't remove for targets with empty
958 	     USER_LABEL_PREFIX the leading underscore.  */
959 	  if ((c == '_' && abfd->xvec->symbol_leading_char != 0)
960 	      || c == '@' || c == '?')
961 	    symbol++;
962 	}
963 
964       len = strlen (symbol);
965       if (import_name_type == IMPORT_NAME_UNDECORATE)
966 	{
967 	  /* Truncate at the first '@'.  */
968 	  char *at = strchr (symbol, '@');
969 
970 	  if (at != NULL)
971 	    len = at - symbol;
972 	}
973 
974       id6->contents[0] = ordinal & 0xff;
975       id6->contents[1] = ordinal >> 8;
976 
977       memcpy ((char *) id6->contents + 2, symbol, len);
978       id6->contents[len + 2] = '\0';
979     }
980 
981   if (import_name_type != IMPORT_ORDINAL)
982     {
983       pe_ILF_make_a_reloc (&vars, (bfd_vma) 0, BFD_RELOC_RVA, id6);
984       pe_ILF_save_relocs (&vars, id4);
985 
986       pe_ILF_make_a_reloc (&vars, (bfd_vma) 0, BFD_RELOC_RVA, id6);
987       pe_ILF_save_relocs (&vars, id5);
988     }
989 
990   /* Create an import symbol.  */
991   pe_ILF_make_a_symbol (& vars, "__imp_", symbol_name, id5, 0);
992   imp_sym   = vars.sym_ptr_ptr - 1;
993   imp_index = vars.sym_index - 1;
994 
995   /* Create extra sections depending upon the type of import we are dealing with.  */
996   switch (import_type)
997     {
998       int i;
999 
1000     case IMPORT_CODE:
1001       /* CODE functions are special, in that they get a trampoline that
1002 	 jumps to the main import symbol.  Create a .text section to hold it.
1003 	 First we need to look up its contents in the jump table.  */
1004       for (i = NUM_ENTRIES (jtab); i--;)
1005 	{
1006 	  if (jtab[i].size == 0)
1007 	    continue;
1008 	  if (jtab[i].magic == magic)
1009 	    break;
1010 	}
1011       /* If we did not find a matching entry something is wrong.  */
1012       if (i < 0)
1013 	abort ();
1014 
1015       /* Create the .text section.  */
1016       text = pe_ILF_make_a_section (& vars, ".text", jtab[i].size, SEC_CODE);
1017       if (text == NULL)
1018 	goto error_return;
1019 
1020       /* Copy in the jump code.  */
1021       memcpy (text->contents, jtab[i].data, jtab[i].size);
1022 
1023       /* Create a reloc for the data in the text section.  */
1024 #ifdef MIPS_ARCH_MAGIC_WINCE
1025       if (magic == MIPS_ARCH_MAGIC_WINCE)
1026 	{
1027 	  pe_ILF_make_a_symbol_reloc (&vars, (bfd_vma) 0, BFD_RELOC_HI16_S,
1028 				      (struct bfd_symbol **) imp_sym,
1029 				      imp_index);
1030 	  pe_ILF_make_a_reloc (&vars, (bfd_vma) 0, BFD_RELOC_LO16, text);
1031 	  pe_ILF_make_a_symbol_reloc (&vars, (bfd_vma) 4, BFD_RELOC_LO16,
1032 				      (struct bfd_symbol **) imp_sym,
1033 				      imp_index);
1034 	}
1035       else
1036 #endif
1037 #ifdef AMD64MAGIC
1038       if (magic == AMD64MAGIC)
1039 	{
1040 	  pe_ILF_make_a_symbol_reloc (&vars, (bfd_vma) jtab[i].offset,
1041 				      BFD_RELOC_32_PCREL, (asymbol **) imp_sym,
1042 				      imp_index);
1043 	}
1044       else
1045 #endif
1046 	pe_ILF_make_a_symbol_reloc (&vars, (bfd_vma) jtab[i].offset,
1047 				    BFD_RELOC_32, (asymbol **) imp_sym,
1048 				    imp_index);
1049 
1050       pe_ILF_save_relocs (& vars, text);
1051       break;
1052 
1053     case IMPORT_DATA:
1054       break;
1055 
1056     default:
1057       /* XXX code not yet written.  */
1058       abort ();
1059     }
1060 
1061   /* Initialise the bfd.  */
1062   memset (& internal_f, 0, sizeof (internal_f));
1063 
1064   internal_f.f_magic  = magic;
1065   internal_f.f_symptr = 0;
1066   internal_f.f_nsyms  = 0;
1067   internal_f.f_flags  = F_AR32WR | F_LNNO; /* XXX is this correct ?  */
1068 
1069   if (   ! bfd_set_start_address (abfd, (bfd_vma) 0)
1070       || ! bfd_coff_set_arch_mach_hook (abfd, & internal_f))
1071     goto error_return;
1072 
1073   if (bfd_coff_mkobject_hook (abfd, (void *) & internal_f, NULL) == NULL)
1074     goto error_return;
1075 
1076   coff_data (abfd)->pe = 1;
1077 #ifdef THUMBPEMAGIC
1078   if (vars.magic == THUMBPEMAGIC)
1079     /* Stop some linker warnings about thumb code not supporting interworking.  */
1080     coff_data (abfd)->flags |= F_INTERWORK | F_INTERWORK_SET;
1081 #endif
1082 
1083   /* Switch from file contents to memory contents.  */
1084   bfd_cache_close (abfd);
1085 
1086   abfd->iostream = (void *) vars.bim;
1087   abfd->flags |= BFD_IN_MEMORY /* | HAS_LOCALS */;
1088   abfd->iovec = &_bfd_memory_iovec;
1089   abfd->where = 0;
1090   abfd->origin = 0;
1091   obj_sym_filepos (abfd) = 0;
1092 
1093   /* Now create a symbol describing the imported value.  */
1094   switch (import_type)
1095     {
1096     case IMPORT_CODE:
1097       pe_ILF_make_a_symbol (& vars, "", symbol_name, text,
1098 			    BSF_NOT_AT_END | BSF_FUNCTION);
1099 
1100       break;
1101 
1102     case IMPORT_DATA:
1103       /* Nothing to do here.  */
1104       break;
1105 
1106     default:
1107       /* XXX code not yet written.  */
1108       abort ();
1109     }
1110 
1111   /* Create an import symbol for the DLL, without the .dll suffix.  */
1112   ptr = (bfd_byte *) strrchr (source_dll, '.');
1113   if (ptr)
1114     * ptr = 0;
1115   pe_ILF_make_a_symbol (& vars, "__IMPORT_DESCRIPTOR_", source_dll, NULL, 0);
1116   if (ptr)
1117     * ptr = '.';
1118 
1119   /* Point the bfd at the symbol table.  */
1120   obj_symbols (abfd) = vars.sym_cache;
1121   abfd->symcount = vars.sym_index;
1122 
1123   obj_raw_syments (abfd) = vars.native_syms;
1124   obj_raw_syment_count (abfd) = vars.sym_index;
1125 
1126   obj_coff_external_syms (abfd) = (void *) vars.esym_table;
1127   obj_coff_keep_syms (abfd) = true;
1128 
1129   obj_convert (abfd) = vars.sym_table;
1130   obj_conv_table_size (abfd) = vars.sym_index;
1131 
1132   obj_coff_strings (abfd) = vars.string_table;
1133   obj_coff_keep_strings (abfd) = true;
1134 
1135   abfd->flags |= HAS_SYMS;
1136 
1137   return true;
1138 
1139  error_return:
1140   free (vars.bim->buffer);
1141   free (vars.bim);
1142   return false;
1143 }
1144 
1145 /* We have detected a Image Library Format archive element.
1146    Decode the element and return the appropriate target.  */
1147 
1148 static bfd_cleanup
pe_ILF_object_p(bfd * abfd)1149 pe_ILF_object_p (bfd * abfd)
1150 {
1151   bfd_byte	  buffer[14];
1152   bfd_byte *	  ptr;
1153   char *	  symbol_name;
1154   char *	  source_dll;
1155   unsigned int	  machine;
1156   bfd_size_type	  size;
1157   unsigned int	  ordinal;
1158   unsigned int	  types;
1159   unsigned int	  magic;
1160 
1161   /* Upon entry the first six bytes of the ILF header have
1162       already been read.  Now read the rest of the header.  */
1163   if (bfd_bread (buffer, (bfd_size_type) 14, abfd) != 14)
1164     return NULL;
1165 
1166   ptr = buffer;
1167 
1168   machine = H_GET_16 (abfd, ptr);
1169   ptr += 2;
1170 
1171   /* Check that the machine type is recognised.  */
1172   magic = 0;
1173 
1174   switch (machine)
1175     {
1176     case IMAGE_FILE_MACHINE_UNKNOWN:
1177     case IMAGE_FILE_MACHINE_ALPHA:
1178     case IMAGE_FILE_MACHINE_ALPHA64:
1179     case IMAGE_FILE_MACHINE_IA64:
1180       break;
1181 
1182     case IMAGE_FILE_MACHINE_I386:
1183 #ifdef I386MAGIC
1184       magic = I386MAGIC;
1185 #endif
1186       break;
1187 
1188     case IMAGE_FILE_MACHINE_AMD64:
1189 #ifdef AMD64MAGIC
1190       magic = AMD64MAGIC;
1191 #endif
1192       break;
1193 
1194     case IMAGE_FILE_MACHINE_R3000:
1195     case IMAGE_FILE_MACHINE_R4000:
1196     case IMAGE_FILE_MACHINE_R10000:
1197 
1198     case IMAGE_FILE_MACHINE_MIPS16:
1199     case IMAGE_FILE_MACHINE_MIPSFPU:
1200     case IMAGE_FILE_MACHINE_MIPSFPU16:
1201 #ifdef MIPS_ARCH_MAGIC_WINCE
1202       magic = MIPS_ARCH_MAGIC_WINCE;
1203 #endif
1204       break;
1205 
1206     case IMAGE_FILE_MACHINE_SH3:
1207     case IMAGE_FILE_MACHINE_SH4:
1208 #ifdef SH_ARCH_MAGIC_WINCE
1209       magic = SH_ARCH_MAGIC_WINCE;
1210 #endif
1211       break;
1212 
1213     case IMAGE_FILE_MACHINE_ARM:
1214 #ifdef ARMPEMAGIC
1215       magic = ARMPEMAGIC;
1216 #endif
1217       break;
1218 
1219     case IMAGE_FILE_MACHINE_ARM64:
1220 #ifdef AARCH64MAGIC
1221       magic = AARCH64MAGIC;
1222 #endif
1223       break;
1224 
1225     case IMAGE_FILE_MACHINE_THUMB:
1226 #ifdef THUMBPEMAGIC
1227       {
1228 	extern const bfd_target TARGET_LITTLE_SYM;
1229 
1230 	if (abfd->xvec == & TARGET_LITTLE_SYM)
1231 	  magic = THUMBPEMAGIC;
1232       }
1233 #endif
1234       break;
1235 
1236     case IMAGE_FILE_MACHINE_POWERPC:
1237       /* We no longer support PowerPC.  */
1238     default:
1239       _bfd_error_handler
1240 	/* xgettext:c-format */
1241 	(_("%pB: unrecognised machine type (0x%x)"
1242 	   " in Import Library Format archive"),
1243 	 abfd, machine);
1244       bfd_set_error (bfd_error_malformed_archive);
1245 
1246       return NULL;
1247       break;
1248     }
1249 
1250   if (magic == 0)
1251     {
1252       _bfd_error_handler
1253 	/* xgettext:c-format */
1254 	(_("%pB: recognised but unhandled machine type (0x%x)"
1255 	   " in Import Library Format archive"),
1256 	 abfd, machine);
1257       bfd_set_error (bfd_error_wrong_format);
1258 
1259       return NULL;
1260     }
1261 
1262   /* We do not bother to check the date.
1263      date = H_GET_32 (abfd, ptr);  */
1264   ptr += 4;
1265 
1266   size = H_GET_32 (abfd, ptr);
1267   ptr += 4;
1268 
1269   if (size == 0)
1270     {
1271       _bfd_error_handler
1272 	(_("%pB: size field is zero in Import Library Format header"), abfd);
1273       bfd_set_error (bfd_error_malformed_archive);
1274 
1275       return NULL;
1276     }
1277 
1278   ordinal = H_GET_16 (abfd, ptr);
1279   ptr += 2;
1280 
1281   types = H_GET_16 (abfd, ptr);
1282   /* ptr += 2; */
1283 
1284   /* Now read in the two strings that follow.  */
1285   ptr = (bfd_byte *) _bfd_alloc_and_read (abfd, size, size);
1286   if (ptr == NULL)
1287     return NULL;
1288 
1289   symbol_name = (char *) ptr;
1290   /* See PR 20905 for an example of where the strnlen is necessary.  */
1291   source_dll  = symbol_name + strnlen (symbol_name, size - 1) + 1;
1292 
1293   /* Verify that the strings are null terminated.  */
1294   if (ptr[size - 1] != 0
1295       || (bfd_size_type) ((bfd_byte *) source_dll - ptr) >= size)
1296     {
1297       _bfd_error_handler
1298 	(_("%pB: string not null terminated in ILF object file"), abfd);
1299       bfd_set_error (bfd_error_malformed_archive);
1300       bfd_release (abfd, ptr);
1301       return NULL;
1302     }
1303 
1304   /* Now construct the bfd.  */
1305   if (! pe_ILF_build_a_bfd (abfd, magic, symbol_name,
1306 			    source_dll, ordinal, types))
1307     {
1308       bfd_release (abfd, ptr);
1309       return NULL;
1310     }
1311 
1312   return _bfd_no_cleanup;
1313 }
1314 
1315 static void
pe_bfd_read_buildid(bfd * abfd)1316 pe_bfd_read_buildid (bfd *abfd)
1317 {
1318   pe_data_type *pe = pe_data (abfd);
1319   struct internal_extra_pe_aouthdr *extra = &pe->pe_opthdr;
1320   asection *section;
1321   bfd_byte *data = 0;
1322   bfd_size_type dataoff;
1323   unsigned int i;
1324   bfd_vma addr = extra->DataDirectory[PE_DEBUG_DATA].VirtualAddress;
1325   bfd_size_type size = extra->DataDirectory[PE_DEBUG_DATA].Size;
1326 
1327   if (size == 0)
1328     return;
1329 
1330   addr += extra->ImageBase;
1331 
1332   /* Search for the section containing the DebugDirectory.  */
1333   for (section = abfd->sections; section != NULL; section = section->next)
1334     {
1335       if ((addr >= section->vma) && (addr < (section->vma + section->size)))
1336 	break;
1337     }
1338 
1339   if (section == NULL)
1340     return;
1341 
1342   if (!(section->flags & SEC_HAS_CONTENTS))
1343     return;
1344 
1345   dataoff = addr - section->vma;
1346 
1347   /* PR 20605 and 22373: Make sure that the data is really there.
1348      Note - since we are dealing with unsigned quantities we have
1349      to be careful to check for potential overflows.  */
1350   if (dataoff >= section->size
1351       || size > section->size - dataoff)
1352     {
1353       _bfd_error_handler
1354 	(_("%pB: error: debug data ends beyond end of debug directory"),
1355 	 abfd);
1356       return;
1357     }
1358 
1359   /* Read the whole section. */
1360   if (!bfd_malloc_and_get_section (abfd, section, &data))
1361     {
1362       free (data);
1363       return;
1364     }
1365 
1366   /* Search for a CodeView entry in the DebugDirectory */
1367   for (i = 0; i < size / sizeof (struct external_IMAGE_DEBUG_DIRECTORY); i++)
1368     {
1369       struct external_IMAGE_DEBUG_DIRECTORY *ext
1370 	= &((struct external_IMAGE_DEBUG_DIRECTORY *)(data + dataoff))[i];
1371       struct internal_IMAGE_DEBUG_DIRECTORY idd;
1372 
1373       _bfd_XXi_swap_debugdir_in (abfd, ext, &idd);
1374 
1375       if (idd.Type == PE_IMAGE_DEBUG_TYPE_CODEVIEW)
1376 	{
1377 	  char buffer[256 + 1];
1378 	  CODEVIEW_INFO *cvinfo = (CODEVIEW_INFO *) buffer;
1379 
1380 	  /*
1381 	    The debug entry doesn't have to have to be in a section, in which
1382 	    case AddressOfRawData is 0, so always use PointerToRawData.
1383 	  */
1384 	  if (_bfd_XXi_slurp_codeview_record (abfd,
1385 					      (file_ptr) idd.PointerToRawData,
1386 					      idd.SizeOfData, cvinfo))
1387 	    {
1388 	      struct bfd_build_id* build_id = bfd_alloc (abfd,
1389 			 sizeof (struct bfd_build_id) + cvinfo->SignatureLength);
1390 	      if (build_id)
1391 		{
1392 		  build_id->size = cvinfo->SignatureLength;
1393 		  memcpy(build_id->data,  cvinfo->Signature,
1394 			 cvinfo->SignatureLength);
1395 		  abfd->build_id = build_id;
1396 		}
1397 	    }
1398 	  break;
1399 	}
1400     }
1401 
1402   free (data);
1403 }
1404 
1405 static bfd_cleanup
pe_bfd_object_p(bfd * abfd)1406 pe_bfd_object_p (bfd * abfd)
1407 {
1408   bfd_byte buffer[6];
1409   struct external_DOS_hdr dos_hdr;
1410   struct external_PEI_IMAGE_hdr image_hdr;
1411   struct internal_filehdr internal_f;
1412   struct internal_aouthdr internal_a;
1413   bfd_size_type opt_hdr_size;
1414   file_ptr offset;
1415   bfd_cleanup result;
1416 
1417   /* Detect if this a Microsoft Import Library Format element.  */
1418   /* First read the beginning of the header.  */
1419   if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) != 0
1420       || bfd_bread (buffer, (bfd_size_type) 6, abfd) != 6)
1421     {
1422       if (bfd_get_error () != bfd_error_system_call)
1423 	bfd_set_error (bfd_error_wrong_format);
1424       return NULL;
1425     }
1426 
1427   /* Then check the magic and the version (only 0 is supported).  */
1428   if (H_GET_32 (abfd, buffer) == 0xffff0000
1429       && H_GET_16 (abfd, buffer + 4) == 0)
1430     return pe_ILF_object_p (abfd);
1431 
1432   if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) != 0
1433       || bfd_bread (&dos_hdr, (bfd_size_type) sizeof (dos_hdr), abfd)
1434 	 != sizeof (dos_hdr))
1435     {
1436       if (bfd_get_error () != bfd_error_system_call)
1437 	bfd_set_error (bfd_error_wrong_format);
1438       return NULL;
1439     }
1440 
1441   /* There are really two magic numbers involved; the magic number
1442      that says this is a NT executable (PEI) and the magic number that
1443      determines the architecture.  The former is IMAGE_DOS_SIGNATURE, stored in
1444      the e_magic field.  The latter is stored in the f_magic field.
1445      If the NT magic number isn't valid, the architecture magic number
1446      could be mimicked by some other field (specifically, the number
1447      of relocs in section 3).  Since this routine can only be called
1448      correctly for a PEI file, check the e_magic number here, and, if
1449      it doesn't match, clobber the f_magic number so that we don't get
1450      a false match.  */
1451   if (H_GET_16 (abfd, dos_hdr.e_magic) != IMAGE_DOS_SIGNATURE)
1452     {
1453       bfd_set_error (bfd_error_wrong_format);
1454       return NULL;
1455     }
1456 
1457   offset = H_GET_32 (abfd, dos_hdr.e_lfanew);
1458   if (bfd_seek (abfd, offset, SEEK_SET) != 0
1459       || (bfd_bread (&image_hdr, (bfd_size_type) sizeof (image_hdr), abfd)
1460 	  != sizeof (image_hdr)))
1461     {
1462       if (bfd_get_error () != bfd_error_system_call)
1463 	bfd_set_error (bfd_error_wrong_format);
1464       return NULL;
1465     }
1466 
1467   if (H_GET_32 (abfd, image_hdr.nt_signature) != 0x4550)
1468     {
1469       bfd_set_error (bfd_error_wrong_format);
1470       return NULL;
1471     }
1472 
1473   /* Swap file header, so that we get the location for calling
1474      real_object_p.  */
1475   bfd_coff_swap_filehdr_in (abfd, &image_hdr, &internal_f);
1476 
1477   if (! bfd_coff_bad_format_hook (abfd, &internal_f)
1478       || internal_f.f_opthdr > bfd_coff_aoutsz (abfd))
1479     {
1480       bfd_set_error (bfd_error_wrong_format);
1481       return NULL;
1482     }
1483 
1484   memcpy (internal_f.pe.dos_message, dos_hdr.dos_message,
1485 	  sizeof (internal_f.pe.dos_message));
1486 
1487   /* Read the optional header, which has variable size.  */
1488   opt_hdr_size = internal_f.f_opthdr;
1489 
1490   if (opt_hdr_size != 0)
1491     {
1492       bfd_size_type amt = opt_hdr_size;
1493       bfd_byte * opthdr;
1494 
1495       /* PR 17521 file: 230-131433-0.004.  */
1496       if (amt < sizeof (PEAOUTHDR))
1497 	amt = sizeof (PEAOUTHDR);
1498 
1499       opthdr = _bfd_alloc_and_read (abfd, amt, opt_hdr_size);
1500       if (opthdr == NULL)
1501 	return NULL;
1502       if (amt > opt_hdr_size)
1503 	memset (opthdr + opt_hdr_size, 0, amt - opt_hdr_size);
1504 
1505       bfd_set_error (bfd_error_no_error);
1506       bfd_coff_swap_aouthdr_in (abfd, opthdr, & internal_a);
1507       if (bfd_get_error () != bfd_error_no_error)
1508 	return NULL;
1509     }
1510 
1511 
1512   result = coff_real_object_p (abfd, internal_f.f_nscns, &internal_f,
1513 			       (opt_hdr_size != 0
1514 				? &internal_a
1515 				: (struct internal_aouthdr *) NULL));
1516 
1517 
1518   if (result)
1519     {
1520       /* Now the whole header has been processed, see if there is a build-id */
1521       pe_bfd_read_buildid(abfd);
1522     }
1523 
1524   return result;
1525 }
1526 
1527 #define coff_object_p pe_bfd_object_p
1528 #endif /* COFF_IMAGE_WITH_PE */
1529