1 /* MIPS-specific support for ELF 2 Copyright (C) 1993-2016 Free Software Foundation, Inc. 3 4 Most of the information added by Ian Lance Taylor, Cygnus Support, 5 <ian@cygnus.com>. 6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC. 7 <mark@codesourcery.com> 8 Traditional MIPS targets support added by Koundinya.K, Dansk Data 9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net> 10 11 This file is part of BFD, the Binary File Descriptor library. 12 13 This program is free software; you can redistribute it and/or modify 14 it under the terms of the GNU General Public License as published by 15 the Free Software Foundation; either version 3 of the License, or 16 (at your option) any later version. 17 18 This program is distributed in the hope that it will be useful, 19 but WITHOUT ANY WARRANTY; without even the implied warranty of 20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 21 GNU General Public License for more details. 22 23 You should have received a copy of the GNU General Public License 24 along with this program; if not, write to the Free Software 25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, 26 MA 02110-1301, USA. */ 27 28 29 /* This file handles functionality common to the different MIPS ABI's. */ 30 31 #include "sysdep.h" 32 #include "bfd.h" 33 #include "libbfd.h" 34 #include "libiberty.h" 35 #include "elf-bfd.h" 36 #include "elfxx-mips.h" 37 #include "elf/mips.h" 38 #include "elf-vxworks.h" 39 #include "dwarf2.h" 40 41 /* Get the ECOFF swapping routines. */ 42 #include "coff/sym.h" 43 #include "coff/symconst.h" 44 #include "coff/ecoff.h" 45 #include "coff/mips.h" 46 47 #include "hashtab.h" 48 49 /* Types of TLS GOT entry. */ 50 enum mips_got_tls_type { 51 GOT_TLS_NONE, 52 GOT_TLS_GD, 53 GOT_TLS_LDM, 54 GOT_TLS_IE 55 }; 56 57 /* This structure is used to hold information about one GOT entry. 58 There are four types of entry: 59 60 (1) an absolute address 61 requires: abfd == NULL 62 fields: d.address 63 64 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd 65 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM 66 fields: abfd, symndx, d.addend, tls_type 67 68 (3) a SYMBOL address, where SYMBOL is not local to an input bfd 69 requires: abfd != NULL, symndx == -1 70 fields: d.h, tls_type 71 72 (4) a TLS LDM slot 73 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM 74 fields: none; there's only one of these per GOT. */ 75 struct mips_got_entry 76 { 77 /* One input bfd that needs the GOT entry. */ 78 bfd *abfd; 79 /* The index of the symbol, as stored in the relocation r_info, if 80 we have a local symbol; -1 otherwise. */ 81 long symndx; 82 union 83 { 84 /* If abfd == NULL, an address that must be stored in the got. */ 85 bfd_vma address; 86 /* If abfd != NULL && symndx != -1, the addend of the relocation 87 that should be added to the symbol value. */ 88 bfd_vma addend; 89 /* If abfd != NULL && symndx == -1, the hash table entry 90 corresponding to a symbol in the GOT. The symbol's entry 91 is in the local area if h->global_got_area is GGA_NONE, 92 otherwise it is in the global area. */ 93 struct mips_elf_link_hash_entry *h; 94 } d; 95 96 /* The TLS type of this GOT entry. An LDM GOT entry will be a local 97 symbol entry with r_symndx == 0. */ 98 unsigned char tls_type; 99 100 /* True if we have filled in the GOT contents for a TLS entry, 101 and created the associated relocations. */ 102 unsigned char tls_initialized; 103 104 /* The offset from the beginning of the .got section to the entry 105 corresponding to this symbol+addend. If it's a global symbol 106 whose offset is yet to be decided, it's going to be -1. */ 107 long gotidx; 108 }; 109 110 /* This structure represents a GOT page reference from an input bfd. 111 Each instance represents a symbol + ADDEND, where the representation 112 of the symbol depends on whether it is local to the input bfd. 113 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD. 114 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry. 115 116 Page references with SYMNDX >= 0 always become page references 117 in the output. Page references with SYMNDX < 0 only become page 118 references if the symbol binds locally; in other cases, the page 119 reference decays to a global GOT reference. */ 120 struct mips_got_page_ref 121 { 122 long symndx; 123 union 124 { 125 struct mips_elf_link_hash_entry *h; 126 bfd *abfd; 127 } u; 128 bfd_vma addend; 129 }; 130 131 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND]. 132 The structures form a non-overlapping list that is sorted by increasing 133 MIN_ADDEND. */ 134 struct mips_got_page_range 135 { 136 struct mips_got_page_range *next; 137 bfd_signed_vma min_addend; 138 bfd_signed_vma max_addend; 139 }; 140 141 /* This structure describes the range of addends that are applied to page 142 relocations against a given section. */ 143 struct mips_got_page_entry 144 { 145 /* The section that these entries are based on. */ 146 asection *sec; 147 /* The ranges for this page entry. */ 148 struct mips_got_page_range *ranges; 149 /* The maximum number of page entries needed for RANGES. */ 150 bfd_vma num_pages; 151 }; 152 153 /* This structure is used to hold .got information when linking. */ 154 155 struct mips_got_info 156 { 157 /* The number of global .got entries. */ 158 unsigned int global_gotno; 159 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */ 160 unsigned int reloc_only_gotno; 161 /* The number of .got slots used for TLS. */ 162 unsigned int tls_gotno; 163 /* The first unused TLS .got entry. Used only during 164 mips_elf_initialize_tls_index. */ 165 unsigned int tls_assigned_gotno; 166 /* The number of local .got entries, eventually including page entries. */ 167 unsigned int local_gotno; 168 /* The maximum number of page entries needed. */ 169 unsigned int page_gotno; 170 /* The number of relocations needed for the GOT entries. */ 171 unsigned int relocs; 172 /* The first unused local .got entry. */ 173 unsigned int assigned_low_gotno; 174 /* The last unused local .got entry. */ 175 unsigned int assigned_high_gotno; 176 /* A hash table holding members of the got. */ 177 struct htab *got_entries; 178 /* A hash table holding mips_got_page_ref structures. */ 179 struct htab *got_page_refs; 180 /* A hash table of mips_got_page_entry structures. */ 181 struct htab *got_page_entries; 182 /* In multi-got links, a pointer to the next got (err, rather, most 183 of the time, it points to the previous got). */ 184 struct mips_got_info *next; 185 }; 186 187 /* Structure passed when merging bfds' gots. */ 188 189 struct mips_elf_got_per_bfd_arg 190 { 191 /* The output bfd. */ 192 bfd *obfd; 193 /* The link information. */ 194 struct bfd_link_info *info; 195 /* A pointer to the primary got, i.e., the one that's going to get 196 the implicit relocations from DT_MIPS_LOCAL_GOTNO and 197 DT_MIPS_GOTSYM. */ 198 struct mips_got_info *primary; 199 /* A non-primary got we're trying to merge with other input bfd's 200 gots. */ 201 struct mips_got_info *current; 202 /* The maximum number of got entries that can be addressed with a 203 16-bit offset. */ 204 unsigned int max_count; 205 /* The maximum number of page entries needed by each got. */ 206 unsigned int max_pages; 207 /* The total number of global entries which will live in the 208 primary got and be automatically relocated. This includes 209 those not referenced by the primary GOT but included in 210 the "master" GOT. */ 211 unsigned int global_count; 212 }; 213 214 /* A structure used to pass information to htab_traverse callbacks 215 when laying out the GOT. */ 216 217 struct mips_elf_traverse_got_arg 218 { 219 struct bfd_link_info *info; 220 struct mips_got_info *g; 221 int value; 222 }; 223 224 struct _mips_elf_section_data 225 { 226 struct bfd_elf_section_data elf; 227 union 228 { 229 bfd_byte *tdata; 230 } u; 231 }; 232 233 #define mips_elf_section_data(sec) \ 234 ((struct _mips_elf_section_data *) elf_section_data (sec)) 235 236 #define is_mips_elf(bfd) \ 237 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \ 238 && elf_tdata (bfd) != NULL \ 239 && elf_object_id (bfd) == MIPS_ELF_DATA) 240 241 /* The ABI says that every symbol used by dynamic relocations must have 242 a global GOT entry. Among other things, this provides the dynamic 243 linker with a free, directly-indexed cache. The GOT can therefore 244 contain symbols that are not referenced by GOT relocations themselves 245 (in other words, it may have symbols that are not referenced by things 246 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE). 247 248 GOT relocations are less likely to overflow if we put the associated 249 GOT entries towards the beginning. We therefore divide the global 250 GOT entries into two areas: "normal" and "reloc-only". Entries in 251 the first area can be used for both dynamic relocations and GP-relative 252 accesses, while those in the "reloc-only" area are for dynamic 253 relocations only. 254 255 These GGA_* ("Global GOT Area") values are organised so that lower 256 values are more general than higher values. Also, non-GGA_NONE 257 values are ordered by the position of the area in the GOT. */ 258 #define GGA_NORMAL 0 259 #define GGA_RELOC_ONLY 1 260 #define GGA_NONE 2 261 262 /* Information about a non-PIC interface to a PIC function. There are 263 two ways of creating these interfaces. The first is to add: 264 265 lui $25,%hi(func) 266 addiu $25,$25,%lo(func) 267 268 immediately before a PIC function "func". The second is to add: 269 270 lui $25,%hi(func) 271 j func 272 addiu $25,$25,%lo(func) 273 274 to a separate trampoline section. 275 276 Stubs of the first kind go in a new section immediately before the 277 target function. Stubs of the second kind go in a single section 278 pointed to by the hash table's "strampoline" field. */ 279 struct mips_elf_la25_stub { 280 /* The generated section that contains this stub. */ 281 asection *stub_section; 282 283 /* The offset of the stub from the start of STUB_SECTION. */ 284 bfd_vma offset; 285 286 /* One symbol for the original function. Its location is available 287 in H->root.root.u.def. */ 288 struct mips_elf_link_hash_entry *h; 289 }; 290 291 /* Macros for populating a mips_elf_la25_stub. */ 292 293 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */ 294 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */ 295 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */ 296 #define LA25_LUI_MICROMIPS(VAL) \ 297 (0x41b90000 | (VAL)) /* lui t9,VAL */ 298 #define LA25_J_MICROMIPS(VAL) \ 299 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */ 300 #define LA25_ADDIU_MICROMIPS(VAL) \ 301 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */ 302 303 /* This structure is passed to mips_elf_sort_hash_table_f when sorting 304 the dynamic symbols. */ 305 306 struct mips_elf_hash_sort_data 307 { 308 /* The symbol in the global GOT with the lowest dynamic symbol table 309 index. */ 310 struct elf_link_hash_entry *low; 311 /* The least dynamic symbol table index corresponding to a non-TLS 312 symbol with a GOT entry. */ 313 long min_got_dynindx; 314 /* The greatest dynamic symbol table index corresponding to a symbol 315 with a GOT entry that is not referenced (e.g., a dynamic symbol 316 with dynamic relocations pointing to it from non-primary GOTs). */ 317 long max_unref_got_dynindx; 318 /* The greatest dynamic symbol table index not corresponding to a 319 symbol without a GOT entry. */ 320 long max_non_got_dynindx; 321 }; 322 323 /* We make up to two PLT entries if needed, one for standard MIPS code 324 and one for compressed code, either a MIPS16 or microMIPS one. We 325 keep a separate record of traditional lazy-binding stubs, for easier 326 processing. */ 327 328 struct plt_entry 329 { 330 /* Traditional SVR4 stub offset, or -1 if none. */ 331 bfd_vma stub_offset; 332 333 /* Standard PLT entry offset, or -1 if none. */ 334 bfd_vma mips_offset; 335 336 /* Compressed PLT entry offset, or -1 if none. */ 337 bfd_vma comp_offset; 338 339 /* The corresponding .got.plt index, or -1 if none. */ 340 bfd_vma gotplt_index; 341 342 /* Whether we need a standard PLT entry. */ 343 unsigned int need_mips : 1; 344 345 /* Whether we need a compressed PLT entry. */ 346 unsigned int need_comp : 1; 347 }; 348 349 /* The MIPS ELF linker needs additional information for each symbol in 350 the global hash table. */ 351 352 struct mips_elf_link_hash_entry 353 { 354 struct elf_link_hash_entry root; 355 356 /* External symbol information. */ 357 EXTR esym; 358 359 /* The la25 stub we have created for ths symbol, if any. */ 360 struct mips_elf_la25_stub *la25_stub; 361 362 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against 363 this symbol. */ 364 unsigned int possibly_dynamic_relocs; 365 366 /* If there is a stub that 32 bit functions should use to call this 367 16 bit function, this points to the section containing the stub. */ 368 asection *fn_stub; 369 370 /* If there is a stub that 16 bit functions should use to call this 371 32 bit function, this points to the section containing the stub. */ 372 asection *call_stub; 373 374 /* This is like the call_stub field, but it is used if the function 375 being called returns a floating point value. */ 376 asection *call_fp_stub; 377 378 /* The highest GGA_* value that satisfies all references to this symbol. */ 379 unsigned int global_got_area : 2; 380 381 /* True if all GOT relocations against this symbol are for calls. This is 382 a looser condition than no_fn_stub below, because there may be other 383 non-call non-GOT relocations against the symbol. */ 384 unsigned int got_only_for_calls : 1; 385 386 /* True if one of the relocations described by possibly_dynamic_relocs 387 is against a readonly section. */ 388 unsigned int readonly_reloc : 1; 389 390 /* True if there is a relocation against this symbol that must be 391 resolved by the static linker (in other words, if the relocation 392 cannot possibly be made dynamic). */ 393 unsigned int has_static_relocs : 1; 394 395 /* True if we must not create a .MIPS.stubs entry for this symbol. 396 This is set, for example, if there are relocations related to 397 taking the function's address, i.e. any but R_MIPS_CALL*16 ones. 398 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */ 399 unsigned int no_fn_stub : 1; 400 401 /* Whether we need the fn_stub; this is true if this symbol appears 402 in any relocs other than a 16 bit call. */ 403 unsigned int need_fn_stub : 1; 404 405 /* True if this symbol is referenced by branch relocations from 406 any non-PIC input file. This is used to determine whether an 407 la25 stub is required. */ 408 unsigned int has_nonpic_branches : 1; 409 410 /* Does this symbol need a traditional MIPS lazy-binding stub 411 (as opposed to a PLT entry)? */ 412 unsigned int needs_lazy_stub : 1; 413 414 /* Does this symbol resolve to a PLT entry? */ 415 unsigned int use_plt_entry : 1; 416 }; 417 418 /* MIPS ELF linker hash table. */ 419 420 struct mips_elf_link_hash_table 421 { 422 struct elf_link_hash_table root; 423 424 /* The number of .rtproc entries. */ 425 bfd_size_type procedure_count; 426 427 /* The size of the .compact_rel section (if SGI_COMPAT). */ 428 bfd_size_type compact_rel_size; 429 430 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry 431 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */ 432 bfd_boolean use_rld_obj_head; 433 434 /* The __rld_map or __rld_obj_head symbol. */ 435 struct elf_link_hash_entry *rld_symbol; 436 437 /* This is set if we see any mips16 stub sections. */ 438 bfd_boolean mips16_stubs_seen; 439 440 /* True if we can generate copy relocs and PLTs. */ 441 bfd_boolean use_plts_and_copy_relocs; 442 443 /* True if we can only use 32-bit microMIPS instructions. */ 444 bfd_boolean insn32; 445 446 /* True if we're generating code for VxWorks. */ 447 bfd_boolean is_vxworks; 448 449 /* True if we already reported the small-data section overflow. */ 450 bfd_boolean small_data_overflow_reported; 451 452 /* Shortcuts to some dynamic sections, or NULL if they are not 453 being used. */ 454 asection *srelbss; 455 asection *sdynbss; 456 asection *srelplt; 457 asection *srelplt2; 458 asection *sgotplt; 459 asection *splt; 460 asection *sstubs; 461 asection *sgot; 462 463 /* The master GOT information. */ 464 struct mips_got_info *got_info; 465 466 /* The global symbol in the GOT with the lowest index in the dynamic 467 symbol table. */ 468 struct elf_link_hash_entry *global_gotsym; 469 470 /* The size of the PLT header in bytes. */ 471 bfd_vma plt_header_size; 472 473 /* The size of a standard PLT entry in bytes. */ 474 bfd_vma plt_mips_entry_size; 475 476 /* The size of a compressed PLT entry in bytes. */ 477 bfd_vma plt_comp_entry_size; 478 479 /* The offset of the next standard PLT entry to create. */ 480 bfd_vma plt_mips_offset; 481 482 /* The offset of the next compressed PLT entry to create. */ 483 bfd_vma plt_comp_offset; 484 485 /* The index of the next .got.plt entry to create. */ 486 bfd_vma plt_got_index; 487 488 /* The number of functions that need a lazy-binding stub. */ 489 bfd_vma lazy_stub_count; 490 491 /* The size of a function stub entry in bytes. */ 492 bfd_vma function_stub_size; 493 494 /* The number of reserved entries at the beginning of the GOT. */ 495 unsigned int reserved_gotno; 496 497 /* The section used for mips_elf_la25_stub trampolines. 498 See the comment above that structure for details. */ 499 asection *strampoline; 500 501 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset) 502 pairs. */ 503 htab_t la25_stubs; 504 505 /* A function FN (NAME, IS, OS) that creates a new input section 506 called NAME and links it to output section OS. If IS is nonnull, 507 the new section should go immediately before it, otherwise it 508 should go at the (current) beginning of OS. 509 510 The function returns the new section on success, otherwise it 511 returns null. */ 512 asection *(*add_stub_section) (const char *, asection *, asection *); 513 514 /* Small local sym cache. */ 515 struct sym_cache sym_cache; 516 517 /* Is the PLT header compressed? */ 518 unsigned int plt_header_is_comp : 1; 519 }; 520 521 /* Get the MIPS ELF linker hash table from a link_info structure. */ 522 523 #define mips_elf_hash_table(p) \ 524 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \ 525 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL) 526 527 /* A structure used to communicate with htab_traverse callbacks. */ 528 struct mips_htab_traverse_info 529 { 530 /* The usual link-wide information. */ 531 struct bfd_link_info *info; 532 bfd *output_bfd; 533 534 /* Starts off FALSE and is set to TRUE if the link should be aborted. */ 535 bfd_boolean error; 536 }; 537 538 /* MIPS ELF private object data. */ 539 540 struct mips_elf_obj_tdata 541 { 542 /* Generic ELF private object data. */ 543 struct elf_obj_tdata root; 544 545 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */ 546 bfd *abi_fp_bfd; 547 548 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */ 549 bfd *abi_msa_bfd; 550 551 /* The abiflags for this object. */ 552 Elf_Internal_ABIFlags_v0 abiflags; 553 bfd_boolean abiflags_valid; 554 555 /* The GOT requirements of input bfds. */ 556 struct mips_got_info *got; 557 558 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be 559 included directly in this one, but there's no point to wasting 560 the memory just for the infrequently called find_nearest_line. */ 561 struct mips_elf_find_line *find_line_info; 562 563 /* An array of stub sections indexed by symbol number. */ 564 asection **local_stubs; 565 asection **local_call_stubs; 566 567 /* The Irix 5 support uses two virtual sections, which represent 568 text/data symbols defined in dynamic objects. */ 569 asymbol *elf_data_symbol; 570 asymbol *elf_text_symbol; 571 asection *elf_data_section; 572 asection *elf_text_section; 573 }; 574 575 /* Get MIPS ELF private object data from BFD's tdata. */ 576 577 #define mips_elf_tdata(bfd) \ 578 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any) 579 580 #define TLS_RELOC_P(r_type) \ 581 (r_type == R_MIPS_TLS_DTPMOD32 \ 582 || r_type == R_MIPS_TLS_DTPMOD64 \ 583 || r_type == R_MIPS_TLS_DTPREL32 \ 584 || r_type == R_MIPS_TLS_DTPREL64 \ 585 || r_type == R_MIPS_TLS_GD \ 586 || r_type == R_MIPS_TLS_LDM \ 587 || r_type == R_MIPS_TLS_DTPREL_HI16 \ 588 || r_type == R_MIPS_TLS_DTPREL_LO16 \ 589 || r_type == R_MIPS_TLS_GOTTPREL \ 590 || r_type == R_MIPS_TLS_TPREL32 \ 591 || r_type == R_MIPS_TLS_TPREL64 \ 592 || r_type == R_MIPS_TLS_TPREL_HI16 \ 593 || r_type == R_MIPS_TLS_TPREL_LO16 \ 594 || r_type == R_MIPS16_TLS_GD \ 595 || r_type == R_MIPS16_TLS_LDM \ 596 || r_type == R_MIPS16_TLS_DTPREL_HI16 \ 597 || r_type == R_MIPS16_TLS_DTPREL_LO16 \ 598 || r_type == R_MIPS16_TLS_GOTTPREL \ 599 || r_type == R_MIPS16_TLS_TPREL_HI16 \ 600 || r_type == R_MIPS16_TLS_TPREL_LO16 \ 601 || r_type == R_MICROMIPS_TLS_GD \ 602 || r_type == R_MICROMIPS_TLS_LDM \ 603 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \ 604 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \ 605 || r_type == R_MICROMIPS_TLS_GOTTPREL \ 606 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \ 607 || r_type == R_MICROMIPS_TLS_TPREL_LO16) 608 609 /* Structure used to pass information to mips_elf_output_extsym. */ 610 611 struct extsym_info 612 { 613 bfd *abfd; 614 struct bfd_link_info *info; 615 struct ecoff_debug_info *debug; 616 const struct ecoff_debug_swap *swap; 617 bfd_boolean failed; 618 }; 619 620 /* The names of the runtime procedure table symbols used on IRIX5. */ 621 622 static const char * const mips_elf_dynsym_rtproc_names[] = 623 { 624 "_procedure_table", 625 "_procedure_string_table", 626 "_procedure_table_size", 627 NULL 628 }; 629 630 /* These structures are used to generate the .compact_rel section on 631 IRIX5. */ 632 633 typedef struct 634 { 635 unsigned long id1; /* Always one? */ 636 unsigned long num; /* Number of compact relocation entries. */ 637 unsigned long id2; /* Always two? */ 638 unsigned long offset; /* The file offset of the first relocation. */ 639 unsigned long reserved0; /* Zero? */ 640 unsigned long reserved1; /* Zero? */ 641 } Elf32_compact_rel; 642 643 typedef struct 644 { 645 bfd_byte id1[4]; 646 bfd_byte num[4]; 647 bfd_byte id2[4]; 648 bfd_byte offset[4]; 649 bfd_byte reserved0[4]; 650 bfd_byte reserved1[4]; 651 } Elf32_External_compact_rel; 652 653 typedef struct 654 { 655 unsigned int ctype : 1; /* 1: long 0: short format. See below. */ 656 unsigned int rtype : 4; /* Relocation types. See below. */ 657 unsigned int dist2to : 8; 658 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */ 659 unsigned long konst; /* KONST field. See below. */ 660 unsigned long vaddr; /* VADDR to be relocated. */ 661 } Elf32_crinfo; 662 663 typedef struct 664 { 665 unsigned int ctype : 1; /* 1: long 0: short format. See below. */ 666 unsigned int rtype : 4; /* Relocation types. See below. */ 667 unsigned int dist2to : 8; 668 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */ 669 unsigned long konst; /* KONST field. See below. */ 670 } Elf32_crinfo2; 671 672 typedef struct 673 { 674 bfd_byte info[4]; 675 bfd_byte konst[4]; 676 bfd_byte vaddr[4]; 677 } Elf32_External_crinfo; 678 679 typedef struct 680 { 681 bfd_byte info[4]; 682 bfd_byte konst[4]; 683 } Elf32_External_crinfo2; 684 685 /* These are the constants used to swap the bitfields in a crinfo. */ 686 687 #define CRINFO_CTYPE (0x1) 688 #define CRINFO_CTYPE_SH (31) 689 #define CRINFO_RTYPE (0xf) 690 #define CRINFO_RTYPE_SH (27) 691 #define CRINFO_DIST2TO (0xff) 692 #define CRINFO_DIST2TO_SH (19) 693 #define CRINFO_RELVADDR (0x7ffff) 694 #define CRINFO_RELVADDR_SH (0) 695 696 /* A compact relocation info has long (3 words) or short (2 words) 697 formats. A short format doesn't have VADDR field and relvaddr 698 fields contains ((VADDR - vaddr of the previous entry) >> 2). */ 699 #define CRF_MIPS_LONG 1 700 #define CRF_MIPS_SHORT 0 701 702 /* There are 4 types of compact relocation at least. The value KONST 703 has different meaning for each type: 704 705 (type) (konst) 706 CT_MIPS_REL32 Address in data 707 CT_MIPS_WORD Address in word (XXX) 708 CT_MIPS_GPHI_LO GP - vaddr 709 CT_MIPS_JMPAD Address to jump 710 */ 711 712 #define CRT_MIPS_REL32 0xa 713 #define CRT_MIPS_WORD 0xb 714 #define CRT_MIPS_GPHI_LO 0xc 715 #define CRT_MIPS_JMPAD 0xd 716 717 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format)) 718 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type)) 719 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v)) 720 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2) 721 722 /* The structure of the runtime procedure descriptor created by the 723 loader for use by the static exception system. */ 724 725 typedef struct runtime_pdr { 726 bfd_vma adr; /* Memory address of start of procedure. */ 727 long regmask; /* Save register mask. */ 728 long regoffset; /* Save register offset. */ 729 long fregmask; /* Save floating point register mask. */ 730 long fregoffset; /* Save floating point register offset. */ 731 long frameoffset; /* Frame size. */ 732 short framereg; /* Frame pointer register. */ 733 short pcreg; /* Offset or reg of return pc. */ 734 long irpss; /* Index into the runtime string table. */ 735 long reserved; 736 struct exception_info *exception_info;/* Pointer to exception array. */ 737 } RPDR, *pRPDR; 738 #define cbRPDR sizeof (RPDR) 739 #define rpdNil ((pRPDR) 0) 740 741 static struct mips_got_entry *mips_elf_create_local_got_entry 742 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long, 743 struct mips_elf_link_hash_entry *, int); 744 static bfd_boolean mips_elf_sort_hash_table_f 745 (struct mips_elf_link_hash_entry *, void *); 746 static bfd_vma mips_elf_high 747 (bfd_vma); 748 static bfd_boolean mips_elf_create_dynamic_relocation 749 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *, 750 struct mips_elf_link_hash_entry *, asection *, bfd_vma, 751 bfd_vma *, asection *); 752 static bfd_vma mips_elf_adjust_gp 753 (bfd *, struct mips_got_info *, bfd *); 754 755 /* This will be used when we sort the dynamic relocation records. */ 756 static bfd *reldyn_sorting_bfd; 757 758 /* True if ABFD is for CPUs with load interlocking that include 759 non-MIPS1 CPUs and R3900. */ 760 #define LOAD_INTERLOCKS_P(abfd) \ 761 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \ 762 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900)) 763 764 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL. 765 This should be safe for all architectures. We enable this predicate 766 for RM9000 for now. */ 767 #define JAL_TO_BAL_P(abfd) \ 768 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000) 769 770 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL. 771 This should be safe for all architectures. We enable this predicate for 772 all CPUs. */ 773 #define JALR_TO_BAL_P(abfd) 1 774 775 /* True if ABFD is for CPUs that are faster if JR is converted to B. 776 This should be safe for all architectures. We enable this predicate for 777 all CPUs. */ 778 #define JR_TO_B_P(abfd) 1 779 780 /* True if ABFD is a PIC object. */ 781 #define PIC_OBJECT_P(abfd) \ 782 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0) 783 784 /* Nonzero if ABFD is using the O32 ABI. */ 785 #define ABI_O32_P(abfd) \ 786 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32) 787 788 /* Nonzero if ABFD is using the N32 ABI. */ 789 #define ABI_N32_P(abfd) \ 790 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0) 791 792 /* Nonzero if ABFD is using the N64 ABI. */ 793 #define ABI_64_P(abfd) \ 794 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64) 795 796 /* Nonzero if ABFD is using NewABI conventions. */ 797 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd)) 798 799 /* Nonzero if ABFD has microMIPS code. */ 800 #define MICROMIPS_P(abfd) \ 801 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0) 802 803 /* Nonzero if ABFD is MIPS R6. */ 804 #define MIPSR6_P(abfd) \ 805 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \ 806 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6) 807 808 /* The IRIX compatibility level we are striving for. */ 809 #define IRIX_COMPAT(abfd) \ 810 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd)) 811 812 /* Whether we are trying to be compatible with IRIX at all. */ 813 #define SGI_COMPAT(abfd) \ 814 (IRIX_COMPAT (abfd) != ict_none) 815 816 /* The name of the options section. */ 817 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \ 818 (NEWABI_P (abfd) ? ".MIPS.options" : ".options") 819 820 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section. 821 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */ 822 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \ 823 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0) 824 825 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */ 826 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \ 827 (strcmp (NAME, ".MIPS.abiflags") == 0) 828 829 /* Whether the section is readonly. */ 830 #define MIPS_ELF_READONLY_SECTION(sec) \ 831 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \ 832 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) 833 834 /* The name of the stub section. */ 835 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs" 836 837 /* The size of an external REL relocation. */ 838 #define MIPS_ELF_REL_SIZE(abfd) \ 839 (get_elf_backend_data (abfd)->s->sizeof_rel) 840 841 /* The size of an external RELA relocation. */ 842 #define MIPS_ELF_RELA_SIZE(abfd) \ 843 (get_elf_backend_data (abfd)->s->sizeof_rela) 844 845 /* The size of an external dynamic table entry. */ 846 #define MIPS_ELF_DYN_SIZE(abfd) \ 847 (get_elf_backend_data (abfd)->s->sizeof_dyn) 848 849 /* The size of a GOT entry. */ 850 #define MIPS_ELF_GOT_SIZE(abfd) \ 851 (get_elf_backend_data (abfd)->s->arch_size / 8) 852 853 /* The size of the .rld_map section. */ 854 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \ 855 (get_elf_backend_data (abfd)->s->arch_size / 8) 856 857 /* The size of a symbol-table entry. */ 858 #define MIPS_ELF_SYM_SIZE(abfd) \ 859 (get_elf_backend_data (abfd)->s->sizeof_sym) 860 861 /* The default alignment for sections, as a power of two. */ 862 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \ 863 (get_elf_backend_data (abfd)->s->log_file_align) 864 865 /* Get word-sized data. */ 866 #define MIPS_ELF_GET_WORD(abfd, ptr) \ 867 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr)) 868 869 /* Put out word-sized data. */ 870 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \ 871 (ABI_64_P (abfd) \ 872 ? bfd_put_64 (abfd, val, ptr) \ 873 : bfd_put_32 (abfd, val, ptr)) 874 875 /* The opcode for word-sized loads (LW or LD). */ 876 #define MIPS_ELF_LOAD_WORD(abfd) \ 877 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000) 878 879 /* Add a dynamic symbol table-entry. */ 880 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \ 881 _bfd_elf_add_dynamic_entry (info, tag, val) 882 883 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \ 884 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela)) 885 886 /* The name of the dynamic relocation section. */ 887 #define MIPS_ELF_REL_DYN_NAME(INFO) \ 888 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn") 889 890 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value 891 from smaller values. Start with zero, widen, *then* decrement. */ 892 #define MINUS_ONE (((bfd_vma)0) - 1) 893 #define MINUS_TWO (((bfd_vma)0) - 2) 894 895 /* The value to write into got[1] for SVR4 targets, to identify it is 896 a GNU object. The dynamic linker can then use got[1] to store the 897 module pointer. */ 898 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \ 899 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31)) 900 901 /* The offset of $gp from the beginning of the .got section. */ 902 #define ELF_MIPS_GP_OFFSET(INFO) \ 903 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0) 904 905 /* The maximum size of the GOT for it to be addressable using 16-bit 906 offsets from $gp. */ 907 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff) 908 909 /* Instructions which appear in a stub. */ 910 #define STUB_LW(abfd) \ 911 ((ABI_64_P (abfd) \ 912 ? 0xdf998010 /* ld t9,0x8010(gp) */ \ 913 : 0x8f998010)) /* lw t9,0x8010(gp) */ 914 #define STUB_MOVE 0x03e07825 /* or t7,ra,zero */ 915 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */ 916 #define STUB_JALR 0x0320f809 /* jalr t9,ra */ 917 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */ 918 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */ 919 #define STUB_LI16S(abfd, VAL) \ 920 ((ABI_64_P (abfd) \ 921 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \ 922 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */ 923 924 /* Likewise for the microMIPS ASE. */ 925 #define STUB_LW_MICROMIPS(abfd) \ 926 (ABI_64_P (abfd) \ 927 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \ 928 : 0xff3c8010) /* lw t9,0x8010(gp) */ 929 #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */ 930 #define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */ 931 #define STUB_LUI_MICROMIPS(VAL) \ 932 (0x41b80000 + (VAL)) /* lui t8,VAL */ 933 #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */ 934 #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */ 935 #define STUB_ORI_MICROMIPS(VAL) \ 936 (0x53180000 + (VAL)) /* ori t8,t8,VAL */ 937 #define STUB_LI16U_MICROMIPS(VAL) \ 938 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */ 939 #define STUB_LI16S_MICROMIPS(abfd, VAL) \ 940 (ABI_64_P (abfd) \ 941 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \ 942 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */ 943 944 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16 945 #define MIPS_FUNCTION_STUB_BIG_SIZE 20 946 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12 947 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16 948 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16 949 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20 950 951 /* The name of the dynamic interpreter. This is put in the .interp 952 section. */ 953 954 #define ELF_DYNAMIC_INTERPRETER(abfd) \ 955 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \ 956 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \ 957 : "/usr/lib/libc.so.1") 958 959 #ifdef BFD64 960 #define MNAME(bfd,pre,pos) \ 961 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos)) 962 #define ELF_R_SYM(bfd, i) \ 963 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i)) 964 #define ELF_R_TYPE(bfd, i) \ 965 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i)) 966 #define ELF_R_INFO(bfd, s, t) \ 967 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t)) 968 #else 969 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos) 970 #define ELF_R_SYM(bfd, i) \ 971 (ELF32_R_SYM (i)) 972 #define ELF_R_TYPE(bfd, i) \ 973 (ELF32_R_TYPE (i)) 974 #define ELF_R_INFO(bfd, s, t) \ 975 (ELF32_R_INFO (s, t)) 976 #endif 977 978 /* The mips16 compiler uses a couple of special sections to handle 979 floating point arguments. 980 981 Section names that look like .mips16.fn.FNNAME contain stubs that 982 copy floating point arguments from the fp regs to the gp regs and 983 then jump to FNNAME. If any 32 bit function calls FNNAME, the 984 call should be redirected to the stub instead. If no 32 bit 985 function calls FNNAME, the stub should be discarded. We need to 986 consider any reference to the function, not just a call, because 987 if the address of the function is taken we will need the stub, 988 since the address might be passed to a 32 bit function. 989 990 Section names that look like .mips16.call.FNNAME contain stubs 991 that copy floating point arguments from the gp regs to the fp 992 regs and then jump to FNNAME. If FNNAME is a 32 bit function, 993 then any 16 bit function that calls FNNAME should be redirected 994 to the stub instead. If FNNAME is not a 32 bit function, the 995 stub should be discarded. 996 997 .mips16.call.fp.FNNAME sections are similar, but contain stubs 998 which call FNNAME and then copy the return value from the fp regs 999 to the gp regs. These stubs store the return value in $18 while 1000 calling FNNAME; any function which might call one of these stubs 1001 must arrange to save $18 around the call. (This case is not 1002 needed for 32 bit functions that call 16 bit functions, because 1003 16 bit functions always return floating point values in both 1004 $f0/$f1 and $2/$3.) 1005 1006 Note that in all cases FNNAME might be defined statically. 1007 Therefore, FNNAME is not used literally. Instead, the relocation 1008 information will indicate which symbol the section is for. 1009 1010 We record any stubs that we find in the symbol table. */ 1011 1012 #define FN_STUB ".mips16.fn." 1013 #define CALL_STUB ".mips16.call." 1014 #define CALL_FP_STUB ".mips16.call.fp." 1015 1016 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB) 1017 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB) 1018 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB) 1019 1020 /* The format of the first PLT entry in an O32 executable. */ 1021 static const bfd_vma mips_o32_exec_plt0_entry[] = 1022 { 1023 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */ 1024 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */ 1025 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */ 1026 0x031cc023, /* subu $24, $24, $28 */ 1027 0x03e07825, /* or t7, ra, zero */ 1028 0x0018c082, /* srl $24, $24, 2 */ 1029 0x0320f809, /* jalr $25 */ 1030 0x2718fffe /* subu $24, $24, 2 */ 1031 }; 1032 1033 /* The format of the first PLT entry in an N32 executable. Different 1034 because gp ($28) is not available; we use t2 ($14) instead. */ 1035 static const bfd_vma mips_n32_exec_plt0_entry[] = 1036 { 1037 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */ 1038 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */ 1039 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */ 1040 0x030ec023, /* subu $24, $24, $14 */ 1041 0x03e07825, /* or t7, ra, zero */ 1042 0x0018c082, /* srl $24, $24, 2 */ 1043 0x0320f809, /* jalr $25 */ 1044 0x2718fffe /* subu $24, $24, 2 */ 1045 }; 1046 1047 /* The format of the first PLT entry in an N64 executable. Different 1048 from N32 because of the increased size of GOT entries. */ 1049 static const bfd_vma mips_n64_exec_plt0_entry[] = 1050 { 1051 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */ 1052 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */ 1053 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */ 1054 0x030ec023, /* subu $24, $24, $14 */ 1055 0x03e07825, /* or t7, ra, zero */ 1056 0x0018c0c2, /* srl $24, $24, 3 */ 1057 0x0320f809, /* jalr $25 */ 1058 0x2718fffe /* subu $24, $24, 2 */ 1059 }; 1060 1061 /* The format of the microMIPS first PLT entry in an O32 executable. 1062 We rely on v0 ($2) rather than t8 ($24) to contain the address 1063 of the GOTPLT entry handled, so this stub may only be used when 1064 all the subsequent PLT entries are microMIPS code too. 1065 1066 The trailing NOP is for alignment and correct disassembly only. */ 1067 static const bfd_vma micromips_o32_exec_plt0_entry[] = 1068 { 1069 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */ 1070 0xff23, 0x0000, /* lw $25, 0($3) */ 1071 0x0535, /* subu $2, $2, $3 */ 1072 0x2525, /* srl $2, $2, 2 */ 1073 0x3302, 0xfffe, /* subu $24, $2, 2 */ 1074 0x0dff, /* move $15, $31 */ 1075 0x45f9, /* jalrs $25 */ 1076 0x0f83, /* move $28, $3 */ 1077 0x0c00 /* nop */ 1078 }; 1079 1080 /* The format of the microMIPS first PLT entry in an O32 executable 1081 in the insn32 mode. */ 1082 static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] = 1083 { 1084 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */ 1085 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */ 1086 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */ 1087 0x0398, 0xc1d0, /* subu $24, $24, $28 */ 1088 0x001f, 0x7a90, /* or $15, $31, zero */ 1089 0x0318, 0x1040, /* srl $24, $24, 2 */ 1090 0x03f9, 0x0f3c, /* jalr $25 */ 1091 0x3318, 0xfffe /* subu $24, $24, 2 */ 1092 }; 1093 1094 /* The format of subsequent standard PLT entries. */ 1095 static const bfd_vma mips_exec_plt_entry[] = 1096 { 1097 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */ 1098 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */ 1099 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */ 1100 0x03200008 /* jr $25 */ 1101 }; 1102 1103 /* In the following PLT entry the JR and ADDIU instructions will 1104 be swapped in _bfd_mips_elf_finish_dynamic_symbol because 1105 LOAD_INTERLOCKS_P will be true for MIPS R6. */ 1106 static const bfd_vma mipsr6_exec_plt_entry[] = 1107 { 1108 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */ 1109 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */ 1110 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */ 1111 0x03200009 /* jr $25 */ 1112 }; 1113 1114 /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2) 1115 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not 1116 directly addressable. */ 1117 static const bfd_vma mips16_o32_exec_plt_entry[] = 1118 { 1119 0xb203, /* lw $2, 12($pc) */ 1120 0x9a60, /* lw $3, 0($2) */ 1121 0x651a, /* move $24, $2 */ 1122 0xeb00, /* jr $3 */ 1123 0x653b, /* move $25, $3 */ 1124 0x6500, /* nop */ 1125 0x0000, 0x0000 /* .word (.got.plt entry) */ 1126 }; 1127 1128 /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2) 1129 as a temporary because t8 ($24) is not addressable with ADDIUPC. */ 1130 static const bfd_vma micromips_o32_exec_plt_entry[] = 1131 { 1132 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */ 1133 0xff22, 0x0000, /* lw $25, 0($2) */ 1134 0x4599, /* jr $25 */ 1135 0x0f02 /* move $24, $2 */ 1136 }; 1137 1138 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */ 1139 static const bfd_vma micromips_insn32_o32_exec_plt_entry[] = 1140 { 1141 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */ 1142 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */ 1143 0x0019, 0x0f3c, /* jr $25 */ 1144 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */ 1145 }; 1146 1147 /* The format of the first PLT entry in a VxWorks executable. */ 1148 static const bfd_vma mips_vxworks_exec_plt0_entry[] = 1149 { 1150 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */ 1151 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */ 1152 0x8f390008, /* lw t9, 8(t9) */ 1153 0x00000000, /* nop */ 1154 0x03200008, /* jr t9 */ 1155 0x00000000 /* nop */ 1156 }; 1157 1158 /* The format of subsequent PLT entries. */ 1159 static const bfd_vma mips_vxworks_exec_plt_entry[] = 1160 { 1161 0x10000000, /* b .PLT_resolver */ 1162 0x24180000, /* li t8, <pltindex> */ 1163 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */ 1164 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */ 1165 0x8f390000, /* lw t9, 0(t9) */ 1166 0x00000000, /* nop */ 1167 0x03200008, /* jr t9 */ 1168 0x00000000 /* nop */ 1169 }; 1170 1171 /* The format of the first PLT entry in a VxWorks shared object. */ 1172 static const bfd_vma mips_vxworks_shared_plt0_entry[] = 1173 { 1174 0x8f990008, /* lw t9, 8(gp) */ 1175 0x00000000, /* nop */ 1176 0x03200008, /* jr t9 */ 1177 0x00000000, /* nop */ 1178 0x00000000, /* nop */ 1179 0x00000000 /* nop */ 1180 }; 1181 1182 /* The format of subsequent PLT entries. */ 1183 static const bfd_vma mips_vxworks_shared_plt_entry[] = 1184 { 1185 0x10000000, /* b .PLT_resolver */ 1186 0x24180000 /* li t8, <pltindex> */ 1187 }; 1188 1189 /* microMIPS 32-bit opcode helper installer. */ 1190 1191 static void 1192 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr) 1193 { 1194 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr); 1195 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2); 1196 } 1197 1198 /* microMIPS 32-bit opcode helper retriever. */ 1199 1200 static bfd_vma 1201 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr) 1202 { 1203 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2); 1204 } 1205 1206 /* Look up an entry in a MIPS ELF linker hash table. */ 1207 1208 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \ 1209 ((struct mips_elf_link_hash_entry *) \ 1210 elf_link_hash_lookup (&(table)->root, (string), (create), \ 1211 (copy), (follow))) 1212 1213 /* Traverse a MIPS ELF linker hash table. */ 1214 1215 #define mips_elf_link_hash_traverse(table, func, info) \ 1216 (elf_link_hash_traverse \ 1217 (&(table)->root, \ 1218 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \ 1219 (info))) 1220 1221 /* Find the base offsets for thread-local storage in this object, 1222 for GD/LD and IE/LE respectively. */ 1223 1224 #define TP_OFFSET 0x7000 1225 #define DTP_OFFSET 0x8000 1226 1227 static bfd_vma 1228 dtprel_base (struct bfd_link_info *info) 1229 { 1230 /* If tls_sec is NULL, we should have signalled an error already. */ 1231 if (elf_hash_table (info)->tls_sec == NULL) 1232 return 0; 1233 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET; 1234 } 1235 1236 static bfd_vma 1237 tprel_base (struct bfd_link_info *info) 1238 { 1239 /* If tls_sec is NULL, we should have signalled an error already. */ 1240 if (elf_hash_table (info)->tls_sec == NULL) 1241 return 0; 1242 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET; 1243 } 1244 1245 /* Create an entry in a MIPS ELF linker hash table. */ 1246 1247 static struct bfd_hash_entry * 1248 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry, 1249 struct bfd_hash_table *table, const char *string) 1250 { 1251 struct mips_elf_link_hash_entry *ret = 1252 (struct mips_elf_link_hash_entry *) entry; 1253 1254 /* Allocate the structure if it has not already been allocated by a 1255 subclass. */ 1256 if (ret == NULL) 1257 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry)); 1258 if (ret == NULL) 1259 return (struct bfd_hash_entry *) ret; 1260 1261 /* Call the allocation method of the superclass. */ 1262 ret = ((struct mips_elf_link_hash_entry *) 1263 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret, 1264 table, string)); 1265 if (ret != NULL) 1266 { 1267 /* Set local fields. */ 1268 memset (&ret->esym, 0, sizeof (EXTR)); 1269 /* We use -2 as a marker to indicate that the information has 1270 not been set. -1 means there is no associated ifd. */ 1271 ret->esym.ifd = -2; 1272 ret->la25_stub = 0; 1273 ret->possibly_dynamic_relocs = 0; 1274 ret->fn_stub = NULL; 1275 ret->call_stub = NULL; 1276 ret->call_fp_stub = NULL; 1277 ret->global_got_area = GGA_NONE; 1278 ret->got_only_for_calls = TRUE; 1279 ret->readonly_reloc = FALSE; 1280 ret->has_static_relocs = FALSE; 1281 ret->no_fn_stub = FALSE; 1282 ret->need_fn_stub = FALSE; 1283 ret->has_nonpic_branches = FALSE; 1284 ret->needs_lazy_stub = FALSE; 1285 ret->use_plt_entry = FALSE; 1286 } 1287 1288 return (struct bfd_hash_entry *) ret; 1289 } 1290 1291 /* Allocate MIPS ELF private object data. */ 1292 1293 bfd_boolean 1294 _bfd_mips_elf_mkobject (bfd *abfd) 1295 { 1296 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata), 1297 MIPS_ELF_DATA); 1298 } 1299 1300 bfd_boolean 1301 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec) 1302 { 1303 if (!sec->used_by_bfd) 1304 { 1305 struct _mips_elf_section_data *sdata; 1306 bfd_size_type amt = sizeof (*sdata); 1307 1308 sdata = bfd_zalloc (abfd, amt); 1309 if (sdata == NULL) 1310 return FALSE; 1311 sec->used_by_bfd = sdata; 1312 } 1313 1314 return _bfd_elf_new_section_hook (abfd, sec); 1315 } 1316 1317 /* Read ECOFF debugging information from a .mdebug section into a 1318 ecoff_debug_info structure. */ 1319 1320 bfd_boolean 1321 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section, 1322 struct ecoff_debug_info *debug) 1323 { 1324 HDRR *symhdr; 1325 const struct ecoff_debug_swap *swap; 1326 char *ext_hdr; 1327 1328 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; 1329 memset (debug, 0, sizeof (*debug)); 1330 1331 ext_hdr = bfd_malloc (swap->external_hdr_size); 1332 if (ext_hdr == NULL && swap->external_hdr_size != 0) 1333 goto error_return; 1334 1335 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0, 1336 swap->external_hdr_size)) 1337 goto error_return; 1338 1339 symhdr = &debug->symbolic_header; 1340 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr); 1341 1342 /* The symbolic header contains absolute file offsets and sizes to 1343 read. */ 1344 #define READ(ptr, offset, count, size, type) \ 1345 if (symhdr->count == 0) \ 1346 debug->ptr = NULL; \ 1347 else \ 1348 { \ 1349 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \ 1350 debug->ptr = bfd_malloc (amt); \ 1351 if (debug->ptr == NULL) \ 1352 goto error_return; \ 1353 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \ 1354 || bfd_bread (debug->ptr, amt, abfd) != amt) \ 1355 goto error_return; \ 1356 } 1357 1358 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *); 1359 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *); 1360 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *); 1361 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *); 1362 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *); 1363 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext), 1364 union aux_ext *); 1365 READ (ss, cbSsOffset, issMax, sizeof (char), char *); 1366 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *); 1367 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *); 1368 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *); 1369 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *); 1370 #undef READ 1371 1372 debug->fdr = NULL; 1373 1374 return TRUE; 1375 1376 error_return: 1377 if (ext_hdr != NULL) 1378 free (ext_hdr); 1379 if (debug->line != NULL) 1380 free (debug->line); 1381 if (debug->external_dnr != NULL) 1382 free (debug->external_dnr); 1383 if (debug->external_pdr != NULL) 1384 free (debug->external_pdr); 1385 if (debug->external_sym != NULL) 1386 free (debug->external_sym); 1387 if (debug->external_opt != NULL) 1388 free (debug->external_opt); 1389 if (debug->external_aux != NULL) 1390 free (debug->external_aux); 1391 if (debug->ss != NULL) 1392 free (debug->ss); 1393 if (debug->ssext != NULL) 1394 free (debug->ssext); 1395 if (debug->external_fdr != NULL) 1396 free (debug->external_fdr); 1397 if (debug->external_rfd != NULL) 1398 free (debug->external_rfd); 1399 if (debug->external_ext != NULL) 1400 free (debug->external_ext); 1401 return FALSE; 1402 } 1403 1404 /* Swap RPDR (runtime procedure table entry) for output. */ 1405 1406 static void 1407 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex) 1408 { 1409 H_PUT_S32 (abfd, in->adr, ex->p_adr); 1410 H_PUT_32 (abfd, in->regmask, ex->p_regmask); 1411 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset); 1412 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask); 1413 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset); 1414 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset); 1415 1416 H_PUT_16 (abfd, in->framereg, ex->p_framereg); 1417 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg); 1418 1419 H_PUT_32 (abfd, in->irpss, ex->p_irpss); 1420 } 1421 1422 /* Create a runtime procedure table from the .mdebug section. */ 1423 1424 static bfd_boolean 1425 mips_elf_create_procedure_table (void *handle, bfd *abfd, 1426 struct bfd_link_info *info, asection *s, 1427 struct ecoff_debug_info *debug) 1428 { 1429 const struct ecoff_debug_swap *swap; 1430 HDRR *hdr = &debug->symbolic_header; 1431 RPDR *rpdr, *rp; 1432 struct rpdr_ext *erp; 1433 void *rtproc; 1434 struct pdr_ext *epdr; 1435 struct sym_ext *esym; 1436 char *ss, **sv; 1437 char *str; 1438 bfd_size_type size; 1439 bfd_size_type count; 1440 unsigned long sindex; 1441 unsigned long i; 1442 PDR pdr; 1443 SYMR sym; 1444 const char *no_name_func = _("static procedure (no name)"); 1445 1446 epdr = NULL; 1447 rpdr = NULL; 1448 esym = NULL; 1449 ss = NULL; 1450 sv = NULL; 1451 1452 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; 1453 1454 sindex = strlen (no_name_func) + 1; 1455 count = hdr->ipdMax; 1456 if (count > 0) 1457 { 1458 size = swap->external_pdr_size; 1459 1460 epdr = bfd_malloc (size * count); 1461 if (epdr == NULL) 1462 goto error_return; 1463 1464 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr)) 1465 goto error_return; 1466 1467 size = sizeof (RPDR); 1468 rp = rpdr = bfd_malloc (size * count); 1469 if (rpdr == NULL) 1470 goto error_return; 1471 1472 size = sizeof (char *); 1473 sv = bfd_malloc (size * count); 1474 if (sv == NULL) 1475 goto error_return; 1476 1477 count = hdr->isymMax; 1478 size = swap->external_sym_size; 1479 esym = bfd_malloc (size * count); 1480 if (esym == NULL) 1481 goto error_return; 1482 1483 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym)) 1484 goto error_return; 1485 1486 count = hdr->issMax; 1487 ss = bfd_malloc (count); 1488 if (ss == NULL) 1489 goto error_return; 1490 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss)) 1491 goto error_return; 1492 1493 count = hdr->ipdMax; 1494 for (i = 0; i < (unsigned long) count; i++, rp++) 1495 { 1496 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr); 1497 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym); 1498 rp->adr = sym.value; 1499 rp->regmask = pdr.regmask; 1500 rp->regoffset = pdr.regoffset; 1501 rp->fregmask = pdr.fregmask; 1502 rp->fregoffset = pdr.fregoffset; 1503 rp->frameoffset = pdr.frameoffset; 1504 rp->framereg = pdr.framereg; 1505 rp->pcreg = pdr.pcreg; 1506 rp->irpss = sindex; 1507 sv[i] = ss + sym.iss; 1508 sindex += strlen (sv[i]) + 1; 1509 } 1510 } 1511 1512 size = sizeof (struct rpdr_ext) * (count + 2) + sindex; 1513 size = BFD_ALIGN (size, 16); 1514 rtproc = bfd_alloc (abfd, size); 1515 if (rtproc == NULL) 1516 { 1517 mips_elf_hash_table (info)->procedure_count = 0; 1518 goto error_return; 1519 } 1520 1521 mips_elf_hash_table (info)->procedure_count = count + 2; 1522 1523 erp = rtproc; 1524 memset (erp, 0, sizeof (struct rpdr_ext)); 1525 erp++; 1526 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2); 1527 strcpy (str, no_name_func); 1528 str += strlen (no_name_func) + 1; 1529 for (i = 0; i < count; i++) 1530 { 1531 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i); 1532 strcpy (str, sv[i]); 1533 str += strlen (sv[i]) + 1; 1534 } 1535 H_PUT_S32 (abfd, -1, (erp + count)->p_adr); 1536 1537 /* Set the size and contents of .rtproc section. */ 1538 s->size = size; 1539 s->contents = rtproc; 1540 1541 /* Skip this section later on (I don't think this currently 1542 matters, but someday it might). */ 1543 s->map_head.link_order = NULL; 1544 1545 if (epdr != NULL) 1546 free (epdr); 1547 if (rpdr != NULL) 1548 free (rpdr); 1549 if (esym != NULL) 1550 free (esym); 1551 if (ss != NULL) 1552 free (ss); 1553 if (sv != NULL) 1554 free (sv); 1555 1556 return TRUE; 1557 1558 error_return: 1559 if (epdr != NULL) 1560 free (epdr); 1561 if (rpdr != NULL) 1562 free (rpdr); 1563 if (esym != NULL) 1564 free (esym); 1565 if (ss != NULL) 1566 free (ss); 1567 if (sv != NULL) 1568 free (sv); 1569 return FALSE; 1570 } 1571 1572 /* We're going to create a stub for H. Create a symbol for the stub's 1573 value and size, to help make the disassembly easier to read. */ 1574 1575 static bfd_boolean 1576 mips_elf_create_stub_symbol (struct bfd_link_info *info, 1577 struct mips_elf_link_hash_entry *h, 1578 const char *prefix, asection *s, bfd_vma value, 1579 bfd_vma size) 1580 { 1581 struct bfd_link_hash_entry *bh; 1582 struct elf_link_hash_entry *elfh; 1583 char *name; 1584 bfd_boolean res; 1585 1586 if (ELF_ST_IS_MICROMIPS (h->root.other)) 1587 value |= 1; 1588 1589 /* Create a new symbol. */ 1590 name = concat (prefix, h->root.root.root.string, NULL); 1591 bh = NULL; 1592 res = _bfd_generic_link_add_one_symbol (info, s->owner, name, 1593 BSF_LOCAL, s, value, NULL, 1594 TRUE, FALSE, &bh); 1595 free (name); 1596 if (! res) 1597 return FALSE; 1598 1599 /* Make it a local function. */ 1600 elfh = (struct elf_link_hash_entry *) bh; 1601 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC); 1602 elfh->size = size; 1603 elfh->forced_local = 1; 1604 return TRUE; 1605 } 1606 1607 /* We're about to redefine H. Create a symbol to represent H's 1608 current value and size, to help make the disassembly easier 1609 to read. */ 1610 1611 static bfd_boolean 1612 mips_elf_create_shadow_symbol (struct bfd_link_info *info, 1613 struct mips_elf_link_hash_entry *h, 1614 const char *prefix) 1615 { 1616 struct bfd_link_hash_entry *bh; 1617 struct elf_link_hash_entry *elfh; 1618 char *name; 1619 asection *s; 1620 bfd_vma value; 1621 bfd_boolean res; 1622 1623 /* Read the symbol's value. */ 1624 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined 1625 || h->root.root.type == bfd_link_hash_defweak); 1626 s = h->root.root.u.def.section; 1627 value = h->root.root.u.def.value; 1628 1629 /* Create a new symbol. */ 1630 name = concat (prefix, h->root.root.root.string, NULL); 1631 bh = NULL; 1632 res = _bfd_generic_link_add_one_symbol (info, s->owner, name, 1633 BSF_LOCAL, s, value, NULL, 1634 TRUE, FALSE, &bh); 1635 free (name); 1636 if (! res) 1637 return FALSE; 1638 1639 /* Make it local and copy the other attributes from H. */ 1640 elfh = (struct elf_link_hash_entry *) bh; 1641 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type)); 1642 elfh->other = h->root.other; 1643 elfh->size = h->root.size; 1644 elfh->forced_local = 1; 1645 return TRUE; 1646 } 1647 1648 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16 1649 function rather than to a hard-float stub. */ 1650 1651 static bfd_boolean 1652 section_allows_mips16_refs_p (asection *section) 1653 { 1654 const char *name; 1655 1656 name = bfd_get_section_name (section->owner, section); 1657 return (FN_STUB_P (name) 1658 || CALL_STUB_P (name) 1659 || CALL_FP_STUB_P (name) 1660 || strcmp (name, ".pdr") == 0); 1661 } 1662 1663 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16 1664 stub section of some kind. Return the R_SYMNDX of the target 1665 function, or 0 if we can't decide which function that is. */ 1666 1667 static unsigned long 1668 mips16_stub_symndx (const struct elf_backend_data *bed, 1669 asection *sec ATTRIBUTE_UNUSED, 1670 const Elf_Internal_Rela *relocs, 1671 const Elf_Internal_Rela *relend) 1672 { 1673 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel; 1674 const Elf_Internal_Rela *rel; 1675 1676 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent 1677 one in a compound relocation. */ 1678 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel) 1679 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE) 1680 return ELF_R_SYM (sec->owner, rel->r_info); 1681 1682 /* Otherwise trust the first relocation, whatever its kind. This is 1683 the traditional behavior. */ 1684 if (relocs < relend) 1685 return ELF_R_SYM (sec->owner, relocs->r_info); 1686 1687 return 0; 1688 } 1689 1690 /* Check the mips16 stubs for a particular symbol, and see if we can 1691 discard them. */ 1692 1693 static void 1694 mips_elf_check_mips16_stubs (struct bfd_link_info *info, 1695 struct mips_elf_link_hash_entry *h) 1696 { 1697 /* Dynamic symbols must use the standard call interface, in case other 1698 objects try to call them. */ 1699 if (h->fn_stub != NULL 1700 && h->root.dynindx != -1) 1701 { 1702 mips_elf_create_shadow_symbol (info, h, ".mips16."); 1703 h->need_fn_stub = TRUE; 1704 } 1705 1706 if (h->fn_stub != NULL 1707 && ! h->need_fn_stub) 1708 { 1709 /* We don't need the fn_stub; the only references to this symbol 1710 are 16 bit calls. Clobber the size to 0 to prevent it from 1711 being included in the link. */ 1712 h->fn_stub->size = 0; 1713 h->fn_stub->flags &= ~SEC_RELOC; 1714 h->fn_stub->reloc_count = 0; 1715 h->fn_stub->flags |= SEC_EXCLUDE; 1716 h->fn_stub->output_section = bfd_abs_section_ptr; 1717 } 1718 1719 if (h->call_stub != NULL 1720 && ELF_ST_IS_MIPS16 (h->root.other)) 1721 { 1722 /* We don't need the call_stub; this is a 16 bit function, so 1723 calls from other 16 bit functions are OK. Clobber the size 1724 to 0 to prevent it from being included in the link. */ 1725 h->call_stub->size = 0; 1726 h->call_stub->flags &= ~SEC_RELOC; 1727 h->call_stub->reloc_count = 0; 1728 h->call_stub->flags |= SEC_EXCLUDE; 1729 h->call_stub->output_section = bfd_abs_section_ptr; 1730 } 1731 1732 if (h->call_fp_stub != NULL 1733 && ELF_ST_IS_MIPS16 (h->root.other)) 1734 { 1735 /* We don't need the call_stub; this is a 16 bit function, so 1736 calls from other 16 bit functions are OK. Clobber the size 1737 to 0 to prevent it from being included in the link. */ 1738 h->call_fp_stub->size = 0; 1739 h->call_fp_stub->flags &= ~SEC_RELOC; 1740 h->call_fp_stub->reloc_count = 0; 1741 h->call_fp_stub->flags |= SEC_EXCLUDE; 1742 h->call_fp_stub->output_section = bfd_abs_section_ptr; 1743 } 1744 } 1745 1746 /* Hashtable callbacks for mips_elf_la25_stubs. */ 1747 1748 static hashval_t 1749 mips_elf_la25_stub_hash (const void *entry_) 1750 { 1751 const struct mips_elf_la25_stub *entry; 1752 1753 entry = (struct mips_elf_la25_stub *) entry_; 1754 return entry->h->root.root.u.def.section->id 1755 + entry->h->root.root.u.def.value; 1756 } 1757 1758 static int 1759 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_) 1760 { 1761 const struct mips_elf_la25_stub *entry1, *entry2; 1762 1763 entry1 = (struct mips_elf_la25_stub *) entry1_; 1764 entry2 = (struct mips_elf_la25_stub *) entry2_; 1765 return ((entry1->h->root.root.u.def.section 1766 == entry2->h->root.root.u.def.section) 1767 && (entry1->h->root.root.u.def.value 1768 == entry2->h->root.root.u.def.value)); 1769 } 1770 1771 /* Called by the linker to set up the la25 stub-creation code. FN is 1772 the linker's implementation of add_stub_function. Return true on 1773 success. */ 1774 1775 bfd_boolean 1776 _bfd_mips_elf_init_stubs (struct bfd_link_info *info, 1777 asection *(*fn) (const char *, asection *, 1778 asection *)) 1779 { 1780 struct mips_elf_link_hash_table *htab; 1781 1782 htab = mips_elf_hash_table (info); 1783 if (htab == NULL) 1784 return FALSE; 1785 1786 htab->add_stub_section = fn; 1787 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash, 1788 mips_elf_la25_stub_eq, NULL); 1789 if (htab->la25_stubs == NULL) 1790 return FALSE; 1791 1792 return TRUE; 1793 } 1794 1795 /* Return true if H is a locally-defined PIC function, in the sense 1796 that it or its fn_stub might need $25 to be valid on entry. 1797 Note that MIPS16 functions set up $gp using PC-relative instructions, 1798 so they themselves never need $25 to be valid. Only non-MIPS16 1799 entry points are of interest here. */ 1800 1801 static bfd_boolean 1802 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h) 1803 { 1804 return ((h->root.root.type == bfd_link_hash_defined 1805 || h->root.root.type == bfd_link_hash_defweak) 1806 && h->root.def_regular 1807 && !bfd_is_abs_section (h->root.root.u.def.section) 1808 && (!ELF_ST_IS_MIPS16 (h->root.other) 1809 || (h->fn_stub && h->need_fn_stub)) 1810 && (PIC_OBJECT_P (h->root.root.u.def.section->owner) 1811 || ELF_ST_IS_MIPS_PIC (h->root.other))); 1812 } 1813 1814 /* Set *SEC to the input section that contains the target of STUB. 1815 Return the offset of the target from the start of that section. */ 1816 1817 static bfd_vma 1818 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub, 1819 asection **sec) 1820 { 1821 if (ELF_ST_IS_MIPS16 (stub->h->root.other)) 1822 { 1823 BFD_ASSERT (stub->h->need_fn_stub); 1824 *sec = stub->h->fn_stub; 1825 return 0; 1826 } 1827 else 1828 { 1829 *sec = stub->h->root.root.u.def.section; 1830 return stub->h->root.root.u.def.value; 1831 } 1832 } 1833 1834 /* STUB describes an la25 stub that we have decided to implement 1835 by inserting an LUI/ADDIU pair before the target function. 1836 Create the section and redirect the function symbol to it. */ 1837 1838 static bfd_boolean 1839 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub, 1840 struct bfd_link_info *info) 1841 { 1842 struct mips_elf_link_hash_table *htab; 1843 char *name; 1844 asection *s, *input_section; 1845 unsigned int align; 1846 1847 htab = mips_elf_hash_table (info); 1848 if (htab == NULL) 1849 return FALSE; 1850 1851 /* Create a unique name for the new section. */ 1852 name = bfd_malloc (11 + sizeof (".text.stub.")); 1853 if (name == NULL) 1854 return FALSE; 1855 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs)); 1856 1857 /* Create the section. */ 1858 mips_elf_get_la25_target (stub, &input_section); 1859 s = htab->add_stub_section (name, input_section, 1860 input_section->output_section); 1861 if (s == NULL) 1862 return FALSE; 1863 1864 /* Make sure that any padding goes before the stub. */ 1865 align = input_section->alignment_power; 1866 if (!bfd_set_section_alignment (s->owner, s, align)) 1867 return FALSE; 1868 if (align > 3) 1869 s->size = (1 << align) - 8; 1870 1871 /* Create a symbol for the stub. */ 1872 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8); 1873 stub->stub_section = s; 1874 stub->offset = s->size; 1875 1876 /* Allocate room for it. */ 1877 s->size += 8; 1878 return TRUE; 1879 } 1880 1881 /* STUB describes an la25 stub that we have decided to implement 1882 with a separate trampoline. Allocate room for it and redirect 1883 the function symbol to it. */ 1884 1885 static bfd_boolean 1886 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub, 1887 struct bfd_link_info *info) 1888 { 1889 struct mips_elf_link_hash_table *htab; 1890 asection *s; 1891 1892 htab = mips_elf_hash_table (info); 1893 if (htab == NULL) 1894 return FALSE; 1895 1896 /* Create a trampoline section, if we haven't already. */ 1897 s = htab->strampoline; 1898 if (s == NULL) 1899 { 1900 asection *input_section = stub->h->root.root.u.def.section; 1901 s = htab->add_stub_section (".text", NULL, 1902 input_section->output_section); 1903 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4)) 1904 return FALSE; 1905 htab->strampoline = s; 1906 } 1907 1908 /* Create a symbol for the stub. */ 1909 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16); 1910 stub->stub_section = s; 1911 stub->offset = s->size; 1912 1913 /* Allocate room for it. */ 1914 s->size += 16; 1915 return TRUE; 1916 } 1917 1918 /* H describes a symbol that needs an la25 stub. Make sure that an 1919 appropriate stub exists and point H at it. */ 1920 1921 static bfd_boolean 1922 mips_elf_add_la25_stub (struct bfd_link_info *info, 1923 struct mips_elf_link_hash_entry *h) 1924 { 1925 struct mips_elf_link_hash_table *htab; 1926 struct mips_elf_la25_stub search, *stub; 1927 bfd_boolean use_trampoline_p; 1928 asection *s; 1929 bfd_vma value; 1930 void **slot; 1931 1932 /* Describe the stub we want. */ 1933 search.stub_section = NULL; 1934 search.offset = 0; 1935 search.h = h; 1936 1937 /* See if we've already created an equivalent stub. */ 1938 htab = mips_elf_hash_table (info); 1939 if (htab == NULL) 1940 return FALSE; 1941 1942 slot = htab_find_slot (htab->la25_stubs, &search, INSERT); 1943 if (slot == NULL) 1944 return FALSE; 1945 1946 stub = (struct mips_elf_la25_stub *) *slot; 1947 if (stub != NULL) 1948 { 1949 /* We can reuse the existing stub. */ 1950 h->la25_stub = stub; 1951 return TRUE; 1952 } 1953 1954 /* Create a permanent copy of ENTRY and add it to the hash table. */ 1955 stub = bfd_malloc (sizeof (search)); 1956 if (stub == NULL) 1957 return FALSE; 1958 *stub = search; 1959 *slot = stub; 1960 1961 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning 1962 of the section and if we would need no more than 2 nops. */ 1963 value = mips_elf_get_la25_target (stub, &s); 1964 use_trampoline_p = (value != 0 || s->alignment_power > 4); 1965 1966 h->la25_stub = stub; 1967 return (use_trampoline_p 1968 ? mips_elf_add_la25_trampoline (stub, info) 1969 : mips_elf_add_la25_intro (stub, info)); 1970 } 1971 1972 /* A mips_elf_link_hash_traverse callback that is called before sizing 1973 sections. DATA points to a mips_htab_traverse_info structure. */ 1974 1975 static bfd_boolean 1976 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data) 1977 { 1978 struct mips_htab_traverse_info *hti; 1979 1980 hti = (struct mips_htab_traverse_info *) data; 1981 if (!bfd_link_relocatable (hti->info)) 1982 mips_elf_check_mips16_stubs (hti->info, h); 1983 1984 if (mips_elf_local_pic_function_p (h)) 1985 { 1986 /* PR 12845: If H is in a section that has been garbage 1987 collected it will have its output section set to *ABS*. */ 1988 if (bfd_is_abs_section (h->root.root.u.def.section->output_section)) 1989 return TRUE; 1990 1991 /* H is a function that might need $25 to be valid on entry. 1992 If we're creating a non-PIC relocatable object, mark H as 1993 being PIC. If we're creating a non-relocatable object with 1994 non-PIC branches and jumps to H, make sure that H has an la25 1995 stub. */ 1996 if (bfd_link_relocatable (hti->info)) 1997 { 1998 if (!PIC_OBJECT_P (hti->output_bfd)) 1999 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other); 2000 } 2001 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h)) 2002 { 2003 hti->error = TRUE; 2004 return FALSE; 2005 } 2006 } 2007 return TRUE; 2008 } 2009 2010 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions. 2011 Most mips16 instructions are 16 bits, but these instructions 2012 are 32 bits. 2013 2014 The format of these instructions is: 2015 2016 +--------------+--------------------------------+ 2017 | JALX | X| Imm 20:16 | Imm 25:21 | 2018 +--------------+--------------------------------+ 2019 | Immediate 15:0 | 2020 +-----------------------------------------------+ 2021 2022 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx. 2023 Note that the immediate value in the first word is swapped. 2024 2025 When producing a relocatable object file, R_MIPS16_26 is 2026 handled mostly like R_MIPS_26. In particular, the addend is 2027 stored as a straight 26-bit value in a 32-bit instruction. 2028 (gas makes life simpler for itself by never adjusting a 2029 R_MIPS16_26 reloc to be against a section, so the addend is 2030 always zero). However, the 32 bit instruction is stored as 2 2031 16-bit values, rather than a single 32-bit value. In a 2032 big-endian file, the result is the same; in a little-endian 2033 file, the two 16-bit halves of the 32 bit value are swapped. 2034 This is so that a disassembler can recognize the jal 2035 instruction. 2036 2037 When doing a final link, R_MIPS16_26 is treated as a 32 bit 2038 instruction stored as two 16-bit values. The addend A is the 2039 contents of the targ26 field. The calculation is the same as 2040 R_MIPS_26. When storing the calculated value, reorder the 2041 immediate value as shown above, and don't forget to store the 2042 value as two 16-bit values. 2043 2044 To put it in MIPS ABI terms, the relocation field is T-targ26-16, 2045 defined as 2046 2047 big-endian: 2048 +--------+----------------------+ 2049 | | | 2050 | | targ26-16 | 2051 |31 26|25 0| 2052 +--------+----------------------+ 2053 2054 little-endian: 2055 +----------+------+-------------+ 2056 | | | | 2057 | sub1 | | sub2 | 2058 |0 9|10 15|16 31| 2059 +----------+--------------------+ 2060 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is 2061 ((sub1 << 16) | sub2)). 2062 2063 When producing a relocatable object file, the calculation is 2064 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2) 2065 When producing a fully linked file, the calculation is 2066 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2) 2067 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) 2068 2069 The table below lists the other MIPS16 instruction relocations. 2070 Each one is calculated in the same way as the non-MIPS16 relocation 2071 given on the right, but using the extended MIPS16 layout of 16-bit 2072 immediate fields: 2073 2074 R_MIPS16_GPREL R_MIPS_GPREL16 2075 R_MIPS16_GOT16 R_MIPS_GOT16 2076 R_MIPS16_CALL16 R_MIPS_CALL16 2077 R_MIPS16_HI16 R_MIPS_HI16 2078 R_MIPS16_LO16 R_MIPS_LO16 2079 2080 A typical instruction will have a format like this: 2081 2082 +--------------+--------------------------------+ 2083 | EXTEND | Imm 10:5 | Imm 15:11 | 2084 +--------------+--------------------------------+ 2085 | Major | rx | ry | Imm 4:0 | 2086 +--------------+--------------------------------+ 2087 2088 EXTEND is the five bit value 11110. Major is the instruction 2089 opcode. 2090 2091 All we need to do here is shuffle the bits appropriately. 2092 As above, the two 16-bit halves must be swapped on a 2093 little-endian system. 2094 2095 Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the 2096 relocatable field is shifted by 1 rather than 2 and the same bit 2097 shuffling is done as with the relocations above. */ 2098 2099 static inline bfd_boolean 2100 mips16_reloc_p (int r_type) 2101 { 2102 switch (r_type) 2103 { 2104 case R_MIPS16_26: 2105 case R_MIPS16_GPREL: 2106 case R_MIPS16_GOT16: 2107 case R_MIPS16_CALL16: 2108 case R_MIPS16_HI16: 2109 case R_MIPS16_LO16: 2110 case R_MIPS16_TLS_GD: 2111 case R_MIPS16_TLS_LDM: 2112 case R_MIPS16_TLS_DTPREL_HI16: 2113 case R_MIPS16_TLS_DTPREL_LO16: 2114 case R_MIPS16_TLS_GOTTPREL: 2115 case R_MIPS16_TLS_TPREL_HI16: 2116 case R_MIPS16_TLS_TPREL_LO16: 2117 case R_MIPS16_PC16_S1: 2118 return TRUE; 2119 2120 default: 2121 return FALSE; 2122 } 2123 } 2124 2125 /* Check if a microMIPS reloc. */ 2126 2127 static inline bfd_boolean 2128 micromips_reloc_p (unsigned int r_type) 2129 { 2130 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max; 2131 } 2132 2133 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped 2134 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1 2135 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */ 2136 2137 static inline bfd_boolean 2138 micromips_reloc_shuffle_p (unsigned int r_type) 2139 { 2140 return (micromips_reloc_p (r_type) 2141 && r_type != R_MICROMIPS_PC7_S1 2142 && r_type != R_MICROMIPS_PC10_S1); 2143 } 2144 2145 static inline bfd_boolean 2146 got16_reloc_p (int r_type) 2147 { 2148 return (r_type == R_MIPS_GOT16 2149 || r_type == R_MIPS16_GOT16 2150 || r_type == R_MICROMIPS_GOT16); 2151 } 2152 2153 static inline bfd_boolean 2154 call16_reloc_p (int r_type) 2155 { 2156 return (r_type == R_MIPS_CALL16 2157 || r_type == R_MIPS16_CALL16 2158 || r_type == R_MICROMIPS_CALL16); 2159 } 2160 2161 static inline bfd_boolean 2162 got_disp_reloc_p (unsigned int r_type) 2163 { 2164 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP; 2165 } 2166 2167 static inline bfd_boolean 2168 got_page_reloc_p (unsigned int r_type) 2169 { 2170 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE; 2171 } 2172 2173 static inline bfd_boolean 2174 got_lo16_reloc_p (unsigned int r_type) 2175 { 2176 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16; 2177 } 2178 2179 static inline bfd_boolean 2180 call_hi16_reloc_p (unsigned int r_type) 2181 { 2182 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16; 2183 } 2184 2185 static inline bfd_boolean 2186 call_lo16_reloc_p (unsigned int r_type) 2187 { 2188 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16; 2189 } 2190 2191 static inline bfd_boolean 2192 hi16_reloc_p (int r_type) 2193 { 2194 return (r_type == R_MIPS_HI16 2195 || r_type == R_MIPS16_HI16 2196 || r_type == R_MICROMIPS_HI16 2197 || r_type == R_MIPS_PCHI16); 2198 } 2199 2200 static inline bfd_boolean 2201 lo16_reloc_p (int r_type) 2202 { 2203 return (r_type == R_MIPS_LO16 2204 || r_type == R_MIPS16_LO16 2205 || r_type == R_MICROMIPS_LO16 2206 || r_type == R_MIPS_PCLO16); 2207 } 2208 2209 static inline bfd_boolean 2210 mips16_call_reloc_p (int r_type) 2211 { 2212 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16; 2213 } 2214 2215 static inline bfd_boolean 2216 jal_reloc_p (int r_type) 2217 { 2218 return (r_type == R_MIPS_26 2219 || r_type == R_MIPS16_26 2220 || r_type == R_MICROMIPS_26_S1); 2221 } 2222 2223 static inline bfd_boolean 2224 b_reloc_p (int r_type) 2225 { 2226 return (r_type == R_MIPS_PC26_S2 2227 || r_type == R_MIPS_PC21_S2 2228 || r_type == R_MIPS_PC16 2229 || r_type == R_MIPS_GNU_REL16_S2 2230 || r_type == R_MIPS16_PC16_S1); 2231 } 2232 2233 static inline bfd_boolean 2234 aligned_pcrel_reloc_p (int r_type) 2235 { 2236 return (r_type == R_MIPS_PC18_S3 2237 || r_type == R_MIPS_PC19_S2); 2238 } 2239 2240 static inline bfd_boolean 2241 mips16_branch_reloc_p (int r_type) 2242 { 2243 return (r_type == R_MIPS16_26 2244 || r_type == R_MIPS16_PC16_S1); 2245 } 2246 2247 static inline bfd_boolean 2248 micromips_branch_reloc_p (int r_type) 2249 { 2250 return (r_type == R_MICROMIPS_26_S1 2251 || r_type == R_MICROMIPS_PC16_S1 2252 || r_type == R_MICROMIPS_PC10_S1 2253 || r_type == R_MICROMIPS_PC7_S1); 2254 } 2255 2256 static inline bfd_boolean 2257 tls_gd_reloc_p (unsigned int r_type) 2258 { 2259 return (r_type == R_MIPS_TLS_GD 2260 || r_type == R_MIPS16_TLS_GD 2261 || r_type == R_MICROMIPS_TLS_GD); 2262 } 2263 2264 static inline bfd_boolean 2265 tls_ldm_reloc_p (unsigned int r_type) 2266 { 2267 return (r_type == R_MIPS_TLS_LDM 2268 || r_type == R_MIPS16_TLS_LDM 2269 || r_type == R_MICROMIPS_TLS_LDM); 2270 } 2271 2272 static inline bfd_boolean 2273 tls_gottprel_reloc_p (unsigned int r_type) 2274 { 2275 return (r_type == R_MIPS_TLS_GOTTPREL 2276 || r_type == R_MIPS16_TLS_GOTTPREL 2277 || r_type == R_MICROMIPS_TLS_GOTTPREL); 2278 } 2279 2280 void 2281 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type, 2282 bfd_boolean jal_shuffle, bfd_byte *data) 2283 { 2284 bfd_vma first, second, val; 2285 2286 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type)) 2287 return; 2288 2289 /* Pick up the first and second halfwords of the instruction. */ 2290 first = bfd_get_16 (abfd, data); 2291 second = bfd_get_16 (abfd, data + 2); 2292 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle)) 2293 val = first << 16 | second; 2294 else if (r_type != R_MIPS16_26) 2295 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11) 2296 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f)); 2297 else 2298 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11) 2299 | ((first & 0x1f) << 21) | second); 2300 bfd_put_32 (abfd, val, data); 2301 } 2302 2303 void 2304 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type, 2305 bfd_boolean jal_shuffle, bfd_byte *data) 2306 { 2307 bfd_vma first, second, val; 2308 2309 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type)) 2310 return; 2311 2312 val = bfd_get_32 (abfd, data); 2313 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle)) 2314 { 2315 second = val & 0xffff; 2316 first = val >> 16; 2317 } 2318 else if (r_type != R_MIPS16_26) 2319 { 2320 second = ((val >> 11) & 0xffe0) | (val & 0x1f); 2321 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0); 2322 } 2323 else 2324 { 2325 second = val & 0xffff; 2326 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0) 2327 | ((val >> 21) & 0x1f); 2328 } 2329 bfd_put_16 (abfd, second, data + 2); 2330 bfd_put_16 (abfd, first, data); 2331 } 2332 2333 bfd_reloc_status_type 2334 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol, 2335 arelent *reloc_entry, asection *input_section, 2336 bfd_boolean relocatable, void *data, bfd_vma gp) 2337 { 2338 bfd_vma relocation; 2339 bfd_signed_vma val; 2340 bfd_reloc_status_type status; 2341 2342 if (bfd_is_com_section (symbol->section)) 2343 relocation = 0; 2344 else 2345 relocation = symbol->value; 2346 2347 relocation += symbol->section->output_section->vma; 2348 relocation += symbol->section->output_offset; 2349 2350 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) 2351 return bfd_reloc_outofrange; 2352 2353 /* Set val to the offset into the section or symbol. */ 2354 val = reloc_entry->addend; 2355 2356 _bfd_mips_elf_sign_extend (val, 16); 2357 2358 /* Adjust val for the final section location and GP value. If we 2359 are producing relocatable output, we don't want to do this for 2360 an external symbol. */ 2361 if (! relocatable 2362 || (symbol->flags & BSF_SECTION_SYM) != 0) 2363 val += relocation - gp; 2364 2365 if (reloc_entry->howto->partial_inplace) 2366 { 2367 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val, 2368 (bfd_byte *) data 2369 + reloc_entry->address); 2370 if (status != bfd_reloc_ok) 2371 return status; 2372 } 2373 else 2374 reloc_entry->addend = val; 2375 2376 if (relocatable) 2377 reloc_entry->address += input_section->output_offset; 2378 2379 return bfd_reloc_ok; 2380 } 2381 2382 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or 2383 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section 2384 that contains the relocation field and DATA points to the start of 2385 INPUT_SECTION. */ 2386 2387 struct mips_hi16 2388 { 2389 struct mips_hi16 *next; 2390 bfd_byte *data; 2391 asection *input_section; 2392 arelent rel; 2393 }; 2394 2395 /* FIXME: This should not be a static variable. */ 2396 2397 static struct mips_hi16 *mips_hi16_list; 2398 2399 /* A howto special_function for REL *HI16 relocations. We can only 2400 calculate the correct value once we've seen the partnering 2401 *LO16 relocation, so just save the information for later. 2402 2403 The ABI requires that the *LO16 immediately follow the *HI16. 2404 However, as a GNU extension, we permit an arbitrary number of 2405 *HI16s to be associated with a single *LO16. This significantly 2406 simplies the relocation handling in gcc. */ 2407 2408 bfd_reloc_status_type 2409 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry, 2410 asymbol *symbol ATTRIBUTE_UNUSED, void *data, 2411 asection *input_section, bfd *output_bfd, 2412 char **error_message ATTRIBUTE_UNUSED) 2413 { 2414 struct mips_hi16 *n; 2415 2416 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) 2417 return bfd_reloc_outofrange; 2418 2419 n = bfd_malloc (sizeof *n); 2420 if (n == NULL) 2421 return bfd_reloc_outofrange; 2422 2423 n->next = mips_hi16_list; 2424 n->data = data; 2425 n->input_section = input_section; 2426 n->rel = *reloc_entry; 2427 mips_hi16_list = n; 2428 2429 if (output_bfd != NULL) 2430 reloc_entry->address += input_section->output_offset; 2431 2432 return bfd_reloc_ok; 2433 } 2434 2435 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just 2436 like any other 16-bit relocation when applied to global symbols, but is 2437 treated in the same as R_MIPS_HI16 when applied to local symbols. */ 2438 2439 bfd_reloc_status_type 2440 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol, 2441 void *data, asection *input_section, 2442 bfd *output_bfd, char **error_message) 2443 { 2444 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0 2445 || bfd_is_und_section (bfd_get_section (symbol)) 2446 || bfd_is_com_section (bfd_get_section (symbol))) 2447 /* The relocation is against a global symbol. */ 2448 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data, 2449 input_section, output_bfd, 2450 error_message); 2451 2452 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data, 2453 input_section, output_bfd, error_message); 2454 } 2455 2456 /* A howto special_function for REL *LO16 relocations. The *LO16 itself 2457 is a straightforward 16 bit inplace relocation, but we must deal with 2458 any partnering high-part relocations as well. */ 2459 2460 bfd_reloc_status_type 2461 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol, 2462 void *data, asection *input_section, 2463 bfd *output_bfd, char **error_message) 2464 { 2465 bfd_vma vallo; 2466 bfd_byte *location = (bfd_byte *) data + reloc_entry->address; 2467 2468 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) 2469 return bfd_reloc_outofrange; 2470 2471 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE, 2472 location); 2473 vallo = bfd_get_32 (abfd, location); 2474 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE, 2475 location); 2476 2477 while (mips_hi16_list != NULL) 2478 { 2479 bfd_reloc_status_type ret; 2480 struct mips_hi16 *hi; 2481 2482 hi = mips_hi16_list; 2483 2484 /* R_MIPS*_GOT16 relocations are something of a special case. We 2485 want to install the addend in the same way as for a R_MIPS*_HI16 2486 relocation (with a rightshift of 16). However, since GOT16 2487 relocations can also be used with global symbols, their howto 2488 has a rightshift of 0. */ 2489 if (hi->rel.howto->type == R_MIPS_GOT16) 2490 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE); 2491 else if (hi->rel.howto->type == R_MIPS16_GOT16) 2492 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE); 2493 else if (hi->rel.howto->type == R_MICROMIPS_GOT16) 2494 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE); 2495 2496 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any 2497 carry or borrow will induce a change of +1 or -1 in the high part. */ 2498 hi->rel.addend += (vallo + 0x8000) & 0xffff; 2499 2500 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data, 2501 hi->input_section, output_bfd, 2502 error_message); 2503 if (ret != bfd_reloc_ok) 2504 return ret; 2505 2506 mips_hi16_list = hi->next; 2507 free (hi); 2508 } 2509 2510 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data, 2511 input_section, output_bfd, 2512 error_message); 2513 } 2514 2515 /* A generic howto special_function. This calculates and installs the 2516 relocation itself, thus avoiding the oft-discussed problems in 2517 bfd_perform_relocation and bfd_install_relocation. */ 2518 2519 bfd_reloc_status_type 2520 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry, 2521 asymbol *symbol, void *data ATTRIBUTE_UNUSED, 2522 asection *input_section, bfd *output_bfd, 2523 char **error_message ATTRIBUTE_UNUSED) 2524 { 2525 bfd_signed_vma val; 2526 bfd_reloc_status_type status; 2527 bfd_boolean relocatable; 2528 2529 relocatable = (output_bfd != NULL); 2530 2531 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) 2532 return bfd_reloc_outofrange; 2533 2534 /* Build up the field adjustment in VAL. */ 2535 val = 0; 2536 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0) 2537 { 2538 /* Either we're calculating the final field value or we have a 2539 relocation against a section symbol. Add in the section's 2540 offset or address. */ 2541 val += symbol->section->output_section->vma; 2542 val += symbol->section->output_offset; 2543 } 2544 2545 if (!relocatable) 2546 { 2547 /* We're calculating the final field value. Add in the symbol's value 2548 and, if pc-relative, subtract the address of the field itself. */ 2549 val += symbol->value; 2550 if (reloc_entry->howto->pc_relative) 2551 { 2552 val -= input_section->output_section->vma; 2553 val -= input_section->output_offset; 2554 val -= reloc_entry->address; 2555 } 2556 } 2557 2558 /* VAL is now the final adjustment. If we're keeping this relocation 2559 in the output file, and if the relocation uses a separate addend, 2560 we just need to add VAL to that addend. Otherwise we need to add 2561 VAL to the relocation field itself. */ 2562 if (relocatable && !reloc_entry->howto->partial_inplace) 2563 reloc_entry->addend += val; 2564 else 2565 { 2566 bfd_byte *location = (bfd_byte *) data + reloc_entry->address; 2567 2568 /* Add in the separate addend, if any. */ 2569 val += reloc_entry->addend; 2570 2571 /* Add VAL to the relocation field. */ 2572 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE, 2573 location); 2574 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val, 2575 location); 2576 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE, 2577 location); 2578 2579 if (status != bfd_reloc_ok) 2580 return status; 2581 } 2582 2583 if (relocatable) 2584 reloc_entry->address += input_section->output_offset; 2585 2586 return bfd_reloc_ok; 2587 } 2588 2589 /* Swap an entry in a .gptab section. Note that these routines rely 2590 on the equivalence of the two elements of the union. */ 2591 2592 static void 2593 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex, 2594 Elf32_gptab *in) 2595 { 2596 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value); 2597 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes); 2598 } 2599 2600 static void 2601 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in, 2602 Elf32_External_gptab *ex) 2603 { 2604 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value); 2605 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes); 2606 } 2607 2608 static void 2609 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in, 2610 Elf32_External_compact_rel *ex) 2611 { 2612 H_PUT_32 (abfd, in->id1, ex->id1); 2613 H_PUT_32 (abfd, in->num, ex->num); 2614 H_PUT_32 (abfd, in->id2, ex->id2); 2615 H_PUT_32 (abfd, in->offset, ex->offset); 2616 H_PUT_32 (abfd, in->reserved0, ex->reserved0); 2617 H_PUT_32 (abfd, in->reserved1, ex->reserved1); 2618 } 2619 2620 static void 2621 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in, 2622 Elf32_External_crinfo *ex) 2623 { 2624 unsigned long l; 2625 2626 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH) 2627 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH) 2628 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH) 2629 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH)); 2630 H_PUT_32 (abfd, l, ex->info); 2631 H_PUT_32 (abfd, in->konst, ex->konst); 2632 H_PUT_32 (abfd, in->vaddr, ex->vaddr); 2633 } 2634 2635 /* A .reginfo section holds a single Elf32_RegInfo structure. These 2636 routines swap this structure in and out. They are used outside of 2637 BFD, so they are globally visible. */ 2638 2639 void 2640 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex, 2641 Elf32_RegInfo *in) 2642 { 2643 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask); 2644 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]); 2645 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]); 2646 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]); 2647 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]); 2648 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value); 2649 } 2650 2651 void 2652 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in, 2653 Elf32_External_RegInfo *ex) 2654 { 2655 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask); 2656 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]); 2657 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]); 2658 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]); 2659 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]); 2660 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value); 2661 } 2662 2663 /* In the 64 bit ABI, the .MIPS.options section holds register 2664 information in an Elf64_Reginfo structure. These routines swap 2665 them in and out. They are globally visible because they are used 2666 outside of BFD. These routines are here so that gas can call them 2667 without worrying about whether the 64 bit ABI has been included. */ 2668 2669 void 2670 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex, 2671 Elf64_Internal_RegInfo *in) 2672 { 2673 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask); 2674 in->ri_pad = H_GET_32 (abfd, ex->ri_pad); 2675 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]); 2676 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]); 2677 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]); 2678 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]); 2679 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value); 2680 } 2681 2682 void 2683 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in, 2684 Elf64_External_RegInfo *ex) 2685 { 2686 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask); 2687 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad); 2688 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]); 2689 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]); 2690 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]); 2691 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]); 2692 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value); 2693 } 2694 2695 /* Swap in an options header. */ 2696 2697 void 2698 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex, 2699 Elf_Internal_Options *in) 2700 { 2701 in->kind = H_GET_8 (abfd, ex->kind); 2702 in->size = H_GET_8 (abfd, ex->size); 2703 in->section = H_GET_16 (abfd, ex->section); 2704 in->info = H_GET_32 (abfd, ex->info); 2705 } 2706 2707 /* Swap out an options header. */ 2708 2709 void 2710 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in, 2711 Elf_External_Options *ex) 2712 { 2713 H_PUT_8 (abfd, in->kind, ex->kind); 2714 H_PUT_8 (abfd, in->size, ex->size); 2715 H_PUT_16 (abfd, in->section, ex->section); 2716 H_PUT_32 (abfd, in->info, ex->info); 2717 } 2718 2719 /* Swap in an abiflags structure. */ 2720 2721 void 2722 bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd, 2723 const Elf_External_ABIFlags_v0 *ex, 2724 Elf_Internal_ABIFlags_v0 *in) 2725 { 2726 in->version = H_GET_16 (abfd, ex->version); 2727 in->isa_level = H_GET_8 (abfd, ex->isa_level); 2728 in->isa_rev = H_GET_8 (abfd, ex->isa_rev); 2729 in->gpr_size = H_GET_8 (abfd, ex->gpr_size); 2730 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size); 2731 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size); 2732 in->fp_abi = H_GET_8 (abfd, ex->fp_abi); 2733 in->isa_ext = H_GET_32 (abfd, ex->isa_ext); 2734 in->ases = H_GET_32 (abfd, ex->ases); 2735 in->flags1 = H_GET_32 (abfd, ex->flags1); 2736 in->flags2 = H_GET_32 (abfd, ex->flags2); 2737 } 2738 2739 /* Swap out an abiflags structure. */ 2740 2741 void 2742 bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd, 2743 const Elf_Internal_ABIFlags_v0 *in, 2744 Elf_External_ABIFlags_v0 *ex) 2745 { 2746 H_PUT_16 (abfd, in->version, ex->version); 2747 H_PUT_8 (abfd, in->isa_level, ex->isa_level); 2748 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev); 2749 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size); 2750 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size); 2751 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size); 2752 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi); 2753 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext); 2754 H_PUT_32 (abfd, in->ases, ex->ases); 2755 H_PUT_32 (abfd, in->flags1, ex->flags1); 2756 H_PUT_32 (abfd, in->flags2, ex->flags2); 2757 } 2758 2759 /* This function is called via qsort() to sort the dynamic relocation 2760 entries by increasing r_symndx value. */ 2761 2762 static int 2763 sort_dynamic_relocs (const void *arg1, const void *arg2) 2764 { 2765 Elf_Internal_Rela int_reloc1; 2766 Elf_Internal_Rela int_reloc2; 2767 int diff; 2768 2769 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1); 2770 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2); 2771 2772 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info); 2773 if (diff != 0) 2774 return diff; 2775 2776 if (int_reloc1.r_offset < int_reloc2.r_offset) 2777 return -1; 2778 if (int_reloc1.r_offset > int_reloc2.r_offset) 2779 return 1; 2780 return 0; 2781 } 2782 2783 /* Like sort_dynamic_relocs, but used for elf64 relocations. */ 2784 2785 static int 2786 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED, 2787 const void *arg2 ATTRIBUTE_UNUSED) 2788 { 2789 #ifdef BFD64 2790 Elf_Internal_Rela int_reloc1[3]; 2791 Elf_Internal_Rela int_reloc2[3]; 2792 2793 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in) 2794 (reldyn_sorting_bfd, arg1, int_reloc1); 2795 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in) 2796 (reldyn_sorting_bfd, arg2, int_reloc2); 2797 2798 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info)) 2799 return -1; 2800 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info)) 2801 return 1; 2802 2803 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset) 2804 return -1; 2805 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset) 2806 return 1; 2807 return 0; 2808 #else 2809 abort (); 2810 #endif 2811 } 2812 2813 2814 /* This routine is used to write out ECOFF debugging external symbol 2815 information. It is called via mips_elf_link_hash_traverse. The 2816 ECOFF external symbol information must match the ELF external 2817 symbol information. Unfortunately, at this point we don't know 2818 whether a symbol is required by reloc information, so the two 2819 tables may wind up being different. We must sort out the external 2820 symbol information before we can set the final size of the .mdebug 2821 section, and we must set the size of the .mdebug section before we 2822 can relocate any sections, and we can't know which symbols are 2823 required by relocation until we relocate the sections. 2824 Fortunately, it is relatively unlikely that any symbol will be 2825 stripped but required by a reloc. In particular, it can not happen 2826 when generating a final executable. */ 2827 2828 static bfd_boolean 2829 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data) 2830 { 2831 struct extsym_info *einfo = data; 2832 bfd_boolean strip; 2833 asection *sec, *output_section; 2834 2835 if (h->root.indx == -2) 2836 strip = FALSE; 2837 else if ((h->root.def_dynamic 2838 || h->root.ref_dynamic 2839 || h->root.type == bfd_link_hash_new) 2840 && !h->root.def_regular 2841 && !h->root.ref_regular) 2842 strip = TRUE; 2843 else if (einfo->info->strip == strip_all 2844 || (einfo->info->strip == strip_some 2845 && bfd_hash_lookup (einfo->info->keep_hash, 2846 h->root.root.root.string, 2847 FALSE, FALSE) == NULL)) 2848 strip = TRUE; 2849 else 2850 strip = FALSE; 2851 2852 if (strip) 2853 return TRUE; 2854 2855 if (h->esym.ifd == -2) 2856 { 2857 h->esym.jmptbl = 0; 2858 h->esym.cobol_main = 0; 2859 h->esym.weakext = 0; 2860 h->esym.reserved = 0; 2861 h->esym.ifd = ifdNil; 2862 h->esym.asym.value = 0; 2863 h->esym.asym.st = stGlobal; 2864 2865 if (h->root.root.type == bfd_link_hash_undefined 2866 || h->root.root.type == bfd_link_hash_undefweak) 2867 { 2868 const char *name; 2869 2870 /* Use undefined class. Also, set class and type for some 2871 special symbols. */ 2872 name = h->root.root.root.string; 2873 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0 2874 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0) 2875 { 2876 h->esym.asym.sc = scData; 2877 h->esym.asym.st = stLabel; 2878 h->esym.asym.value = 0; 2879 } 2880 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0) 2881 { 2882 h->esym.asym.sc = scAbs; 2883 h->esym.asym.st = stLabel; 2884 h->esym.asym.value = 2885 mips_elf_hash_table (einfo->info)->procedure_count; 2886 } 2887 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd)) 2888 { 2889 h->esym.asym.sc = scAbs; 2890 h->esym.asym.st = stLabel; 2891 h->esym.asym.value = elf_gp (einfo->abfd); 2892 } 2893 else 2894 h->esym.asym.sc = scUndefined; 2895 } 2896 else if (h->root.root.type != bfd_link_hash_defined 2897 && h->root.root.type != bfd_link_hash_defweak) 2898 h->esym.asym.sc = scAbs; 2899 else 2900 { 2901 const char *name; 2902 2903 sec = h->root.root.u.def.section; 2904 output_section = sec->output_section; 2905 2906 /* When making a shared library and symbol h is the one from 2907 the another shared library, OUTPUT_SECTION may be null. */ 2908 if (output_section == NULL) 2909 h->esym.asym.sc = scUndefined; 2910 else 2911 { 2912 name = bfd_section_name (output_section->owner, output_section); 2913 2914 if (strcmp (name, ".text") == 0) 2915 h->esym.asym.sc = scText; 2916 else if (strcmp (name, ".data") == 0) 2917 h->esym.asym.sc = scData; 2918 else if (strcmp (name, ".sdata") == 0) 2919 h->esym.asym.sc = scSData; 2920 else if (strcmp (name, ".rodata") == 0 2921 || strcmp (name, ".rdata") == 0) 2922 h->esym.asym.sc = scRData; 2923 else if (strcmp (name, ".bss") == 0) 2924 h->esym.asym.sc = scBss; 2925 else if (strcmp (name, ".sbss") == 0) 2926 h->esym.asym.sc = scSBss; 2927 else if (strcmp (name, ".init") == 0) 2928 h->esym.asym.sc = scInit; 2929 else if (strcmp (name, ".fini") == 0) 2930 h->esym.asym.sc = scFini; 2931 else 2932 h->esym.asym.sc = scAbs; 2933 } 2934 } 2935 2936 h->esym.asym.reserved = 0; 2937 h->esym.asym.index = indexNil; 2938 } 2939 2940 if (h->root.root.type == bfd_link_hash_common) 2941 h->esym.asym.value = h->root.root.u.c.size; 2942 else if (h->root.root.type == bfd_link_hash_defined 2943 || h->root.root.type == bfd_link_hash_defweak) 2944 { 2945 if (h->esym.asym.sc == scCommon) 2946 h->esym.asym.sc = scBss; 2947 else if (h->esym.asym.sc == scSCommon) 2948 h->esym.asym.sc = scSBss; 2949 2950 sec = h->root.root.u.def.section; 2951 output_section = sec->output_section; 2952 if (output_section != NULL) 2953 h->esym.asym.value = (h->root.root.u.def.value 2954 + sec->output_offset 2955 + output_section->vma); 2956 else 2957 h->esym.asym.value = 0; 2958 } 2959 else 2960 { 2961 struct mips_elf_link_hash_entry *hd = h; 2962 2963 while (hd->root.root.type == bfd_link_hash_indirect) 2964 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link; 2965 2966 if (hd->needs_lazy_stub) 2967 { 2968 BFD_ASSERT (hd->root.plt.plist != NULL); 2969 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE); 2970 /* Set type and value for a symbol with a function stub. */ 2971 h->esym.asym.st = stProc; 2972 sec = hd->root.root.u.def.section; 2973 if (sec == NULL) 2974 h->esym.asym.value = 0; 2975 else 2976 { 2977 output_section = sec->output_section; 2978 if (output_section != NULL) 2979 h->esym.asym.value = (hd->root.plt.plist->stub_offset 2980 + sec->output_offset 2981 + output_section->vma); 2982 else 2983 h->esym.asym.value = 0; 2984 } 2985 } 2986 } 2987 2988 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap, 2989 h->root.root.root.string, 2990 &h->esym)) 2991 { 2992 einfo->failed = TRUE; 2993 return FALSE; 2994 } 2995 2996 return TRUE; 2997 } 2998 2999 /* A comparison routine used to sort .gptab entries. */ 3000 3001 static int 3002 gptab_compare (const void *p1, const void *p2) 3003 { 3004 const Elf32_gptab *a1 = p1; 3005 const Elf32_gptab *a2 = p2; 3006 3007 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value; 3008 } 3009 3010 /* Functions to manage the got entry hash table. */ 3011 3012 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit 3013 hash number. */ 3014 3015 static INLINE hashval_t 3016 mips_elf_hash_bfd_vma (bfd_vma addr) 3017 { 3018 #ifdef BFD64 3019 return addr + (addr >> 32); 3020 #else 3021 return addr; 3022 #endif 3023 } 3024 3025 static hashval_t 3026 mips_elf_got_entry_hash (const void *entry_) 3027 { 3028 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_; 3029 3030 return (entry->symndx 3031 + ((entry->tls_type == GOT_TLS_LDM) << 18) 3032 + (entry->tls_type == GOT_TLS_LDM ? 0 3033 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address) 3034 : entry->symndx >= 0 ? (entry->abfd->id 3035 + mips_elf_hash_bfd_vma (entry->d.addend)) 3036 : entry->d.h->root.root.root.hash)); 3037 } 3038 3039 static int 3040 mips_elf_got_entry_eq (const void *entry1, const void *entry2) 3041 { 3042 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1; 3043 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2; 3044 3045 return (e1->symndx == e2->symndx 3046 && e1->tls_type == e2->tls_type 3047 && (e1->tls_type == GOT_TLS_LDM ? TRUE 3048 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address 3049 : e1->symndx >= 0 ? (e1->abfd == e2->abfd 3050 && e1->d.addend == e2->d.addend) 3051 : e2->abfd && e1->d.h == e2->d.h)); 3052 } 3053 3054 static hashval_t 3055 mips_got_page_ref_hash (const void *ref_) 3056 { 3057 const struct mips_got_page_ref *ref; 3058 3059 ref = (const struct mips_got_page_ref *) ref_; 3060 return ((ref->symndx >= 0 3061 ? (hashval_t) (ref->u.abfd->id + ref->symndx) 3062 : ref->u.h->root.root.root.hash) 3063 + mips_elf_hash_bfd_vma (ref->addend)); 3064 } 3065 3066 static int 3067 mips_got_page_ref_eq (const void *ref1_, const void *ref2_) 3068 { 3069 const struct mips_got_page_ref *ref1, *ref2; 3070 3071 ref1 = (const struct mips_got_page_ref *) ref1_; 3072 ref2 = (const struct mips_got_page_ref *) ref2_; 3073 return (ref1->symndx == ref2->symndx 3074 && (ref1->symndx < 0 3075 ? ref1->u.h == ref2->u.h 3076 : ref1->u.abfd == ref2->u.abfd) 3077 && ref1->addend == ref2->addend); 3078 } 3079 3080 static hashval_t 3081 mips_got_page_entry_hash (const void *entry_) 3082 { 3083 const struct mips_got_page_entry *entry; 3084 3085 entry = (const struct mips_got_page_entry *) entry_; 3086 return entry->sec->id; 3087 } 3088 3089 static int 3090 mips_got_page_entry_eq (const void *entry1_, const void *entry2_) 3091 { 3092 const struct mips_got_page_entry *entry1, *entry2; 3093 3094 entry1 = (const struct mips_got_page_entry *) entry1_; 3095 entry2 = (const struct mips_got_page_entry *) entry2_; 3096 return entry1->sec == entry2->sec; 3097 } 3098 3099 /* Create and return a new mips_got_info structure. */ 3100 3101 static struct mips_got_info * 3102 mips_elf_create_got_info (bfd *abfd) 3103 { 3104 struct mips_got_info *g; 3105 3106 g = bfd_zalloc (abfd, sizeof (struct mips_got_info)); 3107 if (g == NULL) 3108 return NULL; 3109 3110 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash, 3111 mips_elf_got_entry_eq, NULL); 3112 if (g->got_entries == NULL) 3113 return NULL; 3114 3115 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash, 3116 mips_got_page_ref_eq, NULL); 3117 if (g->got_page_refs == NULL) 3118 return NULL; 3119 3120 return g; 3121 } 3122 3123 /* Return the GOT info for input bfd ABFD, trying to create a new one if 3124 CREATE_P and if ABFD doesn't already have a GOT. */ 3125 3126 static struct mips_got_info * 3127 mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p) 3128 { 3129 struct mips_elf_obj_tdata *tdata; 3130 3131 if (!is_mips_elf (abfd)) 3132 return NULL; 3133 3134 tdata = mips_elf_tdata (abfd); 3135 if (!tdata->got && create_p) 3136 tdata->got = mips_elf_create_got_info (abfd); 3137 return tdata->got; 3138 } 3139 3140 /* Record that ABFD should use output GOT G. */ 3141 3142 static void 3143 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g) 3144 { 3145 struct mips_elf_obj_tdata *tdata; 3146 3147 BFD_ASSERT (is_mips_elf (abfd)); 3148 tdata = mips_elf_tdata (abfd); 3149 if (tdata->got) 3150 { 3151 /* The GOT structure itself and the hash table entries are 3152 allocated to a bfd, but the hash tables aren't. */ 3153 htab_delete (tdata->got->got_entries); 3154 htab_delete (tdata->got->got_page_refs); 3155 if (tdata->got->got_page_entries) 3156 htab_delete (tdata->got->got_page_entries); 3157 } 3158 tdata->got = g; 3159 } 3160 3161 /* Return the dynamic relocation section. If it doesn't exist, try to 3162 create a new it if CREATE_P, otherwise return NULL. Also return NULL 3163 if creation fails. */ 3164 3165 static asection * 3166 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p) 3167 { 3168 const char *dname; 3169 asection *sreloc; 3170 bfd *dynobj; 3171 3172 dname = MIPS_ELF_REL_DYN_NAME (info); 3173 dynobj = elf_hash_table (info)->dynobj; 3174 sreloc = bfd_get_linker_section (dynobj, dname); 3175 if (sreloc == NULL && create_p) 3176 { 3177 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname, 3178 (SEC_ALLOC 3179 | SEC_LOAD 3180 | SEC_HAS_CONTENTS 3181 | SEC_IN_MEMORY 3182 | SEC_LINKER_CREATED 3183 | SEC_READONLY)); 3184 if (sreloc == NULL 3185 || ! bfd_set_section_alignment (dynobj, sreloc, 3186 MIPS_ELF_LOG_FILE_ALIGN (dynobj))) 3187 return NULL; 3188 } 3189 return sreloc; 3190 } 3191 3192 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */ 3193 3194 static int 3195 mips_elf_reloc_tls_type (unsigned int r_type) 3196 { 3197 if (tls_gd_reloc_p (r_type)) 3198 return GOT_TLS_GD; 3199 3200 if (tls_ldm_reloc_p (r_type)) 3201 return GOT_TLS_LDM; 3202 3203 if (tls_gottprel_reloc_p (r_type)) 3204 return GOT_TLS_IE; 3205 3206 return GOT_TLS_NONE; 3207 } 3208 3209 /* Return the number of GOT slots needed for GOT TLS type TYPE. */ 3210 3211 static int 3212 mips_tls_got_entries (unsigned int type) 3213 { 3214 switch (type) 3215 { 3216 case GOT_TLS_GD: 3217 case GOT_TLS_LDM: 3218 return 2; 3219 3220 case GOT_TLS_IE: 3221 return 1; 3222 3223 case GOT_TLS_NONE: 3224 return 0; 3225 } 3226 abort (); 3227 } 3228 3229 /* Count the number of relocations needed for a TLS GOT entry, with 3230 access types from TLS_TYPE, and symbol H (or a local symbol if H 3231 is NULL). */ 3232 3233 static int 3234 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type, 3235 struct elf_link_hash_entry *h) 3236 { 3237 int indx = 0; 3238 bfd_boolean need_relocs = FALSE; 3239 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created; 3240 3241 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h) 3242 && (!bfd_link_pic (info) || !SYMBOL_REFERENCES_LOCAL (info, h))) 3243 indx = h->dynindx; 3244 3245 if ((bfd_link_pic (info) || indx != 0) 3246 && (h == NULL 3247 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT 3248 || h->root.type != bfd_link_hash_undefweak)) 3249 need_relocs = TRUE; 3250 3251 if (!need_relocs) 3252 return 0; 3253 3254 switch (tls_type) 3255 { 3256 case GOT_TLS_GD: 3257 return indx != 0 ? 2 : 1; 3258 3259 case GOT_TLS_IE: 3260 return 1; 3261 3262 case GOT_TLS_LDM: 3263 return bfd_link_pic (info) ? 1 : 0; 3264 3265 default: 3266 return 0; 3267 } 3268 } 3269 3270 /* Add the number of GOT entries and TLS relocations required by ENTRY 3271 to G. */ 3272 3273 static void 3274 mips_elf_count_got_entry (struct bfd_link_info *info, 3275 struct mips_got_info *g, 3276 struct mips_got_entry *entry) 3277 { 3278 if (entry->tls_type) 3279 { 3280 g->tls_gotno += mips_tls_got_entries (entry->tls_type); 3281 g->relocs += mips_tls_got_relocs (info, entry->tls_type, 3282 entry->symndx < 0 3283 ? &entry->d.h->root : NULL); 3284 } 3285 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE) 3286 g->local_gotno += 1; 3287 else 3288 g->global_gotno += 1; 3289 } 3290 3291 /* Output a simple dynamic relocation into SRELOC. */ 3292 3293 static void 3294 mips_elf_output_dynamic_relocation (bfd *output_bfd, 3295 asection *sreloc, 3296 unsigned long reloc_index, 3297 unsigned long indx, 3298 int r_type, 3299 bfd_vma offset) 3300 { 3301 Elf_Internal_Rela rel[3]; 3302 3303 memset (rel, 0, sizeof (rel)); 3304 3305 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type); 3306 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset; 3307 3308 if (ABI_64_P (output_bfd)) 3309 { 3310 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out) 3311 (output_bfd, &rel[0], 3312 (sreloc->contents 3313 + reloc_index * sizeof (Elf64_Mips_External_Rel))); 3314 } 3315 else 3316 bfd_elf32_swap_reloc_out 3317 (output_bfd, &rel[0], 3318 (sreloc->contents 3319 + reloc_index * sizeof (Elf32_External_Rel))); 3320 } 3321 3322 /* Initialize a set of TLS GOT entries for one symbol. */ 3323 3324 static void 3325 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info, 3326 struct mips_got_entry *entry, 3327 struct mips_elf_link_hash_entry *h, 3328 bfd_vma value) 3329 { 3330 struct mips_elf_link_hash_table *htab; 3331 int indx; 3332 asection *sreloc, *sgot; 3333 bfd_vma got_offset, got_offset2; 3334 bfd_boolean need_relocs = FALSE; 3335 3336 htab = mips_elf_hash_table (info); 3337 if (htab == NULL) 3338 return; 3339 3340 sgot = htab->sgot; 3341 3342 indx = 0; 3343 if (h != NULL) 3344 { 3345 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created; 3346 3347 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), 3348 &h->root) 3349 && (!bfd_link_pic (info) 3350 || !SYMBOL_REFERENCES_LOCAL (info, &h->root))) 3351 indx = h->root.dynindx; 3352 } 3353 3354 if (entry->tls_initialized) 3355 return; 3356 3357 if ((bfd_link_pic (info) || indx != 0) 3358 && (h == NULL 3359 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT 3360 || h->root.type != bfd_link_hash_undefweak)) 3361 need_relocs = TRUE; 3362 3363 /* MINUS_ONE means the symbol is not defined in this object. It may not 3364 be defined at all; assume that the value doesn't matter in that 3365 case. Otherwise complain if we would use the value. */ 3366 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs) 3367 || h->root.root.type == bfd_link_hash_undefweak); 3368 3369 /* Emit necessary relocations. */ 3370 sreloc = mips_elf_rel_dyn_section (info, FALSE); 3371 got_offset = entry->gotidx; 3372 3373 switch (entry->tls_type) 3374 { 3375 case GOT_TLS_GD: 3376 /* General Dynamic. */ 3377 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd); 3378 3379 if (need_relocs) 3380 { 3381 mips_elf_output_dynamic_relocation 3382 (abfd, sreloc, sreloc->reloc_count++, indx, 3383 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32, 3384 sgot->output_offset + sgot->output_section->vma + got_offset); 3385 3386 if (indx) 3387 mips_elf_output_dynamic_relocation 3388 (abfd, sreloc, sreloc->reloc_count++, indx, 3389 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32, 3390 sgot->output_offset + sgot->output_section->vma + got_offset2); 3391 else 3392 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info), 3393 sgot->contents + got_offset2); 3394 } 3395 else 3396 { 3397 MIPS_ELF_PUT_WORD (abfd, 1, 3398 sgot->contents + got_offset); 3399 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info), 3400 sgot->contents + got_offset2); 3401 } 3402 break; 3403 3404 case GOT_TLS_IE: 3405 /* Initial Exec model. */ 3406 if (need_relocs) 3407 { 3408 if (indx == 0) 3409 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma, 3410 sgot->contents + got_offset); 3411 else 3412 MIPS_ELF_PUT_WORD (abfd, 0, 3413 sgot->contents + got_offset); 3414 3415 mips_elf_output_dynamic_relocation 3416 (abfd, sreloc, sreloc->reloc_count++, indx, 3417 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32, 3418 sgot->output_offset + sgot->output_section->vma + got_offset); 3419 } 3420 else 3421 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info), 3422 sgot->contents + got_offset); 3423 break; 3424 3425 case GOT_TLS_LDM: 3426 /* The initial offset is zero, and the LD offsets will include the 3427 bias by DTP_OFFSET. */ 3428 MIPS_ELF_PUT_WORD (abfd, 0, 3429 sgot->contents + got_offset 3430 + MIPS_ELF_GOT_SIZE (abfd)); 3431 3432 if (!bfd_link_pic (info)) 3433 MIPS_ELF_PUT_WORD (abfd, 1, 3434 sgot->contents + got_offset); 3435 else 3436 mips_elf_output_dynamic_relocation 3437 (abfd, sreloc, sreloc->reloc_count++, indx, 3438 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32, 3439 sgot->output_offset + sgot->output_section->vma + got_offset); 3440 break; 3441 3442 default: 3443 abort (); 3444 } 3445 3446 entry->tls_initialized = TRUE; 3447 } 3448 3449 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry 3450 for global symbol H. .got.plt comes before the GOT, so the offset 3451 will be negative. */ 3452 3453 static bfd_vma 3454 mips_elf_gotplt_index (struct bfd_link_info *info, 3455 struct elf_link_hash_entry *h) 3456 { 3457 bfd_vma got_address, got_value; 3458 struct mips_elf_link_hash_table *htab; 3459 3460 htab = mips_elf_hash_table (info); 3461 BFD_ASSERT (htab != NULL); 3462 3463 BFD_ASSERT (h->plt.plist != NULL); 3464 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE); 3465 3466 /* Calculate the address of the associated .got.plt entry. */ 3467 got_address = (htab->sgotplt->output_section->vma 3468 + htab->sgotplt->output_offset 3469 + (h->plt.plist->gotplt_index 3470 * MIPS_ELF_GOT_SIZE (info->output_bfd))); 3471 3472 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */ 3473 got_value = (htab->root.hgot->root.u.def.section->output_section->vma 3474 + htab->root.hgot->root.u.def.section->output_offset 3475 + htab->root.hgot->root.u.def.value); 3476 3477 return got_address - got_value; 3478 } 3479 3480 /* Return the GOT offset for address VALUE. If there is not yet a GOT 3481 entry for this value, create one. If R_SYMNDX refers to a TLS symbol, 3482 create a TLS GOT entry instead. Return -1 if no satisfactory GOT 3483 offset can be found. */ 3484 3485 static bfd_vma 3486 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info, 3487 bfd_vma value, unsigned long r_symndx, 3488 struct mips_elf_link_hash_entry *h, int r_type) 3489 { 3490 struct mips_elf_link_hash_table *htab; 3491 struct mips_got_entry *entry; 3492 3493 htab = mips_elf_hash_table (info); 3494 BFD_ASSERT (htab != NULL); 3495 3496 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 3497 r_symndx, h, r_type); 3498 if (!entry) 3499 return MINUS_ONE; 3500 3501 if (entry->tls_type) 3502 mips_elf_initialize_tls_slots (abfd, info, entry, h, value); 3503 return entry->gotidx; 3504 } 3505 3506 /* Return the GOT index of global symbol H in the primary GOT. */ 3507 3508 static bfd_vma 3509 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info, 3510 struct elf_link_hash_entry *h) 3511 { 3512 struct mips_elf_link_hash_table *htab; 3513 long global_got_dynindx; 3514 struct mips_got_info *g; 3515 bfd_vma got_index; 3516 3517 htab = mips_elf_hash_table (info); 3518 BFD_ASSERT (htab != NULL); 3519 3520 global_got_dynindx = 0; 3521 if (htab->global_gotsym != NULL) 3522 global_got_dynindx = htab->global_gotsym->dynindx; 3523 3524 /* Once we determine the global GOT entry with the lowest dynamic 3525 symbol table index, we must put all dynamic symbols with greater 3526 indices into the primary GOT. That makes it easy to calculate the 3527 GOT offset. */ 3528 BFD_ASSERT (h->dynindx >= global_got_dynindx); 3529 g = mips_elf_bfd_got (obfd, FALSE); 3530 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno) 3531 * MIPS_ELF_GOT_SIZE (obfd)); 3532 BFD_ASSERT (got_index < htab->sgot->size); 3533 3534 return got_index; 3535 } 3536 3537 /* Return the GOT index for the global symbol indicated by H, which is 3538 referenced by a relocation of type R_TYPE in IBFD. */ 3539 3540 static bfd_vma 3541 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd, 3542 struct elf_link_hash_entry *h, int r_type) 3543 { 3544 struct mips_elf_link_hash_table *htab; 3545 struct mips_got_info *g; 3546 struct mips_got_entry lookup, *entry; 3547 bfd_vma gotidx; 3548 3549 htab = mips_elf_hash_table (info); 3550 BFD_ASSERT (htab != NULL); 3551 3552 g = mips_elf_bfd_got (ibfd, FALSE); 3553 BFD_ASSERT (g); 3554 3555 lookup.tls_type = mips_elf_reloc_tls_type (r_type); 3556 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE)) 3557 return mips_elf_primary_global_got_index (obfd, info, h); 3558 3559 lookup.abfd = ibfd; 3560 lookup.symndx = -1; 3561 lookup.d.h = (struct mips_elf_link_hash_entry *) h; 3562 entry = htab_find (g->got_entries, &lookup); 3563 BFD_ASSERT (entry); 3564 3565 gotidx = entry->gotidx; 3566 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size); 3567 3568 if (lookup.tls_type) 3569 { 3570 bfd_vma value = MINUS_ONE; 3571 3572 if ((h->root.type == bfd_link_hash_defined 3573 || h->root.type == bfd_link_hash_defweak) 3574 && h->root.u.def.section->output_section) 3575 value = (h->root.u.def.value 3576 + h->root.u.def.section->output_offset 3577 + h->root.u.def.section->output_section->vma); 3578 3579 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value); 3580 } 3581 return gotidx; 3582 } 3583 3584 /* Find a GOT page entry that points to within 32KB of VALUE. These 3585 entries are supposed to be placed at small offsets in the GOT, i.e., 3586 within 32KB of GP. Return the index of the GOT entry, or -1 if no 3587 entry could be created. If OFFSETP is nonnull, use it to return the 3588 offset of the GOT entry from VALUE. */ 3589 3590 static bfd_vma 3591 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info, 3592 bfd_vma value, bfd_vma *offsetp) 3593 { 3594 bfd_vma page, got_index; 3595 struct mips_got_entry *entry; 3596 3597 page = (value + 0x8000) & ~(bfd_vma) 0xffff; 3598 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0, 3599 NULL, R_MIPS_GOT_PAGE); 3600 3601 if (!entry) 3602 return MINUS_ONE; 3603 3604 got_index = entry->gotidx; 3605 3606 if (offsetp) 3607 *offsetp = value - entry->d.address; 3608 3609 return got_index; 3610 } 3611 3612 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE. 3613 EXTERNAL is true if the relocation was originally against a global 3614 symbol that binds locally. */ 3615 3616 static bfd_vma 3617 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info, 3618 bfd_vma value, bfd_boolean external) 3619 { 3620 struct mips_got_entry *entry; 3621 3622 /* GOT16 relocations against local symbols are followed by a LO16 3623 relocation; those against global symbols are not. Thus if the 3624 symbol was originally local, the GOT16 relocation should load the 3625 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */ 3626 if (! external) 3627 value = mips_elf_high (value) << 16; 3628 3629 /* It doesn't matter whether the original relocation was R_MIPS_GOT16, 3630 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the 3631 same in all cases. */ 3632 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0, 3633 NULL, R_MIPS_GOT16); 3634 if (entry) 3635 return entry->gotidx; 3636 else 3637 return MINUS_ONE; 3638 } 3639 3640 /* Returns the offset for the entry at the INDEXth position 3641 in the GOT. */ 3642 3643 static bfd_vma 3644 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd, 3645 bfd *input_bfd, bfd_vma got_index) 3646 { 3647 struct mips_elf_link_hash_table *htab; 3648 asection *sgot; 3649 bfd_vma gp; 3650 3651 htab = mips_elf_hash_table (info); 3652 BFD_ASSERT (htab != NULL); 3653 3654 sgot = htab->sgot; 3655 gp = _bfd_get_gp_value (output_bfd) 3656 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd); 3657 3658 return sgot->output_section->vma + sgot->output_offset + got_index - gp; 3659 } 3660 3661 /* Create and return a local GOT entry for VALUE, which was calculated 3662 from a symbol belonging to INPUT_SECTON. Return NULL if it could not 3663 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry 3664 instead. */ 3665 3666 static struct mips_got_entry * 3667 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info, 3668 bfd *ibfd, bfd_vma value, 3669 unsigned long r_symndx, 3670 struct mips_elf_link_hash_entry *h, 3671 int r_type) 3672 { 3673 struct mips_got_entry lookup, *entry; 3674 void **loc; 3675 struct mips_got_info *g; 3676 struct mips_elf_link_hash_table *htab; 3677 bfd_vma gotidx; 3678 3679 htab = mips_elf_hash_table (info); 3680 BFD_ASSERT (htab != NULL); 3681 3682 g = mips_elf_bfd_got (ibfd, FALSE); 3683 if (g == NULL) 3684 { 3685 g = mips_elf_bfd_got (abfd, FALSE); 3686 BFD_ASSERT (g != NULL); 3687 } 3688 3689 /* This function shouldn't be called for symbols that live in the global 3690 area of the GOT. */ 3691 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE); 3692 3693 lookup.tls_type = mips_elf_reloc_tls_type (r_type); 3694 if (lookup.tls_type) 3695 { 3696 lookup.abfd = ibfd; 3697 if (tls_ldm_reloc_p (r_type)) 3698 { 3699 lookup.symndx = 0; 3700 lookup.d.addend = 0; 3701 } 3702 else if (h == NULL) 3703 { 3704 lookup.symndx = r_symndx; 3705 lookup.d.addend = 0; 3706 } 3707 else 3708 { 3709 lookup.symndx = -1; 3710 lookup.d.h = h; 3711 } 3712 3713 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup); 3714 BFD_ASSERT (entry); 3715 3716 gotidx = entry->gotidx; 3717 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size); 3718 3719 return entry; 3720 } 3721 3722 lookup.abfd = NULL; 3723 lookup.symndx = -1; 3724 lookup.d.address = value; 3725 loc = htab_find_slot (g->got_entries, &lookup, INSERT); 3726 if (!loc) 3727 return NULL; 3728 3729 entry = (struct mips_got_entry *) *loc; 3730 if (entry) 3731 return entry; 3732 3733 if (g->assigned_low_gotno > g->assigned_high_gotno) 3734 { 3735 /* We didn't allocate enough space in the GOT. */ 3736 (*_bfd_error_handler) 3737 (_("not enough GOT space for local GOT entries")); 3738 bfd_set_error (bfd_error_bad_value); 3739 return NULL; 3740 } 3741 3742 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry)); 3743 if (!entry) 3744 return NULL; 3745 3746 if (got16_reloc_p (r_type) 3747 || call16_reloc_p (r_type) 3748 || got_page_reloc_p (r_type) 3749 || got_disp_reloc_p (r_type)) 3750 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++; 3751 else 3752 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--; 3753 3754 *entry = lookup; 3755 *loc = entry; 3756 3757 MIPS_ELF_PUT_WORD (abfd, value, htab->sgot->contents + entry->gotidx); 3758 3759 /* These GOT entries need a dynamic relocation on VxWorks. */ 3760 if (htab->is_vxworks) 3761 { 3762 Elf_Internal_Rela outrel; 3763 asection *s; 3764 bfd_byte *rloc; 3765 bfd_vma got_address; 3766 3767 s = mips_elf_rel_dyn_section (info, FALSE); 3768 got_address = (htab->sgot->output_section->vma 3769 + htab->sgot->output_offset 3770 + entry->gotidx); 3771 3772 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela)); 3773 outrel.r_offset = got_address; 3774 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32); 3775 outrel.r_addend = value; 3776 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc); 3777 } 3778 3779 return entry; 3780 } 3781 3782 /* Return the number of dynamic section symbols required by OUTPUT_BFD. 3783 The number might be exact or a worst-case estimate, depending on how 3784 much information is available to elf_backend_omit_section_dynsym at 3785 the current linking stage. */ 3786 3787 static bfd_size_type 3788 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info) 3789 { 3790 bfd_size_type count; 3791 3792 count = 0; 3793 if (bfd_link_pic (info) 3794 || elf_hash_table (info)->is_relocatable_executable) 3795 { 3796 asection *p; 3797 const struct elf_backend_data *bed; 3798 3799 bed = get_elf_backend_data (output_bfd); 3800 for (p = output_bfd->sections; p ; p = p->next) 3801 if ((p->flags & SEC_EXCLUDE) == 0 3802 && (p->flags & SEC_ALLOC) != 0 3803 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p)) 3804 ++count; 3805 } 3806 return count; 3807 } 3808 3809 /* Sort the dynamic symbol table so that symbols that need GOT entries 3810 appear towards the end. */ 3811 3812 static bfd_boolean 3813 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info) 3814 { 3815 struct mips_elf_link_hash_table *htab; 3816 struct mips_elf_hash_sort_data hsd; 3817 struct mips_got_info *g; 3818 3819 if (elf_hash_table (info)->dynsymcount == 0) 3820 return TRUE; 3821 3822 htab = mips_elf_hash_table (info); 3823 BFD_ASSERT (htab != NULL); 3824 3825 g = htab->got_info; 3826 if (g == NULL) 3827 return TRUE; 3828 3829 hsd.low = NULL; 3830 hsd.max_unref_got_dynindx 3831 = hsd.min_got_dynindx 3832 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno); 3833 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1; 3834 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *) 3835 elf_hash_table (info)), 3836 mips_elf_sort_hash_table_f, 3837 &hsd); 3838 3839 /* There should have been enough room in the symbol table to 3840 accommodate both the GOT and non-GOT symbols. */ 3841 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx); 3842 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx 3843 == elf_hash_table (info)->dynsymcount); 3844 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx 3845 == g->global_gotno); 3846 3847 /* Now we know which dynamic symbol has the lowest dynamic symbol 3848 table index in the GOT. */ 3849 htab->global_gotsym = hsd.low; 3850 3851 return TRUE; 3852 } 3853 3854 /* If H needs a GOT entry, assign it the highest available dynamic 3855 index. Otherwise, assign it the lowest available dynamic 3856 index. */ 3857 3858 static bfd_boolean 3859 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data) 3860 { 3861 struct mips_elf_hash_sort_data *hsd = data; 3862 3863 /* Symbols without dynamic symbol table entries aren't interesting 3864 at all. */ 3865 if (h->root.dynindx == -1) 3866 return TRUE; 3867 3868 switch (h->global_got_area) 3869 { 3870 case GGA_NONE: 3871 h->root.dynindx = hsd->max_non_got_dynindx++; 3872 break; 3873 3874 case GGA_NORMAL: 3875 h->root.dynindx = --hsd->min_got_dynindx; 3876 hsd->low = (struct elf_link_hash_entry *) h; 3877 break; 3878 3879 case GGA_RELOC_ONLY: 3880 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx) 3881 hsd->low = (struct elf_link_hash_entry *) h; 3882 h->root.dynindx = hsd->max_unref_got_dynindx++; 3883 break; 3884 } 3885 3886 return TRUE; 3887 } 3888 3889 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP 3890 (which is owned by the caller and shouldn't be added to the 3891 hash table directly). */ 3892 3893 static bfd_boolean 3894 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd, 3895 struct mips_got_entry *lookup) 3896 { 3897 struct mips_elf_link_hash_table *htab; 3898 struct mips_got_entry *entry; 3899 struct mips_got_info *g; 3900 void **loc, **bfd_loc; 3901 3902 /* Make sure there's a slot for this entry in the master GOT. */ 3903 htab = mips_elf_hash_table (info); 3904 g = htab->got_info; 3905 loc = htab_find_slot (g->got_entries, lookup, INSERT); 3906 if (!loc) 3907 return FALSE; 3908 3909 /* Populate the entry if it isn't already. */ 3910 entry = (struct mips_got_entry *) *loc; 3911 if (!entry) 3912 { 3913 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry)); 3914 if (!entry) 3915 return FALSE; 3916 3917 lookup->tls_initialized = FALSE; 3918 lookup->gotidx = -1; 3919 *entry = *lookup; 3920 *loc = entry; 3921 } 3922 3923 /* Reuse the same GOT entry for the BFD's GOT. */ 3924 g = mips_elf_bfd_got (abfd, TRUE); 3925 if (!g) 3926 return FALSE; 3927 3928 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT); 3929 if (!bfd_loc) 3930 return FALSE; 3931 3932 if (!*bfd_loc) 3933 *bfd_loc = entry; 3934 return TRUE; 3935 } 3936 3937 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT 3938 entry for it. FOR_CALL is true if the caller is only interested in 3939 using the GOT entry for calls. */ 3940 3941 static bfd_boolean 3942 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h, 3943 bfd *abfd, struct bfd_link_info *info, 3944 bfd_boolean for_call, int r_type) 3945 { 3946 struct mips_elf_link_hash_table *htab; 3947 struct mips_elf_link_hash_entry *hmips; 3948 struct mips_got_entry entry; 3949 unsigned char tls_type; 3950 3951 htab = mips_elf_hash_table (info); 3952 BFD_ASSERT (htab != NULL); 3953 3954 hmips = (struct mips_elf_link_hash_entry *) h; 3955 if (!for_call) 3956 hmips->got_only_for_calls = FALSE; 3957 3958 /* A global symbol in the GOT must also be in the dynamic symbol 3959 table. */ 3960 if (h->dynindx == -1) 3961 { 3962 switch (ELF_ST_VISIBILITY (h->other)) 3963 { 3964 case STV_INTERNAL: 3965 case STV_HIDDEN: 3966 _bfd_elf_link_hash_hide_symbol (info, h, TRUE); 3967 break; 3968 } 3969 if (!bfd_elf_link_record_dynamic_symbol (info, h)) 3970 return FALSE; 3971 } 3972 3973 tls_type = mips_elf_reloc_tls_type (r_type); 3974 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL) 3975 hmips->global_got_area = GGA_NORMAL; 3976 3977 entry.abfd = abfd; 3978 entry.symndx = -1; 3979 entry.d.h = (struct mips_elf_link_hash_entry *) h; 3980 entry.tls_type = tls_type; 3981 return mips_elf_record_got_entry (info, abfd, &entry); 3982 } 3983 3984 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND, 3985 where SYMNDX is a local symbol. Reserve a GOT entry for it. */ 3986 3987 static bfd_boolean 3988 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend, 3989 struct bfd_link_info *info, int r_type) 3990 { 3991 struct mips_elf_link_hash_table *htab; 3992 struct mips_got_info *g; 3993 struct mips_got_entry entry; 3994 3995 htab = mips_elf_hash_table (info); 3996 BFD_ASSERT (htab != NULL); 3997 3998 g = htab->got_info; 3999 BFD_ASSERT (g != NULL); 4000 4001 entry.abfd = abfd; 4002 entry.symndx = symndx; 4003 entry.d.addend = addend; 4004 entry.tls_type = mips_elf_reloc_tls_type (r_type); 4005 return mips_elf_record_got_entry (info, abfd, &entry); 4006 } 4007 4008 /* Record that ABFD has a page relocation against SYMNDX + ADDEND. 4009 H is the symbol's hash table entry, or null if SYMNDX is local 4010 to ABFD. */ 4011 4012 static bfd_boolean 4013 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd, 4014 long symndx, struct elf_link_hash_entry *h, 4015 bfd_signed_vma addend) 4016 { 4017 struct mips_elf_link_hash_table *htab; 4018 struct mips_got_info *g1, *g2; 4019 struct mips_got_page_ref lookup, *entry; 4020 void **loc, **bfd_loc; 4021 4022 htab = mips_elf_hash_table (info); 4023 BFD_ASSERT (htab != NULL); 4024 4025 g1 = htab->got_info; 4026 BFD_ASSERT (g1 != NULL); 4027 4028 if (h) 4029 { 4030 lookup.symndx = -1; 4031 lookup.u.h = (struct mips_elf_link_hash_entry *) h; 4032 } 4033 else 4034 { 4035 lookup.symndx = symndx; 4036 lookup.u.abfd = abfd; 4037 } 4038 lookup.addend = addend; 4039 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT); 4040 if (loc == NULL) 4041 return FALSE; 4042 4043 entry = (struct mips_got_page_ref *) *loc; 4044 if (!entry) 4045 { 4046 entry = bfd_alloc (abfd, sizeof (*entry)); 4047 if (!entry) 4048 return FALSE; 4049 4050 *entry = lookup; 4051 *loc = entry; 4052 } 4053 4054 /* Add the same entry to the BFD's GOT. */ 4055 g2 = mips_elf_bfd_got (abfd, TRUE); 4056 if (!g2) 4057 return FALSE; 4058 4059 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT); 4060 if (!bfd_loc) 4061 return FALSE; 4062 4063 if (!*bfd_loc) 4064 *bfd_loc = entry; 4065 4066 return TRUE; 4067 } 4068 4069 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */ 4070 4071 static void 4072 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info, 4073 unsigned int n) 4074 { 4075 asection *s; 4076 struct mips_elf_link_hash_table *htab; 4077 4078 htab = mips_elf_hash_table (info); 4079 BFD_ASSERT (htab != NULL); 4080 4081 s = mips_elf_rel_dyn_section (info, FALSE); 4082 BFD_ASSERT (s != NULL); 4083 4084 if (htab->is_vxworks) 4085 s->size += n * MIPS_ELF_RELA_SIZE (abfd); 4086 else 4087 { 4088 if (s->size == 0) 4089 { 4090 /* Make room for a null element. */ 4091 s->size += MIPS_ELF_REL_SIZE (abfd); 4092 ++s->reloc_count; 4093 } 4094 s->size += n * MIPS_ELF_REL_SIZE (abfd); 4095 } 4096 } 4097 4098 /* A htab_traverse callback for GOT entries, with DATA pointing to a 4099 mips_elf_traverse_got_arg structure. Count the number of GOT 4100 entries and TLS relocs. Set DATA->value to true if we need 4101 to resolve indirect or warning symbols and then recreate the GOT. */ 4102 4103 static int 4104 mips_elf_check_recreate_got (void **entryp, void *data) 4105 { 4106 struct mips_got_entry *entry; 4107 struct mips_elf_traverse_got_arg *arg; 4108 4109 entry = (struct mips_got_entry *) *entryp; 4110 arg = (struct mips_elf_traverse_got_arg *) data; 4111 if (entry->abfd != NULL && entry->symndx == -1) 4112 { 4113 struct mips_elf_link_hash_entry *h; 4114 4115 h = entry->d.h; 4116 if (h->root.root.type == bfd_link_hash_indirect 4117 || h->root.root.type == bfd_link_hash_warning) 4118 { 4119 arg->value = TRUE; 4120 return 0; 4121 } 4122 } 4123 mips_elf_count_got_entry (arg->info, arg->g, entry); 4124 return 1; 4125 } 4126 4127 /* A htab_traverse callback for GOT entries, with DATA pointing to a 4128 mips_elf_traverse_got_arg structure. Add all entries to DATA->g, 4129 converting entries for indirect and warning symbols into entries 4130 for the target symbol. Set DATA->g to null on error. */ 4131 4132 static int 4133 mips_elf_recreate_got (void **entryp, void *data) 4134 { 4135 struct mips_got_entry new_entry, *entry; 4136 struct mips_elf_traverse_got_arg *arg; 4137 void **slot; 4138 4139 entry = (struct mips_got_entry *) *entryp; 4140 arg = (struct mips_elf_traverse_got_arg *) data; 4141 if (entry->abfd != NULL 4142 && entry->symndx == -1 4143 && (entry->d.h->root.root.type == bfd_link_hash_indirect 4144 || entry->d.h->root.root.type == bfd_link_hash_warning)) 4145 { 4146 struct mips_elf_link_hash_entry *h; 4147 4148 new_entry = *entry; 4149 entry = &new_entry; 4150 h = entry->d.h; 4151 do 4152 { 4153 BFD_ASSERT (h->global_got_area == GGA_NONE); 4154 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; 4155 } 4156 while (h->root.root.type == bfd_link_hash_indirect 4157 || h->root.root.type == bfd_link_hash_warning); 4158 entry->d.h = h; 4159 } 4160 slot = htab_find_slot (arg->g->got_entries, entry, INSERT); 4161 if (slot == NULL) 4162 { 4163 arg->g = NULL; 4164 return 0; 4165 } 4166 if (*slot == NULL) 4167 { 4168 if (entry == &new_entry) 4169 { 4170 entry = bfd_alloc (entry->abfd, sizeof (*entry)); 4171 if (!entry) 4172 { 4173 arg->g = NULL; 4174 return 0; 4175 } 4176 *entry = new_entry; 4177 } 4178 *slot = entry; 4179 mips_elf_count_got_entry (arg->info, arg->g, entry); 4180 } 4181 return 1; 4182 } 4183 4184 /* Return the maximum number of GOT page entries required for RANGE. */ 4185 4186 static bfd_vma 4187 mips_elf_pages_for_range (const struct mips_got_page_range *range) 4188 { 4189 return (range->max_addend - range->min_addend + 0x1ffff) >> 16; 4190 } 4191 4192 /* Record that G requires a page entry that can reach SEC + ADDEND. */ 4193 4194 static bfd_boolean 4195 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg, 4196 asection *sec, bfd_signed_vma addend) 4197 { 4198 struct mips_got_info *g = arg->g; 4199 struct mips_got_page_entry lookup, *entry; 4200 struct mips_got_page_range **range_ptr, *range; 4201 bfd_vma old_pages, new_pages; 4202 void **loc; 4203 4204 /* Find the mips_got_page_entry hash table entry for this section. */ 4205 lookup.sec = sec; 4206 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT); 4207 if (loc == NULL) 4208 return FALSE; 4209 4210 /* Create a mips_got_page_entry if this is the first time we've 4211 seen the section. */ 4212 entry = (struct mips_got_page_entry *) *loc; 4213 if (!entry) 4214 { 4215 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry)); 4216 if (!entry) 4217 return FALSE; 4218 4219 entry->sec = sec; 4220 *loc = entry; 4221 } 4222 4223 /* Skip over ranges whose maximum extent cannot share a page entry 4224 with ADDEND. */ 4225 range_ptr = &entry->ranges; 4226 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff) 4227 range_ptr = &(*range_ptr)->next; 4228 4229 /* If we scanned to the end of the list, or found a range whose 4230 minimum extent cannot share a page entry with ADDEND, create 4231 a new singleton range. */ 4232 range = *range_ptr; 4233 if (!range || addend < range->min_addend - 0xffff) 4234 { 4235 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range)); 4236 if (!range) 4237 return FALSE; 4238 4239 range->next = *range_ptr; 4240 range->min_addend = addend; 4241 range->max_addend = addend; 4242 4243 *range_ptr = range; 4244 entry->num_pages++; 4245 g->page_gotno++; 4246 return TRUE; 4247 } 4248 4249 /* Remember how many pages the old range contributed. */ 4250 old_pages = mips_elf_pages_for_range (range); 4251 4252 /* Update the ranges. */ 4253 if (addend < range->min_addend) 4254 range->min_addend = addend; 4255 else if (addend > range->max_addend) 4256 { 4257 if (range->next && addend >= range->next->min_addend - 0xffff) 4258 { 4259 old_pages += mips_elf_pages_for_range (range->next); 4260 range->max_addend = range->next->max_addend; 4261 range->next = range->next->next; 4262 } 4263 else 4264 range->max_addend = addend; 4265 } 4266 4267 /* Record any change in the total estimate. */ 4268 new_pages = mips_elf_pages_for_range (range); 4269 if (old_pages != new_pages) 4270 { 4271 entry->num_pages += new_pages - old_pages; 4272 g->page_gotno += new_pages - old_pages; 4273 } 4274 4275 return TRUE; 4276 } 4277 4278 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref 4279 and for which DATA points to a mips_elf_traverse_got_arg. Work out 4280 whether the page reference described by *REFP needs a GOT page entry, 4281 and record that entry in DATA->g if so. Set DATA->g to null on failure. */ 4282 4283 static bfd_boolean 4284 mips_elf_resolve_got_page_ref (void **refp, void *data) 4285 { 4286 struct mips_got_page_ref *ref; 4287 struct mips_elf_traverse_got_arg *arg; 4288 struct mips_elf_link_hash_table *htab; 4289 asection *sec; 4290 bfd_vma addend; 4291 4292 ref = (struct mips_got_page_ref *) *refp; 4293 arg = (struct mips_elf_traverse_got_arg *) data; 4294 htab = mips_elf_hash_table (arg->info); 4295 4296 if (ref->symndx < 0) 4297 { 4298 struct mips_elf_link_hash_entry *h; 4299 4300 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */ 4301 h = ref->u.h; 4302 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root)) 4303 return 1; 4304 4305 /* Ignore undefined symbols; we'll issue an error later if 4306 appropriate. */ 4307 if (!((h->root.root.type == bfd_link_hash_defined 4308 || h->root.root.type == bfd_link_hash_defweak) 4309 && h->root.root.u.def.section)) 4310 return 1; 4311 4312 sec = h->root.root.u.def.section; 4313 addend = h->root.root.u.def.value + ref->addend; 4314 } 4315 else 4316 { 4317 Elf_Internal_Sym *isym; 4318 4319 /* Read in the symbol. */ 4320 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd, 4321 ref->symndx); 4322 if (isym == NULL) 4323 { 4324 arg->g = NULL; 4325 return 0; 4326 } 4327 4328 /* Get the associated input section. */ 4329 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx); 4330 if (sec == NULL) 4331 { 4332 arg->g = NULL; 4333 return 0; 4334 } 4335 4336 /* If this is a mergable section, work out the section and offset 4337 of the merged data. For section symbols, the addend specifies 4338 of the offset _of_ the first byte in the data, otherwise it 4339 specifies the offset _from_ the first byte. */ 4340 if (sec->flags & SEC_MERGE) 4341 { 4342 void *secinfo; 4343 4344 secinfo = elf_section_data (sec)->sec_info; 4345 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION) 4346 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo, 4347 isym->st_value + ref->addend); 4348 else 4349 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo, 4350 isym->st_value) + ref->addend; 4351 } 4352 else 4353 addend = isym->st_value + ref->addend; 4354 } 4355 if (!mips_elf_record_got_page_entry (arg, sec, addend)) 4356 { 4357 arg->g = NULL; 4358 return 0; 4359 } 4360 return 1; 4361 } 4362 4363 /* If any entries in G->got_entries are for indirect or warning symbols, 4364 replace them with entries for the target symbol. Convert g->got_page_refs 4365 into got_page_entry structures and estimate the number of page entries 4366 that they require. */ 4367 4368 static bfd_boolean 4369 mips_elf_resolve_final_got_entries (struct bfd_link_info *info, 4370 struct mips_got_info *g) 4371 { 4372 struct mips_elf_traverse_got_arg tga; 4373 struct mips_got_info oldg; 4374 4375 oldg = *g; 4376 4377 tga.info = info; 4378 tga.g = g; 4379 tga.value = FALSE; 4380 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga); 4381 if (tga.value) 4382 { 4383 *g = oldg; 4384 g->got_entries = htab_create (htab_size (oldg.got_entries), 4385 mips_elf_got_entry_hash, 4386 mips_elf_got_entry_eq, NULL); 4387 if (!g->got_entries) 4388 return FALSE; 4389 4390 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga); 4391 if (!tga.g) 4392 return FALSE; 4393 4394 htab_delete (oldg.got_entries); 4395 } 4396 4397 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash, 4398 mips_got_page_entry_eq, NULL); 4399 if (g->got_page_entries == NULL) 4400 return FALSE; 4401 4402 tga.info = info; 4403 tga.g = g; 4404 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga); 4405 4406 return TRUE; 4407 } 4408 4409 /* Return true if a GOT entry for H should live in the local rather than 4410 global GOT area. */ 4411 4412 static bfd_boolean 4413 mips_use_local_got_p (struct bfd_link_info *info, 4414 struct mips_elf_link_hash_entry *h) 4415 { 4416 /* Symbols that aren't in the dynamic symbol table must live in the 4417 local GOT. This includes symbols that are completely undefined 4418 and which therefore don't bind locally. We'll report undefined 4419 symbols later if appropriate. */ 4420 if (h->root.dynindx == -1) 4421 return TRUE; 4422 4423 /* Symbols that bind locally can (and in the case of forced-local 4424 symbols, must) live in the local GOT. */ 4425 if (h->got_only_for_calls 4426 ? SYMBOL_CALLS_LOCAL (info, &h->root) 4427 : SYMBOL_REFERENCES_LOCAL (info, &h->root)) 4428 return TRUE; 4429 4430 /* If this is an executable that must provide a definition of the symbol, 4431 either though PLTs or copy relocations, then that address should go in 4432 the local rather than global GOT. */ 4433 if (bfd_link_executable (info) && h->has_static_relocs) 4434 return TRUE; 4435 4436 return FALSE; 4437 } 4438 4439 /* A mips_elf_link_hash_traverse callback for which DATA points to the 4440 link_info structure. Decide whether the hash entry needs an entry in 4441 the global part of the primary GOT, setting global_got_area accordingly. 4442 Count the number of global symbols that are in the primary GOT only 4443 because they have relocations against them (reloc_only_gotno). */ 4444 4445 static int 4446 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data) 4447 { 4448 struct bfd_link_info *info; 4449 struct mips_elf_link_hash_table *htab; 4450 struct mips_got_info *g; 4451 4452 info = (struct bfd_link_info *) data; 4453 htab = mips_elf_hash_table (info); 4454 g = htab->got_info; 4455 if (h->global_got_area != GGA_NONE) 4456 { 4457 /* Make a final decision about whether the symbol belongs in the 4458 local or global GOT. */ 4459 if (mips_use_local_got_p (info, h)) 4460 /* The symbol belongs in the local GOT. We no longer need this 4461 entry if it was only used for relocations; those relocations 4462 will be against the null or section symbol instead of H. */ 4463 h->global_got_area = GGA_NONE; 4464 else if (htab->is_vxworks 4465 && h->got_only_for_calls 4466 && h->root.plt.plist->mips_offset != MINUS_ONE) 4467 /* On VxWorks, calls can refer directly to the .got.plt entry; 4468 they don't need entries in the regular GOT. .got.plt entries 4469 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */ 4470 h->global_got_area = GGA_NONE; 4471 else if (h->global_got_area == GGA_RELOC_ONLY) 4472 { 4473 g->reloc_only_gotno++; 4474 g->global_gotno++; 4475 } 4476 } 4477 return 1; 4478 } 4479 4480 /* A htab_traverse callback for GOT entries. Add each one to the GOT 4481 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */ 4482 4483 static int 4484 mips_elf_add_got_entry (void **entryp, void *data) 4485 { 4486 struct mips_got_entry *entry; 4487 struct mips_elf_traverse_got_arg *arg; 4488 void **slot; 4489 4490 entry = (struct mips_got_entry *) *entryp; 4491 arg = (struct mips_elf_traverse_got_arg *) data; 4492 slot = htab_find_slot (arg->g->got_entries, entry, INSERT); 4493 if (!slot) 4494 { 4495 arg->g = NULL; 4496 return 0; 4497 } 4498 if (!*slot) 4499 { 4500 *slot = entry; 4501 mips_elf_count_got_entry (arg->info, arg->g, entry); 4502 } 4503 return 1; 4504 } 4505 4506 /* A htab_traverse callback for GOT page entries. Add each one to the GOT 4507 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */ 4508 4509 static int 4510 mips_elf_add_got_page_entry (void **entryp, void *data) 4511 { 4512 struct mips_got_page_entry *entry; 4513 struct mips_elf_traverse_got_arg *arg; 4514 void **slot; 4515 4516 entry = (struct mips_got_page_entry *) *entryp; 4517 arg = (struct mips_elf_traverse_got_arg *) data; 4518 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT); 4519 if (!slot) 4520 { 4521 arg->g = NULL; 4522 return 0; 4523 } 4524 if (!*slot) 4525 { 4526 *slot = entry; 4527 arg->g->page_gotno += entry->num_pages; 4528 } 4529 return 1; 4530 } 4531 4532 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if 4533 this would lead to overflow, 1 if they were merged successfully, 4534 and 0 if a merge failed due to lack of memory. (These values are chosen 4535 so that nonnegative return values can be returned by a htab_traverse 4536 callback.) */ 4537 4538 static int 4539 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from, 4540 struct mips_got_info *to, 4541 struct mips_elf_got_per_bfd_arg *arg) 4542 { 4543 struct mips_elf_traverse_got_arg tga; 4544 unsigned int estimate; 4545 4546 /* Work out how many page entries we would need for the combined GOT. */ 4547 estimate = arg->max_pages; 4548 if (estimate >= from->page_gotno + to->page_gotno) 4549 estimate = from->page_gotno + to->page_gotno; 4550 4551 /* And conservatively estimate how many local and TLS entries 4552 would be needed. */ 4553 estimate += from->local_gotno + to->local_gotno; 4554 estimate += from->tls_gotno + to->tls_gotno; 4555 4556 /* If we're merging with the primary got, any TLS relocations will 4557 come after the full set of global entries. Otherwise estimate those 4558 conservatively as well. */ 4559 if (to == arg->primary && from->tls_gotno + to->tls_gotno) 4560 estimate += arg->global_count; 4561 else 4562 estimate += from->global_gotno + to->global_gotno; 4563 4564 /* Bail out if the combined GOT might be too big. */ 4565 if (estimate > arg->max_count) 4566 return -1; 4567 4568 /* Transfer the bfd's got information from FROM to TO. */ 4569 tga.info = arg->info; 4570 tga.g = to; 4571 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga); 4572 if (!tga.g) 4573 return 0; 4574 4575 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga); 4576 if (!tga.g) 4577 return 0; 4578 4579 mips_elf_replace_bfd_got (abfd, to); 4580 return 1; 4581 } 4582 4583 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much 4584 as possible of the primary got, since it doesn't require explicit 4585 dynamic relocations, but don't use bfds that would reference global 4586 symbols out of the addressable range. Failing the primary got, 4587 attempt to merge with the current got, or finish the current got 4588 and then make make the new got current. */ 4589 4590 static bfd_boolean 4591 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g, 4592 struct mips_elf_got_per_bfd_arg *arg) 4593 { 4594 unsigned int estimate; 4595 int result; 4596 4597 if (!mips_elf_resolve_final_got_entries (arg->info, g)) 4598 return FALSE; 4599 4600 /* Work out the number of page, local and TLS entries. */ 4601 estimate = arg->max_pages; 4602 if (estimate > g->page_gotno) 4603 estimate = g->page_gotno; 4604 estimate += g->local_gotno + g->tls_gotno; 4605 4606 /* We place TLS GOT entries after both locals and globals. The globals 4607 for the primary GOT may overflow the normal GOT size limit, so be 4608 sure not to merge a GOT which requires TLS with the primary GOT in that 4609 case. This doesn't affect non-primary GOTs. */ 4610 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno); 4611 4612 if (estimate <= arg->max_count) 4613 { 4614 /* If we don't have a primary GOT, use it as 4615 a starting point for the primary GOT. */ 4616 if (!arg->primary) 4617 { 4618 arg->primary = g; 4619 return TRUE; 4620 } 4621 4622 /* Try merging with the primary GOT. */ 4623 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg); 4624 if (result >= 0) 4625 return result; 4626 } 4627 4628 /* If we can merge with the last-created got, do it. */ 4629 if (arg->current) 4630 { 4631 result = mips_elf_merge_got_with (abfd, g, arg->current, arg); 4632 if (result >= 0) 4633 return result; 4634 } 4635 4636 /* Well, we couldn't merge, so create a new GOT. Don't check if it 4637 fits; if it turns out that it doesn't, we'll get relocation 4638 overflows anyway. */ 4639 g->next = arg->current; 4640 arg->current = g; 4641 4642 return TRUE; 4643 } 4644 4645 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx 4646 to GOTIDX, duplicating the entry if it has already been assigned 4647 an index in a different GOT. */ 4648 4649 static bfd_boolean 4650 mips_elf_set_gotidx (void **entryp, long gotidx) 4651 { 4652 struct mips_got_entry *entry; 4653 4654 entry = (struct mips_got_entry *) *entryp; 4655 if (entry->gotidx > 0) 4656 { 4657 struct mips_got_entry *new_entry; 4658 4659 new_entry = bfd_alloc (entry->abfd, sizeof (*entry)); 4660 if (!new_entry) 4661 return FALSE; 4662 4663 *new_entry = *entry; 4664 *entryp = new_entry; 4665 entry = new_entry; 4666 } 4667 entry->gotidx = gotidx; 4668 return TRUE; 4669 } 4670 4671 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a 4672 mips_elf_traverse_got_arg in which DATA->value is the size of one 4673 GOT entry. Set DATA->g to null on failure. */ 4674 4675 static int 4676 mips_elf_initialize_tls_index (void **entryp, void *data) 4677 { 4678 struct mips_got_entry *entry; 4679 struct mips_elf_traverse_got_arg *arg; 4680 4681 /* We're only interested in TLS symbols. */ 4682 entry = (struct mips_got_entry *) *entryp; 4683 if (entry->tls_type == GOT_TLS_NONE) 4684 return 1; 4685 4686 arg = (struct mips_elf_traverse_got_arg *) data; 4687 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno)) 4688 { 4689 arg->g = NULL; 4690 return 0; 4691 } 4692 4693 /* Account for the entries we've just allocated. */ 4694 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type); 4695 return 1; 4696 } 4697 4698 /* A htab_traverse callback for GOT entries, where DATA points to a 4699 mips_elf_traverse_got_arg. Set the global_got_area of each global 4700 symbol to DATA->value. */ 4701 4702 static int 4703 mips_elf_set_global_got_area (void **entryp, void *data) 4704 { 4705 struct mips_got_entry *entry; 4706 struct mips_elf_traverse_got_arg *arg; 4707 4708 entry = (struct mips_got_entry *) *entryp; 4709 arg = (struct mips_elf_traverse_got_arg *) data; 4710 if (entry->abfd != NULL 4711 && entry->symndx == -1 4712 && entry->d.h->global_got_area != GGA_NONE) 4713 entry->d.h->global_got_area = arg->value; 4714 return 1; 4715 } 4716 4717 /* A htab_traverse callback for secondary GOT entries, where DATA points 4718 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries 4719 and record the number of relocations they require. DATA->value is 4720 the size of one GOT entry. Set DATA->g to null on failure. */ 4721 4722 static int 4723 mips_elf_set_global_gotidx (void **entryp, void *data) 4724 { 4725 struct mips_got_entry *entry; 4726 struct mips_elf_traverse_got_arg *arg; 4727 4728 entry = (struct mips_got_entry *) *entryp; 4729 arg = (struct mips_elf_traverse_got_arg *) data; 4730 if (entry->abfd != NULL 4731 && entry->symndx == -1 4732 && entry->d.h->global_got_area != GGA_NONE) 4733 { 4734 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno)) 4735 { 4736 arg->g = NULL; 4737 return 0; 4738 } 4739 arg->g->assigned_low_gotno += 1; 4740 4741 if (bfd_link_pic (arg->info) 4742 || (elf_hash_table (arg->info)->dynamic_sections_created 4743 && entry->d.h->root.def_dynamic 4744 && !entry->d.h->root.def_regular)) 4745 arg->g->relocs += 1; 4746 } 4747 4748 return 1; 4749 } 4750 4751 /* A htab_traverse callback for GOT entries for which DATA is the 4752 bfd_link_info. Forbid any global symbols from having traditional 4753 lazy-binding stubs. */ 4754 4755 static int 4756 mips_elf_forbid_lazy_stubs (void **entryp, void *data) 4757 { 4758 struct bfd_link_info *info; 4759 struct mips_elf_link_hash_table *htab; 4760 struct mips_got_entry *entry; 4761 4762 entry = (struct mips_got_entry *) *entryp; 4763 info = (struct bfd_link_info *) data; 4764 htab = mips_elf_hash_table (info); 4765 BFD_ASSERT (htab != NULL); 4766 4767 if (entry->abfd != NULL 4768 && entry->symndx == -1 4769 && entry->d.h->needs_lazy_stub) 4770 { 4771 entry->d.h->needs_lazy_stub = FALSE; 4772 htab->lazy_stub_count--; 4773 } 4774 4775 return 1; 4776 } 4777 4778 /* Return the offset of an input bfd IBFD's GOT from the beginning of 4779 the primary GOT. */ 4780 static bfd_vma 4781 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd) 4782 { 4783 if (!g->next) 4784 return 0; 4785 4786 g = mips_elf_bfd_got (ibfd, FALSE); 4787 if (! g) 4788 return 0; 4789 4790 BFD_ASSERT (g->next); 4791 4792 g = g->next; 4793 4794 return (g->local_gotno + g->global_gotno + g->tls_gotno) 4795 * MIPS_ELF_GOT_SIZE (abfd); 4796 } 4797 4798 /* Turn a single GOT that is too big for 16-bit addressing into 4799 a sequence of GOTs, each one 16-bit addressable. */ 4800 4801 static bfd_boolean 4802 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info, 4803 asection *got, bfd_size_type pages) 4804 { 4805 struct mips_elf_link_hash_table *htab; 4806 struct mips_elf_got_per_bfd_arg got_per_bfd_arg; 4807 struct mips_elf_traverse_got_arg tga; 4808 struct mips_got_info *g, *gg; 4809 unsigned int assign, needed_relocs; 4810 bfd *dynobj, *ibfd; 4811 4812 dynobj = elf_hash_table (info)->dynobj; 4813 htab = mips_elf_hash_table (info); 4814 BFD_ASSERT (htab != NULL); 4815 4816 g = htab->got_info; 4817 4818 got_per_bfd_arg.obfd = abfd; 4819 got_per_bfd_arg.info = info; 4820 got_per_bfd_arg.current = NULL; 4821 got_per_bfd_arg.primary = NULL; 4822 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info) 4823 / MIPS_ELF_GOT_SIZE (abfd)) 4824 - htab->reserved_gotno); 4825 got_per_bfd_arg.max_pages = pages; 4826 /* The number of globals that will be included in the primary GOT. 4827 See the calls to mips_elf_set_global_got_area below for more 4828 information. */ 4829 got_per_bfd_arg.global_count = g->global_gotno; 4830 4831 /* Try to merge the GOTs of input bfds together, as long as they 4832 don't seem to exceed the maximum GOT size, choosing one of them 4833 to be the primary GOT. */ 4834 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next) 4835 { 4836 gg = mips_elf_bfd_got (ibfd, FALSE); 4837 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg)) 4838 return FALSE; 4839 } 4840 4841 /* If we do not find any suitable primary GOT, create an empty one. */ 4842 if (got_per_bfd_arg.primary == NULL) 4843 g->next = mips_elf_create_got_info (abfd); 4844 else 4845 g->next = got_per_bfd_arg.primary; 4846 g->next->next = got_per_bfd_arg.current; 4847 4848 /* GG is now the master GOT, and G is the primary GOT. */ 4849 gg = g; 4850 g = g->next; 4851 4852 /* Map the output bfd to the primary got. That's what we're going 4853 to use for bfds that use GOT16 or GOT_PAGE relocations that we 4854 didn't mark in check_relocs, and we want a quick way to find it. 4855 We can't just use gg->next because we're going to reverse the 4856 list. */ 4857 mips_elf_replace_bfd_got (abfd, g); 4858 4859 /* Every symbol that is referenced in a dynamic relocation must be 4860 present in the primary GOT, so arrange for them to appear after 4861 those that are actually referenced. */ 4862 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno; 4863 g->global_gotno = gg->global_gotno; 4864 4865 tga.info = info; 4866 tga.value = GGA_RELOC_ONLY; 4867 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga); 4868 tga.value = GGA_NORMAL; 4869 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga); 4870 4871 /* Now go through the GOTs assigning them offset ranges. 4872 [assigned_low_gotno, local_gotno[ will be set to the range of local 4873 entries in each GOT. We can then compute the end of a GOT by 4874 adding local_gotno to global_gotno. We reverse the list and make 4875 it circular since then we'll be able to quickly compute the 4876 beginning of a GOT, by computing the end of its predecessor. To 4877 avoid special cases for the primary GOT, while still preserving 4878 assertions that are valid for both single- and multi-got links, 4879 we arrange for the main got struct to have the right number of 4880 global entries, but set its local_gotno such that the initial 4881 offset of the primary GOT is zero. Remember that the primary GOT 4882 will become the last item in the circular linked list, so it 4883 points back to the master GOT. */ 4884 gg->local_gotno = -g->global_gotno; 4885 gg->global_gotno = g->global_gotno; 4886 gg->tls_gotno = 0; 4887 assign = 0; 4888 gg->next = gg; 4889 4890 do 4891 { 4892 struct mips_got_info *gn; 4893 4894 assign += htab->reserved_gotno; 4895 g->assigned_low_gotno = assign; 4896 g->local_gotno += assign; 4897 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno); 4898 g->assigned_high_gotno = g->local_gotno - 1; 4899 assign = g->local_gotno + g->global_gotno + g->tls_gotno; 4900 4901 /* Take g out of the direct list, and push it onto the reversed 4902 list that gg points to. g->next is guaranteed to be nonnull after 4903 this operation, as required by mips_elf_initialize_tls_index. */ 4904 gn = g->next; 4905 g->next = gg->next; 4906 gg->next = g; 4907 4908 /* Set up any TLS entries. We always place the TLS entries after 4909 all non-TLS entries. */ 4910 g->tls_assigned_gotno = g->local_gotno + g->global_gotno; 4911 tga.g = g; 4912 tga.value = MIPS_ELF_GOT_SIZE (abfd); 4913 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga); 4914 if (!tga.g) 4915 return FALSE; 4916 BFD_ASSERT (g->tls_assigned_gotno == assign); 4917 4918 /* Move onto the next GOT. It will be a secondary GOT if nonull. */ 4919 g = gn; 4920 4921 /* Forbid global symbols in every non-primary GOT from having 4922 lazy-binding stubs. */ 4923 if (g) 4924 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info); 4925 } 4926 while (g); 4927 4928 got->size = assign * MIPS_ELF_GOT_SIZE (abfd); 4929 4930 needed_relocs = 0; 4931 for (g = gg->next; g && g->next != gg; g = g->next) 4932 { 4933 unsigned int save_assign; 4934 4935 /* Assign offsets to global GOT entries and count how many 4936 relocations they need. */ 4937 save_assign = g->assigned_low_gotno; 4938 g->assigned_low_gotno = g->local_gotno; 4939 tga.info = info; 4940 tga.value = MIPS_ELF_GOT_SIZE (abfd); 4941 tga.g = g; 4942 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga); 4943 if (!tga.g) 4944 return FALSE; 4945 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno); 4946 g->assigned_low_gotno = save_assign; 4947 4948 if (bfd_link_pic (info)) 4949 { 4950 g->relocs += g->local_gotno - g->assigned_low_gotno; 4951 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno 4952 + g->next->global_gotno 4953 + g->next->tls_gotno 4954 + htab->reserved_gotno); 4955 } 4956 needed_relocs += g->relocs; 4957 } 4958 needed_relocs += g->relocs; 4959 4960 if (needed_relocs) 4961 mips_elf_allocate_dynamic_relocations (dynobj, info, 4962 needed_relocs); 4963 4964 return TRUE; 4965 } 4966 4967 4968 /* Returns the first relocation of type r_type found, beginning with 4969 RELOCATION. RELEND is one-past-the-end of the relocation table. */ 4970 4971 static const Elf_Internal_Rela * 4972 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type, 4973 const Elf_Internal_Rela *relocation, 4974 const Elf_Internal_Rela *relend) 4975 { 4976 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info); 4977 4978 while (relocation < relend) 4979 { 4980 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type 4981 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx) 4982 return relocation; 4983 4984 ++relocation; 4985 } 4986 4987 /* We didn't find it. */ 4988 return NULL; 4989 } 4990 4991 /* Return whether an input relocation is against a local symbol. */ 4992 4993 static bfd_boolean 4994 mips_elf_local_relocation_p (bfd *input_bfd, 4995 const Elf_Internal_Rela *relocation, 4996 asection **local_sections) 4997 { 4998 unsigned long r_symndx; 4999 Elf_Internal_Shdr *symtab_hdr; 5000 size_t extsymoff; 5001 5002 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info); 5003 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; 5004 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info; 5005 5006 if (r_symndx < extsymoff) 5007 return TRUE; 5008 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL) 5009 return TRUE; 5010 5011 return FALSE; 5012 } 5013 5014 /* Sign-extend VALUE, which has the indicated number of BITS. */ 5015 5016 bfd_vma 5017 _bfd_mips_elf_sign_extend (bfd_vma value, int bits) 5018 { 5019 if (value & ((bfd_vma) 1 << (bits - 1))) 5020 /* VALUE is negative. */ 5021 value |= ((bfd_vma) - 1) << bits; 5022 5023 return value; 5024 } 5025 5026 /* Return non-zero if the indicated VALUE has overflowed the maximum 5027 range expressible by a signed number with the indicated number of 5028 BITS. */ 5029 5030 static bfd_boolean 5031 mips_elf_overflow_p (bfd_vma value, int bits) 5032 { 5033 bfd_signed_vma svalue = (bfd_signed_vma) value; 5034 5035 if (svalue > (1 << (bits - 1)) - 1) 5036 /* The value is too big. */ 5037 return TRUE; 5038 else if (svalue < -(1 << (bits - 1))) 5039 /* The value is too small. */ 5040 return TRUE; 5041 5042 /* All is well. */ 5043 return FALSE; 5044 } 5045 5046 /* Calculate the %high function. */ 5047 5048 static bfd_vma 5049 mips_elf_high (bfd_vma value) 5050 { 5051 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff; 5052 } 5053 5054 /* Calculate the %higher function. */ 5055 5056 static bfd_vma 5057 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED) 5058 { 5059 #ifdef BFD64 5060 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff; 5061 #else 5062 abort (); 5063 return MINUS_ONE; 5064 #endif 5065 } 5066 5067 /* Calculate the %highest function. */ 5068 5069 static bfd_vma 5070 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED) 5071 { 5072 #ifdef BFD64 5073 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff; 5074 #else 5075 abort (); 5076 return MINUS_ONE; 5077 #endif 5078 } 5079 5080 /* Create the .compact_rel section. */ 5081 5082 static bfd_boolean 5083 mips_elf_create_compact_rel_section 5084 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED) 5085 { 5086 flagword flags; 5087 register asection *s; 5088 5089 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL) 5090 { 5091 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED 5092 | SEC_READONLY); 5093 5094 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags); 5095 if (s == NULL 5096 || ! bfd_set_section_alignment (abfd, s, 5097 MIPS_ELF_LOG_FILE_ALIGN (abfd))) 5098 return FALSE; 5099 5100 s->size = sizeof (Elf32_External_compact_rel); 5101 } 5102 5103 return TRUE; 5104 } 5105 5106 /* Create the .got section to hold the global offset table. */ 5107 5108 static bfd_boolean 5109 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info) 5110 { 5111 flagword flags; 5112 register asection *s; 5113 struct elf_link_hash_entry *h; 5114 struct bfd_link_hash_entry *bh; 5115 struct mips_elf_link_hash_table *htab; 5116 5117 htab = mips_elf_hash_table (info); 5118 BFD_ASSERT (htab != NULL); 5119 5120 /* This function may be called more than once. */ 5121 if (htab->sgot) 5122 return TRUE; 5123 5124 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY 5125 | SEC_LINKER_CREATED); 5126 5127 /* We have to use an alignment of 2**4 here because this is hardcoded 5128 in the function stub generation and in the linker script. */ 5129 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags); 5130 if (s == NULL 5131 || ! bfd_set_section_alignment (abfd, s, 4)) 5132 return FALSE; 5133 htab->sgot = s; 5134 5135 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the 5136 linker script because we don't want to define the symbol if we 5137 are not creating a global offset table. */ 5138 bh = NULL; 5139 if (! (_bfd_generic_link_add_one_symbol 5140 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s, 5141 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh))) 5142 return FALSE; 5143 5144 h = (struct elf_link_hash_entry *) bh; 5145 h->non_elf = 0; 5146 h->def_regular = 1; 5147 h->type = STT_OBJECT; 5148 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN; 5149 elf_hash_table (info)->hgot = h; 5150 5151 if (bfd_link_pic (info) 5152 && ! bfd_elf_link_record_dynamic_symbol (info, h)) 5153 return FALSE; 5154 5155 htab->got_info = mips_elf_create_got_info (abfd); 5156 mips_elf_section_data (s)->elf.this_hdr.sh_flags 5157 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL; 5158 5159 /* We also need a .got.plt section when generating PLTs. */ 5160 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", 5161 SEC_ALLOC | SEC_LOAD 5162 | SEC_HAS_CONTENTS 5163 | SEC_IN_MEMORY 5164 | SEC_LINKER_CREATED); 5165 if (s == NULL) 5166 return FALSE; 5167 htab->sgotplt = s; 5168 5169 return TRUE; 5170 } 5171 5172 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or 5173 __GOTT_INDEX__ symbols. These symbols are only special for 5174 shared objects; they are not used in executables. */ 5175 5176 static bfd_boolean 5177 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h) 5178 { 5179 return (mips_elf_hash_table (info)->is_vxworks 5180 && bfd_link_pic (info) 5181 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0 5182 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0)); 5183 } 5184 5185 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might 5186 require an la25 stub. See also mips_elf_local_pic_function_p, 5187 which determines whether the destination function ever requires a 5188 stub. */ 5189 5190 static bfd_boolean 5191 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type, 5192 bfd_boolean target_is_16_bit_code_p) 5193 { 5194 /* We specifically ignore branches and jumps from EF_PIC objects, 5195 where the onus is on the compiler or programmer to perform any 5196 necessary initialization of $25. Sometimes such initialization 5197 is unnecessary; for example, -mno-shared functions do not use 5198 the incoming value of $25, and may therefore be called directly. */ 5199 if (PIC_OBJECT_P (input_bfd)) 5200 return FALSE; 5201 5202 switch (r_type) 5203 { 5204 case R_MIPS_26: 5205 case R_MIPS_PC16: 5206 case R_MIPS_PC21_S2: 5207 case R_MIPS_PC26_S2: 5208 case R_MICROMIPS_26_S1: 5209 case R_MICROMIPS_PC7_S1: 5210 case R_MICROMIPS_PC10_S1: 5211 case R_MICROMIPS_PC16_S1: 5212 case R_MICROMIPS_PC23_S2: 5213 return TRUE; 5214 5215 case R_MIPS16_26: 5216 return !target_is_16_bit_code_p; 5217 5218 default: 5219 return FALSE; 5220 } 5221 } 5222 5223 /* Calculate the value produced by the RELOCATION (which comes from 5224 the INPUT_BFD). The ADDEND is the addend to use for this 5225 RELOCATION; RELOCATION->R_ADDEND is ignored. 5226 5227 The result of the relocation calculation is stored in VALUEP. 5228 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field 5229 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa. 5230 5231 This function returns bfd_reloc_continue if the caller need take no 5232 further action regarding this relocation, bfd_reloc_notsupported if 5233 something goes dramatically wrong, bfd_reloc_overflow if an 5234 overflow occurs, and bfd_reloc_ok to indicate success. */ 5235 5236 static bfd_reloc_status_type 5237 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd, 5238 asection *input_section, 5239 struct bfd_link_info *info, 5240 const Elf_Internal_Rela *relocation, 5241 bfd_vma addend, reloc_howto_type *howto, 5242 Elf_Internal_Sym *local_syms, 5243 asection **local_sections, bfd_vma *valuep, 5244 const char **namep, 5245 bfd_boolean *cross_mode_jump_p, 5246 bfd_boolean save_addend) 5247 { 5248 /* The eventual value we will return. */ 5249 bfd_vma value; 5250 /* The address of the symbol against which the relocation is 5251 occurring. */ 5252 bfd_vma symbol = 0; 5253 /* The final GP value to be used for the relocatable, executable, or 5254 shared object file being produced. */ 5255 bfd_vma gp; 5256 /* The place (section offset or address) of the storage unit being 5257 relocated. */ 5258 bfd_vma p; 5259 /* The value of GP used to create the relocatable object. */ 5260 bfd_vma gp0; 5261 /* The offset into the global offset table at which the address of 5262 the relocation entry symbol, adjusted by the addend, resides 5263 during execution. */ 5264 bfd_vma g = MINUS_ONE; 5265 /* The section in which the symbol referenced by the relocation is 5266 located. */ 5267 asection *sec = NULL; 5268 struct mips_elf_link_hash_entry *h = NULL; 5269 /* TRUE if the symbol referred to by this relocation is a local 5270 symbol. */ 5271 bfd_boolean local_p, was_local_p; 5272 /* TRUE if the symbol referred to by this relocation is a section 5273 symbol. */ 5274 bfd_boolean section_p = FALSE; 5275 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */ 5276 bfd_boolean gp_disp_p = FALSE; 5277 /* TRUE if the symbol referred to by this relocation is 5278 "__gnu_local_gp". */ 5279 bfd_boolean gnu_local_gp_p = FALSE; 5280 Elf_Internal_Shdr *symtab_hdr; 5281 size_t extsymoff; 5282 unsigned long r_symndx; 5283 int r_type; 5284 /* TRUE if overflow occurred during the calculation of the 5285 relocation value. */ 5286 bfd_boolean overflowed_p; 5287 /* TRUE if this relocation refers to a MIPS16 function. */ 5288 bfd_boolean target_is_16_bit_code_p = FALSE; 5289 bfd_boolean target_is_micromips_code_p = FALSE; 5290 struct mips_elf_link_hash_table *htab; 5291 bfd *dynobj; 5292 5293 dynobj = elf_hash_table (info)->dynobj; 5294 htab = mips_elf_hash_table (info); 5295 BFD_ASSERT (htab != NULL); 5296 5297 /* Parse the relocation. */ 5298 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info); 5299 r_type = ELF_R_TYPE (input_bfd, relocation->r_info); 5300 p = (input_section->output_section->vma 5301 + input_section->output_offset 5302 + relocation->r_offset); 5303 5304 /* Assume that there will be no overflow. */ 5305 overflowed_p = FALSE; 5306 5307 /* Figure out whether or not the symbol is local, and get the offset 5308 used in the array of hash table entries. */ 5309 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; 5310 local_p = mips_elf_local_relocation_p (input_bfd, relocation, 5311 local_sections); 5312 was_local_p = local_p; 5313 if (! elf_bad_symtab (input_bfd)) 5314 extsymoff = symtab_hdr->sh_info; 5315 else 5316 { 5317 /* The symbol table does not follow the rule that local symbols 5318 must come before globals. */ 5319 extsymoff = 0; 5320 } 5321 5322 /* Figure out the value of the symbol. */ 5323 if (local_p) 5324 { 5325 Elf_Internal_Sym *sym; 5326 5327 sym = local_syms + r_symndx; 5328 sec = local_sections[r_symndx]; 5329 5330 section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION; 5331 5332 symbol = sec->output_section->vma + sec->output_offset; 5333 if (!section_p || (sec->flags & SEC_MERGE)) 5334 symbol += sym->st_value; 5335 if ((sec->flags & SEC_MERGE) && section_p) 5336 { 5337 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend); 5338 addend -= symbol; 5339 addend += sec->output_section->vma + sec->output_offset; 5340 } 5341 5342 /* MIPS16/microMIPS text labels should be treated as odd. */ 5343 if (ELF_ST_IS_COMPRESSED (sym->st_other)) 5344 ++symbol; 5345 5346 /* Record the name of this symbol, for our caller. */ 5347 *namep = bfd_elf_string_from_elf_section (input_bfd, 5348 symtab_hdr->sh_link, 5349 sym->st_name); 5350 if (*namep == NULL || **namep == '\0') 5351 *namep = bfd_section_name (input_bfd, sec); 5352 5353 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other); 5354 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other); 5355 } 5356 else 5357 { 5358 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */ 5359 5360 /* For global symbols we look up the symbol in the hash-table. */ 5361 h = ((struct mips_elf_link_hash_entry *) 5362 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]); 5363 /* Find the real hash-table entry for this symbol. */ 5364 while (h->root.root.type == bfd_link_hash_indirect 5365 || h->root.root.type == bfd_link_hash_warning) 5366 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; 5367 5368 /* Record the name of this symbol, for our caller. */ 5369 *namep = h->root.root.root.string; 5370 5371 /* See if this is the special _gp_disp symbol. Note that such a 5372 symbol must always be a global symbol. */ 5373 if (strcmp (*namep, "_gp_disp") == 0 5374 && ! NEWABI_P (input_bfd)) 5375 { 5376 /* Relocations against _gp_disp are permitted only with 5377 R_MIPS_HI16 and R_MIPS_LO16 relocations. */ 5378 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type)) 5379 return bfd_reloc_notsupported; 5380 5381 gp_disp_p = TRUE; 5382 } 5383 /* See if this is the special _gp symbol. Note that such a 5384 symbol must always be a global symbol. */ 5385 else if (strcmp (*namep, "__gnu_local_gp") == 0) 5386 gnu_local_gp_p = TRUE; 5387 5388 5389 /* If this symbol is defined, calculate its address. Note that 5390 _gp_disp is a magic symbol, always implicitly defined by the 5391 linker, so it's inappropriate to check to see whether or not 5392 its defined. */ 5393 else if ((h->root.root.type == bfd_link_hash_defined 5394 || h->root.root.type == bfd_link_hash_defweak) 5395 && h->root.root.u.def.section) 5396 { 5397 sec = h->root.root.u.def.section; 5398 if (sec->output_section) 5399 symbol = (h->root.root.u.def.value 5400 + sec->output_section->vma 5401 + sec->output_offset); 5402 else 5403 symbol = h->root.root.u.def.value; 5404 } 5405 else if (h->root.root.type == bfd_link_hash_undefweak) 5406 /* We allow relocations against undefined weak symbols, giving 5407 it the value zero, so that you can undefined weak functions 5408 and check to see if they exist by looking at their 5409 addresses. */ 5410 symbol = 0; 5411 else if (info->unresolved_syms_in_objects == RM_IGNORE 5412 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT) 5413 symbol = 0; 5414 else if (strcmp (*namep, SGI_COMPAT (input_bfd) 5415 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0) 5416 { 5417 /* If this is a dynamic link, we should have created a 5418 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol 5419 in in _bfd_mips_elf_create_dynamic_sections. 5420 Otherwise, we should define the symbol with a value of 0. 5421 FIXME: It should probably get into the symbol table 5422 somehow as well. */ 5423 BFD_ASSERT (! bfd_link_pic (info)); 5424 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL); 5425 symbol = 0; 5426 } 5427 else if (ELF_MIPS_IS_OPTIONAL (h->root.other)) 5428 { 5429 /* This is an optional symbol - an Irix specific extension to the 5430 ELF spec. Ignore it for now. 5431 XXX - FIXME - there is more to the spec for OPTIONAL symbols 5432 than simply ignoring them, but we do not handle this for now. 5433 For information see the "64-bit ELF Object File Specification" 5434 which is available from here: 5435 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */ 5436 symbol = 0; 5437 } 5438 else 5439 { 5440 (*info->callbacks->undefined_symbol) 5441 (info, h->root.root.root.string, input_bfd, 5442 input_section, relocation->r_offset, 5443 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR) 5444 || ELF_ST_VISIBILITY (h->root.other)); 5445 return bfd_reloc_undefined; 5446 } 5447 5448 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other); 5449 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other); 5450 } 5451 5452 /* If this is a reference to a 16-bit function with a stub, we need 5453 to redirect the relocation to the stub unless: 5454 5455 (a) the relocation is for a MIPS16 JAL; 5456 5457 (b) the relocation is for a MIPS16 PIC call, and there are no 5458 non-MIPS16 uses of the GOT slot; or 5459 5460 (c) the section allows direct references to MIPS16 functions. */ 5461 if (r_type != R_MIPS16_26 5462 && !bfd_link_relocatable (info) 5463 && ((h != NULL 5464 && h->fn_stub != NULL 5465 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub)) 5466 || (local_p 5467 && mips_elf_tdata (input_bfd)->local_stubs != NULL 5468 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL)) 5469 && !section_allows_mips16_refs_p (input_section)) 5470 { 5471 /* This is a 32- or 64-bit call to a 16-bit function. We should 5472 have already noticed that we were going to need the 5473 stub. */ 5474 if (local_p) 5475 { 5476 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx]; 5477 value = 0; 5478 } 5479 else 5480 { 5481 BFD_ASSERT (h->need_fn_stub); 5482 if (h->la25_stub) 5483 { 5484 /* If a LA25 header for the stub itself exists, point to the 5485 prepended LUI/ADDIU sequence. */ 5486 sec = h->la25_stub->stub_section; 5487 value = h->la25_stub->offset; 5488 } 5489 else 5490 { 5491 sec = h->fn_stub; 5492 value = 0; 5493 } 5494 } 5495 5496 symbol = sec->output_section->vma + sec->output_offset + value; 5497 /* The target is 16-bit, but the stub isn't. */ 5498 target_is_16_bit_code_p = FALSE; 5499 } 5500 /* If this is a MIPS16 call with a stub, that is made through the PLT or 5501 to a standard MIPS function, we need to redirect the call to the stub. 5502 Note that we specifically exclude R_MIPS16_CALL16 from this behavior; 5503 indirect calls should use an indirect stub instead. */ 5504 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info) 5505 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL)) 5506 || (local_p 5507 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL 5508 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL)) 5509 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p)) 5510 { 5511 if (local_p) 5512 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx]; 5513 else 5514 { 5515 /* If both call_stub and call_fp_stub are defined, we can figure 5516 out which one to use by checking which one appears in the input 5517 file. */ 5518 if (h->call_stub != NULL && h->call_fp_stub != NULL) 5519 { 5520 asection *o; 5521 5522 sec = NULL; 5523 for (o = input_bfd->sections; o != NULL; o = o->next) 5524 { 5525 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o))) 5526 { 5527 sec = h->call_fp_stub; 5528 break; 5529 } 5530 } 5531 if (sec == NULL) 5532 sec = h->call_stub; 5533 } 5534 else if (h->call_stub != NULL) 5535 sec = h->call_stub; 5536 else 5537 sec = h->call_fp_stub; 5538 } 5539 5540 BFD_ASSERT (sec->size > 0); 5541 symbol = sec->output_section->vma + sec->output_offset; 5542 } 5543 /* If this is a direct call to a PIC function, redirect to the 5544 non-PIC stub. */ 5545 else if (h != NULL && h->la25_stub 5546 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type, 5547 target_is_16_bit_code_p)) 5548 symbol = (h->la25_stub->stub_section->output_section->vma 5549 + h->la25_stub->stub_section->output_offset 5550 + h->la25_stub->offset); 5551 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT 5552 entry is used if a standard PLT entry has also been made. In this 5553 case the symbol will have been set by mips_elf_set_plt_sym_value 5554 to point to the standard PLT entry, so redirect to the compressed 5555 one. */ 5556 else if ((r_type == R_MIPS16_26 || r_type == R_MICROMIPS_26_S1) 5557 && !bfd_link_relocatable (info) 5558 && h != NULL 5559 && h->use_plt_entry 5560 && h->root.plt.plist->comp_offset != MINUS_ONE 5561 && h->root.plt.plist->mips_offset != MINUS_ONE) 5562 { 5563 bfd_boolean micromips_p = MICROMIPS_P (abfd); 5564 5565 sec = htab->splt; 5566 symbol = (sec->output_section->vma 5567 + sec->output_offset 5568 + htab->plt_header_size 5569 + htab->plt_mips_offset 5570 + h->root.plt.plist->comp_offset 5571 + 1); 5572 5573 target_is_16_bit_code_p = !micromips_p; 5574 target_is_micromips_code_p = micromips_p; 5575 } 5576 5577 /* Make sure MIPS16 and microMIPS are not used together. */ 5578 if ((mips16_branch_reloc_p (r_type) && target_is_micromips_code_p) 5579 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p)) 5580 { 5581 (*_bfd_error_handler) 5582 (_("MIPS16 and microMIPS functions cannot call each other")); 5583 return bfd_reloc_notsupported; 5584 } 5585 5586 /* Calls from 16-bit code to 32-bit code and vice versa require the 5587 mode change. However, we can ignore calls to undefined weak symbols, 5588 which should never be executed at runtime. This exception is important 5589 because the assembly writer may have "known" that any definition of the 5590 symbol would be 16-bit code, and that direct jumps were therefore 5591 acceptable. */ 5592 *cross_mode_jump_p = (!bfd_link_relocatable (info) 5593 && !(h && h->root.root.type == bfd_link_hash_undefweak) 5594 && ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p) 5595 || (r_type == R_MICROMIPS_26_S1 5596 && !target_is_micromips_code_p) 5597 || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR) 5598 && (target_is_16_bit_code_p 5599 || target_is_micromips_code_p)))); 5600 5601 local_p = (h == NULL || mips_use_local_got_p (info, h)); 5602 5603 gp0 = _bfd_get_gp_value (input_bfd); 5604 gp = _bfd_get_gp_value (abfd); 5605 if (htab->got_info) 5606 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd); 5607 5608 if (gnu_local_gp_p) 5609 symbol = gp; 5610 5611 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent 5612 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the 5613 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */ 5614 if (got_page_reloc_p (r_type) && !local_p) 5615 { 5616 r_type = (micromips_reloc_p (r_type) 5617 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP); 5618 addend = 0; 5619 } 5620 5621 /* If we haven't already determined the GOT offset, and we're going 5622 to need it, get it now. */ 5623 switch (r_type) 5624 { 5625 case R_MIPS16_CALL16: 5626 case R_MIPS16_GOT16: 5627 case R_MIPS_CALL16: 5628 case R_MIPS_GOT16: 5629 case R_MIPS_GOT_DISP: 5630 case R_MIPS_GOT_HI16: 5631 case R_MIPS_CALL_HI16: 5632 case R_MIPS_GOT_LO16: 5633 case R_MIPS_CALL_LO16: 5634 case R_MICROMIPS_CALL16: 5635 case R_MICROMIPS_GOT16: 5636 case R_MICROMIPS_GOT_DISP: 5637 case R_MICROMIPS_GOT_HI16: 5638 case R_MICROMIPS_CALL_HI16: 5639 case R_MICROMIPS_GOT_LO16: 5640 case R_MICROMIPS_CALL_LO16: 5641 case R_MIPS_TLS_GD: 5642 case R_MIPS_TLS_GOTTPREL: 5643 case R_MIPS_TLS_LDM: 5644 case R_MIPS16_TLS_GD: 5645 case R_MIPS16_TLS_GOTTPREL: 5646 case R_MIPS16_TLS_LDM: 5647 case R_MICROMIPS_TLS_GD: 5648 case R_MICROMIPS_TLS_GOTTPREL: 5649 case R_MICROMIPS_TLS_LDM: 5650 /* Find the index into the GOT where this value is located. */ 5651 if (tls_ldm_reloc_p (r_type)) 5652 { 5653 g = mips_elf_local_got_index (abfd, input_bfd, info, 5654 0, 0, NULL, r_type); 5655 if (g == MINUS_ONE) 5656 return bfd_reloc_outofrange; 5657 } 5658 else if (!local_p) 5659 { 5660 /* On VxWorks, CALL relocations should refer to the .got.plt 5661 entry, which is initialized to point at the PLT stub. */ 5662 if (htab->is_vxworks 5663 && (call_hi16_reloc_p (r_type) 5664 || call_lo16_reloc_p (r_type) 5665 || call16_reloc_p (r_type))) 5666 { 5667 BFD_ASSERT (addend == 0); 5668 BFD_ASSERT (h->root.needs_plt); 5669 g = mips_elf_gotplt_index (info, &h->root); 5670 } 5671 else 5672 { 5673 BFD_ASSERT (addend == 0); 5674 g = mips_elf_global_got_index (abfd, info, input_bfd, 5675 &h->root, r_type); 5676 if (!TLS_RELOC_P (r_type) 5677 && !elf_hash_table (info)->dynamic_sections_created) 5678 /* This is a static link. We must initialize the GOT entry. */ 5679 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g); 5680 } 5681 } 5682 else if (!htab->is_vxworks 5683 && (call16_reloc_p (r_type) || got16_reloc_p (r_type))) 5684 /* The calculation below does not involve "g". */ 5685 break; 5686 else 5687 { 5688 g = mips_elf_local_got_index (abfd, input_bfd, info, 5689 symbol + addend, r_symndx, h, r_type); 5690 if (g == MINUS_ONE) 5691 return bfd_reloc_outofrange; 5692 } 5693 5694 /* Convert GOT indices to actual offsets. */ 5695 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g); 5696 break; 5697 } 5698 5699 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__ 5700 symbols are resolved by the loader. Add them to .rela.dyn. */ 5701 if (h != NULL && is_gott_symbol (info, &h->root)) 5702 { 5703 Elf_Internal_Rela outrel; 5704 bfd_byte *loc; 5705 asection *s; 5706 5707 s = mips_elf_rel_dyn_section (info, FALSE); 5708 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela); 5709 5710 outrel.r_offset = (input_section->output_section->vma 5711 + input_section->output_offset 5712 + relocation->r_offset); 5713 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type); 5714 outrel.r_addend = addend; 5715 bfd_elf32_swap_reloca_out (abfd, &outrel, loc); 5716 5717 /* If we've written this relocation for a readonly section, 5718 we need to set DF_TEXTREL again, so that we do not delete the 5719 DT_TEXTREL tag. */ 5720 if (MIPS_ELF_READONLY_SECTION (input_section)) 5721 info->flags |= DF_TEXTREL; 5722 5723 *valuep = 0; 5724 return bfd_reloc_ok; 5725 } 5726 5727 /* Figure out what kind of relocation is being performed. */ 5728 switch (r_type) 5729 { 5730 case R_MIPS_NONE: 5731 return bfd_reloc_continue; 5732 5733 case R_MIPS_16: 5734 if (howto->partial_inplace) 5735 addend = _bfd_mips_elf_sign_extend (addend, 16); 5736 value = symbol + addend; 5737 overflowed_p = mips_elf_overflow_p (value, 16); 5738 break; 5739 5740 case R_MIPS_32: 5741 case R_MIPS_REL32: 5742 case R_MIPS_64: 5743 if ((bfd_link_pic (info) 5744 || (htab->root.dynamic_sections_created 5745 && h != NULL 5746 && h->root.def_dynamic 5747 && !h->root.def_regular 5748 && !h->has_static_relocs)) 5749 && r_symndx != STN_UNDEF 5750 && (h == NULL 5751 || h->root.root.type != bfd_link_hash_undefweak 5752 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT) 5753 && (input_section->flags & SEC_ALLOC) != 0) 5754 { 5755 /* If we're creating a shared library, then we can't know 5756 where the symbol will end up. So, we create a relocation 5757 record in the output, and leave the job up to the dynamic 5758 linker. We must do the same for executable references to 5759 shared library symbols, unless we've decided to use copy 5760 relocs or PLTs instead. */ 5761 value = addend; 5762 if (!mips_elf_create_dynamic_relocation (abfd, 5763 info, 5764 relocation, 5765 h, 5766 sec, 5767 symbol, 5768 &value, 5769 input_section)) 5770 return bfd_reloc_undefined; 5771 } 5772 else 5773 { 5774 if (r_type != R_MIPS_REL32) 5775 value = symbol + addend; 5776 else 5777 value = addend; 5778 } 5779 value &= howto->dst_mask; 5780 break; 5781 5782 case R_MIPS_PC32: 5783 value = symbol + addend - p; 5784 value &= howto->dst_mask; 5785 break; 5786 5787 case R_MIPS16_26: 5788 /* The calculation for R_MIPS16_26 is just the same as for an 5789 R_MIPS_26. It's only the storage of the relocated field into 5790 the output file that's different. That's handled in 5791 mips_elf_perform_relocation. So, we just fall through to the 5792 R_MIPS_26 case here. */ 5793 case R_MIPS_26: 5794 case R_MICROMIPS_26_S1: 5795 { 5796 unsigned int shift; 5797 5798 /* Shift is 2, unusually, for microMIPS JALX. */ 5799 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2; 5800 5801 if (howto->partial_inplace && !section_p) 5802 value = _bfd_mips_elf_sign_extend (addend, 26 + shift); 5803 else 5804 value = addend; 5805 value += symbol; 5806 5807 /* Make sure the target of JALX is word-aligned. Bit 0 must be 5808 the correct ISA mode selector and bit 1 must be 0. */ 5809 if (*cross_mode_jump_p && (value & 3) != (r_type == R_MIPS_26)) 5810 return bfd_reloc_outofrange; 5811 5812 value >>= shift; 5813 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) 5814 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift)); 5815 value &= howto->dst_mask; 5816 } 5817 break; 5818 5819 case R_MIPS_TLS_DTPREL_HI16: 5820 case R_MIPS16_TLS_DTPREL_HI16: 5821 case R_MICROMIPS_TLS_DTPREL_HI16: 5822 value = (mips_elf_high (addend + symbol - dtprel_base (info)) 5823 & howto->dst_mask); 5824 break; 5825 5826 case R_MIPS_TLS_DTPREL_LO16: 5827 case R_MIPS_TLS_DTPREL32: 5828 case R_MIPS_TLS_DTPREL64: 5829 case R_MIPS16_TLS_DTPREL_LO16: 5830 case R_MICROMIPS_TLS_DTPREL_LO16: 5831 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask; 5832 break; 5833 5834 case R_MIPS_TLS_TPREL_HI16: 5835 case R_MIPS16_TLS_TPREL_HI16: 5836 case R_MICROMIPS_TLS_TPREL_HI16: 5837 value = (mips_elf_high (addend + symbol - tprel_base (info)) 5838 & howto->dst_mask); 5839 break; 5840 5841 case R_MIPS_TLS_TPREL_LO16: 5842 case R_MIPS_TLS_TPREL32: 5843 case R_MIPS_TLS_TPREL64: 5844 case R_MIPS16_TLS_TPREL_LO16: 5845 case R_MICROMIPS_TLS_TPREL_LO16: 5846 value = (symbol + addend - tprel_base (info)) & howto->dst_mask; 5847 break; 5848 5849 case R_MIPS_HI16: 5850 case R_MIPS16_HI16: 5851 case R_MICROMIPS_HI16: 5852 if (!gp_disp_p) 5853 { 5854 value = mips_elf_high (addend + symbol); 5855 value &= howto->dst_mask; 5856 } 5857 else 5858 { 5859 /* For MIPS16 ABI code we generate this sequence 5860 0: li $v0,%hi(_gp_disp) 5861 4: addiupc $v1,%lo(_gp_disp) 5862 8: sll $v0,16 5863 12: addu $v0,$v1 5864 14: move $gp,$v0 5865 So the offsets of hi and lo relocs are the same, but the 5866 base $pc is that used by the ADDIUPC instruction at $t9 + 4. 5867 ADDIUPC clears the low two bits of the instruction address, 5868 so the base is ($t9 + 4) & ~3. */ 5869 if (r_type == R_MIPS16_HI16) 5870 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3)); 5871 /* The microMIPS .cpload sequence uses the same assembly 5872 instructions as the traditional psABI version, but the 5873 incoming $t9 has the low bit set. */ 5874 else if (r_type == R_MICROMIPS_HI16) 5875 value = mips_elf_high (addend + gp - p - 1); 5876 else 5877 value = mips_elf_high (addend + gp - p); 5878 overflowed_p = mips_elf_overflow_p (value, 16); 5879 } 5880 break; 5881 5882 case R_MIPS_LO16: 5883 case R_MIPS16_LO16: 5884 case R_MICROMIPS_LO16: 5885 case R_MICROMIPS_HI0_LO16: 5886 if (!gp_disp_p) 5887 value = (symbol + addend) & howto->dst_mask; 5888 else 5889 { 5890 /* See the comment for R_MIPS16_HI16 above for the reason 5891 for this conditional. */ 5892 if (r_type == R_MIPS16_LO16) 5893 value = addend + gp - (p & ~(bfd_vma) 0x3); 5894 else if (r_type == R_MICROMIPS_LO16 5895 || r_type == R_MICROMIPS_HI0_LO16) 5896 value = addend + gp - p + 3; 5897 else 5898 value = addend + gp - p + 4; 5899 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation 5900 for overflow. But, on, say, IRIX5, relocations against 5901 _gp_disp are normally generated from the .cpload 5902 pseudo-op. It generates code that normally looks like 5903 this: 5904 5905 lui $gp,%hi(_gp_disp) 5906 addiu $gp,$gp,%lo(_gp_disp) 5907 addu $gp,$gp,$t9 5908 5909 Here $t9 holds the address of the function being called, 5910 as required by the MIPS ELF ABI. The R_MIPS_LO16 5911 relocation can easily overflow in this situation, but the 5912 R_MIPS_HI16 relocation will handle the overflow. 5913 Therefore, we consider this a bug in the MIPS ABI, and do 5914 not check for overflow here. */ 5915 } 5916 break; 5917 5918 case R_MIPS_LITERAL: 5919 case R_MICROMIPS_LITERAL: 5920 /* Because we don't merge literal sections, we can handle this 5921 just like R_MIPS_GPREL16. In the long run, we should merge 5922 shared literals, and then we will need to additional work 5923 here. */ 5924 5925 /* Fall through. */ 5926 5927 case R_MIPS16_GPREL: 5928 /* The R_MIPS16_GPREL performs the same calculation as 5929 R_MIPS_GPREL16, but stores the relocated bits in a different 5930 order. We don't need to do anything special here; the 5931 differences are handled in mips_elf_perform_relocation. */ 5932 case R_MIPS_GPREL16: 5933 case R_MICROMIPS_GPREL7_S2: 5934 case R_MICROMIPS_GPREL16: 5935 /* Only sign-extend the addend if it was extracted from the 5936 instruction. If the addend was separate, leave it alone, 5937 otherwise we may lose significant bits. */ 5938 if (howto->partial_inplace) 5939 addend = _bfd_mips_elf_sign_extend (addend, 16); 5940 value = symbol + addend - gp; 5941 /* If the symbol was local, any earlier relocatable links will 5942 have adjusted its addend with the gp offset, so compensate 5943 for that now. Don't do it for symbols forced local in this 5944 link, though, since they won't have had the gp offset applied 5945 to them before. */ 5946 if (was_local_p) 5947 value += gp0; 5948 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) 5949 overflowed_p = mips_elf_overflow_p (value, 16); 5950 break; 5951 5952 case R_MIPS16_GOT16: 5953 case R_MIPS16_CALL16: 5954 case R_MIPS_GOT16: 5955 case R_MIPS_CALL16: 5956 case R_MICROMIPS_GOT16: 5957 case R_MICROMIPS_CALL16: 5958 /* VxWorks does not have separate local and global semantics for 5959 R_MIPS*_GOT16; every relocation evaluates to "G". */ 5960 if (!htab->is_vxworks && local_p) 5961 { 5962 value = mips_elf_got16_entry (abfd, input_bfd, info, 5963 symbol + addend, !was_local_p); 5964 if (value == MINUS_ONE) 5965 return bfd_reloc_outofrange; 5966 value 5967 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value); 5968 overflowed_p = mips_elf_overflow_p (value, 16); 5969 break; 5970 } 5971 5972 /* Fall through. */ 5973 5974 case R_MIPS_TLS_GD: 5975 case R_MIPS_TLS_GOTTPREL: 5976 case R_MIPS_TLS_LDM: 5977 case R_MIPS_GOT_DISP: 5978 case R_MIPS16_TLS_GD: 5979 case R_MIPS16_TLS_GOTTPREL: 5980 case R_MIPS16_TLS_LDM: 5981 case R_MICROMIPS_TLS_GD: 5982 case R_MICROMIPS_TLS_GOTTPREL: 5983 case R_MICROMIPS_TLS_LDM: 5984 case R_MICROMIPS_GOT_DISP: 5985 value = g; 5986 overflowed_p = mips_elf_overflow_p (value, 16); 5987 break; 5988 5989 case R_MIPS_GPREL32: 5990 value = (addend + symbol + gp0 - gp); 5991 if (!save_addend) 5992 value &= howto->dst_mask; 5993 break; 5994 5995 case R_MIPS_PC16: 5996 case R_MIPS_GNU_REL16_S2: 5997 if (howto->partial_inplace) 5998 addend = _bfd_mips_elf_sign_extend (addend, 18); 5999 6000 if ((symbol + addend) & 3) 6001 return bfd_reloc_outofrange; 6002 6003 value = symbol + addend - p; 6004 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) 6005 overflowed_p = mips_elf_overflow_p (value, 18); 6006 value >>= howto->rightshift; 6007 value &= howto->dst_mask; 6008 break; 6009 6010 case R_MIPS16_PC16_S1: 6011 if (howto->partial_inplace) 6012 addend = _bfd_mips_elf_sign_extend (addend, 17); 6013 6014 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak) 6015 && ((symbol + addend) & 1) == 0) 6016 return bfd_reloc_outofrange; 6017 6018 value = symbol + addend - p; 6019 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) 6020 overflowed_p = mips_elf_overflow_p (value, 17); 6021 value >>= howto->rightshift; 6022 value &= howto->dst_mask; 6023 break; 6024 6025 case R_MIPS_PC21_S2: 6026 if (howto->partial_inplace) 6027 addend = _bfd_mips_elf_sign_extend (addend, 23); 6028 6029 if ((symbol + addend) & 3) 6030 return bfd_reloc_outofrange; 6031 6032 value = symbol + addend - p; 6033 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) 6034 overflowed_p = mips_elf_overflow_p (value, 23); 6035 value >>= howto->rightshift; 6036 value &= howto->dst_mask; 6037 break; 6038 6039 case R_MIPS_PC26_S2: 6040 if (howto->partial_inplace) 6041 addend = _bfd_mips_elf_sign_extend (addend, 28); 6042 6043 if ((symbol + addend) & 3) 6044 return bfd_reloc_outofrange; 6045 6046 value = symbol + addend - p; 6047 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) 6048 overflowed_p = mips_elf_overflow_p (value, 28); 6049 value >>= howto->rightshift; 6050 value &= howto->dst_mask; 6051 break; 6052 6053 case R_MIPS_PC18_S3: 6054 if (howto->partial_inplace) 6055 addend = _bfd_mips_elf_sign_extend (addend, 21); 6056 6057 if ((symbol + addend) & 7) 6058 return bfd_reloc_outofrange; 6059 6060 value = symbol + addend - ((p | 7) ^ 7); 6061 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) 6062 overflowed_p = mips_elf_overflow_p (value, 21); 6063 value >>= howto->rightshift; 6064 value &= howto->dst_mask; 6065 break; 6066 6067 case R_MIPS_PC19_S2: 6068 if (howto->partial_inplace) 6069 addend = _bfd_mips_elf_sign_extend (addend, 21); 6070 6071 if ((symbol + addend) & 3) 6072 return bfd_reloc_outofrange; 6073 6074 value = symbol + addend - p; 6075 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) 6076 overflowed_p = mips_elf_overflow_p (value, 21); 6077 value >>= howto->rightshift; 6078 value &= howto->dst_mask; 6079 break; 6080 6081 case R_MIPS_PCHI16: 6082 value = mips_elf_high (symbol + addend - p); 6083 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) 6084 overflowed_p = mips_elf_overflow_p (value, 16); 6085 value &= howto->dst_mask; 6086 break; 6087 6088 case R_MIPS_PCLO16: 6089 if (howto->partial_inplace) 6090 addend = _bfd_mips_elf_sign_extend (addend, 16); 6091 value = symbol + addend - p; 6092 value &= howto->dst_mask; 6093 break; 6094 6095 case R_MICROMIPS_PC7_S1: 6096 if (howto->partial_inplace) 6097 addend = _bfd_mips_elf_sign_extend (addend, 8); 6098 value = symbol + addend - p; 6099 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) 6100 overflowed_p = mips_elf_overflow_p (value, 8); 6101 value >>= howto->rightshift; 6102 value &= howto->dst_mask; 6103 break; 6104 6105 case R_MICROMIPS_PC10_S1: 6106 if (howto->partial_inplace) 6107 addend = _bfd_mips_elf_sign_extend (addend, 11); 6108 value = symbol + addend - p; 6109 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) 6110 overflowed_p = mips_elf_overflow_p (value, 11); 6111 value >>= howto->rightshift; 6112 value &= howto->dst_mask; 6113 break; 6114 6115 case R_MICROMIPS_PC16_S1: 6116 if (howto->partial_inplace) 6117 addend = _bfd_mips_elf_sign_extend (addend, 17); 6118 value = symbol + addend - p; 6119 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) 6120 overflowed_p = mips_elf_overflow_p (value, 17); 6121 value >>= howto->rightshift; 6122 value &= howto->dst_mask; 6123 break; 6124 6125 case R_MICROMIPS_PC23_S2: 6126 if (howto->partial_inplace) 6127 addend = _bfd_mips_elf_sign_extend (addend, 25); 6128 value = symbol + addend - ((p | 3) ^ 3); 6129 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) 6130 overflowed_p = mips_elf_overflow_p (value, 25); 6131 value >>= howto->rightshift; 6132 value &= howto->dst_mask; 6133 break; 6134 6135 case R_MIPS_GOT_HI16: 6136 case R_MIPS_CALL_HI16: 6137 case R_MICROMIPS_GOT_HI16: 6138 case R_MICROMIPS_CALL_HI16: 6139 /* We're allowed to handle these two relocations identically. 6140 The dynamic linker is allowed to handle the CALL relocations 6141 differently by creating a lazy evaluation stub. */ 6142 value = g; 6143 value = mips_elf_high (value); 6144 value &= howto->dst_mask; 6145 break; 6146 6147 case R_MIPS_GOT_LO16: 6148 case R_MIPS_CALL_LO16: 6149 case R_MICROMIPS_GOT_LO16: 6150 case R_MICROMIPS_CALL_LO16: 6151 value = g & howto->dst_mask; 6152 break; 6153 6154 case R_MIPS_GOT_PAGE: 6155 case R_MICROMIPS_GOT_PAGE: 6156 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL); 6157 if (value == MINUS_ONE) 6158 return bfd_reloc_outofrange; 6159 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value); 6160 overflowed_p = mips_elf_overflow_p (value, 16); 6161 break; 6162 6163 case R_MIPS_GOT_OFST: 6164 case R_MICROMIPS_GOT_OFST: 6165 if (local_p) 6166 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value); 6167 else 6168 value = addend; 6169 overflowed_p = mips_elf_overflow_p (value, 16); 6170 break; 6171 6172 case R_MIPS_SUB: 6173 case R_MICROMIPS_SUB: 6174 value = symbol - addend; 6175 value &= howto->dst_mask; 6176 break; 6177 6178 case R_MIPS_HIGHER: 6179 case R_MICROMIPS_HIGHER: 6180 value = mips_elf_higher (addend + symbol); 6181 value &= howto->dst_mask; 6182 break; 6183 6184 case R_MIPS_HIGHEST: 6185 case R_MICROMIPS_HIGHEST: 6186 value = mips_elf_highest (addend + symbol); 6187 value &= howto->dst_mask; 6188 break; 6189 6190 case R_MIPS_SCN_DISP: 6191 case R_MICROMIPS_SCN_DISP: 6192 value = symbol + addend - sec->output_offset; 6193 value &= howto->dst_mask; 6194 break; 6195 6196 case R_MIPS_JALR: 6197 case R_MICROMIPS_JALR: 6198 /* This relocation is only a hint. In some cases, we optimize 6199 it into a bal instruction. But we don't try to optimize 6200 when the symbol does not resolve locally. */ 6201 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root)) 6202 return bfd_reloc_continue; 6203 value = symbol + addend; 6204 break; 6205 6206 case R_MIPS_PJUMP: 6207 case R_MIPS_GNU_VTINHERIT: 6208 case R_MIPS_GNU_VTENTRY: 6209 /* We don't do anything with these at present. */ 6210 return bfd_reloc_continue; 6211 6212 default: 6213 /* An unrecognized relocation type. */ 6214 return bfd_reloc_notsupported; 6215 } 6216 6217 /* Store the VALUE for our caller. */ 6218 *valuep = value; 6219 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok; 6220 } 6221 6222 /* Obtain the field relocated by RELOCATION. */ 6223 6224 static bfd_vma 6225 mips_elf_obtain_contents (reloc_howto_type *howto, 6226 const Elf_Internal_Rela *relocation, 6227 bfd *input_bfd, bfd_byte *contents) 6228 { 6229 bfd_vma x = 0; 6230 bfd_byte *location = contents + relocation->r_offset; 6231 unsigned int size = bfd_get_reloc_size (howto); 6232 6233 /* Obtain the bytes. */ 6234 if (size != 0) 6235 x = bfd_get (8 * size, input_bfd, location); 6236 6237 return x; 6238 } 6239 6240 /* It has been determined that the result of the RELOCATION is the 6241 VALUE. Use HOWTO to place VALUE into the output file at the 6242 appropriate position. The SECTION is the section to which the 6243 relocation applies. 6244 CROSS_MODE_JUMP_P is true if the relocation field 6245 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa. 6246 6247 Returns FALSE if anything goes wrong. */ 6248 6249 static bfd_boolean 6250 mips_elf_perform_relocation (struct bfd_link_info *info, 6251 reloc_howto_type *howto, 6252 const Elf_Internal_Rela *relocation, 6253 bfd_vma value, bfd *input_bfd, 6254 asection *input_section, bfd_byte *contents, 6255 bfd_boolean cross_mode_jump_p) 6256 { 6257 bfd_vma x; 6258 bfd_byte *location; 6259 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info); 6260 unsigned int size; 6261 6262 /* Figure out where the relocation is occurring. */ 6263 location = contents + relocation->r_offset; 6264 6265 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location); 6266 6267 /* Obtain the current value. */ 6268 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents); 6269 6270 /* Clear the field we are setting. */ 6271 x &= ~howto->dst_mask; 6272 6273 /* Set the field. */ 6274 x |= (value & howto->dst_mask); 6275 6276 /* If required, turn JAL into JALX. */ 6277 if (cross_mode_jump_p && jal_reloc_p (r_type)) 6278 { 6279 bfd_boolean ok; 6280 bfd_vma opcode = x >> 26; 6281 bfd_vma jalx_opcode; 6282 6283 /* Check to see if the opcode is already JAL or JALX. */ 6284 if (r_type == R_MIPS16_26) 6285 { 6286 ok = ((opcode == 0x6) || (opcode == 0x7)); 6287 jalx_opcode = 0x7; 6288 } 6289 else if (r_type == R_MICROMIPS_26_S1) 6290 { 6291 ok = ((opcode == 0x3d) || (opcode == 0x3c)); 6292 jalx_opcode = 0x3c; 6293 } 6294 else 6295 { 6296 ok = ((opcode == 0x3) || (opcode == 0x1d)); 6297 jalx_opcode = 0x1d; 6298 } 6299 6300 /* If the opcode is not JAL or JALX, there's a problem. We cannot 6301 convert J or JALS to JALX. */ 6302 if (!ok) 6303 { 6304 info->callbacks->einfo 6305 (_("%X%H: Unsupported jump between ISA modes; " 6306 "consider recompiling with interlinking enabled\n"), 6307 input_bfd, input_section, relocation->r_offset); 6308 return TRUE; 6309 } 6310 6311 /* Make this the JALX opcode. */ 6312 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26); 6313 } 6314 6315 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in 6316 range. */ 6317 if (!bfd_link_relocatable (info) 6318 && !cross_mode_jump_p 6319 && ((JAL_TO_BAL_P (input_bfd) 6320 && r_type == R_MIPS_26 6321 && (x >> 26) == 0x3) /* jal addr */ 6322 || (JALR_TO_BAL_P (input_bfd) 6323 && r_type == R_MIPS_JALR 6324 && x == 0x0320f809) /* jalr t9 */ 6325 || (JR_TO_B_P (input_bfd) 6326 && r_type == R_MIPS_JALR 6327 && x == 0x03200008))) /* jr t9 */ 6328 { 6329 bfd_vma addr; 6330 bfd_vma dest; 6331 bfd_signed_vma off; 6332 6333 addr = (input_section->output_section->vma 6334 + input_section->output_offset 6335 + relocation->r_offset 6336 + 4); 6337 if (r_type == R_MIPS_26) 6338 dest = (value << 2) | ((addr >> 28) << 28); 6339 else 6340 dest = value; 6341 off = dest - addr; 6342 if (off <= 0x1ffff && off >= -0x20000) 6343 { 6344 if (x == 0x03200008) /* jr t9 */ 6345 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */ 6346 else 6347 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */ 6348 } 6349 } 6350 6351 /* Put the value into the output. */ 6352 size = bfd_get_reloc_size (howto); 6353 if (size != 0) 6354 bfd_put (8 * size, input_bfd, x, location); 6355 6356 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info), 6357 location); 6358 6359 return TRUE; 6360 } 6361 6362 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL 6363 is the original relocation, which is now being transformed into a 6364 dynamic relocation. The ADDENDP is adjusted if necessary; the 6365 caller should store the result in place of the original addend. */ 6366 6367 static bfd_boolean 6368 mips_elf_create_dynamic_relocation (bfd *output_bfd, 6369 struct bfd_link_info *info, 6370 const Elf_Internal_Rela *rel, 6371 struct mips_elf_link_hash_entry *h, 6372 asection *sec, bfd_vma symbol, 6373 bfd_vma *addendp, asection *input_section) 6374 { 6375 Elf_Internal_Rela outrel[3]; 6376 asection *sreloc; 6377 bfd *dynobj; 6378 int r_type; 6379 long indx; 6380 bfd_boolean defined_p; 6381 struct mips_elf_link_hash_table *htab; 6382 6383 htab = mips_elf_hash_table (info); 6384 BFD_ASSERT (htab != NULL); 6385 6386 r_type = ELF_R_TYPE (output_bfd, rel->r_info); 6387 dynobj = elf_hash_table (info)->dynobj; 6388 sreloc = mips_elf_rel_dyn_section (info, FALSE); 6389 BFD_ASSERT (sreloc != NULL); 6390 BFD_ASSERT (sreloc->contents != NULL); 6391 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd) 6392 < sreloc->size); 6393 6394 outrel[0].r_offset = 6395 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset); 6396 if (ABI_64_P (output_bfd)) 6397 { 6398 outrel[1].r_offset = 6399 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset); 6400 outrel[2].r_offset = 6401 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset); 6402 } 6403 6404 if (outrel[0].r_offset == MINUS_ONE) 6405 /* The relocation field has been deleted. */ 6406 return TRUE; 6407 6408 if (outrel[0].r_offset == MINUS_TWO) 6409 { 6410 /* The relocation field has been converted into a relative value of 6411 some sort. Functions like _bfd_elf_write_section_eh_frame expect 6412 the field to be fully relocated, so add in the symbol's value. */ 6413 *addendp += symbol; 6414 return TRUE; 6415 } 6416 6417 /* We must now calculate the dynamic symbol table index to use 6418 in the relocation. */ 6419 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root)) 6420 { 6421 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE); 6422 indx = h->root.dynindx; 6423 if (SGI_COMPAT (output_bfd)) 6424 defined_p = h->root.def_regular; 6425 else 6426 /* ??? glibc's ld.so just adds the final GOT entry to the 6427 relocation field. It therefore treats relocs against 6428 defined symbols in the same way as relocs against 6429 undefined symbols. */ 6430 defined_p = FALSE; 6431 } 6432 else 6433 { 6434 if (sec != NULL && bfd_is_abs_section (sec)) 6435 indx = 0; 6436 else if (sec == NULL || sec->owner == NULL) 6437 { 6438 bfd_set_error (bfd_error_bad_value); 6439 return FALSE; 6440 } 6441 else 6442 { 6443 indx = elf_section_data (sec->output_section)->dynindx; 6444 if (indx == 0) 6445 { 6446 asection *osec = htab->root.text_index_section; 6447 indx = elf_section_data (osec)->dynindx; 6448 } 6449 if (indx == 0) 6450 abort (); 6451 } 6452 6453 /* Instead of generating a relocation using the section 6454 symbol, we may as well make it a fully relative 6455 relocation. We want to avoid generating relocations to 6456 local symbols because we used to generate them 6457 incorrectly, without adding the original symbol value, 6458 which is mandated by the ABI for section symbols. In 6459 order to give dynamic loaders and applications time to 6460 phase out the incorrect use, we refrain from emitting 6461 section-relative relocations. It's not like they're 6462 useful, after all. This should be a bit more efficient 6463 as well. */ 6464 /* ??? Although this behavior is compatible with glibc's ld.so, 6465 the ABI says that relocations against STN_UNDEF should have 6466 a symbol value of 0. Irix rld honors this, so relocations 6467 against STN_UNDEF have no effect. */ 6468 if (!SGI_COMPAT (output_bfd)) 6469 indx = 0; 6470 defined_p = TRUE; 6471 } 6472 6473 /* If the relocation was previously an absolute relocation and 6474 this symbol will not be referred to by the relocation, we must 6475 adjust it by the value we give it in the dynamic symbol table. 6476 Otherwise leave the job up to the dynamic linker. */ 6477 if (defined_p && r_type != R_MIPS_REL32) 6478 *addendp += symbol; 6479 6480 if (htab->is_vxworks) 6481 /* VxWorks uses non-relative relocations for this. */ 6482 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32); 6483 else 6484 /* The relocation is always an REL32 relocation because we don't 6485 know where the shared library will wind up at load-time. */ 6486 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx, 6487 R_MIPS_REL32); 6488 6489 /* For strict adherence to the ABI specification, we should 6490 generate a R_MIPS_64 relocation record by itself before the 6491 _REL32/_64 record as well, such that the addend is read in as 6492 a 64-bit value (REL32 is a 32-bit relocation, after all). 6493 However, since none of the existing ELF64 MIPS dynamic 6494 loaders seems to care, we don't waste space with these 6495 artificial relocations. If this turns out to not be true, 6496 mips_elf_allocate_dynamic_relocation() should be tweaked so 6497 as to make room for a pair of dynamic relocations per 6498 invocation if ABI_64_P, and here we should generate an 6499 additional relocation record with R_MIPS_64 by itself for a 6500 NULL symbol before this relocation record. */ 6501 outrel[1].r_info = ELF_R_INFO (output_bfd, 0, 6502 ABI_64_P (output_bfd) 6503 ? R_MIPS_64 6504 : R_MIPS_NONE); 6505 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE); 6506 6507 /* Adjust the output offset of the relocation to reference the 6508 correct location in the output file. */ 6509 outrel[0].r_offset += (input_section->output_section->vma 6510 + input_section->output_offset); 6511 outrel[1].r_offset += (input_section->output_section->vma 6512 + input_section->output_offset); 6513 outrel[2].r_offset += (input_section->output_section->vma 6514 + input_section->output_offset); 6515 6516 /* Put the relocation back out. We have to use the special 6517 relocation outputter in the 64-bit case since the 64-bit 6518 relocation format is non-standard. */ 6519 if (ABI_64_P (output_bfd)) 6520 { 6521 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out) 6522 (output_bfd, &outrel[0], 6523 (sreloc->contents 6524 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel))); 6525 } 6526 else if (htab->is_vxworks) 6527 { 6528 /* VxWorks uses RELA rather than REL dynamic relocations. */ 6529 outrel[0].r_addend = *addendp; 6530 bfd_elf32_swap_reloca_out 6531 (output_bfd, &outrel[0], 6532 (sreloc->contents 6533 + sreloc->reloc_count * sizeof (Elf32_External_Rela))); 6534 } 6535 else 6536 bfd_elf32_swap_reloc_out 6537 (output_bfd, &outrel[0], 6538 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel))); 6539 6540 /* We've now added another relocation. */ 6541 ++sreloc->reloc_count; 6542 6543 /* Make sure the output section is writable. The dynamic linker 6544 will be writing to it. */ 6545 elf_section_data (input_section->output_section)->this_hdr.sh_flags 6546 |= SHF_WRITE; 6547 6548 /* On IRIX5, make an entry of compact relocation info. */ 6549 if (IRIX_COMPAT (output_bfd) == ict_irix5) 6550 { 6551 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel"); 6552 bfd_byte *cr; 6553 6554 if (scpt) 6555 { 6556 Elf32_crinfo cptrel; 6557 6558 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG); 6559 cptrel.vaddr = (rel->r_offset 6560 + input_section->output_section->vma 6561 + input_section->output_offset); 6562 if (r_type == R_MIPS_REL32) 6563 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32); 6564 else 6565 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD); 6566 mips_elf_set_cr_dist2to (cptrel, 0); 6567 cptrel.konst = *addendp; 6568 6569 cr = (scpt->contents 6570 + sizeof (Elf32_External_compact_rel)); 6571 mips_elf_set_cr_relvaddr (cptrel, 0); 6572 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel, 6573 ((Elf32_External_crinfo *) cr 6574 + scpt->reloc_count)); 6575 ++scpt->reloc_count; 6576 } 6577 } 6578 6579 /* If we've written this relocation for a readonly section, 6580 we need to set DF_TEXTREL again, so that we do not delete the 6581 DT_TEXTREL tag. */ 6582 if (MIPS_ELF_READONLY_SECTION (input_section)) 6583 info->flags |= DF_TEXTREL; 6584 6585 return TRUE; 6586 } 6587 6588 /* Return the MACH for a MIPS e_flags value. */ 6589 6590 unsigned long 6591 _bfd_elf_mips_mach (flagword flags) 6592 { 6593 switch (flags & EF_MIPS_MACH) 6594 { 6595 case E_MIPS_MACH_3900: 6596 return bfd_mach_mips3900; 6597 6598 case E_MIPS_MACH_4010: 6599 return bfd_mach_mips4010; 6600 6601 case E_MIPS_MACH_4100: 6602 return bfd_mach_mips4100; 6603 6604 case E_MIPS_MACH_4111: 6605 return bfd_mach_mips4111; 6606 6607 case E_MIPS_MACH_4120: 6608 return bfd_mach_mips4120; 6609 6610 case E_MIPS_MACH_4650: 6611 return bfd_mach_mips4650; 6612 6613 case E_MIPS_MACH_5400: 6614 return bfd_mach_mips5400; 6615 6616 case E_MIPS_MACH_5500: 6617 return bfd_mach_mips5500; 6618 6619 case E_MIPS_MACH_5900: 6620 return bfd_mach_mips5900; 6621 6622 case E_MIPS_MACH_9000: 6623 return bfd_mach_mips9000; 6624 6625 case E_MIPS_MACH_SB1: 6626 return bfd_mach_mips_sb1; 6627 6628 case E_MIPS_MACH_LS2E: 6629 return bfd_mach_mips_loongson_2e; 6630 6631 case E_MIPS_MACH_LS2F: 6632 return bfd_mach_mips_loongson_2f; 6633 6634 case E_MIPS_MACH_LS3A: 6635 return bfd_mach_mips_loongson_3a; 6636 6637 case E_MIPS_MACH_OCTEON3: 6638 return bfd_mach_mips_octeon3; 6639 6640 case E_MIPS_MACH_OCTEON2: 6641 return bfd_mach_mips_octeon2; 6642 6643 case E_MIPS_MACH_OCTEON: 6644 return bfd_mach_mips_octeon; 6645 6646 case E_MIPS_MACH_XLR: 6647 return bfd_mach_mips_xlr; 6648 6649 default: 6650 switch (flags & EF_MIPS_ARCH) 6651 { 6652 default: 6653 case E_MIPS_ARCH_1: 6654 return bfd_mach_mips3000; 6655 6656 case E_MIPS_ARCH_2: 6657 return bfd_mach_mips6000; 6658 6659 case E_MIPS_ARCH_3: 6660 return bfd_mach_mips4000; 6661 6662 case E_MIPS_ARCH_4: 6663 return bfd_mach_mips8000; 6664 6665 case E_MIPS_ARCH_5: 6666 return bfd_mach_mips5; 6667 6668 case E_MIPS_ARCH_32: 6669 return bfd_mach_mipsisa32; 6670 6671 case E_MIPS_ARCH_64: 6672 return bfd_mach_mipsisa64; 6673 6674 case E_MIPS_ARCH_32R2: 6675 return bfd_mach_mipsisa32r2; 6676 6677 case E_MIPS_ARCH_64R2: 6678 return bfd_mach_mipsisa64r2; 6679 6680 case E_MIPS_ARCH_32R6: 6681 return bfd_mach_mipsisa32r6; 6682 6683 case E_MIPS_ARCH_64R6: 6684 return bfd_mach_mipsisa64r6; 6685 } 6686 } 6687 6688 return 0; 6689 } 6690 6691 /* Return printable name for ABI. */ 6692 6693 static INLINE char * 6694 elf_mips_abi_name (bfd *abfd) 6695 { 6696 flagword flags; 6697 6698 flags = elf_elfheader (abfd)->e_flags; 6699 switch (flags & EF_MIPS_ABI) 6700 { 6701 case 0: 6702 if (ABI_N32_P (abfd)) 6703 return "N32"; 6704 else if (ABI_64_P (abfd)) 6705 return "64"; 6706 else 6707 return "none"; 6708 case E_MIPS_ABI_O32: 6709 return "O32"; 6710 case E_MIPS_ABI_O64: 6711 return "O64"; 6712 case E_MIPS_ABI_EABI32: 6713 return "EABI32"; 6714 case E_MIPS_ABI_EABI64: 6715 return "EABI64"; 6716 default: 6717 return "unknown abi"; 6718 } 6719 } 6720 6721 /* MIPS ELF uses two common sections. One is the usual one, and the 6722 other is for small objects. All the small objects are kept 6723 together, and then referenced via the gp pointer, which yields 6724 faster assembler code. This is what we use for the small common 6725 section. This approach is copied from ecoff.c. */ 6726 static asection mips_elf_scom_section; 6727 static asymbol mips_elf_scom_symbol; 6728 static asymbol *mips_elf_scom_symbol_ptr; 6729 6730 /* MIPS ELF also uses an acommon section, which represents an 6731 allocated common symbol which may be overridden by a 6732 definition in a shared library. */ 6733 static asection mips_elf_acom_section; 6734 static asymbol mips_elf_acom_symbol; 6735 static asymbol *mips_elf_acom_symbol_ptr; 6736 6737 /* This is used for both the 32-bit and the 64-bit ABI. */ 6738 6739 void 6740 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym) 6741 { 6742 elf_symbol_type *elfsym; 6743 6744 /* Handle the special MIPS section numbers that a symbol may use. */ 6745 elfsym = (elf_symbol_type *) asym; 6746 switch (elfsym->internal_elf_sym.st_shndx) 6747 { 6748 case SHN_MIPS_ACOMMON: 6749 /* This section is used in a dynamically linked executable file. 6750 It is an allocated common section. The dynamic linker can 6751 either resolve these symbols to something in a shared 6752 library, or it can just leave them here. For our purposes, 6753 we can consider these symbols to be in a new section. */ 6754 if (mips_elf_acom_section.name == NULL) 6755 { 6756 /* Initialize the acommon section. */ 6757 mips_elf_acom_section.name = ".acommon"; 6758 mips_elf_acom_section.flags = SEC_ALLOC; 6759 mips_elf_acom_section.output_section = &mips_elf_acom_section; 6760 mips_elf_acom_section.symbol = &mips_elf_acom_symbol; 6761 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr; 6762 mips_elf_acom_symbol.name = ".acommon"; 6763 mips_elf_acom_symbol.flags = BSF_SECTION_SYM; 6764 mips_elf_acom_symbol.section = &mips_elf_acom_section; 6765 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol; 6766 } 6767 asym->section = &mips_elf_acom_section; 6768 break; 6769 6770 case SHN_COMMON: 6771 /* Common symbols less than the GP size are automatically 6772 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */ 6773 if (asym->value > elf_gp_size (abfd) 6774 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS 6775 || IRIX_COMPAT (abfd) == ict_irix6) 6776 break; 6777 /* Fall through. */ 6778 case SHN_MIPS_SCOMMON: 6779 if (mips_elf_scom_section.name == NULL) 6780 { 6781 /* Initialize the small common section. */ 6782 mips_elf_scom_section.name = ".scommon"; 6783 mips_elf_scom_section.flags = SEC_IS_COMMON; 6784 mips_elf_scom_section.output_section = &mips_elf_scom_section; 6785 mips_elf_scom_section.symbol = &mips_elf_scom_symbol; 6786 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr; 6787 mips_elf_scom_symbol.name = ".scommon"; 6788 mips_elf_scom_symbol.flags = BSF_SECTION_SYM; 6789 mips_elf_scom_symbol.section = &mips_elf_scom_section; 6790 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol; 6791 } 6792 asym->section = &mips_elf_scom_section; 6793 asym->value = elfsym->internal_elf_sym.st_size; 6794 break; 6795 6796 case SHN_MIPS_SUNDEFINED: 6797 asym->section = bfd_und_section_ptr; 6798 break; 6799 6800 case SHN_MIPS_TEXT: 6801 { 6802 asection *section = bfd_get_section_by_name (abfd, ".text"); 6803 6804 if (section != NULL) 6805 { 6806 asym->section = section; 6807 /* MIPS_TEXT is a bit special, the address is not an offset 6808 to the base of the .text section. So substract the section 6809 base address to make it an offset. */ 6810 asym->value -= section->vma; 6811 } 6812 } 6813 break; 6814 6815 case SHN_MIPS_DATA: 6816 { 6817 asection *section = bfd_get_section_by_name (abfd, ".data"); 6818 6819 if (section != NULL) 6820 { 6821 asym->section = section; 6822 /* MIPS_DATA is a bit special, the address is not an offset 6823 to the base of the .data section. So substract the section 6824 base address to make it an offset. */ 6825 asym->value -= section->vma; 6826 } 6827 } 6828 break; 6829 } 6830 6831 /* If this is an odd-valued function symbol, assume it's a MIPS16 6832 or microMIPS one. */ 6833 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC 6834 && (asym->value & 1) != 0) 6835 { 6836 asym->value--; 6837 if (MICROMIPS_P (abfd)) 6838 elfsym->internal_elf_sym.st_other 6839 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other); 6840 else 6841 elfsym->internal_elf_sym.st_other 6842 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other); 6843 } 6844 } 6845 6846 /* Implement elf_backend_eh_frame_address_size. This differs from 6847 the default in the way it handles EABI64. 6848 6849 EABI64 was originally specified as an LP64 ABI, and that is what 6850 -mabi=eabi normally gives on a 64-bit target. However, gcc has 6851 historically accepted the combination of -mabi=eabi and -mlong32, 6852 and this ILP32 variation has become semi-official over time. 6853 Both forms use elf32 and have pointer-sized FDE addresses. 6854 6855 If an EABI object was generated by GCC 4.0 or above, it will have 6856 an empty .gcc_compiled_longXX section, where XX is the size of longs 6857 in bits. Unfortunately, ILP32 objects generated by earlier compilers 6858 have no special marking to distinguish them from LP64 objects. 6859 6860 We don't want users of the official LP64 ABI to be punished for the 6861 existence of the ILP32 variant, but at the same time, we don't want 6862 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects. 6863 We therefore take the following approach: 6864 6865 - If ABFD contains a .gcc_compiled_longXX section, use it to 6866 determine the pointer size. 6867 6868 - Otherwise check the type of the first relocation. Assume that 6869 the LP64 ABI is being used if the relocation is of type R_MIPS_64. 6870 6871 - Otherwise punt. 6872 6873 The second check is enough to detect LP64 objects generated by pre-4.0 6874 compilers because, in the kind of output generated by those compilers, 6875 the first relocation will be associated with either a CIE personality 6876 routine or an FDE start address. Furthermore, the compilers never 6877 used a special (non-pointer) encoding for this ABI. 6878 6879 Checking the relocation type should also be safe because there is no 6880 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never 6881 did so. */ 6882 6883 unsigned int 6884 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec) 6885 { 6886 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64) 6887 return 8; 6888 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64) 6889 { 6890 bfd_boolean long32_p, long64_p; 6891 6892 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0; 6893 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0; 6894 if (long32_p && long64_p) 6895 return 0; 6896 if (long32_p) 6897 return 4; 6898 if (long64_p) 6899 return 8; 6900 6901 if (sec->reloc_count > 0 6902 && elf_section_data (sec)->relocs != NULL 6903 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info) 6904 == R_MIPS_64)) 6905 return 8; 6906 6907 return 0; 6908 } 6909 return 4; 6910 } 6911 6912 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP 6913 relocations against two unnamed section symbols to resolve to the 6914 same address. For example, if we have code like: 6915 6916 lw $4,%got_disp(.data)($gp) 6917 lw $25,%got_disp(.text)($gp) 6918 jalr $25 6919 6920 then the linker will resolve both relocations to .data and the program 6921 will jump there rather than to .text. 6922 6923 We can work around this problem by giving names to local section symbols. 6924 This is also what the MIPSpro tools do. */ 6925 6926 bfd_boolean 6927 _bfd_mips_elf_name_local_section_symbols (bfd *abfd) 6928 { 6929 return SGI_COMPAT (abfd); 6930 } 6931 6932 /* Work over a section just before writing it out. This routine is 6933 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize 6934 sections that need the SHF_MIPS_GPREL flag by name; there has to be 6935 a better way. */ 6936 6937 bfd_boolean 6938 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr) 6939 { 6940 if (hdr->sh_type == SHT_MIPS_REGINFO 6941 && hdr->sh_size > 0) 6942 { 6943 bfd_byte buf[4]; 6944 6945 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo)); 6946 BFD_ASSERT (hdr->contents == NULL); 6947 6948 if (bfd_seek (abfd, 6949 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4, 6950 SEEK_SET) != 0) 6951 return FALSE; 6952 H_PUT_32 (abfd, elf_gp (abfd), buf); 6953 if (bfd_bwrite (buf, 4, abfd) != 4) 6954 return FALSE; 6955 } 6956 6957 if (hdr->sh_type == SHT_MIPS_OPTIONS 6958 && hdr->bfd_section != NULL 6959 && mips_elf_section_data (hdr->bfd_section) != NULL 6960 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL) 6961 { 6962 bfd_byte *contents, *l, *lend; 6963 6964 /* We stored the section contents in the tdata field in the 6965 set_section_contents routine. We save the section contents 6966 so that we don't have to read them again. 6967 At this point we know that elf_gp is set, so we can look 6968 through the section contents to see if there is an 6969 ODK_REGINFO structure. */ 6970 6971 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata; 6972 l = contents; 6973 lend = contents + hdr->sh_size; 6974 while (l + sizeof (Elf_External_Options) <= lend) 6975 { 6976 Elf_Internal_Options intopt; 6977 6978 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l, 6979 &intopt); 6980 if (intopt.size < sizeof (Elf_External_Options)) 6981 { 6982 (*_bfd_error_handler) 6983 (_("%B: Warning: bad `%s' option size %u smaller than its header"), 6984 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size); 6985 break; 6986 } 6987 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO) 6988 { 6989 bfd_byte buf[8]; 6990 6991 if (bfd_seek (abfd, 6992 (hdr->sh_offset 6993 + (l - contents) 6994 + sizeof (Elf_External_Options) 6995 + (sizeof (Elf64_External_RegInfo) - 8)), 6996 SEEK_SET) != 0) 6997 return FALSE; 6998 H_PUT_64 (abfd, elf_gp (abfd), buf); 6999 if (bfd_bwrite (buf, 8, abfd) != 8) 7000 return FALSE; 7001 } 7002 else if (intopt.kind == ODK_REGINFO) 7003 { 7004 bfd_byte buf[4]; 7005 7006 if (bfd_seek (abfd, 7007 (hdr->sh_offset 7008 + (l - contents) 7009 + sizeof (Elf_External_Options) 7010 + (sizeof (Elf32_External_RegInfo) - 4)), 7011 SEEK_SET) != 0) 7012 return FALSE; 7013 H_PUT_32 (abfd, elf_gp (abfd), buf); 7014 if (bfd_bwrite (buf, 4, abfd) != 4) 7015 return FALSE; 7016 } 7017 l += intopt.size; 7018 } 7019 } 7020 7021 if (hdr->bfd_section != NULL) 7022 { 7023 const char *name = bfd_get_section_name (abfd, hdr->bfd_section); 7024 7025 /* .sbss is not handled specially here because the GNU/Linux 7026 prelinker can convert .sbss from NOBITS to PROGBITS and 7027 changing it back to NOBITS breaks the binary. The entry in 7028 _bfd_mips_elf_special_sections will ensure the correct flags 7029 are set on .sbss if BFD creates it without reading it from an 7030 input file, and without special handling here the flags set 7031 on it in an input file will be followed. */ 7032 if (strcmp (name, ".sdata") == 0 7033 || strcmp (name, ".lit8") == 0 7034 || strcmp (name, ".lit4") == 0) 7035 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL; 7036 else if (strcmp (name, ".srdata") == 0) 7037 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL; 7038 else if (strcmp (name, ".compact_rel") == 0) 7039 hdr->sh_flags = 0; 7040 else if (strcmp (name, ".rtproc") == 0) 7041 { 7042 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0) 7043 { 7044 unsigned int adjust; 7045 7046 adjust = hdr->sh_size % hdr->sh_addralign; 7047 if (adjust != 0) 7048 hdr->sh_size += hdr->sh_addralign - adjust; 7049 } 7050 } 7051 } 7052 7053 return TRUE; 7054 } 7055 7056 /* Handle a MIPS specific section when reading an object file. This 7057 is called when elfcode.h finds a section with an unknown type. 7058 This routine supports both the 32-bit and 64-bit ELF ABI. 7059 7060 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure 7061 how to. */ 7062 7063 bfd_boolean 7064 _bfd_mips_elf_section_from_shdr (bfd *abfd, 7065 Elf_Internal_Shdr *hdr, 7066 const char *name, 7067 int shindex) 7068 { 7069 flagword flags = 0; 7070 7071 /* There ought to be a place to keep ELF backend specific flags, but 7072 at the moment there isn't one. We just keep track of the 7073 sections by their name, instead. Fortunately, the ABI gives 7074 suggested names for all the MIPS specific sections, so we will 7075 probably get away with this. */ 7076 switch (hdr->sh_type) 7077 { 7078 case SHT_MIPS_LIBLIST: 7079 if (strcmp (name, ".liblist") != 0) 7080 return FALSE; 7081 break; 7082 case SHT_MIPS_MSYM: 7083 if (strcmp (name, ".msym") != 0) 7084 return FALSE; 7085 break; 7086 case SHT_MIPS_CONFLICT: 7087 if (strcmp (name, ".conflict") != 0) 7088 return FALSE; 7089 break; 7090 case SHT_MIPS_GPTAB: 7091 if (! CONST_STRNEQ (name, ".gptab.")) 7092 return FALSE; 7093 break; 7094 case SHT_MIPS_UCODE: 7095 if (strcmp (name, ".ucode") != 0) 7096 return FALSE; 7097 break; 7098 case SHT_MIPS_DEBUG: 7099 if (strcmp (name, ".mdebug") != 0) 7100 return FALSE; 7101 flags = SEC_DEBUGGING; 7102 break; 7103 case SHT_MIPS_REGINFO: 7104 if (strcmp (name, ".reginfo") != 0 7105 || hdr->sh_size != sizeof (Elf32_External_RegInfo)) 7106 return FALSE; 7107 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE); 7108 break; 7109 case SHT_MIPS_IFACE: 7110 if (strcmp (name, ".MIPS.interfaces") != 0) 7111 return FALSE; 7112 break; 7113 case SHT_MIPS_CONTENT: 7114 if (! CONST_STRNEQ (name, ".MIPS.content")) 7115 return FALSE; 7116 break; 7117 case SHT_MIPS_OPTIONS: 7118 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name)) 7119 return FALSE; 7120 break; 7121 case SHT_MIPS_ABIFLAGS: 7122 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name)) 7123 return FALSE; 7124 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE); 7125 break; 7126 case SHT_MIPS_DWARF: 7127 if (! CONST_STRNEQ (name, ".debug_") 7128 && ! CONST_STRNEQ (name, ".zdebug_")) 7129 return FALSE; 7130 break; 7131 case SHT_MIPS_SYMBOL_LIB: 7132 if (strcmp (name, ".MIPS.symlib") != 0) 7133 return FALSE; 7134 break; 7135 case SHT_MIPS_EVENTS: 7136 if (! CONST_STRNEQ (name, ".MIPS.events") 7137 && ! CONST_STRNEQ (name, ".MIPS.post_rel")) 7138 return FALSE; 7139 break; 7140 default: 7141 break; 7142 } 7143 7144 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex)) 7145 return FALSE; 7146 7147 if (flags) 7148 { 7149 if (! bfd_set_section_flags (abfd, hdr->bfd_section, 7150 (bfd_get_section_flags (abfd, 7151 hdr->bfd_section) 7152 | flags))) 7153 return FALSE; 7154 } 7155 7156 if (hdr->sh_type == SHT_MIPS_ABIFLAGS) 7157 { 7158 Elf_External_ABIFlags_v0 ext; 7159 7160 if (! bfd_get_section_contents (abfd, hdr->bfd_section, 7161 &ext, 0, sizeof ext)) 7162 return FALSE; 7163 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext, 7164 &mips_elf_tdata (abfd)->abiflags); 7165 if (mips_elf_tdata (abfd)->abiflags.version != 0) 7166 return FALSE; 7167 mips_elf_tdata (abfd)->abiflags_valid = TRUE; 7168 } 7169 7170 /* FIXME: We should record sh_info for a .gptab section. */ 7171 7172 /* For a .reginfo section, set the gp value in the tdata information 7173 from the contents of this section. We need the gp value while 7174 processing relocs, so we just get it now. The .reginfo section 7175 is not used in the 64-bit MIPS ELF ABI. */ 7176 if (hdr->sh_type == SHT_MIPS_REGINFO) 7177 { 7178 Elf32_External_RegInfo ext; 7179 Elf32_RegInfo s; 7180 7181 if (! bfd_get_section_contents (abfd, hdr->bfd_section, 7182 &ext, 0, sizeof ext)) 7183 return FALSE; 7184 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s); 7185 elf_gp (abfd) = s.ri_gp_value; 7186 } 7187 7188 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and 7189 set the gp value based on what we find. We may see both 7190 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case, 7191 they should agree. */ 7192 if (hdr->sh_type == SHT_MIPS_OPTIONS) 7193 { 7194 bfd_byte *contents, *l, *lend; 7195 7196 contents = bfd_malloc (hdr->sh_size); 7197 if (contents == NULL) 7198 return FALSE; 7199 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents, 7200 0, hdr->sh_size)) 7201 { 7202 free (contents); 7203 return FALSE; 7204 } 7205 l = contents; 7206 lend = contents + hdr->sh_size; 7207 while (l + sizeof (Elf_External_Options) <= lend) 7208 { 7209 Elf_Internal_Options intopt; 7210 7211 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l, 7212 &intopt); 7213 if (intopt.size < sizeof (Elf_External_Options)) 7214 { 7215 (*_bfd_error_handler) 7216 (_("%B: Warning: bad `%s' option size %u smaller than its header"), 7217 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size); 7218 break; 7219 } 7220 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO) 7221 { 7222 Elf64_Internal_RegInfo intreg; 7223 7224 bfd_mips_elf64_swap_reginfo_in 7225 (abfd, 7226 ((Elf64_External_RegInfo *) 7227 (l + sizeof (Elf_External_Options))), 7228 &intreg); 7229 elf_gp (abfd) = intreg.ri_gp_value; 7230 } 7231 else if (intopt.kind == ODK_REGINFO) 7232 { 7233 Elf32_RegInfo intreg; 7234 7235 bfd_mips_elf32_swap_reginfo_in 7236 (abfd, 7237 ((Elf32_External_RegInfo *) 7238 (l + sizeof (Elf_External_Options))), 7239 &intreg); 7240 elf_gp (abfd) = intreg.ri_gp_value; 7241 } 7242 l += intopt.size; 7243 } 7244 free (contents); 7245 } 7246 7247 return TRUE; 7248 } 7249 7250 /* Set the correct type for a MIPS ELF section. We do this by the 7251 section name, which is a hack, but ought to work. This routine is 7252 used by both the 32-bit and the 64-bit ABI. */ 7253 7254 bfd_boolean 7255 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec) 7256 { 7257 const char *name = bfd_get_section_name (abfd, sec); 7258 7259 if (strcmp (name, ".liblist") == 0) 7260 { 7261 hdr->sh_type = SHT_MIPS_LIBLIST; 7262 hdr->sh_info = sec->size / sizeof (Elf32_Lib); 7263 /* The sh_link field is set in final_write_processing. */ 7264 } 7265 else if (strcmp (name, ".conflict") == 0) 7266 hdr->sh_type = SHT_MIPS_CONFLICT; 7267 else if (CONST_STRNEQ (name, ".gptab.")) 7268 { 7269 hdr->sh_type = SHT_MIPS_GPTAB; 7270 hdr->sh_entsize = sizeof (Elf32_External_gptab); 7271 /* The sh_info field is set in final_write_processing. */ 7272 } 7273 else if (strcmp (name, ".ucode") == 0) 7274 hdr->sh_type = SHT_MIPS_UCODE; 7275 else if (strcmp (name, ".mdebug") == 0) 7276 { 7277 hdr->sh_type = SHT_MIPS_DEBUG; 7278 /* In a shared object on IRIX 5.3, the .mdebug section has an 7279 entsize of 0. FIXME: Does this matter? */ 7280 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0) 7281 hdr->sh_entsize = 0; 7282 else 7283 hdr->sh_entsize = 1; 7284 } 7285 else if (strcmp (name, ".reginfo") == 0) 7286 { 7287 hdr->sh_type = SHT_MIPS_REGINFO; 7288 /* In a shared object on IRIX 5.3, the .reginfo section has an 7289 entsize of 0x18. FIXME: Does this matter? */ 7290 if (SGI_COMPAT (abfd)) 7291 { 7292 if ((abfd->flags & DYNAMIC) != 0) 7293 hdr->sh_entsize = sizeof (Elf32_External_RegInfo); 7294 else 7295 hdr->sh_entsize = 1; 7296 } 7297 else 7298 hdr->sh_entsize = sizeof (Elf32_External_RegInfo); 7299 } 7300 else if (SGI_COMPAT (abfd) 7301 && (strcmp (name, ".hash") == 0 7302 || strcmp (name, ".dynamic") == 0 7303 || strcmp (name, ".dynstr") == 0)) 7304 { 7305 if (SGI_COMPAT (abfd)) 7306 hdr->sh_entsize = 0; 7307 #if 0 7308 /* This isn't how the IRIX6 linker behaves. */ 7309 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES; 7310 #endif 7311 } 7312 else if (strcmp (name, ".got") == 0 7313 || strcmp (name, ".srdata") == 0 7314 || strcmp (name, ".sdata") == 0 7315 || strcmp (name, ".sbss") == 0 7316 || strcmp (name, ".lit4") == 0 7317 || strcmp (name, ".lit8") == 0) 7318 hdr->sh_flags |= SHF_MIPS_GPREL; 7319 else if (strcmp (name, ".MIPS.interfaces") == 0) 7320 { 7321 hdr->sh_type = SHT_MIPS_IFACE; 7322 hdr->sh_flags |= SHF_MIPS_NOSTRIP; 7323 } 7324 else if (CONST_STRNEQ (name, ".MIPS.content")) 7325 { 7326 hdr->sh_type = SHT_MIPS_CONTENT; 7327 hdr->sh_flags |= SHF_MIPS_NOSTRIP; 7328 /* The sh_info field is set in final_write_processing. */ 7329 } 7330 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name)) 7331 { 7332 hdr->sh_type = SHT_MIPS_OPTIONS; 7333 hdr->sh_entsize = 1; 7334 hdr->sh_flags |= SHF_MIPS_NOSTRIP; 7335 } 7336 else if (CONST_STRNEQ (name, ".MIPS.abiflags")) 7337 { 7338 hdr->sh_type = SHT_MIPS_ABIFLAGS; 7339 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0); 7340 } 7341 else if (CONST_STRNEQ (name, ".debug_") 7342 || CONST_STRNEQ (name, ".zdebug_")) 7343 { 7344 hdr->sh_type = SHT_MIPS_DWARF; 7345 7346 /* Irix facilities such as libexc expect a single .debug_frame 7347 per executable, the system ones have NOSTRIP set and the linker 7348 doesn't merge sections with different flags so ... */ 7349 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame")) 7350 hdr->sh_flags |= SHF_MIPS_NOSTRIP; 7351 } 7352 else if (strcmp (name, ".MIPS.symlib") == 0) 7353 { 7354 hdr->sh_type = SHT_MIPS_SYMBOL_LIB; 7355 /* The sh_link and sh_info fields are set in 7356 final_write_processing. */ 7357 } 7358 else if (CONST_STRNEQ (name, ".MIPS.events") 7359 || CONST_STRNEQ (name, ".MIPS.post_rel")) 7360 { 7361 hdr->sh_type = SHT_MIPS_EVENTS; 7362 hdr->sh_flags |= SHF_MIPS_NOSTRIP; 7363 /* The sh_link field is set in final_write_processing. */ 7364 } 7365 else if (strcmp (name, ".msym") == 0) 7366 { 7367 hdr->sh_type = SHT_MIPS_MSYM; 7368 hdr->sh_flags |= SHF_ALLOC; 7369 hdr->sh_entsize = 8; 7370 } 7371 7372 /* The generic elf_fake_sections will set up REL_HDR using the default 7373 kind of relocations. We used to set up a second header for the 7374 non-default kind of relocations here, but only NewABI would use 7375 these, and the IRIX ld doesn't like resulting empty RELA sections. 7376 Thus we create those header only on demand now. */ 7377 7378 return TRUE; 7379 } 7380 7381 /* Given a BFD section, try to locate the corresponding ELF section 7382 index. This is used by both the 32-bit and the 64-bit ABI. 7383 Actually, it's not clear to me that the 64-bit ABI supports these, 7384 but for non-PIC objects we will certainly want support for at least 7385 the .scommon section. */ 7386 7387 bfd_boolean 7388 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED, 7389 asection *sec, int *retval) 7390 { 7391 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0) 7392 { 7393 *retval = SHN_MIPS_SCOMMON; 7394 return TRUE; 7395 } 7396 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0) 7397 { 7398 *retval = SHN_MIPS_ACOMMON; 7399 return TRUE; 7400 } 7401 return FALSE; 7402 } 7403 7404 /* Hook called by the linker routine which adds symbols from an object 7405 file. We must handle the special MIPS section numbers here. */ 7406 7407 bfd_boolean 7408 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info, 7409 Elf_Internal_Sym *sym, const char **namep, 7410 flagword *flagsp ATTRIBUTE_UNUSED, 7411 asection **secp, bfd_vma *valp) 7412 { 7413 if (SGI_COMPAT (abfd) 7414 && (abfd->flags & DYNAMIC) != 0 7415 && strcmp (*namep, "_rld_new_interface") == 0) 7416 { 7417 /* Skip IRIX5 rld entry name. */ 7418 *namep = NULL; 7419 return TRUE; 7420 } 7421 7422 /* Shared objects may have a dynamic symbol '_gp_disp' defined as 7423 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp 7424 by setting a DT_NEEDED for the shared object. Since _gp_disp is 7425 a magic symbol resolved by the linker, we ignore this bogus definition 7426 of _gp_disp. New ABI objects do not suffer from this problem so this 7427 is not done for them. */ 7428 if (!NEWABI_P(abfd) 7429 && (sym->st_shndx == SHN_ABS) 7430 && (strcmp (*namep, "_gp_disp") == 0)) 7431 { 7432 *namep = NULL; 7433 return TRUE; 7434 } 7435 7436 switch (sym->st_shndx) 7437 { 7438 case SHN_COMMON: 7439 /* Common symbols less than the GP size are automatically 7440 treated as SHN_MIPS_SCOMMON symbols. */ 7441 if (sym->st_size > elf_gp_size (abfd) 7442 || ELF_ST_TYPE (sym->st_info) == STT_TLS 7443 || IRIX_COMPAT (abfd) == ict_irix6) 7444 break; 7445 /* Fall through. */ 7446 case SHN_MIPS_SCOMMON: 7447 *secp = bfd_make_section_old_way (abfd, ".scommon"); 7448 (*secp)->flags |= SEC_IS_COMMON; 7449 *valp = sym->st_size; 7450 break; 7451 7452 case SHN_MIPS_TEXT: 7453 /* This section is used in a shared object. */ 7454 if (mips_elf_tdata (abfd)->elf_text_section == NULL) 7455 { 7456 asymbol *elf_text_symbol; 7457 asection *elf_text_section; 7458 bfd_size_type amt = sizeof (asection); 7459 7460 elf_text_section = bfd_zalloc (abfd, amt); 7461 if (elf_text_section == NULL) 7462 return FALSE; 7463 7464 amt = sizeof (asymbol); 7465 elf_text_symbol = bfd_zalloc (abfd, amt); 7466 if (elf_text_symbol == NULL) 7467 return FALSE; 7468 7469 /* Initialize the section. */ 7470 7471 mips_elf_tdata (abfd)->elf_text_section = elf_text_section; 7472 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol; 7473 7474 elf_text_section->symbol = elf_text_symbol; 7475 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol; 7476 7477 elf_text_section->name = ".text"; 7478 elf_text_section->flags = SEC_NO_FLAGS; 7479 elf_text_section->output_section = NULL; 7480 elf_text_section->owner = abfd; 7481 elf_text_symbol->name = ".text"; 7482 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC; 7483 elf_text_symbol->section = elf_text_section; 7484 } 7485 /* This code used to do *secp = bfd_und_section_ptr if 7486 bfd_link_pic (info). I don't know why, and that doesn't make sense, 7487 so I took it out. */ 7488 *secp = mips_elf_tdata (abfd)->elf_text_section; 7489 break; 7490 7491 case SHN_MIPS_ACOMMON: 7492 /* Fall through. XXX Can we treat this as allocated data? */ 7493 case SHN_MIPS_DATA: 7494 /* This section is used in a shared object. */ 7495 if (mips_elf_tdata (abfd)->elf_data_section == NULL) 7496 { 7497 asymbol *elf_data_symbol; 7498 asection *elf_data_section; 7499 bfd_size_type amt = sizeof (asection); 7500 7501 elf_data_section = bfd_zalloc (abfd, amt); 7502 if (elf_data_section == NULL) 7503 return FALSE; 7504 7505 amt = sizeof (asymbol); 7506 elf_data_symbol = bfd_zalloc (abfd, amt); 7507 if (elf_data_symbol == NULL) 7508 return FALSE; 7509 7510 /* Initialize the section. */ 7511 7512 mips_elf_tdata (abfd)->elf_data_section = elf_data_section; 7513 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol; 7514 7515 elf_data_section->symbol = elf_data_symbol; 7516 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol; 7517 7518 elf_data_section->name = ".data"; 7519 elf_data_section->flags = SEC_NO_FLAGS; 7520 elf_data_section->output_section = NULL; 7521 elf_data_section->owner = abfd; 7522 elf_data_symbol->name = ".data"; 7523 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC; 7524 elf_data_symbol->section = elf_data_section; 7525 } 7526 /* This code used to do *secp = bfd_und_section_ptr if 7527 bfd_link_pic (info). I don't know why, and that doesn't make sense, 7528 so I took it out. */ 7529 *secp = mips_elf_tdata (abfd)->elf_data_section; 7530 break; 7531 7532 case SHN_MIPS_SUNDEFINED: 7533 *secp = bfd_und_section_ptr; 7534 break; 7535 } 7536 7537 if (SGI_COMPAT (abfd) 7538 && ! bfd_link_pic (info) 7539 && info->output_bfd->xvec == abfd->xvec 7540 && strcmp (*namep, "__rld_obj_head") == 0) 7541 { 7542 struct elf_link_hash_entry *h; 7543 struct bfd_link_hash_entry *bh; 7544 7545 /* Mark __rld_obj_head as dynamic. */ 7546 bh = NULL; 7547 if (! (_bfd_generic_link_add_one_symbol 7548 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE, 7549 get_elf_backend_data (abfd)->collect, &bh))) 7550 return FALSE; 7551 7552 h = (struct elf_link_hash_entry *) bh; 7553 h->non_elf = 0; 7554 h->def_regular = 1; 7555 h->type = STT_OBJECT; 7556 7557 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 7558 return FALSE; 7559 7560 mips_elf_hash_table (info)->use_rld_obj_head = TRUE; 7561 mips_elf_hash_table (info)->rld_symbol = h; 7562 } 7563 7564 /* If this is a mips16 text symbol, add 1 to the value to make it 7565 odd. This will cause something like .word SYM to come up with 7566 the right value when it is loaded into the PC. */ 7567 if (ELF_ST_IS_COMPRESSED (sym->st_other)) 7568 ++*valp; 7569 7570 return TRUE; 7571 } 7572 7573 /* This hook function is called before the linker writes out a global 7574 symbol. We mark symbols as small common if appropriate. This is 7575 also where we undo the increment of the value for a mips16 symbol. */ 7576 7577 int 7578 _bfd_mips_elf_link_output_symbol_hook 7579 (struct bfd_link_info *info ATTRIBUTE_UNUSED, 7580 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym, 7581 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED) 7582 { 7583 /* If we see a common symbol, which implies a relocatable link, then 7584 if a symbol was small common in an input file, mark it as small 7585 common in the output file. */ 7586 if (sym->st_shndx == SHN_COMMON 7587 && strcmp (input_sec->name, ".scommon") == 0) 7588 sym->st_shndx = SHN_MIPS_SCOMMON; 7589 7590 if (ELF_ST_IS_COMPRESSED (sym->st_other)) 7591 sym->st_value &= ~1; 7592 7593 return 1; 7594 } 7595 7596 /* Functions for the dynamic linker. */ 7597 7598 /* Create dynamic sections when linking against a dynamic object. */ 7599 7600 bfd_boolean 7601 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info) 7602 { 7603 struct elf_link_hash_entry *h; 7604 struct bfd_link_hash_entry *bh; 7605 flagword flags; 7606 register asection *s; 7607 const char * const *namep; 7608 struct mips_elf_link_hash_table *htab; 7609 7610 htab = mips_elf_hash_table (info); 7611 BFD_ASSERT (htab != NULL); 7612 7613 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY 7614 | SEC_LINKER_CREATED | SEC_READONLY); 7615 7616 /* The psABI requires a read-only .dynamic section, but the VxWorks 7617 EABI doesn't. */ 7618 if (!htab->is_vxworks) 7619 { 7620 s = bfd_get_linker_section (abfd, ".dynamic"); 7621 if (s != NULL) 7622 { 7623 if (! bfd_set_section_flags (abfd, s, flags)) 7624 return FALSE; 7625 } 7626 } 7627 7628 /* We need to create .got section. */ 7629 if (!mips_elf_create_got_section (abfd, info)) 7630 return FALSE; 7631 7632 if (! mips_elf_rel_dyn_section (info, TRUE)) 7633 return FALSE; 7634 7635 /* Create .stub section. */ 7636 s = bfd_make_section_anyway_with_flags (abfd, 7637 MIPS_ELF_STUB_SECTION_NAME (abfd), 7638 flags | SEC_CODE); 7639 if (s == NULL 7640 || ! bfd_set_section_alignment (abfd, s, 7641 MIPS_ELF_LOG_FILE_ALIGN (abfd))) 7642 return FALSE; 7643 htab->sstubs = s; 7644 7645 if (!mips_elf_hash_table (info)->use_rld_obj_head 7646 && bfd_link_executable (info) 7647 && bfd_get_linker_section (abfd, ".rld_map") == NULL) 7648 { 7649 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map", 7650 flags &~ (flagword) SEC_READONLY); 7651 if (s == NULL 7652 || ! bfd_set_section_alignment (abfd, s, 7653 MIPS_ELF_LOG_FILE_ALIGN (abfd))) 7654 return FALSE; 7655 } 7656 7657 /* On IRIX5, we adjust add some additional symbols and change the 7658 alignments of several sections. There is no ABI documentation 7659 indicating that this is necessary on IRIX6, nor any evidence that 7660 the linker takes such action. */ 7661 if (IRIX_COMPAT (abfd) == ict_irix5) 7662 { 7663 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++) 7664 { 7665 bh = NULL; 7666 if (! (_bfd_generic_link_add_one_symbol 7667 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0, 7668 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh))) 7669 return FALSE; 7670 7671 h = (struct elf_link_hash_entry *) bh; 7672 h->non_elf = 0; 7673 h->def_regular = 1; 7674 h->type = STT_SECTION; 7675 7676 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 7677 return FALSE; 7678 } 7679 7680 /* We need to create a .compact_rel section. */ 7681 if (SGI_COMPAT (abfd)) 7682 { 7683 if (!mips_elf_create_compact_rel_section (abfd, info)) 7684 return FALSE; 7685 } 7686 7687 /* Change alignments of some sections. */ 7688 s = bfd_get_linker_section (abfd, ".hash"); 7689 if (s != NULL) 7690 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); 7691 7692 s = bfd_get_linker_section (abfd, ".dynsym"); 7693 if (s != NULL) 7694 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); 7695 7696 s = bfd_get_linker_section (abfd, ".dynstr"); 7697 if (s != NULL) 7698 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); 7699 7700 /* ??? */ 7701 s = bfd_get_section_by_name (abfd, ".reginfo"); 7702 if (s != NULL) 7703 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); 7704 7705 s = bfd_get_linker_section (abfd, ".dynamic"); 7706 if (s != NULL) 7707 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); 7708 } 7709 7710 if (bfd_link_executable (info)) 7711 { 7712 const char *name; 7713 7714 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING"; 7715 bh = NULL; 7716 if (!(_bfd_generic_link_add_one_symbol 7717 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0, 7718 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh))) 7719 return FALSE; 7720 7721 h = (struct elf_link_hash_entry *) bh; 7722 h->non_elf = 0; 7723 h->def_regular = 1; 7724 h->type = STT_SECTION; 7725 7726 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 7727 return FALSE; 7728 7729 if (! mips_elf_hash_table (info)->use_rld_obj_head) 7730 { 7731 /* __rld_map is a four byte word located in the .data section 7732 and is filled in by the rtld to contain a pointer to 7733 the _r_debug structure. Its symbol value will be set in 7734 _bfd_mips_elf_finish_dynamic_symbol. */ 7735 s = bfd_get_linker_section (abfd, ".rld_map"); 7736 BFD_ASSERT (s != NULL); 7737 7738 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP"; 7739 bh = NULL; 7740 if (!(_bfd_generic_link_add_one_symbol 7741 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE, 7742 get_elf_backend_data (abfd)->collect, &bh))) 7743 return FALSE; 7744 7745 h = (struct elf_link_hash_entry *) bh; 7746 h->non_elf = 0; 7747 h->def_regular = 1; 7748 h->type = STT_OBJECT; 7749 7750 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 7751 return FALSE; 7752 mips_elf_hash_table (info)->rld_symbol = h; 7753 } 7754 } 7755 7756 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections. 7757 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */ 7758 if (!_bfd_elf_create_dynamic_sections (abfd, info)) 7759 return FALSE; 7760 7761 /* Cache the sections created above. */ 7762 htab->splt = bfd_get_linker_section (abfd, ".plt"); 7763 htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss"); 7764 if (htab->is_vxworks) 7765 { 7766 htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss"); 7767 htab->srelplt = bfd_get_linker_section (abfd, ".rela.plt"); 7768 } 7769 else 7770 htab->srelplt = bfd_get_linker_section (abfd, ".rel.plt"); 7771 if (!htab->sdynbss 7772 || (htab->is_vxworks && !htab->srelbss && !bfd_link_pic (info)) 7773 || !htab->srelplt 7774 || !htab->splt) 7775 abort (); 7776 7777 /* Do the usual VxWorks handling. */ 7778 if (htab->is_vxworks 7779 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2)) 7780 return FALSE; 7781 7782 return TRUE; 7783 } 7784 7785 /* Return true if relocation REL against section SEC is a REL rather than 7786 RELA relocation. RELOCS is the first relocation in the section and 7787 ABFD is the bfd that contains SEC. */ 7788 7789 static bfd_boolean 7790 mips_elf_rel_relocation_p (bfd *abfd, asection *sec, 7791 const Elf_Internal_Rela *relocs, 7792 const Elf_Internal_Rela *rel) 7793 { 7794 Elf_Internal_Shdr *rel_hdr; 7795 const struct elf_backend_data *bed; 7796 7797 /* To determine which flavor of relocation this is, we depend on the 7798 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */ 7799 rel_hdr = elf_section_data (sec)->rel.hdr; 7800 if (rel_hdr == NULL) 7801 return FALSE; 7802 bed = get_elf_backend_data (abfd); 7803 return ((size_t) (rel - relocs) 7804 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel); 7805 } 7806 7807 /* Read the addend for REL relocation REL, which belongs to bfd ABFD. 7808 HOWTO is the relocation's howto and CONTENTS points to the contents 7809 of the section that REL is against. */ 7810 7811 static bfd_vma 7812 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel, 7813 reloc_howto_type *howto, bfd_byte *contents) 7814 { 7815 bfd_byte *location; 7816 unsigned int r_type; 7817 bfd_vma addend; 7818 bfd_vma bytes; 7819 7820 r_type = ELF_R_TYPE (abfd, rel->r_info); 7821 location = contents + rel->r_offset; 7822 7823 /* Get the addend, which is stored in the input file. */ 7824 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location); 7825 bytes = mips_elf_obtain_contents (howto, rel, abfd, contents); 7826 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location); 7827 7828 addend = bytes & howto->src_mask; 7829 7830 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend 7831 accordingly. */ 7832 if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c) 7833 addend <<= 1; 7834 7835 return addend; 7836 } 7837 7838 /* REL is a relocation in ABFD that needs a partnering LO16 relocation 7839 and *ADDEND is the addend for REL itself. Look for the LO16 relocation 7840 and update *ADDEND with the final addend. Return true on success 7841 or false if the LO16 could not be found. RELEND is the exclusive 7842 upper bound on the relocations for REL's section. */ 7843 7844 static bfd_boolean 7845 mips_elf_add_lo16_rel_addend (bfd *abfd, 7846 const Elf_Internal_Rela *rel, 7847 const Elf_Internal_Rela *relend, 7848 bfd_byte *contents, bfd_vma *addend) 7849 { 7850 unsigned int r_type, lo16_type; 7851 const Elf_Internal_Rela *lo16_relocation; 7852 reloc_howto_type *lo16_howto; 7853 bfd_vma l; 7854 7855 r_type = ELF_R_TYPE (abfd, rel->r_info); 7856 if (mips16_reloc_p (r_type)) 7857 lo16_type = R_MIPS16_LO16; 7858 else if (micromips_reloc_p (r_type)) 7859 lo16_type = R_MICROMIPS_LO16; 7860 else if (r_type == R_MIPS_PCHI16) 7861 lo16_type = R_MIPS_PCLO16; 7862 else 7863 lo16_type = R_MIPS_LO16; 7864 7865 /* The combined value is the sum of the HI16 addend, left-shifted by 7866 sixteen bits, and the LO16 addend, sign extended. (Usually, the 7867 code does a `lui' of the HI16 value, and then an `addiu' of the 7868 LO16 value.) 7869 7870 Scan ahead to find a matching LO16 relocation. 7871 7872 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must 7873 be immediately following. However, for the IRIX6 ABI, the next 7874 relocation may be a composed relocation consisting of several 7875 relocations for the same address. In that case, the R_MIPS_LO16 7876 relocation may occur as one of these. We permit a similar 7877 extension in general, as that is useful for GCC. 7878 7879 In some cases GCC dead code elimination removes the LO16 but keeps 7880 the corresponding HI16. This is strictly speaking a violation of 7881 the ABI but not immediately harmful. */ 7882 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend); 7883 if (lo16_relocation == NULL) 7884 return FALSE; 7885 7886 /* Obtain the addend kept there. */ 7887 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE); 7888 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents); 7889 7890 l <<= lo16_howto->rightshift; 7891 l = _bfd_mips_elf_sign_extend (l, 16); 7892 7893 *addend <<= 16; 7894 *addend += l; 7895 return TRUE; 7896 } 7897 7898 /* Try to read the contents of section SEC in bfd ABFD. Return true and 7899 store the contents in *CONTENTS on success. Assume that *CONTENTS 7900 already holds the contents if it is nonull on entry. */ 7901 7902 static bfd_boolean 7903 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents) 7904 { 7905 if (*contents) 7906 return TRUE; 7907 7908 /* Get cached copy if it exists. */ 7909 if (elf_section_data (sec)->this_hdr.contents != NULL) 7910 { 7911 *contents = elf_section_data (sec)->this_hdr.contents; 7912 return TRUE; 7913 } 7914 7915 return bfd_malloc_and_get_section (abfd, sec, contents); 7916 } 7917 7918 /* Make a new PLT record to keep internal data. */ 7919 7920 static struct plt_entry * 7921 mips_elf_make_plt_record (bfd *abfd) 7922 { 7923 struct plt_entry *entry; 7924 7925 entry = bfd_zalloc (abfd, sizeof (*entry)); 7926 if (entry == NULL) 7927 return NULL; 7928 7929 entry->stub_offset = MINUS_ONE; 7930 entry->mips_offset = MINUS_ONE; 7931 entry->comp_offset = MINUS_ONE; 7932 entry->gotplt_index = MINUS_ONE; 7933 return entry; 7934 } 7935 7936 /* Look through the relocs for a section during the first phase, and 7937 allocate space in the global offset table and record the need for 7938 standard MIPS and compressed procedure linkage table entries. */ 7939 7940 bfd_boolean 7941 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info, 7942 asection *sec, const Elf_Internal_Rela *relocs) 7943 { 7944 const char *name; 7945 bfd *dynobj; 7946 Elf_Internal_Shdr *symtab_hdr; 7947 struct elf_link_hash_entry **sym_hashes; 7948 size_t extsymoff; 7949 const Elf_Internal_Rela *rel; 7950 const Elf_Internal_Rela *rel_end; 7951 asection *sreloc; 7952 const struct elf_backend_data *bed; 7953 struct mips_elf_link_hash_table *htab; 7954 bfd_byte *contents; 7955 bfd_vma addend; 7956 reloc_howto_type *howto; 7957 7958 if (bfd_link_relocatable (info)) 7959 return TRUE; 7960 7961 htab = mips_elf_hash_table (info); 7962 BFD_ASSERT (htab != NULL); 7963 7964 dynobj = elf_hash_table (info)->dynobj; 7965 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 7966 sym_hashes = elf_sym_hashes (abfd); 7967 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info; 7968 7969 bed = get_elf_backend_data (abfd); 7970 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel; 7971 7972 /* Check for the mips16 stub sections. */ 7973 7974 name = bfd_get_section_name (abfd, sec); 7975 if (FN_STUB_P (name)) 7976 { 7977 unsigned long r_symndx; 7978 7979 /* Look at the relocation information to figure out which symbol 7980 this is for. */ 7981 7982 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end); 7983 if (r_symndx == 0) 7984 { 7985 (*_bfd_error_handler) 7986 (_("%B: Warning: cannot determine the target function for" 7987 " stub section `%s'"), 7988 abfd, name); 7989 bfd_set_error (bfd_error_bad_value); 7990 return FALSE; 7991 } 7992 7993 if (r_symndx < extsymoff 7994 || sym_hashes[r_symndx - extsymoff] == NULL) 7995 { 7996 asection *o; 7997 7998 /* This stub is for a local symbol. This stub will only be 7999 needed if there is some relocation in this BFD, other 8000 than a 16 bit function call, which refers to this symbol. */ 8001 for (o = abfd->sections; o != NULL; o = o->next) 8002 { 8003 Elf_Internal_Rela *sec_relocs; 8004 const Elf_Internal_Rela *r, *rend; 8005 8006 /* We can ignore stub sections when looking for relocs. */ 8007 if ((o->flags & SEC_RELOC) == 0 8008 || o->reloc_count == 0 8009 || section_allows_mips16_refs_p (o)) 8010 continue; 8011 8012 sec_relocs 8013 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL, 8014 info->keep_memory); 8015 if (sec_relocs == NULL) 8016 return FALSE; 8017 8018 rend = sec_relocs + o->reloc_count; 8019 for (r = sec_relocs; r < rend; r++) 8020 if (ELF_R_SYM (abfd, r->r_info) == r_symndx 8021 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info))) 8022 break; 8023 8024 if (elf_section_data (o)->relocs != sec_relocs) 8025 free (sec_relocs); 8026 8027 if (r < rend) 8028 break; 8029 } 8030 8031 if (o == NULL) 8032 { 8033 /* There is no non-call reloc for this stub, so we do 8034 not need it. Since this function is called before 8035 the linker maps input sections to output sections, we 8036 can easily discard it by setting the SEC_EXCLUDE 8037 flag. */ 8038 sec->flags |= SEC_EXCLUDE; 8039 return TRUE; 8040 } 8041 8042 /* Record this stub in an array of local symbol stubs for 8043 this BFD. */ 8044 if (mips_elf_tdata (abfd)->local_stubs == NULL) 8045 { 8046 unsigned long symcount; 8047 asection **n; 8048 bfd_size_type amt; 8049 8050 if (elf_bad_symtab (abfd)) 8051 symcount = NUM_SHDR_ENTRIES (symtab_hdr); 8052 else 8053 symcount = symtab_hdr->sh_info; 8054 amt = symcount * sizeof (asection *); 8055 n = bfd_zalloc (abfd, amt); 8056 if (n == NULL) 8057 return FALSE; 8058 mips_elf_tdata (abfd)->local_stubs = n; 8059 } 8060 8061 sec->flags |= SEC_KEEP; 8062 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec; 8063 8064 /* We don't need to set mips16_stubs_seen in this case. 8065 That flag is used to see whether we need to look through 8066 the global symbol table for stubs. We don't need to set 8067 it here, because we just have a local stub. */ 8068 } 8069 else 8070 { 8071 struct mips_elf_link_hash_entry *h; 8072 8073 h = ((struct mips_elf_link_hash_entry *) 8074 sym_hashes[r_symndx - extsymoff]); 8075 8076 while (h->root.root.type == bfd_link_hash_indirect 8077 || h->root.root.type == bfd_link_hash_warning) 8078 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; 8079 8080 /* H is the symbol this stub is for. */ 8081 8082 /* If we already have an appropriate stub for this function, we 8083 don't need another one, so we can discard this one. Since 8084 this function is called before the linker maps input sections 8085 to output sections, we can easily discard it by setting the 8086 SEC_EXCLUDE flag. */ 8087 if (h->fn_stub != NULL) 8088 { 8089 sec->flags |= SEC_EXCLUDE; 8090 return TRUE; 8091 } 8092 8093 sec->flags |= SEC_KEEP; 8094 h->fn_stub = sec; 8095 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE; 8096 } 8097 } 8098 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name)) 8099 { 8100 unsigned long r_symndx; 8101 struct mips_elf_link_hash_entry *h; 8102 asection **loc; 8103 8104 /* Look at the relocation information to figure out which symbol 8105 this is for. */ 8106 8107 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end); 8108 if (r_symndx == 0) 8109 { 8110 (*_bfd_error_handler) 8111 (_("%B: Warning: cannot determine the target function for" 8112 " stub section `%s'"), 8113 abfd, name); 8114 bfd_set_error (bfd_error_bad_value); 8115 return FALSE; 8116 } 8117 8118 if (r_symndx < extsymoff 8119 || sym_hashes[r_symndx - extsymoff] == NULL) 8120 { 8121 asection *o; 8122 8123 /* This stub is for a local symbol. This stub will only be 8124 needed if there is some relocation (R_MIPS16_26) in this BFD 8125 that refers to this symbol. */ 8126 for (o = abfd->sections; o != NULL; o = o->next) 8127 { 8128 Elf_Internal_Rela *sec_relocs; 8129 const Elf_Internal_Rela *r, *rend; 8130 8131 /* We can ignore stub sections when looking for relocs. */ 8132 if ((o->flags & SEC_RELOC) == 0 8133 || o->reloc_count == 0 8134 || section_allows_mips16_refs_p (o)) 8135 continue; 8136 8137 sec_relocs 8138 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL, 8139 info->keep_memory); 8140 if (sec_relocs == NULL) 8141 return FALSE; 8142 8143 rend = sec_relocs + o->reloc_count; 8144 for (r = sec_relocs; r < rend; r++) 8145 if (ELF_R_SYM (abfd, r->r_info) == r_symndx 8146 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26) 8147 break; 8148 8149 if (elf_section_data (o)->relocs != sec_relocs) 8150 free (sec_relocs); 8151 8152 if (r < rend) 8153 break; 8154 } 8155 8156 if (o == NULL) 8157 { 8158 /* There is no non-call reloc for this stub, so we do 8159 not need it. Since this function is called before 8160 the linker maps input sections to output sections, we 8161 can easily discard it by setting the SEC_EXCLUDE 8162 flag. */ 8163 sec->flags |= SEC_EXCLUDE; 8164 return TRUE; 8165 } 8166 8167 /* Record this stub in an array of local symbol call_stubs for 8168 this BFD. */ 8169 if (mips_elf_tdata (abfd)->local_call_stubs == NULL) 8170 { 8171 unsigned long symcount; 8172 asection **n; 8173 bfd_size_type amt; 8174 8175 if (elf_bad_symtab (abfd)) 8176 symcount = NUM_SHDR_ENTRIES (symtab_hdr); 8177 else 8178 symcount = symtab_hdr->sh_info; 8179 amt = symcount * sizeof (asection *); 8180 n = bfd_zalloc (abfd, amt); 8181 if (n == NULL) 8182 return FALSE; 8183 mips_elf_tdata (abfd)->local_call_stubs = n; 8184 } 8185 8186 sec->flags |= SEC_KEEP; 8187 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec; 8188 8189 /* We don't need to set mips16_stubs_seen in this case. 8190 That flag is used to see whether we need to look through 8191 the global symbol table for stubs. We don't need to set 8192 it here, because we just have a local stub. */ 8193 } 8194 else 8195 { 8196 h = ((struct mips_elf_link_hash_entry *) 8197 sym_hashes[r_symndx - extsymoff]); 8198 8199 /* H is the symbol this stub is for. */ 8200 8201 if (CALL_FP_STUB_P (name)) 8202 loc = &h->call_fp_stub; 8203 else 8204 loc = &h->call_stub; 8205 8206 /* If we already have an appropriate stub for this function, we 8207 don't need another one, so we can discard this one. Since 8208 this function is called before the linker maps input sections 8209 to output sections, we can easily discard it by setting the 8210 SEC_EXCLUDE flag. */ 8211 if (*loc != NULL) 8212 { 8213 sec->flags |= SEC_EXCLUDE; 8214 return TRUE; 8215 } 8216 8217 sec->flags |= SEC_KEEP; 8218 *loc = sec; 8219 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE; 8220 } 8221 } 8222 8223 sreloc = NULL; 8224 contents = NULL; 8225 for (rel = relocs; rel < rel_end; ++rel) 8226 { 8227 unsigned long r_symndx; 8228 unsigned int r_type; 8229 struct elf_link_hash_entry *h; 8230 bfd_boolean can_make_dynamic_p; 8231 bfd_boolean call_reloc_p; 8232 bfd_boolean constrain_symbol_p; 8233 8234 r_symndx = ELF_R_SYM (abfd, rel->r_info); 8235 r_type = ELF_R_TYPE (abfd, rel->r_info); 8236 8237 if (r_symndx < extsymoff) 8238 h = NULL; 8239 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr)) 8240 { 8241 (*_bfd_error_handler) 8242 (_("%B: Malformed reloc detected for section %s"), 8243 abfd, name); 8244 bfd_set_error (bfd_error_bad_value); 8245 return FALSE; 8246 } 8247 else 8248 { 8249 h = sym_hashes[r_symndx - extsymoff]; 8250 if (h != NULL) 8251 { 8252 while (h->root.type == bfd_link_hash_indirect 8253 || h->root.type == bfd_link_hash_warning) 8254 h = (struct elf_link_hash_entry *) h->root.u.i.link; 8255 8256 /* PR15323, ref flags aren't set for references in the 8257 same object. */ 8258 h->root.non_ir_ref = 1; 8259 } 8260 } 8261 8262 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this 8263 relocation into a dynamic one. */ 8264 can_make_dynamic_p = FALSE; 8265 8266 /* Set CALL_RELOC_P to true if the relocation is for a call, 8267 and if pointer equality therefore doesn't matter. */ 8268 call_reloc_p = FALSE; 8269 8270 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation 8271 into account when deciding how to define the symbol. 8272 Relocations in nonallocatable sections such as .pdr and 8273 .debug* should have no effect. */ 8274 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0); 8275 8276 switch (r_type) 8277 { 8278 case R_MIPS_CALL16: 8279 case R_MIPS_CALL_HI16: 8280 case R_MIPS_CALL_LO16: 8281 case R_MIPS16_CALL16: 8282 case R_MICROMIPS_CALL16: 8283 case R_MICROMIPS_CALL_HI16: 8284 case R_MICROMIPS_CALL_LO16: 8285 call_reloc_p = TRUE; 8286 /* Fall through. */ 8287 8288 case R_MIPS_GOT16: 8289 case R_MIPS_GOT_HI16: 8290 case R_MIPS_GOT_LO16: 8291 case R_MIPS_GOT_PAGE: 8292 case R_MIPS_GOT_OFST: 8293 case R_MIPS_GOT_DISP: 8294 case R_MIPS_TLS_GOTTPREL: 8295 case R_MIPS_TLS_GD: 8296 case R_MIPS_TLS_LDM: 8297 case R_MIPS16_GOT16: 8298 case R_MIPS16_TLS_GOTTPREL: 8299 case R_MIPS16_TLS_GD: 8300 case R_MIPS16_TLS_LDM: 8301 case R_MICROMIPS_GOT16: 8302 case R_MICROMIPS_GOT_HI16: 8303 case R_MICROMIPS_GOT_LO16: 8304 case R_MICROMIPS_GOT_PAGE: 8305 case R_MICROMIPS_GOT_OFST: 8306 case R_MICROMIPS_GOT_DISP: 8307 case R_MICROMIPS_TLS_GOTTPREL: 8308 case R_MICROMIPS_TLS_GD: 8309 case R_MICROMIPS_TLS_LDM: 8310 if (dynobj == NULL) 8311 elf_hash_table (info)->dynobj = dynobj = abfd; 8312 if (!mips_elf_create_got_section (dynobj, info)) 8313 return FALSE; 8314 if (htab->is_vxworks && !bfd_link_pic (info)) 8315 { 8316 (*_bfd_error_handler) 8317 (_("%B: GOT reloc at 0x%lx not expected in executables"), 8318 abfd, (unsigned long) rel->r_offset); 8319 bfd_set_error (bfd_error_bad_value); 8320 return FALSE; 8321 } 8322 can_make_dynamic_p = TRUE; 8323 break; 8324 8325 case R_MIPS_NONE: 8326 case R_MIPS_JALR: 8327 case R_MICROMIPS_JALR: 8328 /* These relocations have empty fields and are purely there to 8329 provide link information. The symbol value doesn't matter. */ 8330 constrain_symbol_p = FALSE; 8331 break; 8332 8333 case R_MIPS_GPREL16: 8334 case R_MIPS_GPREL32: 8335 case R_MIPS16_GPREL: 8336 case R_MICROMIPS_GPREL16: 8337 /* GP-relative relocations always resolve to a definition in a 8338 regular input file, ignoring the one-definition rule. This is 8339 important for the GP setup sequence in NewABI code, which 8340 always resolves to a local function even if other relocations 8341 against the symbol wouldn't. */ 8342 constrain_symbol_p = FALSE; 8343 break; 8344 8345 case R_MIPS_32: 8346 case R_MIPS_REL32: 8347 case R_MIPS_64: 8348 /* In VxWorks executables, references to external symbols 8349 must be handled using copy relocs or PLT entries; it is not 8350 possible to convert this relocation into a dynamic one. 8351 8352 For executables that use PLTs and copy-relocs, we have a 8353 choice between converting the relocation into a dynamic 8354 one or using copy relocations or PLT entries. It is 8355 usually better to do the former, unless the relocation is 8356 against a read-only section. */ 8357 if ((bfd_link_pic (info) 8358 || (h != NULL 8359 && !htab->is_vxworks 8360 && strcmp (h->root.root.string, "__gnu_local_gp") != 0 8361 && !(!info->nocopyreloc 8362 && !PIC_OBJECT_P (abfd) 8363 && MIPS_ELF_READONLY_SECTION (sec)))) 8364 && (sec->flags & SEC_ALLOC) != 0) 8365 { 8366 can_make_dynamic_p = TRUE; 8367 if (dynobj == NULL) 8368 elf_hash_table (info)->dynobj = dynobj = abfd; 8369 } 8370 break; 8371 8372 case R_MIPS_26: 8373 case R_MIPS_PC16: 8374 case R_MIPS_PC21_S2: 8375 case R_MIPS_PC26_S2: 8376 case R_MIPS16_26: 8377 case R_MIPS16_PC16_S1: 8378 case R_MICROMIPS_26_S1: 8379 case R_MICROMIPS_PC7_S1: 8380 case R_MICROMIPS_PC10_S1: 8381 case R_MICROMIPS_PC16_S1: 8382 case R_MICROMIPS_PC23_S2: 8383 call_reloc_p = TRUE; 8384 break; 8385 } 8386 8387 if (h) 8388 { 8389 if (constrain_symbol_p) 8390 { 8391 if (!can_make_dynamic_p) 8392 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1; 8393 8394 if (!call_reloc_p) 8395 h->pointer_equality_needed = 1; 8396 8397 /* We must not create a stub for a symbol that has 8398 relocations related to taking the function's address. 8399 This doesn't apply to VxWorks, where CALL relocs refer 8400 to a .got.plt entry instead of a normal .got entry. */ 8401 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p)) 8402 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE; 8403 } 8404 8405 /* Relocations against the special VxWorks __GOTT_BASE__ and 8406 __GOTT_INDEX__ symbols must be left to the loader. Allocate 8407 room for them in .rela.dyn. */ 8408 if (is_gott_symbol (info, h)) 8409 { 8410 if (sreloc == NULL) 8411 { 8412 sreloc = mips_elf_rel_dyn_section (info, TRUE); 8413 if (sreloc == NULL) 8414 return FALSE; 8415 } 8416 mips_elf_allocate_dynamic_relocations (dynobj, info, 1); 8417 if (MIPS_ELF_READONLY_SECTION (sec)) 8418 /* We tell the dynamic linker that there are 8419 relocations against the text segment. */ 8420 info->flags |= DF_TEXTREL; 8421 } 8422 } 8423 else if (call_lo16_reloc_p (r_type) 8424 || got_lo16_reloc_p (r_type) 8425 || got_disp_reloc_p (r_type) 8426 || (got16_reloc_p (r_type) && htab->is_vxworks)) 8427 { 8428 /* We may need a local GOT entry for this relocation. We 8429 don't count R_MIPS_GOT_PAGE because we can estimate the 8430 maximum number of pages needed by looking at the size of 8431 the segment. Similar comments apply to R_MIPS*_GOT16 and 8432 R_MIPS*_CALL16, except on VxWorks, where GOT relocations 8433 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or 8434 R_MIPS_CALL_HI16 because these are always followed by an 8435 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */ 8436 if (!mips_elf_record_local_got_symbol (abfd, r_symndx, 8437 rel->r_addend, info, r_type)) 8438 return FALSE; 8439 } 8440 8441 if (h != NULL 8442 && mips_elf_relocation_needs_la25_stub (abfd, r_type, 8443 ELF_ST_IS_MIPS16 (h->other))) 8444 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE; 8445 8446 switch (r_type) 8447 { 8448 case R_MIPS_CALL16: 8449 case R_MIPS16_CALL16: 8450 case R_MICROMIPS_CALL16: 8451 if (h == NULL) 8452 { 8453 (*_bfd_error_handler) 8454 (_("%B: CALL16 reloc at 0x%lx not against global symbol"), 8455 abfd, (unsigned long) rel->r_offset); 8456 bfd_set_error (bfd_error_bad_value); 8457 return FALSE; 8458 } 8459 /* Fall through. */ 8460 8461 case R_MIPS_CALL_HI16: 8462 case R_MIPS_CALL_LO16: 8463 case R_MICROMIPS_CALL_HI16: 8464 case R_MICROMIPS_CALL_LO16: 8465 if (h != NULL) 8466 { 8467 /* Make sure there is room in the regular GOT to hold the 8468 function's address. We may eliminate it in favour of 8469 a .got.plt entry later; see mips_elf_count_got_symbols. */ 8470 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE, 8471 r_type)) 8472 return FALSE; 8473 8474 /* We need a stub, not a plt entry for the undefined 8475 function. But we record it as if it needs plt. See 8476 _bfd_elf_adjust_dynamic_symbol. */ 8477 h->needs_plt = 1; 8478 h->type = STT_FUNC; 8479 } 8480 break; 8481 8482 case R_MIPS_GOT_PAGE: 8483 case R_MICROMIPS_GOT_PAGE: 8484 case R_MIPS16_GOT16: 8485 case R_MIPS_GOT16: 8486 case R_MIPS_GOT_HI16: 8487 case R_MIPS_GOT_LO16: 8488 case R_MICROMIPS_GOT16: 8489 case R_MICROMIPS_GOT_HI16: 8490 case R_MICROMIPS_GOT_LO16: 8491 if (!h || got_page_reloc_p (r_type)) 8492 { 8493 /* This relocation needs (or may need, if h != NULL) a 8494 page entry in the GOT. For R_MIPS_GOT_PAGE we do not 8495 know for sure until we know whether the symbol is 8496 preemptible. */ 8497 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel)) 8498 { 8499 if (!mips_elf_get_section_contents (abfd, sec, &contents)) 8500 return FALSE; 8501 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE); 8502 addend = mips_elf_read_rel_addend (abfd, rel, 8503 howto, contents); 8504 if (got16_reloc_p (r_type)) 8505 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end, 8506 contents, &addend); 8507 else 8508 addend <<= howto->rightshift; 8509 } 8510 else 8511 addend = rel->r_addend; 8512 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx, 8513 h, addend)) 8514 return FALSE; 8515 8516 if (h) 8517 { 8518 struct mips_elf_link_hash_entry *hmips = 8519 (struct mips_elf_link_hash_entry *) h; 8520 8521 /* This symbol is definitely not overridable. */ 8522 if (hmips->root.def_regular 8523 && ! (bfd_link_pic (info) && ! info->symbolic 8524 && ! hmips->root.forced_local)) 8525 h = NULL; 8526 } 8527 } 8528 /* If this is a global, overridable symbol, GOT_PAGE will 8529 decay to GOT_DISP, so we'll need a GOT entry for it. */ 8530 /* Fall through. */ 8531 8532 case R_MIPS_GOT_DISP: 8533 case R_MICROMIPS_GOT_DISP: 8534 if (h && !mips_elf_record_global_got_symbol (h, abfd, info, 8535 FALSE, r_type)) 8536 return FALSE; 8537 break; 8538 8539 case R_MIPS_TLS_GOTTPREL: 8540 case R_MIPS16_TLS_GOTTPREL: 8541 case R_MICROMIPS_TLS_GOTTPREL: 8542 if (bfd_link_pic (info)) 8543 info->flags |= DF_STATIC_TLS; 8544 /* Fall through */ 8545 8546 case R_MIPS_TLS_LDM: 8547 case R_MIPS16_TLS_LDM: 8548 case R_MICROMIPS_TLS_LDM: 8549 if (tls_ldm_reloc_p (r_type)) 8550 { 8551 r_symndx = STN_UNDEF; 8552 h = NULL; 8553 } 8554 /* Fall through */ 8555 8556 case R_MIPS_TLS_GD: 8557 case R_MIPS16_TLS_GD: 8558 case R_MICROMIPS_TLS_GD: 8559 /* This symbol requires a global offset table entry, or two 8560 for TLS GD relocations. */ 8561 if (h != NULL) 8562 { 8563 if (!mips_elf_record_global_got_symbol (h, abfd, info, 8564 FALSE, r_type)) 8565 return FALSE; 8566 } 8567 else 8568 { 8569 if (!mips_elf_record_local_got_symbol (abfd, r_symndx, 8570 rel->r_addend, 8571 info, r_type)) 8572 return FALSE; 8573 } 8574 break; 8575 8576 case R_MIPS_32: 8577 case R_MIPS_REL32: 8578 case R_MIPS_64: 8579 /* In VxWorks executables, references to external symbols 8580 are handled using copy relocs or PLT stubs, so there's 8581 no need to add a .rela.dyn entry for this relocation. */ 8582 if (can_make_dynamic_p) 8583 { 8584 if (sreloc == NULL) 8585 { 8586 sreloc = mips_elf_rel_dyn_section (info, TRUE); 8587 if (sreloc == NULL) 8588 return FALSE; 8589 } 8590 if (bfd_link_pic (info) && h == NULL) 8591 { 8592 /* When creating a shared object, we must copy these 8593 reloc types into the output file as R_MIPS_REL32 8594 relocs. Make room for this reloc in .rel(a).dyn. */ 8595 mips_elf_allocate_dynamic_relocations (dynobj, info, 1); 8596 /* In the N32 and 64-bit ABIs there may be multiple 8597 consecutive relocations for the same offset. If we have 8598 a R_MIPS_GPREL32 followed by a R_MIPS_64 then that 8599 relocation is complete and needs no futher adjustment. 8600 8601 Silently ignore absolute relocations in the .eh_frame 8602 section, they will be dropped latter. 8603 */ 8604 if ((rel == relocs 8605 || rel[-1].r_offset != rel->r_offset 8606 || r_type != R_MIPS_64 8607 || ELF_R_TYPE(abfd, rel[-1].r_info) != R_MIPS_GPREL32) 8608 && MIPS_ELF_READONLY_SECTION (sec) 8609 && !((r_type == R_MIPS_32 || r_type == R_MIPS_64) 8610 && strcmp(sec->name, ".eh_frame") == 0)) 8611 { 8612 /* We tell the dynamic linker that there are 8613 relocations against the text segment. */ 8614 info->flags |= DF_TEXTREL; 8615 info->callbacks->warning 8616 (info, 8617 _("relocation emitted against readonly section"), 8618 NULL, abfd, sec, rel->r_offset); 8619 } 8620 } 8621 else 8622 { 8623 struct mips_elf_link_hash_entry *hmips; 8624 8625 /* For a shared object, we must copy this relocation 8626 unless the symbol turns out to be undefined and 8627 weak with non-default visibility, in which case 8628 it will be left as zero. 8629 8630 We could elide R_MIPS_REL32 for locally binding symbols 8631 in shared libraries, but do not yet do so. 8632 8633 For an executable, we only need to copy this 8634 reloc if the symbol is defined in a dynamic 8635 object. */ 8636 hmips = (struct mips_elf_link_hash_entry *) h; 8637 ++hmips->possibly_dynamic_relocs; 8638 if (MIPS_ELF_READONLY_SECTION (sec)) 8639 /* We need it to tell the dynamic linker if there 8640 are relocations against the text segment. */ 8641 hmips->readonly_reloc = TRUE; 8642 } 8643 } 8644 8645 if (SGI_COMPAT (abfd)) 8646 mips_elf_hash_table (info)->compact_rel_size += 8647 sizeof (Elf32_External_crinfo); 8648 break; 8649 8650 case R_MIPS_26: 8651 case R_MIPS_GPREL16: 8652 case R_MIPS_LITERAL: 8653 case R_MIPS_GPREL32: 8654 case R_MICROMIPS_26_S1: 8655 case R_MICROMIPS_GPREL16: 8656 case R_MICROMIPS_LITERAL: 8657 case R_MICROMIPS_GPREL7_S2: 8658 if (SGI_COMPAT (abfd)) 8659 mips_elf_hash_table (info)->compact_rel_size += 8660 sizeof (Elf32_External_crinfo); 8661 break; 8662 8663 /* This relocation describes the C++ object vtable hierarchy. 8664 Reconstruct it for later use during GC. */ 8665 case R_MIPS_GNU_VTINHERIT: 8666 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) 8667 return FALSE; 8668 break; 8669 8670 /* This relocation describes which C++ vtable entries are actually 8671 used. Record for later use during GC. */ 8672 case R_MIPS_GNU_VTENTRY: 8673 BFD_ASSERT (h != NULL); 8674 if (h != NULL 8675 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset)) 8676 return FALSE; 8677 break; 8678 8679 default: 8680 break; 8681 } 8682 8683 /* Record the need for a PLT entry. At this point we don't know 8684 yet if we are going to create a PLT in the first place, but 8685 we only record whether the relocation requires a standard MIPS 8686 or a compressed code entry anyway. If we don't make a PLT after 8687 all, then we'll just ignore these arrangements. Likewise if 8688 a PLT entry is not created because the symbol is satisfied 8689 locally. */ 8690 if (h != NULL 8691 && jal_reloc_p (r_type) 8692 && !SYMBOL_CALLS_LOCAL (info, h)) 8693 { 8694 if (h->plt.plist == NULL) 8695 h->plt.plist = mips_elf_make_plt_record (abfd); 8696 if (h->plt.plist == NULL) 8697 return FALSE; 8698 8699 if (r_type == R_MIPS_26) 8700 h->plt.plist->need_mips = TRUE; 8701 else 8702 h->plt.plist->need_comp = TRUE; 8703 } 8704 8705 /* See if this reloc would need to refer to a MIPS16 hard-float stub, 8706 if there is one. We only need to handle global symbols here; 8707 we decide whether to keep or delete stubs for local symbols 8708 when processing the stub's relocations. */ 8709 if (h != NULL 8710 && !mips16_call_reloc_p (r_type) 8711 && !section_allows_mips16_refs_p (sec)) 8712 { 8713 struct mips_elf_link_hash_entry *mh; 8714 8715 mh = (struct mips_elf_link_hash_entry *) h; 8716 mh->need_fn_stub = TRUE; 8717 } 8718 8719 /* Refuse some position-dependent relocations when creating a 8720 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're 8721 not PIC, but we can create dynamic relocations and the result 8722 will be fine. Also do not refuse R_MIPS_LO16, which can be 8723 combined with R_MIPS_GOT16. */ 8724 if (bfd_link_pic (info)) 8725 { 8726 switch (r_type) 8727 { 8728 case R_MIPS16_HI16: 8729 case R_MIPS_HI16: 8730 case R_MIPS_HIGHER: 8731 case R_MIPS_HIGHEST: 8732 case R_MICROMIPS_HI16: 8733 case R_MICROMIPS_HIGHER: 8734 case R_MICROMIPS_HIGHEST: 8735 /* Don't refuse a high part relocation if it's against 8736 no symbol (e.g. part of a compound relocation). */ 8737 if (r_symndx == STN_UNDEF) 8738 break; 8739 8740 /* R_MIPS_HI16 against _gp_disp is used for $gp setup, 8741 and has a special meaning. */ 8742 if (!NEWABI_P (abfd) && h != NULL 8743 && strcmp (h->root.root.string, "_gp_disp") == 0) 8744 break; 8745 8746 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */ 8747 if (is_gott_symbol (info, h)) 8748 break; 8749 8750 /* FALLTHROUGH */ 8751 8752 case R_MIPS16_26: 8753 case R_MIPS_26: 8754 case R_MICROMIPS_26_S1: 8755 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE); 8756 (*_bfd_error_handler) 8757 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"), 8758 abfd, howto->name, 8759 (h) ? h->root.root.string : "a local symbol"); 8760 bfd_set_error (bfd_error_bad_value); 8761 return FALSE; 8762 default: 8763 break; 8764 } 8765 } 8766 } 8767 8768 return TRUE; 8769 } 8770 8771 bfd_boolean 8772 _bfd_mips_relax_section (bfd *abfd, asection *sec, 8773 struct bfd_link_info *link_info, 8774 bfd_boolean *again) 8775 { 8776 Elf_Internal_Rela *internal_relocs; 8777 Elf_Internal_Rela *irel, *irelend; 8778 Elf_Internal_Shdr *symtab_hdr; 8779 bfd_byte *contents = NULL; 8780 size_t extsymoff; 8781 bfd_boolean changed_contents = FALSE; 8782 bfd_vma sec_start = sec->output_section->vma + sec->output_offset; 8783 Elf_Internal_Sym *isymbuf = NULL; 8784 8785 /* We are not currently changing any sizes, so only one pass. */ 8786 *again = FALSE; 8787 8788 if (bfd_link_relocatable (link_info)) 8789 return TRUE; 8790 8791 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, 8792 link_info->keep_memory); 8793 if (internal_relocs == NULL) 8794 return TRUE; 8795 8796 irelend = internal_relocs + sec->reloc_count 8797 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel; 8798 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 8799 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info; 8800 8801 for (irel = internal_relocs; irel < irelend; irel++) 8802 { 8803 bfd_vma symval; 8804 bfd_signed_vma sym_offset; 8805 unsigned int r_type; 8806 unsigned long r_symndx; 8807 asection *sym_sec; 8808 unsigned long instruction; 8809 8810 /* Turn jalr into bgezal, and jr into beq, if they're marked 8811 with a JALR relocation, that indicate where they jump to. 8812 This saves some pipeline bubbles. */ 8813 r_type = ELF_R_TYPE (abfd, irel->r_info); 8814 if (r_type != R_MIPS_JALR) 8815 continue; 8816 8817 r_symndx = ELF_R_SYM (abfd, irel->r_info); 8818 /* Compute the address of the jump target. */ 8819 if (r_symndx >= extsymoff) 8820 { 8821 struct mips_elf_link_hash_entry *h 8822 = ((struct mips_elf_link_hash_entry *) 8823 elf_sym_hashes (abfd) [r_symndx - extsymoff]); 8824 8825 while (h->root.root.type == bfd_link_hash_indirect 8826 || h->root.root.type == bfd_link_hash_warning) 8827 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; 8828 8829 /* If a symbol is undefined, or if it may be overridden, 8830 skip it. */ 8831 if (! ((h->root.root.type == bfd_link_hash_defined 8832 || h->root.root.type == bfd_link_hash_defweak) 8833 && h->root.root.u.def.section) 8834 || (bfd_link_pic (link_info) && ! link_info->symbolic 8835 && !h->root.forced_local)) 8836 continue; 8837 8838 sym_sec = h->root.root.u.def.section; 8839 if (sym_sec->output_section) 8840 symval = (h->root.root.u.def.value 8841 + sym_sec->output_section->vma 8842 + sym_sec->output_offset); 8843 else 8844 symval = h->root.root.u.def.value; 8845 } 8846 else 8847 { 8848 Elf_Internal_Sym *isym; 8849 8850 /* Read this BFD's symbols if we haven't done so already. */ 8851 if (isymbuf == NULL && symtab_hdr->sh_info != 0) 8852 { 8853 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; 8854 if (isymbuf == NULL) 8855 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr, 8856 symtab_hdr->sh_info, 0, 8857 NULL, NULL, NULL); 8858 if (isymbuf == NULL) 8859 goto relax_return; 8860 } 8861 8862 isym = isymbuf + r_symndx; 8863 if (isym->st_shndx == SHN_UNDEF) 8864 continue; 8865 else if (isym->st_shndx == SHN_ABS) 8866 sym_sec = bfd_abs_section_ptr; 8867 else if (isym->st_shndx == SHN_COMMON) 8868 sym_sec = bfd_com_section_ptr; 8869 else 8870 sym_sec 8871 = bfd_section_from_elf_index (abfd, isym->st_shndx); 8872 symval = isym->st_value 8873 + sym_sec->output_section->vma 8874 + sym_sec->output_offset; 8875 } 8876 8877 /* Compute branch offset, from delay slot of the jump to the 8878 branch target. */ 8879 sym_offset = (symval + irel->r_addend) 8880 - (sec_start + irel->r_offset + 4); 8881 8882 /* Branch offset must be properly aligned. */ 8883 if ((sym_offset & 3) != 0) 8884 continue; 8885 8886 sym_offset >>= 2; 8887 8888 /* Check that it's in range. */ 8889 if (sym_offset < -0x8000 || sym_offset >= 0x8000) 8890 continue; 8891 8892 /* Get the section contents if we haven't done so already. */ 8893 if (!mips_elf_get_section_contents (abfd, sec, &contents)) 8894 goto relax_return; 8895 8896 instruction = bfd_get_32 (abfd, contents + irel->r_offset); 8897 8898 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */ 8899 if ((instruction & 0xfc1fffff) == 0x0000f809) 8900 instruction = 0x04110000; 8901 /* If it was jr <reg>, turn it into b <target>. */ 8902 else if ((instruction & 0xfc1fffff) == 0x00000008) 8903 instruction = 0x10000000; 8904 else 8905 continue; 8906 8907 instruction |= (sym_offset & 0xffff); 8908 bfd_put_32 (abfd, instruction, contents + irel->r_offset); 8909 changed_contents = TRUE; 8910 } 8911 8912 if (contents != NULL 8913 && elf_section_data (sec)->this_hdr.contents != contents) 8914 { 8915 if (!changed_contents && !link_info->keep_memory) 8916 free (contents); 8917 else 8918 { 8919 /* Cache the section contents for elf_link_input_bfd. */ 8920 elf_section_data (sec)->this_hdr.contents = contents; 8921 } 8922 } 8923 return TRUE; 8924 8925 relax_return: 8926 if (contents != NULL 8927 && elf_section_data (sec)->this_hdr.contents != contents) 8928 free (contents); 8929 return FALSE; 8930 } 8931 8932 /* Allocate space for global sym dynamic relocs. */ 8933 8934 static bfd_boolean 8935 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf) 8936 { 8937 struct bfd_link_info *info = inf; 8938 bfd *dynobj; 8939 struct mips_elf_link_hash_entry *hmips; 8940 struct mips_elf_link_hash_table *htab; 8941 8942 htab = mips_elf_hash_table (info); 8943 BFD_ASSERT (htab != NULL); 8944 8945 dynobj = elf_hash_table (info)->dynobj; 8946 hmips = (struct mips_elf_link_hash_entry *) h; 8947 8948 /* VxWorks executables are handled elsewhere; we only need to 8949 allocate relocations in shared objects. */ 8950 if (htab->is_vxworks && !bfd_link_pic (info)) 8951 return TRUE; 8952 8953 /* Ignore indirect symbols. All relocations against such symbols 8954 will be redirected to the target symbol. */ 8955 if (h->root.type == bfd_link_hash_indirect) 8956 return TRUE; 8957 8958 /* If this symbol is defined in a dynamic object, or we are creating 8959 a shared library, we will need to copy any R_MIPS_32 or 8960 R_MIPS_REL32 relocs against it into the output file. */ 8961 if (! bfd_link_relocatable (info) 8962 && hmips->possibly_dynamic_relocs != 0 8963 && (h->root.type == bfd_link_hash_defweak 8964 || (!h->def_regular && !ELF_COMMON_DEF_P (h)) 8965 || bfd_link_pic (info))) 8966 { 8967 bfd_boolean do_copy = TRUE; 8968 8969 if (h->root.type == bfd_link_hash_undefweak) 8970 { 8971 /* Do not copy relocations for undefined weak symbols with 8972 non-default visibility. */ 8973 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT) 8974 do_copy = FALSE; 8975 8976 /* Make sure undefined weak symbols are output as a dynamic 8977 symbol in PIEs. */ 8978 else if (h->dynindx == -1 && !h->forced_local) 8979 { 8980 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 8981 return FALSE; 8982 } 8983 } 8984 8985 if (do_copy) 8986 { 8987 /* Even though we don't directly need a GOT entry for this symbol, 8988 the SVR4 psABI requires it to have a dynamic symbol table 8989 index greater that DT_MIPS_GOTSYM if there are dynamic 8990 relocations against it. 8991 8992 VxWorks does not enforce the same mapping between the GOT 8993 and the symbol table, so the same requirement does not 8994 apply there. */ 8995 if (!htab->is_vxworks) 8996 { 8997 if (hmips->global_got_area > GGA_RELOC_ONLY) 8998 hmips->global_got_area = GGA_RELOC_ONLY; 8999 hmips->got_only_for_calls = FALSE; 9000 } 9001 9002 mips_elf_allocate_dynamic_relocations 9003 (dynobj, info, hmips->possibly_dynamic_relocs); 9004 if (hmips->readonly_reloc) 9005 /* We tell the dynamic linker that there are relocations 9006 against the text segment. */ 9007 info->flags |= DF_TEXTREL; 9008 } 9009 } 9010 9011 return TRUE; 9012 } 9013 9014 /* Adjust a symbol defined by a dynamic object and referenced by a 9015 regular object. The current definition is in some section of the 9016 dynamic object, but we're not including those sections. We have to 9017 change the definition to something the rest of the link can 9018 understand. */ 9019 9020 bfd_boolean 9021 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info, 9022 struct elf_link_hash_entry *h) 9023 { 9024 bfd *dynobj; 9025 struct mips_elf_link_hash_entry *hmips; 9026 struct mips_elf_link_hash_table *htab; 9027 9028 htab = mips_elf_hash_table (info); 9029 BFD_ASSERT (htab != NULL); 9030 9031 dynobj = elf_hash_table (info)->dynobj; 9032 hmips = (struct mips_elf_link_hash_entry *) h; 9033 9034 /* Make sure we know what is going on here. */ 9035 BFD_ASSERT (dynobj != NULL 9036 && (h->needs_plt 9037 || h->type == STT_GNU_IFUNC 9038 || h->u.weakdef != NULL 9039 || (h->def_dynamic 9040 && h->ref_regular 9041 && !h->def_regular))); 9042 9043 hmips = (struct mips_elf_link_hash_entry *) h; 9044 9045 /* If there are call relocations against an externally-defined symbol, 9046 see whether we can create a MIPS lazy-binding stub for it. We can 9047 only do this if all references to the function are through call 9048 relocations, and in that case, the traditional lazy-binding stubs 9049 are much more efficient than PLT entries. 9050 9051 Traditional stubs are only available on SVR4 psABI-based systems; 9052 VxWorks always uses PLTs instead. */ 9053 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub) 9054 { 9055 if (! elf_hash_table (info)->dynamic_sections_created) 9056 return TRUE; 9057 9058 /* If this symbol is not defined in a regular file, then set 9059 the symbol to the stub location. This is required to make 9060 function pointers compare as equal between the normal 9061 executable and the shared library. */ 9062 if (!h->def_regular) 9063 { 9064 hmips->needs_lazy_stub = TRUE; 9065 htab->lazy_stub_count++; 9066 return TRUE; 9067 } 9068 } 9069 /* As above, VxWorks requires PLT entries for externally-defined 9070 functions that are only accessed through call relocations. 9071 9072 Both VxWorks and non-VxWorks targets also need PLT entries if there 9073 are static-only relocations against an externally-defined function. 9074 This can technically occur for shared libraries if there are 9075 branches to the symbol, although it is unlikely that this will be 9076 used in practice due to the short ranges involved. It can occur 9077 for any relative or absolute relocation in executables; in that 9078 case, the PLT entry becomes the function's canonical address. */ 9079 else if (((h->needs_plt && !hmips->no_fn_stub) 9080 || (h->type == STT_FUNC && hmips->has_static_relocs)) 9081 && htab->use_plts_and_copy_relocs 9082 && !SYMBOL_CALLS_LOCAL (info, h) 9083 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT 9084 && h->root.type == bfd_link_hash_undefweak)) 9085 { 9086 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd); 9087 bfd_boolean newabi_p = NEWABI_P (info->output_bfd); 9088 9089 /* If this is the first symbol to need a PLT entry, then make some 9090 basic setup. Also work out PLT entry sizes. We'll need them 9091 for PLT offset calculations. */ 9092 if (htab->plt_mips_offset + htab->plt_comp_offset == 0) 9093 { 9094 BFD_ASSERT (htab->sgotplt->size == 0); 9095 BFD_ASSERT (htab->plt_got_index == 0); 9096 9097 /* If we're using the PLT additions to the psABI, each PLT 9098 entry is 16 bytes and the PLT0 entry is 32 bytes. 9099 Encourage better cache usage by aligning. We do this 9100 lazily to avoid pessimizing traditional objects. */ 9101 if (!htab->is_vxworks 9102 && !bfd_set_section_alignment (dynobj, htab->splt, 5)) 9103 return FALSE; 9104 9105 /* Make sure that .got.plt is word-aligned. We do this lazily 9106 for the same reason as above. */ 9107 if (!bfd_set_section_alignment (dynobj, htab->sgotplt, 9108 MIPS_ELF_LOG_FILE_ALIGN (dynobj))) 9109 return FALSE; 9110 9111 /* On non-VxWorks targets, the first two entries in .got.plt 9112 are reserved. */ 9113 if (!htab->is_vxworks) 9114 htab->plt_got_index 9115 += (get_elf_backend_data (dynobj)->got_header_size 9116 / MIPS_ELF_GOT_SIZE (dynobj)); 9117 9118 /* On VxWorks, also allocate room for the header's 9119 .rela.plt.unloaded entries. */ 9120 if (htab->is_vxworks && !bfd_link_pic (info)) 9121 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela); 9122 9123 /* Now work out the sizes of individual PLT entries. */ 9124 if (htab->is_vxworks && bfd_link_pic (info)) 9125 htab->plt_mips_entry_size 9126 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry); 9127 else if (htab->is_vxworks) 9128 htab->plt_mips_entry_size 9129 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry); 9130 else if (newabi_p) 9131 htab->plt_mips_entry_size 9132 = 4 * ARRAY_SIZE (mips_exec_plt_entry); 9133 else if (!micromips_p) 9134 { 9135 htab->plt_mips_entry_size 9136 = 4 * ARRAY_SIZE (mips_exec_plt_entry); 9137 htab->plt_comp_entry_size 9138 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry); 9139 } 9140 else if (htab->insn32) 9141 { 9142 htab->plt_mips_entry_size 9143 = 4 * ARRAY_SIZE (mips_exec_plt_entry); 9144 htab->plt_comp_entry_size 9145 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry); 9146 } 9147 else 9148 { 9149 htab->plt_mips_entry_size 9150 = 4 * ARRAY_SIZE (mips_exec_plt_entry); 9151 htab->plt_comp_entry_size 9152 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry); 9153 } 9154 } 9155 9156 if (h->plt.plist == NULL) 9157 h->plt.plist = mips_elf_make_plt_record (dynobj); 9158 if (h->plt.plist == NULL) 9159 return FALSE; 9160 9161 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks, 9162 n32 or n64, so always use a standard entry there. 9163 9164 If the symbol has a MIPS16 call stub and gets a PLT entry, then 9165 all MIPS16 calls will go via that stub, and there is no benefit 9166 to having a MIPS16 entry. And in the case of call_stub a 9167 standard entry actually has to be used as the stub ends with a J 9168 instruction. */ 9169 if (newabi_p 9170 || htab->is_vxworks 9171 || hmips->call_stub 9172 || hmips->call_fp_stub) 9173 { 9174 h->plt.plist->need_mips = TRUE; 9175 h->plt.plist->need_comp = FALSE; 9176 } 9177 9178 /* Otherwise, if there are no direct calls to the function, we 9179 have a free choice of whether to use standard or compressed 9180 entries. Prefer microMIPS entries if the object is known to 9181 contain microMIPS code, so that it becomes possible to create 9182 pure microMIPS binaries. Prefer standard entries otherwise, 9183 because MIPS16 ones are no smaller and are usually slower. */ 9184 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp) 9185 { 9186 if (micromips_p) 9187 h->plt.plist->need_comp = TRUE; 9188 else 9189 h->plt.plist->need_mips = TRUE; 9190 } 9191 9192 if (h->plt.plist->need_mips) 9193 { 9194 h->plt.plist->mips_offset = htab->plt_mips_offset; 9195 htab->plt_mips_offset += htab->plt_mips_entry_size; 9196 } 9197 if (h->plt.plist->need_comp) 9198 { 9199 h->plt.plist->comp_offset = htab->plt_comp_offset; 9200 htab->plt_comp_offset += htab->plt_comp_entry_size; 9201 } 9202 9203 /* Reserve the corresponding .got.plt entry now too. */ 9204 h->plt.plist->gotplt_index = htab->plt_got_index++; 9205 9206 /* If the output file has no definition of the symbol, set the 9207 symbol's value to the address of the stub. */ 9208 if (!bfd_link_pic (info) && !h->def_regular) 9209 hmips->use_plt_entry = TRUE; 9210 9211 /* Make room for the R_MIPS_JUMP_SLOT relocation. */ 9212 htab->srelplt->size += (htab->is_vxworks 9213 ? MIPS_ELF_RELA_SIZE (dynobj) 9214 : MIPS_ELF_REL_SIZE (dynobj)); 9215 9216 /* Make room for the .rela.plt.unloaded relocations. */ 9217 if (htab->is_vxworks && !bfd_link_pic (info)) 9218 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela); 9219 9220 /* All relocations against this symbol that could have been made 9221 dynamic will now refer to the PLT entry instead. */ 9222 hmips->possibly_dynamic_relocs = 0; 9223 9224 return TRUE; 9225 } 9226 9227 /* If this is a weak symbol, and there is a real definition, the 9228 processor independent code will have arranged for us to see the 9229 real definition first, and we can just use the same value. */ 9230 if (h->u.weakdef != NULL) 9231 { 9232 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined 9233 || h->u.weakdef->root.type == bfd_link_hash_defweak); 9234 h->root.u.def.section = h->u.weakdef->root.u.def.section; 9235 h->root.u.def.value = h->u.weakdef->root.u.def.value; 9236 return TRUE; 9237 } 9238 9239 /* Otherwise, there is nothing further to do for symbols defined 9240 in regular objects. */ 9241 if (h->def_regular) 9242 return TRUE; 9243 9244 /* There's also nothing more to do if we'll convert all relocations 9245 against this symbol into dynamic relocations. */ 9246 if (!hmips->has_static_relocs) 9247 return TRUE; 9248 9249 /* We're now relying on copy relocations. Complain if we have 9250 some that we can't convert. */ 9251 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info)) 9252 { 9253 (*_bfd_error_handler) (_("non-dynamic relocations refer to " 9254 "dynamic symbol %s"), 9255 h->root.root.string); 9256 bfd_set_error (bfd_error_bad_value); 9257 return FALSE; 9258 } 9259 9260 /* We must allocate the symbol in our .dynbss section, which will 9261 become part of the .bss section of the executable. There will be 9262 an entry for this symbol in the .dynsym section. The dynamic 9263 object will contain position independent code, so all references 9264 from the dynamic object to this symbol will go through the global 9265 offset table. The dynamic linker will use the .dynsym entry to 9266 determine the address it must put in the global offset table, so 9267 both the dynamic object and the regular object will refer to the 9268 same memory location for the variable. */ 9269 9270 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0) 9271 { 9272 if (htab->is_vxworks) 9273 htab->srelbss->size += sizeof (Elf32_External_Rela); 9274 else 9275 mips_elf_allocate_dynamic_relocations (dynobj, info, 1); 9276 h->needs_copy = 1; 9277 } 9278 9279 /* All relocations against this symbol that could have been made 9280 dynamic will now refer to the local copy instead. */ 9281 hmips->possibly_dynamic_relocs = 0; 9282 9283 return _bfd_elf_adjust_dynamic_copy (info, h, htab->sdynbss); 9284 } 9285 9286 /* This function is called after all the input files have been read, 9287 and the input sections have been assigned to output sections. We 9288 check for any mips16 stub sections that we can discard. */ 9289 9290 bfd_boolean 9291 _bfd_mips_elf_always_size_sections (bfd *output_bfd, 9292 struct bfd_link_info *info) 9293 { 9294 asection *sect; 9295 struct mips_elf_link_hash_table *htab; 9296 struct mips_htab_traverse_info hti; 9297 9298 htab = mips_elf_hash_table (info); 9299 BFD_ASSERT (htab != NULL); 9300 9301 /* The .reginfo section has a fixed size. */ 9302 sect = bfd_get_section_by_name (output_bfd, ".reginfo"); 9303 if (sect != NULL) 9304 bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo)); 9305 9306 /* The .MIPS.abiflags section has a fixed size. */ 9307 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags"); 9308 if (sect != NULL) 9309 bfd_set_section_size (output_bfd, sect, sizeof (Elf_External_ABIFlags_v0)); 9310 9311 hti.info = info; 9312 hti.output_bfd = output_bfd; 9313 hti.error = FALSE; 9314 mips_elf_link_hash_traverse (mips_elf_hash_table (info), 9315 mips_elf_check_symbols, &hti); 9316 if (hti.error) 9317 return FALSE; 9318 9319 return TRUE; 9320 } 9321 9322 /* If the link uses a GOT, lay it out and work out its size. */ 9323 9324 static bfd_boolean 9325 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info) 9326 { 9327 bfd *dynobj; 9328 asection *s; 9329 struct mips_got_info *g; 9330 bfd_size_type loadable_size = 0; 9331 bfd_size_type page_gotno; 9332 bfd *ibfd; 9333 struct mips_elf_traverse_got_arg tga; 9334 struct mips_elf_link_hash_table *htab; 9335 9336 htab = mips_elf_hash_table (info); 9337 BFD_ASSERT (htab != NULL); 9338 9339 s = htab->sgot; 9340 if (s == NULL) 9341 return TRUE; 9342 9343 dynobj = elf_hash_table (info)->dynobj; 9344 g = htab->got_info; 9345 9346 /* Allocate room for the reserved entries. VxWorks always reserves 9347 3 entries; other objects only reserve 2 entries. */ 9348 BFD_ASSERT (g->assigned_low_gotno == 0); 9349 if (htab->is_vxworks) 9350 htab->reserved_gotno = 3; 9351 else 9352 htab->reserved_gotno = 2; 9353 g->local_gotno += htab->reserved_gotno; 9354 g->assigned_low_gotno = htab->reserved_gotno; 9355 9356 /* Decide which symbols need to go in the global part of the GOT and 9357 count the number of reloc-only GOT symbols. */ 9358 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info); 9359 9360 if (!mips_elf_resolve_final_got_entries (info, g)) 9361 return FALSE; 9362 9363 /* Calculate the total loadable size of the output. That 9364 will give us the maximum number of GOT_PAGE entries 9365 required. */ 9366 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next) 9367 { 9368 asection *subsection; 9369 9370 for (subsection = ibfd->sections; 9371 subsection; 9372 subsection = subsection->next) 9373 { 9374 if ((subsection->flags & SEC_ALLOC) == 0) 9375 continue; 9376 loadable_size += ((subsection->size + 0xf) 9377 &~ (bfd_size_type) 0xf); 9378 } 9379 } 9380 9381 if (htab->is_vxworks) 9382 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16 9383 relocations against local symbols evaluate to "G", and the EABI does 9384 not include R_MIPS_GOT_PAGE. */ 9385 page_gotno = 0; 9386 else 9387 /* Assume there are two loadable segments consisting of contiguous 9388 sections. Is 5 enough? */ 9389 page_gotno = (loadable_size >> 16) + 5; 9390 9391 /* Choose the smaller of the two page estimates; both are intended to be 9392 conservative. */ 9393 if (page_gotno > g->page_gotno) 9394 page_gotno = g->page_gotno; 9395 9396 g->local_gotno += page_gotno; 9397 g->assigned_high_gotno = g->local_gotno - 1; 9398 9399 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd); 9400 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd); 9401 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd); 9402 9403 /* VxWorks does not support multiple GOTs. It initializes $gp to 9404 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the 9405 dynamic loader. */ 9406 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info)) 9407 { 9408 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno)) 9409 return FALSE; 9410 } 9411 else 9412 { 9413 /* Record that all bfds use G. This also has the effect of freeing 9414 the per-bfd GOTs, which we no longer need. */ 9415 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next) 9416 if (mips_elf_bfd_got (ibfd, FALSE)) 9417 mips_elf_replace_bfd_got (ibfd, g); 9418 mips_elf_replace_bfd_got (output_bfd, g); 9419 9420 /* Set up TLS entries. */ 9421 g->tls_assigned_gotno = g->global_gotno + g->local_gotno; 9422 tga.info = info; 9423 tga.g = g; 9424 tga.value = MIPS_ELF_GOT_SIZE (output_bfd); 9425 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga); 9426 if (!tga.g) 9427 return FALSE; 9428 BFD_ASSERT (g->tls_assigned_gotno 9429 == g->global_gotno + g->local_gotno + g->tls_gotno); 9430 9431 /* Each VxWorks GOT entry needs an explicit relocation. */ 9432 if (htab->is_vxworks && bfd_link_pic (info)) 9433 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno; 9434 9435 /* Allocate room for the TLS relocations. */ 9436 if (g->relocs) 9437 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs); 9438 } 9439 9440 return TRUE; 9441 } 9442 9443 /* Estimate the size of the .MIPS.stubs section. */ 9444 9445 static void 9446 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info) 9447 { 9448 struct mips_elf_link_hash_table *htab; 9449 bfd_size_type dynsymcount; 9450 9451 htab = mips_elf_hash_table (info); 9452 BFD_ASSERT (htab != NULL); 9453 9454 if (htab->lazy_stub_count == 0) 9455 return; 9456 9457 /* IRIX rld assumes that a function stub isn't at the end of the .text 9458 section, so add a dummy entry to the end. */ 9459 htab->lazy_stub_count++; 9460 9461 /* Get a worst-case estimate of the number of dynamic symbols needed. 9462 At this point, dynsymcount does not account for section symbols 9463 and count_section_dynsyms may overestimate the number that will 9464 be needed. */ 9465 dynsymcount = (elf_hash_table (info)->dynsymcount 9466 + count_section_dynsyms (output_bfd, info)); 9467 9468 /* Determine the size of one stub entry. There's no disadvantage 9469 from using microMIPS code here, so for the sake of pure-microMIPS 9470 binaries we prefer it whenever there's any microMIPS code in 9471 output produced at all. This has a benefit of stubs being 9472 shorter by 4 bytes each too, unless in the insn32 mode. */ 9473 if (!MICROMIPS_P (output_bfd)) 9474 htab->function_stub_size = (dynsymcount > 0x10000 9475 ? MIPS_FUNCTION_STUB_BIG_SIZE 9476 : MIPS_FUNCTION_STUB_NORMAL_SIZE); 9477 else if (htab->insn32) 9478 htab->function_stub_size = (dynsymcount > 0x10000 9479 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 9480 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE); 9481 else 9482 htab->function_stub_size = (dynsymcount > 0x10000 9483 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE 9484 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE); 9485 9486 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size; 9487 } 9488 9489 /* A mips_elf_link_hash_traverse callback for which DATA points to a 9490 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding 9491 stub, allocate an entry in the stubs section. */ 9492 9493 static bfd_boolean 9494 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data) 9495 { 9496 struct mips_htab_traverse_info *hti = data; 9497 struct mips_elf_link_hash_table *htab; 9498 struct bfd_link_info *info; 9499 bfd *output_bfd; 9500 9501 info = hti->info; 9502 output_bfd = hti->output_bfd; 9503 htab = mips_elf_hash_table (info); 9504 BFD_ASSERT (htab != NULL); 9505 9506 if (h->needs_lazy_stub) 9507 { 9508 bfd_boolean micromips_p = MICROMIPS_P (output_bfd); 9509 unsigned int other = micromips_p ? STO_MICROMIPS : 0; 9510 bfd_vma isa_bit = micromips_p; 9511 9512 BFD_ASSERT (htab->root.dynobj != NULL); 9513 if (h->root.plt.plist == NULL) 9514 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner); 9515 if (h->root.plt.plist == NULL) 9516 { 9517 hti->error = TRUE; 9518 return FALSE; 9519 } 9520 h->root.root.u.def.section = htab->sstubs; 9521 h->root.root.u.def.value = htab->sstubs->size + isa_bit; 9522 h->root.plt.plist->stub_offset = htab->sstubs->size; 9523 h->root.other = other; 9524 htab->sstubs->size += htab->function_stub_size; 9525 } 9526 return TRUE; 9527 } 9528 9529 /* Allocate offsets in the stubs section to each symbol that needs one. 9530 Set the final size of the .MIPS.stub section. */ 9531 9532 static bfd_boolean 9533 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info) 9534 { 9535 bfd *output_bfd = info->output_bfd; 9536 bfd_boolean micromips_p = MICROMIPS_P (output_bfd); 9537 unsigned int other = micromips_p ? STO_MICROMIPS : 0; 9538 bfd_vma isa_bit = micromips_p; 9539 struct mips_elf_link_hash_table *htab; 9540 struct mips_htab_traverse_info hti; 9541 struct elf_link_hash_entry *h; 9542 bfd *dynobj; 9543 9544 htab = mips_elf_hash_table (info); 9545 BFD_ASSERT (htab != NULL); 9546 9547 if (htab->lazy_stub_count == 0) 9548 return TRUE; 9549 9550 htab->sstubs->size = 0; 9551 hti.info = info; 9552 hti.output_bfd = output_bfd; 9553 hti.error = FALSE; 9554 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti); 9555 if (hti.error) 9556 return FALSE; 9557 htab->sstubs->size += htab->function_stub_size; 9558 BFD_ASSERT (htab->sstubs->size 9559 == htab->lazy_stub_count * htab->function_stub_size); 9560 9561 dynobj = elf_hash_table (info)->dynobj; 9562 BFD_ASSERT (dynobj != NULL); 9563 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_"); 9564 if (h == NULL) 9565 return FALSE; 9566 h->root.u.def.value = isa_bit; 9567 h->other = other; 9568 h->type = STT_FUNC; 9569 9570 return TRUE; 9571 } 9572 9573 /* A mips_elf_link_hash_traverse callback for which DATA points to a 9574 bfd_link_info. If H uses the address of a PLT entry as the value 9575 of the symbol, then set the entry in the symbol table now. Prefer 9576 a standard MIPS PLT entry. */ 9577 9578 static bfd_boolean 9579 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data) 9580 { 9581 struct bfd_link_info *info = data; 9582 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd); 9583 struct mips_elf_link_hash_table *htab; 9584 unsigned int other; 9585 bfd_vma isa_bit; 9586 bfd_vma val; 9587 9588 htab = mips_elf_hash_table (info); 9589 BFD_ASSERT (htab != NULL); 9590 9591 if (h->use_plt_entry) 9592 { 9593 BFD_ASSERT (h->root.plt.plist != NULL); 9594 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE 9595 || h->root.plt.plist->comp_offset != MINUS_ONE); 9596 9597 val = htab->plt_header_size; 9598 if (h->root.plt.plist->mips_offset != MINUS_ONE) 9599 { 9600 isa_bit = 0; 9601 val += h->root.plt.plist->mips_offset; 9602 other = 0; 9603 } 9604 else 9605 { 9606 isa_bit = 1; 9607 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset; 9608 other = micromips_p ? STO_MICROMIPS : STO_MIPS16; 9609 } 9610 val += isa_bit; 9611 /* For VxWorks, point at the PLT load stub rather than the lazy 9612 resolution stub; this stub will become the canonical function 9613 address. */ 9614 if (htab->is_vxworks) 9615 val += 8; 9616 9617 h->root.root.u.def.section = htab->splt; 9618 h->root.root.u.def.value = val; 9619 h->root.other = other; 9620 } 9621 9622 return TRUE; 9623 } 9624 9625 /* Set the sizes of the dynamic sections. */ 9626 9627 bfd_boolean 9628 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd, 9629 struct bfd_link_info *info) 9630 { 9631 bfd *dynobj; 9632 asection *s, *sreldyn; 9633 bfd_boolean reltext; 9634 struct mips_elf_link_hash_table *htab; 9635 9636 htab = mips_elf_hash_table (info); 9637 BFD_ASSERT (htab != NULL); 9638 dynobj = elf_hash_table (info)->dynobj; 9639 BFD_ASSERT (dynobj != NULL); 9640 9641 if (elf_hash_table (info)->dynamic_sections_created) 9642 { 9643 /* Set the contents of the .interp section to the interpreter. */ 9644 if (bfd_link_executable (info) && !info->nointerp) 9645 { 9646 s = bfd_get_linker_section (dynobj, ".interp"); 9647 BFD_ASSERT (s != NULL); 9648 s->size 9649 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1; 9650 s->contents 9651 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd); 9652 } 9653 9654 /* Figure out the size of the PLT header if we know that we 9655 are using it. For the sake of cache alignment always use 9656 a standard header whenever any standard entries are present 9657 even if microMIPS entries are present as well. This also 9658 lets the microMIPS header rely on the value of $v0 only set 9659 by microMIPS entries, for a small size reduction. 9660 9661 Set symbol table entry values for symbols that use the 9662 address of their PLT entry now that we can calculate it. 9663 9664 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we 9665 haven't already in _bfd_elf_create_dynamic_sections. */ 9666 if (htab->splt && htab->plt_mips_offset + htab->plt_comp_offset != 0) 9667 { 9668 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd) 9669 && !htab->plt_mips_offset); 9670 unsigned int other = micromips_p ? STO_MICROMIPS : 0; 9671 bfd_vma isa_bit = micromips_p; 9672 struct elf_link_hash_entry *h; 9673 bfd_vma size; 9674 9675 BFD_ASSERT (htab->use_plts_and_copy_relocs); 9676 BFD_ASSERT (htab->sgotplt->size == 0); 9677 BFD_ASSERT (htab->splt->size == 0); 9678 9679 if (htab->is_vxworks && bfd_link_pic (info)) 9680 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry); 9681 else if (htab->is_vxworks) 9682 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry); 9683 else if (ABI_64_P (output_bfd)) 9684 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry); 9685 else if (ABI_N32_P (output_bfd)) 9686 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry); 9687 else if (!micromips_p) 9688 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry); 9689 else if (htab->insn32) 9690 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); 9691 else 9692 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry); 9693 9694 htab->plt_header_is_comp = micromips_p; 9695 htab->plt_header_size = size; 9696 htab->splt->size = (size 9697 + htab->plt_mips_offset 9698 + htab->plt_comp_offset); 9699 htab->sgotplt->size = (htab->plt_got_index 9700 * MIPS_ELF_GOT_SIZE (dynobj)); 9701 9702 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info); 9703 9704 if (htab->root.hplt == NULL) 9705 { 9706 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt, 9707 "_PROCEDURE_LINKAGE_TABLE_"); 9708 htab->root.hplt = h; 9709 if (h == NULL) 9710 return FALSE; 9711 } 9712 9713 h = htab->root.hplt; 9714 h->root.u.def.value = isa_bit; 9715 h->other = other; 9716 h->type = STT_FUNC; 9717 } 9718 } 9719 9720 /* Allocate space for global sym dynamic relocs. */ 9721 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info); 9722 9723 mips_elf_estimate_stub_size (output_bfd, info); 9724 9725 if (!mips_elf_lay_out_got (output_bfd, info)) 9726 return FALSE; 9727 9728 mips_elf_lay_out_lazy_stubs (info); 9729 9730 /* The check_relocs and adjust_dynamic_symbol entry points have 9731 determined the sizes of the various dynamic sections. Allocate 9732 memory for them. */ 9733 reltext = FALSE; 9734 for (s = dynobj->sections; s != NULL; s = s->next) 9735 { 9736 const char *name; 9737 9738 /* It's OK to base decisions on the section name, because none 9739 of the dynobj section names depend upon the input files. */ 9740 name = bfd_get_section_name (dynobj, s); 9741 9742 if ((s->flags & SEC_LINKER_CREATED) == 0) 9743 continue; 9744 9745 if (CONST_STRNEQ (name, ".rel")) 9746 { 9747 if (s->size != 0) 9748 { 9749 const char *outname; 9750 asection *target; 9751 9752 /* If this relocation section applies to a read only 9753 section, then we probably need a DT_TEXTREL entry. 9754 If the relocation section is .rel(a).dyn, we always 9755 assert a DT_TEXTREL entry rather than testing whether 9756 there exists a relocation to a read only section or 9757 not. */ 9758 outname = bfd_get_section_name (output_bfd, 9759 s->output_section); 9760 target = bfd_get_section_by_name (output_bfd, outname + 4); 9761 if ((target != NULL 9762 && (target->flags & SEC_READONLY) != 0 9763 && (target->flags & SEC_ALLOC) != 0) 9764 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0) 9765 reltext = TRUE; 9766 9767 /* We use the reloc_count field as a counter if we need 9768 to copy relocs into the output file. */ 9769 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0) 9770 s->reloc_count = 0; 9771 9772 /* If combreloc is enabled, elf_link_sort_relocs() will 9773 sort relocations, but in a different way than we do, 9774 and before we're done creating relocations. Also, it 9775 will move them around between input sections' 9776 relocation's contents, so our sorting would be 9777 broken, so don't let it run. */ 9778 info->combreloc = 0; 9779 } 9780 } 9781 else if (bfd_link_executable (info) 9782 && ! mips_elf_hash_table (info)->use_rld_obj_head 9783 && CONST_STRNEQ (name, ".rld_map")) 9784 { 9785 /* We add a room for __rld_map. It will be filled in by the 9786 rtld to contain a pointer to the _r_debug structure. */ 9787 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd); 9788 } 9789 else if (SGI_COMPAT (output_bfd) 9790 && CONST_STRNEQ (name, ".compact_rel")) 9791 s->size += mips_elf_hash_table (info)->compact_rel_size; 9792 else if (s == htab->splt) 9793 { 9794 /* If the last PLT entry has a branch delay slot, allocate 9795 room for an extra nop to fill the delay slot. This is 9796 for CPUs without load interlocking. */ 9797 if (! LOAD_INTERLOCKS_P (output_bfd) 9798 && ! htab->is_vxworks && s->size > 0) 9799 s->size += 4; 9800 } 9801 else if (! CONST_STRNEQ (name, ".init") 9802 && s != htab->sgot 9803 && s != htab->sgotplt 9804 && s != htab->sstubs 9805 && s != htab->sdynbss) 9806 { 9807 /* It's not one of our sections, so don't allocate space. */ 9808 continue; 9809 } 9810 9811 if (s->size == 0) 9812 { 9813 s->flags |= SEC_EXCLUDE; 9814 continue; 9815 } 9816 9817 if ((s->flags & SEC_HAS_CONTENTS) == 0) 9818 continue; 9819 9820 /* Allocate memory for the section contents. */ 9821 s->contents = bfd_zalloc (dynobj, s->size); 9822 if (s->contents == NULL) 9823 { 9824 bfd_set_error (bfd_error_no_memory); 9825 return FALSE; 9826 } 9827 } 9828 9829 if (elf_hash_table (info)->dynamic_sections_created) 9830 { 9831 /* Add some entries to the .dynamic section. We fill in the 9832 values later, in _bfd_mips_elf_finish_dynamic_sections, but we 9833 must add the entries now so that we get the correct size for 9834 the .dynamic section. */ 9835 9836 /* SGI object has the equivalence of DT_DEBUG in the 9837 DT_MIPS_RLD_MAP entry. This must come first because glibc 9838 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools 9839 may only look at the first one they see. */ 9840 if (!bfd_link_pic (info) 9841 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0)) 9842 return FALSE; 9843 9844 if (bfd_link_executable (info) 9845 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0)) 9846 return FALSE; 9847 9848 /* The DT_DEBUG entry may be filled in by the dynamic linker and 9849 used by the debugger. */ 9850 if (bfd_link_executable (info) 9851 && !SGI_COMPAT (output_bfd) 9852 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0)) 9853 return FALSE; 9854 9855 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks)) 9856 info->flags |= DF_TEXTREL; 9857 9858 if ((info->flags & DF_TEXTREL) != 0) 9859 { 9860 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0)) 9861 return FALSE; 9862 9863 /* Clear the DF_TEXTREL flag. It will be set again if we 9864 write out an actual text relocation; we may not, because 9865 at this point we do not know whether e.g. any .eh_frame 9866 absolute relocations have been converted to PC-relative. */ 9867 info->flags &= ~DF_TEXTREL; 9868 } 9869 9870 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0)) 9871 return FALSE; 9872 9873 sreldyn = mips_elf_rel_dyn_section (info, FALSE); 9874 if (htab->is_vxworks) 9875 { 9876 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not 9877 use any of the DT_MIPS_* tags. */ 9878 if (sreldyn && sreldyn->size > 0) 9879 { 9880 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0)) 9881 return FALSE; 9882 9883 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0)) 9884 return FALSE; 9885 9886 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0)) 9887 return FALSE; 9888 } 9889 } 9890 else 9891 { 9892 if (sreldyn && sreldyn->size > 0) 9893 { 9894 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0)) 9895 return FALSE; 9896 9897 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0)) 9898 return FALSE; 9899 9900 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0)) 9901 return FALSE; 9902 } 9903 9904 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0)) 9905 return FALSE; 9906 9907 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0)) 9908 return FALSE; 9909 9910 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0)) 9911 return FALSE; 9912 9913 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0)) 9914 return FALSE; 9915 9916 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0)) 9917 return FALSE; 9918 9919 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0)) 9920 return FALSE; 9921 9922 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0)) 9923 return FALSE; 9924 9925 if (IRIX_COMPAT (dynobj) == ict_irix5 9926 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0)) 9927 return FALSE; 9928 9929 if (IRIX_COMPAT (dynobj) == ict_irix6 9930 && (bfd_get_section_by_name 9931 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj))) 9932 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0)) 9933 return FALSE; 9934 } 9935 if (htab->splt->size > 0) 9936 { 9937 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0)) 9938 return FALSE; 9939 9940 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0)) 9941 return FALSE; 9942 9943 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0)) 9944 return FALSE; 9945 9946 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0)) 9947 return FALSE; 9948 } 9949 if (htab->is_vxworks 9950 && !elf_vxworks_add_dynamic_entries (output_bfd, info)) 9951 return FALSE; 9952 } 9953 9954 return TRUE; 9955 } 9956 9957 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD. 9958 Adjust its R_ADDEND field so that it is correct for the output file. 9959 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols 9960 and sections respectively; both use symbol indexes. */ 9961 9962 static void 9963 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info, 9964 bfd *input_bfd, Elf_Internal_Sym *local_syms, 9965 asection **local_sections, Elf_Internal_Rela *rel) 9966 { 9967 unsigned int r_type, r_symndx; 9968 Elf_Internal_Sym *sym; 9969 asection *sec; 9970 9971 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections)) 9972 { 9973 r_type = ELF_R_TYPE (output_bfd, rel->r_info); 9974 if (gprel16_reloc_p (r_type) 9975 || r_type == R_MIPS_GPREL32 9976 || literal_reloc_p (r_type)) 9977 { 9978 rel->r_addend += _bfd_get_gp_value (input_bfd); 9979 rel->r_addend -= _bfd_get_gp_value (output_bfd); 9980 } 9981 9982 r_symndx = ELF_R_SYM (output_bfd, rel->r_info); 9983 sym = local_syms + r_symndx; 9984 9985 /* Adjust REL's addend to account for section merging. */ 9986 if (!bfd_link_relocatable (info)) 9987 { 9988 sec = local_sections[r_symndx]; 9989 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); 9990 } 9991 9992 /* This would normally be done by the rela_normal code in elflink.c. */ 9993 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION) 9994 rel->r_addend += local_sections[r_symndx]->output_offset; 9995 } 9996 } 9997 9998 /* Handle relocations against symbols from removed linkonce sections, 9999 or sections discarded by a linker script. We use this wrapper around 10000 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs 10001 on 64-bit ELF targets. In this case for any relocation handled, which 10002 always be the first in a triplet, the remaining two have to be processed 10003 together with the first, even if they are R_MIPS_NONE. It is the symbol 10004 index referred by the first reloc that applies to all the three and the 10005 remaining two never refer to an object symbol. And it is the final 10006 relocation (the last non-null one) that determines the output field of 10007 the whole relocation so retrieve the corresponding howto structure for 10008 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION. 10009 10010 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue" 10011 and therefore requires to be pasted in a loop. It also defines a block 10012 and does not protect any of its arguments, hence the extra brackets. */ 10013 10014 static void 10015 mips_reloc_against_discarded_section (bfd *output_bfd, 10016 struct bfd_link_info *info, 10017 bfd *input_bfd, asection *input_section, 10018 Elf_Internal_Rela **rel, 10019 const Elf_Internal_Rela **relend, 10020 bfd_boolean rel_reloc, 10021 reloc_howto_type *howto, 10022 bfd_byte *contents) 10023 { 10024 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd); 10025 int count = bed->s->int_rels_per_ext_rel; 10026 unsigned int r_type; 10027 int i; 10028 10029 for (i = count - 1; i > 0; i--) 10030 { 10031 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info); 10032 if (r_type != R_MIPS_NONE) 10033 { 10034 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc); 10035 break; 10036 } 10037 } 10038 do 10039 { 10040 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section, 10041 (*rel), count, (*relend), 10042 howto, i, contents); 10043 } 10044 while (0); 10045 } 10046 10047 /* Relocate a MIPS ELF section. */ 10048 10049 bfd_boolean 10050 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info, 10051 bfd *input_bfd, asection *input_section, 10052 bfd_byte *contents, Elf_Internal_Rela *relocs, 10053 Elf_Internal_Sym *local_syms, 10054 asection **local_sections) 10055 { 10056 Elf_Internal_Rela *rel; 10057 const Elf_Internal_Rela *relend; 10058 bfd_vma addend = 0; 10059 bfd_boolean use_saved_addend_p = FALSE; 10060 const struct elf_backend_data *bed; 10061 10062 bed = get_elf_backend_data (output_bfd); 10063 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel; 10064 for (rel = relocs; rel < relend; ++rel) 10065 { 10066 const char *name; 10067 bfd_vma value = 0; 10068 reloc_howto_type *howto; 10069 bfd_boolean cross_mode_jump_p = FALSE; 10070 /* TRUE if the relocation is a RELA relocation, rather than a 10071 REL relocation. */ 10072 bfd_boolean rela_relocation_p = TRUE; 10073 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info); 10074 const char *msg; 10075 unsigned long r_symndx; 10076 asection *sec; 10077 Elf_Internal_Shdr *symtab_hdr; 10078 struct elf_link_hash_entry *h; 10079 bfd_boolean rel_reloc; 10080 10081 rel_reloc = (NEWABI_P (input_bfd) 10082 && mips_elf_rel_relocation_p (input_bfd, input_section, 10083 relocs, rel)); 10084 /* Find the relocation howto for this relocation. */ 10085 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc); 10086 10087 r_symndx = ELF_R_SYM (input_bfd, rel->r_info); 10088 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; 10089 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections)) 10090 { 10091 sec = local_sections[r_symndx]; 10092 h = NULL; 10093 } 10094 else 10095 { 10096 unsigned long extsymoff; 10097 10098 extsymoff = 0; 10099 if (!elf_bad_symtab (input_bfd)) 10100 extsymoff = symtab_hdr->sh_info; 10101 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff]; 10102 while (h->root.type == bfd_link_hash_indirect 10103 || h->root.type == bfd_link_hash_warning) 10104 h = (struct elf_link_hash_entry *) h->root.u.i.link; 10105 10106 sec = NULL; 10107 if (h->root.type == bfd_link_hash_defined 10108 || h->root.type == bfd_link_hash_defweak) 10109 sec = h->root.u.def.section; 10110 } 10111 10112 if (sec != NULL && discarded_section (sec)) 10113 { 10114 mips_reloc_against_discarded_section (output_bfd, info, input_bfd, 10115 input_section, &rel, &relend, 10116 rel_reloc, howto, contents); 10117 continue; 10118 } 10119 10120 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd)) 10121 { 10122 /* Some 32-bit code uses R_MIPS_64. In particular, people use 10123 64-bit code, but make sure all their addresses are in the 10124 lowermost or uppermost 32-bit section of the 64-bit address 10125 space. Thus, when they use an R_MIPS_64 they mean what is 10126 usually meant by R_MIPS_32, with the exception that the 10127 stored value is sign-extended to 64 bits. */ 10128 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE); 10129 10130 /* On big-endian systems, we need to lie about the position 10131 of the reloc. */ 10132 if (bfd_big_endian (input_bfd)) 10133 rel->r_offset += 4; 10134 } 10135 10136 if (!use_saved_addend_p) 10137 { 10138 /* If these relocations were originally of the REL variety, 10139 we must pull the addend out of the field that will be 10140 relocated. Otherwise, we simply use the contents of the 10141 RELA relocation. */ 10142 if (mips_elf_rel_relocation_p (input_bfd, input_section, 10143 relocs, rel)) 10144 { 10145 rela_relocation_p = FALSE; 10146 addend = mips_elf_read_rel_addend (input_bfd, rel, 10147 howto, contents); 10148 if (hi16_reloc_p (r_type) 10149 || (got16_reloc_p (r_type) 10150 && mips_elf_local_relocation_p (input_bfd, rel, 10151 local_sections))) 10152 { 10153 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend, 10154 contents, &addend)) 10155 { 10156 if (h) 10157 name = h->root.root.string; 10158 else 10159 name = bfd_elf_sym_name (input_bfd, symtab_hdr, 10160 local_syms + r_symndx, 10161 sec); 10162 (*_bfd_error_handler) 10163 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"), 10164 input_bfd, input_section, name, howto->name, 10165 rel->r_offset); 10166 } 10167 } 10168 else 10169 addend <<= howto->rightshift; 10170 } 10171 else 10172 addend = rel->r_addend; 10173 mips_elf_adjust_addend (output_bfd, info, input_bfd, 10174 local_syms, local_sections, rel); 10175 } 10176 10177 if (bfd_link_relocatable (info)) 10178 { 10179 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd) 10180 && bfd_big_endian (input_bfd)) 10181 rel->r_offset -= 4; 10182 10183 if (!rela_relocation_p && rel->r_addend) 10184 { 10185 addend += rel->r_addend; 10186 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type)) 10187 addend = mips_elf_high (addend); 10188 else if (r_type == R_MIPS_HIGHER) 10189 addend = mips_elf_higher (addend); 10190 else if (r_type == R_MIPS_HIGHEST) 10191 addend = mips_elf_highest (addend); 10192 else 10193 addend >>= howto->rightshift; 10194 10195 /* We use the source mask, rather than the destination 10196 mask because the place to which we are writing will be 10197 source of the addend in the final link. */ 10198 addend &= howto->src_mask; 10199 10200 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)) 10201 /* See the comment above about using R_MIPS_64 in the 32-bit 10202 ABI. Here, we need to update the addend. It would be 10203 possible to get away with just using the R_MIPS_32 reloc 10204 but for endianness. */ 10205 { 10206 bfd_vma sign_bits; 10207 bfd_vma low_bits; 10208 bfd_vma high_bits; 10209 10210 if (addend & ((bfd_vma) 1 << 31)) 10211 #ifdef BFD64 10212 sign_bits = ((bfd_vma) 1 << 32) - 1; 10213 #else 10214 sign_bits = -1; 10215 #endif 10216 else 10217 sign_bits = 0; 10218 10219 /* If we don't know that we have a 64-bit type, 10220 do two separate stores. */ 10221 if (bfd_big_endian (input_bfd)) 10222 { 10223 /* Store the sign-bits (which are most significant) 10224 first. */ 10225 low_bits = sign_bits; 10226 high_bits = addend; 10227 } 10228 else 10229 { 10230 low_bits = addend; 10231 high_bits = sign_bits; 10232 } 10233 bfd_put_32 (input_bfd, low_bits, 10234 contents + rel->r_offset); 10235 bfd_put_32 (input_bfd, high_bits, 10236 contents + rel->r_offset + 4); 10237 continue; 10238 } 10239 10240 if (! mips_elf_perform_relocation (info, howto, rel, addend, 10241 input_bfd, input_section, 10242 contents, FALSE)) 10243 return FALSE; 10244 } 10245 10246 /* Go on to the next relocation. */ 10247 continue; 10248 } 10249 10250 /* In the N32 and 64-bit ABIs there may be multiple consecutive 10251 relocations for the same offset. In that case we are 10252 supposed to treat the output of each relocation as the addend 10253 for the next. */ 10254 if (rel + 1 < relend 10255 && rel->r_offset == rel[1].r_offset 10256 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE) 10257 use_saved_addend_p = TRUE; 10258 else 10259 use_saved_addend_p = FALSE; 10260 10261 /* Figure out what value we are supposed to relocate. */ 10262 switch (mips_elf_calculate_relocation (output_bfd, input_bfd, 10263 input_section, info, rel, 10264 addend, howto, local_syms, 10265 local_sections, &value, 10266 &name, &cross_mode_jump_p, 10267 use_saved_addend_p)) 10268 { 10269 case bfd_reloc_continue: 10270 /* There's nothing to do. */ 10271 continue; 10272 10273 case bfd_reloc_undefined: 10274 /* mips_elf_calculate_relocation already called the 10275 undefined_symbol callback. There's no real point in 10276 trying to perform the relocation at this point, so we 10277 just skip ahead to the next relocation. */ 10278 continue; 10279 10280 case bfd_reloc_notsupported: 10281 msg = _("internal error: unsupported relocation error"); 10282 info->callbacks->warning 10283 (info, msg, name, input_bfd, input_section, rel->r_offset); 10284 return FALSE; 10285 10286 case bfd_reloc_overflow: 10287 if (use_saved_addend_p) 10288 /* Ignore overflow until we reach the last relocation for 10289 a given location. */ 10290 ; 10291 else 10292 { 10293 struct mips_elf_link_hash_table *htab; 10294 10295 htab = mips_elf_hash_table (info); 10296 BFD_ASSERT (htab != NULL); 10297 BFD_ASSERT (name != NULL); 10298 if (!htab->small_data_overflow_reported 10299 && (gprel16_reloc_p (howto->type) 10300 || literal_reloc_p (howto->type))) 10301 { 10302 msg = _("small-data section exceeds 64KB;" 10303 " lower small-data size limit (see option -G)"); 10304 10305 htab->small_data_overflow_reported = TRUE; 10306 (*info->callbacks->einfo) ("%P: %s\n", msg); 10307 } 10308 (*info->callbacks->reloc_overflow) 10309 (info, NULL, name, howto->name, (bfd_vma) 0, 10310 input_bfd, input_section, rel->r_offset); 10311 } 10312 break; 10313 10314 case bfd_reloc_ok: 10315 break; 10316 10317 case bfd_reloc_outofrange: 10318 msg = NULL; 10319 if (jal_reloc_p (howto->type)) 10320 msg = _("JALX to a non-word-aligned address"); 10321 else if (b_reloc_p (howto->type)) 10322 msg = _("Branch to a non-instruction-aligned address"); 10323 else if (aligned_pcrel_reloc_p (howto->type)) 10324 msg = _("PC-relative load from unaligned address"); 10325 if (msg) 10326 { 10327 info->callbacks->einfo 10328 ("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg); 10329 break; 10330 } 10331 /* Fall through. */ 10332 10333 default: 10334 abort (); 10335 break; 10336 } 10337 10338 /* If we've got another relocation for the address, keep going 10339 until we reach the last one. */ 10340 if (use_saved_addend_p) 10341 { 10342 addend = value; 10343 continue; 10344 } 10345 10346 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)) 10347 /* See the comment above about using R_MIPS_64 in the 32-bit 10348 ABI. Until now, we've been using the HOWTO for R_MIPS_32; 10349 that calculated the right value. Now, however, we 10350 sign-extend the 32-bit result to 64-bits, and store it as a 10351 64-bit value. We are especially generous here in that we 10352 go to extreme lengths to support this usage on systems with 10353 only a 32-bit VMA. */ 10354 { 10355 bfd_vma sign_bits; 10356 bfd_vma low_bits; 10357 bfd_vma high_bits; 10358 10359 if (value & ((bfd_vma) 1 << 31)) 10360 #ifdef BFD64 10361 sign_bits = ((bfd_vma) 1 << 32) - 1; 10362 #else 10363 sign_bits = -1; 10364 #endif 10365 else 10366 sign_bits = 0; 10367 10368 /* If we don't know that we have a 64-bit type, 10369 do two separate stores. */ 10370 if (bfd_big_endian (input_bfd)) 10371 { 10372 /* Undo what we did above. */ 10373 rel->r_offset -= 4; 10374 /* Store the sign-bits (which are most significant) 10375 first. */ 10376 low_bits = sign_bits; 10377 high_bits = value; 10378 } 10379 else 10380 { 10381 low_bits = value; 10382 high_bits = sign_bits; 10383 } 10384 bfd_put_32 (input_bfd, low_bits, 10385 contents + rel->r_offset); 10386 bfd_put_32 (input_bfd, high_bits, 10387 contents + rel->r_offset + 4); 10388 continue; 10389 } 10390 10391 /* Actually perform the relocation. */ 10392 if (! mips_elf_perform_relocation (info, howto, rel, value, 10393 input_bfd, input_section, 10394 contents, cross_mode_jump_p)) 10395 return FALSE; 10396 } 10397 10398 return TRUE; 10399 } 10400 10401 /* A function that iterates over each entry in la25_stubs and fills 10402 in the code for each one. DATA points to a mips_htab_traverse_info. */ 10403 10404 static int 10405 mips_elf_create_la25_stub (void **slot, void *data) 10406 { 10407 struct mips_htab_traverse_info *hti; 10408 struct mips_elf_link_hash_table *htab; 10409 struct mips_elf_la25_stub *stub; 10410 asection *s; 10411 bfd_byte *loc; 10412 bfd_vma offset, target, target_high, target_low; 10413 10414 stub = (struct mips_elf_la25_stub *) *slot; 10415 hti = (struct mips_htab_traverse_info *) data; 10416 htab = mips_elf_hash_table (hti->info); 10417 BFD_ASSERT (htab != NULL); 10418 10419 /* Create the section contents, if we haven't already. */ 10420 s = stub->stub_section; 10421 loc = s->contents; 10422 if (loc == NULL) 10423 { 10424 loc = bfd_malloc (s->size); 10425 if (loc == NULL) 10426 { 10427 hti->error = TRUE; 10428 return FALSE; 10429 } 10430 s->contents = loc; 10431 } 10432 10433 /* Work out where in the section this stub should go. */ 10434 offset = stub->offset; 10435 10436 /* Work out the target address. */ 10437 target = mips_elf_get_la25_target (stub, &s); 10438 target += s->output_section->vma + s->output_offset; 10439 10440 target_high = ((target + 0x8000) >> 16) & 0xffff; 10441 target_low = (target & 0xffff); 10442 10443 if (stub->stub_section != htab->strampoline) 10444 { 10445 /* This is a simple LUI/ADDIU stub. Zero out the beginning 10446 of the section and write the two instructions at the end. */ 10447 memset (loc, 0, offset); 10448 loc += offset; 10449 if (ELF_ST_IS_MICROMIPS (stub->h->root.other)) 10450 { 10451 bfd_put_micromips_32 (hti->output_bfd, 10452 LA25_LUI_MICROMIPS (target_high), 10453 loc); 10454 bfd_put_micromips_32 (hti->output_bfd, 10455 LA25_ADDIU_MICROMIPS (target_low), 10456 loc + 4); 10457 } 10458 else 10459 { 10460 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc); 10461 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4); 10462 } 10463 } 10464 else 10465 { 10466 /* This is trampoline. */ 10467 loc += offset; 10468 if (ELF_ST_IS_MICROMIPS (stub->h->root.other)) 10469 { 10470 bfd_put_micromips_32 (hti->output_bfd, 10471 LA25_LUI_MICROMIPS (target_high), loc); 10472 bfd_put_micromips_32 (hti->output_bfd, 10473 LA25_J_MICROMIPS (target), loc + 4); 10474 bfd_put_micromips_32 (hti->output_bfd, 10475 LA25_ADDIU_MICROMIPS (target_low), loc + 8); 10476 bfd_put_32 (hti->output_bfd, 0, loc + 12); 10477 } 10478 else 10479 { 10480 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc); 10481 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4); 10482 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8); 10483 bfd_put_32 (hti->output_bfd, 0, loc + 12); 10484 } 10485 } 10486 return TRUE; 10487 } 10488 10489 /* If NAME is one of the special IRIX6 symbols defined by the linker, 10490 adjust it appropriately now. */ 10491 10492 static void 10493 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED, 10494 const char *name, Elf_Internal_Sym *sym) 10495 { 10496 /* The linker script takes care of providing names and values for 10497 these, but we must place them into the right sections. */ 10498 static const char* const text_section_symbols[] = { 10499 "_ftext", 10500 "_etext", 10501 "__dso_displacement", 10502 "__elf_header", 10503 "__program_header_table", 10504 NULL 10505 }; 10506 10507 static const char* const data_section_symbols[] = { 10508 "_fdata", 10509 "_edata", 10510 "_end", 10511 "_fbss", 10512 NULL 10513 }; 10514 10515 const char* const *p; 10516 int i; 10517 10518 for (i = 0; i < 2; ++i) 10519 for (p = (i == 0) ? text_section_symbols : data_section_symbols; 10520 *p; 10521 ++p) 10522 if (strcmp (*p, name) == 0) 10523 { 10524 /* All of these symbols are given type STT_SECTION by the 10525 IRIX6 linker. */ 10526 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); 10527 sym->st_other = STO_PROTECTED; 10528 10529 /* The IRIX linker puts these symbols in special sections. */ 10530 if (i == 0) 10531 sym->st_shndx = SHN_MIPS_TEXT; 10532 else 10533 sym->st_shndx = SHN_MIPS_DATA; 10534 10535 break; 10536 } 10537 } 10538 10539 /* Finish up dynamic symbol handling. We set the contents of various 10540 dynamic sections here. */ 10541 10542 bfd_boolean 10543 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd, 10544 struct bfd_link_info *info, 10545 struct elf_link_hash_entry *h, 10546 Elf_Internal_Sym *sym) 10547 { 10548 bfd *dynobj; 10549 asection *sgot; 10550 struct mips_got_info *g, *gg; 10551 const char *name; 10552 int idx; 10553 struct mips_elf_link_hash_table *htab; 10554 struct mips_elf_link_hash_entry *hmips; 10555 10556 htab = mips_elf_hash_table (info); 10557 BFD_ASSERT (htab != NULL); 10558 dynobj = elf_hash_table (info)->dynobj; 10559 hmips = (struct mips_elf_link_hash_entry *) h; 10560 10561 BFD_ASSERT (!htab->is_vxworks); 10562 10563 if (h->plt.plist != NULL 10564 && (h->plt.plist->mips_offset != MINUS_ONE 10565 || h->plt.plist->comp_offset != MINUS_ONE)) 10566 { 10567 /* We've decided to create a PLT entry for this symbol. */ 10568 bfd_byte *loc; 10569 bfd_vma header_address, got_address; 10570 bfd_vma got_address_high, got_address_low, load; 10571 bfd_vma got_index; 10572 bfd_vma isa_bit; 10573 10574 got_index = h->plt.plist->gotplt_index; 10575 10576 BFD_ASSERT (htab->use_plts_and_copy_relocs); 10577 BFD_ASSERT (h->dynindx != -1); 10578 BFD_ASSERT (htab->splt != NULL); 10579 BFD_ASSERT (got_index != MINUS_ONE); 10580 BFD_ASSERT (!h->def_regular); 10581 10582 /* Calculate the address of the PLT header. */ 10583 isa_bit = htab->plt_header_is_comp; 10584 header_address = (htab->splt->output_section->vma 10585 + htab->splt->output_offset + isa_bit); 10586 10587 /* Calculate the address of the .got.plt entry. */ 10588 got_address = (htab->sgotplt->output_section->vma 10589 + htab->sgotplt->output_offset 10590 + got_index * MIPS_ELF_GOT_SIZE (dynobj)); 10591 10592 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff; 10593 got_address_low = got_address & 0xffff; 10594 10595 /* Initially point the .got.plt entry at the PLT header. */ 10596 loc = (htab->sgotplt->contents + got_index * MIPS_ELF_GOT_SIZE (dynobj)); 10597 if (ABI_64_P (output_bfd)) 10598 bfd_put_64 (output_bfd, header_address, loc); 10599 else 10600 bfd_put_32 (output_bfd, header_address, loc); 10601 10602 /* Now handle the PLT itself. First the standard entry (the order 10603 does not matter, we just have to pick one). */ 10604 if (h->plt.plist->mips_offset != MINUS_ONE) 10605 { 10606 const bfd_vma *plt_entry; 10607 bfd_vma plt_offset; 10608 10609 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset; 10610 10611 BFD_ASSERT (plt_offset <= htab->splt->size); 10612 10613 /* Find out where the .plt entry should go. */ 10614 loc = htab->splt->contents + plt_offset; 10615 10616 /* Pick the load opcode. */ 10617 load = MIPS_ELF_LOAD_WORD (output_bfd); 10618 10619 /* Fill in the PLT entry itself. */ 10620 10621 if (MIPSR6_P (output_bfd)) 10622 plt_entry = mipsr6_exec_plt_entry; 10623 else 10624 plt_entry = mips_exec_plt_entry; 10625 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc); 10626 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load, 10627 loc + 4); 10628 10629 if (! LOAD_INTERLOCKS_P (output_bfd)) 10630 { 10631 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8); 10632 bfd_put_32 (output_bfd, plt_entry[3], loc + 12); 10633 } 10634 else 10635 { 10636 bfd_put_32 (output_bfd, plt_entry[3], loc + 8); 10637 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, 10638 loc + 12); 10639 } 10640 } 10641 10642 /* Now the compressed entry. They come after any standard ones. */ 10643 if (h->plt.plist->comp_offset != MINUS_ONE) 10644 { 10645 bfd_vma plt_offset; 10646 10647 plt_offset = (htab->plt_header_size + htab->plt_mips_offset 10648 + h->plt.plist->comp_offset); 10649 10650 BFD_ASSERT (plt_offset <= htab->splt->size); 10651 10652 /* Find out where the .plt entry should go. */ 10653 loc = htab->splt->contents + plt_offset; 10654 10655 /* Fill in the PLT entry itself. */ 10656 if (!MICROMIPS_P (output_bfd)) 10657 { 10658 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry; 10659 10660 bfd_put_16 (output_bfd, plt_entry[0], loc); 10661 bfd_put_16 (output_bfd, plt_entry[1], loc + 2); 10662 bfd_put_16 (output_bfd, plt_entry[2], loc + 4); 10663 bfd_put_16 (output_bfd, plt_entry[3], loc + 6); 10664 bfd_put_16 (output_bfd, plt_entry[4], loc + 8); 10665 bfd_put_16 (output_bfd, plt_entry[5], loc + 10); 10666 bfd_put_32 (output_bfd, got_address, loc + 12); 10667 } 10668 else if (htab->insn32) 10669 { 10670 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry; 10671 10672 bfd_put_16 (output_bfd, plt_entry[0], loc); 10673 bfd_put_16 (output_bfd, got_address_high, loc + 2); 10674 bfd_put_16 (output_bfd, plt_entry[2], loc + 4); 10675 bfd_put_16 (output_bfd, got_address_low, loc + 6); 10676 bfd_put_16 (output_bfd, plt_entry[4], loc + 8); 10677 bfd_put_16 (output_bfd, plt_entry[5], loc + 10); 10678 bfd_put_16 (output_bfd, plt_entry[6], loc + 12); 10679 bfd_put_16 (output_bfd, got_address_low, loc + 14); 10680 } 10681 else 10682 { 10683 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry; 10684 bfd_signed_vma gotpc_offset; 10685 bfd_vma loc_address; 10686 10687 BFD_ASSERT (got_address % 4 == 0); 10688 10689 loc_address = (htab->splt->output_section->vma 10690 + htab->splt->output_offset + plt_offset); 10691 gotpc_offset = got_address - ((loc_address | 3) ^ 3); 10692 10693 /* ADDIUPC has a span of +/-16MB, check we're in range. */ 10694 if (gotpc_offset + 0x1000000 >= 0x2000000) 10695 { 10696 (*_bfd_error_handler) 10697 (_("%B: `%A' offset of %ld from `%A' " 10698 "beyond the range of ADDIUPC"), 10699 output_bfd, 10700 htab->sgotplt->output_section, 10701 htab->splt->output_section, 10702 (long) gotpc_offset); 10703 bfd_set_error (bfd_error_no_error); 10704 return FALSE; 10705 } 10706 bfd_put_16 (output_bfd, 10707 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc); 10708 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2); 10709 bfd_put_16 (output_bfd, plt_entry[2], loc + 4); 10710 bfd_put_16 (output_bfd, plt_entry[3], loc + 6); 10711 bfd_put_16 (output_bfd, plt_entry[4], loc + 8); 10712 bfd_put_16 (output_bfd, plt_entry[5], loc + 10); 10713 } 10714 } 10715 10716 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */ 10717 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt, 10718 got_index - 2, h->dynindx, 10719 R_MIPS_JUMP_SLOT, got_address); 10720 10721 /* We distinguish between PLT entries and lazy-binding stubs by 10722 giving the former an st_other value of STO_MIPS_PLT. Set the 10723 flag and leave the value if there are any relocations in the 10724 binary where pointer equality matters. */ 10725 sym->st_shndx = SHN_UNDEF; 10726 if (h->pointer_equality_needed) 10727 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other); 10728 else 10729 { 10730 sym->st_value = 0; 10731 sym->st_other = 0; 10732 } 10733 } 10734 10735 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE) 10736 { 10737 /* We've decided to create a lazy-binding stub. */ 10738 bfd_boolean micromips_p = MICROMIPS_P (output_bfd); 10739 unsigned int other = micromips_p ? STO_MICROMIPS : 0; 10740 bfd_vma stub_size = htab->function_stub_size; 10741 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE]; 10742 bfd_vma isa_bit = micromips_p; 10743 bfd_vma stub_big_size; 10744 10745 if (!micromips_p) 10746 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE; 10747 else if (htab->insn32) 10748 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE; 10749 else 10750 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE; 10751 10752 /* This symbol has a stub. Set it up. */ 10753 10754 BFD_ASSERT (h->dynindx != -1); 10755 10756 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff); 10757 10758 /* Values up to 2^31 - 1 are allowed. Larger values would cause 10759 sign extension at runtime in the stub, resulting in a negative 10760 index value. */ 10761 if (h->dynindx & ~0x7fffffff) 10762 return FALSE; 10763 10764 /* Fill the stub. */ 10765 if (micromips_p) 10766 { 10767 idx = 0; 10768 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd), 10769 stub + idx); 10770 idx += 4; 10771 if (htab->insn32) 10772 { 10773 bfd_put_micromips_32 (output_bfd, 10774 STUB_MOVE32_MICROMIPS, stub + idx); 10775 idx += 4; 10776 } 10777 else 10778 { 10779 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx); 10780 idx += 2; 10781 } 10782 if (stub_size == stub_big_size) 10783 { 10784 long dynindx_hi = (h->dynindx >> 16) & 0x7fff; 10785 10786 bfd_put_micromips_32 (output_bfd, 10787 STUB_LUI_MICROMIPS (dynindx_hi), 10788 stub + idx); 10789 idx += 4; 10790 } 10791 if (htab->insn32) 10792 { 10793 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS, 10794 stub + idx); 10795 idx += 4; 10796 } 10797 else 10798 { 10799 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx); 10800 idx += 2; 10801 } 10802 10803 /* If a large stub is not required and sign extension is not a 10804 problem, then use legacy code in the stub. */ 10805 if (stub_size == stub_big_size) 10806 bfd_put_micromips_32 (output_bfd, 10807 STUB_ORI_MICROMIPS (h->dynindx & 0xffff), 10808 stub + idx); 10809 else if (h->dynindx & ~0x7fff) 10810 bfd_put_micromips_32 (output_bfd, 10811 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff), 10812 stub + idx); 10813 else 10814 bfd_put_micromips_32 (output_bfd, 10815 STUB_LI16S_MICROMIPS (output_bfd, 10816 h->dynindx), 10817 stub + idx); 10818 } 10819 else 10820 { 10821 idx = 0; 10822 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx); 10823 idx += 4; 10824 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx); 10825 idx += 4; 10826 if (stub_size == stub_big_size) 10827 { 10828 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff), 10829 stub + idx); 10830 idx += 4; 10831 } 10832 bfd_put_32 (output_bfd, STUB_JALR, stub + idx); 10833 idx += 4; 10834 10835 /* If a large stub is not required and sign extension is not a 10836 problem, then use legacy code in the stub. */ 10837 if (stub_size == stub_big_size) 10838 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), 10839 stub + idx); 10840 else if (h->dynindx & ~0x7fff) 10841 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), 10842 stub + idx); 10843 else 10844 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx), 10845 stub + idx); 10846 } 10847 10848 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size); 10849 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset, 10850 stub, stub_size); 10851 10852 /* Mark the symbol as undefined. stub_offset != -1 occurs 10853 only for the referenced symbol. */ 10854 sym->st_shndx = SHN_UNDEF; 10855 10856 /* The run-time linker uses the st_value field of the symbol 10857 to reset the global offset table entry for this external 10858 to its stub address when unlinking a shared object. */ 10859 sym->st_value = (htab->sstubs->output_section->vma 10860 + htab->sstubs->output_offset 10861 + h->plt.plist->stub_offset 10862 + isa_bit); 10863 sym->st_other = other; 10864 } 10865 10866 /* If we have a MIPS16 function with a stub, the dynamic symbol must 10867 refer to the stub, since only the stub uses the standard calling 10868 conventions. */ 10869 if (h->dynindx != -1 && hmips->fn_stub != NULL) 10870 { 10871 BFD_ASSERT (hmips->need_fn_stub); 10872 sym->st_value = (hmips->fn_stub->output_section->vma 10873 + hmips->fn_stub->output_offset); 10874 sym->st_size = hmips->fn_stub->size; 10875 sym->st_other = ELF_ST_VISIBILITY (sym->st_other); 10876 } 10877 10878 BFD_ASSERT (h->dynindx != -1 10879 || h->forced_local); 10880 10881 sgot = htab->sgot; 10882 g = htab->got_info; 10883 BFD_ASSERT (g != NULL); 10884 10885 /* Run through the global symbol table, creating GOT entries for all 10886 the symbols that need them. */ 10887 if (hmips->global_got_area != GGA_NONE) 10888 { 10889 bfd_vma offset; 10890 bfd_vma value; 10891 10892 value = sym->st_value; 10893 offset = mips_elf_primary_global_got_index (output_bfd, info, h); 10894 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset); 10895 } 10896 10897 if (hmips->global_got_area != GGA_NONE && g->next) 10898 { 10899 struct mips_got_entry e, *p; 10900 bfd_vma entry; 10901 bfd_vma offset; 10902 10903 gg = g; 10904 10905 e.abfd = output_bfd; 10906 e.symndx = -1; 10907 e.d.h = hmips; 10908 e.tls_type = GOT_TLS_NONE; 10909 10910 for (g = g->next; g->next != gg; g = g->next) 10911 { 10912 if (g->got_entries 10913 && (p = (struct mips_got_entry *) htab_find (g->got_entries, 10914 &e))) 10915 { 10916 offset = p->gotidx; 10917 BFD_ASSERT (offset > 0 && offset < htab->sgot->size); 10918 if (bfd_link_pic (info) 10919 || (elf_hash_table (info)->dynamic_sections_created 10920 && p->d.h != NULL 10921 && p->d.h->root.def_dynamic 10922 && !p->d.h->root.def_regular)) 10923 { 10924 /* Create an R_MIPS_REL32 relocation for this entry. Due to 10925 the various compatibility problems, it's easier to mock 10926 up an R_MIPS_32 or R_MIPS_64 relocation and leave 10927 mips_elf_create_dynamic_relocation to calculate the 10928 appropriate addend. */ 10929 Elf_Internal_Rela rel[3]; 10930 10931 memset (rel, 0, sizeof (rel)); 10932 if (ABI_64_P (output_bfd)) 10933 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64); 10934 else 10935 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32); 10936 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset; 10937 10938 entry = 0; 10939 if (! (mips_elf_create_dynamic_relocation 10940 (output_bfd, info, rel, 10941 e.d.h, NULL, sym->st_value, &entry, sgot))) 10942 return FALSE; 10943 } 10944 else 10945 entry = sym->st_value; 10946 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset); 10947 } 10948 } 10949 } 10950 10951 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */ 10952 name = h->root.root.string; 10953 if (h == elf_hash_table (info)->hdynamic 10954 || h == elf_hash_table (info)->hgot) 10955 sym->st_shndx = SHN_ABS; 10956 else if (strcmp (name, "_DYNAMIC_LINK") == 0 10957 || strcmp (name, "_DYNAMIC_LINKING") == 0) 10958 { 10959 sym->st_shndx = SHN_ABS; 10960 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); 10961 sym->st_value = 1; 10962 } 10963 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd)) 10964 { 10965 sym->st_shndx = SHN_ABS; 10966 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); 10967 sym->st_value = elf_gp (output_bfd); 10968 } 10969 else if (SGI_COMPAT (output_bfd)) 10970 { 10971 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0 10972 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0) 10973 { 10974 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); 10975 sym->st_other = STO_PROTECTED; 10976 sym->st_value = 0; 10977 sym->st_shndx = SHN_MIPS_DATA; 10978 } 10979 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0) 10980 { 10981 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); 10982 sym->st_other = STO_PROTECTED; 10983 sym->st_value = mips_elf_hash_table (info)->procedure_count; 10984 sym->st_shndx = SHN_ABS; 10985 } 10986 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS) 10987 { 10988 if (h->type == STT_FUNC) 10989 sym->st_shndx = SHN_MIPS_TEXT; 10990 else if (h->type == STT_OBJECT) 10991 sym->st_shndx = SHN_MIPS_DATA; 10992 } 10993 } 10994 10995 /* Emit a copy reloc, if needed. */ 10996 if (h->needs_copy) 10997 { 10998 asection *s; 10999 bfd_vma symval; 11000 11001 BFD_ASSERT (h->dynindx != -1); 11002 BFD_ASSERT (htab->use_plts_and_copy_relocs); 11003 11004 s = mips_elf_rel_dyn_section (info, FALSE); 11005 symval = (h->root.u.def.section->output_section->vma 11006 + h->root.u.def.section->output_offset 11007 + h->root.u.def.value); 11008 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++, 11009 h->dynindx, R_MIPS_COPY, symval); 11010 } 11011 11012 /* Handle the IRIX6-specific symbols. */ 11013 if (IRIX_COMPAT (output_bfd) == ict_irix6) 11014 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym); 11015 11016 /* Keep dynamic compressed symbols odd. This allows the dynamic linker 11017 to treat compressed symbols like any other. */ 11018 if (ELF_ST_IS_MIPS16 (sym->st_other)) 11019 { 11020 BFD_ASSERT (sym->st_value & 1); 11021 sym->st_other -= STO_MIPS16; 11022 } 11023 else if (ELF_ST_IS_MICROMIPS (sym->st_other)) 11024 { 11025 BFD_ASSERT (sym->st_value & 1); 11026 sym->st_other -= STO_MICROMIPS; 11027 } 11028 11029 return TRUE; 11030 } 11031 11032 /* Likewise, for VxWorks. */ 11033 11034 bfd_boolean 11035 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd, 11036 struct bfd_link_info *info, 11037 struct elf_link_hash_entry *h, 11038 Elf_Internal_Sym *sym) 11039 { 11040 bfd *dynobj; 11041 asection *sgot; 11042 struct mips_got_info *g; 11043 struct mips_elf_link_hash_table *htab; 11044 struct mips_elf_link_hash_entry *hmips; 11045 11046 htab = mips_elf_hash_table (info); 11047 BFD_ASSERT (htab != NULL); 11048 dynobj = elf_hash_table (info)->dynobj; 11049 hmips = (struct mips_elf_link_hash_entry *) h; 11050 11051 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE) 11052 { 11053 bfd_byte *loc; 11054 bfd_vma plt_address, got_address, got_offset, branch_offset; 11055 Elf_Internal_Rela rel; 11056 static const bfd_vma *plt_entry; 11057 bfd_vma gotplt_index; 11058 bfd_vma plt_offset; 11059 11060 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset; 11061 gotplt_index = h->plt.plist->gotplt_index; 11062 11063 BFD_ASSERT (h->dynindx != -1); 11064 BFD_ASSERT (htab->splt != NULL); 11065 BFD_ASSERT (gotplt_index != MINUS_ONE); 11066 BFD_ASSERT (plt_offset <= htab->splt->size); 11067 11068 /* Calculate the address of the .plt entry. */ 11069 plt_address = (htab->splt->output_section->vma 11070 + htab->splt->output_offset 11071 + plt_offset); 11072 11073 /* Calculate the address of the .got.plt entry. */ 11074 got_address = (htab->sgotplt->output_section->vma 11075 + htab->sgotplt->output_offset 11076 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)); 11077 11078 /* Calculate the offset of the .got.plt entry from 11079 _GLOBAL_OFFSET_TABLE_. */ 11080 got_offset = mips_elf_gotplt_index (info, h); 11081 11082 /* Calculate the offset for the branch at the start of the PLT 11083 entry. The branch jumps to the beginning of .plt. */ 11084 branch_offset = -(plt_offset / 4 + 1) & 0xffff; 11085 11086 /* Fill in the initial value of the .got.plt entry. */ 11087 bfd_put_32 (output_bfd, plt_address, 11088 (htab->sgotplt->contents 11089 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd))); 11090 11091 /* Find out where the .plt entry should go. */ 11092 loc = htab->splt->contents + plt_offset; 11093 11094 if (bfd_link_pic (info)) 11095 { 11096 plt_entry = mips_vxworks_shared_plt_entry; 11097 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc); 11098 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4); 11099 } 11100 else 11101 { 11102 bfd_vma got_address_high, got_address_low; 11103 11104 plt_entry = mips_vxworks_exec_plt_entry; 11105 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff; 11106 got_address_low = got_address & 0xffff; 11107 11108 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc); 11109 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4); 11110 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8); 11111 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12); 11112 bfd_put_32 (output_bfd, plt_entry[4], loc + 16); 11113 bfd_put_32 (output_bfd, plt_entry[5], loc + 20); 11114 bfd_put_32 (output_bfd, plt_entry[6], loc + 24); 11115 bfd_put_32 (output_bfd, plt_entry[7], loc + 28); 11116 11117 loc = (htab->srelplt2->contents 11118 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela)); 11119 11120 /* Emit a relocation for the .got.plt entry. */ 11121 rel.r_offset = got_address; 11122 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32); 11123 rel.r_addend = plt_offset; 11124 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); 11125 11126 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */ 11127 loc += sizeof (Elf32_External_Rela); 11128 rel.r_offset = plt_address + 8; 11129 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16); 11130 rel.r_addend = got_offset; 11131 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); 11132 11133 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */ 11134 loc += sizeof (Elf32_External_Rela); 11135 rel.r_offset += 4; 11136 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16); 11137 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); 11138 } 11139 11140 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */ 11141 loc = (htab->srelplt->contents 11142 + gotplt_index * sizeof (Elf32_External_Rela)); 11143 rel.r_offset = got_address; 11144 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT); 11145 rel.r_addend = 0; 11146 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); 11147 11148 if (!h->def_regular) 11149 sym->st_shndx = SHN_UNDEF; 11150 } 11151 11152 BFD_ASSERT (h->dynindx != -1 || h->forced_local); 11153 11154 sgot = htab->sgot; 11155 g = htab->got_info; 11156 BFD_ASSERT (g != NULL); 11157 11158 /* See if this symbol has an entry in the GOT. */ 11159 if (hmips->global_got_area != GGA_NONE) 11160 { 11161 bfd_vma offset; 11162 Elf_Internal_Rela outrel; 11163 bfd_byte *loc; 11164 asection *s; 11165 11166 /* Install the symbol value in the GOT. */ 11167 offset = mips_elf_primary_global_got_index (output_bfd, info, h); 11168 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset); 11169 11170 /* Add a dynamic relocation for it. */ 11171 s = mips_elf_rel_dyn_section (info, FALSE); 11172 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela)); 11173 outrel.r_offset = (sgot->output_section->vma 11174 + sgot->output_offset 11175 + offset); 11176 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32); 11177 outrel.r_addend = 0; 11178 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc); 11179 } 11180 11181 /* Emit a copy reloc, if needed. */ 11182 if (h->needs_copy) 11183 { 11184 Elf_Internal_Rela rel; 11185 11186 BFD_ASSERT (h->dynindx != -1); 11187 11188 rel.r_offset = (h->root.u.def.section->output_section->vma 11189 + h->root.u.def.section->output_offset 11190 + h->root.u.def.value); 11191 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY); 11192 rel.r_addend = 0; 11193 bfd_elf32_swap_reloca_out (output_bfd, &rel, 11194 htab->srelbss->contents 11195 + (htab->srelbss->reloc_count 11196 * sizeof (Elf32_External_Rela))); 11197 ++htab->srelbss->reloc_count; 11198 } 11199 11200 /* If this is a mips16/microMIPS symbol, force the value to be even. */ 11201 if (ELF_ST_IS_COMPRESSED (sym->st_other)) 11202 sym->st_value &= ~1; 11203 11204 return TRUE; 11205 } 11206 11207 /* Write out a plt0 entry to the beginning of .plt. */ 11208 11209 static bfd_boolean 11210 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info) 11211 { 11212 bfd_byte *loc; 11213 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low; 11214 static const bfd_vma *plt_entry; 11215 struct mips_elf_link_hash_table *htab; 11216 11217 htab = mips_elf_hash_table (info); 11218 BFD_ASSERT (htab != NULL); 11219 11220 if (ABI_64_P (output_bfd)) 11221 plt_entry = mips_n64_exec_plt0_entry; 11222 else if (ABI_N32_P (output_bfd)) 11223 plt_entry = mips_n32_exec_plt0_entry; 11224 else if (!htab->plt_header_is_comp) 11225 plt_entry = mips_o32_exec_plt0_entry; 11226 else if (htab->insn32) 11227 plt_entry = micromips_insn32_o32_exec_plt0_entry; 11228 else 11229 plt_entry = micromips_o32_exec_plt0_entry; 11230 11231 /* Calculate the value of .got.plt. */ 11232 gotplt_value = (htab->sgotplt->output_section->vma 11233 + htab->sgotplt->output_offset); 11234 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff; 11235 gotplt_value_low = gotplt_value & 0xffff; 11236 11237 /* The PLT sequence is not safe for N64 if .got.plt's address can 11238 not be loaded in two instructions. */ 11239 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0 11240 || ~(gotplt_value | 0x7fffffff) == 0); 11241 11242 /* Install the PLT header. */ 11243 loc = htab->splt->contents; 11244 if (plt_entry == micromips_o32_exec_plt0_entry) 11245 { 11246 bfd_vma gotpc_offset; 11247 bfd_vma loc_address; 11248 size_t i; 11249 11250 BFD_ASSERT (gotplt_value % 4 == 0); 11251 11252 loc_address = (htab->splt->output_section->vma 11253 + htab->splt->output_offset); 11254 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3); 11255 11256 /* ADDIUPC has a span of +/-16MB, check we're in range. */ 11257 if (gotpc_offset + 0x1000000 >= 0x2000000) 11258 { 11259 (*_bfd_error_handler) 11260 (_("%B: `%A' offset of %ld from `%A' beyond the range of ADDIUPC"), 11261 output_bfd, 11262 htab->sgotplt->output_section, 11263 htab->splt->output_section, 11264 (long) gotpc_offset); 11265 bfd_set_error (bfd_error_no_error); 11266 return FALSE; 11267 } 11268 bfd_put_16 (output_bfd, 11269 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc); 11270 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2); 11271 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++) 11272 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2)); 11273 } 11274 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry) 11275 { 11276 size_t i; 11277 11278 bfd_put_16 (output_bfd, plt_entry[0], loc); 11279 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2); 11280 bfd_put_16 (output_bfd, plt_entry[2], loc + 4); 11281 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6); 11282 bfd_put_16 (output_bfd, plt_entry[4], loc + 8); 11283 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10); 11284 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++) 11285 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2)); 11286 } 11287 else 11288 { 11289 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc); 11290 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4); 11291 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8); 11292 bfd_put_32 (output_bfd, plt_entry[3], loc + 12); 11293 bfd_put_32 (output_bfd, plt_entry[4], loc + 16); 11294 bfd_put_32 (output_bfd, plt_entry[5], loc + 20); 11295 bfd_put_32 (output_bfd, plt_entry[6], loc + 24); 11296 bfd_put_32 (output_bfd, plt_entry[7], loc + 28); 11297 } 11298 11299 return TRUE; 11300 } 11301 11302 /* Install the PLT header for a VxWorks executable and finalize the 11303 contents of .rela.plt.unloaded. */ 11304 11305 static void 11306 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info) 11307 { 11308 Elf_Internal_Rela rela; 11309 bfd_byte *loc; 11310 bfd_vma got_value, got_value_high, got_value_low, plt_address; 11311 static const bfd_vma *plt_entry; 11312 struct mips_elf_link_hash_table *htab; 11313 11314 htab = mips_elf_hash_table (info); 11315 BFD_ASSERT (htab != NULL); 11316 11317 plt_entry = mips_vxworks_exec_plt0_entry; 11318 11319 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */ 11320 got_value = (htab->root.hgot->root.u.def.section->output_section->vma 11321 + htab->root.hgot->root.u.def.section->output_offset 11322 + htab->root.hgot->root.u.def.value); 11323 11324 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff; 11325 got_value_low = got_value & 0xffff; 11326 11327 /* Calculate the address of the PLT header. */ 11328 plt_address = htab->splt->output_section->vma + htab->splt->output_offset; 11329 11330 /* Install the PLT header. */ 11331 loc = htab->splt->contents; 11332 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc); 11333 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4); 11334 bfd_put_32 (output_bfd, plt_entry[2], loc + 8); 11335 bfd_put_32 (output_bfd, plt_entry[3], loc + 12); 11336 bfd_put_32 (output_bfd, plt_entry[4], loc + 16); 11337 bfd_put_32 (output_bfd, plt_entry[5], loc + 20); 11338 11339 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */ 11340 loc = htab->srelplt2->contents; 11341 rela.r_offset = plt_address; 11342 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16); 11343 rela.r_addend = 0; 11344 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); 11345 loc += sizeof (Elf32_External_Rela); 11346 11347 /* Output the relocation for the following addiu of 11348 %lo(_GLOBAL_OFFSET_TABLE_). */ 11349 rela.r_offset += 4; 11350 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16); 11351 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); 11352 loc += sizeof (Elf32_External_Rela); 11353 11354 /* Fix up the remaining relocations. They may have the wrong 11355 symbol index for _G_O_T_ or _P_L_T_ depending on the order 11356 in which symbols were output. */ 11357 while (loc < htab->srelplt2->contents + htab->srelplt2->size) 11358 { 11359 Elf_Internal_Rela rel; 11360 11361 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel); 11362 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32); 11363 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); 11364 loc += sizeof (Elf32_External_Rela); 11365 11366 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel); 11367 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16); 11368 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); 11369 loc += sizeof (Elf32_External_Rela); 11370 11371 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel); 11372 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16); 11373 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); 11374 loc += sizeof (Elf32_External_Rela); 11375 } 11376 } 11377 11378 /* Install the PLT header for a VxWorks shared library. */ 11379 11380 static void 11381 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info) 11382 { 11383 unsigned int i; 11384 struct mips_elf_link_hash_table *htab; 11385 11386 htab = mips_elf_hash_table (info); 11387 BFD_ASSERT (htab != NULL); 11388 11389 /* We just need to copy the entry byte-by-byte. */ 11390 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++) 11391 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i], 11392 htab->splt->contents + i * 4); 11393 } 11394 11395 /* Finish up the dynamic sections. */ 11396 11397 bfd_boolean 11398 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd, 11399 struct bfd_link_info *info) 11400 { 11401 bfd *dynobj; 11402 asection *sdyn; 11403 asection *sgot; 11404 struct mips_got_info *gg, *g; 11405 struct mips_elf_link_hash_table *htab; 11406 11407 htab = mips_elf_hash_table (info); 11408 BFD_ASSERT (htab != NULL); 11409 11410 dynobj = elf_hash_table (info)->dynobj; 11411 11412 sdyn = bfd_get_linker_section (dynobj, ".dynamic"); 11413 11414 sgot = htab->sgot; 11415 gg = htab->got_info; 11416 11417 if (elf_hash_table (info)->dynamic_sections_created) 11418 { 11419 bfd_byte *b; 11420 int dyn_to_skip = 0, dyn_skipped = 0; 11421 11422 BFD_ASSERT (sdyn != NULL); 11423 BFD_ASSERT (gg != NULL); 11424 11425 g = mips_elf_bfd_got (output_bfd, FALSE); 11426 BFD_ASSERT (g != NULL); 11427 11428 for (b = sdyn->contents; 11429 b < sdyn->contents + sdyn->size; 11430 b += MIPS_ELF_DYN_SIZE (dynobj)) 11431 { 11432 Elf_Internal_Dyn dyn; 11433 const char *name; 11434 size_t elemsize; 11435 asection *s; 11436 bfd_boolean swap_out_p; 11437 11438 /* Read in the current dynamic entry. */ 11439 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn); 11440 11441 /* Assume that we're going to modify it and write it out. */ 11442 swap_out_p = TRUE; 11443 11444 switch (dyn.d_tag) 11445 { 11446 case DT_RELENT: 11447 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj); 11448 break; 11449 11450 case DT_RELAENT: 11451 BFD_ASSERT (htab->is_vxworks); 11452 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj); 11453 break; 11454 11455 case DT_STRSZ: 11456 /* Rewrite DT_STRSZ. */ 11457 dyn.d_un.d_val = 11458 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr); 11459 break; 11460 11461 case DT_PLTGOT: 11462 s = htab->sgot; 11463 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; 11464 break; 11465 11466 case DT_MIPS_PLTGOT: 11467 s = htab->sgotplt; 11468 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; 11469 break; 11470 11471 case DT_MIPS_RLD_VERSION: 11472 dyn.d_un.d_val = 1; /* XXX */ 11473 break; 11474 11475 case DT_MIPS_FLAGS: 11476 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */ 11477 break; 11478 11479 case DT_MIPS_TIME_STAMP: 11480 { 11481 time_t t; 11482 time (&t); 11483 dyn.d_un.d_val = t; 11484 } 11485 break; 11486 11487 case DT_MIPS_ICHECKSUM: 11488 /* XXX FIXME: */ 11489 swap_out_p = FALSE; 11490 break; 11491 11492 case DT_MIPS_IVERSION: 11493 /* XXX FIXME: */ 11494 swap_out_p = FALSE; 11495 break; 11496 11497 case DT_MIPS_BASE_ADDRESS: 11498 s = output_bfd->sections; 11499 BFD_ASSERT (s != NULL); 11500 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff; 11501 break; 11502 11503 case DT_MIPS_LOCAL_GOTNO: 11504 dyn.d_un.d_val = g->local_gotno; 11505 break; 11506 11507 case DT_MIPS_UNREFEXTNO: 11508 /* The index into the dynamic symbol table which is the 11509 entry of the first external symbol that is not 11510 referenced within the same object. */ 11511 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1; 11512 break; 11513 11514 case DT_MIPS_GOTSYM: 11515 if (htab->global_gotsym) 11516 { 11517 dyn.d_un.d_val = htab->global_gotsym->dynindx; 11518 break; 11519 } 11520 /* In case if we don't have global got symbols we default 11521 to setting DT_MIPS_GOTSYM to the same value as 11522 DT_MIPS_SYMTABNO, so we just fall through. */ 11523 11524 case DT_MIPS_SYMTABNO: 11525 name = ".dynsym"; 11526 elemsize = MIPS_ELF_SYM_SIZE (output_bfd); 11527 s = bfd_get_linker_section (dynobj, name); 11528 11529 if (s != NULL) 11530 dyn.d_un.d_val = s->size / elemsize; 11531 else 11532 dyn.d_un.d_val = 0; 11533 break; 11534 11535 case DT_MIPS_HIPAGENO: 11536 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno; 11537 break; 11538 11539 case DT_MIPS_RLD_MAP: 11540 { 11541 struct elf_link_hash_entry *h; 11542 h = mips_elf_hash_table (info)->rld_symbol; 11543 if (!h) 11544 { 11545 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj); 11546 swap_out_p = FALSE; 11547 break; 11548 } 11549 s = h->root.u.def.section; 11550 11551 /* The MIPS_RLD_MAP tag stores the absolute address of the 11552 debug pointer. */ 11553 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset 11554 + h->root.u.def.value); 11555 } 11556 break; 11557 11558 case DT_MIPS_RLD_MAP_REL: 11559 { 11560 struct elf_link_hash_entry *h; 11561 bfd_vma dt_addr, rld_addr; 11562 h = mips_elf_hash_table (info)->rld_symbol; 11563 if (!h) 11564 { 11565 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj); 11566 swap_out_p = FALSE; 11567 break; 11568 } 11569 s = h->root.u.def.section; 11570 11571 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug 11572 pointer, relative to the address of the tag. */ 11573 dt_addr = (sdyn->output_section->vma + sdyn->output_offset 11574 + (b - sdyn->contents)); 11575 rld_addr = (s->output_section->vma + s->output_offset 11576 + h->root.u.def.value); 11577 dyn.d_un.d_ptr = rld_addr - dt_addr; 11578 } 11579 break; 11580 11581 case DT_MIPS_OPTIONS: 11582 s = (bfd_get_section_by_name 11583 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd))); 11584 dyn.d_un.d_ptr = s->vma; 11585 break; 11586 11587 case DT_RELASZ: 11588 BFD_ASSERT (htab->is_vxworks); 11589 /* The count does not include the JUMP_SLOT relocations. */ 11590 if (htab->srelplt) 11591 dyn.d_un.d_val -= htab->srelplt->size; 11592 break; 11593 11594 case DT_PLTREL: 11595 BFD_ASSERT (htab->use_plts_and_copy_relocs); 11596 if (htab->is_vxworks) 11597 dyn.d_un.d_val = DT_RELA; 11598 else 11599 dyn.d_un.d_val = DT_REL; 11600 break; 11601 11602 case DT_PLTRELSZ: 11603 BFD_ASSERT (htab->use_plts_and_copy_relocs); 11604 dyn.d_un.d_val = htab->srelplt->size; 11605 break; 11606 11607 case DT_JMPREL: 11608 BFD_ASSERT (htab->use_plts_and_copy_relocs); 11609 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma 11610 + htab->srelplt->output_offset); 11611 break; 11612 11613 case DT_TEXTREL: 11614 /* If we didn't need any text relocations after all, delete 11615 the dynamic tag. */ 11616 if (!(info->flags & DF_TEXTREL)) 11617 { 11618 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj); 11619 swap_out_p = FALSE; 11620 } 11621 break; 11622 11623 case DT_FLAGS: 11624 /* If we didn't need any text relocations after all, clear 11625 DF_TEXTREL from DT_FLAGS. */ 11626 if (!(info->flags & DF_TEXTREL)) 11627 dyn.d_un.d_val &= ~DF_TEXTREL; 11628 else 11629 swap_out_p = FALSE; 11630 break; 11631 11632 default: 11633 swap_out_p = FALSE; 11634 if (htab->is_vxworks 11635 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn)) 11636 swap_out_p = TRUE; 11637 break; 11638 } 11639 11640 if (swap_out_p || dyn_skipped) 11641 (*get_elf_backend_data (dynobj)->s->swap_dyn_out) 11642 (dynobj, &dyn, b - dyn_skipped); 11643 11644 if (dyn_to_skip) 11645 { 11646 dyn_skipped += dyn_to_skip; 11647 dyn_to_skip = 0; 11648 } 11649 } 11650 11651 /* Wipe out any trailing entries if we shifted down a dynamic tag. */ 11652 if (dyn_skipped > 0) 11653 memset (b - dyn_skipped, 0, dyn_skipped); 11654 } 11655 11656 if (sgot != NULL && sgot->size > 0 11657 && !bfd_is_abs_section (sgot->output_section)) 11658 { 11659 if (htab->is_vxworks) 11660 { 11661 /* The first entry of the global offset table points to the 11662 ".dynamic" section. The second is initialized by the 11663 loader and contains the shared library identifier. 11664 The third is also initialized by the loader and points 11665 to the lazy resolution stub. */ 11666 MIPS_ELF_PUT_WORD (output_bfd, 11667 sdyn->output_offset + sdyn->output_section->vma, 11668 sgot->contents); 11669 MIPS_ELF_PUT_WORD (output_bfd, 0, 11670 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd)); 11671 MIPS_ELF_PUT_WORD (output_bfd, 0, 11672 sgot->contents 11673 + 2 * MIPS_ELF_GOT_SIZE (output_bfd)); 11674 } 11675 else 11676 { 11677 /* The first entry of the global offset table will be filled at 11678 runtime. The second entry will be used by some runtime loaders. 11679 This isn't the case of IRIX rld. */ 11680 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents); 11681 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd), 11682 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd)); 11683 } 11684 11685 elf_section_data (sgot->output_section)->this_hdr.sh_entsize 11686 = MIPS_ELF_GOT_SIZE (output_bfd); 11687 } 11688 11689 /* Generate dynamic relocations for the non-primary gots. */ 11690 if (gg != NULL && gg->next) 11691 { 11692 Elf_Internal_Rela rel[3]; 11693 bfd_vma addend = 0; 11694 11695 memset (rel, 0, sizeof (rel)); 11696 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32); 11697 11698 for (g = gg->next; g->next != gg; g = g->next) 11699 { 11700 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno 11701 + g->next->tls_gotno; 11702 11703 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents 11704 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd)); 11705 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd), 11706 sgot->contents 11707 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd)); 11708 11709 if (! bfd_link_pic (info)) 11710 continue; 11711 11712 for (; got_index < g->local_gotno; got_index++) 11713 { 11714 if (got_index >= g->assigned_low_gotno 11715 && got_index <= g->assigned_high_gotno) 11716 continue; 11717 11718 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset 11719 = got_index * MIPS_ELF_GOT_SIZE (output_bfd); 11720 if (!(mips_elf_create_dynamic_relocation 11721 (output_bfd, info, rel, NULL, 11722 bfd_abs_section_ptr, 11723 0, &addend, sgot))) 11724 return FALSE; 11725 BFD_ASSERT (addend == 0); 11726 } 11727 } 11728 } 11729 11730 /* The generation of dynamic relocations for the non-primary gots 11731 adds more dynamic relocations. We cannot count them until 11732 here. */ 11733 11734 if (elf_hash_table (info)->dynamic_sections_created) 11735 { 11736 bfd_byte *b; 11737 bfd_boolean swap_out_p; 11738 11739 BFD_ASSERT (sdyn != NULL); 11740 11741 for (b = sdyn->contents; 11742 b < sdyn->contents + sdyn->size; 11743 b += MIPS_ELF_DYN_SIZE (dynobj)) 11744 { 11745 Elf_Internal_Dyn dyn; 11746 asection *s; 11747 11748 /* Read in the current dynamic entry. */ 11749 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn); 11750 11751 /* Assume that we're going to modify it and write it out. */ 11752 swap_out_p = TRUE; 11753 11754 switch (dyn.d_tag) 11755 { 11756 case DT_RELSZ: 11757 /* Reduce DT_RELSZ to account for any relocations we 11758 decided not to make. This is for the n64 irix rld, 11759 which doesn't seem to apply any relocations if there 11760 are trailing null entries. */ 11761 s = mips_elf_rel_dyn_section (info, FALSE); 11762 dyn.d_un.d_val = (s->reloc_count 11763 * (ABI_64_P (output_bfd) 11764 ? sizeof (Elf64_Mips_External_Rel) 11765 : sizeof (Elf32_External_Rel))); 11766 /* Adjust the section size too. Tools like the prelinker 11767 can reasonably expect the values to the same. */ 11768 elf_section_data (s->output_section)->this_hdr.sh_size 11769 = dyn.d_un.d_val; 11770 break; 11771 11772 default: 11773 swap_out_p = FALSE; 11774 break; 11775 } 11776 11777 if (swap_out_p) 11778 (*get_elf_backend_data (dynobj)->s->swap_dyn_out) 11779 (dynobj, &dyn, b); 11780 } 11781 } 11782 11783 { 11784 asection *s; 11785 Elf32_compact_rel cpt; 11786 11787 if (SGI_COMPAT (output_bfd)) 11788 { 11789 /* Write .compact_rel section out. */ 11790 s = bfd_get_linker_section (dynobj, ".compact_rel"); 11791 if (s != NULL) 11792 { 11793 cpt.id1 = 1; 11794 cpt.num = s->reloc_count; 11795 cpt.id2 = 2; 11796 cpt.offset = (s->output_section->filepos 11797 + sizeof (Elf32_External_compact_rel)); 11798 cpt.reserved0 = 0; 11799 cpt.reserved1 = 0; 11800 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt, 11801 ((Elf32_External_compact_rel *) 11802 s->contents)); 11803 11804 /* Clean up a dummy stub function entry in .text. */ 11805 if (htab->sstubs != NULL) 11806 { 11807 file_ptr dummy_offset; 11808 11809 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size); 11810 dummy_offset = htab->sstubs->size - htab->function_stub_size; 11811 memset (htab->sstubs->contents + dummy_offset, 0, 11812 htab->function_stub_size); 11813 } 11814 } 11815 } 11816 11817 /* The psABI says that the dynamic relocations must be sorted in 11818 increasing order of r_symndx. The VxWorks EABI doesn't require 11819 this, and because the code below handles REL rather than RELA 11820 relocations, using it for VxWorks would be outright harmful. */ 11821 if (!htab->is_vxworks) 11822 { 11823 s = mips_elf_rel_dyn_section (info, FALSE); 11824 if (s != NULL 11825 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd)) 11826 { 11827 reldyn_sorting_bfd = output_bfd; 11828 11829 if (ABI_64_P (output_bfd)) 11830 qsort ((Elf64_External_Rel *) s->contents + 1, 11831 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel), 11832 sort_dynamic_relocs_64); 11833 else 11834 qsort ((Elf32_External_Rel *) s->contents + 1, 11835 s->reloc_count - 1, sizeof (Elf32_External_Rel), 11836 sort_dynamic_relocs); 11837 } 11838 } 11839 } 11840 11841 if (htab->splt && htab->splt->size > 0) 11842 { 11843 if (htab->is_vxworks) 11844 { 11845 if (bfd_link_pic (info)) 11846 mips_vxworks_finish_shared_plt (output_bfd, info); 11847 else 11848 mips_vxworks_finish_exec_plt (output_bfd, info); 11849 } 11850 else 11851 { 11852 BFD_ASSERT (!bfd_link_pic (info)); 11853 if (!mips_finish_exec_plt (output_bfd, info)) 11854 return FALSE; 11855 } 11856 } 11857 return TRUE; 11858 } 11859 11860 11861 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */ 11862 11863 static void 11864 mips_set_isa_flags (bfd *abfd) 11865 { 11866 flagword val; 11867 11868 switch (bfd_get_mach (abfd)) 11869 { 11870 default: 11871 case bfd_mach_mips3000: 11872 val = E_MIPS_ARCH_1; 11873 break; 11874 11875 case bfd_mach_mips3900: 11876 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900; 11877 break; 11878 11879 case bfd_mach_mips6000: 11880 val = E_MIPS_ARCH_2; 11881 break; 11882 11883 case bfd_mach_mips4000: 11884 case bfd_mach_mips4300: 11885 case bfd_mach_mips4400: 11886 case bfd_mach_mips4600: 11887 val = E_MIPS_ARCH_3; 11888 break; 11889 11890 case bfd_mach_mips4010: 11891 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010; 11892 break; 11893 11894 case bfd_mach_mips4100: 11895 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100; 11896 break; 11897 11898 case bfd_mach_mips4111: 11899 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111; 11900 break; 11901 11902 case bfd_mach_mips4120: 11903 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120; 11904 break; 11905 11906 case bfd_mach_mips4650: 11907 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650; 11908 break; 11909 11910 case bfd_mach_mips5400: 11911 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400; 11912 break; 11913 11914 case bfd_mach_mips5500: 11915 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500; 11916 break; 11917 11918 case bfd_mach_mips5900: 11919 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900; 11920 break; 11921 11922 case bfd_mach_mips9000: 11923 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000; 11924 break; 11925 11926 case bfd_mach_mips5000: 11927 case bfd_mach_mips7000: 11928 case bfd_mach_mips8000: 11929 case bfd_mach_mips10000: 11930 case bfd_mach_mips12000: 11931 case bfd_mach_mips14000: 11932 case bfd_mach_mips16000: 11933 val = E_MIPS_ARCH_4; 11934 break; 11935 11936 case bfd_mach_mips5: 11937 val = E_MIPS_ARCH_5; 11938 break; 11939 11940 case bfd_mach_mips_loongson_2e: 11941 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E; 11942 break; 11943 11944 case bfd_mach_mips_loongson_2f: 11945 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F; 11946 break; 11947 11948 case bfd_mach_mips_sb1: 11949 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1; 11950 break; 11951 11952 case bfd_mach_mips_loongson_3a: 11953 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_LS3A; 11954 break; 11955 11956 case bfd_mach_mips_octeon: 11957 case bfd_mach_mips_octeonp: 11958 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON; 11959 break; 11960 11961 case bfd_mach_mips_octeon3: 11962 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3; 11963 break; 11964 11965 case bfd_mach_mips_xlr: 11966 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR; 11967 break; 11968 11969 case bfd_mach_mips_octeon2: 11970 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2; 11971 break; 11972 11973 case bfd_mach_mipsisa32: 11974 val = E_MIPS_ARCH_32; 11975 break; 11976 11977 case bfd_mach_mipsisa64: 11978 val = E_MIPS_ARCH_64; 11979 break; 11980 11981 case bfd_mach_mipsisa32r2: 11982 case bfd_mach_mipsisa32r3: 11983 case bfd_mach_mipsisa32r5: 11984 val = E_MIPS_ARCH_32R2; 11985 break; 11986 11987 case bfd_mach_mipsisa64r2: 11988 case bfd_mach_mipsisa64r3: 11989 case bfd_mach_mipsisa64r5: 11990 val = E_MIPS_ARCH_64R2; 11991 break; 11992 11993 case bfd_mach_mipsisa32r6: 11994 val = E_MIPS_ARCH_32R6; 11995 break; 11996 11997 case bfd_mach_mipsisa64r6: 11998 val = E_MIPS_ARCH_64R6; 11999 break; 12000 } 12001 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH); 12002 elf_elfheader (abfd)->e_flags |= val; 12003 12004 } 12005 12006 12007 /* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset. 12008 Don't do so for code sections. We want to keep ordering of HI16/LO16 12009 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame 12010 relocs to be sorted. */ 12011 12012 bfd_boolean 12013 _bfd_mips_elf_sort_relocs_p (asection *sec) 12014 { 12015 return (sec->flags & SEC_CODE) == 0; 12016 } 12017 12018 12019 /* The final processing done just before writing out a MIPS ELF object 12020 file. This gets the MIPS architecture right based on the machine 12021 number. This is used by both the 32-bit and the 64-bit ABI. */ 12022 12023 void 12024 _bfd_mips_elf_final_write_processing (bfd *abfd, 12025 bfd_boolean linker ATTRIBUTE_UNUSED) 12026 { 12027 unsigned int i; 12028 Elf_Internal_Shdr **hdrpp; 12029 const char *name; 12030 asection *sec; 12031 12032 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former 12033 is nonzero. This is for compatibility with old objects, which used 12034 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */ 12035 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0) 12036 mips_set_isa_flags (abfd); 12037 12038 /* Set the sh_info field for .gptab sections and other appropriate 12039 info for each special section. */ 12040 for (i = 1, hdrpp = elf_elfsections (abfd) + 1; 12041 i < elf_numsections (abfd); 12042 i++, hdrpp++) 12043 { 12044 switch ((*hdrpp)->sh_type) 12045 { 12046 case SHT_MIPS_MSYM: 12047 case SHT_MIPS_LIBLIST: 12048 sec = bfd_get_section_by_name (abfd, ".dynstr"); 12049 if (sec != NULL) 12050 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; 12051 break; 12052 12053 case SHT_MIPS_GPTAB: 12054 BFD_ASSERT ((*hdrpp)->bfd_section != NULL); 12055 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section); 12056 BFD_ASSERT (name != NULL 12057 && CONST_STRNEQ (name, ".gptab.")); 12058 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1); 12059 BFD_ASSERT (sec != NULL); 12060 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx; 12061 break; 12062 12063 case SHT_MIPS_CONTENT: 12064 BFD_ASSERT ((*hdrpp)->bfd_section != NULL); 12065 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section); 12066 BFD_ASSERT (name != NULL 12067 && CONST_STRNEQ (name, ".MIPS.content")); 12068 sec = bfd_get_section_by_name (abfd, 12069 name + sizeof ".MIPS.content" - 1); 12070 BFD_ASSERT (sec != NULL); 12071 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; 12072 break; 12073 12074 case SHT_MIPS_SYMBOL_LIB: 12075 sec = bfd_get_section_by_name (abfd, ".dynsym"); 12076 if (sec != NULL) 12077 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; 12078 sec = bfd_get_section_by_name (abfd, ".liblist"); 12079 if (sec != NULL) 12080 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx; 12081 break; 12082 12083 case SHT_MIPS_EVENTS: 12084 BFD_ASSERT ((*hdrpp)->bfd_section != NULL); 12085 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section); 12086 BFD_ASSERT (name != NULL); 12087 if (CONST_STRNEQ (name, ".MIPS.events")) 12088 sec = bfd_get_section_by_name (abfd, 12089 name + sizeof ".MIPS.events" - 1); 12090 else 12091 { 12092 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel")); 12093 sec = bfd_get_section_by_name (abfd, 12094 (name 12095 + sizeof ".MIPS.post_rel" - 1)); 12096 } 12097 BFD_ASSERT (sec != NULL); 12098 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; 12099 break; 12100 12101 } 12102 } 12103 } 12104 12105 /* When creating an IRIX5 executable, we need REGINFO and RTPROC 12106 segments. */ 12107 12108 int 12109 _bfd_mips_elf_additional_program_headers (bfd *abfd, 12110 struct bfd_link_info *info ATTRIBUTE_UNUSED) 12111 { 12112 asection *s; 12113 int ret = 0; 12114 12115 /* See if we need a PT_MIPS_REGINFO segment. */ 12116 s = bfd_get_section_by_name (abfd, ".reginfo"); 12117 if (s && (s->flags & SEC_LOAD)) 12118 ++ret; 12119 12120 /* See if we need a PT_MIPS_ABIFLAGS segment. */ 12121 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags")) 12122 ++ret; 12123 12124 /* See if we need a PT_MIPS_OPTIONS segment. */ 12125 if (IRIX_COMPAT (abfd) == ict_irix6 12126 && bfd_get_section_by_name (abfd, 12127 MIPS_ELF_OPTIONS_SECTION_NAME (abfd))) 12128 ++ret; 12129 12130 /* See if we need a PT_MIPS_RTPROC segment. */ 12131 if (IRIX_COMPAT (abfd) == ict_irix5 12132 && bfd_get_section_by_name (abfd, ".dynamic") 12133 && bfd_get_section_by_name (abfd, ".mdebug")) 12134 ++ret; 12135 12136 /* Allocate a PT_NULL header in dynamic objects. See 12137 _bfd_mips_elf_modify_segment_map for details. */ 12138 if (!SGI_COMPAT (abfd) 12139 && bfd_get_section_by_name (abfd, ".dynamic")) 12140 ++ret; 12141 12142 return ret; 12143 } 12144 12145 /* Modify the segment map for an IRIX5 executable. */ 12146 12147 bfd_boolean 12148 _bfd_mips_elf_modify_segment_map (bfd *abfd, 12149 struct bfd_link_info *info) 12150 { 12151 asection *s; 12152 struct elf_segment_map *m, **pm; 12153 bfd_size_type amt; 12154 12155 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO 12156 segment. */ 12157 s = bfd_get_section_by_name (abfd, ".reginfo"); 12158 if (s != NULL && (s->flags & SEC_LOAD) != 0) 12159 { 12160 for (m = elf_seg_map (abfd); m != NULL; m = m->next) 12161 if (m->p_type == PT_MIPS_REGINFO) 12162 break; 12163 if (m == NULL) 12164 { 12165 amt = sizeof *m; 12166 m = bfd_zalloc (abfd, amt); 12167 if (m == NULL) 12168 return FALSE; 12169 12170 m->p_type = PT_MIPS_REGINFO; 12171 m->count = 1; 12172 m->sections[0] = s; 12173 12174 /* We want to put it after the PHDR and INTERP segments. */ 12175 pm = &elf_seg_map (abfd); 12176 while (*pm != NULL 12177 && ((*pm)->p_type == PT_PHDR 12178 || (*pm)->p_type == PT_INTERP)) 12179 pm = &(*pm)->next; 12180 12181 m->next = *pm; 12182 *pm = m; 12183 } 12184 } 12185 12186 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS 12187 segment. */ 12188 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags"); 12189 if (s != NULL && (s->flags & SEC_LOAD) != 0) 12190 { 12191 for (m = elf_seg_map (abfd); m != NULL; m = m->next) 12192 if (m->p_type == PT_MIPS_ABIFLAGS) 12193 break; 12194 if (m == NULL) 12195 { 12196 amt = sizeof *m; 12197 m = bfd_zalloc (abfd, amt); 12198 if (m == NULL) 12199 return FALSE; 12200 12201 m->p_type = PT_MIPS_ABIFLAGS; 12202 m->count = 1; 12203 m->sections[0] = s; 12204 12205 /* We want to put it after the PHDR and INTERP segments. */ 12206 pm = &elf_seg_map (abfd); 12207 while (*pm != NULL 12208 && ((*pm)->p_type == PT_PHDR 12209 || (*pm)->p_type == PT_INTERP)) 12210 pm = &(*pm)->next; 12211 12212 m->next = *pm; 12213 *pm = m; 12214 } 12215 } 12216 12217 /* For IRIX 6, we don't have .mdebug sections, nor does anything but 12218 .dynamic end up in PT_DYNAMIC. However, we do have to insert a 12219 PT_MIPS_OPTIONS segment immediately following the program header 12220 table. */ 12221 if (NEWABI_P (abfd) 12222 /* On non-IRIX6 new abi, we'll have already created a segment 12223 for this section, so don't create another. I'm not sure this 12224 is not also the case for IRIX 6, but I can't test it right 12225 now. */ 12226 && IRIX_COMPAT (abfd) == ict_irix6) 12227 { 12228 for (s = abfd->sections; s; s = s->next) 12229 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS) 12230 break; 12231 12232 if (s) 12233 { 12234 struct elf_segment_map *options_segment; 12235 12236 pm = &elf_seg_map (abfd); 12237 while (*pm != NULL 12238 && ((*pm)->p_type == PT_PHDR 12239 || (*pm)->p_type == PT_INTERP)) 12240 pm = &(*pm)->next; 12241 12242 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS) 12243 { 12244 amt = sizeof (struct elf_segment_map); 12245 options_segment = bfd_zalloc (abfd, amt); 12246 options_segment->next = *pm; 12247 options_segment->p_type = PT_MIPS_OPTIONS; 12248 options_segment->p_flags = PF_R; 12249 options_segment->p_flags_valid = TRUE; 12250 options_segment->count = 1; 12251 options_segment->sections[0] = s; 12252 *pm = options_segment; 12253 } 12254 } 12255 } 12256 else 12257 { 12258 if (IRIX_COMPAT (abfd) == ict_irix5) 12259 { 12260 /* If there are .dynamic and .mdebug sections, we make a room 12261 for the RTPROC header. FIXME: Rewrite without section names. */ 12262 if (bfd_get_section_by_name (abfd, ".interp") == NULL 12263 && bfd_get_section_by_name (abfd, ".dynamic") != NULL 12264 && bfd_get_section_by_name (abfd, ".mdebug") != NULL) 12265 { 12266 for (m = elf_seg_map (abfd); m != NULL; m = m->next) 12267 if (m->p_type == PT_MIPS_RTPROC) 12268 break; 12269 if (m == NULL) 12270 { 12271 amt = sizeof *m; 12272 m = bfd_zalloc (abfd, amt); 12273 if (m == NULL) 12274 return FALSE; 12275 12276 m->p_type = PT_MIPS_RTPROC; 12277 12278 s = bfd_get_section_by_name (abfd, ".rtproc"); 12279 if (s == NULL) 12280 { 12281 m->count = 0; 12282 m->p_flags = 0; 12283 m->p_flags_valid = 1; 12284 } 12285 else 12286 { 12287 m->count = 1; 12288 m->sections[0] = s; 12289 } 12290 12291 /* We want to put it after the DYNAMIC segment. */ 12292 pm = &elf_seg_map (abfd); 12293 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC) 12294 pm = &(*pm)->next; 12295 if (*pm != NULL) 12296 pm = &(*pm)->next; 12297 12298 m->next = *pm; 12299 *pm = m; 12300 } 12301 } 12302 } 12303 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic, 12304 .dynstr, .dynsym, and .hash sections, and everything in 12305 between. */ 12306 for (pm = &elf_seg_map (abfd); *pm != NULL; 12307 pm = &(*pm)->next) 12308 if ((*pm)->p_type == PT_DYNAMIC) 12309 break; 12310 m = *pm; 12311 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section. 12312 glibc's dynamic linker has traditionally derived the number of 12313 tags from the p_filesz field, and sometimes allocates stack 12314 arrays of that size. An overly-big PT_DYNAMIC segment can 12315 be actively harmful in such cases. Making PT_DYNAMIC contain 12316 other sections can also make life hard for the prelinker, 12317 which might move one of the other sections to a different 12318 PT_LOAD segment. */ 12319 if (SGI_COMPAT (abfd) 12320 && m != NULL 12321 && m->count == 1 12322 && strcmp (m->sections[0]->name, ".dynamic") == 0) 12323 { 12324 static const char *sec_names[] = 12325 { 12326 ".dynamic", ".dynstr", ".dynsym", ".hash" 12327 }; 12328 bfd_vma low, high; 12329 unsigned int i, c; 12330 struct elf_segment_map *n; 12331 12332 low = ~(bfd_vma) 0; 12333 high = 0; 12334 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++) 12335 { 12336 s = bfd_get_section_by_name (abfd, sec_names[i]); 12337 if (s != NULL && (s->flags & SEC_LOAD) != 0) 12338 { 12339 bfd_size_type sz; 12340 12341 if (low > s->vma) 12342 low = s->vma; 12343 sz = s->size; 12344 if (high < s->vma + sz) 12345 high = s->vma + sz; 12346 } 12347 } 12348 12349 c = 0; 12350 for (s = abfd->sections; s != NULL; s = s->next) 12351 if ((s->flags & SEC_LOAD) != 0 12352 && s->vma >= low 12353 && s->vma + s->size <= high) 12354 ++c; 12355 12356 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *); 12357 n = bfd_zalloc (abfd, amt); 12358 if (n == NULL) 12359 return FALSE; 12360 *n = *m; 12361 n->count = c; 12362 12363 i = 0; 12364 for (s = abfd->sections; s != NULL; s = s->next) 12365 { 12366 if ((s->flags & SEC_LOAD) != 0 12367 && s->vma >= low 12368 && s->vma + s->size <= high) 12369 { 12370 n->sections[i] = s; 12371 ++i; 12372 } 12373 } 12374 12375 *pm = n; 12376 } 12377 } 12378 12379 /* Allocate a spare program header in dynamic objects so that tools 12380 like the prelinker can add an extra PT_LOAD entry. 12381 12382 If the prelinker needs to make room for a new PT_LOAD entry, its 12383 standard procedure is to move the first (read-only) sections into 12384 the new (writable) segment. However, the MIPS ABI requires 12385 .dynamic to be in a read-only segment, and the section will often 12386 start within sizeof (ElfNN_Phdr) bytes of the last program header. 12387 12388 Although the prelinker could in principle move .dynamic to a 12389 writable segment, it seems better to allocate a spare program 12390 header instead, and avoid the need to move any sections. 12391 There is a long tradition of allocating spare dynamic tags, 12392 so allocating a spare program header seems like a natural 12393 extension. 12394 12395 If INFO is NULL, we may be copying an already prelinked binary 12396 with objcopy or strip, so do not add this header. */ 12397 if (info != NULL 12398 && !SGI_COMPAT (abfd) 12399 && bfd_get_section_by_name (abfd, ".dynamic")) 12400 { 12401 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next) 12402 if ((*pm)->p_type == PT_NULL) 12403 break; 12404 if (*pm == NULL) 12405 { 12406 m = bfd_zalloc (abfd, sizeof (*m)); 12407 if (m == NULL) 12408 return FALSE; 12409 12410 m->p_type = PT_NULL; 12411 *pm = m; 12412 } 12413 } 12414 12415 return TRUE; 12416 } 12417 12418 /* Return the section that should be marked against GC for a given 12419 relocation. */ 12420 12421 asection * 12422 _bfd_mips_elf_gc_mark_hook (asection *sec, 12423 struct bfd_link_info *info, 12424 Elf_Internal_Rela *rel, 12425 struct elf_link_hash_entry *h, 12426 Elf_Internal_Sym *sym) 12427 { 12428 /* ??? Do mips16 stub sections need to be handled special? */ 12429 12430 if (h != NULL) 12431 switch (ELF_R_TYPE (sec->owner, rel->r_info)) 12432 { 12433 case R_MIPS_GNU_VTINHERIT: 12434 case R_MIPS_GNU_VTENTRY: 12435 return NULL; 12436 } 12437 12438 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym); 12439 } 12440 12441 /* Update the got entry reference counts for the section being removed. */ 12442 12443 bfd_boolean 12444 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED, 12445 struct bfd_link_info *info ATTRIBUTE_UNUSED, 12446 asection *sec ATTRIBUTE_UNUSED, 12447 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED) 12448 { 12449 #if 0 12450 Elf_Internal_Shdr *symtab_hdr; 12451 struct elf_link_hash_entry **sym_hashes; 12452 bfd_signed_vma *local_got_refcounts; 12453 const Elf_Internal_Rela *rel, *relend; 12454 unsigned long r_symndx; 12455 struct elf_link_hash_entry *h; 12456 12457 if (bfd_link_relocatable (info)) 12458 return TRUE; 12459 12460 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 12461 sym_hashes = elf_sym_hashes (abfd); 12462 local_got_refcounts = elf_local_got_refcounts (abfd); 12463 12464 relend = relocs + sec->reloc_count; 12465 for (rel = relocs; rel < relend; rel++) 12466 switch (ELF_R_TYPE (abfd, rel->r_info)) 12467 { 12468 case R_MIPS16_GOT16: 12469 case R_MIPS16_CALL16: 12470 case R_MIPS_GOT16: 12471 case R_MIPS_CALL16: 12472 case R_MIPS_CALL_HI16: 12473 case R_MIPS_CALL_LO16: 12474 case R_MIPS_GOT_HI16: 12475 case R_MIPS_GOT_LO16: 12476 case R_MIPS_GOT_DISP: 12477 case R_MIPS_GOT_PAGE: 12478 case R_MIPS_GOT_OFST: 12479 case R_MICROMIPS_GOT16: 12480 case R_MICROMIPS_CALL16: 12481 case R_MICROMIPS_CALL_HI16: 12482 case R_MICROMIPS_CALL_LO16: 12483 case R_MICROMIPS_GOT_HI16: 12484 case R_MICROMIPS_GOT_LO16: 12485 case R_MICROMIPS_GOT_DISP: 12486 case R_MICROMIPS_GOT_PAGE: 12487 case R_MICROMIPS_GOT_OFST: 12488 /* ??? It would seem that the existing MIPS code does no sort 12489 of reference counting or whatnot on its GOT and PLT entries, 12490 so it is not possible to garbage collect them at this time. */ 12491 break; 12492 12493 default: 12494 break; 12495 } 12496 #endif 12497 12498 return TRUE; 12499 } 12500 12501 /* Prevent .MIPS.abiflags from being discarded with --gc-sections. */ 12502 12503 bfd_boolean 12504 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info, 12505 elf_gc_mark_hook_fn gc_mark_hook) 12506 { 12507 bfd *sub; 12508 12509 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook); 12510 12511 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next) 12512 { 12513 asection *o; 12514 12515 if (! is_mips_elf (sub)) 12516 continue; 12517 12518 for (o = sub->sections; o != NULL; o = o->next) 12519 if (!o->gc_mark 12520 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P 12521 (bfd_get_section_name (sub, o))) 12522 { 12523 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook)) 12524 return FALSE; 12525 } 12526 } 12527 12528 return TRUE; 12529 } 12530 12531 /* Copy data from a MIPS ELF indirect symbol to its direct symbol, 12532 hiding the old indirect symbol. Process additional relocation 12533 information. Also called for weakdefs, in which case we just let 12534 _bfd_elf_link_hash_copy_indirect copy the flags for us. */ 12535 12536 void 12537 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info, 12538 struct elf_link_hash_entry *dir, 12539 struct elf_link_hash_entry *ind) 12540 { 12541 struct mips_elf_link_hash_entry *dirmips, *indmips; 12542 12543 _bfd_elf_link_hash_copy_indirect (info, dir, ind); 12544 12545 dirmips = (struct mips_elf_link_hash_entry *) dir; 12546 indmips = (struct mips_elf_link_hash_entry *) ind; 12547 /* Any absolute non-dynamic relocations against an indirect or weak 12548 definition will be against the target symbol. */ 12549 if (indmips->has_static_relocs) 12550 dirmips->has_static_relocs = TRUE; 12551 12552 if (ind->root.type != bfd_link_hash_indirect) 12553 return; 12554 12555 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs; 12556 if (indmips->readonly_reloc) 12557 dirmips->readonly_reloc = TRUE; 12558 if (indmips->no_fn_stub) 12559 dirmips->no_fn_stub = TRUE; 12560 if (indmips->fn_stub) 12561 { 12562 dirmips->fn_stub = indmips->fn_stub; 12563 indmips->fn_stub = NULL; 12564 } 12565 if (indmips->need_fn_stub) 12566 { 12567 dirmips->need_fn_stub = TRUE; 12568 indmips->need_fn_stub = FALSE; 12569 } 12570 if (indmips->call_stub) 12571 { 12572 dirmips->call_stub = indmips->call_stub; 12573 indmips->call_stub = NULL; 12574 } 12575 if (indmips->call_fp_stub) 12576 { 12577 dirmips->call_fp_stub = indmips->call_fp_stub; 12578 indmips->call_fp_stub = NULL; 12579 } 12580 if (indmips->global_got_area < dirmips->global_got_area) 12581 dirmips->global_got_area = indmips->global_got_area; 12582 if (indmips->global_got_area < GGA_NONE) 12583 indmips->global_got_area = GGA_NONE; 12584 if (indmips->has_nonpic_branches) 12585 dirmips->has_nonpic_branches = TRUE; 12586 } 12587 12588 #define PDR_SIZE 32 12589 12590 bfd_boolean 12591 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie, 12592 struct bfd_link_info *info) 12593 { 12594 asection *o; 12595 bfd_boolean ret = FALSE; 12596 unsigned char *tdata; 12597 size_t i, skip; 12598 12599 o = bfd_get_section_by_name (abfd, ".pdr"); 12600 if (! o) 12601 return FALSE; 12602 if (o->size == 0) 12603 return FALSE; 12604 if (o->size % PDR_SIZE != 0) 12605 return FALSE; 12606 if (o->output_section != NULL 12607 && bfd_is_abs_section (o->output_section)) 12608 return FALSE; 12609 12610 tdata = bfd_zmalloc (o->size / PDR_SIZE); 12611 if (! tdata) 12612 return FALSE; 12613 12614 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL, 12615 info->keep_memory); 12616 if (!cookie->rels) 12617 { 12618 free (tdata); 12619 return FALSE; 12620 } 12621 12622 cookie->rel = cookie->rels; 12623 cookie->relend = cookie->rels + o->reloc_count; 12624 12625 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++) 12626 { 12627 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie)) 12628 { 12629 tdata[i] = 1; 12630 skip ++; 12631 } 12632 } 12633 12634 if (skip != 0) 12635 { 12636 mips_elf_section_data (o)->u.tdata = tdata; 12637 if (o->rawsize == 0) 12638 o->rawsize = o->size; 12639 o->size -= skip * PDR_SIZE; 12640 ret = TRUE; 12641 } 12642 else 12643 free (tdata); 12644 12645 if (! info->keep_memory) 12646 free (cookie->rels); 12647 12648 return ret; 12649 } 12650 12651 bfd_boolean 12652 _bfd_mips_elf_ignore_discarded_relocs (asection *sec) 12653 { 12654 if (strcmp (sec->name, ".pdr") == 0) 12655 return TRUE; 12656 return FALSE; 12657 } 12658 12659 bfd_boolean 12660 _bfd_mips_elf_write_section (bfd *output_bfd, 12661 struct bfd_link_info *link_info ATTRIBUTE_UNUSED, 12662 asection *sec, bfd_byte *contents) 12663 { 12664 bfd_byte *to, *from, *end; 12665 int i; 12666 12667 if (strcmp (sec->name, ".pdr") != 0) 12668 return FALSE; 12669 12670 if (mips_elf_section_data (sec)->u.tdata == NULL) 12671 return FALSE; 12672 12673 to = contents; 12674 end = contents + sec->size; 12675 for (from = contents, i = 0; 12676 from < end; 12677 from += PDR_SIZE, i++) 12678 { 12679 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1) 12680 continue; 12681 if (to != from) 12682 memcpy (to, from, PDR_SIZE); 12683 to += PDR_SIZE; 12684 } 12685 bfd_set_section_contents (output_bfd, sec->output_section, contents, 12686 sec->output_offset, sec->size); 12687 return TRUE; 12688 } 12689 12690 /* microMIPS code retains local labels for linker relaxation. Omit them 12691 from output by default for clarity. */ 12692 12693 bfd_boolean 12694 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym) 12695 { 12696 return _bfd_elf_is_local_label_name (abfd, sym->name); 12697 } 12698 12699 /* MIPS ELF uses a special find_nearest_line routine in order the 12700 handle the ECOFF debugging information. */ 12701 12702 struct mips_elf_find_line 12703 { 12704 struct ecoff_debug_info d; 12705 struct ecoff_find_line i; 12706 }; 12707 12708 bfd_boolean 12709 _bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols, 12710 asection *section, bfd_vma offset, 12711 const char **filename_ptr, 12712 const char **functionname_ptr, 12713 unsigned int *line_ptr, 12714 unsigned int *discriminator_ptr) 12715 { 12716 asection *msec; 12717 12718 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset, 12719 filename_ptr, functionname_ptr, 12720 line_ptr, discriminator_ptr, 12721 dwarf_debug_sections, 12722 ABI_64_P (abfd) ? 8 : 0, 12723 &elf_tdata (abfd)->dwarf2_find_line_info)) 12724 return TRUE; 12725 12726 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset, 12727 filename_ptr, functionname_ptr, 12728 line_ptr)) 12729 return TRUE; 12730 12731 msec = bfd_get_section_by_name (abfd, ".mdebug"); 12732 if (msec != NULL) 12733 { 12734 flagword origflags; 12735 struct mips_elf_find_line *fi; 12736 const struct ecoff_debug_swap * const swap = 12737 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; 12738 12739 /* If we are called during a link, mips_elf_final_link may have 12740 cleared the SEC_HAS_CONTENTS field. We force it back on here 12741 if appropriate (which it normally will be). */ 12742 origflags = msec->flags; 12743 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS) 12744 msec->flags |= SEC_HAS_CONTENTS; 12745 12746 fi = mips_elf_tdata (abfd)->find_line_info; 12747 if (fi == NULL) 12748 { 12749 bfd_size_type external_fdr_size; 12750 char *fraw_src; 12751 char *fraw_end; 12752 struct fdr *fdr_ptr; 12753 bfd_size_type amt = sizeof (struct mips_elf_find_line); 12754 12755 fi = bfd_zalloc (abfd, amt); 12756 if (fi == NULL) 12757 { 12758 msec->flags = origflags; 12759 return FALSE; 12760 } 12761 12762 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d)) 12763 { 12764 msec->flags = origflags; 12765 return FALSE; 12766 } 12767 12768 /* Swap in the FDR information. */ 12769 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr); 12770 fi->d.fdr = bfd_alloc (abfd, amt); 12771 if (fi->d.fdr == NULL) 12772 { 12773 msec->flags = origflags; 12774 return FALSE; 12775 } 12776 external_fdr_size = swap->external_fdr_size; 12777 fdr_ptr = fi->d.fdr; 12778 fraw_src = (char *) fi->d.external_fdr; 12779 fraw_end = (fraw_src 12780 + fi->d.symbolic_header.ifdMax * external_fdr_size); 12781 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++) 12782 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr); 12783 12784 mips_elf_tdata (abfd)->find_line_info = fi; 12785 12786 /* Note that we don't bother to ever free this information. 12787 find_nearest_line is either called all the time, as in 12788 objdump -l, so the information should be saved, or it is 12789 rarely called, as in ld error messages, so the memory 12790 wasted is unimportant. Still, it would probably be a 12791 good idea for free_cached_info to throw it away. */ 12792 } 12793 12794 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap, 12795 &fi->i, filename_ptr, functionname_ptr, 12796 line_ptr)) 12797 { 12798 msec->flags = origflags; 12799 return TRUE; 12800 } 12801 12802 msec->flags = origflags; 12803 } 12804 12805 /* Fall back on the generic ELF find_nearest_line routine. */ 12806 12807 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset, 12808 filename_ptr, functionname_ptr, 12809 line_ptr, discriminator_ptr); 12810 } 12811 12812 bfd_boolean 12813 _bfd_mips_elf_find_inliner_info (bfd *abfd, 12814 const char **filename_ptr, 12815 const char **functionname_ptr, 12816 unsigned int *line_ptr) 12817 { 12818 bfd_boolean found; 12819 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr, 12820 functionname_ptr, line_ptr, 12821 & elf_tdata (abfd)->dwarf2_find_line_info); 12822 return found; 12823 } 12824 12825 12826 /* When are writing out the .options or .MIPS.options section, 12827 remember the bytes we are writing out, so that we can install the 12828 GP value in the section_processing routine. */ 12829 12830 bfd_boolean 12831 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section, 12832 const void *location, 12833 file_ptr offset, bfd_size_type count) 12834 { 12835 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name)) 12836 { 12837 bfd_byte *c; 12838 12839 if (elf_section_data (section) == NULL) 12840 { 12841 bfd_size_type amt = sizeof (struct bfd_elf_section_data); 12842 section->used_by_bfd = bfd_zalloc (abfd, amt); 12843 if (elf_section_data (section) == NULL) 12844 return FALSE; 12845 } 12846 c = mips_elf_section_data (section)->u.tdata; 12847 if (c == NULL) 12848 { 12849 c = bfd_zalloc (abfd, section->size); 12850 if (c == NULL) 12851 return FALSE; 12852 mips_elf_section_data (section)->u.tdata = c; 12853 } 12854 12855 memcpy (c + offset, location, count); 12856 } 12857 12858 return _bfd_elf_set_section_contents (abfd, section, location, offset, 12859 count); 12860 } 12861 12862 /* This is almost identical to bfd_generic_get_... except that some 12863 MIPS relocations need to be handled specially. Sigh. */ 12864 12865 bfd_byte * 12866 _bfd_elf_mips_get_relocated_section_contents 12867 (bfd *abfd, 12868 struct bfd_link_info *link_info, 12869 struct bfd_link_order *link_order, 12870 bfd_byte *data, 12871 bfd_boolean relocatable, 12872 asymbol **symbols) 12873 { 12874 /* Get enough memory to hold the stuff */ 12875 bfd *input_bfd = link_order->u.indirect.section->owner; 12876 asection *input_section = link_order->u.indirect.section; 12877 bfd_size_type sz; 12878 12879 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section); 12880 arelent **reloc_vector = NULL; 12881 long reloc_count; 12882 12883 if (reloc_size < 0) 12884 goto error_return; 12885 12886 reloc_vector = bfd_malloc (reloc_size); 12887 if (reloc_vector == NULL && reloc_size != 0) 12888 goto error_return; 12889 12890 /* read in the section */ 12891 sz = input_section->rawsize ? input_section->rawsize : input_section->size; 12892 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz)) 12893 goto error_return; 12894 12895 reloc_count = bfd_canonicalize_reloc (input_bfd, 12896 input_section, 12897 reloc_vector, 12898 symbols); 12899 if (reloc_count < 0) 12900 goto error_return; 12901 12902 if (reloc_count > 0) 12903 { 12904 arelent **parent; 12905 /* for mips */ 12906 int gp_found; 12907 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */ 12908 12909 { 12910 struct bfd_hash_entry *h; 12911 struct bfd_link_hash_entry *lh; 12912 /* Skip all this stuff if we aren't mixing formats. */ 12913 if (abfd && input_bfd 12914 && abfd->xvec == input_bfd->xvec) 12915 lh = 0; 12916 else 12917 { 12918 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE); 12919 lh = (struct bfd_link_hash_entry *) h; 12920 } 12921 lookup: 12922 if (lh) 12923 { 12924 switch (lh->type) 12925 { 12926 case bfd_link_hash_undefined: 12927 case bfd_link_hash_undefweak: 12928 case bfd_link_hash_common: 12929 gp_found = 0; 12930 break; 12931 case bfd_link_hash_defined: 12932 case bfd_link_hash_defweak: 12933 gp_found = 1; 12934 gp = lh->u.def.value; 12935 break; 12936 case bfd_link_hash_indirect: 12937 case bfd_link_hash_warning: 12938 lh = lh->u.i.link; 12939 /* @@FIXME ignoring warning for now */ 12940 goto lookup; 12941 case bfd_link_hash_new: 12942 default: 12943 abort (); 12944 } 12945 } 12946 else 12947 gp_found = 0; 12948 } 12949 /* end mips */ 12950 for (parent = reloc_vector; *parent != NULL; parent++) 12951 { 12952 char *error_message = NULL; 12953 bfd_reloc_status_type r; 12954 12955 /* Specific to MIPS: Deal with relocation types that require 12956 knowing the gp of the output bfd. */ 12957 asymbol *sym = *(*parent)->sym_ptr_ptr; 12958 12959 /* If we've managed to find the gp and have a special 12960 function for the relocation then go ahead, else default 12961 to the generic handling. */ 12962 if (gp_found 12963 && (*parent)->howto->special_function 12964 == _bfd_mips_elf32_gprel16_reloc) 12965 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent, 12966 input_section, relocatable, 12967 data, gp); 12968 else 12969 r = bfd_perform_relocation (input_bfd, *parent, data, 12970 input_section, 12971 relocatable ? abfd : NULL, 12972 &error_message); 12973 12974 if (relocatable) 12975 { 12976 asection *os = input_section->output_section; 12977 12978 /* A partial link, so keep the relocs */ 12979 os->orelocation[os->reloc_count] = *parent; 12980 os->reloc_count++; 12981 } 12982 12983 if (r != bfd_reloc_ok) 12984 { 12985 switch (r) 12986 { 12987 case bfd_reloc_undefined: 12988 (*link_info->callbacks->undefined_symbol) 12989 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr), 12990 input_bfd, input_section, (*parent)->address, TRUE); 12991 break; 12992 case bfd_reloc_dangerous: 12993 BFD_ASSERT (error_message != NULL); 12994 (*link_info->callbacks->reloc_dangerous) 12995 (link_info, error_message, 12996 input_bfd, input_section, (*parent)->address); 12997 break; 12998 case bfd_reloc_overflow: 12999 (*link_info->callbacks->reloc_overflow) 13000 (link_info, NULL, 13001 bfd_asymbol_name (*(*parent)->sym_ptr_ptr), 13002 (*parent)->howto->name, (*parent)->addend, 13003 input_bfd, input_section, (*parent)->address); 13004 break; 13005 case bfd_reloc_outofrange: 13006 default: 13007 abort (); 13008 break; 13009 } 13010 13011 } 13012 } 13013 } 13014 if (reloc_vector != NULL) 13015 free (reloc_vector); 13016 return data; 13017 13018 error_return: 13019 if (reloc_vector != NULL) 13020 free (reloc_vector); 13021 return NULL; 13022 } 13023 13024 static bfd_boolean 13025 mips_elf_relax_delete_bytes (bfd *abfd, 13026 asection *sec, bfd_vma addr, int count) 13027 { 13028 Elf_Internal_Shdr *symtab_hdr; 13029 unsigned int sec_shndx; 13030 bfd_byte *contents; 13031 Elf_Internal_Rela *irel, *irelend; 13032 Elf_Internal_Sym *isym; 13033 Elf_Internal_Sym *isymend; 13034 struct elf_link_hash_entry **sym_hashes; 13035 struct elf_link_hash_entry **end_hashes; 13036 struct elf_link_hash_entry **start_hashes; 13037 unsigned int symcount; 13038 13039 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec); 13040 contents = elf_section_data (sec)->this_hdr.contents; 13041 13042 irel = elf_section_data (sec)->relocs; 13043 irelend = irel + sec->reloc_count; 13044 13045 /* Actually delete the bytes. */ 13046 memmove (contents + addr, contents + addr + count, 13047 (size_t) (sec->size - addr - count)); 13048 sec->size -= count; 13049 13050 /* Adjust all the relocs. */ 13051 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++) 13052 { 13053 /* Get the new reloc address. */ 13054 if (irel->r_offset > addr) 13055 irel->r_offset -= count; 13056 } 13057 13058 BFD_ASSERT (addr % 2 == 0); 13059 BFD_ASSERT (count % 2 == 0); 13060 13061 /* Adjust the local symbols defined in this section. */ 13062 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 13063 isym = (Elf_Internal_Sym *) symtab_hdr->contents; 13064 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++) 13065 if (isym->st_shndx == sec_shndx && isym->st_value > addr) 13066 isym->st_value -= count; 13067 13068 /* Now adjust the global symbols defined in this section. */ 13069 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym) 13070 - symtab_hdr->sh_info); 13071 sym_hashes = start_hashes = elf_sym_hashes (abfd); 13072 end_hashes = sym_hashes + symcount; 13073 13074 for (; sym_hashes < end_hashes; sym_hashes++) 13075 { 13076 struct elf_link_hash_entry *sym_hash = *sym_hashes; 13077 13078 if ((sym_hash->root.type == bfd_link_hash_defined 13079 || sym_hash->root.type == bfd_link_hash_defweak) 13080 && sym_hash->root.u.def.section == sec) 13081 { 13082 bfd_vma value = sym_hash->root.u.def.value; 13083 13084 if (ELF_ST_IS_MICROMIPS (sym_hash->other)) 13085 value &= MINUS_TWO; 13086 if (value > addr) 13087 sym_hash->root.u.def.value -= count; 13088 } 13089 } 13090 13091 return TRUE; 13092 } 13093 13094 13095 /* Opcodes needed for microMIPS relaxation as found in 13096 opcodes/micromips-opc.c. */ 13097 13098 struct opcode_descriptor { 13099 unsigned long match; 13100 unsigned long mask; 13101 }; 13102 13103 /* The $ra register aka $31. */ 13104 13105 #define RA 31 13106 13107 /* 32-bit instruction format register fields. */ 13108 13109 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f) 13110 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f) 13111 13112 /* Check if a 5-bit register index can be abbreviated to 3 bits. */ 13113 13114 #define OP16_VALID_REG(r) \ 13115 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17)) 13116 13117 13118 /* 32-bit and 16-bit branches. */ 13119 13120 static const struct opcode_descriptor b_insns_32[] = { 13121 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */ 13122 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */ 13123 { 0, 0 } /* End marker for find_match(). */ 13124 }; 13125 13126 static const struct opcode_descriptor bc_insn_32 = 13127 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 }; 13128 13129 static const struct opcode_descriptor bz_insn_32 = 13130 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 }; 13131 13132 static const struct opcode_descriptor bzal_insn_32 = 13133 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 }; 13134 13135 static const struct opcode_descriptor beq_insn_32 = 13136 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 }; 13137 13138 static const struct opcode_descriptor b_insn_16 = 13139 { /* "b", "mD", */ 0xcc00, 0xfc00 }; 13140 13141 static const struct opcode_descriptor bz_insn_16 = 13142 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 }; 13143 13144 13145 /* 32-bit and 16-bit branch EQ and NE zero. */ 13146 13147 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the 13148 eq and second the ne. This convention is used when replacing a 13149 32-bit BEQ/BNE with the 16-bit version. */ 13150 13151 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16) 13152 13153 static const struct opcode_descriptor bz_rs_insns_32[] = { 13154 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 }, 13155 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 }, 13156 { 0, 0 } /* End marker for find_match(). */ 13157 }; 13158 13159 static const struct opcode_descriptor bz_rt_insns_32[] = { 13160 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 }, 13161 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 }, 13162 { 0, 0 } /* End marker for find_match(). */ 13163 }; 13164 13165 static const struct opcode_descriptor bzc_insns_32[] = { 13166 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 }, 13167 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 }, 13168 { 0, 0 } /* End marker for find_match(). */ 13169 }; 13170 13171 static const struct opcode_descriptor bz_insns_16[] = { 13172 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 }, 13173 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 }, 13174 { 0, 0 } /* End marker for find_match(). */ 13175 }; 13176 13177 /* Switch between a 5-bit register index and its 3-bit shorthand. */ 13178 13179 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2) 13180 #define BZ16_REG_FIELD(r) (((r) & 7) << 7) 13181 13182 13183 /* 32-bit instructions with a delay slot. */ 13184 13185 static const struct opcode_descriptor jal_insn_32_bd16 = 13186 { /* "jals", "a", */ 0x74000000, 0xfc000000 }; 13187 13188 static const struct opcode_descriptor jal_insn_32_bd32 = 13189 { /* "jal", "a", */ 0xf4000000, 0xfc000000 }; 13190 13191 static const struct opcode_descriptor jal_x_insn_32_bd32 = 13192 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 }; 13193 13194 static const struct opcode_descriptor j_insn_32 = 13195 { /* "j", "a", */ 0xd4000000, 0xfc000000 }; 13196 13197 static const struct opcode_descriptor jalr_insn_32 = 13198 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff }; 13199 13200 /* This table can be compacted, because no opcode replacement is made. */ 13201 13202 static const struct opcode_descriptor ds_insns_32_bd16[] = { 13203 { /* "jals", "a", */ 0x74000000, 0xfc000000 }, 13204 13205 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff }, 13206 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 }, 13207 13208 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 }, 13209 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 }, 13210 { /* "j", "a", */ 0xd4000000, 0xfc000000 }, 13211 { 0, 0 } /* End marker for find_match(). */ 13212 }; 13213 13214 /* This table can be compacted, because no opcode replacement is made. */ 13215 13216 static const struct opcode_descriptor ds_insns_32_bd32[] = { 13217 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 }, 13218 13219 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff }, 13220 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 }, 13221 { 0, 0 } /* End marker for find_match(). */ 13222 }; 13223 13224 13225 /* 16-bit instructions with a delay slot. */ 13226 13227 static const struct opcode_descriptor jalr_insn_16_bd16 = 13228 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 }; 13229 13230 static const struct opcode_descriptor jalr_insn_16_bd32 = 13231 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 }; 13232 13233 static const struct opcode_descriptor jr_insn_16 = 13234 { /* "jr", "mj", */ 0x4580, 0xffe0 }; 13235 13236 #define JR16_REG(opcode) ((opcode) & 0x1f) 13237 13238 /* This table can be compacted, because no opcode replacement is made. */ 13239 13240 static const struct opcode_descriptor ds_insns_16_bd16[] = { 13241 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 }, 13242 13243 { /* "b", "mD", */ 0xcc00, 0xfc00 }, 13244 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 }, 13245 { /* "jr", "mj", */ 0x4580, 0xffe0 }, 13246 { 0, 0 } /* End marker for find_match(). */ 13247 }; 13248 13249 13250 /* LUI instruction. */ 13251 13252 static const struct opcode_descriptor lui_insn = 13253 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 }; 13254 13255 13256 /* ADDIU instruction. */ 13257 13258 static const struct opcode_descriptor addiu_insn = 13259 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 }; 13260 13261 static const struct opcode_descriptor addiupc_insn = 13262 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 }; 13263 13264 #define ADDIUPC_REG_FIELD(r) \ 13265 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23) 13266 13267 13268 /* Relaxable instructions in a JAL delay slot: MOVE. */ 13269 13270 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves 13271 (ADDU, OR) have rd in 15:11 and rs in 10:16. */ 13272 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f) 13273 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f) 13274 13275 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5) 13276 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) ) 13277 13278 static const struct opcode_descriptor move_insns_32[] = { 13279 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */ 13280 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */ 13281 { 0, 0 } /* End marker for find_match(). */ 13282 }; 13283 13284 static const struct opcode_descriptor move_insn_16 = 13285 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 }; 13286 13287 13288 /* NOP instructions. */ 13289 13290 static const struct opcode_descriptor nop_insn_32 = 13291 { /* "nop", "", */ 0x00000000, 0xffffffff }; 13292 13293 static const struct opcode_descriptor nop_insn_16 = 13294 { /* "nop", "", */ 0x0c00, 0xffff }; 13295 13296 13297 /* Instruction match support. */ 13298 13299 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match) 13300 13301 static int 13302 find_match (unsigned long opcode, const struct opcode_descriptor insn[]) 13303 { 13304 unsigned long indx; 13305 13306 for (indx = 0; insn[indx].mask != 0; indx++) 13307 if (MATCH (opcode, insn[indx])) 13308 return indx; 13309 13310 return -1; 13311 } 13312 13313 13314 /* Branch and delay slot decoding support. */ 13315 13316 /* If PTR points to what *might* be a 16-bit branch or jump, then 13317 return the minimum length of its delay slot, otherwise return 0. 13318 Non-zero results are not definitive as we might be checking against 13319 the second half of another instruction. */ 13320 13321 static int 13322 check_br16_dslot (bfd *abfd, bfd_byte *ptr) 13323 { 13324 unsigned long opcode; 13325 int bdsize; 13326 13327 opcode = bfd_get_16 (abfd, ptr); 13328 if (MATCH (opcode, jalr_insn_16_bd32) != 0) 13329 /* 16-bit branch/jump with a 32-bit delay slot. */ 13330 bdsize = 4; 13331 else if (MATCH (opcode, jalr_insn_16_bd16) != 0 13332 || find_match (opcode, ds_insns_16_bd16) >= 0) 13333 /* 16-bit branch/jump with a 16-bit delay slot. */ 13334 bdsize = 2; 13335 else 13336 /* No delay slot. */ 13337 bdsize = 0; 13338 13339 return bdsize; 13340 } 13341 13342 /* If PTR points to what *might* be a 32-bit branch or jump, then 13343 return the minimum length of its delay slot, otherwise return 0. 13344 Non-zero results are not definitive as we might be checking against 13345 the second half of another instruction. */ 13346 13347 static int 13348 check_br32_dslot (bfd *abfd, bfd_byte *ptr) 13349 { 13350 unsigned long opcode; 13351 int bdsize; 13352 13353 opcode = bfd_get_micromips_32 (abfd, ptr); 13354 if (find_match (opcode, ds_insns_32_bd32) >= 0) 13355 /* 32-bit branch/jump with a 32-bit delay slot. */ 13356 bdsize = 4; 13357 else if (find_match (opcode, ds_insns_32_bd16) >= 0) 13358 /* 32-bit branch/jump with a 16-bit delay slot. */ 13359 bdsize = 2; 13360 else 13361 /* No delay slot. */ 13362 bdsize = 0; 13363 13364 return bdsize; 13365 } 13366 13367 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot 13368 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */ 13369 13370 static bfd_boolean 13371 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg) 13372 { 13373 unsigned long opcode; 13374 13375 opcode = bfd_get_16 (abfd, ptr); 13376 if (MATCH (opcode, b_insn_16) 13377 /* B16 */ 13378 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode)) 13379 /* JR16 */ 13380 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode)) 13381 /* BEQZ16, BNEZ16 */ 13382 || (MATCH (opcode, jalr_insn_16_bd32) 13383 /* JALR16 */ 13384 && reg != JR16_REG (opcode) && reg != RA)) 13385 return TRUE; 13386 13387 return FALSE; 13388 } 13389 13390 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG, 13391 then return TRUE, otherwise FALSE. */ 13392 13393 static bfd_boolean 13394 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg) 13395 { 13396 unsigned long opcode; 13397 13398 opcode = bfd_get_micromips_32 (abfd, ptr); 13399 if (MATCH (opcode, j_insn_32) 13400 /* J */ 13401 || MATCH (opcode, bc_insn_32) 13402 /* BC1F, BC1T, BC2F, BC2T */ 13403 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA) 13404 /* JAL, JALX */ 13405 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode)) 13406 /* BGEZ, BGTZ, BLEZ, BLTZ */ 13407 || (MATCH (opcode, bzal_insn_32) 13408 /* BGEZAL, BLTZAL */ 13409 && reg != OP32_SREG (opcode) && reg != RA) 13410 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32)) 13411 /* JALR, JALR.HB, BEQ, BNE */ 13412 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode))) 13413 return TRUE; 13414 13415 return FALSE; 13416 } 13417 13418 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS, 13419 IRELEND) at OFFSET indicate that there must be a compact branch there, 13420 then return TRUE, otherwise FALSE. */ 13421 13422 static bfd_boolean 13423 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset, 13424 const Elf_Internal_Rela *internal_relocs, 13425 const Elf_Internal_Rela *irelend) 13426 { 13427 const Elf_Internal_Rela *irel; 13428 unsigned long opcode; 13429 13430 opcode = bfd_get_micromips_32 (abfd, ptr); 13431 if (find_match (opcode, bzc_insns_32) < 0) 13432 return FALSE; 13433 13434 for (irel = internal_relocs; irel < irelend; irel++) 13435 if (irel->r_offset == offset 13436 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1) 13437 return TRUE; 13438 13439 return FALSE; 13440 } 13441 13442 /* Bitsize checking. */ 13443 #define IS_BITSIZE(val, N) \ 13444 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \ 13445 - (1ULL << ((N) - 1))) == (val)) 13446 13447 13448 bfd_boolean 13449 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec, 13450 struct bfd_link_info *link_info, 13451 bfd_boolean *again) 13452 { 13453 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32; 13454 Elf_Internal_Shdr *symtab_hdr; 13455 Elf_Internal_Rela *internal_relocs; 13456 Elf_Internal_Rela *irel, *irelend; 13457 bfd_byte *contents = NULL; 13458 Elf_Internal_Sym *isymbuf = NULL; 13459 13460 /* Assume nothing changes. */ 13461 *again = FALSE; 13462 13463 /* We don't have to do anything for a relocatable link, if 13464 this section does not have relocs, or if this is not a 13465 code section. */ 13466 13467 if (bfd_link_relocatable (link_info) 13468 || (sec->flags & SEC_RELOC) == 0 13469 || sec->reloc_count == 0 13470 || (sec->flags & SEC_CODE) == 0) 13471 return TRUE; 13472 13473 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 13474 13475 /* Get a copy of the native relocations. */ 13476 internal_relocs = (_bfd_elf_link_read_relocs 13477 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL, 13478 link_info->keep_memory)); 13479 if (internal_relocs == NULL) 13480 goto error_return; 13481 13482 /* Walk through them looking for relaxing opportunities. */ 13483 irelend = internal_relocs + sec->reloc_count; 13484 for (irel = internal_relocs; irel < irelend; irel++) 13485 { 13486 unsigned long r_symndx = ELF32_R_SYM (irel->r_info); 13487 unsigned int r_type = ELF32_R_TYPE (irel->r_info); 13488 bfd_boolean target_is_micromips_code_p; 13489 unsigned long opcode; 13490 bfd_vma symval; 13491 bfd_vma pcrval; 13492 bfd_byte *ptr; 13493 int fndopc; 13494 13495 /* The number of bytes to delete for relaxation and from where 13496 to delete these bytes starting at irel->r_offset. */ 13497 int delcnt = 0; 13498 int deloff = 0; 13499 13500 /* If this isn't something that can be relaxed, then ignore 13501 this reloc. */ 13502 if (r_type != R_MICROMIPS_HI16 13503 && r_type != R_MICROMIPS_PC16_S1 13504 && r_type != R_MICROMIPS_26_S1) 13505 continue; 13506 13507 /* Get the section contents if we haven't done so already. */ 13508 if (contents == NULL) 13509 { 13510 /* Get cached copy if it exists. */ 13511 if (elf_section_data (sec)->this_hdr.contents != NULL) 13512 contents = elf_section_data (sec)->this_hdr.contents; 13513 /* Go get them off disk. */ 13514 else if (!bfd_malloc_and_get_section (abfd, sec, &contents)) 13515 goto error_return; 13516 } 13517 ptr = contents + irel->r_offset; 13518 13519 /* Read this BFD's local symbols if we haven't done so already. */ 13520 if (isymbuf == NULL && symtab_hdr->sh_info != 0) 13521 { 13522 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; 13523 if (isymbuf == NULL) 13524 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr, 13525 symtab_hdr->sh_info, 0, 13526 NULL, NULL, NULL); 13527 if (isymbuf == NULL) 13528 goto error_return; 13529 } 13530 13531 /* Get the value of the symbol referred to by the reloc. */ 13532 if (r_symndx < symtab_hdr->sh_info) 13533 { 13534 /* A local symbol. */ 13535 Elf_Internal_Sym *isym; 13536 asection *sym_sec; 13537 13538 isym = isymbuf + r_symndx; 13539 if (isym->st_shndx == SHN_UNDEF) 13540 sym_sec = bfd_und_section_ptr; 13541 else if (isym->st_shndx == SHN_ABS) 13542 sym_sec = bfd_abs_section_ptr; 13543 else if (isym->st_shndx == SHN_COMMON) 13544 sym_sec = bfd_com_section_ptr; 13545 else 13546 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx); 13547 symval = (isym->st_value 13548 + sym_sec->output_section->vma 13549 + sym_sec->output_offset); 13550 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other); 13551 } 13552 else 13553 { 13554 unsigned long indx; 13555 struct elf_link_hash_entry *h; 13556 13557 /* An external symbol. */ 13558 indx = r_symndx - symtab_hdr->sh_info; 13559 h = elf_sym_hashes (abfd)[indx]; 13560 BFD_ASSERT (h != NULL); 13561 13562 if (h->root.type != bfd_link_hash_defined 13563 && h->root.type != bfd_link_hash_defweak) 13564 /* This appears to be a reference to an undefined 13565 symbol. Just ignore it -- it will be caught by the 13566 regular reloc processing. */ 13567 continue; 13568 13569 symval = (h->root.u.def.value 13570 + h->root.u.def.section->output_section->vma 13571 + h->root.u.def.section->output_offset); 13572 target_is_micromips_code_p = (!h->needs_plt 13573 && ELF_ST_IS_MICROMIPS (h->other)); 13574 } 13575 13576 13577 /* For simplicity of coding, we are going to modify the 13578 section contents, the section relocs, and the BFD symbol 13579 table. We must tell the rest of the code not to free up this 13580 information. It would be possible to instead create a table 13581 of changes which have to be made, as is done in coff-mips.c; 13582 that would be more work, but would require less memory when 13583 the linker is run. */ 13584 13585 /* Only 32-bit instructions relaxed. */ 13586 if (irel->r_offset + 4 > sec->size) 13587 continue; 13588 13589 opcode = bfd_get_micromips_32 (abfd, ptr); 13590 13591 /* This is the pc-relative distance from the instruction the 13592 relocation is applied to, to the symbol referred. */ 13593 pcrval = (symval 13594 - (sec->output_section->vma + sec->output_offset) 13595 - irel->r_offset); 13596 13597 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation 13598 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or 13599 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is 13600 13601 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25)) 13602 13603 where pcrval has first to be adjusted to apply against the LO16 13604 location (we make the adjustment later on, when we have figured 13605 out the offset). */ 13606 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn)) 13607 { 13608 bfd_boolean bzc = FALSE; 13609 unsigned long nextopc; 13610 unsigned long reg; 13611 bfd_vma offset; 13612 13613 /* Give up if the previous reloc was a HI16 against this symbol 13614 too. */ 13615 if (irel > internal_relocs 13616 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16 13617 && ELF32_R_SYM (irel[-1].r_info) == r_symndx) 13618 continue; 13619 13620 /* Or if the next reloc is not a LO16 against this symbol. */ 13621 if (irel + 1 >= irelend 13622 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16 13623 || ELF32_R_SYM (irel[1].r_info) != r_symndx) 13624 continue; 13625 13626 /* Or if the second next reloc is a LO16 against this symbol too. */ 13627 if (irel + 2 >= irelend 13628 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16 13629 && ELF32_R_SYM (irel[2].r_info) == r_symndx) 13630 continue; 13631 13632 /* See if the LUI instruction *might* be in a branch delay slot. 13633 We check whether what looks like a 16-bit branch or jump is 13634 actually an immediate argument to a compact branch, and let 13635 it through if so. */ 13636 if (irel->r_offset >= 2 13637 && check_br16_dslot (abfd, ptr - 2) 13638 && !(irel->r_offset >= 4 13639 && (bzc = check_relocated_bzc (abfd, 13640 ptr - 4, irel->r_offset - 4, 13641 internal_relocs, irelend)))) 13642 continue; 13643 if (irel->r_offset >= 4 13644 && !bzc 13645 && check_br32_dslot (abfd, ptr - 4)) 13646 continue; 13647 13648 reg = OP32_SREG (opcode); 13649 13650 /* We only relax adjacent instructions or ones separated with 13651 a branch or jump that has a delay slot. The branch or jump 13652 must not fiddle with the register used to hold the address. 13653 Subtract 4 for the LUI itself. */ 13654 offset = irel[1].r_offset - irel[0].r_offset; 13655 switch (offset - 4) 13656 { 13657 case 0: 13658 break; 13659 case 2: 13660 if (check_br16 (abfd, ptr + 4, reg)) 13661 break; 13662 continue; 13663 case 4: 13664 if (check_br32 (abfd, ptr + 4, reg)) 13665 break; 13666 continue; 13667 default: 13668 continue; 13669 } 13670 13671 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset); 13672 13673 /* Give up unless the same register is used with both 13674 relocations. */ 13675 if (OP32_SREG (nextopc) != reg) 13676 continue; 13677 13678 /* Now adjust pcrval, subtracting the offset to the LO16 reloc 13679 and rounding up to take masking of the two LSBs into account. */ 13680 pcrval = ((pcrval - offset + 3) | 3) ^ 3; 13681 13682 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */ 13683 if (IS_BITSIZE (symval, 16)) 13684 { 13685 /* Fix the relocation's type. */ 13686 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16); 13687 13688 /* Instructions using R_MICROMIPS_LO16 have the base or 13689 source register in bits 20:16. This register becomes $0 13690 (zero) as the result of the R_MICROMIPS_HI16 being 0. */ 13691 nextopc &= ~0x001f0000; 13692 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff, 13693 contents + irel[1].r_offset); 13694 } 13695 13696 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2. 13697 We add 4 to take LUI deletion into account while checking 13698 the PC-relative distance. */ 13699 else if (symval % 4 == 0 13700 && IS_BITSIZE (pcrval + 4, 25) 13701 && MATCH (nextopc, addiu_insn) 13702 && OP32_TREG (nextopc) == OP32_SREG (nextopc) 13703 && OP16_VALID_REG (OP32_TREG (nextopc))) 13704 { 13705 /* Fix the relocation's type. */ 13706 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2); 13707 13708 /* Replace ADDIU with the ADDIUPC version. */ 13709 nextopc = (addiupc_insn.match 13710 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc))); 13711 13712 bfd_put_micromips_32 (abfd, nextopc, 13713 contents + irel[1].r_offset); 13714 } 13715 13716 /* Can't do anything, give up, sigh... */ 13717 else 13718 continue; 13719 13720 /* Fix the relocation's type. */ 13721 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE); 13722 13723 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */ 13724 delcnt = 4; 13725 deloff = 0; 13726 } 13727 13728 /* Compact branch relaxation -- due to the multitude of macros 13729 employed by the compiler/assembler, compact branches are not 13730 always generated. Obviously, this can/will be fixed elsewhere, 13731 but there is no drawback in double checking it here. */ 13732 else if (r_type == R_MICROMIPS_PC16_S1 13733 && irel->r_offset + 5 < sec->size 13734 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0 13735 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0) 13736 && ((!insn32 13737 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4), 13738 nop_insn_16) ? 2 : 0)) 13739 || (irel->r_offset + 7 < sec->size 13740 && (delcnt = MATCH (bfd_get_micromips_32 (abfd, 13741 ptr + 4), 13742 nop_insn_32) ? 4 : 0)))) 13743 { 13744 unsigned long reg; 13745 13746 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode); 13747 13748 /* Replace BEQZ/BNEZ with the compact version. */ 13749 opcode = (bzc_insns_32[fndopc].match 13750 | BZC32_REG_FIELD (reg) 13751 | (opcode & 0xffff)); /* Addend value. */ 13752 13753 bfd_put_micromips_32 (abfd, opcode, ptr); 13754 13755 /* Delete the delay slot NOP: two or four bytes from 13756 irel->offset + 4; delcnt has already been set above. */ 13757 deloff = 4; 13758 } 13759 13760 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need 13761 to check the distance from the next instruction, so subtract 2. */ 13762 else if (!insn32 13763 && r_type == R_MICROMIPS_PC16_S1 13764 && IS_BITSIZE (pcrval - 2, 11) 13765 && find_match (opcode, b_insns_32) >= 0) 13766 { 13767 /* Fix the relocation's type. */ 13768 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1); 13769 13770 /* Replace the 32-bit opcode with a 16-bit opcode. */ 13771 bfd_put_16 (abfd, 13772 (b_insn_16.match 13773 | (opcode & 0x3ff)), /* Addend value. */ 13774 ptr); 13775 13776 /* Delete 2 bytes from irel->r_offset + 2. */ 13777 delcnt = 2; 13778 deloff = 2; 13779 } 13780 13781 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need 13782 to check the distance from the next instruction, so subtract 2. */ 13783 else if (!insn32 13784 && r_type == R_MICROMIPS_PC16_S1 13785 && IS_BITSIZE (pcrval - 2, 8) 13786 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0 13787 && OP16_VALID_REG (OP32_SREG (opcode))) 13788 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0 13789 && OP16_VALID_REG (OP32_TREG (opcode))))) 13790 { 13791 unsigned long reg; 13792 13793 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode); 13794 13795 /* Fix the relocation's type. */ 13796 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1); 13797 13798 /* Replace the 32-bit opcode with a 16-bit opcode. */ 13799 bfd_put_16 (abfd, 13800 (bz_insns_16[fndopc].match 13801 | BZ16_REG_FIELD (reg) 13802 | (opcode & 0x7f)), /* Addend value. */ 13803 ptr); 13804 13805 /* Delete 2 bytes from irel->r_offset + 2. */ 13806 delcnt = 2; 13807 deloff = 2; 13808 } 13809 13810 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */ 13811 else if (!insn32 13812 && r_type == R_MICROMIPS_26_S1 13813 && target_is_micromips_code_p 13814 && irel->r_offset + 7 < sec->size 13815 && MATCH (opcode, jal_insn_32_bd32)) 13816 { 13817 unsigned long n32opc; 13818 bfd_boolean relaxed = FALSE; 13819 13820 n32opc = bfd_get_micromips_32 (abfd, ptr + 4); 13821 13822 if (MATCH (n32opc, nop_insn_32)) 13823 { 13824 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */ 13825 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4); 13826 13827 relaxed = TRUE; 13828 } 13829 else if (find_match (n32opc, move_insns_32) >= 0) 13830 { 13831 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */ 13832 bfd_put_16 (abfd, 13833 (move_insn_16.match 13834 | MOVE16_RD_FIELD (MOVE32_RD (n32opc)) 13835 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))), 13836 ptr + 4); 13837 13838 relaxed = TRUE; 13839 } 13840 /* Other 32-bit instructions relaxable to 16-bit 13841 instructions will be handled here later. */ 13842 13843 if (relaxed) 13844 { 13845 /* JAL with 32-bit delay slot that is changed to a JALS 13846 with 16-bit delay slot. */ 13847 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr); 13848 13849 /* Delete 2 bytes from irel->r_offset + 6. */ 13850 delcnt = 2; 13851 deloff = 6; 13852 } 13853 } 13854 13855 if (delcnt != 0) 13856 { 13857 /* Note that we've changed the relocs, section contents, etc. */ 13858 elf_section_data (sec)->relocs = internal_relocs; 13859 elf_section_data (sec)->this_hdr.contents = contents; 13860 symtab_hdr->contents = (unsigned char *) isymbuf; 13861 13862 /* Delete bytes depending on the delcnt and deloff. */ 13863 if (!mips_elf_relax_delete_bytes (abfd, sec, 13864 irel->r_offset + deloff, delcnt)) 13865 goto error_return; 13866 13867 /* That will change things, so we should relax again. 13868 Note that this is not required, and it may be slow. */ 13869 *again = TRUE; 13870 } 13871 } 13872 13873 if (isymbuf != NULL 13874 && symtab_hdr->contents != (unsigned char *) isymbuf) 13875 { 13876 if (! link_info->keep_memory) 13877 free (isymbuf); 13878 else 13879 { 13880 /* Cache the symbols for elf_link_input_bfd. */ 13881 symtab_hdr->contents = (unsigned char *) isymbuf; 13882 } 13883 } 13884 13885 if (contents != NULL 13886 && elf_section_data (sec)->this_hdr.contents != contents) 13887 { 13888 if (! link_info->keep_memory) 13889 free (contents); 13890 else 13891 { 13892 /* Cache the section contents for elf_link_input_bfd. */ 13893 elf_section_data (sec)->this_hdr.contents = contents; 13894 } 13895 } 13896 13897 if (internal_relocs != NULL 13898 && elf_section_data (sec)->relocs != internal_relocs) 13899 free (internal_relocs); 13900 13901 return TRUE; 13902 13903 error_return: 13904 if (isymbuf != NULL 13905 && symtab_hdr->contents != (unsigned char *) isymbuf) 13906 free (isymbuf); 13907 if (contents != NULL 13908 && elf_section_data (sec)->this_hdr.contents != contents) 13909 free (contents); 13910 if (internal_relocs != NULL 13911 && elf_section_data (sec)->relocs != internal_relocs) 13912 free (internal_relocs); 13913 13914 return FALSE; 13915 } 13916 13917 /* Create a MIPS ELF linker hash table. */ 13918 13919 struct bfd_link_hash_table * 13920 _bfd_mips_elf_link_hash_table_create (bfd *abfd) 13921 { 13922 struct mips_elf_link_hash_table *ret; 13923 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table); 13924 13925 ret = bfd_zmalloc (amt); 13926 if (ret == NULL) 13927 return NULL; 13928 13929 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd, 13930 mips_elf_link_hash_newfunc, 13931 sizeof (struct mips_elf_link_hash_entry), 13932 MIPS_ELF_DATA)) 13933 { 13934 free (ret); 13935 return NULL; 13936 } 13937 ret->root.init_plt_refcount.plist = NULL; 13938 ret->root.init_plt_offset.plist = NULL; 13939 13940 return &ret->root.root; 13941 } 13942 13943 /* Likewise, but indicate that the target is VxWorks. */ 13944 13945 struct bfd_link_hash_table * 13946 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd) 13947 { 13948 struct bfd_link_hash_table *ret; 13949 13950 ret = _bfd_mips_elf_link_hash_table_create (abfd); 13951 if (ret) 13952 { 13953 struct mips_elf_link_hash_table *htab; 13954 13955 htab = (struct mips_elf_link_hash_table *) ret; 13956 htab->use_plts_and_copy_relocs = TRUE; 13957 htab->is_vxworks = TRUE; 13958 } 13959 return ret; 13960 } 13961 13962 /* A function that the linker calls if we are allowed to use PLTs 13963 and copy relocs. */ 13964 13965 void 13966 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info) 13967 { 13968 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE; 13969 } 13970 13971 /* A function that the linker calls to select between all or only 13972 32-bit microMIPS instructions. */ 13973 13974 void 13975 _bfd_mips_elf_insn32 (struct bfd_link_info *info, bfd_boolean on) 13976 { 13977 mips_elf_hash_table (info)->insn32 = on; 13978 } 13979 13980 /* Structure for saying that BFD machine EXTENSION extends BASE. */ 13981 13982 struct mips_mach_extension 13983 { 13984 unsigned long extension, base; 13985 }; 13986 13987 13988 /* An array describing how BFD machines relate to one another. The entries 13989 are ordered topologically with MIPS I extensions listed last. */ 13990 13991 static const struct mips_mach_extension mips_mach_extensions[] = 13992 { 13993 /* MIPS64r2 extensions. */ 13994 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 }, 13995 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp }, 13996 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon }, 13997 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 }, 13998 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64r2 }, 13999 14000 /* MIPS64 extensions. */ 14001 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 }, 14002 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 }, 14003 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 }, 14004 14005 /* MIPS V extensions. */ 14006 { bfd_mach_mipsisa64, bfd_mach_mips5 }, 14007 14008 /* R10000 extensions. */ 14009 { bfd_mach_mips12000, bfd_mach_mips10000 }, 14010 { bfd_mach_mips14000, bfd_mach_mips10000 }, 14011 { bfd_mach_mips16000, bfd_mach_mips10000 }, 14012 14013 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core 14014 vr5400 ISA, but doesn't include the multimedia stuff. It seems 14015 better to allow vr5400 and vr5500 code to be merged anyway, since 14016 many libraries will just use the core ISA. Perhaps we could add 14017 some sort of ASE flag if this ever proves a problem. */ 14018 { bfd_mach_mips5500, bfd_mach_mips5400 }, 14019 { bfd_mach_mips5400, bfd_mach_mips5000 }, 14020 14021 /* MIPS IV extensions. */ 14022 { bfd_mach_mips5, bfd_mach_mips8000 }, 14023 { bfd_mach_mips10000, bfd_mach_mips8000 }, 14024 { bfd_mach_mips5000, bfd_mach_mips8000 }, 14025 { bfd_mach_mips7000, bfd_mach_mips8000 }, 14026 { bfd_mach_mips9000, bfd_mach_mips8000 }, 14027 14028 /* VR4100 extensions. */ 14029 { bfd_mach_mips4120, bfd_mach_mips4100 }, 14030 { bfd_mach_mips4111, bfd_mach_mips4100 }, 14031 14032 /* MIPS III extensions. */ 14033 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 }, 14034 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 }, 14035 { bfd_mach_mips8000, bfd_mach_mips4000 }, 14036 { bfd_mach_mips4650, bfd_mach_mips4000 }, 14037 { bfd_mach_mips4600, bfd_mach_mips4000 }, 14038 { bfd_mach_mips4400, bfd_mach_mips4000 }, 14039 { bfd_mach_mips4300, bfd_mach_mips4000 }, 14040 { bfd_mach_mips4100, bfd_mach_mips4000 }, 14041 { bfd_mach_mips4010, bfd_mach_mips4000 }, 14042 { bfd_mach_mips5900, bfd_mach_mips4000 }, 14043 14044 /* MIPS32 extensions. */ 14045 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 }, 14046 14047 /* MIPS II extensions. */ 14048 { bfd_mach_mips4000, bfd_mach_mips6000 }, 14049 { bfd_mach_mipsisa32, bfd_mach_mips6000 }, 14050 14051 /* MIPS I extensions. */ 14052 { bfd_mach_mips6000, bfd_mach_mips3000 }, 14053 { bfd_mach_mips3900, bfd_mach_mips3000 } 14054 }; 14055 14056 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */ 14057 14058 static bfd_boolean 14059 mips_mach_extends_p (unsigned long base, unsigned long extension) 14060 { 14061 size_t i; 14062 14063 if (extension == base) 14064 return TRUE; 14065 14066 if (base == bfd_mach_mipsisa32 14067 && mips_mach_extends_p (bfd_mach_mipsisa64, extension)) 14068 return TRUE; 14069 14070 if (base == bfd_mach_mipsisa32r2 14071 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension)) 14072 return TRUE; 14073 14074 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++) 14075 if (extension == mips_mach_extensions[i].extension) 14076 { 14077 extension = mips_mach_extensions[i].base; 14078 if (extension == base) 14079 return TRUE; 14080 } 14081 14082 return FALSE; 14083 } 14084 14085 /* Return the BFD mach for each .MIPS.abiflags ISA Extension. */ 14086 14087 static unsigned long 14088 bfd_mips_isa_ext_mach (unsigned int isa_ext) 14089 { 14090 switch (isa_ext) 14091 { 14092 case AFL_EXT_3900: return bfd_mach_mips3900; 14093 case AFL_EXT_4010: return bfd_mach_mips4010; 14094 case AFL_EXT_4100: return bfd_mach_mips4100; 14095 case AFL_EXT_4111: return bfd_mach_mips4111; 14096 case AFL_EXT_4120: return bfd_mach_mips4120; 14097 case AFL_EXT_4650: return bfd_mach_mips4650; 14098 case AFL_EXT_5400: return bfd_mach_mips5400; 14099 case AFL_EXT_5500: return bfd_mach_mips5500; 14100 case AFL_EXT_5900: return bfd_mach_mips5900; 14101 case AFL_EXT_10000: return bfd_mach_mips10000; 14102 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e; 14103 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f; 14104 case AFL_EXT_LOONGSON_3A: return bfd_mach_mips_loongson_3a; 14105 case AFL_EXT_SB1: return bfd_mach_mips_sb1; 14106 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon; 14107 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp; 14108 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2; 14109 case AFL_EXT_XLR: return bfd_mach_mips_xlr; 14110 default: return bfd_mach_mips3000; 14111 } 14112 } 14113 14114 /* Return the .MIPS.abiflags value representing each ISA Extension. */ 14115 14116 unsigned int 14117 bfd_mips_isa_ext (bfd *abfd) 14118 { 14119 switch (bfd_get_mach (abfd)) 14120 { 14121 case bfd_mach_mips3900: return AFL_EXT_3900; 14122 case bfd_mach_mips4010: return AFL_EXT_4010; 14123 case bfd_mach_mips4100: return AFL_EXT_4100; 14124 case bfd_mach_mips4111: return AFL_EXT_4111; 14125 case bfd_mach_mips4120: return AFL_EXT_4120; 14126 case bfd_mach_mips4650: return AFL_EXT_4650; 14127 case bfd_mach_mips5400: return AFL_EXT_5400; 14128 case bfd_mach_mips5500: return AFL_EXT_5500; 14129 case bfd_mach_mips5900: return AFL_EXT_5900; 14130 case bfd_mach_mips10000: return AFL_EXT_10000; 14131 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E; 14132 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F; 14133 case bfd_mach_mips_loongson_3a: return AFL_EXT_LOONGSON_3A; 14134 case bfd_mach_mips_sb1: return AFL_EXT_SB1; 14135 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON; 14136 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP; 14137 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3; 14138 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2; 14139 case bfd_mach_mips_xlr: return AFL_EXT_XLR; 14140 default: return 0; 14141 } 14142 } 14143 14144 /* Encode ISA level and revision as a single value. */ 14145 #define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV)) 14146 14147 /* Decode a single value into level and revision. */ 14148 #define ISA_LEVEL(LEVREV) ((LEVREV) >> 3) 14149 #define ISA_REV(LEVREV) ((LEVREV) & 0x7) 14150 14151 /* Update the isa_level, isa_rev, isa_ext fields of abiflags. */ 14152 14153 static void 14154 update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags) 14155 { 14156 int new_isa = 0; 14157 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) 14158 { 14159 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break; 14160 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break; 14161 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break; 14162 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break; 14163 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break; 14164 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break; 14165 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break; 14166 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break; 14167 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break; 14168 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break; 14169 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break; 14170 default: 14171 (*_bfd_error_handler) 14172 (_("%B: Unknown architecture %s"), 14173 abfd, bfd_printable_name (abfd)); 14174 } 14175 14176 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev)) 14177 { 14178 abiflags->isa_level = ISA_LEVEL (new_isa); 14179 abiflags->isa_rev = ISA_REV (new_isa); 14180 } 14181 14182 /* Update the isa_ext if ABFD describes a further extension. */ 14183 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext), 14184 bfd_get_mach (abfd))) 14185 abiflags->isa_ext = bfd_mips_isa_ext (abfd); 14186 } 14187 14188 /* Return true if the given ELF header flags describe a 32-bit binary. */ 14189 14190 static bfd_boolean 14191 mips_32bit_flags_p (flagword flags) 14192 { 14193 return ((flags & EF_MIPS_32BITMODE) != 0 14194 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32 14195 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32 14196 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1 14197 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2 14198 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32 14199 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2 14200 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6); 14201 } 14202 14203 /* Infer the content of the ABI flags based on the elf header. */ 14204 14205 static void 14206 infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags) 14207 { 14208 obj_attribute *in_attr; 14209 14210 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0)); 14211 update_mips_abiflags_isa (abfd, abiflags); 14212 14213 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags)) 14214 abiflags->gpr_size = AFL_REG_32; 14215 else 14216 abiflags->gpr_size = AFL_REG_64; 14217 14218 abiflags->cpr1_size = AFL_REG_NONE; 14219 14220 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU]; 14221 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i; 14222 14223 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE 14224 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX 14225 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE 14226 && abiflags->gpr_size == AFL_REG_32)) 14227 abiflags->cpr1_size = AFL_REG_32; 14228 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE 14229 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64 14230 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A) 14231 abiflags->cpr1_size = AFL_REG_64; 14232 14233 abiflags->cpr2_size = AFL_REG_NONE; 14234 14235 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX) 14236 abiflags->ases |= AFL_ASE_MDMX; 14237 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16) 14238 abiflags->ases |= AFL_ASE_MIPS16; 14239 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) 14240 abiflags->ases |= AFL_ASE_MICROMIPS; 14241 14242 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY 14243 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT 14244 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A 14245 && abiflags->isa_level >= 32 14246 && abiflags->isa_ext != AFL_EXT_LOONGSON_3A) 14247 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG; 14248 } 14249 14250 /* We need to use a special link routine to handle the .reginfo and 14251 the .mdebug sections. We need to merge all instances of these 14252 sections together, not write them all out sequentially. */ 14253 14254 bfd_boolean 14255 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info) 14256 { 14257 asection *o; 14258 struct bfd_link_order *p; 14259 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec; 14260 asection *rtproc_sec, *abiflags_sec; 14261 Elf32_RegInfo reginfo; 14262 struct ecoff_debug_info debug; 14263 struct mips_htab_traverse_info hti; 14264 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 14265 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap; 14266 HDRR *symhdr = &debug.symbolic_header; 14267 void *mdebug_handle = NULL; 14268 asection *s; 14269 EXTR esym; 14270 unsigned int i; 14271 bfd_size_type amt; 14272 struct mips_elf_link_hash_table *htab; 14273 14274 static const char * const secname[] = 14275 { 14276 ".text", ".init", ".fini", ".data", 14277 ".rodata", ".sdata", ".sbss", ".bss" 14278 }; 14279 static const int sc[] = 14280 { 14281 scText, scInit, scFini, scData, 14282 scRData, scSData, scSBss, scBss 14283 }; 14284 14285 /* Sort the dynamic symbols so that those with GOT entries come after 14286 those without. */ 14287 htab = mips_elf_hash_table (info); 14288 BFD_ASSERT (htab != NULL); 14289 14290 if (!mips_elf_sort_hash_table (abfd, info)) 14291 return FALSE; 14292 14293 /* Create any scheduled LA25 stubs. */ 14294 hti.info = info; 14295 hti.output_bfd = abfd; 14296 hti.error = FALSE; 14297 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti); 14298 if (hti.error) 14299 return FALSE; 14300 14301 /* Get a value for the GP register. */ 14302 if (elf_gp (abfd) == 0) 14303 { 14304 struct bfd_link_hash_entry *h; 14305 14306 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE); 14307 if (h != NULL && h->type == bfd_link_hash_defined) 14308 elf_gp (abfd) = (h->u.def.value 14309 + h->u.def.section->output_section->vma 14310 + h->u.def.section->output_offset); 14311 else if (htab->is_vxworks 14312 && (h = bfd_link_hash_lookup (info->hash, 14313 "_GLOBAL_OFFSET_TABLE_", 14314 FALSE, FALSE, TRUE)) 14315 && h->type == bfd_link_hash_defined) 14316 elf_gp (abfd) = (h->u.def.section->output_section->vma 14317 + h->u.def.section->output_offset 14318 + h->u.def.value); 14319 else if (bfd_link_relocatable (info)) 14320 { 14321 bfd_vma lo = MINUS_ONE; 14322 14323 /* Find the GP-relative section with the lowest offset. */ 14324 for (o = abfd->sections; o != NULL; o = o->next) 14325 if (o->vma < lo 14326 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL)) 14327 lo = o->vma; 14328 14329 /* And calculate GP relative to that. */ 14330 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info); 14331 } 14332 else 14333 { 14334 /* If the relocate_section function needs to do a reloc 14335 involving the GP value, it should make a reloc_dangerous 14336 callback to warn that GP is not defined. */ 14337 } 14338 } 14339 14340 /* Go through the sections and collect the .reginfo and .mdebug 14341 information. */ 14342 abiflags_sec = NULL; 14343 reginfo_sec = NULL; 14344 mdebug_sec = NULL; 14345 gptab_data_sec = NULL; 14346 gptab_bss_sec = NULL; 14347 for (o = abfd->sections; o != NULL; o = o->next) 14348 { 14349 if (strcmp (o->name, ".MIPS.abiflags") == 0) 14350 { 14351 /* We have found the .MIPS.abiflags section in the output file. 14352 Look through all the link_orders comprising it and remove them. 14353 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */ 14354 for (p = o->map_head.link_order; p != NULL; p = p->next) 14355 { 14356 asection *input_section; 14357 14358 if (p->type != bfd_indirect_link_order) 14359 { 14360 if (p->type == bfd_data_link_order) 14361 continue; 14362 abort (); 14363 } 14364 14365 input_section = p->u.indirect.section; 14366 14367 /* Hack: reset the SEC_HAS_CONTENTS flag so that 14368 elf_link_input_bfd ignores this section. */ 14369 input_section->flags &= ~SEC_HAS_CONTENTS; 14370 } 14371 14372 /* Size has been set in _bfd_mips_elf_always_size_sections. */ 14373 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0)); 14374 14375 /* Skip this section later on (I don't think this currently 14376 matters, but someday it might). */ 14377 o->map_head.link_order = NULL; 14378 14379 abiflags_sec = o; 14380 } 14381 14382 if (strcmp (o->name, ".reginfo") == 0) 14383 { 14384 memset (®info, 0, sizeof reginfo); 14385 14386 /* We have found the .reginfo section in the output file. 14387 Look through all the link_orders comprising it and merge 14388 the information together. */ 14389 for (p = o->map_head.link_order; p != NULL; p = p->next) 14390 { 14391 asection *input_section; 14392 bfd *input_bfd; 14393 Elf32_External_RegInfo ext; 14394 Elf32_RegInfo sub; 14395 14396 if (p->type != bfd_indirect_link_order) 14397 { 14398 if (p->type == bfd_data_link_order) 14399 continue; 14400 abort (); 14401 } 14402 14403 input_section = p->u.indirect.section; 14404 input_bfd = input_section->owner; 14405 14406 if (! bfd_get_section_contents (input_bfd, input_section, 14407 &ext, 0, sizeof ext)) 14408 return FALSE; 14409 14410 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub); 14411 14412 reginfo.ri_gprmask |= sub.ri_gprmask; 14413 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0]; 14414 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1]; 14415 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2]; 14416 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3]; 14417 14418 /* ri_gp_value is set by the function 14419 mips_elf32_section_processing when the section is 14420 finally written out. */ 14421 14422 /* Hack: reset the SEC_HAS_CONTENTS flag so that 14423 elf_link_input_bfd ignores this section. */ 14424 input_section->flags &= ~SEC_HAS_CONTENTS; 14425 } 14426 14427 /* Size has been set in _bfd_mips_elf_always_size_sections. */ 14428 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo)); 14429 14430 /* Skip this section later on (I don't think this currently 14431 matters, but someday it might). */ 14432 o->map_head.link_order = NULL; 14433 14434 reginfo_sec = o; 14435 } 14436 14437 if (strcmp (o->name, ".mdebug") == 0) 14438 { 14439 struct extsym_info einfo; 14440 bfd_vma last; 14441 14442 /* We have found the .mdebug section in the output file. 14443 Look through all the link_orders comprising it and merge 14444 the information together. */ 14445 symhdr->magic = swap->sym_magic; 14446 /* FIXME: What should the version stamp be? */ 14447 symhdr->vstamp = 0; 14448 symhdr->ilineMax = 0; 14449 symhdr->cbLine = 0; 14450 symhdr->idnMax = 0; 14451 symhdr->ipdMax = 0; 14452 symhdr->isymMax = 0; 14453 symhdr->ioptMax = 0; 14454 symhdr->iauxMax = 0; 14455 symhdr->issMax = 0; 14456 symhdr->issExtMax = 0; 14457 symhdr->ifdMax = 0; 14458 symhdr->crfd = 0; 14459 symhdr->iextMax = 0; 14460 14461 /* We accumulate the debugging information itself in the 14462 debug_info structure. */ 14463 debug.line = NULL; 14464 debug.external_dnr = NULL; 14465 debug.external_pdr = NULL; 14466 debug.external_sym = NULL; 14467 debug.external_opt = NULL; 14468 debug.external_aux = NULL; 14469 debug.ss = NULL; 14470 debug.ssext = debug.ssext_end = NULL; 14471 debug.external_fdr = NULL; 14472 debug.external_rfd = NULL; 14473 debug.external_ext = debug.external_ext_end = NULL; 14474 14475 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info); 14476 if (mdebug_handle == NULL) 14477 return FALSE; 14478 14479 esym.jmptbl = 0; 14480 esym.cobol_main = 0; 14481 esym.weakext = 0; 14482 esym.reserved = 0; 14483 esym.ifd = ifdNil; 14484 esym.asym.iss = issNil; 14485 esym.asym.st = stLocal; 14486 esym.asym.reserved = 0; 14487 esym.asym.index = indexNil; 14488 last = 0; 14489 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++) 14490 { 14491 esym.asym.sc = sc[i]; 14492 s = bfd_get_section_by_name (abfd, secname[i]); 14493 if (s != NULL) 14494 { 14495 esym.asym.value = s->vma; 14496 last = s->vma + s->size; 14497 } 14498 else 14499 esym.asym.value = last; 14500 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap, 14501 secname[i], &esym)) 14502 return FALSE; 14503 } 14504 14505 for (p = o->map_head.link_order; p != NULL; p = p->next) 14506 { 14507 asection *input_section; 14508 bfd *input_bfd; 14509 const struct ecoff_debug_swap *input_swap; 14510 struct ecoff_debug_info input_debug; 14511 char *eraw_src; 14512 char *eraw_end; 14513 14514 if (p->type != bfd_indirect_link_order) 14515 { 14516 if (p->type == bfd_data_link_order) 14517 continue; 14518 abort (); 14519 } 14520 14521 input_section = p->u.indirect.section; 14522 input_bfd = input_section->owner; 14523 14524 if (!is_mips_elf (input_bfd)) 14525 { 14526 /* I don't know what a non MIPS ELF bfd would be 14527 doing with a .mdebug section, but I don't really 14528 want to deal with it. */ 14529 continue; 14530 } 14531 14532 input_swap = (get_elf_backend_data (input_bfd) 14533 ->elf_backend_ecoff_debug_swap); 14534 14535 BFD_ASSERT (p->size == input_section->size); 14536 14537 /* The ECOFF linking code expects that we have already 14538 read in the debugging information and set up an 14539 ecoff_debug_info structure, so we do that now. */ 14540 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section, 14541 &input_debug)) 14542 return FALSE; 14543 14544 if (! (bfd_ecoff_debug_accumulate 14545 (mdebug_handle, abfd, &debug, swap, input_bfd, 14546 &input_debug, input_swap, info))) 14547 return FALSE; 14548 14549 /* Loop through the external symbols. For each one with 14550 interesting information, try to find the symbol in 14551 the linker global hash table and save the information 14552 for the output external symbols. */ 14553 eraw_src = input_debug.external_ext; 14554 eraw_end = (eraw_src 14555 + (input_debug.symbolic_header.iextMax 14556 * input_swap->external_ext_size)); 14557 for (; 14558 eraw_src < eraw_end; 14559 eraw_src += input_swap->external_ext_size) 14560 { 14561 EXTR ext; 14562 const char *name; 14563 struct mips_elf_link_hash_entry *h; 14564 14565 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext); 14566 if (ext.asym.sc == scNil 14567 || ext.asym.sc == scUndefined 14568 || ext.asym.sc == scSUndefined) 14569 continue; 14570 14571 name = input_debug.ssext + ext.asym.iss; 14572 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info), 14573 name, FALSE, FALSE, TRUE); 14574 if (h == NULL || h->esym.ifd != -2) 14575 continue; 14576 14577 if (ext.ifd != -1) 14578 { 14579 BFD_ASSERT (ext.ifd 14580 < input_debug.symbolic_header.ifdMax); 14581 ext.ifd = input_debug.ifdmap[ext.ifd]; 14582 } 14583 14584 h->esym = ext; 14585 } 14586 14587 /* Free up the information we just read. */ 14588 free (input_debug.line); 14589 free (input_debug.external_dnr); 14590 free (input_debug.external_pdr); 14591 free (input_debug.external_sym); 14592 free (input_debug.external_opt); 14593 free (input_debug.external_aux); 14594 free (input_debug.ss); 14595 free (input_debug.ssext); 14596 free (input_debug.external_fdr); 14597 free (input_debug.external_rfd); 14598 free (input_debug.external_ext); 14599 14600 /* Hack: reset the SEC_HAS_CONTENTS flag so that 14601 elf_link_input_bfd ignores this section. */ 14602 input_section->flags &= ~SEC_HAS_CONTENTS; 14603 } 14604 14605 if (SGI_COMPAT (abfd) && bfd_link_pic (info)) 14606 { 14607 /* Create .rtproc section. */ 14608 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc"); 14609 if (rtproc_sec == NULL) 14610 { 14611 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY 14612 | SEC_LINKER_CREATED | SEC_READONLY); 14613 14614 rtproc_sec = bfd_make_section_anyway_with_flags (abfd, 14615 ".rtproc", 14616 flags); 14617 if (rtproc_sec == NULL 14618 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4)) 14619 return FALSE; 14620 } 14621 14622 if (! mips_elf_create_procedure_table (mdebug_handle, abfd, 14623 info, rtproc_sec, 14624 &debug)) 14625 return FALSE; 14626 } 14627 14628 /* Build the external symbol information. */ 14629 einfo.abfd = abfd; 14630 einfo.info = info; 14631 einfo.debug = &debug; 14632 einfo.swap = swap; 14633 einfo.failed = FALSE; 14634 mips_elf_link_hash_traverse (mips_elf_hash_table (info), 14635 mips_elf_output_extsym, &einfo); 14636 if (einfo.failed) 14637 return FALSE; 14638 14639 /* Set the size of the .mdebug section. */ 14640 o->size = bfd_ecoff_debug_size (abfd, &debug, swap); 14641 14642 /* Skip this section later on (I don't think this currently 14643 matters, but someday it might). */ 14644 o->map_head.link_order = NULL; 14645 14646 mdebug_sec = o; 14647 } 14648 14649 if (CONST_STRNEQ (o->name, ".gptab.")) 14650 { 14651 const char *subname; 14652 unsigned int c; 14653 Elf32_gptab *tab; 14654 Elf32_External_gptab *ext_tab; 14655 unsigned int j; 14656 14657 /* The .gptab.sdata and .gptab.sbss sections hold 14658 information describing how the small data area would 14659 change depending upon the -G switch. These sections 14660 not used in executables files. */ 14661 if (! bfd_link_relocatable (info)) 14662 { 14663 for (p = o->map_head.link_order; p != NULL; p = p->next) 14664 { 14665 asection *input_section; 14666 14667 if (p->type != bfd_indirect_link_order) 14668 { 14669 if (p->type == bfd_data_link_order) 14670 continue; 14671 abort (); 14672 } 14673 14674 input_section = p->u.indirect.section; 14675 14676 /* Hack: reset the SEC_HAS_CONTENTS flag so that 14677 elf_link_input_bfd ignores this section. */ 14678 input_section->flags &= ~SEC_HAS_CONTENTS; 14679 } 14680 14681 /* Skip this section later on (I don't think this 14682 currently matters, but someday it might). */ 14683 o->map_head.link_order = NULL; 14684 14685 /* Really remove the section. */ 14686 bfd_section_list_remove (abfd, o); 14687 --abfd->section_count; 14688 14689 continue; 14690 } 14691 14692 /* There is one gptab for initialized data, and one for 14693 uninitialized data. */ 14694 if (strcmp (o->name, ".gptab.sdata") == 0) 14695 gptab_data_sec = o; 14696 else if (strcmp (o->name, ".gptab.sbss") == 0) 14697 gptab_bss_sec = o; 14698 else 14699 { 14700 (*_bfd_error_handler) 14701 (_("%s: illegal section name `%s'"), 14702 bfd_get_filename (abfd), o->name); 14703 bfd_set_error (bfd_error_nonrepresentable_section); 14704 return FALSE; 14705 } 14706 14707 /* The linker script always combines .gptab.data and 14708 .gptab.sdata into .gptab.sdata, and likewise for 14709 .gptab.bss and .gptab.sbss. It is possible that there is 14710 no .sdata or .sbss section in the output file, in which 14711 case we must change the name of the output section. */ 14712 subname = o->name + sizeof ".gptab" - 1; 14713 if (bfd_get_section_by_name (abfd, subname) == NULL) 14714 { 14715 if (o == gptab_data_sec) 14716 o->name = ".gptab.data"; 14717 else 14718 o->name = ".gptab.bss"; 14719 subname = o->name + sizeof ".gptab" - 1; 14720 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL); 14721 } 14722 14723 /* Set up the first entry. */ 14724 c = 1; 14725 amt = c * sizeof (Elf32_gptab); 14726 tab = bfd_malloc (amt); 14727 if (tab == NULL) 14728 return FALSE; 14729 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd); 14730 tab[0].gt_header.gt_unused = 0; 14731 14732 /* Combine the input sections. */ 14733 for (p = o->map_head.link_order; p != NULL; p = p->next) 14734 { 14735 asection *input_section; 14736 bfd *input_bfd; 14737 bfd_size_type size; 14738 unsigned long last; 14739 bfd_size_type gpentry; 14740 14741 if (p->type != bfd_indirect_link_order) 14742 { 14743 if (p->type == bfd_data_link_order) 14744 continue; 14745 abort (); 14746 } 14747 14748 input_section = p->u.indirect.section; 14749 input_bfd = input_section->owner; 14750 14751 /* Combine the gptab entries for this input section one 14752 by one. We know that the input gptab entries are 14753 sorted by ascending -G value. */ 14754 size = input_section->size; 14755 last = 0; 14756 for (gpentry = sizeof (Elf32_External_gptab); 14757 gpentry < size; 14758 gpentry += sizeof (Elf32_External_gptab)) 14759 { 14760 Elf32_External_gptab ext_gptab; 14761 Elf32_gptab int_gptab; 14762 unsigned long val; 14763 unsigned long add; 14764 bfd_boolean exact; 14765 unsigned int look; 14766 14767 if (! (bfd_get_section_contents 14768 (input_bfd, input_section, &ext_gptab, gpentry, 14769 sizeof (Elf32_External_gptab)))) 14770 { 14771 free (tab); 14772 return FALSE; 14773 } 14774 14775 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab, 14776 &int_gptab); 14777 val = int_gptab.gt_entry.gt_g_value; 14778 add = int_gptab.gt_entry.gt_bytes - last; 14779 14780 exact = FALSE; 14781 for (look = 1; look < c; look++) 14782 { 14783 if (tab[look].gt_entry.gt_g_value >= val) 14784 tab[look].gt_entry.gt_bytes += add; 14785 14786 if (tab[look].gt_entry.gt_g_value == val) 14787 exact = TRUE; 14788 } 14789 14790 if (! exact) 14791 { 14792 Elf32_gptab *new_tab; 14793 unsigned int max; 14794 14795 /* We need a new table entry. */ 14796 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab); 14797 new_tab = bfd_realloc (tab, amt); 14798 if (new_tab == NULL) 14799 { 14800 free (tab); 14801 return FALSE; 14802 } 14803 tab = new_tab; 14804 tab[c].gt_entry.gt_g_value = val; 14805 tab[c].gt_entry.gt_bytes = add; 14806 14807 /* Merge in the size for the next smallest -G 14808 value, since that will be implied by this new 14809 value. */ 14810 max = 0; 14811 for (look = 1; look < c; look++) 14812 { 14813 if (tab[look].gt_entry.gt_g_value < val 14814 && (max == 0 14815 || (tab[look].gt_entry.gt_g_value 14816 > tab[max].gt_entry.gt_g_value))) 14817 max = look; 14818 } 14819 if (max != 0) 14820 tab[c].gt_entry.gt_bytes += 14821 tab[max].gt_entry.gt_bytes; 14822 14823 ++c; 14824 } 14825 14826 last = int_gptab.gt_entry.gt_bytes; 14827 } 14828 14829 /* Hack: reset the SEC_HAS_CONTENTS flag so that 14830 elf_link_input_bfd ignores this section. */ 14831 input_section->flags &= ~SEC_HAS_CONTENTS; 14832 } 14833 14834 /* The table must be sorted by -G value. */ 14835 if (c > 2) 14836 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare); 14837 14838 /* Swap out the table. */ 14839 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab); 14840 ext_tab = bfd_alloc (abfd, amt); 14841 if (ext_tab == NULL) 14842 { 14843 free (tab); 14844 return FALSE; 14845 } 14846 14847 for (j = 0; j < c; j++) 14848 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j); 14849 free (tab); 14850 14851 o->size = c * sizeof (Elf32_External_gptab); 14852 o->contents = (bfd_byte *) ext_tab; 14853 14854 /* Skip this section later on (I don't think this currently 14855 matters, but someday it might). */ 14856 o->map_head.link_order = NULL; 14857 } 14858 } 14859 14860 /* Invoke the regular ELF backend linker to do all the work. */ 14861 if (!bfd_elf_final_link (abfd, info)) 14862 return FALSE; 14863 14864 /* Now write out the computed sections. */ 14865 14866 if (abiflags_sec != NULL) 14867 { 14868 Elf_External_ABIFlags_v0 ext; 14869 Elf_Internal_ABIFlags_v0 *abiflags; 14870 14871 abiflags = &mips_elf_tdata (abfd)->abiflags; 14872 14873 /* Set up the abiflags if no valid input sections were found. */ 14874 if (!mips_elf_tdata (abfd)->abiflags_valid) 14875 { 14876 infer_mips_abiflags (abfd, abiflags); 14877 mips_elf_tdata (abfd)->abiflags_valid = TRUE; 14878 } 14879 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext); 14880 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext)) 14881 return FALSE; 14882 } 14883 14884 if (reginfo_sec != NULL) 14885 { 14886 Elf32_External_RegInfo ext; 14887 14888 bfd_mips_elf32_swap_reginfo_out (abfd, ®info, &ext); 14889 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext)) 14890 return FALSE; 14891 } 14892 14893 if (mdebug_sec != NULL) 14894 { 14895 BFD_ASSERT (abfd->output_has_begun); 14896 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug, 14897 swap, info, 14898 mdebug_sec->filepos)) 14899 return FALSE; 14900 14901 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info); 14902 } 14903 14904 if (gptab_data_sec != NULL) 14905 { 14906 if (! bfd_set_section_contents (abfd, gptab_data_sec, 14907 gptab_data_sec->contents, 14908 0, gptab_data_sec->size)) 14909 return FALSE; 14910 } 14911 14912 if (gptab_bss_sec != NULL) 14913 { 14914 if (! bfd_set_section_contents (abfd, gptab_bss_sec, 14915 gptab_bss_sec->contents, 14916 0, gptab_bss_sec->size)) 14917 return FALSE; 14918 } 14919 14920 if (SGI_COMPAT (abfd)) 14921 { 14922 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc"); 14923 if (rtproc_sec != NULL) 14924 { 14925 if (! bfd_set_section_contents (abfd, rtproc_sec, 14926 rtproc_sec->contents, 14927 0, rtproc_sec->size)) 14928 return FALSE; 14929 } 14930 } 14931 14932 return TRUE; 14933 } 14934 14935 /* Merge object file header flags from IBFD into OBFD. Raise an error 14936 if there are conflicting settings. */ 14937 14938 static bfd_boolean 14939 mips_elf_merge_obj_e_flags (bfd *ibfd, bfd *obfd) 14940 { 14941 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd); 14942 flagword old_flags; 14943 flagword new_flags; 14944 bfd_boolean ok; 14945 14946 new_flags = elf_elfheader (ibfd)->e_flags; 14947 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER; 14948 old_flags = elf_elfheader (obfd)->e_flags; 14949 14950 /* Check flag compatibility. */ 14951 14952 new_flags &= ~EF_MIPS_NOREORDER; 14953 old_flags &= ~EF_MIPS_NOREORDER; 14954 14955 /* Some IRIX 6 BSD-compatibility objects have this bit set. It 14956 doesn't seem to matter. */ 14957 new_flags &= ~EF_MIPS_XGOT; 14958 old_flags &= ~EF_MIPS_XGOT; 14959 14960 /* MIPSpro generates ucode info in n64 objects. Again, we should 14961 just be able to ignore this. */ 14962 new_flags &= ~EF_MIPS_UCODE; 14963 old_flags &= ~EF_MIPS_UCODE; 14964 14965 /* DSOs should only be linked with CPIC code. */ 14966 if ((ibfd->flags & DYNAMIC) != 0) 14967 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC; 14968 14969 if (new_flags == old_flags) 14970 return TRUE; 14971 14972 ok = TRUE; 14973 14974 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0) 14975 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)) 14976 { 14977 (*_bfd_error_handler) 14978 (_("%B: warning: linking abicalls files with non-abicalls files"), 14979 ibfd); 14980 ok = TRUE; 14981 } 14982 14983 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) 14984 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC; 14985 if (! (new_flags & EF_MIPS_PIC)) 14986 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC; 14987 14988 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC); 14989 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC); 14990 14991 /* Compare the ISAs. */ 14992 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags)) 14993 { 14994 (*_bfd_error_handler) 14995 (_("%B: linking 32-bit code with 64-bit code"), 14996 ibfd); 14997 ok = FALSE; 14998 } 14999 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd))) 15000 { 15001 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */ 15002 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd))) 15003 { 15004 /* Copy the architecture info from IBFD to OBFD. Also copy 15005 the 32-bit flag (if set) so that we continue to recognise 15006 OBFD as a 32-bit binary. */ 15007 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd)); 15008 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH); 15009 elf_elfheader (obfd)->e_flags 15010 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE); 15011 15012 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */ 15013 update_mips_abiflags_isa (obfd, &out_tdata->abiflags); 15014 15015 /* Copy across the ABI flags if OBFD doesn't use them 15016 and if that was what caused us to treat IBFD as 32-bit. */ 15017 if ((old_flags & EF_MIPS_ABI) == 0 15018 && mips_32bit_flags_p (new_flags) 15019 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI)) 15020 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI; 15021 } 15022 else 15023 { 15024 /* The ISAs aren't compatible. */ 15025 (*_bfd_error_handler) 15026 (_("%B: linking %s module with previous %s modules"), 15027 ibfd, 15028 bfd_printable_name (ibfd), 15029 bfd_printable_name (obfd)); 15030 ok = FALSE; 15031 } 15032 } 15033 15034 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE); 15035 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE); 15036 15037 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it 15038 does set EI_CLASS differently from any 32-bit ABI. */ 15039 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI) 15040 || (elf_elfheader (ibfd)->e_ident[EI_CLASS] 15041 != elf_elfheader (obfd)->e_ident[EI_CLASS])) 15042 { 15043 /* Only error if both are set (to different values). */ 15044 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI)) 15045 || (elf_elfheader (ibfd)->e_ident[EI_CLASS] 15046 != elf_elfheader (obfd)->e_ident[EI_CLASS])) 15047 { 15048 (*_bfd_error_handler) 15049 (_("%B: ABI mismatch: linking %s module with previous %s modules"), 15050 ibfd, 15051 elf_mips_abi_name (ibfd), 15052 elf_mips_abi_name (obfd)); 15053 ok = FALSE; 15054 } 15055 new_flags &= ~EF_MIPS_ABI; 15056 old_flags &= ~EF_MIPS_ABI; 15057 } 15058 15059 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together 15060 and allow arbitrary mixing of the remaining ASEs (retain the union). */ 15061 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE)) 15062 { 15063 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS; 15064 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS; 15065 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16; 15066 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16; 15067 int micro_mis = old_m16 && new_micro; 15068 int m16_mis = old_micro && new_m16; 15069 15070 if (m16_mis || micro_mis) 15071 { 15072 (*_bfd_error_handler) 15073 (_("%B: ASE mismatch: linking %s module with previous %s modules"), 15074 ibfd, 15075 m16_mis ? "MIPS16" : "microMIPS", 15076 m16_mis ? "microMIPS" : "MIPS16"); 15077 ok = FALSE; 15078 } 15079 15080 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE; 15081 15082 new_flags &= ~ EF_MIPS_ARCH_ASE; 15083 old_flags &= ~ EF_MIPS_ARCH_ASE; 15084 } 15085 15086 /* Compare NaN encodings. */ 15087 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008)) 15088 { 15089 _bfd_error_handler (_("%B: linking %s module with previous %s modules"), 15090 ibfd, 15091 (new_flags & EF_MIPS_NAN2008 15092 ? "-mnan=2008" : "-mnan=legacy"), 15093 (old_flags & EF_MIPS_NAN2008 15094 ? "-mnan=2008" : "-mnan=legacy")); 15095 ok = FALSE; 15096 new_flags &= ~EF_MIPS_NAN2008; 15097 old_flags &= ~EF_MIPS_NAN2008; 15098 } 15099 15100 /* Compare FP64 state. */ 15101 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64)) 15102 { 15103 _bfd_error_handler (_("%B: linking %s module with previous %s modules"), 15104 ibfd, 15105 (new_flags & EF_MIPS_FP64 15106 ? "-mfp64" : "-mfp32"), 15107 (old_flags & EF_MIPS_FP64 15108 ? "-mfp64" : "-mfp32")); 15109 ok = FALSE; 15110 new_flags &= ~EF_MIPS_FP64; 15111 old_flags &= ~EF_MIPS_FP64; 15112 } 15113 15114 /* Warn about any other mismatches */ 15115 if (new_flags != old_flags) 15116 { 15117 (*_bfd_error_handler) 15118 (_("%B: uses different e_flags (0x%lx) fields than previous modules " 15119 "(0x%lx)"), 15120 ibfd, (unsigned long) new_flags, 15121 (unsigned long) old_flags); 15122 ok = FALSE; 15123 } 15124 15125 return ok; 15126 } 15127 15128 /* Merge object attributes from IBFD into OBFD. Raise an error if 15129 there are conflicting attributes. */ 15130 static bfd_boolean 15131 mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd) 15132 { 15133 obj_attribute *in_attr; 15134 obj_attribute *out_attr; 15135 bfd *abi_fp_bfd; 15136 bfd *abi_msa_bfd; 15137 15138 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd; 15139 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU]; 15140 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY) 15141 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd; 15142 15143 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd; 15144 if (!abi_msa_bfd 15145 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY) 15146 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd; 15147 15148 if (!elf_known_obj_attributes_proc (obfd)[0].i) 15149 { 15150 /* This is the first object. Copy the attributes. */ 15151 _bfd_elf_copy_obj_attributes (ibfd, obfd); 15152 15153 /* Use the Tag_null value to indicate the attributes have been 15154 initialized. */ 15155 elf_known_obj_attributes_proc (obfd)[0].i = 1; 15156 15157 return TRUE; 15158 } 15159 15160 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge 15161 non-conflicting ones. */ 15162 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU]; 15163 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i) 15164 { 15165 int out_fp, in_fp; 15166 15167 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i; 15168 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i; 15169 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1; 15170 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY) 15171 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp; 15172 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX 15173 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE 15174 || in_fp == Val_GNU_MIPS_ABI_FP_64 15175 || in_fp == Val_GNU_MIPS_ABI_FP_64A)) 15176 { 15177 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd; 15178 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i; 15179 } 15180 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX 15181 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE 15182 || out_fp == Val_GNU_MIPS_ABI_FP_64 15183 || out_fp == Val_GNU_MIPS_ABI_FP_64A)) 15184 /* Keep the current setting. */; 15185 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A 15186 && in_fp == Val_GNU_MIPS_ABI_FP_64) 15187 { 15188 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd; 15189 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i; 15190 } 15191 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A 15192 && out_fp == Val_GNU_MIPS_ABI_FP_64) 15193 /* Keep the current setting. */; 15194 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY) 15195 { 15196 const char *out_string, *in_string; 15197 15198 out_string = _bfd_mips_fp_abi_string (out_fp); 15199 in_string = _bfd_mips_fp_abi_string (in_fp); 15200 /* First warn about cases involving unrecognised ABIs. */ 15201 if (!out_string && !in_string) 15202 _bfd_error_handler 15203 (_("Warning: %B uses unknown floating point ABI %d " 15204 "(set by %B), %B uses unknown floating point ABI %d"), 15205 obfd, abi_fp_bfd, ibfd, out_fp, in_fp); 15206 else if (!out_string) 15207 _bfd_error_handler 15208 (_("Warning: %B uses unknown floating point ABI %d " 15209 "(set by %B), %B uses %s"), 15210 obfd, abi_fp_bfd, ibfd, out_fp, in_string); 15211 else if (!in_string) 15212 _bfd_error_handler 15213 (_("Warning: %B uses %s (set by %B), " 15214 "%B uses unknown floating point ABI %d"), 15215 obfd, abi_fp_bfd, ibfd, out_string, in_fp); 15216 else 15217 { 15218 /* If one of the bfds is soft-float, the other must be 15219 hard-float. The exact choice of hard-float ABI isn't 15220 really relevant to the error message. */ 15221 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT) 15222 out_string = "-mhard-float"; 15223 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT) 15224 in_string = "-mhard-float"; 15225 _bfd_error_handler 15226 (_("Warning: %B uses %s (set by %B), %B uses %s"), 15227 obfd, abi_fp_bfd, ibfd, out_string, in_string); 15228 } 15229 } 15230 } 15231 15232 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge 15233 non-conflicting ones. */ 15234 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i) 15235 { 15236 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1; 15237 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY) 15238 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i; 15239 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY) 15240 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i) 15241 { 15242 case Val_GNU_MIPS_ABI_MSA_128: 15243 _bfd_error_handler 15244 (_("Warning: %B uses %s (set by %B), " 15245 "%B uses unknown MSA ABI %d"), 15246 obfd, abi_msa_bfd, ibfd, 15247 "-mmsa", in_attr[Tag_GNU_MIPS_ABI_MSA].i); 15248 break; 15249 15250 default: 15251 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i) 15252 { 15253 case Val_GNU_MIPS_ABI_MSA_128: 15254 _bfd_error_handler 15255 (_("Warning: %B uses unknown MSA ABI %d " 15256 "(set by %B), %B uses %s"), 15257 obfd, abi_msa_bfd, ibfd, 15258 out_attr[Tag_GNU_MIPS_ABI_MSA].i, "-mmsa"); 15259 break; 15260 15261 default: 15262 _bfd_error_handler 15263 (_("Warning: %B uses unknown MSA ABI %d " 15264 "(set by %B), %B uses unknown MSA ABI %d"), 15265 obfd, abi_msa_bfd, ibfd, 15266 out_attr[Tag_GNU_MIPS_ABI_MSA].i, 15267 in_attr[Tag_GNU_MIPS_ABI_MSA].i); 15268 break; 15269 } 15270 } 15271 } 15272 15273 /* Merge Tag_compatibility attributes and any common GNU ones. */ 15274 return _bfd_elf_merge_object_attributes (ibfd, obfd); 15275 } 15276 15277 /* Merge object ABI flags from IBFD into OBFD. Raise an error if 15278 there are conflicting settings. */ 15279 15280 static bfd_boolean 15281 mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd) 15282 { 15283 obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU]; 15284 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd); 15285 struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd); 15286 15287 /* Update the output abiflags fp_abi using the computed fp_abi. */ 15288 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i; 15289 15290 #define max(a, b) ((a) > (b) ? (a) : (b)) 15291 /* Merge abiflags. */ 15292 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level, 15293 in_tdata->abiflags.isa_level); 15294 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev, 15295 in_tdata->abiflags.isa_rev); 15296 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size, 15297 in_tdata->abiflags.gpr_size); 15298 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size, 15299 in_tdata->abiflags.cpr1_size); 15300 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size, 15301 in_tdata->abiflags.cpr2_size); 15302 #undef max 15303 out_tdata->abiflags.ases |= in_tdata->abiflags.ases; 15304 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1; 15305 15306 return TRUE; 15307 } 15308 15309 /* Merge backend specific data from an object file to the output 15310 object file when linking. */ 15311 15312 bfd_boolean 15313 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd) 15314 { 15315 struct mips_elf_obj_tdata *out_tdata; 15316 struct mips_elf_obj_tdata *in_tdata; 15317 bfd_boolean null_input_bfd = TRUE; 15318 asection *sec; 15319 bfd_boolean ok; 15320 15321 /* Check if we have the same endianness. */ 15322 if (! _bfd_generic_verify_endian_match (ibfd, obfd)) 15323 { 15324 (*_bfd_error_handler) 15325 (_("%B: endianness incompatible with that of the selected emulation"), 15326 ibfd); 15327 return FALSE; 15328 } 15329 15330 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd)) 15331 return TRUE; 15332 15333 in_tdata = mips_elf_tdata (ibfd); 15334 out_tdata = mips_elf_tdata (obfd); 15335 15336 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0) 15337 { 15338 (*_bfd_error_handler) 15339 (_("%B: ABI is incompatible with that of the selected emulation"), 15340 ibfd); 15341 return FALSE; 15342 } 15343 15344 /* Check to see if the input BFD actually contains any sections. If not, 15345 then it has no attributes, and its flags may not have been initialized 15346 either, but it cannot actually cause any incompatibility. */ 15347 for (sec = ibfd->sections; sec != NULL; sec = sec->next) 15348 { 15349 /* Ignore synthetic sections and empty .text, .data and .bss sections 15350 which are automatically generated by gas. Also ignore fake 15351 (s)common sections, since merely defining a common symbol does 15352 not affect compatibility. */ 15353 if ((sec->flags & SEC_IS_COMMON) == 0 15354 && strcmp (sec->name, ".reginfo") 15355 && strcmp (sec->name, ".mdebug") 15356 && (sec->size != 0 15357 || (strcmp (sec->name, ".text") 15358 && strcmp (sec->name, ".data") 15359 && strcmp (sec->name, ".bss")))) 15360 { 15361 null_input_bfd = FALSE; 15362 break; 15363 } 15364 } 15365 if (null_input_bfd) 15366 return TRUE; 15367 15368 /* Populate abiflags using existing information. */ 15369 if (in_tdata->abiflags_valid) 15370 { 15371 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU]; 15372 Elf_Internal_ABIFlags_v0 in_abiflags; 15373 Elf_Internal_ABIFlags_v0 abiflags; 15374 15375 /* Set up the FP ABI attribute from the abiflags if it is not already 15376 set. */ 15377 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY) 15378 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi; 15379 15380 infer_mips_abiflags (ibfd, &abiflags); 15381 in_abiflags = in_tdata->abiflags; 15382 15383 /* It is not possible to infer the correct ISA revision 15384 for R3 or R5 so drop down to R2 for the checks. */ 15385 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5) 15386 in_abiflags.isa_rev = 2; 15387 15388 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev) 15389 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev)) 15390 (*_bfd_error_handler) 15391 (_("%B: warning: Inconsistent ISA between e_flags and " 15392 ".MIPS.abiflags"), ibfd); 15393 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY 15394 && in_abiflags.fp_abi != abiflags.fp_abi) 15395 (*_bfd_error_handler) 15396 (_("%B: warning: Inconsistent FP ABI between .gnu.attributes and " 15397 ".MIPS.abiflags"), ibfd); 15398 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases) 15399 (*_bfd_error_handler) 15400 (_("%B: warning: Inconsistent ASEs between e_flags and " 15401 ".MIPS.abiflags"), ibfd); 15402 /* The isa_ext is allowed to be an extension of what can be inferred 15403 from e_flags. */ 15404 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext), 15405 bfd_mips_isa_ext_mach (in_abiflags.isa_ext))) 15406 (*_bfd_error_handler) 15407 (_("%B: warning: Inconsistent ISA extensions between e_flags and " 15408 ".MIPS.abiflags"), ibfd); 15409 if (in_abiflags.flags2 != 0) 15410 (*_bfd_error_handler) 15411 (_("%B: warning: Unexpected flag in the flags2 field of " 15412 ".MIPS.abiflags (0x%lx)"), ibfd, 15413 (unsigned long) in_abiflags.flags2); 15414 } 15415 else 15416 { 15417 infer_mips_abiflags (ibfd, &in_tdata->abiflags); 15418 in_tdata->abiflags_valid = TRUE; 15419 } 15420 15421 if (!out_tdata->abiflags_valid) 15422 { 15423 /* Copy input abiflags if output abiflags are not already valid. */ 15424 out_tdata->abiflags = in_tdata->abiflags; 15425 out_tdata->abiflags_valid = TRUE; 15426 } 15427 15428 if (! elf_flags_init (obfd)) 15429 { 15430 elf_flags_init (obfd) = TRUE; 15431 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags; 15432 elf_elfheader (obfd)->e_ident[EI_CLASS] 15433 = elf_elfheader (ibfd)->e_ident[EI_CLASS]; 15434 15435 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd) 15436 && (bfd_get_arch_info (obfd)->the_default 15437 || mips_mach_extends_p (bfd_get_mach (obfd), 15438 bfd_get_mach (ibfd)))) 15439 { 15440 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), 15441 bfd_get_mach (ibfd))) 15442 return FALSE; 15443 15444 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */ 15445 update_mips_abiflags_isa (obfd, &out_tdata->abiflags); 15446 } 15447 15448 ok = TRUE; 15449 } 15450 else 15451 ok = mips_elf_merge_obj_e_flags (ibfd, obfd); 15452 15453 ok = mips_elf_merge_obj_attributes (ibfd, obfd) && ok; 15454 15455 ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok; 15456 15457 if (!ok) 15458 { 15459 bfd_set_error (bfd_error_bad_value); 15460 return FALSE; 15461 } 15462 15463 return TRUE; 15464 } 15465 15466 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */ 15467 15468 bfd_boolean 15469 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags) 15470 { 15471 BFD_ASSERT (!elf_flags_init (abfd) 15472 || elf_elfheader (abfd)->e_flags == flags); 15473 15474 elf_elfheader (abfd)->e_flags = flags; 15475 elf_flags_init (abfd) = TRUE; 15476 return TRUE; 15477 } 15478 15479 char * 15480 _bfd_mips_elf_get_target_dtag (bfd_vma dtag) 15481 { 15482 switch (dtag) 15483 { 15484 default: return ""; 15485 case DT_MIPS_RLD_VERSION: 15486 return "MIPS_RLD_VERSION"; 15487 case DT_MIPS_TIME_STAMP: 15488 return "MIPS_TIME_STAMP"; 15489 case DT_MIPS_ICHECKSUM: 15490 return "MIPS_ICHECKSUM"; 15491 case DT_MIPS_IVERSION: 15492 return "MIPS_IVERSION"; 15493 case DT_MIPS_FLAGS: 15494 return "MIPS_FLAGS"; 15495 case DT_MIPS_BASE_ADDRESS: 15496 return "MIPS_BASE_ADDRESS"; 15497 case DT_MIPS_MSYM: 15498 return "MIPS_MSYM"; 15499 case DT_MIPS_CONFLICT: 15500 return "MIPS_CONFLICT"; 15501 case DT_MIPS_LIBLIST: 15502 return "MIPS_LIBLIST"; 15503 case DT_MIPS_LOCAL_GOTNO: 15504 return "MIPS_LOCAL_GOTNO"; 15505 case DT_MIPS_CONFLICTNO: 15506 return "MIPS_CONFLICTNO"; 15507 case DT_MIPS_LIBLISTNO: 15508 return "MIPS_LIBLISTNO"; 15509 case DT_MIPS_SYMTABNO: 15510 return "MIPS_SYMTABNO"; 15511 case DT_MIPS_UNREFEXTNO: 15512 return "MIPS_UNREFEXTNO"; 15513 case DT_MIPS_GOTSYM: 15514 return "MIPS_GOTSYM"; 15515 case DT_MIPS_HIPAGENO: 15516 return "MIPS_HIPAGENO"; 15517 case DT_MIPS_RLD_MAP: 15518 return "MIPS_RLD_MAP"; 15519 case DT_MIPS_RLD_MAP_REL: 15520 return "MIPS_RLD_MAP_REL"; 15521 case DT_MIPS_DELTA_CLASS: 15522 return "MIPS_DELTA_CLASS"; 15523 case DT_MIPS_DELTA_CLASS_NO: 15524 return "MIPS_DELTA_CLASS_NO"; 15525 case DT_MIPS_DELTA_INSTANCE: 15526 return "MIPS_DELTA_INSTANCE"; 15527 case DT_MIPS_DELTA_INSTANCE_NO: 15528 return "MIPS_DELTA_INSTANCE_NO"; 15529 case DT_MIPS_DELTA_RELOC: 15530 return "MIPS_DELTA_RELOC"; 15531 case DT_MIPS_DELTA_RELOC_NO: 15532 return "MIPS_DELTA_RELOC_NO"; 15533 case DT_MIPS_DELTA_SYM: 15534 return "MIPS_DELTA_SYM"; 15535 case DT_MIPS_DELTA_SYM_NO: 15536 return "MIPS_DELTA_SYM_NO"; 15537 case DT_MIPS_DELTA_CLASSSYM: 15538 return "MIPS_DELTA_CLASSSYM"; 15539 case DT_MIPS_DELTA_CLASSSYM_NO: 15540 return "MIPS_DELTA_CLASSSYM_NO"; 15541 case DT_MIPS_CXX_FLAGS: 15542 return "MIPS_CXX_FLAGS"; 15543 case DT_MIPS_PIXIE_INIT: 15544 return "MIPS_PIXIE_INIT"; 15545 case DT_MIPS_SYMBOL_LIB: 15546 return "MIPS_SYMBOL_LIB"; 15547 case DT_MIPS_LOCALPAGE_GOTIDX: 15548 return "MIPS_LOCALPAGE_GOTIDX"; 15549 case DT_MIPS_LOCAL_GOTIDX: 15550 return "MIPS_LOCAL_GOTIDX"; 15551 case DT_MIPS_HIDDEN_GOTIDX: 15552 return "MIPS_HIDDEN_GOTIDX"; 15553 case DT_MIPS_PROTECTED_GOTIDX: 15554 return "MIPS_PROTECTED_GOT_IDX"; 15555 case DT_MIPS_OPTIONS: 15556 return "MIPS_OPTIONS"; 15557 case DT_MIPS_INTERFACE: 15558 return "MIPS_INTERFACE"; 15559 case DT_MIPS_DYNSTR_ALIGN: 15560 return "DT_MIPS_DYNSTR_ALIGN"; 15561 case DT_MIPS_INTERFACE_SIZE: 15562 return "DT_MIPS_INTERFACE_SIZE"; 15563 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: 15564 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR"; 15565 case DT_MIPS_PERF_SUFFIX: 15566 return "DT_MIPS_PERF_SUFFIX"; 15567 case DT_MIPS_COMPACT_SIZE: 15568 return "DT_MIPS_COMPACT_SIZE"; 15569 case DT_MIPS_GP_VALUE: 15570 return "DT_MIPS_GP_VALUE"; 15571 case DT_MIPS_AUX_DYNAMIC: 15572 return "DT_MIPS_AUX_DYNAMIC"; 15573 case DT_MIPS_PLTGOT: 15574 return "DT_MIPS_PLTGOT"; 15575 case DT_MIPS_RWPLT: 15576 return "DT_MIPS_RWPLT"; 15577 } 15578 } 15579 15580 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if 15581 not known. */ 15582 15583 const char * 15584 _bfd_mips_fp_abi_string (int fp) 15585 { 15586 switch (fp) 15587 { 15588 /* These strings aren't translated because they're simply 15589 option lists. */ 15590 case Val_GNU_MIPS_ABI_FP_DOUBLE: 15591 return "-mdouble-float"; 15592 15593 case Val_GNU_MIPS_ABI_FP_SINGLE: 15594 return "-msingle-float"; 15595 15596 case Val_GNU_MIPS_ABI_FP_SOFT: 15597 return "-msoft-float"; 15598 15599 case Val_GNU_MIPS_ABI_FP_OLD_64: 15600 return _("-mips32r2 -mfp64 (12 callee-saved)"); 15601 15602 case Val_GNU_MIPS_ABI_FP_XX: 15603 return "-mfpxx"; 15604 15605 case Val_GNU_MIPS_ABI_FP_64: 15606 return "-mgp32 -mfp64"; 15607 15608 case Val_GNU_MIPS_ABI_FP_64A: 15609 return "-mgp32 -mfp64 -mno-odd-spreg"; 15610 15611 default: 15612 return 0; 15613 } 15614 } 15615 15616 static void 15617 print_mips_ases (FILE *file, unsigned int mask) 15618 { 15619 if (mask & AFL_ASE_DSP) 15620 fputs ("\n\tDSP ASE", file); 15621 if (mask & AFL_ASE_DSPR2) 15622 fputs ("\n\tDSP R2 ASE", file); 15623 if (mask & AFL_ASE_DSPR3) 15624 fputs ("\n\tDSP R3 ASE", file); 15625 if (mask & AFL_ASE_EVA) 15626 fputs ("\n\tEnhanced VA Scheme", file); 15627 if (mask & AFL_ASE_MCU) 15628 fputs ("\n\tMCU (MicroController) ASE", file); 15629 if (mask & AFL_ASE_MDMX) 15630 fputs ("\n\tMDMX ASE", file); 15631 if (mask & AFL_ASE_MIPS3D) 15632 fputs ("\n\tMIPS-3D ASE", file); 15633 if (mask & AFL_ASE_MT) 15634 fputs ("\n\tMT ASE", file); 15635 if (mask & AFL_ASE_SMARTMIPS) 15636 fputs ("\n\tSmartMIPS ASE", file); 15637 if (mask & AFL_ASE_VIRT) 15638 fputs ("\n\tVZ ASE", file); 15639 if (mask & AFL_ASE_MSA) 15640 fputs ("\n\tMSA ASE", file); 15641 if (mask & AFL_ASE_MIPS16) 15642 fputs ("\n\tMIPS16 ASE", file); 15643 if (mask & AFL_ASE_MICROMIPS) 15644 fputs ("\n\tMICROMIPS ASE", file); 15645 if (mask & AFL_ASE_XPA) 15646 fputs ("\n\tXPA ASE", file); 15647 if (mask == 0) 15648 fprintf (file, "\n\t%s", _("None")); 15649 else if ((mask & ~AFL_ASE_MASK) != 0) 15650 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK); 15651 } 15652 15653 static void 15654 print_mips_isa_ext (FILE *file, unsigned int isa_ext) 15655 { 15656 switch (isa_ext) 15657 { 15658 case 0: 15659 fputs (_("None"), file); 15660 break; 15661 case AFL_EXT_XLR: 15662 fputs ("RMI XLR", file); 15663 break; 15664 case AFL_EXT_OCTEON3: 15665 fputs ("Cavium Networks Octeon3", file); 15666 break; 15667 case AFL_EXT_OCTEON2: 15668 fputs ("Cavium Networks Octeon2", file); 15669 break; 15670 case AFL_EXT_OCTEONP: 15671 fputs ("Cavium Networks OcteonP", file); 15672 break; 15673 case AFL_EXT_LOONGSON_3A: 15674 fputs ("Loongson 3A", file); 15675 break; 15676 case AFL_EXT_OCTEON: 15677 fputs ("Cavium Networks Octeon", file); 15678 break; 15679 case AFL_EXT_5900: 15680 fputs ("Toshiba R5900", file); 15681 break; 15682 case AFL_EXT_4650: 15683 fputs ("MIPS R4650", file); 15684 break; 15685 case AFL_EXT_4010: 15686 fputs ("LSI R4010", file); 15687 break; 15688 case AFL_EXT_4100: 15689 fputs ("NEC VR4100", file); 15690 break; 15691 case AFL_EXT_3900: 15692 fputs ("Toshiba R3900", file); 15693 break; 15694 case AFL_EXT_10000: 15695 fputs ("MIPS R10000", file); 15696 break; 15697 case AFL_EXT_SB1: 15698 fputs ("Broadcom SB-1", file); 15699 break; 15700 case AFL_EXT_4111: 15701 fputs ("NEC VR4111/VR4181", file); 15702 break; 15703 case AFL_EXT_4120: 15704 fputs ("NEC VR4120", file); 15705 break; 15706 case AFL_EXT_5400: 15707 fputs ("NEC VR5400", file); 15708 break; 15709 case AFL_EXT_5500: 15710 fputs ("NEC VR5500", file); 15711 break; 15712 case AFL_EXT_LOONGSON_2E: 15713 fputs ("ST Microelectronics Loongson 2E", file); 15714 break; 15715 case AFL_EXT_LOONGSON_2F: 15716 fputs ("ST Microelectronics Loongson 2F", file); 15717 break; 15718 default: 15719 fprintf (file, "%s (%d)", _("Unknown"), isa_ext); 15720 break; 15721 } 15722 } 15723 15724 static void 15725 print_mips_fp_abi_value (FILE *file, int val) 15726 { 15727 switch (val) 15728 { 15729 case Val_GNU_MIPS_ABI_FP_ANY: 15730 fprintf (file, _("Hard or soft float\n")); 15731 break; 15732 case Val_GNU_MIPS_ABI_FP_DOUBLE: 15733 fprintf (file, _("Hard float (double precision)\n")); 15734 break; 15735 case Val_GNU_MIPS_ABI_FP_SINGLE: 15736 fprintf (file, _("Hard float (single precision)\n")); 15737 break; 15738 case Val_GNU_MIPS_ABI_FP_SOFT: 15739 fprintf (file, _("Soft float\n")); 15740 break; 15741 case Val_GNU_MIPS_ABI_FP_OLD_64: 15742 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n")); 15743 break; 15744 case Val_GNU_MIPS_ABI_FP_XX: 15745 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n")); 15746 break; 15747 case Val_GNU_MIPS_ABI_FP_64: 15748 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n")); 15749 break; 15750 case Val_GNU_MIPS_ABI_FP_64A: 15751 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n")); 15752 break; 15753 default: 15754 fprintf (file, "??? (%d)\n", val); 15755 break; 15756 } 15757 } 15758 15759 static int 15760 get_mips_reg_size (int reg_size) 15761 { 15762 return (reg_size == AFL_REG_NONE) ? 0 15763 : (reg_size == AFL_REG_32) ? 32 15764 : (reg_size == AFL_REG_64) ? 64 15765 : (reg_size == AFL_REG_128) ? 128 15766 : -1; 15767 } 15768 15769 bfd_boolean 15770 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr) 15771 { 15772 FILE *file = ptr; 15773 15774 BFD_ASSERT (abfd != NULL && ptr != NULL); 15775 15776 /* Print normal ELF private data. */ 15777 _bfd_elf_print_private_bfd_data (abfd, ptr); 15778 15779 /* xgettext:c-format */ 15780 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags); 15781 15782 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32) 15783 fprintf (file, _(" [abi=O32]")); 15784 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64) 15785 fprintf (file, _(" [abi=O64]")); 15786 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32) 15787 fprintf (file, _(" [abi=EABI32]")); 15788 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64) 15789 fprintf (file, _(" [abi=EABI64]")); 15790 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI)) 15791 fprintf (file, _(" [abi unknown]")); 15792 else if (ABI_N32_P (abfd)) 15793 fprintf (file, _(" [abi=N32]")); 15794 else if (ABI_64_P (abfd)) 15795 fprintf (file, _(" [abi=64]")); 15796 else 15797 fprintf (file, _(" [no abi set]")); 15798 15799 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1) 15800 fprintf (file, " [mips1]"); 15801 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2) 15802 fprintf (file, " [mips2]"); 15803 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3) 15804 fprintf (file, " [mips3]"); 15805 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4) 15806 fprintf (file, " [mips4]"); 15807 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5) 15808 fprintf (file, " [mips5]"); 15809 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32) 15810 fprintf (file, " [mips32]"); 15811 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64) 15812 fprintf (file, " [mips64]"); 15813 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2) 15814 fprintf (file, " [mips32r2]"); 15815 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2) 15816 fprintf (file, " [mips64r2]"); 15817 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6) 15818 fprintf (file, " [mips32r6]"); 15819 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6) 15820 fprintf (file, " [mips64r6]"); 15821 else 15822 fprintf (file, _(" [unknown ISA]")); 15823 15824 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX) 15825 fprintf (file, " [mdmx]"); 15826 15827 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16) 15828 fprintf (file, " [mips16]"); 15829 15830 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) 15831 fprintf (file, " [micromips]"); 15832 15833 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008) 15834 fprintf (file, " [nan2008]"); 15835 15836 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64) 15837 fprintf (file, " [old fp64]"); 15838 15839 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE) 15840 fprintf (file, " [32bitmode]"); 15841 else 15842 fprintf (file, _(" [not 32bitmode]")); 15843 15844 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER) 15845 fprintf (file, " [noreorder]"); 15846 15847 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) 15848 fprintf (file, " [PIC]"); 15849 15850 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC) 15851 fprintf (file, " [CPIC]"); 15852 15853 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT) 15854 fprintf (file, " [XGOT]"); 15855 15856 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE) 15857 fprintf (file, " [UCODE]"); 15858 15859 fputc ('\n', file); 15860 15861 if (mips_elf_tdata (abfd)->abiflags_valid) 15862 { 15863 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags; 15864 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version); 15865 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level); 15866 if (abiflags->isa_rev > 1) 15867 fprintf (file, "r%d", abiflags->isa_rev); 15868 fprintf (file, "\nGPR size: %d", 15869 get_mips_reg_size (abiflags->gpr_size)); 15870 fprintf (file, "\nCPR1 size: %d", 15871 get_mips_reg_size (abiflags->cpr1_size)); 15872 fprintf (file, "\nCPR2 size: %d", 15873 get_mips_reg_size (abiflags->cpr2_size)); 15874 fputs ("\nFP ABI: ", file); 15875 print_mips_fp_abi_value (file, abiflags->fp_abi); 15876 fputs ("ISA Extension: ", file); 15877 print_mips_isa_ext (file, abiflags->isa_ext); 15878 fputs ("\nASEs:", file); 15879 print_mips_ases (file, abiflags->ases); 15880 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1); 15881 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2); 15882 fputc ('\n', file); 15883 } 15884 15885 return TRUE; 15886 } 15887 15888 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] = 15889 { 15890 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, 15891 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, 15892 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 }, 15893 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, 15894 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, 15895 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 }, 15896 { NULL, 0, 0, 0, 0 } 15897 }; 15898 15899 /* Merge non visibility st_other attributes. Ensure that the 15900 STO_OPTIONAL flag is copied into h->other, even if this is not a 15901 definiton of the symbol. */ 15902 void 15903 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h, 15904 const Elf_Internal_Sym *isym, 15905 bfd_boolean definition, 15906 bfd_boolean dynamic ATTRIBUTE_UNUSED) 15907 { 15908 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0) 15909 { 15910 unsigned char other; 15911 15912 other = (definition ? isym->st_other : h->other); 15913 other &= ~ELF_ST_VISIBILITY (-1); 15914 h->other = other | ELF_ST_VISIBILITY (h->other); 15915 } 15916 15917 if (!definition 15918 && ELF_MIPS_IS_OPTIONAL (isym->st_other)) 15919 h->other |= STO_OPTIONAL; 15920 } 15921 15922 /* Decide whether an undefined symbol is special and can be ignored. 15923 This is the case for OPTIONAL symbols on IRIX. */ 15924 bfd_boolean 15925 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h) 15926 { 15927 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE; 15928 } 15929 15930 bfd_boolean 15931 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym) 15932 { 15933 return (sym->st_shndx == SHN_COMMON 15934 || sym->st_shndx == SHN_MIPS_ACOMMON 15935 || sym->st_shndx == SHN_MIPS_SCOMMON); 15936 } 15937 15938 /* Return address for Ith PLT stub in section PLT, for relocation REL 15939 or (bfd_vma) -1 if it should not be included. */ 15940 15941 bfd_vma 15942 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt, 15943 const arelent *rel ATTRIBUTE_UNUSED) 15944 { 15945 return (plt->vma 15946 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry) 15947 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry)); 15948 } 15949 15950 /* Build a table of synthetic symbols to represent the PLT. As with MIPS16 15951 and microMIPS PLT slots we may have a many-to-one mapping between .plt 15952 and .got.plt and also the slots may be of a different size each we walk 15953 the PLT manually fetching instructions and matching them against known 15954 patterns. To make things easier standard MIPS slots, if any, always come 15955 first. As we don't create proper ELF symbols we use the UDATA.I member 15956 of ASYMBOL to carry ISA annotation. The encoding used is the same as 15957 with the ST_OTHER member of the ELF symbol. */ 15958 15959 long 15960 _bfd_mips_elf_get_synthetic_symtab (bfd *abfd, 15961 long symcount ATTRIBUTE_UNUSED, 15962 asymbol **syms ATTRIBUTE_UNUSED, 15963 long dynsymcount, asymbol **dynsyms, 15964 asymbol **ret) 15965 { 15966 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_"; 15967 static const char microsuffix[] = "@micromipsplt"; 15968 static const char m16suffix[] = "@mips16plt"; 15969 static const char mipssuffix[] = "@plt"; 15970 15971 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean); 15972 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 15973 bfd_boolean micromips_p = MICROMIPS_P (abfd); 15974 Elf_Internal_Shdr *hdr; 15975 bfd_byte *plt_data; 15976 bfd_vma plt_offset; 15977 unsigned int other; 15978 bfd_vma entry_size; 15979 bfd_vma plt0_size; 15980 asection *relplt; 15981 bfd_vma opcode; 15982 asection *plt; 15983 asymbol *send; 15984 size_t size; 15985 char *names; 15986 long counti; 15987 arelent *p; 15988 asymbol *s; 15989 char *nend; 15990 long count; 15991 long pi; 15992 long i; 15993 long n; 15994 15995 *ret = NULL; 15996 15997 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0) 15998 return 0; 15999 16000 relplt = bfd_get_section_by_name (abfd, ".rel.plt"); 16001 if (relplt == NULL) 16002 return 0; 16003 16004 hdr = &elf_section_data (relplt)->this_hdr; 16005 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL) 16006 return 0; 16007 16008 plt = bfd_get_section_by_name (abfd, ".plt"); 16009 if (plt == NULL) 16010 return 0; 16011 16012 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table; 16013 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE)) 16014 return -1; 16015 p = relplt->relocation; 16016 16017 /* Calculating the exact amount of space required for symbols would 16018 require two passes over the PLT, so just pessimise assuming two 16019 PLT slots per relocation. */ 16020 count = relplt->size / hdr->sh_entsize; 16021 counti = count * bed->s->int_rels_per_ext_rel; 16022 size = 2 * count * sizeof (asymbol); 16023 size += count * (sizeof (mipssuffix) + 16024 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix))); 16025 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel) 16026 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name); 16027 16028 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */ 16029 size += sizeof (asymbol) + sizeof (pltname); 16030 16031 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data)) 16032 return -1; 16033 16034 if (plt->size < 16) 16035 return -1; 16036 16037 s = *ret = bfd_malloc (size); 16038 if (s == NULL) 16039 return -1; 16040 send = s + 2 * count + 1; 16041 16042 names = (char *) send; 16043 nend = (char *) s + size; 16044 n = 0; 16045 16046 opcode = bfd_get_micromips_32 (abfd, plt_data + 12); 16047 if (opcode == 0x3302fffe) 16048 { 16049 if (!micromips_p) 16050 return -1; 16051 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry); 16052 other = STO_MICROMIPS; 16053 } 16054 else if (opcode == 0x0398c1d0) 16055 { 16056 if (!micromips_p) 16057 return -1; 16058 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); 16059 other = STO_MICROMIPS; 16060 } 16061 else 16062 { 16063 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry); 16064 other = 0; 16065 } 16066 16067 s->the_bfd = abfd; 16068 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL; 16069 s->section = plt; 16070 s->value = 0; 16071 s->name = names; 16072 s->udata.i = other; 16073 memcpy (names, pltname, sizeof (pltname)); 16074 names += sizeof (pltname); 16075 ++s, ++n; 16076 16077 pi = 0; 16078 for (plt_offset = plt0_size; 16079 plt_offset + 8 <= plt->size && s < send; 16080 plt_offset += entry_size) 16081 { 16082 bfd_vma gotplt_addr; 16083 const char *suffix; 16084 bfd_vma gotplt_hi; 16085 bfd_vma gotplt_lo; 16086 size_t suffixlen; 16087 16088 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4); 16089 16090 /* Check if the second word matches the expected MIPS16 instruction. */ 16091 if (opcode == 0x651aeb00) 16092 { 16093 if (micromips_p) 16094 return -1; 16095 /* Truncated table??? */ 16096 if (plt_offset + 16 > plt->size) 16097 break; 16098 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12); 16099 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry); 16100 suffixlen = sizeof (m16suffix); 16101 suffix = m16suffix; 16102 other = STO_MIPS16; 16103 } 16104 /* Likewise the expected microMIPS instruction (no insn32 mode). */ 16105 else if (opcode == 0xff220000) 16106 { 16107 if (!micromips_p) 16108 return -1; 16109 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f; 16110 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff; 16111 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18; 16112 gotplt_lo <<= 2; 16113 gotplt_addr = gotplt_hi + gotplt_lo; 16114 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3; 16115 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry); 16116 suffixlen = sizeof (microsuffix); 16117 suffix = microsuffix; 16118 other = STO_MICROMIPS; 16119 } 16120 /* Likewise the expected microMIPS instruction (insn32 mode). */ 16121 else if ((opcode & 0xffff0000) == 0xff2f0000) 16122 { 16123 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff; 16124 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff; 16125 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16; 16126 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000; 16127 gotplt_addr = gotplt_hi + gotplt_lo; 16128 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry); 16129 suffixlen = sizeof (microsuffix); 16130 suffix = microsuffix; 16131 other = STO_MICROMIPS; 16132 } 16133 /* Otherwise assume standard MIPS code. */ 16134 else 16135 { 16136 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff; 16137 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff; 16138 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16; 16139 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000; 16140 gotplt_addr = gotplt_hi + gotplt_lo; 16141 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry); 16142 suffixlen = sizeof (mipssuffix); 16143 suffix = mipssuffix; 16144 other = 0; 16145 } 16146 /* Truncated table??? */ 16147 if (plt_offset + entry_size > plt->size) 16148 break; 16149 16150 for (i = 0; 16151 i < count && p[pi].address != gotplt_addr; 16152 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti); 16153 16154 if (i < count) 16155 { 16156 size_t namelen; 16157 size_t len; 16158 16159 *s = **p[pi].sym_ptr_ptr; 16160 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since 16161 we are defining a symbol, ensure one of them is set. */ 16162 if ((s->flags & BSF_LOCAL) == 0) 16163 s->flags |= BSF_GLOBAL; 16164 s->flags |= BSF_SYNTHETIC; 16165 s->section = plt; 16166 s->value = plt_offset; 16167 s->name = names; 16168 s->udata.i = other; 16169 16170 len = strlen ((*p[pi].sym_ptr_ptr)->name); 16171 namelen = len + suffixlen; 16172 if (names + namelen > nend) 16173 break; 16174 16175 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len); 16176 names += len; 16177 memcpy (names, suffix, suffixlen); 16178 names += suffixlen; 16179 16180 ++s, ++n; 16181 pi = (pi + bed->s->int_rels_per_ext_rel) % counti; 16182 } 16183 } 16184 16185 free (plt_data); 16186 16187 return n; 16188 } 16189 16190 void 16191 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info) 16192 { 16193 struct mips_elf_link_hash_table *htab; 16194 Elf_Internal_Ehdr *i_ehdrp; 16195 16196 i_ehdrp = elf_elfheader (abfd); 16197 if (link_info) 16198 { 16199 htab = mips_elf_hash_table (link_info); 16200 BFD_ASSERT (htab != NULL); 16201 16202 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks) 16203 i_ehdrp->e_ident[EI_ABIVERSION] = 1; 16204 } 16205 16206 _bfd_elf_post_process_headers (abfd, link_info); 16207 16208 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64 16209 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A) 16210 i_ehdrp->e_ident[EI_ABIVERSION] = 3; 16211 16212 if (elf_stack_flags (abfd) && !(elf_stack_flags (abfd) & PF_X)) 16213 i_ehdrp->e_ident[EI_ABIVERSION] = 5; 16214 } 16215 16216 int 16217 _bfd_mips_elf_compact_eh_encoding (struct bfd_link_info *link_info ATTRIBUTE_UNUSED) 16218 { 16219 return DW_EH_PE_pcrel | DW_EH_PE_sdata4; 16220 } 16221 16222 /* Return the opcode for can't unwind. */ 16223 16224 int 16225 _bfd_mips_elf_cant_unwind_opcode (struct bfd_link_info *link_info ATTRIBUTE_UNUSED) 16226 { 16227 return COMPACT_EH_CANT_UNWIND_OPCODE; 16228 } 16229