1 /* MIPS-specific support for ELF
2 Copyright (C) 1993-2022 Free Software Foundation, Inc.
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
27
28
29 /* This file handles functionality common to the different MIPS ABI's. */
30
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "libiberty.h"
35 #include "elf-bfd.h"
36 #include "ecoff-bfd.h"
37 #include "elfxx-mips.h"
38 #include "elf/mips.h"
39 #include "elf-vxworks.h"
40 #include "dwarf2.h"
41
42 /* Get the ECOFF swapping routines. */
43 #include "coff/sym.h"
44 #include "coff/symconst.h"
45 #include "coff/ecoff.h"
46 #include "coff/mips.h"
47
48 #include "hashtab.h"
49
50 /* Types of TLS GOT entry. */
51 enum mips_got_tls_type {
52 GOT_TLS_NONE,
53 GOT_TLS_GD,
54 GOT_TLS_LDM,
55 GOT_TLS_IE
56 };
57
58 /* This structure is used to hold information about one GOT entry.
59 There are four types of entry:
60
61 (1) an absolute address
62 requires: abfd == NULL
63 fields: d.address
64
65 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
66 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
67 fields: abfd, symndx, d.addend, tls_type
68
69 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
70 requires: abfd != NULL, symndx == -1
71 fields: d.h, tls_type
72
73 (4) a TLS LDM slot
74 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
75 fields: none; there's only one of these per GOT. */
76 struct mips_got_entry
77 {
78 /* One input bfd that needs the GOT entry. */
79 bfd *abfd;
80 /* The index of the symbol, as stored in the relocation r_info, if
81 we have a local symbol; -1 otherwise. */
82 long symndx;
83 union
84 {
85 /* If abfd == NULL, an address that must be stored in the got. */
86 bfd_vma address;
87 /* If abfd != NULL && symndx != -1, the addend of the relocation
88 that should be added to the symbol value. */
89 bfd_vma addend;
90 /* If abfd != NULL && symndx == -1, the hash table entry
91 corresponding to a symbol in the GOT. The symbol's entry
92 is in the local area if h->global_got_area is GGA_NONE,
93 otherwise it is in the global area. */
94 struct mips_elf_link_hash_entry *h;
95 } d;
96
97 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
98 symbol entry with r_symndx == 0. */
99 unsigned char tls_type;
100
101 /* True if we have filled in the GOT contents for a TLS entry,
102 and created the associated relocations. */
103 unsigned char tls_initialized;
104
105 /* The offset from the beginning of the .got section to the entry
106 corresponding to this symbol+addend. If it's a global symbol
107 whose offset is yet to be decided, it's going to be -1. */
108 long gotidx;
109 };
110
111 /* This structure represents a GOT page reference from an input bfd.
112 Each instance represents a symbol + ADDEND, where the representation
113 of the symbol depends on whether it is local to the input bfd.
114 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
115 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
116
117 Page references with SYMNDX >= 0 always become page references
118 in the output. Page references with SYMNDX < 0 only become page
119 references if the symbol binds locally; in other cases, the page
120 reference decays to a global GOT reference. */
121 struct mips_got_page_ref
122 {
123 long symndx;
124 union
125 {
126 struct mips_elf_link_hash_entry *h;
127 bfd *abfd;
128 } u;
129 bfd_vma addend;
130 };
131
132 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
133 The structures form a non-overlapping list that is sorted by increasing
134 MIN_ADDEND. */
135 struct mips_got_page_range
136 {
137 struct mips_got_page_range *next;
138 bfd_signed_vma min_addend;
139 bfd_signed_vma max_addend;
140 };
141
142 /* This structure describes the range of addends that are applied to page
143 relocations against a given section. */
144 struct mips_got_page_entry
145 {
146 /* The section that these entries are based on. */
147 asection *sec;
148 /* The ranges for this page entry. */
149 struct mips_got_page_range *ranges;
150 /* The maximum number of page entries needed for RANGES. */
151 bfd_vma num_pages;
152 };
153
154 /* This structure is used to hold .got information when linking. */
155
156 struct mips_got_info
157 {
158 /* The number of global .got entries. */
159 unsigned int global_gotno;
160 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
161 unsigned int reloc_only_gotno;
162 /* The number of .got slots used for TLS. */
163 unsigned int tls_gotno;
164 /* The first unused TLS .got entry. Used only during
165 mips_elf_initialize_tls_index. */
166 unsigned int tls_assigned_gotno;
167 /* The number of local .got entries, eventually including page entries. */
168 unsigned int local_gotno;
169 /* The maximum number of page entries needed. */
170 unsigned int page_gotno;
171 /* The number of relocations needed for the GOT entries. */
172 unsigned int relocs;
173 /* The first unused local .got entry. */
174 unsigned int assigned_low_gotno;
175 /* The last unused local .got entry. */
176 unsigned int assigned_high_gotno;
177 /* A hash table holding members of the got. */
178 struct htab *got_entries;
179 /* A hash table holding mips_got_page_ref structures. */
180 struct htab *got_page_refs;
181 /* A hash table of mips_got_page_entry structures. */
182 struct htab *got_page_entries;
183 /* In multi-got links, a pointer to the next got (err, rather, most
184 of the time, it points to the previous got). */
185 struct mips_got_info *next;
186 };
187
188 /* Structure passed when merging bfds' gots. */
189
190 struct mips_elf_got_per_bfd_arg
191 {
192 /* The output bfd. */
193 bfd *obfd;
194 /* The link information. */
195 struct bfd_link_info *info;
196 /* A pointer to the primary got, i.e., the one that's going to get
197 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
198 DT_MIPS_GOTSYM. */
199 struct mips_got_info *primary;
200 /* A non-primary got we're trying to merge with other input bfd's
201 gots. */
202 struct mips_got_info *current;
203 /* The maximum number of got entries that can be addressed with a
204 16-bit offset. */
205 unsigned int max_count;
206 /* The maximum number of page entries needed by each got. */
207 unsigned int max_pages;
208 /* The total number of global entries which will live in the
209 primary got and be automatically relocated. This includes
210 those not referenced by the primary GOT but included in
211 the "master" GOT. */
212 unsigned int global_count;
213 };
214
215 /* A structure used to pass information to htab_traverse callbacks
216 when laying out the GOT. */
217
218 struct mips_elf_traverse_got_arg
219 {
220 struct bfd_link_info *info;
221 struct mips_got_info *g;
222 int value;
223 };
224
225 struct _mips_elf_section_data
226 {
227 struct bfd_elf_section_data elf;
228 union
229 {
230 bfd_byte *tdata;
231 } u;
232 };
233
234 #define mips_elf_section_data(sec) \
235 ((struct _mips_elf_section_data *) elf_section_data (sec))
236
237 #define is_mips_elf(bfd) \
238 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
239 && elf_tdata (bfd) != NULL \
240 && elf_object_id (bfd) == MIPS_ELF_DATA)
241
242 /* The ABI says that every symbol used by dynamic relocations must have
243 a global GOT entry. Among other things, this provides the dynamic
244 linker with a free, directly-indexed cache. The GOT can therefore
245 contain symbols that are not referenced by GOT relocations themselves
246 (in other words, it may have symbols that are not referenced by things
247 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
248
249 GOT relocations are less likely to overflow if we put the associated
250 GOT entries towards the beginning. We therefore divide the global
251 GOT entries into two areas: "normal" and "reloc-only". Entries in
252 the first area can be used for both dynamic relocations and GP-relative
253 accesses, while those in the "reloc-only" area are for dynamic
254 relocations only.
255
256 These GGA_* ("Global GOT Area") values are organised so that lower
257 values are more general than higher values. Also, non-GGA_NONE
258 values are ordered by the position of the area in the GOT. */
259 #define GGA_NORMAL 0
260 #define GGA_RELOC_ONLY 1
261 #define GGA_NONE 2
262
263 /* Information about a non-PIC interface to a PIC function. There are
264 two ways of creating these interfaces. The first is to add:
265
266 lui $25,%hi(func)
267 addiu $25,$25,%lo(func)
268
269 immediately before a PIC function "func". The second is to add:
270
271 lui $25,%hi(func)
272 j func
273 addiu $25,$25,%lo(func)
274
275 to a separate trampoline section.
276
277 Stubs of the first kind go in a new section immediately before the
278 target function. Stubs of the second kind go in a single section
279 pointed to by the hash table's "strampoline" field. */
280 struct mips_elf_la25_stub {
281 /* The generated section that contains this stub. */
282 asection *stub_section;
283
284 /* The offset of the stub from the start of STUB_SECTION. */
285 bfd_vma offset;
286
287 /* One symbol for the original function. Its location is available
288 in H->root.root.u.def. */
289 struct mips_elf_link_hash_entry *h;
290 };
291
292 /* Macros for populating a mips_elf_la25_stub. */
293
294 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
295 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
296 #define LA25_BC(VAL) (0xc8000000 | (((VAL) >> 2) & 0x3ffffff)) /* bc VAL */
297 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
298 #define LA25_LUI_MICROMIPS(VAL) \
299 (0x41b90000 | (VAL)) /* lui t9,VAL */
300 #define LA25_J_MICROMIPS(VAL) \
301 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
302 #define LA25_ADDIU_MICROMIPS(VAL) \
303 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
304
305 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
306 the dynamic symbols. */
307
308 struct mips_elf_hash_sort_data
309 {
310 /* The symbol in the global GOT with the lowest dynamic symbol table
311 index. */
312 struct elf_link_hash_entry *low;
313 /* The least dynamic symbol table index corresponding to a non-TLS
314 symbol with a GOT entry. */
315 bfd_size_type min_got_dynindx;
316 /* The greatest dynamic symbol table index corresponding to a symbol
317 with a GOT entry that is not referenced (e.g., a dynamic symbol
318 with dynamic relocations pointing to it from non-primary GOTs). */
319 bfd_size_type max_unref_got_dynindx;
320 /* The greatest dynamic symbol table index corresponding to a local
321 symbol. */
322 bfd_size_type max_local_dynindx;
323 /* The greatest dynamic symbol table index corresponding to an external
324 symbol without a GOT entry. */
325 bfd_size_type max_non_got_dynindx;
326 /* If non-NULL, output BFD for .MIPS.xhash finalization. */
327 bfd *output_bfd;
328 /* If non-NULL, pointer to contents of .MIPS.xhash for filling in
329 real final dynindx. */
330 bfd_byte *mipsxhash;
331 };
332
333 /* We make up to two PLT entries if needed, one for standard MIPS code
334 and one for compressed code, either a MIPS16 or microMIPS one. We
335 keep a separate record of traditional lazy-binding stubs, for easier
336 processing. */
337
338 struct plt_entry
339 {
340 /* Traditional SVR4 stub offset, or -1 if none. */
341 bfd_vma stub_offset;
342
343 /* Standard PLT entry offset, or -1 if none. */
344 bfd_vma mips_offset;
345
346 /* Compressed PLT entry offset, or -1 if none. */
347 bfd_vma comp_offset;
348
349 /* The corresponding .got.plt index, or -1 if none. */
350 bfd_vma gotplt_index;
351
352 /* Whether we need a standard PLT entry. */
353 unsigned int need_mips : 1;
354
355 /* Whether we need a compressed PLT entry. */
356 unsigned int need_comp : 1;
357 };
358
359 /* The MIPS ELF linker needs additional information for each symbol in
360 the global hash table. */
361
362 struct mips_elf_link_hash_entry
363 {
364 struct elf_link_hash_entry root;
365
366 /* External symbol information. */
367 EXTR esym;
368
369 /* The la25 stub we have created for ths symbol, if any. */
370 struct mips_elf_la25_stub *la25_stub;
371
372 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
373 this symbol. */
374 unsigned int possibly_dynamic_relocs;
375
376 /* If there is a stub that 32 bit functions should use to call this
377 16 bit function, this points to the section containing the stub. */
378 asection *fn_stub;
379
380 /* If there is a stub that 16 bit functions should use to call this
381 32 bit function, this points to the section containing the stub. */
382 asection *call_stub;
383
384 /* This is like the call_stub field, but it is used if the function
385 being called returns a floating point value. */
386 asection *call_fp_stub;
387
388 /* If non-zero, location in .MIPS.xhash to write real final dynindx. */
389 bfd_vma mipsxhash_loc;
390
391 /* The highest GGA_* value that satisfies all references to this symbol. */
392 unsigned int global_got_area : 2;
393
394 /* True if all GOT relocations against this symbol are for calls. This is
395 a looser condition than no_fn_stub below, because there may be other
396 non-call non-GOT relocations against the symbol. */
397 unsigned int got_only_for_calls : 1;
398
399 /* True if one of the relocations described by possibly_dynamic_relocs
400 is against a readonly section. */
401 unsigned int readonly_reloc : 1;
402
403 /* True if there is a relocation against this symbol that must be
404 resolved by the static linker (in other words, if the relocation
405 cannot possibly be made dynamic). */
406 unsigned int has_static_relocs : 1;
407
408 /* True if we must not create a .MIPS.stubs entry for this symbol.
409 This is set, for example, if there are relocations related to
410 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
411 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
412 unsigned int no_fn_stub : 1;
413
414 /* Whether we need the fn_stub; this is true if this symbol appears
415 in any relocs other than a 16 bit call. */
416 unsigned int need_fn_stub : 1;
417
418 /* True if this symbol is referenced by branch relocations from
419 any non-PIC input file. This is used to determine whether an
420 la25 stub is required. */
421 unsigned int has_nonpic_branches : 1;
422
423 /* Does this symbol need a traditional MIPS lazy-binding stub
424 (as opposed to a PLT entry)? */
425 unsigned int needs_lazy_stub : 1;
426
427 /* Does this symbol resolve to a PLT entry? */
428 unsigned int use_plt_entry : 1;
429 };
430
431 /* MIPS ELF linker hash table. */
432
433 struct mips_elf_link_hash_table
434 {
435 struct elf_link_hash_table root;
436
437 /* The number of .rtproc entries. */
438 bfd_size_type procedure_count;
439
440 /* The size of the .compact_rel section (if SGI_COMPAT). */
441 bfd_size_type compact_rel_size;
442
443 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
444 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
445 bool use_rld_obj_head;
446
447 /* The __rld_map or __rld_obj_head symbol. */
448 struct elf_link_hash_entry *rld_symbol;
449
450 /* This is set if we see any mips16 stub sections. */
451 bool mips16_stubs_seen;
452
453 /* True if we can generate copy relocs and PLTs. */
454 bool use_plts_and_copy_relocs;
455
456 /* True if we can only use 32-bit microMIPS instructions. */
457 bool insn32;
458
459 /* True if we suppress checks for invalid branches between ISA modes. */
460 bool ignore_branch_isa;
461
462 /* True if we are targetting R6 compact branches. */
463 bool compact_branches;
464
465 /* True if we already reported the small-data section overflow. */
466 bool small_data_overflow_reported;
467
468 /* True if we use the special `__gnu_absolute_zero' symbol. */
469 bool use_absolute_zero;
470
471 /* True if we have been configured for a GNU target. */
472 bool gnu_target;
473
474 /* Shortcuts to some dynamic sections, or NULL if they are not
475 being used. */
476 asection *srelplt2;
477 asection *sstubs;
478
479 /* The master GOT information. */
480 struct mips_got_info *got_info;
481
482 /* The global symbol in the GOT with the lowest index in the dynamic
483 symbol table. */
484 struct elf_link_hash_entry *global_gotsym;
485
486 /* The size of the PLT header in bytes. */
487 bfd_vma plt_header_size;
488
489 /* The size of a standard PLT entry in bytes. */
490 bfd_vma plt_mips_entry_size;
491
492 /* The size of a compressed PLT entry in bytes. */
493 bfd_vma plt_comp_entry_size;
494
495 /* The offset of the next standard PLT entry to create. */
496 bfd_vma plt_mips_offset;
497
498 /* The offset of the next compressed PLT entry to create. */
499 bfd_vma plt_comp_offset;
500
501 /* The index of the next .got.plt entry to create. */
502 bfd_vma plt_got_index;
503
504 /* The number of functions that need a lazy-binding stub. */
505 bfd_vma lazy_stub_count;
506
507 /* The size of a function stub entry in bytes. */
508 bfd_vma function_stub_size;
509
510 /* The number of reserved entries at the beginning of the GOT. */
511 unsigned int reserved_gotno;
512
513 /* The section used for mips_elf_la25_stub trampolines.
514 See the comment above that structure for details. */
515 asection *strampoline;
516
517 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
518 pairs. */
519 htab_t la25_stubs;
520
521 /* A function FN (NAME, IS, OS) that creates a new input section
522 called NAME and links it to output section OS. If IS is nonnull,
523 the new section should go immediately before it, otherwise it
524 should go at the (current) beginning of OS.
525
526 The function returns the new section on success, otherwise it
527 returns null. */
528 asection *(*add_stub_section) (const char *, asection *, asection *);
529
530 /* Is the PLT header compressed? */
531 unsigned int plt_header_is_comp : 1;
532 };
533
534 /* Get the MIPS ELF linker hash table from a link_info structure. */
535
536 #define mips_elf_hash_table(p) \
537 ((is_elf_hash_table ((p)->hash) \
538 && elf_hash_table_id (elf_hash_table (p)) == MIPS_ELF_DATA) \
539 ? (struct mips_elf_link_hash_table *) (p)->hash : NULL)
540
541 /* A structure used to communicate with htab_traverse callbacks. */
542 struct mips_htab_traverse_info
543 {
544 /* The usual link-wide information. */
545 struct bfd_link_info *info;
546 bfd *output_bfd;
547
548 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
549 bool error;
550 };
551
552 /* MIPS ELF private object data. */
553
554 struct mips_elf_obj_tdata
555 {
556 /* Generic ELF private object data. */
557 struct elf_obj_tdata root;
558
559 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
560 bfd *abi_fp_bfd;
561
562 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
563 bfd *abi_msa_bfd;
564
565 /* The abiflags for this object. */
566 Elf_Internal_ABIFlags_v0 abiflags;
567 bool abiflags_valid;
568
569 /* The GOT requirements of input bfds. */
570 struct mips_got_info *got;
571
572 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
573 included directly in this one, but there's no point to wasting
574 the memory just for the infrequently called find_nearest_line. */
575 struct mips_elf_find_line *find_line_info;
576
577 /* An array of stub sections indexed by symbol number. */
578 asection **local_stubs;
579 asection **local_call_stubs;
580
581 /* The Irix 5 support uses two virtual sections, which represent
582 text/data symbols defined in dynamic objects. */
583 asymbol *elf_data_symbol;
584 asymbol *elf_text_symbol;
585 asection *elf_data_section;
586 asection *elf_text_section;
587 };
588
589 /* Get MIPS ELF private object data from BFD's tdata. */
590
591 #define mips_elf_tdata(bfd) \
592 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
593
594 #define TLS_RELOC_P(r_type) \
595 (r_type == R_MIPS_TLS_DTPMOD32 \
596 || r_type == R_MIPS_TLS_DTPMOD64 \
597 || r_type == R_MIPS_TLS_DTPREL32 \
598 || r_type == R_MIPS_TLS_DTPREL64 \
599 || r_type == R_MIPS_TLS_GD \
600 || r_type == R_MIPS_TLS_LDM \
601 || r_type == R_MIPS_TLS_DTPREL_HI16 \
602 || r_type == R_MIPS_TLS_DTPREL_LO16 \
603 || r_type == R_MIPS_TLS_GOTTPREL \
604 || r_type == R_MIPS_TLS_TPREL32 \
605 || r_type == R_MIPS_TLS_TPREL64 \
606 || r_type == R_MIPS_TLS_TPREL_HI16 \
607 || r_type == R_MIPS_TLS_TPREL_LO16 \
608 || r_type == R_MIPS16_TLS_GD \
609 || r_type == R_MIPS16_TLS_LDM \
610 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
611 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
612 || r_type == R_MIPS16_TLS_GOTTPREL \
613 || r_type == R_MIPS16_TLS_TPREL_HI16 \
614 || r_type == R_MIPS16_TLS_TPREL_LO16 \
615 || r_type == R_MICROMIPS_TLS_GD \
616 || r_type == R_MICROMIPS_TLS_LDM \
617 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
618 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
619 || r_type == R_MICROMIPS_TLS_GOTTPREL \
620 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
621 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
622
623 /* Structure used to pass information to mips_elf_output_extsym. */
624
625 struct extsym_info
626 {
627 bfd *abfd;
628 struct bfd_link_info *info;
629 struct ecoff_debug_info *debug;
630 const struct ecoff_debug_swap *swap;
631 bool failed;
632 };
633
634 /* The names of the runtime procedure table symbols used on IRIX5. */
635
636 static const char * const mips_elf_dynsym_rtproc_names[] =
637 {
638 "_procedure_table",
639 "_procedure_string_table",
640 "_procedure_table_size",
641 NULL
642 };
643
644 /* These structures are used to generate the .compact_rel section on
645 IRIX5. */
646
647 typedef struct
648 {
649 unsigned long id1; /* Always one? */
650 unsigned long num; /* Number of compact relocation entries. */
651 unsigned long id2; /* Always two? */
652 unsigned long offset; /* The file offset of the first relocation. */
653 unsigned long reserved0; /* Zero? */
654 unsigned long reserved1; /* Zero? */
655 } Elf32_compact_rel;
656
657 typedef struct
658 {
659 bfd_byte id1[4];
660 bfd_byte num[4];
661 bfd_byte id2[4];
662 bfd_byte offset[4];
663 bfd_byte reserved0[4];
664 bfd_byte reserved1[4];
665 } Elf32_External_compact_rel;
666
667 typedef struct
668 {
669 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
670 unsigned int rtype : 4; /* Relocation types. See below. */
671 unsigned int dist2to : 8;
672 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
673 unsigned long konst; /* KONST field. See below. */
674 unsigned long vaddr; /* VADDR to be relocated. */
675 } Elf32_crinfo;
676
677 typedef struct
678 {
679 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
680 unsigned int rtype : 4; /* Relocation types. See below. */
681 unsigned int dist2to : 8;
682 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
683 unsigned long konst; /* KONST field. See below. */
684 } Elf32_crinfo2;
685
686 typedef struct
687 {
688 bfd_byte info[4];
689 bfd_byte konst[4];
690 bfd_byte vaddr[4];
691 } Elf32_External_crinfo;
692
693 typedef struct
694 {
695 bfd_byte info[4];
696 bfd_byte konst[4];
697 } Elf32_External_crinfo2;
698
699 /* These are the constants used to swap the bitfields in a crinfo. */
700
701 #define CRINFO_CTYPE (0x1U)
702 #define CRINFO_CTYPE_SH (31)
703 #define CRINFO_RTYPE (0xfU)
704 #define CRINFO_RTYPE_SH (27)
705 #define CRINFO_DIST2TO (0xffU)
706 #define CRINFO_DIST2TO_SH (19)
707 #define CRINFO_RELVADDR (0x7ffffU)
708 #define CRINFO_RELVADDR_SH (0)
709
710 /* A compact relocation info has long (3 words) or short (2 words)
711 formats. A short format doesn't have VADDR field and relvaddr
712 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
713 #define CRF_MIPS_LONG 1
714 #define CRF_MIPS_SHORT 0
715
716 /* There are 4 types of compact relocation at least. The value KONST
717 has different meaning for each type:
718
719 (type) (konst)
720 CT_MIPS_REL32 Address in data
721 CT_MIPS_WORD Address in word (XXX)
722 CT_MIPS_GPHI_LO GP - vaddr
723 CT_MIPS_JMPAD Address to jump
724 */
725
726 #define CRT_MIPS_REL32 0xa
727 #define CRT_MIPS_WORD 0xb
728 #define CRT_MIPS_GPHI_LO 0xc
729 #define CRT_MIPS_JMPAD 0xd
730
731 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
732 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
733 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
734 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
735
736 /* The structure of the runtime procedure descriptor created by the
737 loader for use by the static exception system. */
738
739 typedef struct runtime_pdr {
740 bfd_vma adr; /* Memory address of start of procedure. */
741 long regmask; /* Save register mask. */
742 long regoffset; /* Save register offset. */
743 long fregmask; /* Save floating point register mask. */
744 long fregoffset; /* Save floating point register offset. */
745 long frameoffset; /* Frame size. */
746 short framereg; /* Frame pointer register. */
747 short pcreg; /* Offset or reg of return pc. */
748 long irpss; /* Index into the runtime string table. */
749 long reserved;
750 struct exception_info *exception_info;/* Pointer to exception array. */
751 } RPDR, *pRPDR;
752 #define cbRPDR sizeof (RPDR)
753 #define rpdNil ((pRPDR) 0)
754
755 static struct mips_got_entry *mips_elf_create_local_got_entry
756 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
757 struct mips_elf_link_hash_entry *, int);
758 static bool mips_elf_sort_hash_table_f
759 (struct mips_elf_link_hash_entry *, void *);
760 static bfd_vma mips_elf_high
761 (bfd_vma);
762 static bool mips_elf_create_dynamic_relocation
763 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
764 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
765 bfd_vma *, asection *);
766 static bfd_vma mips_elf_adjust_gp
767 (bfd *, struct mips_got_info *, bfd *);
768
769 /* This will be used when we sort the dynamic relocation records. */
770 static bfd *reldyn_sorting_bfd;
771
772 /* True if ABFD is for CPUs with load interlocking that include
773 non-MIPS1 CPUs and R3900. */
774 #define LOAD_INTERLOCKS_P(abfd) \
775 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
776 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
777
778 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
779 This should be safe for all architectures. We enable this predicate
780 for RM9000 for now. */
781 #define JAL_TO_BAL_P(abfd) \
782 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
783
784 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
785 This should be safe for all architectures. We enable this predicate for
786 all CPUs. */
787 #define JALR_TO_BAL_P(abfd) 1
788
789 /* True if ABFD is for CPUs that are faster if JR is converted to B.
790 This should be safe for all architectures. We enable this predicate for
791 all CPUs. */
792 #define JR_TO_B_P(abfd) 1
793
794 /* True if ABFD is a PIC object. */
795 #define PIC_OBJECT_P(abfd) \
796 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
797
798 /* Nonzero if ABFD is using the O32 ABI. */
799 #define ABI_O32_P(abfd) \
800 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
801
802 /* Nonzero if ABFD is using the N32 ABI. */
803 #define ABI_N32_P(abfd) \
804 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
805
806 /* Nonzero if ABFD is using the N64 ABI. */
807 #define ABI_64_P(abfd) \
808 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
809
810 /* Nonzero if ABFD is using NewABI conventions. */
811 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
812
813 /* Nonzero if ABFD has microMIPS code. */
814 #define MICROMIPS_P(abfd) \
815 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
816
817 /* Nonzero if ABFD is MIPS R6. */
818 #define MIPSR6_P(abfd) \
819 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
820 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
821
822 /* The IRIX compatibility level we are striving for. */
823 #define IRIX_COMPAT(abfd) \
824 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
825
826 /* Whether we are trying to be compatible with IRIX at all. */
827 #define SGI_COMPAT(abfd) \
828 (IRIX_COMPAT (abfd) != ict_none)
829
830 /* The name of the options section. */
831 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
832 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
833
834 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
835 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
836 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
837 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
838
839 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
840 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
841 (strcmp (NAME, ".MIPS.abiflags") == 0)
842
843 /* Whether the section is readonly. */
844 #define MIPS_ELF_READONLY_SECTION(sec) \
845 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
846 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
847
848 /* The name of the stub section. */
849 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
850
851 /* The size of an external REL relocation. */
852 #define MIPS_ELF_REL_SIZE(abfd) \
853 (get_elf_backend_data (abfd)->s->sizeof_rel)
854
855 /* The size of an external RELA relocation. */
856 #define MIPS_ELF_RELA_SIZE(abfd) \
857 (get_elf_backend_data (abfd)->s->sizeof_rela)
858
859 /* The size of an external dynamic table entry. */
860 #define MIPS_ELF_DYN_SIZE(abfd) \
861 (get_elf_backend_data (abfd)->s->sizeof_dyn)
862
863 /* The size of a GOT entry. */
864 #define MIPS_ELF_GOT_SIZE(abfd) \
865 (get_elf_backend_data (abfd)->s->arch_size / 8)
866
867 /* The size of the .rld_map section. */
868 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
869 (get_elf_backend_data (abfd)->s->arch_size / 8)
870
871 /* The size of a symbol-table entry. */
872 #define MIPS_ELF_SYM_SIZE(abfd) \
873 (get_elf_backend_data (abfd)->s->sizeof_sym)
874
875 /* The default alignment for sections, as a power of two. */
876 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
877 (get_elf_backend_data (abfd)->s->log_file_align)
878
879 /* Get word-sized data. */
880 #define MIPS_ELF_GET_WORD(abfd, ptr) \
881 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
882
883 /* Put out word-sized data. */
884 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
885 (ABI_64_P (abfd) \
886 ? bfd_put_64 (abfd, val, ptr) \
887 : bfd_put_32 (abfd, val, ptr))
888
889 /* The opcode for word-sized loads (LW or LD). */
890 #define MIPS_ELF_LOAD_WORD(abfd) \
891 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
892
893 /* Add a dynamic symbol table-entry. */
894 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
895 _bfd_elf_add_dynamic_entry (info, tag, val)
896
897 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
898 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (abfd, rtype, rela))
899
900 /* The name of the dynamic relocation section. */
901 #define MIPS_ELF_REL_DYN_NAME(INFO) \
902 (mips_elf_hash_table (INFO)->root.target_os == is_vxworks \
903 ? ".rela.dyn" : ".rel.dyn")
904
905 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
906 from smaller values. Start with zero, widen, *then* decrement. */
907 #define MINUS_ONE (((bfd_vma)0) - 1)
908 #define MINUS_TWO (((bfd_vma)0) - 2)
909
910 /* The value to write into got[1] for SVR4 targets, to identify it is
911 a GNU object. The dynamic linker can then use got[1] to store the
912 module pointer. */
913 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
914 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
915
916 /* The offset of $gp from the beginning of the .got section. */
917 #define ELF_MIPS_GP_OFFSET(INFO) \
918 (mips_elf_hash_table (INFO)->root.target_os == is_vxworks \
919 ? 0x0 : 0x7ff0)
920
921 /* The maximum size of the GOT for it to be addressable using 16-bit
922 offsets from $gp. */
923 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
924
925 /* Instructions which appear in a stub. */
926 #define STUB_LW(abfd) \
927 ((ABI_64_P (abfd) \
928 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
929 : 0x8f998010)) /* lw t9,0x8010(gp) */
930 #define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
931 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
932 #define STUB_JALR 0x0320f809 /* jalr ra,t9 */
933 #define STUB_JALRC 0xf8190000 /* jalrc ra,t9 */
934 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
935 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
936 #define STUB_LI16S(abfd, VAL) \
937 ((ABI_64_P (abfd) \
938 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
939 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
940
941 /* Likewise for the microMIPS ASE. */
942 #define STUB_LW_MICROMIPS(abfd) \
943 (ABI_64_P (abfd) \
944 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
945 : 0xff3c8010) /* lw t9,0x8010(gp) */
946 #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
947 #define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
948 #define STUB_LUI_MICROMIPS(VAL) \
949 (0x41b80000 + (VAL)) /* lui t8,VAL */
950 #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
951 #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
952 #define STUB_ORI_MICROMIPS(VAL) \
953 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
954 #define STUB_LI16U_MICROMIPS(VAL) \
955 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
956 #define STUB_LI16S_MICROMIPS(abfd, VAL) \
957 (ABI_64_P (abfd) \
958 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
959 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
960
961 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
962 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
963 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
964 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
965 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
966 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
967
968 /* The name of the dynamic interpreter. This is put in the .interp
969 section. */
970
971 #define ELF_DYNAMIC_INTERPRETER(abfd) \
972 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
973 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
974 : "/usr/lib/libc.so.1")
975
976 #ifdef BFD64
977 #define MNAME(bfd,pre,pos) \
978 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
979 #define ELF_R_SYM(bfd, i) \
980 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
981 #define ELF_R_TYPE(bfd, i) \
982 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
983 #define ELF_R_INFO(bfd, s, t) \
984 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
985 #else
986 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
987 #define ELF_R_SYM(bfd, i) \
988 (ELF32_R_SYM (i))
989 #define ELF_R_TYPE(bfd, i) \
990 (ELF32_R_TYPE (i))
991 #define ELF_R_INFO(bfd, s, t) \
992 (ELF32_R_INFO (s, t))
993 #endif
994
995 /* The mips16 compiler uses a couple of special sections to handle
996 floating point arguments.
997
998 Section names that look like .mips16.fn.FNNAME contain stubs that
999 copy floating point arguments from the fp regs to the gp regs and
1000 then jump to FNNAME. If any 32 bit function calls FNNAME, the
1001 call should be redirected to the stub instead. If no 32 bit
1002 function calls FNNAME, the stub should be discarded. We need to
1003 consider any reference to the function, not just a call, because
1004 if the address of the function is taken we will need the stub,
1005 since the address might be passed to a 32 bit function.
1006
1007 Section names that look like .mips16.call.FNNAME contain stubs
1008 that copy floating point arguments from the gp regs to the fp
1009 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
1010 then any 16 bit function that calls FNNAME should be redirected
1011 to the stub instead. If FNNAME is not a 32 bit function, the
1012 stub should be discarded.
1013
1014 .mips16.call.fp.FNNAME sections are similar, but contain stubs
1015 which call FNNAME and then copy the return value from the fp regs
1016 to the gp regs. These stubs store the return value in $18 while
1017 calling FNNAME; any function which might call one of these stubs
1018 must arrange to save $18 around the call. (This case is not
1019 needed for 32 bit functions that call 16 bit functions, because
1020 16 bit functions always return floating point values in both
1021 $f0/$f1 and $2/$3.)
1022
1023 Note that in all cases FNNAME might be defined statically.
1024 Therefore, FNNAME is not used literally. Instead, the relocation
1025 information will indicate which symbol the section is for.
1026
1027 We record any stubs that we find in the symbol table. */
1028
1029 #define FN_STUB ".mips16.fn."
1030 #define CALL_STUB ".mips16.call."
1031 #define CALL_FP_STUB ".mips16.call.fp."
1032
1033 #define FN_STUB_P(name) startswith (name, FN_STUB)
1034 #define CALL_STUB_P(name) startswith (name, CALL_STUB)
1035 #define CALL_FP_STUB_P(name) startswith (name, CALL_FP_STUB)
1036
1037 /* The format of the first PLT entry in an O32 executable. */
1038 static const bfd_vma mips_o32_exec_plt0_entry[] =
1039 {
1040 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1041 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1042 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1043 0x031cc023, /* subu $24, $24, $28 */
1044 0x03e07825, /* or t7, ra, zero */
1045 0x0018c082, /* srl $24, $24, 2 */
1046 0x0320f809, /* jalr $25 */
1047 0x2718fffe /* subu $24, $24, 2 */
1048 };
1049
1050 /* The format of the first PLT entry in an O32 executable using compact
1051 jumps. */
1052 static const bfd_vma mipsr6_o32_exec_plt0_entry_compact[] =
1053 {
1054 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1055 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1056 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1057 0x031cc023, /* subu $24, $24, $28 */
1058 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
1059 0x0018c082, /* srl $24, $24, 2 */
1060 0x2718fffe, /* subu $24, $24, 2 */
1061 0xf8190000 /* jalrc $25 */
1062 };
1063
1064 /* The format of the first PLT entry in an N32 executable. Different
1065 because gp ($28) is not available; we use t2 ($14) instead. */
1066 static const bfd_vma mips_n32_exec_plt0_entry[] =
1067 {
1068 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1069 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1070 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1071 0x030ec023, /* subu $24, $24, $14 */
1072 0x03e07825, /* or t7, ra, zero */
1073 0x0018c082, /* srl $24, $24, 2 */
1074 0x0320f809, /* jalr $25 */
1075 0x2718fffe /* subu $24, $24, 2 */
1076 };
1077
1078 /* The format of the first PLT entry in an N32 executable using compact
1079 jumps. Different because gp ($28) is not available; we use t2 ($14)
1080 instead. */
1081 static const bfd_vma mipsr6_n32_exec_plt0_entry_compact[] =
1082 {
1083 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1084 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1085 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1086 0x030ec023, /* subu $24, $24, $14 */
1087 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
1088 0x0018c082, /* srl $24, $24, 2 */
1089 0x2718fffe, /* subu $24, $24, 2 */
1090 0xf8190000 /* jalrc $25 */
1091 };
1092
1093 /* The format of the first PLT entry in an N64 executable. Different
1094 from N32 because of the increased size of GOT entries. */
1095 static const bfd_vma mips_n64_exec_plt0_entry[] =
1096 {
1097 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1098 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1099 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1100 0x030ec023, /* subu $24, $24, $14 */
1101 0x03e07825, /* or t7, ra, zero */
1102 0x0018c0c2, /* srl $24, $24, 3 */
1103 0x0320f809, /* jalr $25 */
1104 0x2718fffe /* subu $24, $24, 2 */
1105 };
1106
1107 /* The format of the first PLT entry in an N64 executable using compact
1108 jumps. Different from N32 because of the increased size of GOT
1109 entries. */
1110 static const bfd_vma mipsr6_n64_exec_plt0_entry_compact[] =
1111 {
1112 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1113 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1114 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1115 0x030ec023, /* subu $24, $24, $14 */
1116 0x03e0782d, /* move $15, $31 # 64-bit move (daddu) */
1117 0x0018c0c2, /* srl $24, $24, 3 */
1118 0x2718fffe, /* subu $24, $24, 2 */
1119 0xf8190000 /* jalrc $25 */
1120 };
1121
1122
1123 /* The format of the microMIPS first PLT entry in an O32 executable.
1124 We rely on v0 ($2) rather than t8 ($24) to contain the address
1125 of the GOTPLT entry handled, so this stub may only be used when
1126 all the subsequent PLT entries are microMIPS code too.
1127
1128 The trailing NOP is for alignment and correct disassembly only. */
1129 static const bfd_vma micromips_o32_exec_plt0_entry[] =
1130 {
1131 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1132 0xff23, 0x0000, /* lw $25, 0($3) */
1133 0x0535, /* subu $2, $2, $3 */
1134 0x2525, /* srl $2, $2, 2 */
1135 0x3302, 0xfffe, /* subu $24, $2, 2 */
1136 0x0dff, /* move $15, $31 */
1137 0x45f9, /* jalrs $25 */
1138 0x0f83, /* move $28, $3 */
1139 0x0c00 /* nop */
1140 };
1141
1142 /* The format of the microMIPS first PLT entry in an O32 executable
1143 in the insn32 mode. */
1144 static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1145 {
1146 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1147 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1148 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1149 0x0398, 0xc1d0, /* subu $24, $24, $28 */
1150 0x001f, 0x7a90, /* or $15, $31, zero */
1151 0x0318, 0x1040, /* srl $24, $24, 2 */
1152 0x03f9, 0x0f3c, /* jalr $25 */
1153 0x3318, 0xfffe /* subu $24, $24, 2 */
1154 };
1155
1156 /* The format of subsequent standard PLT entries. */
1157 static const bfd_vma mips_exec_plt_entry[] =
1158 {
1159 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1160 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1161 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1162 0x03200008 /* jr $25 */
1163 };
1164
1165 static const bfd_vma mipsr6_exec_plt_entry[] =
1166 {
1167 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1168 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1169 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1170 0x03200009 /* jr $25 */
1171 };
1172
1173 static const bfd_vma mipsr6_exec_plt_entry_compact[] =
1174 {
1175 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1176 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1177 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1178 0xd8190000 /* jic $25, 0 */
1179 };
1180
1181 /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1182 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1183 directly addressable. */
1184 static const bfd_vma mips16_o32_exec_plt_entry[] =
1185 {
1186 0xb203, /* lw $2, 12($pc) */
1187 0x9a60, /* lw $3, 0($2) */
1188 0x651a, /* move $24, $2 */
1189 0xeb00, /* jr $3 */
1190 0x653b, /* move $25, $3 */
1191 0x6500, /* nop */
1192 0x0000, 0x0000 /* .word (.got.plt entry) */
1193 };
1194
1195 /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1196 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1197 static const bfd_vma micromips_o32_exec_plt_entry[] =
1198 {
1199 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1200 0xff22, 0x0000, /* lw $25, 0($2) */
1201 0x4599, /* jr $25 */
1202 0x0f02 /* move $24, $2 */
1203 };
1204
1205 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1206 static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1207 {
1208 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1209 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1210 0x0019, 0x0f3c, /* jr $25 */
1211 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1212 };
1213
1214 /* The format of the first PLT entry in a VxWorks executable. */
1215 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1216 {
1217 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1218 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1219 0x8f390008, /* lw t9, 8(t9) */
1220 0x00000000, /* nop */
1221 0x03200008, /* jr t9 */
1222 0x00000000 /* nop */
1223 };
1224
1225 /* The format of subsequent PLT entries. */
1226 static const bfd_vma mips_vxworks_exec_plt_entry[] =
1227 {
1228 0x10000000, /* b .PLT_resolver */
1229 0x24180000, /* li t8, <pltindex> */
1230 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1231 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1232 0x8f390000, /* lw t9, 0(t9) */
1233 0x00000000, /* nop */
1234 0x03200008, /* jr t9 */
1235 0x00000000 /* nop */
1236 };
1237
1238 /* The format of the first PLT entry in a VxWorks shared object. */
1239 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1240 {
1241 0x8f990008, /* lw t9, 8(gp) */
1242 0x00000000, /* nop */
1243 0x03200008, /* jr t9 */
1244 0x00000000, /* nop */
1245 0x00000000, /* nop */
1246 0x00000000 /* nop */
1247 };
1248
1249 /* The format of subsequent PLT entries. */
1250 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1251 {
1252 0x10000000, /* b .PLT_resolver */
1253 0x24180000 /* li t8, <pltindex> */
1254 };
1255
1256 /* microMIPS 32-bit opcode helper installer. */
1257
1258 static void
bfd_put_micromips_32(const bfd * abfd,bfd_vma opcode,bfd_byte * ptr)1259 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1260 {
1261 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1262 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1263 }
1264
1265 /* microMIPS 32-bit opcode helper retriever. */
1266
1267 static bfd_vma
bfd_get_micromips_32(const bfd * abfd,const bfd_byte * ptr)1268 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1269 {
1270 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1271 }
1272
1273 /* Look up an entry in a MIPS ELF linker hash table. */
1274
1275 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1276 ((struct mips_elf_link_hash_entry *) \
1277 elf_link_hash_lookup (&(table)->root, (string), (create), \
1278 (copy), (follow)))
1279
1280 /* Traverse a MIPS ELF linker hash table. */
1281
1282 #define mips_elf_link_hash_traverse(table, func, info) \
1283 (elf_link_hash_traverse \
1284 (&(table)->root, \
1285 (bool (*) (struct elf_link_hash_entry *, void *)) (func), \
1286 (info)))
1287
1288 /* Find the base offsets for thread-local storage in this object,
1289 for GD/LD and IE/LE respectively. */
1290
1291 #define TP_OFFSET 0x7000
1292 #define DTP_OFFSET 0x8000
1293
1294 static bfd_vma
dtprel_base(struct bfd_link_info * info)1295 dtprel_base (struct bfd_link_info *info)
1296 {
1297 /* If tls_sec is NULL, we should have signalled an error already. */
1298 if (elf_hash_table (info)->tls_sec == NULL)
1299 return 0;
1300 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1301 }
1302
1303 static bfd_vma
tprel_base(struct bfd_link_info * info)1304 tprel_base (struct bfd_link_info *info)
1305 {
1306 /* If tls_sec is NULL, we should have signalled an error already. */
1307 if (elf_hash_table (info)->tls_sec == NULL)
1308 return 0;
1309 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1310 }
1311
1312 /* Create an entry in a MIPS ELF linker hash table. */
1313
1314 static struct bfd_hash_entry *
mips_elf_link_hash_newfunc(struct bfd_hash_entry * entry,struct bfd_hash_table * table,const char * string)1315 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1316 struct bfd_hash_table *table, const char *string)
1317 {
1318 struct mips_elf_link_hash_entry *ret =
1319 (struct mips_elf_link_hash_entry *) entry;
1320
1321 /* Allocate the structure if it has not already been allocated by a
1322 subclass. */
1323 if (ret == NULL)
1324 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1325 if (ret == NULL)
1326 return (struct bfd_hash_entry *) ret;
1327
1328 /* Call the allocation method of the superclass. */
1329 ret = ((struct mips_elf_link_hash_entry *)
1330 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1331 table, string));
1332 if (ret != NULL)
1333 {
1334 /* Set local fields. */
1335 memset (&ret->esym, 0, sizeof (EXTR));
1336 /* We use -2 as a marker to indicate that the information has
1337 not been set. -1 means there is no associated ifd. */
1338 ret->esym.ifd = -2;
1339 ret->la25_stub = 0;
1340 ret->possibly_dynamic_relocs = 0;
1341 ret->fn_stub = NULL;
1342 ret->call_stub = NULL;
1343 ret->call_fp_stub = NULL;
1344 ret->mipsxhash_loc = 0;
1345 ret->global_got_area = GGA_NONE;
1346 ret->got_only_for_calls = true;
1347 ret->readonly_reloc = false;
1348 ret->has_static_relocs = false;
1349 ret->no_fn_stub = false;
1350 ret->need_fn_stub = false;
1351 ret->has_nonpic_branches = false;
1352 ret->needs_lazy_stub = false;
1353 ret->use_plt_entry = false;
1354 }
1355
1356 return (struct bfd_hash_entry *) ret;
1357 }
1358
1359 /* Allocate MIPS ELF private object data. */
1360
1361 bool
_bfd_mips_elf_mkobject(bfd * abfd)1362 _bfd_mips_elf_mkobject (bfd *abfd)
1363 {
1364 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1365 MIPS_ELF_DATA);
1366 }
1367
1368 bool
_bfd_mips_elf_new_section_hook(bfd * abfd,asection * sec)1369 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1370 {
1371 if (!sec->used_by_bfd)
1372 {
1373 struct _mips_elf_section_data *sdata;
1374 size_t amt = sizeof (*sdata);
1375
1376 sdata = bfd_zalloc (abfd, amt);
1377 if (sdata == NULL)
1378 return false;
1379 sec->used_by_bfd = sdata;
1380 }
1381
1382 return _bfd_elf_new_section_hook (abfd, sec);
1383 }
1384
1385 /* Read ECOFF debugging information from a .mdebug section into a
1386 ecoff_debug_info structure. */
1387
1388 bool
_bfd_mips_elf_read_ecoff_info(bfd * abfd,asection * section,struct ecoff_debug_info * debug)1389 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1390 struct ecoff_debug_info *debug)
1391 {
1392 HDRR *symhdr;
1393 const struct ecoff_debug_swap *swap;
1394 char *ext_hdr;
1395
1396 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1397 memset (debug, 0, sizeof (*debug));
1398
1399 ext_hdr = bfd_malloc (swap->external_hdr_size);
1400 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1401 goto error_return;
1402
1403 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1404 swap->external_hdr_size))
1405 goto error_return;
1406
1407 symhdr = &debug->symbolic_header;
1408 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1409
1410 /* The symbolic header contains absolute file offsets and sizes to
1411 read. */
1412 #define READ(ptr, offset, count, size, type) \
1413 do \
1414 { \
1415 size_t amt; \
1416 debug->ptr = NULL; \
1417 if (symhdr->count == 0) \
1418 break; \
1419 if (_bfd_mul_overflow (size, symhdr->count, &amt)) \
1420 { \
1421 bfd_set_error (bfd_error_file_too_big); \
1422 goto error_return; \
1423 } \
1424 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0) \
1425 goto error_return; \
1426 debug->ptr = (type) _bfd_malloc_and_read (abfd, amt, amt); \
1427 if (debug->ptr == NULL) \
1428 goto error_return; \
1429 } while (0)
1430
1431 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1432 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1433 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1434 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1435 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1436 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1437 union aux_ext *);
1438 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1439 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1440 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1441 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1442 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1443 #undef READ
1444
1445 debug->fdr = NULL;
1446
1447 return true;
1448
1449 error_return:
1450 free (ext_hdr);
1451 free (debug->line);
1452 free (debug->external_dnr);
1453 free (debug->external_pdr);
1454 free (debug->external_sym);
1455 free (debug->external_opt);
1456 free (debug->external_aux);
1457 free (debug->ss);
1458 free (debug->ssext);
1459 free (debug->external_fdr);
1460 free (debug->external_rfd);
1461 free (debug->external_ext);
1462 return false;
1463 }
1464
1465 /* Swap RPDR (runtime procedure table entry) for output. */
1466
1467 static void
ecoff_swap_rpdr_out(bfd * abfd,const RPDR * in,struct rpdr_ext * ex)1468 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1469 {
1470 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1471 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1472 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1473 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1474 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1475 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1476
1477 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1478 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1479
1480 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1481 }
1482
1483 /* Create a runtime procedure table from the .mdebug section. */
1484
1485 static bool
mips_elf_create_procedure_table(void * handle,bfd * abfd,struct bfd_link_info * info,asection * s,struct ecoff_debug_info * debug)1486 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1487 struct bfd_link_info *info, asection *s,
1488 struct ecoff_debug_info *debug)
1489 {
1490 const struct ecoff_debug_swap *swap;
1491 HDRR *hdr = &debug->symbolic_header;
1492 RPDR *rpdr, *rp;
1493 struct rpdr_ext *erp;
1494 void *rtproc;
1495 struct pdr_ext *epdr;
1496 struct sym_ext *esym;
1497 char *ss, **sv;
1498 char *str;
1499 bfd_size_type size;
1500 bfd_size_type count;
1501 unsigned long sindex;
1502 unsigned long i;
1503 PDR pdr;
1504 SYMR sym;
1505 const char *no_name_func = _("static procedure (no name)");
1506
1507 epdr = NULL;
1508 rpdr = NULL;
1509 esym = NULL;
1510 ss = NULL;
1511 sv = NULL;
1512
1513 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1514
1515 sindex = strlen (no_name_func) + 1;
1516 count = hdr->ipdMax;
1517 if (count > 0)
1518 {
1519 size = swap->external_pdr_size;
1520
1521 epdr = bfd_malloc (size * count);
1522 if (epdr == NULL)
1523 goto error_return;
1524
1525 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1526 goto error_return;
1527
1528 size = sizeof (RPDR);
1529 rp = rpdr = bfd_malloc (size * count);
1530 if (rpdr == NULL)
1531 goto error_return;
1532
1533 size = sizeof (char *);
1534 sv = bfd_malloc (size * count);
1535 if (sv == NULL)
1536 goto error_return;
1537
1538 count = hdr->isymMax;
1539 size = swap->external_sym_size;
1540 esym = bfd_malloc (size * count);
1541 if (esym == NULL)
1542 goto error_return;
1543
1544 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1545 goto error_return;
1546
1547 count = hdr->issMax;
1548 ss = bfd_malloc (count);
1549 if (ss == NULL)
1550 goto error_return;
1551 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1552 goto error_return;
1553
1554 count = hdr->ipdMax;
1555 for (i = 0; i < (unsigned long) count; i++, rp++)
1556 {
1557 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1558 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1559 rp->adr = sym.value;
1560 rp->regmask = pdr.regmask;
1561 rp->regoffset = pdr.regoffset;
1562 rp->fregmask = pdr.fregmask;
1563 rp->fregoffset = pdr.fregoffset;
1564 rp->frameoffset = pdr.frameoffset;
1565 rp->framereg = pdr.framereg;
1566 rp->pcreg = pdr.pcreg;
1567 rp->irpss = sindex;
1568 sv[i] = ss + sym.iss;
1569 sindex += strlen (sv[i]) + 1;
1570 }
1571 }
1572
1573 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1574 size = BFD_ALIGN (size, 16);
1575 rtproc = bfd_alloc (abfd, size);
1576 if (rtproc == NULL)
1577 {
1578 mips_elf_hash_table (info)->procedure_count = 0;
1579 goto error_return;
1580 }
1581
1582 mips_elf_hash_table (info)->procedure_count = count + 2;
1583
1584 erp = rtproc;
1585 memset (erp, 0, sizeof (struct rpdr_ext));
1586 erp++;
1587 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1588 strcpy (str, no_name_func);
1589 str += strlen (no_name_func) + 1;
1590 for (i = 0; i < count; i++)
1591 {
1592 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1593 strcpy (str, sv[i]);
1594 str += strlen (sv[i]) + 1;
1595 }
1596 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1597
1598 /* Set the size and contents of .rtproc section. */
1599 s->size = size;
1600 s->contents = rtproc;
1601
1602 /* Skip this section later on (I don't think this currently
1603 matters, but someday it might). */
1604 s->map_head.link_order = NULL;
1605
1606 free (epdr);
1607 free (rpdr);
1608 free (esym);
1609 free (ss);
1610 free (sv);
1611 return true;
1612
1613 error_return:
1614 free (epdr);
1615 free (rpdr);
1616 free (esym);
1617 free (ss);
1618 free (sv);
1619 return false;
1620 }
1621
1622 /* We're going to create a stub for H. Create a symbol for the stub's
1623 value and size, to help make the disassembly easier to read. */
1624
1625 static bool
mips_elf_create_stub_symbol(struct bfd_link_info * info,struct mips_elf_link_hash_entry * h,const char * prefix,asection * s,bfd_vma value,bfd_vma size)1626 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1627 struct mips_elf_link_hash_entry *h,
1628 const char *prefix, asection *s, bfd_vma value,
1629 bfd_vma size)
1630 {
1631 bool micromips_p = ELF_ST_IS_MICROMIPS (h->root.other);
1632 struct bfd_link_hash_entry *bh;
1633 struct elf_link_hash_entry *elfh;
1634 char *name;
1635 bool res;
1636
1637 if (micromips_p)
1638 value |= 1;
1639
1640 /* Create a new symbol. */
1641 name = concat (prefix, h->root.root.root.string, NULL);
1642 bh = NULL;
1643 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1644 BSF_LOCAL, s, value, NULL,
1645 true, false, &bh);
1646 free (name);
1647 if (! res)
1648 return false;
1649
1650 /* Make it a local function. */
1651 elfh = (struct elf_link_hash_entry *) bh;
1652 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1653 elfh->size = size;
1654 elfh->forced_local = 1;
1655 if (micromips_p)
1656 elfh->other = ELF_ST_SET_MICROMIPS (elfh->other);
1657 return true;
1658 }
1659
1660 /* We're about to redefine H. Create a symbol to represent H's
1661 current value and size, to help make the disassembly easier
1662 to read. */
1663
1664 static bool
mips_elf_create_shadow_symbol(struct bfd_link_info * info,struct mips_elf_link_hash_entry * h,const char * prefix)1665 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1666 struct mips_elf_link_hash_entry *h,
1667 const char *prefix)
1668 {
1669 struct bfd_link_hash_entry *bh;
1670 struct elf_link_hash_entry *elfh;
1671 char *name;
1672 asection *s;
1673 bfd_vma value;
1674 bool res;
1675
1676 /* Read the symbol's value. */
1677 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1678 || h->root.root.type == bfd_link_hash_defweak);
1679 s = h->root.root.u.def.section;
1680 value = h->root.root.u.def.value;
1681
1682 /* Create a new symbol. */
1683 name = concat (prefix, h->root.root.root.string, NULL);
1684 bh = NULL;
1685 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1686 BSF_LOCAL, s, value, NULL,
1687 true, false, &bh);
1688 free (name);
1689 if (! res)
1690 return false;
1691
1692 /* Make it local and copy the other attributes from H. */
1693 elfh = (struct elf_link_hash_entry *) bh;
1694 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1695 elfh->other = h->root.other;
1696 elfh->size = h->root.size;
1697 elfh->forced_local = 1;
1698 return true;
1699 }
1700
1701 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1702 function rather than to a hard-float stub. */
1703
1704 static bool
section_allows_mips16_refs_p(asection * section)1705 section_allows_mips16_refs_p (asection *section)
1706 {
1707 const char *name;
1708
1709 name = bfd_section_name (section);
1710 return (FN_STUB_P (name)
1711 || CALL_STUB_P (name)
1712 || CALL_FP_STUB_P (name)
1713 || strcmp (name, ".pdr") == 0);
1714 }
1715
1716 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1717 stub section of some kind. Return the R_SYMNDX of the target
1718 function, or 0 if we can't decide which function that is. */
1719
1720 static unsigned long
mips16_stub_symndx(const struct elf_backend_data * bed,asection * sec ATTRIBUTE_UNUSED,const Elf_Internal_Rela * relocs,const Elf_Internal_Rela * relend)1721 mips16_stub_symndx (const struct elf_backend_data *bed,
1722 asection *sec ATTRIBUTE_UNUSED,
1723 const Elf_Internal_Rela *relocs,
1724 const Elf_Internal_Rela *relend)
1725 {
1726 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1727 const Elf_Internal_Rela *rel;
1728
1729 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1730 one in a compound relocation. */
1731 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1732 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1733 return ELF_R_SYM (sec->owner, rel->r_info);
1734
1735 /* Otherwise trust the first relocation, whatever its kind. This is
1736 the traditional behavior. */
1737 if (relocs < relend)
1738 return ELF_R_SYM (sec->owner, relocs->r_info);
1739
1740 return 0;
1741 }
1742
1743 /* Check the mips16 stubs for a particular symbol, and see if we can
1744 discard them. */
1745
1746 static void
mips_elf_check_mips16_stubs(struct bfd_link_info * info,struct mips_elf_link_hash_entry * h)1747 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1748 struct mips_elf_link_hash_entry *h)
1749 {
1750 /* Dynamic symbols must use the standard call interface, in case other
1751 objects try to call them. */
1752 if (h->fn_stub != NULL
1753 && h->root.dynindx != -1)
1754 {
1755 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1756 h->need_fn_stub = true;
1757 }
1758
1759 if (h->fn_stub != NULL
1760 && ! h->need_fn_stub)
1761 {
1762 /* We don't need the fn_stub; the only references to this symbol
1763 are 16 bit calls. Clobber the size to 0 to prevent it from
1764 being included in the link. */
1765 h->fn_stub->size = 0;
1766 h->fn_stub->flags &= ~SEC_RELOC;
1767 h->fn_stub->reloc_count = 0;
1768 h->fn_stub->flags |= SEC_EXCLUDE;
1769 h->fn_stub->output_section = bfd_abs_section_ptr;
1770 }
1771
1772 if (h->call_stub != NULL
1773 && ELF_ST_IS_MIPS16 (h->root.other))
1774 {
1775 /* We don't need the call_stub; this is a 16 bit function, so
1776 calls from other 16 bit functions are OK. Clobber the size
1777 to 0 to prevent it from being included in the link. */
1778 h->call_stub->size = 0;
1779 h->call_stub->flags &= ~SEC_RELOC;
1780 h->call_stub->reloc_count = 0;
1781 h->call_stub->flags |= SEC_EXCLUDE;
1782 h->call_stub->output_section = bfd_abs_section_ptr;
1783 }
1784
1785 if (h->call_fp_stub != NULL
1786 && ELF_ST_IS_MIPS16 (h->root.other))
1787 {
1788 /* We don't need the call_stub; this is a 16 bit function, so
1789 calls from other 16 bit functions are OK. Clobber the size
1790 to 0 to prevent it from being included in the link. */
1791 h->call_fp_stub->size = 0;
1792 h->call_fp_stub->flags &= ~SEC_RELOC;
1793 h->call_fp_stub->reloc_count = 0;
1794 h->call_fp_stub->flags |= SEC_EXCLUDE;
1795 h->call_fp_stub->output_section = bfd_abs_section_ptr;
1796 }
1797 }
1798
1799 /* Hashtable callbacks for mips_elf_la25_stubs. */
1800
1801 static hashval_t
mips_elf_la25_stub_hash(const void * entry_)1802 mips_elf_la25_stub_hash (const void *entry_)
1803 {
1804 const struct mips_elf_la25_stub *entry;
1805
1806 entry = (struct mips_elf_la25_stub *) entry_;
1807 return entry->h->root.root.u.def.section->id
1808 + entry->h->root.root.u.def.value;
1809 }
1810
1811 static int
mips_elf_la25_stub_eq(const void * entry1_,const void * entry2_)1812 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1813 {
1814 const struct mips_elf_la25_stub *entry1, *entry2;
1815
1816 entry1 = (struct mips_elf_la25_stub *) entry1_;
1817 entry2 = (struct mips_elf_la25_stub *) entry2_;
1818 return ((entry1->h->root.root.u.def.section
1819 == entry2->h->root.root.u.def.section)
1820 && (entry1->h->root.root.u.def.value
1821 == entry2->h->root.root.u.def.value));
1822 }
1823
1824 /* Called by the linker to set up the la25 stub-creation code. FN is
1825 the linker's implementation of add_stub_function. Return true on
1826 success. */
1827
1828 bool
_bfd_mips_elf_init_stubs(struct bfd_link_info * info,asection * (* fn)(const char *,asection *,asection *))1829 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1830 asection *(*fn) (const char *, asection *,
1831 asection *))
1832 {
1833 struct mips_elf_link_hash_table *htab;
1834
1835 htab = mips_elf_hash_table (info);
1836 if (htab == NULL)
1837 return false;
1838
1839 htab->add_stub_section = fn;
1840 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1841 mips_elf_la25_stub_eq, NULL);
1842 if (htab->la25_stubs == NULL)
1843 return false;
1844
1845 return true;
1846 }
1847
1848 /* Return true if H is a locally-defined PIC function, in the sense
1849 that it or its fn_stub might need $25 to be valid on entry.
1850 Note that MIPS16 functions set up $gp using PC-relative instructions,
1851 so they themselves never need $25 to be valid. Only non-MIPS16
1852 entry points are of interest here. */
1853
1854 static bool
mips_elf_local_pic_function_p(struct mips_elf_link_hash_entry * h)1855 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1856 {
1857 return ((h->root.root.type == bfd_link_hash_defined
1858 || h->root.root.type == bfd_link_hash_defweak)
1859 && h->root.def_regular
1860 && !bfd_is_abs_section (h->root.root.u.def.section)
1861 && !bfd_is_und_section (h->root.root.u.def.section)
1862 && (!ELF_ST_IS_MIPS16 (h->root.other)
1863 || (h->fn_stub && h->need_fn_stub))
1864 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1865 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1866 }
1867
1868 /* Set *SEC to the input section that contains the target of STUB.
1869 Return the offset of the target from the start of that section. */
1870
1871 static bfd_vma
mips_elf_get_la25_target(struct mips_elf_la25_stub * stub,asection ** sec)1872 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1873 asection **sec)
1874 {
1875 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1876 {
1877 BFD_ASSERT (stub->h->need_fn_stub);
1878 *sec = stub->h->fn_stub;
1879 return 0;
1880 }
1881 else
1882 {
1883 *sec = stub->h->root.root.u.def.section;
1884 return stub->h->root.root.u.def.value;
1885 }
1886 }
1887
1888 /* STUB describes an la25 stub that we have decided to implement
1889 by inserting an LUI/ADDIU pair before the target function.
1890 Create the section and redirect the function symbol to it. */
1891
1892 static bool
mips_elf_add_la25_intro(struct mips_elf_la25_stub * stub,struct bfd_link_info * info)1893 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1894 struct bfd_link_info *info)
1895 {
1896 struct mips_elf_link_hash_table *htab;
1897 char *name;
1898 asection *s, *input_section;
1899 unsigned int align;
1900
1901 htab = mips_elf_hash_table (info);
1902 if (htab == NULL)
1903 return false;
1904
1905 /* Create a unique name for the new section. */
1906 name = bfd_malloc (11 + sizeof (".text.stub."));
1907 if (name == NULL)
1908 return false;
1909 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1910
1911 /* Create the section. */
1912 mips_elf_get_la25_target (stub, &input_section);
1913 s = htab->add_stub_section (name, input_section,
1914 input_section->output_section);
1915 if (s == NULL)
1916 return false;
1917
1918 /* Make sure that any padding goes before the stub. */
1919 align = input_section->alignment_power;
1920 if (!bfd_set_section_alignment (s, align))
1921 return false;
1922 if (align > 3)
1923 s->size = (1 << align) - 8;
1924
1925 /* Create a symbol for the stub. */
1926 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1927 stub->stub_section = s;
1928 stub->offset = s->size;
1929
1930 /* Allocate room for it. */
1931 s->size += 8;
1932 return true;
1933 }
1934
1935 /* STUB describes an la25 stub that we have decided to implement
1936 with a separate trampoline. Allocate room for it and redirect
1937 the function symbol to it. */
1938
1939 static bool
mips_elf_add_la25_trampoline(struct mips_elf_la25_stub * stub,struct bfd_link_info * info)1940 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1941 struct bfd_link_info *info)
1942 {
1943 struct mips_elf_link_hash_table *htab;
1944 asection *s;
1945
1946 htab = mips_elf_hash_table (info);
1947 if (htab == NULL)
1948 return false;
1949
1950 /* Create a trampoline section, if we haven't already. */
1951 s = htab->strampoline;
1952 if (s == NULL)
1953 {
1954 asection *input_section = stub->h->root.root.u.def.section;
1955 s = htab->add_stub_section (".text", NULL,
1956 input_section->output_section);
1957 if (s == NULL || !bfd_set_section_alignment (s, 4))
1958 return false;
1959 htab->strampoline = s;
1960 }
1961
1962 /* Create a symbol for the stub. */
1963 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1964 stub->stub_section = s;
1965 stub->offset = s->size;
1966
1967 /* Allocate room for it. */
1968 s->size += 16;
1969 return true;
1970 }
1971
1972 /* H describes a symbol that needs an la25 stub. Make sure that an
1973 appropriate stub exists and point H at it. */
1974
1975 static bool
mips_elf_add_la25_stub(struct bfd_link_info * info,struct mips_elf_link_hash_entry * h)1976 mips_elf_add_la25_stub (struct bfd_link_info *info,
1977 struct mips_elf_link_hash_entry *h)
1978 {
1979 struct mips_elf_link_hash_table *htab;
1980 struct mips_elf_la25_stub search, *stub;
1981 bool use_trampoline_p;
1982 asection *s;
1983 bfd_vma value;
1984 void **slot;
1985
1986 /* Describe the stub we want. */
1987 search.stub_section = NULL;
1988 search.offset = 0;
1989 search.h = h;
1990
1991 /* See if we've already created an equivalent stub. */
1992 htab = mips_elf_hash_table (info);
1993 if (htab == NULL)
1994 return false;
1995
1996 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1997 if (slot == NULL)
1998 return false;
1999
2000 stub = (struct mips_elf_la25_stub *) *slot;
2001 if (stub != NULL)
2002 {
2003 /* We can reuse the existing stub. */
2004 h->la25_stub = stub;
2005 return true;
2006 }
2007
2008 /* Create a permanent copy of ENTRY and add it to the hash table. */
2009 stub = bfd_malloc (sizeof (search));
2010 if (stub == NULL)
2011 return false;
2012 *stub = search;
2013 *slot = stub;
2014
2015 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
2016 of the section and if we would need no more than 2 nops. */
2017 value = mips_elf_get_la25_target (stub, &s);
2018 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
2019 value &= ~1;
2020 use_trampoline_p = (value != 0 || s->alignment_power > 4);
2021
2022 h->la25_stub = stub;
2023 return (use_trampoline_p
2024 ? mips_elf_add_la25_trampoline (stub, info)
2025 : mips_elf_add_la25_intro (stub, info));
2026 }
2027
2028 /* A mips_elf_link_hash_traverse callback that is called before sizing
2029 sections. DATA points to a mips_htab_traverse_info structure. */
2030
2031 static bool
mips_elf_check_symbols(struct mips_elf_link_hash_entry * h,void * data)2032 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
2033 {
2034 struct mips_htab_traverse_info *hti;
2035
2036 hti = (struct mips_htab_traverse_info *) data;
2037 if (!bfd_link_relocatable (hti->info))
2038 mips_elf_check_mips16_stubs (hti->info, h);
2039
2040 if (mips_elf_local_pic_function_p (h))
2041 {
2042 /* PR 12845: If H is in a section that has been garbage
2043 collected it will have its output section set to *ABS*. */
2044 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
2045 return true;
2046
2047 /* H is a function that might need $25 to be valid on entry.
2048 If we're creating a non-PIC relocatable object, mark H as
2049 being PIC. If we're creating a non-relocatable object with
2050 non-PIC branches and jumps to H, make sure that H has an la25
2051 stub. */
2052 if (bfd_link_relocatable (hti->info))
2053 {
2054 if (!PIC_OBJECT_P (hti->output_bfd))
2055 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
2056 }
2057 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2058 {
2059 hti->error = true;
2060 return false;
2061 }
2062 }
2063 return true;
2064 }
2065
2066 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2067 Most mips16 instructions are 16 bits, but these instructions
2068 are 32 bits.
2069
2070 The format of these instructions is:
2071
2072 +--------------+--------------------------------+
2073 | JALX | X| Imm 20:16 | Imm 25:21 |
2074 +--------------+--------------------------------+
2075 | Immediate 15:0 |
2076 +-----------------------------------------------+
2077
2078 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2079 Note that the immediate value in the first word is swapped.
2080
2081 When producing a relocatable object file, R_MIPS16_26 is
2082 handled mostly like R_MIPS_26. In particular, the addend is
2083 stored as a straight 26-bit value in a 32-bit instruction.
2084 (gas makes life simpler for itself by never adjusting a
2085 R_MIPS16_26 reloc to be against a section, so the addend is
2086 always zero). However, the 32 bit instruction is stored as 2
2087 16-bit values, rather than a single 32-bit value. In a
2088 big-endian file, the result is the same; in a little-endian
2089 file, the two 16-bit halves of the 32 bit value are swapped.
2090 This is so that a disassembler can recognize the jal
2091 instruction.
2092
2093 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2094 instruction stored as two 16-bit values. The addend A is the
2095 contents of the targ26 field. The calculation is the same as
2096 R_MIPS_26. When storing the calculated value, reorder the
2097 immediate value as shown above, and don't forget to store the
2098 value as two 16-bit values.
2099
2100 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2101 defined as
2102
2103 big-endian:
2104 +--------+----------------------+
2105 | | |
2106 | | targ26-16 |
2107 |31 26|25 0|
2108 +--------+----------------------+
2109
2110 little-endian:
2111 +----------+------+-------------+
2112 | | | |
2113 | sub1 | | sub2 |
2114 |0 9|10 15|16 31|
2115 +----------+--------------------+
2116 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2117 ((sub1 << 16) | sub2)).
2118
2119 When producing a relocatable object file, the calculation is
2120 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2121 When producing a fully linked file, the calculation is
2122 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2123 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2124
2125 The table below lists the other MIPS16 instruction relocations.
2126 Each one is calculated in the same way as the non-MIPS16 relocation
2127 given on the right, but using the extended MIPS16 layout of 16-bit
2128 immediate fields:
2129
2130 R_MIPS16_GPREL R_MIPS_GPREL16
2131 R_MIPS16_GOT16 R_MIPS_GOT16
2132 R_MIPS16_CALL16 R_MIPS_CALL16
2133 R_MIPS16_HI16 R_MIPS_HI16
2134 R_MIPS16_LO16 R_MIPS_LO16
2135
2136 A typical instruction will have a format like this:
2137
2138 +--------------+--------------------------------+
2139 | EXTEND | Imm 10:5 | Imm 15:11 |
2140 +--------------+--------------------------------+
2141 | Major | rx | ry | Imm 4:0 |
2142 +--------------+--------------------------------+
2143
2144 EXTEND is the five bit value 11110. Major is the instruction
2145 opcode.
2146
2147 All we need to do here is shuffle the bits appropriately.
2148 As above, the two 16-bit halves must be swapped on a
2149 little-endian system.
2150
2151 Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the
2152 relocatable field is shifted by 1 rather than 2 and the same bit
2153 shuffling is done as with the relocations above. */
2154
2155 static inline bool
mips16_reloc_p(int r_type)2156 mips16_reloc_p (int r_type)
2157 {
2158 switch (r_type)
2159 {
2160 case R_MIPS16_26:
2161 case R_MIPS16_GPREL:
2162 case R_MIPS16_GOT16:
2163 case R_MIPS16_CALL16:
2164 case R_MIPS16_HI16:
2165 case R_MIPS16_LO16:
2166 case R_MIPS16_TLS_GD:
2167 case R_MIPS16_TLS_LDM:
2168 case R_MIPS16_TLS_DTPREL_HI16:
2169 case R_MIPS16_TLS_DTPREL_LO16:
2170 case R_MIPS16_TLS_GOTTPREL:
2171 case R_MIPS16_TLS_TPREL_HI16:
2172 case R_MIPS16_TLS_TPREL_LO16:
2173 case R_MIPS16_PC16_S1:
2174 return true;
2175
2176 default:
2177 return false;
2178 }
2179 }
2180
2181 /* Check if a microMIPS reloc. */
2182
2183 static inline bool
micromips_reloc_p(unsigned int r_type)2184 micromips_reloc_p (unsigned int r_type)
2185 {
2186 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2187 }
2188
2189 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2190 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2191 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2192
2193 static inline bool
micromips_reloc_shuffle_p(unsigned int r_type)2194 micromips_reloc_shuffle_p (unsigned int r_type)
2195 {
2196 return (micromips_reloc_p (r_type)
2197 && r_type != R_MICROMIPS_PC7_S1
2198 && r_type != R_MICROMIPS_PC10_S1);
2199 }
2200
2201 static inline bool
got16_reloc_p(int r_type)2202 got16_reloc_p (int r_type)
2203 {
2204 return (r_type == R_MIPS_GOT16
2205 || r_type == R_MIPS16_GOT16
2206 || r_type == R_MICROMIPS_GOT16);
2207 }
2208
2209 static inline bool
call16_reloc_p(int r_type)2210 call16_reloc_p (int r_type)
2211 {
2212 return (r_type == R_MIPS_CALL16
2213 || r_type == R_MIPS16_CALL16
2214 || r_type == R_MICROMIPS_CALL16);
2215 }
2216
2217 static inline bool
got_disp_reloc_p(unsigned int r_type)2218 got_disp_reloc_p (unsigned int r_type)
2219 {
2220 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2221 }
2222
2223 static inline bool
got_page_reloc_p(unsigned int r_type)2224 got_page_reloc_p (unsigned int r_type)
2225 {
2226 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2227 }
2228
2229 static inline bool
got_lo16_reloc_p(unsigned int r_type)2230 got_lo16_reloc_p (unsigned int r_type)
2231 {
2232 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2233 }
2234
2235 static inline bool
call_hi16_reloc_p(unsigned int r_type)2236 call_hi16_reloc_p (unsigned int r_type)
2237 {
2238 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2239 }
2240
2241 static inline bool
call_lo16_reloc_p(unsigned int r_type)2242 call_lo16_reloc_p (unsigned int r_type)
2243 {
2244 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2245 }
2246
2247 static inline bool
hi16_reloc_p(int r_type)2248 hi16_reloc_p (int r_type)
2249 {
2250 return (r_type == R_MIPS_HI16
2251 || r_type == R_MIPS16_HI16
2252 || r_type == R_MICROMIPS_HI16
2253 || r_type == R_MIPS_PCHI16);
2254 }
2255
2256 static inline bool
lo16_reloc_p(int r_type)2257 lo16_reloc_p (int r_type)
2258 {
2259 return (r_type == R_MIPS_LO16
2260 || r_type == R_MIPS16_LO16
2261 || r_type == R_MICROMIPS_LO16
2262 || r_type == R_MIPS_PCLO16);
2263 }
2264
2265 static inline bool
mips16_call_reloc_p(int r_type)2266 mips16_call_reloc_p (int r_type)
2267 {
2268 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2269 }
2270
2271 static inline bool
jal_reloc_p(int r_type)2272 jal_reloc_p (int r_type)
2273 {
2274 return (r_type == R_MIPS_26
2275 || r_type == R_MIPS16_26
2276 || r_type == R_MICROMIPS_26_S1);
2277 }
2278
2279 static inline bool
b_reloc_p(int r_type)2280 b_reloc_p (int r_type)
2281 {
2282 return (r_type == R_MIPS_PC26_S2
2283 || r_type == R_MIPS_PC21_S2
2284 || r_type == R_MIPS_PC16
2285 || r_type == R_MIPS_GNU_REL16_S2
2286 || r_type == R_MIPS16_PC16_S1
2287 || r_type == R_MICROMIPS_PC16_S1
2288 || r_type == R_MICROMIPS_PC10_S1
2289 || r_type == R_MICROMIPS_PC7_S1);
2290 }
2291
2292 static inline bool
aligned_pcrel_reloc_p(int r_type)2293 aligned_pcrel_reloc_p (int r_type)
2294 {
2295 return (r_type == R_MIPS_PC18_S3
2296 || r_type == R_MIPS_PC19_S2);
2297 }
2298
2299 static inline bool
branch_reloc_p(int r_type)2300 branch_reloc_p (int r_type)
2301 {
2302 return (r_type == R_MIPS_26
2303 || r_type == R_MIPS_PC26_S2
2304 || r_type == R_MIPS_PC21_S2
2305 || r_type == R_MIPS_PC16
2306 || r_type == R_MIPS_GNU_REL16_S2);
2307 }
2308
2309 static inline bool
mips16_branch_reloc_p(int r_type)2310 mips16_branch_reloc_p (int r_type)
2311 {
2312 return (r_type == R_MIPS16_26
2313 || r_type == R_MIPS16_PC16_S1);
2314 }
2315
2316 static inline bool
micromips_branch_reloc_p(int r_type)2317 micromips_branch_reloc_p (int r_type)
2318 {
2319 return (r_type == R_MICROMIPS_26_S1
2320 || r_type == R_MICROMIPS_PC16_S1
2321 || r_type == R_MICROMIPS_PC10_S1
2322 || r_type == R_MICROMIPS_PC7_S1);
2323 }
2324
2325 static inline bool
tls_gd_reloc_p(unsigned int r_type)2326 tls_gd_reloc_p (unsigned int r_type)
2327 {
2328 return (r_type == R_MIPS_TLS_GD
2329 || r_type == R_MIPS16_TLS_GD
2330 || r_type == R_MICROMIPS_TLS_GD);
2331 }
2332
2333 static inline bool
tls_ldm_reloc_p(unsigned int r_type)2334 tls_ldm_reloc_p (unsigned int r_type)
2335 {
2336 return (r_type == R_MIPS_TLS_LDM
2337 || r_type == R_MIPS16_TLS_LDM
2338 || r_type == R_MICROMIPS_TLS_LDM);
2339 }
2340
2341 static inline bool
tls_gottprel_reloc_p(unsigned int r_type)2342 tls_gottprel_reloc_p (unsigned int r_type)
2343 {
2344 return (r_type == R_MIPS_TLS_GOTTPREL
2345 || r_type == R_MIPS16_TLS_GOTTPREL
2346 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2347 }
2348
2349 void
_bfd_mips_elf_reloc_unshuffle(bfd * abfd,int r_type,bool jal_shuffle,bfd_byte * data)2350 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2351 bool jal_shuffle, bfd_byte *data)
2352 {
2353 bfd_vma first, second, val;
2354
2355 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2356 return;
2357
2358 /* Pick up the first and second halfwords of the instruction. */
2359 first = bfd_get_16 (abfd, data);
2360 second = bfd_get_16 (abfd, data + 2);
2361 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2362 val = first << 16 | second;
2363 else if (r_type != R_MIPS16_26)
2364 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2365 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2366 else
2367 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2368 | ((first & 0x1f) << 21) | second);
2369 bfd_put_32 (abfd, val, data);
2370 }
2371
2372 void
_bfd_mips_elf_reloc_shuffle(bfd * abfd,int r_type,bool jal_shuffle,bfd_byte * data)2373 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2374 bool jal_shuffle, bfd_byte *data)
2375 {
2376 bfd_vma first, second, val;
2377
2378 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2379 return;
2380
2381 val = bfd_get_32 (abfd, data);
2382 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2383 {
2384 second = val & 0xffff;
2385 first = val >> 16;
2386 }
2387 else if (r_type != R_MIPS16_26)
2388 {
2389 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2390 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2391 }
2392 else
2393 {
2394 second = val & 0xffff;
2395 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2396 | ((val >> 21) & 0x1f);
2397 }
2398 bfd_put_16 (abfd, second, data + 2);
2399 bfd_put_16 (abfd, first, data);
2400 }
2401
2402 bfd_reloc_status_type
_bfd_mips_elf_gprel16_with_gp(bfd * abfd,asymbol * symbol,arelent * reloc_entry,asection * input_section,bool relocatable,void * data,bfd_vma gp)2403 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2404 arelent *reloc_entry, asection *input_section,
2405 bool relocatable, void *data, bfd_vma gp)
2406 {
2407 bfd_vma relocation;
2408 bfd_signed_vma val;
2409 bfd_reloc_status_type status;
2410
2411 if (bfd_is_com_section (symbol->section))
2412 relocation = 0;
2413 else
2414 relocation = symbol->value;
2415
2416 relocation += symbol->section->output_section->vma;
2417 relocation += symbol->section->output_offset;
2418
2419 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2420 return bfd_reloc_outofrange;
2421
2422 /* Set val to the offset into the section or symbol. */
2423 val = reloc_entry->addend;
2424
2425 _bfd_mips_elf_sign_extend (val, 16);
2426
2427 /* Adjust val for the final section location and GP value. If we
2428 are producing relocatable output, we don't want to do this for
2429 an external symbol. */
2430 if (! relocatable
2431 || (symbol->flags & BSF_SECTION_SYM) != 0)
2432 val += relocation - gp;
2433
2434 if (reloc_entry->howto->partial_inplace)
2435 {
2436 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2437 (bfd_byte *) data
2438 + reloc_entry->address);
2439 if (status != bfd_reloc_ok)
2440 return status;
2441 }
2442 else
2443 reloc_entry->addend = val;
2444
2445 if (relocatable)
2446 reloc_entry->address += input_section->output_offset;
2447
2448 return bfd_reloc_ok;
2449 }
2450
2451 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2452 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2453 that contains the relocation field and DATA points to the start of
2454 INPUT_SECTION. */
2455
2456 struct mips_hi16
2457 {
2458 struct mips_hi16 *next;
2459 bfd_byte *data;
2460 asection *input_section;
2461 arelent rel;
2462 };
2463
2464 /* FIXME: This should not be a static variable. */
2465
2466 static struct mips_hi16 *mips_hi16_list;
2467
2468 /* A howto special_function for REL *HI16 relocations. We can only
2469 calculate the correct value once we've seen the partnering
2470 *LO16 relocation, so just save the information for later.
2471
2472 The ABI requires that the *LO16 immediately follow the *HI16.
2473 However, as a GNU extension, we permit an arbitrary number of
2474 *HI16s to be associated with a single *LO16. This significantly
2475 simplies the relocation handling in gcc. */
2476
2477 bfd_reloc_status_type
_bfd_mips_elf_hi16_reloc(bfd * abfd ATTRIBUTE_UNUSED,arelent * reloc_entry,asymbol * symbol ATTRIBUTE_UNUSED,void * data,asection * input_section,bfd * output_bfd,char ** error_message ATTRIBUTE_UNUSED)2478 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2479 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2480 asection *input_section, bfd *output_bfd,
2481 char **error_message ATTRIBUTE_UNUSED)
2482 {
2483 struct mips_hi16 *n;
2484
2485 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2486 return bfd_reloc_outofrange;
2487
2488 n = bfd_malloc (sizeof *n);
2489 if (n == NULL)
2490 return bfd_reloc_outofrange;
2491
2492 n->next = mips_hi16_list;
2493 n->data = data;
2494 n->input_section = input_section;
2495 n->rel = *reloc_entry;
2496 mips_hi16_list = n;
2497
2498 if (output_bfd != NULL)
2499 reloc_entry->address += input_section->output_offset;
2500
2501 return bfd_reloc_ok;
2502 }
2503
2504 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2505 like any other 16-bit relocation when applied to global symbols, but is
2506 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2507
2508 bfd_reloc_status_type
_bfd_mips_elf_got16_reloc(bfd * abfd,arelent * reloc_entry,asymbol * symbol,void * data,asection * input_section,bfd * output_bfd,char ** error_message)2509 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2510 void *data, asection *input_section,
2511 bfd *output_bfd, char **error_message)
2512 {
2513 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2514 || bfd_is_und_section (bfd_asymbol_section (symbol))
2515 || bfd_is_com_section (bfd_asymbol_section (symbol)))
2516 /* The relocation is against a global symbol. */
2517 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2518 input_section, output_bfd,
2519 error_message);
2520
2521 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2522 input_section, output_bfd, error_message);
2523 }
2524
2525 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2526 is a straightforward 16 bit inplace relocation, but we must deal with
2527 any partnering high-part relocations as well. */
2528
2529 bfd_reloc_status_type
_bfd_mips_elf_lo16_reloc(bfd * abfd,arelent * reloc_entry,asymbol * symbol,void * data,asection * input_section,bfd * output_bfd,char ** error_message)2530 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2531 void *data, asection *input_section,
2532 bfd *output_bfd, char **error_message)
2533 {
2534 bfd_vma vallo;
2535 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2536
2537 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2538 return bfd_reloc_outofrange;
2539
2540 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, false,
2541 location);
2542 vallo = bfd_get_32 (abfd, location);
2543 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, false,
2544 location);
2545
2546 while (mips_hi16_list != NULL)
2547 {
2548 bfd_reloc_status_type ret;
2549 struct mips_hi16 *hi;
2550
2551 hi = mips_hi16_list;
2552
2553 /* R_MIPS*_GOT16 relocations are something of a special case. We
2554 want to install the addend in the same way as for a R_MIPS*_HI16
2555 relocation (with a rightshift of 16). However, since GOT16
2556 relocations can also be used with global symbols, their howto
2557 has a rightshift of 0. */
2558 if (hi->rel.howto->type == R_MIPS_GOT16)
2559 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, false);
2560 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2561 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, false);
2562 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2563 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, false);
2564
2565 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2566 carry or borrow will induce a change of +1 or -1 in the high part. */
2567 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2568
2569 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2570 hi->input_section, output_bfd,
2571 error_message);
2572 if (ret != bfd_reloc_ok)
2573 return ret;
2574
2575 mips_hi16_list = hi->next;
2576 free (hi);
2577 }
2578
2579 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2580 input_section, output_bfd,
2581 error_message);
2582 }
2583
2584 /* A generic howto special_function. This calculates and installs the
2585 relocation itself, thus avoiding the oft-discussed problems in
2586 bfd_perform_relocation and bfd_install_relocation. */
2587
2588 bfd_reloc_status_type
_bfd_mips_elf_generic_reloc(bfd * abfd ATTRIBUTE_UNUSED,arelent * reloc_entry,asymbol * symbol,void * data ATTRIBUTE_UNUSED,asection * input_section,bfd * output_bfd,char ** error_message ATTRIBUTE_UNUSED)2589 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2590 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2591 asection *input_section, bfd *output_bfd,
2592 char **error_message ATTRIBUTE_UNUSED)
2593 {
2594 bfd_signed_vma val;
2595 bfd_reloc_status_type status;
2596 bool relocatable;
2597
2598 relocatable = (output_bfd != NULL);
2599
2600 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2601 return bfd_reloc_outofrange;
2602
2603 /* Build up the field adjustment in VAL. */
2604 val = 0;
2605 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2606 {
2607 /* Either we're calculating the final field value or we have a
2608 relocation against a section symbol. Add in the section's
2609 offset or address. */
2610 val += symbol->section->output_section->vma;
2611 val += symbol->section->output_offset;
2612 }
2613
2614 if (!relocatable)
2615 {
2616 /* We're calculating the final field value. Add in the symbol's value
2617 and, if pc-relative, subtract the address of the field itself. */
2618 val += symbol->value;
2619 if (reloc_entry->howto->pc_relative)
2620 {
2621 val -= input_section->output_section->vma;
2622 val -= input_section->output_offset;
2623 val -= reloc_entry->address;
2624 }
2625 }
2626
2627 /* VAL is now the final adjustment. If we're keeping this relocation
2628 in the output file, and if the relocation uses a separate addend,
2629 we just need to add VAL to that addend. Otherwise we need to add
2630 VAL to the relocation field itself. */
2631 if (relocatable && !reloc_entry->howto->partial_inplace)
2632 reloc_entry->addend += val;
2633 else
2634 {
2635 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2636
2637 /* Add in the separate addend, if any. */
2638 val += reloc_entry->addend;
2639
2640 /* Add VAL to the relocation field. */
2641 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, false,
2642 location);
2643 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2644 location);
2645 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, false,
2646 location);
2647
2648 if (status != bfd_reloc_ok)
2649 return status;
2650 }
2651
2652 if (relocatable)
2653 reloc_entry->address += input_section->output_offset;
2654
2655 return bfd_reloc_ok;
2656 }
2657
2658 /* Swap an entry in a .gptab section. Note that these routines rely
2659 on the equivalence of the two elements of the union. */
2660
2661 static void
bfd_mips_elf32_swap_gptab_in(bfd * abfd,const Elf32_External_gptab * ex,Elf32_gptab * in)2662 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2663 Elf32_gptab *in)
2664 {
2665 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2666 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2667 }
2668
2669 static void
bfd_mips_elf32_swap_gptab_out(bfd * abfd,const Elf32_gptab * in,Elf32_External_gptab * ex)2670 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2671 Elf32_External_gptab *ex)
2672 {
2673 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2674 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2675 }
2676
2677 static void
bfd_elf32_swap_compact_rel_out(bfd * abfd,const Elf32_compact_rel * in,Elf32_External_compact_rel * ex)2678 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2679 Elf32_External_compact_rel *ex)
2680 {
2681 H_PUT_32 (abfd, in->id1, ex->id1);
2682 H_PUT_32 (abfd, in->num, ex->num);
2683 H_PUT_32 (abfd, in->id2, ex->id2);
2684 H_PUT_32 (abfd, in->offset, ex->offset);
2685 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2686 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2687 }
2688
2689 static void
bfd_elf32_swap_crinfo_out(bfd * abfd,const Elf32_crinfo * in,Elf32_External_crinfo * ex)2690 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2691 Elf32_External_crinfo *ex)
2692 {
2693 unsigned long l;
2694
2695 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2696 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2697 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2698 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2699 H_PUT_32 (abfd, l, ex->info);
2700 H_PUT_32 (abfd, in->konst, ex->konst);
2701 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2702 }
2703
2704 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2705 routines swap this structure in and out. They are used outside of
2706 BFD, so they are globally visible. */
2707
2708 void
bfd_mips_elf32_swap_reginfo_in(bfd * abfd,const Elf32_External_RegInfo * ex,Elf32_RegInfo * in)2709 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2710 Elf32_RegInfo *in)
2711 {
2712 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2713 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2714 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2715 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2716 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2717 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2718 }
2719
2720 void
bfd_mips_elf32_swap_reginfo_out(bfd * abfd,const Elf32_RegInfo * in,Elf32_External_RegInfo * ex)2721 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2722 Elf32_External_RegInfo *ex)
2723 {
2724 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2725 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2726 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2727 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2728 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2729 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2730 }
2731
2732 /* In the 64 bit ABI, the .MIPS.options section holds register
2733 information in an Elf64_Reginfo structure. These routines swap
2734 them in and out. They are globally visible because they are used
2735 outside of BFD. These routines are here so that gas can call them
2736 without worrying about whether the 64 bit ABI has been included. */
2737
2738 void
bfd_mips_elf64_swap_reginfo_in(bfd * abfd,const Elf64_External_RegInfo * ex,Elf64_Internal_RegInfo * in)2739 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2740 Elf64_Internal_RegInfo *in)
2741 {
2742 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2743 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2744 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2745 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2746 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2747 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2748 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2749 }
2750
2751 void
bfd_mips_elf64_swap_reginfo_out(bfd * abfd,const Elf64_Internal_RegInfo * in,Elf64_External_RegInfo * ex)2752 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2753 Elf64_External_RegInfo *ex)
2754 {
2755 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2756 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2757 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2758 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2759 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2760 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2761 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2762 }
2763
2764 /* Swap in an options header. */
2765
2766 void
bfd_mips_elf_swap_options_in(bfd * abfd,const Elf_External_Options * ex,Elf_Internal_Options * in)2767 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2768 Elf_Internal_Options *in)
2769 {
2770 in->kind = H_GET_8 (abfd, ex->kind);
2771 in->size = H_GET_8 (abfd, ex->size);
2772 in->section = H_GET_16 (abfd, ex->section);
2773 in->info = H_GET_32 (abfd, ex->info);
2774 }
2775
2776 /* Swap out an options header. */
2777
2778 void
bfd_mips_elf_swap_options_out(bfd * abfd,const Elf_Internal_Options * in,Elf_External_Options * ex)2779 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2780 Elf_External_Options *ex)
2781 {
2782 H_PUT_8 (abfd, in->kind, ex->kind);
2783 H_PUT_8 (abfd, in->size, ex->size);
2784 H_PUT_16 (abfd, in->section, ex->section);
2785 H_PUT_32 (abfd, in->info, ex->info);
2786 }
2787
2788 /* Swap in an abiflags structure. */
2789
2790 void
bfd_mips_elf_swap_abiflags_v0_in(bfd * abfd,const Elf_External_ABIFlags_v0 * ex,Elf_Internal_ABIFlags_v0 * in)2791 bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2792 const Elf_External_ABIFlags_v0 *ex,
2793 Elf_Internal_ABIFlags_v0 *in)
2794 {
2795 in->version = H_GET_16 (abfd, ex->version);
2796 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2797 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2798 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2799 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2800 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2801 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2802 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2803 in->ases = H_GET_32 (abfd, ex->ases);
2804 in->flags1 = H_GET_32 (abfd, ex->flags1);
2805 in->flags2 = H_GET_32 (abfd, ex->flags2);
2806 }
2807
2808 /* Swap out an abiflags structure. */
2809
2810 void
bfd_mips_elf_swap_abiflags_v0_out(bfd * abfd,const Elf_Internal_ABIFlags_v0 * in,Elf_External_ABIFlags_v0 * ex)2811 bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2812 const Elf_Internal_ABIFlags_v0 *in,
2813 Elf_External_ABIFlags_v0 *ex)
2814 {
2815 H_PUT_16 (abfd, in->version, ex->version);
2816 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2817 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2818 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2819 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2820 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2821 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2822 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2823 H_PUT_32 (abfd, in->ases, ex->ases);
2824 H_PUT_32 (abfd, in->flags1, ex->flags1);
2825 H_PUT_32 (abfd, in->flags2, ex->flags2);
2826 }
2827
2828 /* This function is called via qsort() to sort the dynamic relocation
2829 entries by increasing r_symndx value. */
2830
2831 static int
sort_dynamic_relocs(const void * arg1,const void * arg2)2832 sort_dynamic_relocs (const void *arg1, const void *arg2)
2833 {
2834 Elf_Internal_Rela int_reloc1;
2835 Elf_Internal_Rela int_reloc2;
2836 int diff;
2837
2838 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2839 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2840
2841 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2842 if (diff != 0)
2843 return diff;
2844
2845 if (int_reloc1.r_offset < int_reloc2.r_offset)
2846 return -1;
2847 if (int_reloc1.r_offset > int_reloc2.r_offset)
2848 return 1;
2849 return 0;
2850 }
2851
2852 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2853
2854 static int
sort_dynamic_relocs_64(const void * arg1 ATTRIBUTE_UNUSED,const void * arg2 ATTRIBUTE_UNUSED)2855 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2856 const void *arg2 ATTRIBUTE_UNUSED)
2857 {
2858 #ifdef BFD64
2859 Elf_Internal_Rela int_reloc1[3];
2860 Elf_Internal_Rela int_reloc2[3];
2861
2862 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2863 (reldyn_sorting_bfd, arg1, int_reloc1);
2864 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2865 (reldyn_sorting_bfd, arg2, int_reloc2);
2866
2867 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2868 return -1;
2869 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2870 return 1;
2871
2872 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2873 return -1;
2874 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2875 return 1;
2876 return 0;
2877 #else
2878 abort ();
2879 #endif
2880 }
2881
2882
2883 /* This routine is used to write out ECOFF debugging external symbol
2884 information. It is called via mips_elf_link_hash_traverse. The
2885 ECOFF external symbol information must match the ELF external
2886 symbol information. Unfortunately, at this point we don't know
2887 whether a symbol is required by reloc information, so the two
2888 tables may wind up being different. We must sort out the external
2889 symbol information before we can set the final size of the .mdebug
2890 section, and we must set the size of the .mdebug section before we
2891 can relocate any sections, and we can't know which symbols are
2892 required by relocation until we relocate the sections.
2893 Fortunately, it is relatively unlikely that any symbol will be
2894 stripped but required by a reloc. In particular, it can not happen
2895 when generating a final executable. */
2896
2897 static bool
mips_elf_output_extsym(struct mips_elf_link_hash_entry * h,void * data)2898 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2899 {
2900 struct extsym_info *einfo = data;
2901 bool strip;
2902 asection *sec, *output_section;
2903
2904 if (h->root.indx == -2)
2905 strip = false;
2906 else if ((h->root.def_dynamic
2907 || h->root.ref_dynamic
2908 || h->root.type == bfd_link_hash_new)
2909 && !h->root.def_regular
2910 && !h->root.ref_regular)
2911 strip = true;
2912 else if (einfo->info->strip == strip_all
2913 || (einfo->info->strip == strip_some
2914 && bfd_hash_lookup (einfo->info->keep_hash,
2915 h->root.root.root.string,
2916 false, false) == NULL))
2917 strip = true;
2918 else
2919 strip = false;
2920
2921 if (strip)
2922 return true;
2923
2924 if (h->esym.ifd == -2)
2925 {
2926 h->esym.jmptbl = 0;
2927 h->esym.cobol_main = 0;
2928 h->esym.weakext = 0;
2929 h->esym.reserved = 0;
2930 h->esym.ifd = ifdNil;
2931 h->esym.asym.value = 0;
2932 h->esym.asym.st = stGlobal;
2933
2934 if (h->root.root.type == bfd_link_hash_undefined
2935 || h->root.root.type == bfd_link_hash_undefweak)
2936 {
2937 const char *name;
2938
2939 /* Use undefined class. Also, set class and type for some
2940 special symbols. */
2941 name = h->root.root.root.string;
2942 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2943 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2944 {
2945 h->esym.asym.sc = scData;
2946 h->esym.asym.st = stLabel;
2947 h->esym.asym.value = 0;
2948 }
2949 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2950 {
2951 h->esym.asym.sc = scAbs;
2952 h->esym.asym.st = stLabel;
2953 h->esym.asym.value =
2954 mips_elf_hash_table (einfo->info)->procedure_count;
2955 }
2956 else
2957 h->esym.asym.sc = scUndefined;
2958 }
2959 else if (h->root.root.type != bfd_link_hash_defined
2960 && h->root.root.type != bfd_link_hash_defweak)
2961 h->esym.asym.sc = scAbs;
2962 else
2963 {
2964 const char *name;
2965
2966 sec = h->root.root.u.def.section;
2967 output_section = sec->output_section;
2968
2969 /* When making a shared library and symbol h is the one from
2970 the another shared library, OUTPUT_SECTION may be null. */
2971 if (output_section == NULL)
2972 h->esym.asym.sc = scUndefined;
2973 else
2974 {
2975 name = bfd_section_name (output_section);
2976
2977 if (strcmp (name, ".text") == 0)
2978 h->esym.asym.sc = scText;
2979 else if (strcmp (name, ".data") == 0)
2980 h->esym.asym.sc = scData;
2981 else if (strcmp (name, ".sdata") == 0)
2982 h->esym.asym.sc = scSData;
2983 else if (strcmp (name, ".rodata") == 0
2984 || strcmp (name, ".rdata") == 0)
2985 h->esym.asym.sc = scRData;
2986 else if (strcmp (name, ".bss") == 0)
2987 h->esym.asym.sc = scBss;
2988 else if (strcmp (name, ".sbss") == 0)
2989 h->esym.asym.sc = scSBss;
2990 else if (strcmp (name, ".init") == 0)
2991 h->esym.asym.sc = scInit;
2992 else if (strcmp (name, ".fini") == 0)
2993 h->esym.asym.sc = scFini;
2994 else
2995 h->esym.asym.sc = scAbs;
2996 }
2997 }
2998
2999 h->esym.asym.reserved = 0;
3000 h->esym.asym.index = indexNil;
3001 }
3002
3003 if (h->root.root.type == bfd_link_hash_common)
3004 h->esym.asym.value = h->root.root.u.c.size;
3005 else if (h->root.root.type == bfd_link_hash_defined
3006 || h->root.root.type == bfd_link_hash_defweak)
3007 {
3008 if (h->esym.asym.sc == scCommon)
3009 h->esym.asym.sc = scBss;
3010 else if (h->esym.asym.sc == scSCommon)
3011 h->esym.asym.sc = scSBss;
3012
3013 sec = h->root.root.u.def.section;
3014 output_section = sec->output_section;
3015 if (output_section != NULL)
3016 h->esym.asym.value = (h->root.root.u.def.value
3017 + sec->output_offset
3018 + output_section->vma);
3019 else
3020 h->esym.asym.value = 0;
3021 }
3022 else
3023 {
3024 struct mips_elf_link_hash_entry *hd = h;
3025
3026 while (hd->root.root.type == bfd_link_hash_indirect)
3027 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
3028
3029 if (hd->needs_lazy_stub)
3030 {
3031 BFD_ASSERT (hd->root.plt.plist != NULL);
3032 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
3033 /* Set type and value for a symbol with a function stub. */
3034 h->esym.asym.st = stProc;
3035 sec = hd->root.root.u.def.section;
3036 if (sec == NULL)
3037 h->esym.asym.value = 0;
3038 else
3039 {
3040 output_section = sec->output_section;
3041 if (output_section != NULL)
3042 h->esym.asym.value = (hd->root.plt.plist->stub_offset
3043 + sec->output_offset
3044 + output_section->vma);
3045 else
3046 h->esym.asym.value = 0;
3047 }
3048 }
3049 }
3050
3051 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
3052 h->root.root.root.string,
3053 &h->esym))
3054 {
3055 einfo->failed = true;
3056 return false;
3057 }
3058
3059 return true;
3060 }
3061
3062 /* A comparison routine used to sort .gptab entries. */
3063
3064 static int
gptab_compare(const void * p1,const void * p2)3065 gptab_compare (const void *p1, const void *p2)
3066 {
3067 const Elf32_gptab *a1 = p1;
3068 const Elf32_gptab *a2 = p2;
3069
3070 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
3071 }
3072
3073 /* Functions to manage the got entry hash table. */
3074
3075 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
3076 hash number. */
3077
3078 static inline hashval_t
mips_elf_hash_bfd_vma(bfd_vma addr)3079 mips_elf_hash_bfd_vma (bfd_vma addr)
3080 {
3081 #ifdef BFD64
3082 return addr + (addr >> 32);
3083 #else
3084 return addr;
3085 #endif
3086 }
3087
3088 static hashval_t
mips_elf_got_entry_hash(const void * entry_)3089 mips_elf_got_entry_hash (const void *entry_)
3090 {
3091 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3092
3093 return (entry->symndx
3094 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3095 + (entry->tls_type == GOT_TLS_LDM ? 0
3096 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3097 : entry->symndx >= 0 ? (entry->abfd->id
3098 + mips_elf_hash_bfd_vma (entry->d.addend))
3099 : entry->d.h->root.root.root.hash));
3100 }
3101
3102 static int
mips_elf_got_entry_eq(const void * entry1,const void * entry2)3103 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
3104 {
3105 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3106 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3107
3108 return (e1->symndx == e2->symndx
3109 && e1->tls_type == e2->tls_type
3110 && (e1->tls_type == GOT_TLS_LDM ? true
3111 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3112 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3113 && e1->d.addend == e2->d.addend)
3114 : e2->abfd && e1->d.h == e2->d.h));
3115 }
3116
3117 static hashval_t
mips_got_page_ref_hash(const void * ref_)3118 mips_got_page_ref_hash (const void *ref_)
3119 {
3120 const struct mips_got_page_ref *ref;
3121
3122 ref = (const struct mips_got_page_ref *) ref_;
3123 return ((ref->symndx >= 0
3124 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3125 : ref->u.h->root.root.root.hash)
3126 + mips_elf_hash_bfd_vma (ref->addend));
3127 }
3128
3129 static int
mips_got_page_ref_eq(const void * ref1_,const void * ref2_)3130 mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3131 {
3132 const struct mips_got_page_ref *ref1, *ref2;
3133
3134 ref1 = (const struct mips_got_page_ref *) ref1_;
3135 ref2 = (const struct mips_got_page_ref *) ref2_;
3136 return (ref1->symndx == ref2->symndx
3137 && (ref1->symndx < 0
3138 ? ref1->u.h == ref2->u.h
3139 : ref1->u.abfd == ref2->u.abfd)
3140 && ref1->addend == ref2->addend);
3141 }
3142
3143 static hashval_t
mips_got_page_entry_hash(const void * entry_)3144 mips_got_page_entry_hash (const void *entry_)
3145 {
3146 const struct mips_got_page_entry *entry;
3147
3148 entry = (const struct mips_got_page_entry *) entry_;
3149 return entry->sec->id;
3150 }
3151
3152 static int
mips_got_page_entry_eq(const void * entry1_,const void * entry2_)3153 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3154 {
3155 const struct mips_got_page_entry *entry1, *entry2;
3156
3157 entry1 = (const struct mips_got_page_entry *) entry1_;
3158 entry2 = (const struct mips_got_page_entry *) entry2_;
3159 return entry1->sec == entry2->sec;
3160 }
3161
3162 /* Create and return a new mips_got_info structure. */
3163
3164 static struct mips_got_info *
mips_elf_create_got_info(bfd * abfd)3165 mips_elf_create_got_info (bfd *abfd)
3166 {
3167 struct mips_got_info *g;
3168
3169 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3170 if (g == NULL)
3171 return NULL;
3172
3173 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3174 mips_elf_got_entry_eq, NULL);
3175 if (g->got_entries == NULL)
3176 return NULL;
3177
3178 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3179 mips_got_page_ref_eq, NULL);
3180 if (g->got_page_refs == NULL)
3181 return NULL;
3182
3183 return g;
3184 }
3185
3186 /* Return the GOT info for input bfd ABFD, trying to create a new one if
3187 CREATE_P and if ABFD doesn't already have a GOT. */
3188
3189 static struct mips_got_info *
mips_elf_bfd_got(bfd * abfd,bool create_p)3190 mips_elf_bfd_got (bfd *abfd, bool create_p)
3191 {
3192 struct mips_elf_obj_tdata *tdata;
3193
3194 if (!is_mips_elf (abfd))
3195 return NULL;
3196
3197 tdata = mips_elf_tdata (abfd);
3198 if (!tdata->got && create_p)
3199 tdata->got = mips_elf_create_got_info (abfd);
3200 return tdata->got;
3201 }
3202
3203 /* Record that ABFD should use output GOT G. */
3204
3205 static void
mips_elf_replace_bfd_got(bfd * abfd,struct mips_got_info * g)3206 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3207 {
3208 struct mips_elf_obj_tdata *tdata;
3209
3210 BFD_ASSERT (is_mips_elf (abfd));
3211 tdata = mips_elf_tdata (abfd);
3212 if (tdata->got)
3213 {
3214 /* The GOT structure itself and the hash table entries are
3215 allocated to a bfd, but the hash tables aren't. */
3216 htab_delete (tdata->got->got_entries);
3217 htab_delete (tdata->got->got_page_refs);
3218 if (tdata->got->got_page_entries)
3219 htab_delete (tdata->got->got_page_entries);
3220 }
3221 tdata->got = g;
3222 }
3223
3224 /* Return the dynamic relocation section. If it doesn't exist, try to
3225 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3226 if creation fails. */
3227
3228 static asection *
mips_elf_rel_dyn_section(struct bfd_link_info * info,bool create_p)3229 mips_elf_rel_dyn_section (struct bfd_link_info *info, bool create_p)
3230 {
3231 const char *dname;
3232 asection *sreloc;
3233 bfd *dynobj;
3234
3235 dname = MIPS_ELF_REL_DYN_NAME (info);
3236 dynobj = elf_hash_table (info)->dynobj;
3237 sreloc = bfd_get_linker_section (dynobj, dname);
3238 if (sreloc == NULL && create_p)
3239 {
3240 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3241 (SEC_ALLOC
3242 | SEC_LOAD
3243 | SEC_HAS_CONTENTS
3244 | SEC_IN_MEMORY
3245 | SEC_LINKER_CREATED
3246 | SEC_READONLY));
3247 if (sreloc == NULL
3248 || !bfd_set_section_alignment (sreloc,
3249 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
3250 return NULL;
3251 }
3252 return sreloc;
3253 }
3254
3255 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3256
3257 static int
mips_elf_reloc_tls_type(unsigned int r_type)3258 mips_elf_reloc_tls_type (unsigned int r_type)
3259 {
3260 if (tls_gd_reloc_p (r_type))
3261 return GOT_TLS_GD;
3262
3263 if (tls_ldm_reloc_p (r_type))
3264 return GOT_TLS_LDM;
3265
3266 if (tls_gottprel_reloc_p (r_type))
3267 return GOT_TLS_IE;
3268
3269 return GOT_TLS_NONE;
3270 }
3271
3272 /* Return the number of GOT slots needed for GOT TLS type TYPE. */
3273
3274 static int
mips_tls_got_entries(unsigned int type)3275 mips_tls_got_entries (unsigned int type)
3276 {
3277 switch (type)
3278 {
3279 case GOT_TLS_GD:
3280 case GOT_TLS_LDM:
3281 return 2;
3282
3283 case GOT_TLS_IE:
3284 return 1;
3285
3286 case GOT_TLS_NONE:
3287 return 0;
3288 }
3289 abort ();
3290 }
3291
3292 /* Count the number of relocations needed for a TLS GOT entry, with
3293 access types from TLS_TYPE, and symbol H (or a local symbol if H
3294 is NULL). */
3295
3296 static int
mips_tls_got_relocs(struct bfd_link_info * info,unsigned char tls_type,struct elf_link_hash_entry * h)3297 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3298 struct elf_link_hash_entry *h)
3299 {
3300 int indx = 0;
3301 bool need_relocs = false;
3302 bool dyn = elf_hash_table (info)->dynamic_sections_created;
3303
3304 if (h != NULL
3305 && h->dynindx != -1
3306 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3307 && (bfd_link_dll (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
3308 indx = h->dynindx;
3309
3310 if ((bfd_link_dll (info) || indx != 0)
3311 && (h == NULL
3312 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3313 || h->root.type != bfd_link_hash_undefweak))
3314 need_relocs = true;
3315
3316 if (!need_relocs)
3317 return 0;
3318
3319 switch (tls_type)
3320 {
3321 case GOT_TLS_GD:
3322 return indx != 0 ? 2 : 1;
3323
3324 case GOT_TLS_IE:
3325 return 1;
3326
3327 case GOT_TLS_LDM:
3328 return bfd_link_dll (info) ? 1 : 0;
3329
3330 default:
3331 return 0;
3332 }
3333 }
3334
3335 /* Add the number of GOT entries and TLS relocations required by ENTRY
3336 to G. */
3337
3338 static void
mips_elf_count_got_entry(struct bfd_link_info * info,struct mips_got_info * g,struct mips_got_entry * entry)3339 mips_elf_count_got_entry (struct bfd_link_info *info,
3340 struct mips_got_info *g,
3341 struct mips_got_entry *entry)
3342 {
3343 if (entry->tls_type)
3344 {
3345 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3346 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
3347 entry->symndx < 0
3348 ? &entry->d.h->root : NULL);
3349 }
3350 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3351 g->local_gotno += 1;
3352 else
3353 g->global_gotno += 1;
3354 }
3355
3356 /* Output a simple dynamic relocation into SRELOC. */
3357
3358 static void
mips_elf_output_dynamic_relocation(bfd * output_bfd,asection * sreloc,unsigned long reloc_index,unsigned long indx,int r_type,bfd_vma offset)3359 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3360 asection *sreloc,
3361 unsigned long reloc_index,
3362 unsigned long indx,
3363 int r_type,
3364 bfd_vma offset)
3365 {
3366 Elf_Internal_Rela rel[3];
3367
3368 memset (rel, 0, sizeof (rel));
3369
3370 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3371 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3372
3373 if (ABI_64_P (output_bfd))
3374 {
3375 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3376 (output_bfd, &rel[0],
3377 (sreloc->contents
3378 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3379 }
3380 else
3381 bfd_elf32_swap_reloc_out
3382 (output_bfd, &rel[0],
3383 (sreloc->contents
3384 + reloc_index * sizeof (Elf32_External_Rel)));
3385 }
3386
3387 /* Initialize a set of TLS GOT entries for one symbol. */
3388
3389 static void
mips_elf_initialize_tls_slots(bfd * abfd,struct bfd_link_info * info,struct mips_got_entry * entry,struct mips_elf_link_hash_entry * h,bfd_vma value)3390 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3391 struct mips_got_entry *entry,
3392 struct mips_elf_link_hash_entry *h,
3393 bfd_vma value)
3394 {
3395 bool dyn = elf_hash_table (info)->dynamic_sections_created;
3396 struct mips_elf_link_hash_table *htab;
3397 int indx;
3398 asection *sreloc, *sgot;
3399 bfd_vma got_offset, got_offset2;
3400 bool need_relocs = false;
3401
3402 htab = mips_elf_hash_table (info);
3403 if (htab == NULL)
3404 return;
3405
3406 sgot = htab->root.sgot;
3407
3408 indx = 0;
3409 if (h != NULL
3410 && h->root.dynindx != -1
3411 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), &h->root)
3412 && (bfd_link_dll (info) || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3413 indx = h->root.dynindx;
3414
3415 if (entry->tls_initialized)
3416 return;
3417
3418 if ((bfd_link_dll (info) || indx != 0)
3419 && (h == NULL
3420 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3421 || h->root.type != bfd_link_hash_undefweak))
3422 need_relocs = true;
3423
3424 /* MINUS_ONE means the symbol is not defined in this object. It may not
3425 be defined at all; assume that the value doesn't matter in that
3426 case. Otherwise complain if we would use the value. */
3427 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3428 || h->root.root.type == bfd_link_hash_undefweak);
3429
3430 /* Emit necessary relocations. */
3431 sreloc = mips_elf_rel_dyn_section (info, false);
3432 got_offset = entry->gotidx;
3433
3434 switch (entry->tls_type)
3435 {
3436 case GOT_TLS_GD:
3437 /* General Dynamic. */
3438 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3439
3440 if (need_relocs)
3441 {
3442 mips_elf_output_dynamic_relocation
3443 (abfd, sreloc, sreloc->reloc_count++, indx,
3444 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3445 sgot->output_offset + sgot->output_section->vma + got_offset);
3446
3447 if (indx)
3448 mips_elf_output_dynamic_relocation
3449 (abfd, sreloc, sreloc->reloc_count++, indx,
3450 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3451 sgot->output_offset + sgot->output_section->vma + got_offset2);
3452 else
3453 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3454 sgot->contents + got_offset2);
3455 }
3456 else
3457 {
3458 MIPS_ELF_PUT_WORD (abfd, 1,
3459 sgot->contents + got_offset);
3460 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3461 sgot->contents + got_offset2);
3462 }
3463 break;
3464
3465 case GOT_TLS_IE:
3466 /* Initial Exec model. */
3467 if (need_relocs)
3468 {
3469 if (indx == 0)
3470 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3471 sgot->contents + got_offset);
3472 else
3473 MIPS_ELF_PUT_WORD (abfd, 0,
3474 sgot->contents + got_offset);
3475
3476 mips_elf_output_dynamic_relocation
3477 (abfd, sreloc, sreloc->reloc_count++, indx,
3478 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3479 sgot->output_offset + sgot->output_section->vma + got_offset);
3480 }
3481 else
3482 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3483 sgot->contents + got_offset);
3484 break;
3485
3486 case GOT_TLS_LDM:
3487 /* The initial offset is zero, and the LD offsets will include the
3488 bias by DTP_OFFSET. */
3489 MIPS_ELF_PUT_WORD (abfd, 0,
3490 sgot->contents + got_offset
3491 + MIPS_ELF_GOT_SIZE (abfd));
3492
3493 if (!bfd_link_dll (info))
3494 MIPS_ELF_PUT_WORD (abfd, 1,
3495 sgot->contents + got_offset);
3496 else
3497 mips_elf_output_dynamic_relocation
3498 (abfd, sreloc, sreloc->reloc_count++, indx,
3499 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3500 sgot->output_offset + sgot->output_section->vma + got_offset);
3501 break;
3502
3503 default:
3504 abort ();
3505 }
3506
3507 entry->tls_initialized = true;
3508 }
3509
3510 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3511 for global symbol H. .got.plt comes before the GOT, so the offset
3512 will be negative. */
3513
3514 static bfd_vma
mips_elf_gotplt_index(struct bfd_link_info * info,struct elf_link_hash_entry * h)3515 mips_elf_gotplt_index (struct bfd_link_info *info,
3516 struct elf_link_hash_entry *h)
3517 {
3518 bfd_vma got_address, got_value;
3519 struct mips_elf_link_hash_table *htab;
3520
3521 htab = mips_elf_hash_table (info);
3522 BFD_ASSERT (htab != NULL);
3523
3524 BFD_ASSERT (h->plt.plist != NULL);
3525 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
3526
3527 /* Calculate the address of the associated .got.plt entry. */
3528 got_address = (htab->root.sgotplt->output_section->vma
3529 + htab->root.sgotplt->output_offset
3530 + (h->plt.plist->gotplt_index
3531 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
3532
3533 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3534 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3535 + htab->root.hgot->root.u.def.section->output_offset
3536 + htab->root.hgot->root.u.def.value);
3537
3538 return got_address - got_value;
3539 }
3540
3541 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3542 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3543 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3544 offset can be found. */
3545
3546 static bfd_vma
mips_elf_local_got_index(bfd * abfd,bfd * ibfd,struct bfd_link_info * info,bfd_vma value,unsigned long r_symndx,struct mips_elf_link_hash_entry * h,int r_type)3547 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3548 bfd_vma value, unsigned long r_symndx,
3549 struct mips_elf_link_hash_entry *h, int r_type)
3550 {
3551 struct mips_elf_link_hash_table *htab;
3552 struct mips_got_entry *entry;
3553
3554 htab = mips_elf_hash_table (info);
3555 BFD_ASSERT (htab != NULL);
3556
3557 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3558 r_symndx, h, r_type);
3559 if (!entry)
3560 return MINUS_ONE;
3561
3562 if (entry->tls_type)
3563 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3564 return entry->gotidx;
3565 }
3566
3567 /* Return the GOT index of global symbol H in the primary GOT. */
3568
3569 static bfd_vma
mips_elf_primary_global_got_index(bfd * obfd,struct bfd_link_info * info,struct elf_link_hash_entry * h)3570 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3571 struct elf_link_hash_entry *h)
3572 {
3573 struct mips_elf_link_hash_table *htab;
3574 long global_got_dynindx;
3575 struct mips_got_info *g;
3576 bfd_vma got_index;
3577
3578 htab = mips_elf_hash_table (info);
3579 BFD_ASSERT (htab != NULL);
3580
3581 global_got_dynindx = 0;
3582 if (htab->global_gotsym != NULL)
3583 global_got_dynindx = htab->global_gotsym->dynindx;
3584
3585 /* Once we determine the global GOT entry with the lowest dynamic
3586 symbol table index, we must put all dynamic symbols with greater
3587 indices into the primary GOT. That makes it easy to calculate the
3588 GOT offset. */
3589 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3590 g = mips_elf_bfd_got (obfd, false);
3591 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3592 * MIPS_ELF_GOT_SIZE (obfd));
3593 BFD_ASSERT (got_index < htab->root.sgot->size);
3594
3595 return got_index;
3596 }
3597
3598 /* Return the GOT index for the global symbol indicated by H, which is
3599 referenced by a relocation of type R_TYPE in IBFD. */
3600
3601 static bfd_vma
mips_elf_global_got_index(bfd * obfd,struct bfd_link_info * info,bfd * ibfd,struct elf_link_hash_entry * h,int r_type)3602 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3603 struct elf_link_hash_entry *h, int r_type)
3604 {
3605 struct mips_elf_link_hash_table *htab;
3606 struct mips_got_info *g;
3607 struct mips_got_entry lookup, *entry;
3608 bfd_vma gotidx;
3609
3610 htab = mips_elf_hash_table (info);
3611 BFD_ASSERT (htab != NULL);
3612
3613 g = mips_elf_bfd_got (ibfd, false);
3614 BFD_ASSERT (g);
3615
3616 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3617 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, false))
3618 return mips_elf_primary_global_got_index (obfd, info, h);
3619
3620 lookup.abfd = ibfd;
3621 lookup.symndx = -1;
3622 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3623 entry = htab_find (g->got_entries, &lookup);
3624 BFD_ASSERT (entry);
3625
3626 gotidx = entry->gotidx;
3627 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3628
3629 if (lookup.tls_type)
3630 {
3631 bfd_vma value = MINUS_ONE;
3632
3633 if ((h->root.type == bfd_link_hash_defined
3634 || h->root.type == bfd_link_hash_defweak)
3635 && h->root.u.def.section->output_section)
3636 value = (h->root.u.def.value
3637 + h->root.u.def.section->output_offset
3638 + h->root.u.def.section->output_section->vma);
3639
3640 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3641 }
3642 return gotidx;
3643 }
3644
3645 /* Find a GOT page entry that points to within 32KB of VALUE. These
3646 entries are supposed to be placed at small offsets in the GOT, i.e.,
3647 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3648 entry could be created. If OFFSETP is nonnull, use it to return the
3649 offset of the GOT entry from VALUE. */
3650
3651 static bfd_vma
mips_elf_got_page(bfd * abfd,bfd * ibfd,struct bfd_link_info * info,bfd_vma value,bfd_vma * offsetp)3652 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3653 bfd_vma value, bfd_vma *offsetp)
3654 {
3655 bfd_vma page, got_index;
3656 struct mips_got_entry *entry;
3657
3658 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3659 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3660 NULL, R_MIPS_GOT_PAGE);
3661
3662 if (!entry)
3663 return MINUS_ONE;
3664
3665 got_index = entry->gotidx;
3666
3667 if (offsetp)
3668 *offsetp = value - entry->d.address;
3669
3670 return got_index;
3671 }
3672
3673 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3674 EXTERNAL is true if the relocation was originally against a global
3675 symbol that binds locally. */
3676
3677 static bfd_vma
mips_elf_got16_entry(bfd * abfd,bfd * ibfd,struct bfd_link_info * info,bfd_vma value,bool external)3678 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3679 bfd_vma value, bool external)
3680 {
3681 struct mips_got_entry *entry;
3682
3683 /* GOT16 relocations against local symbols are followed by a LO16
3684 relocation; those against global symbols are not. Thus if the
3685 symbol was originally local, the GOT16 relocation should load the
3686 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3687 if (! external)
3688 value = mips_elf_high (value) << 16;
3689
3690 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3691 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3692 same in all cases. */
3693 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3694 NULL, R_MIPS_GOT16);
3695 if (entry)
3696 return entry->gotidx;
3697 else
3698 return MINUS_ONE;
3699 }
3700
3701 /* Returns the offset for the entry at the INDEXth position
3702 in the GOT. */
3703
3704 static bfd_vma
mips_elf_got_offset_from_index(struct bfd_link_info * info,bfd * output_bfd,bfd * input_bfd,bfd_vma got_index)3705 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3706 bfd *input_bfd, bfd_vma got_index)
3707 {
3708 struct mips_elf_link_hash_table *htab;
3709 asection *sgot;
3710 bfd_vma gp;
3711
3712 htab = mips_elf_hash_table (info);
3713 BFD_ASSERT (htab != NULL);
3714
3715 sgot = htab->root.sgot;
3716 gp = _bfd_get_gp_value (output_bfd)
3717 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3718
3719 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3720 }
3721
3722 /* Create and return a local GOT entry for VALUE, which was calculated
3723 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3724 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3725 instead. */
3726
3727 static struct mips_got_entry *
mips_elf_create_local_got_entry(bfd * abfd,struct bfd_link_info * info,bfd * ibfd,bfd_vma value,unsigned long r_symndx,struct mips_elf_link_hash_entry * h,int r_type)3728 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3729 bfd *ibfd, bfd_vma value,
3730 unsigned long r_symndx,
3731 struct mips_elf_link_hash_entry *h,
3732 int r_type)
3733 {
3734 struct mips_got_entry lookup, *entry;
3735 void **loc;
3736 struct mips_got_info *g;
3737 struct mips_elf_link_hash_table *htab;
3738 bfd_vma gotidx;
3739
3740 htab = mips_elf_hash_table (info);
3741 BFD_ASSERT (htab != NULL);
3742
3743 g = mips_elf_bfd_got (ibfd, false);
3744 if (g == NULL)
3745 {
3746 g = mips_elf_bfd_got (abfd, false);
3747 BFD_ASSERT (g != NULL);
3748 }
3749
3750 /* This function shouldn't be called for symbols that live in the global
3751 area of the GOT. */
3752 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3753
3754 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3755 if (lookup.tls_type)
3756 {
3757 lookup.abfd = ibfd;
3758 if (tls_ldm_reloc_p (r_type))
3759 {
3760 lookup.symndx = 0;
3761 lookup.d.addend = 0;
3762 }
3763 else if (h == NULL)
3764 {
3765 lookup.symndx = r_symndx;
3766 lookup.d.addend = 0;
3767 }
3768 else
3769 {
3770 lookup.symndx = -1;
3771 lookup.d.h = h;
3772 }
3773
3774 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3775 BFD_ASSERT (entry);
3776
3777 gotidx = entry->gotidx;
3778 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3779
3780 return entry;
3781 }
3782
3783 lookup.abfd = NULL;
3784 lookup.symndx = -1;
3785 lookup.d.address = value;
3786 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3787 if (!loc)
3788 return NULL;
3789
3790 entry = (struct mips_got_entry *) *loc;
3791 if (entry)
3792 return entry;
3793
3794 if (g->assigned_low_gotno > g->assigned_high_gotno)
3795 {
3796 /* We didn't allocate enough space in the GOT. */
3797 _bfd_error_handler
3798 (_("not enough GOT space for local GOT entries"));
3799 bfd_set_error (bfd_error_bad_value);
3800 return NULL;
3801 }
3802
3803 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3804 if (!entry)
3805 return NULL;
3806
3807 if (got16_reloc_p (r_type)
3808 || call16_reloc_p (r_type)
3809 || got_page_reloc_p (r_type)
3810 || got_disp_reloc_p (r_type))
3811 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3812 else
3813 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3814
3815 *entry = lookup;
3816 *loc = entry;
3817
3818 MIPS_ELF_PUT_WORD (abfd, value, htab->root.sgot->contents + entry->gotidx);
3819
3820 /* These GOT entries need a dynamic relocation on VxWorks. */
3821 if (htab->root.target_os == is_vxworks)
3822 {
3823 Elf_Internal_Rela outrel;
3824 asection *s;
3825 bfd_byte *rloc;
3826 bfd_vma got_address;
3827
3828 s = mips_elf_rel_dyn_section (info, false);
3829 got_address = (htab->root.sgot->output_section->vma
3830 + htab->root.sgot->output_offset
3831 + entry->gotidx);
3832
3833 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3834 outrel.r_offset = got_address;
3835 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3836 outrel.r_addend = value;
3837 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3838 }
3839
3840 return entry;
3841 }
3842
3843 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3844 The number might be exact or a worst-case estimate, depending on how
3845 much information is available to elf_backend_omit_section_dynsym at
3846 the current linking stage. */
3847
3848 static bfd_size_type
count_section_dynsyms(bfd * output_bfd,struct bfd_link_info * info)3849 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3850 {
3851 bfd_size_type count;
3852
3853 count = 0;
3854 if (bfd_link_pic (info)
3855 || elf_hash_table (info)->is_relocatable_executable)
3856 {
3857 asection *p;
3858 const struct elf_backend_data *bed;
3859
3860 bed = get_elf_backend_data (output_bfd);
3861 for (p = output_bfd->sections; p ; p = p->next)
3862 if ((p->flags & SEC_EXCLUDE) == 0
3863 && (p->flags & SEC_ALLOC) != 0
3864 && elf_hash_table (info)->dynamic_relocs
3865 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3866 ++count;
3867 }
3868 return count;
3869 }
3870
3871 /* Sort the dynamic symbol table so that symbols that need GOT entries
3872 appear towards the end. */
3873
3874 static bool
mips_elf_sort_hash_table(bfd * abfd,struct bfd_link_info * info)3875 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3876 {
3877 struct mips_elf_link_hash_table *htab;
3878 struct mips_elf_hash_sort_data hsd;
3879 struct mips_got_info *g;
3880
3881 htab = mips_elf_hash_table (info);
3882 BFD_ASSERT (htab != NULL);
3883
3884 if (htab->root.dynsymcount == 0)
3885 return true;
3886
3887 g = htab->got_info;
3888 if (g == NULL)
3889 return true;
3890
3891 hsd.low = NULL;
3892 hsd.max_unref_got_dynindx
3893 = hsd.min_got_dynindx
3894 = (htab->root.dynsymcount - g->reloc_only_gotno);
3895 /* Add 1 to local symbol indices to account for the mandatory NULL entry
3896 at the head of the table; see `_bfd_elf_link_renumber_dynsyms'. */
3897 hsd.max_local_dynindx = count_section_dynsyms (abfd, info) + 1;
3898 hsd.max_non_got_dynindx = htab->root.local_dynsymcount + 1;
3899 hsd.output_bfd = abfd;
3900 if (htab->root.dynobj != NULL
3901 && htab->root.dynamic_sections_created
3902 && info->emit_gnu_hash)
3903 {
3904 asection *s = bfd_get_linker_section (htab->root.dynobj, ".MIPS.xhash");
3905 BFD_ASSERT (s != NULL);
3906 hsd.mipsxhash = s->contents;
3907 BFD_ASSERT (hsd.mipsxhash != NULL);
3908 }
3909 else
3910 hsd.mipsxhash = NULL;
3911 mips_elf_link_hash_traverse (htab, mips_elf_sort_hash_table_f, &hsd);
3912
3913 /* There should have been enough room in the symbol table to
3914 accommodate both the GOT and non-GOT symbols. */
3915 BFD_ASSERT (hsd.max_local_dynindx <= htab->root.local_dynsymcount + 1);
3916 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3917 BFD_ASSERT (hsd.max_unref_got_dynindx == htab->root.dynsymcount);
3918 BFD_ASSERT (htab->root.dynsymcount - hsd.min_got_dynindx == g->global_gotno);
3919
3920 /* Now we know which dynamic symbol has the lowest dynamic symbol
3921 table index in the GOT. */
3922 htab->global_gotsym = hsd.low;
3923
3924 return true;
3925 }
3926
3927 /* If H needs a GOT entry, assign it the highest available dynamic
3928 index. Otherwise, assign it the lowest available dynamic
3929 index. */
3930
3931 static bool
mips_elf_sort_hash_table_f(struct mips_elf_link_hash_entry * h,void * data)3932 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3933 {
3934 struct mips_elf_hash_sort_data *hsd = data;
3935
3936 /* Symbols without dynamic symbol table entries aren't interesting
3937 at all. */
3938 if (h->root.dynindx == -1)
3939 return true;
3940
3941 switch (h->global_got_area)
3942 {
3943 case GGA_NONE:
3944 if (h->root.forced_local)
3945 h->root.dynindx = hsd->max_local_dynindx++;
3946 else
3947 h->root.dynindx = hsd->max_non_got_dynindx++;
3948 break;
3949
3950 case GGA_NORMAL:
3951 h->root.dynindx = --hsd->min_got_dynindx;
3952 hsd->low = (struct elf_link_hash_entry *) h;
3953 break;
3954
3955 case GGA_RELOC_ONLY:
3956 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3957 hsd->low = (struct elf_link_hash_entry *) h;
3958 h->root.dynindx = hsd->max_unref_got_dynindx++;
3959 break;
3960 }
3961
3962 /* Populate the .MIPS.xhash translation table entry with
3963 the symbol dynindx. */
3964 if (h->mipsxhash_loc != 0 && hsd->mipsxhash != NULL)
3965 bfd_put_32 (hsd->output_bfd, h->root.dynindx,
3966 hsd->mipsxhash + h->mipsxhash_loc);
3967
3968 return true;
3969 }
3970
3971 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3972 (which is owned by the caller and shouldn't be added to the
3973 hash table directly). */
3974
3975 static bool
mips_elf_record_got_entry(struct bfd_link_info * info,bfd * abfd,struct mips_got_entry * lookup)3976 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3977 struct mips_got_entry *lookup)
3978 {
3979 struct mips_elf_link_hash_table *htab;
3980 struct mips_got_entry *entry;
3981 struct mips_got_info *g;
3982 void **loc, **bfd_loc;
3983
3984 /* Make sure there's a slot for this entry in the master GOT. */
3985 htab = mips_elf_hash_table (info);
3986 g = htab->got_info;
3987 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3988 if (!loc)
3989 return false;
3990
3991 /* Populate the entry if it isn't already. */
3992 entry = (struct mips_got_entry *) *loc;
3993 if (!entry)
3994 {
3995 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3996 if (!entry)
3997 return false;
3998
3999 lookup->tls_initialized = false;
4000 lookup->gotidx = -1;
4001 *entry = *lookup;
4002 *loc = entry;
4003 }
4004
4005 /* Reuse the same GOT entry for the BFD's GOT. */
4006 g = mips_elf_bfd_got (abfd, true);
4007 if (!g)
4008 return false;
4009
4010 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
4011 if (!bfd_loc)
4012 return false;
4013
4014 if (!*bfd_loc)
4015 *bfd_loc = entry;
4016 return true;
4017 }
4018
4019 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
4020 entry for it. FOR_CALL is true if the caller is only interested in
4021 using the GOT entry for calls. */
4022
4023 static bool
mips_elf_record_global_got_symbol(struct elf_link_hash_entry * h,bfd * abfd,struct bfd_link_info * info,bool for_call,int r_type)4024 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
4025 bfd *abfd, struct bfd_link_info *info,
4026 bool for_call, int r_type)
4027 {
4028 struct mips_elf_link_hash_table *htab;
4029 struct mips_elf_link_hash_entry *hmips;
4030 struct mips_got_entry entry;
4031 unsigned char tls_type;
4032
4033 htab = mips_elf_hash_table (info);
4034 BFD_ASSERT (htab != NULL);
4035
4036 hmips = (struct mips_elf_link_hash_entry *) h;
4037 if (!for_call)
4038 hmips->got_only_for_calls = false;
4039
4040 /* A global symbol in the GOT must also be in the dynamic symbol
4041 table. */
4042 if (h->dynindx == -1)
4043 {
4044 switch (ELF_ST_VISIBILITY (h->other))
4045 {
4046 case STV_INTERNAL:
4047 case STV_HIDDEN:
4048 _bfd_mips_elf_hide_symbol (info, h, true);
4049 break;
4050 }
4051 if (!bfd_elf_link_record_dynamic_symbol (info, h))
4052 return false;
4053 }
4054
4055 tls_type = mips_elf_reloc_tls_type (r_type);
4056 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
4057 hmips->global_got_area = GGA_NORMAL;
4058
4059 entry.abfd = abfd;
4060 entry.symndx = -1;
4061 entry.d.h = (struct mips_elf_link_hash_entry *) h;
4062 entry.tls_type = tls_type;
4063 return mips_elf_record_got_entry (info, abfd, &entry);
4064 }
4065
4066 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
4067 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
4068
4069 static bool
mips_elf_record_local_got_symbol(bfd * abfd,long symndx,bfd_vma addend,struct bfd_link_info * info,int r_type)4070 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
4071 struct bfd_link_info *info, int r_type)
4072 {
4073 struct mips_elf_link_hash_table *htab;
4074 struct mips_got_info *g;
4075 struct mips_got_entry entry;
4076
4077 htab = mips_elf_hash_table (info);
4078 BFD_ASSERT (htab != NULL);
4079
4080 g = htab->got_info;
4081 BFD_ASSERT (g != NULL);
4082
4083 entry.abfd = abfd;
4084 entry.symndx = symndx;
4085 entry.d.addend = addend;
4086 entry.tls_type = mips_elf_reloc_tls_type (r_type);
4087 return mips_elf_record_got_entry (info, abfd, &entry);
4088 }
4089
4090 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
4091 H is the symbol's hash table entry, or null if SYMNDX is local
4092 to ABFD. */
4093
4094 static bool
mips_elf_record_got_page_ref(struct bfd_link_info * info,bfd * abfd,long symndx,struct elf_link_hash_entry * h,bfd_signed_vma addend)4095 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
4096 long symndx, struct elf_link_hash_entry *h,
4097 bfd_signed_vma addend)
4098 {
4099 struct mips_elf_link_hash_table *htab;
4100 struct mips_got_info *g1, *g2;
4101 struct mips_got_page_ref lookup, *entry;
4102 void **loc, **bfd_loc;
4103
4104 htab = mips_elf_hash_table (info);
4105 BFD_ASSERT (htab != NULL);
4106
4107 g1 = htab->got_info;
4108 BFD_ASSERT (g1 != NULL);
4109
4110 if (h)
4111 {
4112 lookup.symndx = -1;
4113 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4114 }
4115 else
4116 {
4117 lookup.symndx = symndx;
4118 lookup.u.abfd = abfd;
4119 }
4120 lookup.addend = addend;
4121 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
4122 if (loc == NULL)
4123 return false;
4124
4125 entry = (struct mips_got_page_ref *) *loc;
4126 if (!entry)
4127 {
4128 entry = bfd_alloc (abfd, sizeof (*entry));
4129 if (!entry)
4130 return false;
4131
4132 *entry = lookup;
4133 *loc = entry;
4134 }
4135
4136 /* Add the same entry to the BFD's GOT. */
4137 g2 = mips_elf_bfd_got (abfd, true);
4138 if (!g2)
4139 return false;
4140
4141 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
4142 if (!bfd_loc)
4143 return false;
4144
4145 if (!*bfd_loc)
4146 *bfd_loc = entry;
4147
4148 return true;
4149 }
4150
4151 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4152
4153 static void
mips_elf_allocate_dynamic_relocations(bfd * abfd,struct bfd_link_info * info,unsigned int n)4154 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4155 unsigned int n)
4156 {
4157 asection *s;
4158 struct mips_elf_link_hash_table *htab;
4159
4160 htab = mips_elf_hash_table (info);
4161 BFD_ASSERT (htab != NULL);
4162
4163 s = mips_elf_rel_dyn_section (info, false);
4164 BFD_ASSERT (s != NULL);
4165
4166 if (htab->root.target_os == is_vxworks)
4167 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4168 else
4169 {
4170 if (s->size == 0)
4171 {
4172 /* Make room for a null element. */
4173 s->size += MIPS_ELF_REL_SIZE (abfd);
4174 ++s->reloc_count;
4175 }
4176 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4177 }
4178 }
4179
4180 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4181 mips_elf_traverse_got_arg structure. Count the number of GOT
4182 entries and TLS relocs. Set DATA->value to true if we need
4183 to resolve indirect or warning symbols and then recreate the GOT. */
4184
4185 static int
mips_elf_check_recreate_got(void ** entryp,void * data)4186 mips_elf_check_recreate_got (void **entryp, void *data)
4187 {
4188 struct mips_got_entry *entry;
4189 struct mips_elf_traverse_got_arg *arg;
4190
4191 entry = (struct mips_got_entry *) *entryp;
4192 arg = (struct mips_elf_traverse_got_arg *) data;
4193 if (entry->abfd != NULL && entry->symndx == -1)
4194 {
4195 struct mips_elf_link_hash_entry *h;
4196
4197 h = entry->d.h;
4198 if (h->root.root.type == bfd_link_hash_indirect
4199 || h->root.root.type == bfd_link_hash_warning)
4200 {
4201 arg->value = true;
4202 return 0;
4203 }
4204 }
4205 mips_elf_count_got_entry (arg->info, arg->g, entry);
4206 return 1;
4207 }
4208
4209 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4210 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4211 converting entries for indirect and warning symbols into entries
4212 for the target symbol. Set DATA->g to null on error. */
4213
4214 static int
mips_elf_recreate_got(void ** entryp,void * data)4215 mips_elf_recreate_got (void **entryp, void *data)
4216 {
4217 struct mips_got_entry new_entry, *entry;
4218 struct mips_elf_traverse_got_arg *arg;
4219 void **slot;
4220
4221 entry = (struct mips_got_entry *) *entryp;
4222 arg = (struct mips_elf_traverse_got_arg *) data;
4223 if (entry->abfd != NULL
4224 && entry->symndx == -1
4225 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4226 || entry->d.h->root.root.type == bfd_link_hash_warning))
4227 {
4228 struct mips_elf_link_hash_entry *h;
4229
4230 new_entry = *entry;
4231 entry = &new_entry;
4232 h = entry->d.h;
4233 do
4234 {
4235 BFD_ASSERT (h->global_got_area == GGA_NONE);
4236 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4237 }
4238 while (h->root.root.type == bfd_link_hash_indirect
4239 || h->root.root.type == bfd_link_hash_warning);
4240 entry->d.h = h;
4241 }
4242 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4243 if (slot == NULL)
4244 {
4245 arg->g = NULL;
4246 return 0;
4247 }
4248 if (*slot == NULL)
4249 {
4250 if (entry == &new_entry)
4251 {
4252 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4253 if (!entry)
4254 {
4255 arg->g = NULL;
4256 return 0;
4257 }
4258 *entry = new_entry;
4259 }
4260 *slot = entry;
4261 mips_elf_count_got_entry (arg->info, arg->g, entry);
4262 }
4263 return 1;
4264 }
4265
4266 /* Return the maximum number of GOT page entries required for RANGE. */
4267
4268 static bfd_vma
mips_elf_pages_for_range(const struct mips_got_page_range * range)4269 mips_elf_pages_for_range (const struct mips_got_page_range *range)
4270 {
4271 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4272 }
4273
4274 /* Record that G requires a page entry that can reach SEC + ADDEND. */
4275
4276 static bool
mips_elf_record_got_page_entry(struct mips_elf_traverse_got_arg * arg,asection * sec,bfd_signed_vma addend)4277 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
4278 asection *sec, bfd_signed_vma addend)
4279 {
4280 struct mips_got_info *g = arg->g;
4281 struct mips_got_page_entry lookup, *entry;
4282 struct mips_got_page_range **range_ptr, *range;
4283 bfd_vma old_pages, new_pages;
4284 void **loc;
4285
4286 /* Find the mips_got_page_entry hash table entry for this section. */
4287 lookup.sec = sec;
4288 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4289 if (loc == NULL)
4290 return false;
4291
4292 /* Create a mips_got_page_entry if this is the first time we've
4293 seen the section. */
4294 entry = (struct mips_got_page_entry *) *loc;
4295 if (!entry)
4296 {
4297 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
4298 if (!entry)
4299 return false;
4300
4301 entry->sec = sec;
4302 *loc = entry;
4303 }
4304
4305 /* Skip over ranges whose maximum extent cannot share a page entry
4306 with ADDEND. */
4307 range_ptr = &entry->ranges;
4308 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4309 range_ptr = &(*range_ptr)->next;
4310
4311 /* If we scanned to the end of the list, or found a range whose
4312 minimum extent cannot share a page entry with ADDEND, create
4313 a new singleton range. */
4314 range = *range_ptr;
4315 if (!range || addend < range->min_addend - 0xffff)
4316 {
4317 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
4318 if (!range)
4319 return false;
4320
4321 range->next = *range_ptr;
4322 range->min_addend = addend;
4323 range->max_addend = addend;
4324
4325 *range_ptr = range;
4326 entry->num_pages++;
4327 g->page_gotno++;
4328 return true;
4329 }
4330
4331 /* Remember how many pages the old range contributed. */
4332 old_pages = mips_elf_pages_for_range (range);
4333
4334 /* Update the ranges. */
4335 if (addend < range->min_addend)
4336 range->min_addend = addend;
4337 else if (addend > range->max_addend)
4338 {
4339 if (range->next && addend >= range->next->min_addend - 0xffff)
4340 {
4341 old_pages += mips_elf_pages_for_range (range->next);
4342 range->max_addend = range->next->max_addend;
4343 range->next = range->next->next;
4344 }
4345 else
4346 range->max_addend = addend;
4347 }
4348
4349 /* Record any change in the total estimate. */
4350 new_pages = mips_elf_pages_for_range (range);
4351 if (old_pages != new_pages)
4352 {
4353 entry->num_pages += new_pages - old_pages;
4354 g->page_gotno += new_pages - old_pages;
4355 }
4356
4357 return true;
4358 }
4359
4360 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4361 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4362 whether the page reference described by *REFP needs a GOT page entry,
4363 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4364
4365 static int
mips_elf_resolve_got_page_ref(void ** refp,void * data)4366 mips_elf_resolve_got_page_ref (void **refp, void *data)
4367 {
4368 struct mips_got_page_ref *ref;
4369 struct mips_elf_traverse_got_arg *arg;
4370 struct mips_elf_link_hash_table *htab;
4371 asection *sec;
4372 bfd_vma addend;
4373
4374 ref = (struct mips_got_page_ref *) *refp;
4375 arg = (struct mips_elf_traverse_got_arg *) data;
4376 htab = mips_elf_hash_table (arg->info);
4377
4378 if (ref->symndx < 0)
4379 {
4380 struct mips_elf_link_hash_entry *h;
4381
4382 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4383 h = ref->u.h;
4384 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4385 return 1;
4386
4387 /* Ignore undefined symbols; we'll issue an error later if
4388 appropriate. */
4389 if (!((h->root.root.type == bfd_link_hash_defined
4390 || h->root.root.type == bfd_link_hash_defweak)
4391 && h->root.root.u.def.section))
4392 return 1;
4393
4394 sec = h->root.root.u.def.section;
4395 addend = h->root.root.u.def.value + ref->addend;
4396 }
4397 else
4398 {
4399 Elf_Internal_Sym *isym;
4400
4401 /* Read in the symbol. */
4402 isym = bfd_sym_from_r_symndx (&htab->root.sym_cache, ref->u.abfd,
4403 ref->symndx);
4404 if (isym == NULL)
4405 {
4406 arg->g = NULL;
4407 return 0;
4408 }
4409
4410 /* Get the associated input section. */
4411 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4412 if (sec == NULL)
4413 {
4414 arg->g = NULL;
4415 return 0;
4416 }
4417
4418 /* If this is a mergable section, work out the section and offset
4419 of the merged data. For section symbols, the addend specifies
4420 of the offset _of_ the first byte in the data, otherwise it
4421 specifies the offset _from_ the first byte. */
4422 if (sec->flags & SEC_MERGE)
4423 {
4424 void *secinfo;
4425
4426 secinfo = elf_section_data (sec)->sec_info;
4427 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4428 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4429 isym->st_value + ref->addend);
4430 else
4431 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4432 isym->st_value) + ref->addend;
4433 }
4434 else
4435 addend = isym->st_value + ref->addend;
4436 }
4437 if (!mips_elf_record_got_page_entry (arg, sec, addend))
4438 {
4439 arg->g = NULL;
4440 return 0;
4441 }
4442 return 1;
4443 }
4444
4445 /* If any entries in G->got_entries are for indirect or warning symbols,
4446 replace them with entries for the target symbol. Convert g->got_page_refs
4447 into got_page_entry structures and estimate the number of page entries
4448 that they require. */
4449
4450 static bool
mips_elf_resolve_final_got_entries(struct bfd_link_info * info,struct mips_got_info * g)4451 mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4452 struct mips_got_info *g)
4453 {
4454 struct mips_elf_traverse_got_arg tga;
4455 struct mips_got_info oldg;
4456
4457 oldg = *g;
4458
4459 tga.info = info;
4460 tga.g = g;
4461 tga.value = false;
4462 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4463 if (tga.value)
4464 {
4465 *g = oldg;
4466 g->got_entries = htab_create (htab_size (oldg.got_entries),
4467 mips_elf_got_entry_hash,
4468 mips_elf_got_entry_eq, NULL);
4469 if (!g->got_entries)
4470 return false;
4471
4472 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4473 if (!tga.g)
4474 return false;
4475
4476 htab_delete (oldg.got_entries);
4477 }
4478
4479 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4480 mips_got_page_entry_eq, NULL);
4481 if (g->got_page_entries == NULL)
4482 return false;
4483
4484 tga.info = info;
4485 tga.g = g;
4486 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4487
4488 return true;
4489 }
4490
4491 /* Return true if a GOT entry for H should live in the local rather than
4492 global GOT area. */
4493
4494 static bool
mips_use_local_got_p(struct bfd_link_info * info,struct mips_elf_link_hash_entry * h)4495 mips_use_local_got_p (struct bfd_link_info *info,
4496 struct mips_elf_link_hash_entry *h)
4497 {
4498 /* Symbols that aren't in the dynamic symbol table must live in the
4499 local GOT. This includes symbols that are completely undefined
4500 and which therefore don't bind locally. We'll report undefined
4501 symbols later if appropriate. */
4502 if (h->root.dynindx == -1)
4503 return true;
4504
4505 /* Absolute symbols, if ever they need a GOT entry, cannot ever go
4506 to the local GOT, as they would be implicitly relocated by the
4507 base address by the dynamic loader. */
4508 if (bfd_is_abs_symbol (&h->root.root))
4509 return false;
4510
4511 /* Symbols that bind locally can (and in the case of forced-local
4512 symbols, must) live in the local GOT. */
4513 if (h->got_only_for_calls
4514 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4515 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4516 return true;
4517
4518 /* If this is an executable that must provide a definition of the symbol,
4519 either though PLTs or copy relocations, then that address should go in
4520 the local rather than global GOT. */
4521 if (bfd_link_executable (info) && h->has_static_relocs)
4522 return true;
4523
4524 return false;
4525 }
4526
4527 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4528 link_info structure. Decide whether the hash entry needs an entry in
4529 the global part of the primary GOT, setting global_got_area accordingly.
4530 Count the number of global symbols that are in the primary GOT only
4531 because they have relocations against them (reloc_only_gotno). */
4532
4533 static bool
mips_elf_count_got_symbols(struct mips_elf_link_hash_entry * h,void * data)4534 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4535 {
4536 struct bfd_link_info *info;
4537 struct mips_elf_link_hash_table *htab;
4538 struct mips_got_info *g;
4539
4540 info = (struct bfd_link_info *) data;
4541 htab = mips_elf_hash_table (info);
4542 g = htab->got_info;
4543 if (h->global_got_area != GGA_NONE)
4544 {
4545 /* Make a final decision about whether the symbol belongs in the
4546 local or global GOT. */
4547 if (mips_use_local_got_p (info, h))
4548 /* The symbol belongs in the local GOT. We no longer need this
4549 entry if it was only used for relocations; those relocations
4550 will be against the null or section symbol instead of H. */
4551 h->global_got_area = GGA_NONE;
4552 else if (htab->root.target_os == is_vxworks
4553 && h->got_only_for_calls
4554 && h->root.plt.plist->mips_offset != MINUS_ONE)
4555 /* On VxWorks, calls can refer directly to the .got.plt entry;
4556 they don't need entries in the regular GOT. .got.plt entries
4557 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4558 h->global_got_area = GGA_NONE;
4559 else if (h->global_got_area == GGA_RELOC_ONLY)
4560 {
4561 g->reloc_only_gotno++;
4562 g->global_gotno++;
4563 }
4564 }
4565 return 1;
4566 }
4567
4568 /* A htab_traverse callback for GOT entries. Add each one to the GOT
4569 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4570
4571 static int
mips_elf_add_got_entry(void ** entryp,void * data)4572 mips_elf_add_got_entry (void **entryp, void *data)
4573 {
4574 struct mips_got_entry *entry;
4575 struct mips_elf_traverse_got_arg *arg;
4576 void **slot;
4577
4578 entry = (struct mips_got_entry *) *entryp;
4579 arg = (struct mips_elf_traverse_got_arg *) data;
4580 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4581 if (!slot)
4582 {
4583 arg->g = NULL;
4584 return 0;
4585 }
4586 if (!*slot)
4587 {
4588 *slot = entry;
4589 mips_elf_count_got_entry (arg->info, arg->g, entry);
4590 }
4591 return 1;
4592 }
4593
4594 /* A htab_traverse callback for GOT page entries. Add each one to the GOT
4595 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4596
4597 static int
mips_elf_add_got_page_entry(void ** entryp,void * data)4598 mips_elf_add_got_page_entry (void **entryp, void *data)
4599 {
4600 struct mips_got_page_entry *entry;
4601 struct mips_elf_traverse_got_arg *arg;
4602 void **slot;
4603
4604 entry = (struct mips_got_page_entry *) *entryp;
4605 arg = (struct mips_elf_traverse_got_arg *) data;
4606 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4607 if (!slot)
4608 {
4609 arg->g = NULL;
4610 return 0;
4611 }
4612 if (!*slot)
4613 {
4614 *slot = entry;
4615 arg->g->page_gotno += entry->num_pages;
4616 }
4617 return 1;
4618 }
4619
4620 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4621 this would lead to overflow, 1 if they were merged successfully,
4622 and 0 if a merge failed due to lack of memory. (These values are chosen
4623 so that nonnegative return values can be returned by a htab_traverse
4624 callback.) */
4625
4626 static int
mips_elf_merge_got_with(bfd * abfd,struct mips_got_info * from,struct mips_got_info * to,struct mips_elf_got_per_bfd_arg * arg)4627 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4628 struct mips_got_info *to,
4629 struct mips_elf_got_per_bfd_arg *arg)
4630 {
4631 struct mips_elf_traverse_got_arg tga;
4632 unsigned int estimate;
4633
4634 /* Work out how many page entries we would need for the combined GOT. */
4635 estimate = arg->max_pages;
4636 if (estimate >= from->page_gotno + to->page_gotno)
4637 estimate = from->page_gotno + to->page_gotno;
4638
4639 /* And conservatively estimate how many local and TLS entries
4640 would be needed. */
4641 estimate += from->local_gotno + to->local_gotno;
4642 estimate += from->tls_gotno + to->tls_gotno;
4643
4644 /* If we're merging with the primary got, any TLS relocations will
4645 come after the full set of global entries. Otherwise estimate those
4646 conservatively as well. */
4647 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4648 estimate += arg->global_count;
4649 else
4650 estimate += from->global_gotno + to->global_gotno;
4651
4652 /* Bail out if the combined GOT might be too big. */
4653 if (estimate > arg->max_count)
4654 return -1;
4655
4656 /* Transfer the bfd's got information from FROM to TO. */
4657 tga.info = arg->info;
4658 tga.g = to;
4659 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4660 if (!tga.g)
4661 return 0;
4662
4663 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4664 if (!tga.g)
4665 return 0;
4666
4667 mips_elf_replace_bfd_got (abfd, to);
4668 return 1;
4669 }
4670
4671 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4672 as possible of the primary got, since it doesn't require explicit
4673 dynamic relocations, but don't use bfds that would reference global
4674 symbols out of the addressable range. Failing the primary got,
4675 attempt to merge with the current got, or finish the current got
4676 and then make make the new got current. */
4677
4678 static bool
mips_elf_merge_got(bfd * abfd,struct mips_got_info * g,struct mips_elf_got_per_bfd_arg * arg)4679 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4680 struct mips_elf_got_per_bfd_arg *arg)
4681 {
4682 unsigned int estimate;
4683 int result;
4684
4685 if (!mips_elf_resolve_final_got_entries (arg->info, g))
4686 return false;
4687
4688 /* Work out the number of page, local and TLS entries. */
4689 estimate = arg->max_pages;
4690 if (estimate > g->page_gotno)
4691 estimate = g->page_gotno;
4692 estimate += g->local_gotno + g->tls_gotno;
4693
4694 /* We place TLS GOT entries after both locals and globals. The globals
4695 for the primary GOT may overflow the normal GOT size limit, so be
4696 sure not to merge a GOT which requires TLS with the primary GOT in that
4697 case. This doesn't affect non-primary GOTs. */
4698 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4699
4700 if (estimate <= arg->max_count)
4701 {
4702 /* If we don't have a primary GOT, use it as
4703 a starting point for the primary GOT. */
4704 if (!arg->primary)
4705 {
4706 arg->primary = g;
4707 return true;
4708 }
4709
4710 /* Try merging with the primary GOT. */
4711 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4712 if (result >= 0)
4713 return result;
4714 }
4715
4716 /* If we can merge with the last-created got, do it. */
4717 if (arg->current)
4718 {
4719 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4720 if (result >= 0)
4721 return result;
4722 }
4723
4724 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4725 fits; if it turns out that it doesn't, we'll get relocation
4726 overflows anyway. */
4727 g->next = arg->current;
4728 arg->current = g;
4729
4730 return true;
4731 }
4732
4733 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4734 to GOTIDX, duplicating the entry if it has already been assigned
4735 an index in a different GOT. */
4736
4737 static bool
mips_elf_set_gotidx(void ** entryp,long gotidx)4738 mips_elf_set_gotidx (void **entryp, long gotidx)
4739 {
4740 struct mips_got_entry *entry;
4741
4742 entry = (struct mips_got_entry *) *entryp;
4743 if (entry->gotidx > 0)
4744 {
4745 struct mips_got_entry *new_entry;
4746
4747 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4748 if (!new_entry)
4749 return false;
4750
4751 *new_entry = *entry;
4752 *entryp = new_entry;
4753 entry = new_entry;
4754 }
4755 entry->gotidx = gotidx;
4756 return true;
4757 }
4758
4759 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4760 mips_elf_traverse_got_arg in which DATA->value is the size of one
4761 GOT entry. Set DATA->g to null on failure. */
4762
4763 static int
mips_elf_initialize_tls_index(void ** entryp,void * data)4764 mips_elf_initialize_tls_index (void **entryp, void *data)
4765 {
4766 struct mips_got_entry *entry;
4767 struct mips_elf_traverse_got_arg *arg;
4768
4769 /* We're only interested in TLS symbols. */
4770 entry = (struct mips_got_entry *) *entryp;
4771 if (entry->tls_type == GOT_TLS_NONE)
4772 return 1;
4773
4774 arg = (struct mips_elf_traverse_got_arg *) data;
4775 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4776 {
4777 arg->g = NULL;
4778 return 0;
4779 }
4780
4781 /* Account for the entries we've just allocated. */
4782 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4783 return 1;
4784 }
4785
4786 /* A htab_traverse callback for GOT entries, where DATA points to a
4787 mips_elf_traverse_got_arg. Set the global_got_area of each global
4788 symbol to DATA->value. */
4789
4790 static int
mips_elf_set_global_got_area(void ** entryp,void * data)4791 mips_elf_set_global_got_area (void **entryp, void *data)
4792 {
4793 struct mips_got_entry *entry;
4794 struct mips_elf_traverse_got_arg *arg;
4795
4796 entry = (struct mips_got_entry *) *entryp;
4797 arg = (struct mips_elf_traverse_got_arg *) data;
4798 if (entry->abfd != NULL
4799 && entry->symndx == -1
4800 && entry->d.h->global_got_area != GGA_NONE)
4801 entry->d.h->global_got_area = arg->value;
4802 return 1;
4803 }
4804
4805 /* A htab_traverse callback for secondary GOT entries, where DATA points
4806 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4807 and record the number of relocations they require. DATA->value is
4808 the size of one GOT entry. Set DATA->g to null on failure. */
4809
4810 static int
mips_elf_set_global_gotidx(void ** entryp,void * data)4811 mips_elf_set_global_gotidx (void **entryp, void *data)
4812 {
4813 struct mips_got_entry *entry;
4814 struct mips_elf_traverse_got_arg *arg;
4815
4816 entry = (struct mips_got_entry *) *entryp;
4817 arg = (struct mips_elf_traverse_got_arg *) data;
4818 if (entry->abfd != NULL
4819 && entry->symndx == -1
4820 && entry->d.h->global_got_area != GGA_NONE)
4821 {
4822 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
4823 {
4824 arg->g = NULL;
4825 return 0;
4826 }
4827 arg->g->assigned_low_gotno += 1;
4828
4829 if (bfd_link_pic (arg->info)
4830 || (elf_hash_table (arg->info)->dynamic_sections_created
4831 && entry->d.h->root.def_dynamic
4832 && !entry->d.h->root.def_regular))
4833 arg->g->relocs += 1;
4834 }
4835
4836 return 1;
4837 }
4838
4839 /* A htab_traverse callback for GOT entries for which DATA is the
4840 bfd_link_info. Forbid any global symbols from having traditional
4841 lazy-binding stubs. */
4842
4843 static int
mips_elf_forbid_lazy_stubs(void ** entryp,void * data)4844 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4845 {
4846 struct bfd_link_info *info;
4847 struct mips_elf_link_hash_table *htab;
4848 struct mips_got_entry *entry;
4849
4850 entry = (struct mips_got_entry *) *entryp;
4851 info = (struct bfd_link_info *) data;
4852 htab = mips_elf_hash_table (info);
4853 BFD_ASSERT (htab != NULL);
4854
4855 if (entry->abfd != NULL
4856 && entry->symndx == -1
4857 && entry->d.h->needs_lazy_stub)
4858 {
4859 entry->d.h->needs_lazy_stub = false;
4860 htab->lazy_stub_count--;
4861 }
4862
4863 return 1;
4864 }
4865
4866 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4867 the primary GOT. */
4868 static bfd_vma
mips_elf_adjust_gp(bfd * abfd,struct mips_got_info * g,bfd * ibfd)4869 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4870 {
4871 if (!g->next)
4872 return 0;
4873
4874 g = mips_elf_bfd_got (ibfd, false);
4875 if (! g)
4876 return 0;
4877
4878 BFD_ASSERT (g->next);
4879
4880 g = g->next;
4881
4882 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4883 * MIPS_ELF_GOT_SIZE (abfd);
4884 }
4885
4886 /* Turn a single GOT that is too big for 16-bit addressing into
4887 a sequence of GOTs, each one 16-bit addressable. */
4888
4889 static bool
mips_elf_multi_got(bfd * abfd,struct bfd_link_info * info,asection * got,bfd_size_type pages)4890 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4891 asection *got, bfd_size_type pages)
4892 {
4893 struct mips_elf_link_hash_table *htab;
4894 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4895 struct mips_elf_traverse_got_arg tga;
4896 struct mips_got_info *g, *gg;
4897 unsigned int assign, needed_relocs;
4898 bfd *dynobj, *ibfd;
4899
4900 dynobj = elf_hash_table (info)->dynobj;
4901 htab = mips_elf_hash_table (info);
4902 BFD_ASSERT (htab != NULL);
4903
4904 g = htab->got_info;
4905
4906 got_per_bfd_arg.obfd = abfd;
4907 got_per_bfd_arg.info = info;
4908 got_per_bfd_arg.current = NULL;
4909 got_per_bfd_arg.primary = NULL;
4910 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4911 / MIPS_ELF_GOT_SIZE (abfd))
4912 - htab->reserved_gotno);
4913 got_per_bfd_arg.max_pages = pages;
4914 /* The number of globals that will be included in the primary GOT.
4915 See the calls to mips_elf_set_global_got_area below for more
4916 information. */
4917 got_per_bfd_arg.global_count = g->global_gotno;
4918
4919 /* Try to merge the GOTs of input bfds together, as long as they
4920 don't seem to exceed the maximum GOT size, choosing one of them
4921 to be the primary GOT. */
4922 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
4923 {
4924 gg = mips_elf_bfd_got (ibfd, false);
4925 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4926 return false;
4927 }
4928
4929 /* If we do not find any suitable primary GOT, create an empty one. */
4930 if (got_per_bfd_arg.primary == NULL)
4931 g->next = mips_elf_create_got_info (abfd);
4932 else
4933 g->next = got_per_bfd_arg.primary;
4934 g->next->next = got_per_bfd_arg.current;
4935
4936 /* GG is now the master GOT, and G is the primary GOT. */
4937 gg = g;
4938 g = g->next;
4939
4940 /* Map the output bfd to the primary got. That's what we're going
4941 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4942 didn't mark in check_relocs, and we want a quick way to find it.
4943 We can't just use gg->next because we're going to reverse the
4944 list. */
4945 mips_elf_replace_bfd_got (abfd, g);
4946
4947 /* Every symbol that is referenced in a dynamic relocation must be
4948 present in the primary GOT, so arrange for them to appear after
4949 those that are actually referenced. */
4950 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4951 g->global_gotno = gg->global_gotno;
4952
4953 tga.info = info;
4954 tga.value = GGA_RELOC_ONLY;
4955 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4956 tga.value = GGA_NORMAL;
4957 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4958
4959 /* Now go through the GOTs assigning them offset ranges.
4960 [assigned_low_gotno, local_gotno[ will be set to the range of local
4961 entries in each GOT. We can then compute the end of a GOT by
4962 adding local_gotno to global_gotno. We reverse the list and make
4963 it circular since then we'll be able to quickly compute the
4964 beginning of a GOT, by computing the end of its predecessor. To
4965 avoid special cases for the primary GOT, while still preserving
4966 assertions that are valid for both single- and multi-got links,
4967 we arrange for the main got struct to have the right number of
4968 global entries, but set its local_gotno such that the initial
4969 offset of the primary GOT is zero. Remember that the primary GOT
4970 will become the last item in the circular linked list, so it
4971 points back to the master GOT. */
4972 gg->local_gotno = -g->global_gotno;
4973 gg->global_gotno = g->global_gotno;
4974 gg->tls_gotno = 0;
4975 assign = 0;
4976 gg->next = gg;
4977
4978 do
4979 {
4980 struct mips_got_info *gn;
4981
4982 assign += htab->reserved_gotno;
4983 g->assigned_low_gotno = assign;
4984 g->local_gotno += assign;
4985 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4986 g->assigned_high_gotno = g->local_gotno - 1;
4987 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4988
4989 /* Take g out of the direct list, and push it onto the reversed
4990 list that gg points to. g->next is guaranteed to be nonnull after
4991 this operation, as required by mips_elf_initialize_tls_index. */
4992 gn = g->next;
4993 g->next = gg->next;
4994 gg->next = g;
4995
4996 /* Set up any TLS entries. We always place the TLS entries after
4997 all non-TLS entries. */
4998 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4999 tga.g = g;
5000 tga.value = MIPS_ELF_GOT_SIZE (abfd);
5001 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
5002 if (!tga.g)
5003 return false;
5004 BFD_ASSERT (g->tls_assigned_gotno == assign);
5005
5006 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
5007 g = gn;
5008
5009 /* Forbid global symbols in every non-primary GOT from having
5010 lazy-binding stubs. */
5011 if (g)
5012 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
5013 }
5014 while (g);
5015
5016 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
5017
5018 needed_relocs = 0;
5019 for (g = gg->next; g && g->next != gg; g = g->next)
5020 {
5021 unsigned int save_assign;
5022
5023 /* Assign offsets to global GOT entries and count how many
5024 relocations they need. */
5025 save_assign = g->assigned_low_gotno;
5026 g->assigned_low_gotno = g->local_gotno;
5027 tga.info = info;
5028 tga.value = MIPS_ELF_GOT_SIZE (abfd);
5029 tga.g = g;
5030 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
5031 if (!tga.g)
5032 return false;
5033 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
5034 g->assigned_low_gotno = save_assign;
5035
5036 if (bfd_link_pic (info))
5037 {
5038 g->relocs += g->local_gotno - g->assigned_low_gotno;
5039 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
5040 + g->next->global_gotno
5041 + g->next->tls_gotno
5042 + htab->reserved_gotno);
5043 }
5044 needed_relocs += g->relocs;
5045 }
5046 needed_relocs += g->relocs;
5047
5048 if (needed_relocs)
5049 mips_elf_allocate_dynamic_relocations (dynobj, info,
5050 needed_relocs);
5051
5052 return true;
5053 }
5054
5055
5056 /* Returns the first relocation of type r_type found, beginning with
5057 RELOCATION. RELEND is one-past-the-end of the relocation table. */
5058
5059 static const Elf_Internal_Rela *
mips_elf_next_relocation(bfd * abfd ATTRIBUTE_UNUSED,unsigned int r_type,const Elf_Internal_Rela * relocation,const Elf_Internal_Rela * relend)5060 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
5061 const Elf_Internal_Rela *relocation,
5062 const Elf_Internal_Rela *relend)
5063 {
5064 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
5065
5066 while (relocation < relend)
5067 {
5068 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
5069 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
5070 return relocation;
5071
5072 ++relocation;
5073 }
5074
5075 /* We didn't find it. */
5076 return NULL;
5077 }
5078
5079 /* Return whether an input relocation is against a local symbol. */
5080
5081 static bool
mips_elf_local_relocation_p(bfd * input_bfd,const Elf_Internal_Rela * relocation,asection ** local_sections)5082 mips_elf_local_relocation_p (bfd *input_bfd,
5083 const Elf_Internal_Rela *relocation,
5084 asection **local_sections)
5085 {
5086 unsigned long r_symndx;
5087 Elf_Internal_Shdr *symtab_hdr;
5088 size_t extsymoff;
5089
5090 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5091 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5092 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5093
5094 if (r_symndx < extsymoff)
5095 return true;
5096 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
5097 return true;
5098
5099 return false;
5100 }
5101
5102 /* Sign-extend VALUE, which has the indicated number of BITS. */
5103
5104 bfd_vma
_bfd_mips_elf_sign_extend(bfd_vma value,int bits)5105 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
5106 {
5107 if (value & ((bfd_vma) 1 << (bits - 1)))
5108 /* VALUE is negative. */
5109 value |= ((bfd_vma) - 1) << bits;
5110
5111 return value;
5112 }
5113
5114 /* Return non-zero if the indicated VALUE has overflowed the maximum
5115 range expressible by a signed number with the indicated number of
5116 BITS. */
5117
5118 static bool
mips_elf_overflow_p(bfd_vma value,int bits)5119 mips_elf_overflow_p (bfd_vma value, int bits)
5120 {
5121 bfd_signed_vma svalue = (bfd_signed_vma) value;
5122
5123 if (svalue > (1 << (bits - 1)) - 1)
5124 /* The value is too big. */
5125 return true;
5126 else if (svalue < -(1 << (bits - 1)))
5127 /* The value is too small. */
5128 return true;
5129
5130 /* All is well. */
5131 return false;
5132 }
5133
5134 /* Calculate the %high function. */
5135
5136 static bfd_vma
mips_elf_high(bfd_vma value)5137 mips_elf_high (bfd_vma value)
5138 {
5139 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5140 }
5141
5142 /* Calculate the %higher function. */
5143
5144 static bfd_vma
mips_elf_higher(bfd_vma value ATTRIBUTE_UNUSED)5145 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
5146 {
5147 #ifdef BFD64
5148 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5149 #else
5150 abort ();
5151 return MINUS_ONE;
5152 #endif
5153 }
5154
5155 /* Calculate the %highest function. */
5156
5157 static bfd_vma
mips_elf_highest(bfd_vma value ATTRIBUTE_UNUSED)5158 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
5159 {
5160 #ifdef BFD64
5161 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
5162 #else
5163 abort ();
5164 return MINUS_ONE;
5165 #endif
5166 }
5167
5168 /* Create the .compact_rel section. */
5169
5170 static bool
mips_elf_create_compact_rel_section(bfd * abfd,struct bfd_link_info * info ATTRIBUTE_UNUSED)5171 mips_elf_create_compact_rel_section
5172 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
5173 {
5174 flagword flags;
5175 register asection *s;
5176
5177 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
5178 {
5179 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5180 | SEC_READONLY);
5181
5182 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
5183 if (s == NULL
5184 || !bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5185 return false;
5186
5187 s->size = sizeof (Elf32_External_compact_rel);
5188 }
5189
5190 return true;
5191 }
5192
5193 /* Create the .got section to hold the global offset table. */
5194
5195 static bool
mips_elf_create_got_section(bfd * abfd,struct bfd_link_info * info)5196 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
5197 {
5198 flagword flags;
5199 register asection *s;
5200 struct elf_link_hash_entry *h;
5201 struct bfd_link_hash_entry *bh;
5202 struct mips_elf_link_hash_table *htab;
5203
5204 htab = mips_elf_hash_table (info);
5205 BFD_ASSERT (htab != NULL);
5206
5207 /* This function may be called more than once. */
5208 if (htab->root.sgot)
5209 return true;
5210
5211 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5212 | SEC_LINKER_CREATED);
5213
5214 /* We have to use an alignment of 2**4 here because this is hardcoded
5215 in the function stub generation and in the linker script. */
5216 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
5217 if (s == NULL
5218 || !bfd_set_section_alignment (s, 4))
5219 return false;
5220 htab->root.sgot = s;
5221
5222 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5223 linker script because we don't want to define the symbol if we
5224 are not creating a global offset table. */
5225 bh = NULL;
5226 if (! (_bfd_generic_link_add_one_symbol
5227 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
5228 0, NULL, false, get_elf_backend_data (abfd)->collect, &bh)))
5229 return false;
5230
5231 h = (struct elf_link_hash_entry *) bh;
5232 h->non_elf = 0;
5233 h->def_regular = 1;
5234 h->type = STT_OBJECT;
5235 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
5236 elf_hash_table (info)->hgot = h;
5237
5238 if (bfd_link_pic (info)
5239 && ! bfd_elf_link_record_dynamic_symbol (info, h))
5240 return false;
5241
5242 htab->got_info = mips_elf_create_got_info (abfd);
5243 mips_elf_section_data (s)->elf.this_hdr.sh_flags
5244 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5245
5246 /* We also need a .got.plt section when generating PLTs. */
5247 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5248 SEC_ALLOC | SEC_LOAD
5249 | SEC_HAS_CONTENTS
5250 | SEC_IN_MEMORY
5251 | SEC_LINKER_CREATED);
5252 if (s == NULL)
5253 return false;
5254 htab->root.sgotplt = s;
5255
5256 return true;
5257 }
5258
5259 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5260 __GOTT_INDEX__ symbols. These symbols are only special for
5261 shared objects; they are not used in executables. */
5262
5263 static bool
is_gott_symbol(struct bfd_link_info * info,struct elf_link_hash_entry * h)5264 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5265 {
5266 return (mips_elf_hash_table (info)->root.target_os == is_vxworks
5267 && bfd_link_pic (info)
5268 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5269 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5270 }
5271
5272 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5273 require an la25 stub. See also mips_elf_local_pic_function_p,
5274 which determines whether the destination function ever requires a
5275 stub. */
5276
5277 static bool
mips_elf_relocation_needs_la25_stub(bfd * input_bfd,int r_type,bool target_is_16_bit_code_p)5278 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5279 bool target_is_16_bit_code_p)
5280 {
5281 /* We specifically ignore branches and jumps from EF_PIC objects,
5282 where the onus is on the compiler or programmer to perform any
5283 necessary initialization of $25. Sometimes such initialization
5284 is unnecessary; for example, -mno-shared functions do not use
5285 the incoming value of $25, and may therefore be called directly. */
5286 if (PIC_OBJECT_P (input_bfd))
5287 return false;
5288
5289 switch (r_type)
5290 {
5291 case R_MIPS_26:
5292 case R_MIPS_PC16:
5293 case R_MIPS_PC21_S2:
5294 case R_MIPS_PC26_S2:
5295 case R_MICROMIPS_26_S1:
5296 case R_MICROMIPS_PC7_S1:
5297 case R_MICROMIPS_PC10_S1:
5298 case R_MICROMIPS_PC16_S1:
5299 case R_MICROMIPS_PC23_S2:
5300 return true;
5301
5302 case R_MIPS16_26:
5303 return !target_is_16_bit_code_p;
5304
5305 default:
5306 return false;
5307 }
5308 }
5309
5310 /* Obtain the field relocated by RELOCATION. */
5311
5312 static bfd_vma
mips_elf_obtain_contents(reloc_howto_type * howto,const Elf_Internal_Rela * relocation,bfd * input_bfd,bfd_byte * contents)5313 mips_elf_obtain_contents (reloc_howto_type *howto,
5314 const Elf_Internal_Rela *relocation,
5315 bfd *input_bfd, bfd_byte *contents)
5316 {
5317 bfd_vma x = 0;
5318 bfd_byte *location = contents + relocation->r_offset;
5319 unsigned int size = bfd_get_reloc_size (howto);
5320
5321 /* Obtain the bytes. */
5322 if (size != 0)
5323 x = bfd_get (8 * size, input_bfd, location);
5324
5325 return x;
5326 }
5327
5328 /* Store the field relocated by RELOCATION. */
5329
5330 static void
mips_elf_store_contents(reloc_howto_type * howto,const Elf_Internal_Rela * relocation,bfd * input_bfd,bfd_byte * contents,bfd_vma x)5331 mips_elf_store_contents (reloc_howto_type *howto,
5332 const Elf_Internal_Rela *relocation,
5333 bfd *input_bfd, bfd_byte *contents, bfd_vma x)
5334 {
5335 bfd_byte *location = contents + relocation->r_offset;
5336 unsigned int size = bfd_get_reloc_size (howto);
5337
5338 /* Put the value into the output. */
5339 if (size != 0)
5340 bfd_put (8 * size, input_bfd, x, location);
5341 }
5342
5343 /* Try to patch a load from GOT instruction in CONTENTS pointed to by
5344 RELOCATION described by HOWTO, with a move of 0 to the load target
5345 register, returning TRUE if that is successful and FALSE otherwise.
5346 If DOIT is FALSE, then only determine it patching is possible and
5347 return status without actually changing CONTENTS.
5348 */
5349
5350 static bool
mips_elf_nullify_got_load(bfd * input_bfd,bfd_byte * contents,const Elf_Internal_Rela * relocation,reloc_howto_type * howto,bool doit)5351 mips_elf_nullify_got_load (bfd *input_bfd, bfd_byte *contents,
5352 const Elf_Internal_Rela *relocation,
5353 reloc_howto_type *howto, bool doit)
5354 {
5355 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5356 bfd_byte *location = contents + relocation->r_offset;
5357 bool nullified = true;
5358 bfd_vma x;
5359
5360 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, false, location);
5361
5362 /* Obtain the current value. */
5363 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5364
5365 /* Note that in the unshuffled MIPS16 encoding RX is at bits [21:19]
5366 while RY is at bits [18:16] of the combined 32-bit instruction word. */
5367 if (mips16_reloc_p (r_type)
5368 && (((x >> 22) & 0x3ff) == 0x3d3 /* LW */
5369 || ((x >> 22) & 0x3ff) == 0x3c7)) /* LD */
5370 x = (0x3cdU << 22) | (x & (7 << 16)) << 3; /* LI */
5371 else if (micromips_reloc_p (r_type)
5372 && ((x >> 26) & 0x37) == 0x37) /* LW/LD */
5373 x = (0xc << 26) | (x & (0x1f << 21)); /* ADDIU */
5374 else if (((x >> 26) & 0x3f) == 0x23 /* LW */
5375 || ((x >> 26) & 0x3f) == 0x37) /* LD */
5376 x = (0x9 << 26) | (x & (0x1f << 16)); /* ADDIU */
5377 else
5378 nullified = false;
5379
5380 /* Put the value into the output. */
5381 if (doit && nullified)
5382 mips_elf_store_contents (howto, relocation, input_bfd, contents, x);
5383
5384 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, false, location);
5385
5386 return nullified;
5387 }
5388
5389 /* Calculate the value produced by the RELOCATION (which comes from
5390 the INPUT_BFD). The ADDEND is the addend to use for this
5391 RELOCATION; RELOCATION->R_ADDEND is ignored.
5392
5393 The result of the relocation calculation is stored in VALUEP.
5394 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5395 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5396
5397 This function returns bfd_reloc_continue if the caller need take no
5398 further action regarding this relocation, bfd_reloc_notsupported if
5399 something goes dramatically wrong, bfd_reloc_overflow if an
5400 overflow occurs, and bfd_reloc_ok to indicate success. */
5401
5402 static bfd_reloc_status_type
mips_elf_calculate_relocation(bfd * abfd,bfd * input_bfd,asection * input_section,bfd_byte * contents,struct bfd_link_info * info,const Elf_Internal_Rela * relocation,bfd_vma addend,reloc_howto_type * howto,Elf_Internal_Sym * local_syms,asection ** local_sections,bfd_vma * valuep,const char ** namep,bool * cross_mode_jump_p,bool save_addend)5403 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5404 asection *input_section, bfd_byte *contents,
5405 struct bfd_link_info *info,
5406 const Elf_Internal_Rela *relocation,
5407 bfd_vma addend, reloc_howto_type *howto,
5408 Elf_Internal_Sym *local_syms,
5409 asection **local_sections, bfd_vma *valuep,
5410 const char **namep,
5411 bool *cross_mode_jump_p,
5412 bool save_addend)
5413 {
5414 /* The eventual value we will return. */
5415 bfd_vma value;
5416 /* The address of the symbol against which the relocation is
5417 occurring. */
5418 bfd_vma symbol = 0;
5419 /* The final GP value to be used for the relocatable, executable, or
5420 shared object file being produced. */
5421 bfd_vma gp;
5422 /* The place (section offset or address) of the storage unit being
5423 relocated. */
5424 bfd_vma p;
5425 /* The value of GP used to create the relocatable object. */
5426 bfd_vma gp0;
5427 /* The offset into the global offset table at which the address of
5428 the relocation entry symbol, adjusted by the addend, resides
5429 during execution. */
5430 bfd_vma g = MINUS_ONE;
5431 /* The section in which the symbol referenced by the relocation is
5432 located. */
5433 asection *sec = NULL;
5434 struct mips_elf_link_hash_entry *h = NULL;
5435 /* TRUE if the symbol referred to by this relocation is a local
5436 symbol. */
5437 bool local_p, was_local_p;
5438 /* TRUE if the symbol referred to by this relocation is a section
5439 symbol. */
5440 bool section_p = false;
5441 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5442 bool gp_disp_p = false;
5443 /* TRUE if the symbol referred to by this relocation is
5444 "__gnu_local_gp". */
5445 bool gnu_local_gp_p = false;
5446 Elf_Internal_Shdr *symtab_hdr;
5447 size_t extsymoff;
5448 unsigned long r_symndx;
5449 int r_type;
5450 /* TRUE if overflow occurred during the calculation of the
5451 relocation value. */
5452 bool overflowed_p;
5453 /* TRUE if this relocation refers to a MIPS16 function. */
5454 bool target_is_16_bit_code_p = false;
5455 bool target_is_micromips_code_p = false;
5456 struct mips_elf_link_hash_table *htab;
5457 bfd *dynobj;
5458 bool resolved_to_zero;
5459
5460 dynobj = elf_hash_table (info)->dynobj;
5461 htab = mips_elf_hash_table (info);
5462 BFD_ASSERT (htab != NULL);
5463
5464 /* Parse the relocation. */
5465 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5466 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5467 p = (input_section->output_section->vma
5468 + input_section->output_offset
5469 + relocation->r_offset);
5470
5471 /* Assume that there will be no overflow. */
5472 overflowed_p = false;
5473
5474 /* Figure out whether or not the symbol is local, and get the offset
5475 used in the array of hash table entries. */
5476 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5477 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5478 local_sections);
5479 was_local_p = local_p;
5480 if (! elf_bad_symtab (input_bfd))
5481 extsymoff = symtab_hdr->sh_info;
5482 else
5483 {
5484 /* The symbol table does not follow the rule that local symbols
5485 must come before globals. */
5486 extsymoff = 0;
5487 }
5488
5489 /* Figure out the value of the symbol. */
5490 if (local_p)
5491 {
5492 bool micromips_p = MICROMIPS_P (abfd);
5493 Elf_Internal_Sym *sym;
5494
5495 sym = local_syms + r_symndx;
5496 sec = local_sections[r_symndx];
5497
5498 section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION;
5499
5500 symbol = sec->output_section->vma + sec->output_offset;
5501 if (!section_p || (sec->flags & SEC_MERGE))
5502 symbol += sym->st_value;
5503 if ((sec->flags & SEC_MERGE) && section_p)
5504 {
5505 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5506 addend -= symbol;
5507 addend += sec->output_section->vma + sec->output_offset;
5508 }
5509
5510 /* MIPS16/microMIPS text labels should be treated as odd. */
5511 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5512 ++symbol;
5513
5514 /* Record the name of this symbol, for our caller. */
5515 *namep = bfd_elf_string_from_elf_section (input_bfd,
5516 symtab_hdr->sh_link,
5517 sym->st_name);
5518 if (*namep == NULL || **namep == '\0')
5519 *namep = bfd_section_name (sec);
5520
5521 /* For relocations against a section symbol and ones against no
5522 symbol (absolute relocations) infer the ISA mode from the addend. */
5523 if (section_p || r_symndx == STN_UNDEF)
5524 {
5525 target_is_16_bit_code_p = (addend & 1) && !micromips_p;
5526 target_is_micromips_code_p = (addend & 1) && micromips_p;
5527 }
5528 /* For relocations against an absolute symbol infer the ISA mode
5529 from the value of the symbol plus addend. */
5530 else if (bfd_is_abs_section (sec))
5531 {
5532 target_is_16_bit_code_p = ((symbol + addend) & 1) && !micromips_p;
5533 target_is_micromips_code_p = ((symbol + addend) & 1) && micromips_p;
5534 }
5535 /* Otherwise just use the regular symbol annotation available. */
5536 else
5537 {
5538 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5539 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5540 }
5541 }
5542 else
5543 {
5544 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5545
5546 /* For global symbols we look up the symbol in the hash-table. */
5547 h = ((struct mips_elf_link_hash_entry *)
5548 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5549 /* Find the real hash-table entry for this symbol. */
5550 while (h->root.root.type == bfd_link_hash_indirect
5551 || h->root.root.type == bfd_link_hash_warning)
5552 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5553
5554 /* Record the name of this symbol, for our caller. */
5555 *namep = h->root.root.root.string;
5556
5557 /* See if this is the special _gp_disp symbol. Note that such a
5558 symbol must always be a global symbol. */
5559 if (strcmp (*namep, "_gp_disp") == 0
5560 && ! NEWABI_P (input_bfd))
5561 {
5562 /* Relocations against _gp_disp are permitted only with
5563 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5564 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5565 return bfd_reloc_notsupported;
5566
5567 gp_disp_p = true;
5568 }
5569 /* See if this is the special _gp symbol. Note that such a
5570 symbol must always be a global symbol. */
5571 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5572 gnu_local_gp_p = true;
5573
5574
5575 /* If this symbol is defined, calculate its address. Note that
5576 _gp_disp is a magic symbol, always implicitly defined by the
5577 linker, so it's inappropriate to check to see whether or not
5578 its defined. */
5579 else if ((h->root.root.type == bfd_link_hash_defined
5580 || h->root.root.type == bfd_link_hash_defweak)
5581 && h->root.root.u.def.section)
5582 {
5583 sec = h->root.root.u.def.section;
5584 if (sec->output_section)
5585 symbol = (h->root.root.u.def.value
5586 + sec->output_section->vma
5587 + sec->output_offset);
5588 else
5589 symbol = h->root.root.u.def.value;
5590 }
5591 else if (h->root.root.type == bfd_link_hash_undefweak)
5592 /* We allow relocations against undefined weak symbols, giving
5593 it the value zero, so that you can undefined weak functions
5594 and check to see if they exist by looking at their
5595 addresses. */
5596 symbol = 0;
5597 else if (info->unresolved_syms_in_objects == RM_IGNORE
5598 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5599 symbol = 0;
5600 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5601 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5602 {
5603 /* If this is a dynamic link, we should have created a
5604 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5605 in _bfd_mips_elf_create_dynamic_sections.
5606 Otherwise, we should define the symbol with a value of 0.
5607 FIXME: It should probably get into the symbol table
5608 somehow as well. */
5609 BFD_ASSERT (! bfd_link_pic (info));
5610 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5611 symbol = 0;
5612 }
5613 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5614 {
5615 /* This is an optional symbol - an Irix specific extension to the
5616 ELF spec. Ignore it for now.
5617 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5618 than simply ignoring them, but we do not handle this for now.
5619 For information see the "64-bit ELF Object File Specification"
5620 which is available from here:
5621 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5622 symbol = 0;
5623 }
5624 else
5625 {
5626 bool reject_undefined
5627 = ((info->unresolved_syms_in_objects == RM_DIAGNOSE
5628 && !info->warn_unresolved_syms)
5629 || ELF_ST_VISIBILITY (h->root.other) != STV_DEFAULT);
5630
5631 info->callbacks->undefined_symbol
5632 (info, h->root.root.root.string, input_bfd,
5633 input_section, relocation->r_offset, reject_undefined);
5634
5635 if (reject_undefined)
5636 return bfd_reloc_undefined;
5637
5638 symbol = 0;
5639 }
5640
5641 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5642 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
5643 }
5644
5645 /* If this is a reference to a 16-bit function with a stub, we need
5646 to redirect the relocation to the stub unless:
5647
5648 (a) the relocation is for a MIPS16 JAL;
5649
5650 (b) the relocation is for a MIPS16 PIC call, and there are no
5651 non-MIPS16 uses of the GOT slot; or
5652
5653 (c) the section allows direct references to MIPS16 functions. */
5654 if (r_type != R_MIPS16_26
5655 && !bfd_link_relocatable (info)
5656 && ((h != NULL
5657 && h->fn_stub != NULL
5658 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5659 || (local_p
5660 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5661 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5662 && !section_allows_mips16_refs_p (input_section))
5663 {
5664 /* This is a 32- or 64-bit call to a 16-bit function. We should
5665 have already noticed that we were going to need the
5666 stub. */
5667 if (local_p)
5668 {
5669 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
5670 value = 0;
5671 }
5672 else
5673 {
5674 BFD_ASSERT (h->need_fn_stub);
5675 if (h->la25_stub)
5676 {
5677 /* If a LA25 header for the stub itself exists, point to the
5678 prepended LUI/ADDIU sequence. */
5679 sec = h->la25_stub->stub_section;
5680 value = h->la25_stub->offset;
5681 }
5682 else
5683 {
5684 sec = h->fn_stub;
5685 value = 0;
5686 }
5687 }
5688
5689 symbol = sec->output_section->vma + sec->output_offset + value;
5690 /* The target is 16-bit, but the stub isn't. */
5691 target_is_16_bit_code_p = false;
5692 }
5693 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5694 to a standard MIPS function, we need to redirect the call to the stub.
5695 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5696 indirect calls should use an indirect stub instead. */
5697 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
5698 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5699 || (local_p
5700 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5701 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5702 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
5703 {
5704 if (local_p)
5705 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5706 else
5707 {
5708 /* If both call_stub and call_fp_stub are defined, we can figure
5709 out which one to use by checking which one appears in the input
5710 file. */
5711 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5712 {
5713 asection *o;
5714
5715 sec = NULL;
5716 for (o = input_bfd->sections; o != NULL; o = o->next)
5717 {
5718 if (CALL_FP_STUB_P (bfd_section_name (o)))
5719 {
5720 sec = h->call_fp_stub;
5721 break;
5722 }
5723 }
5724 if (sec == NULL)
5725 sec = h->call_stub;
5726 }
5727 else if (h->call_stub != NULL)
5728 sec = h->call_stub;
5729 else
5730 sec = h->call_fp_stub;
5731 }
5732
5733 BFD_ASSERT (sec->size > 0);
5734 symbol = sec->output_section->vma + sec->output_offset;
5735 }
5736 /* If this is a direct call to a PIC function, redirect to the
5737 non-PIC stub. */
5738 else if (h != NULL && h->la25_stub
5739 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5740 target_is_16_bit_code_p))
5741 {
5742 symbol = (h->la25_stub->stub_section->output_section->vma
5743 + h->la25_stub->stub_section->output_offset
5744 + h->la25_stub->offset);
5745 if (ELF_ST_IS_MICROMIPS (h->root.other))
5746 symbol |= 1;
5747 }
5748 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5749 entry is used if a standard PLT entry has also been made. In this
5750 case the symbol will have been set by mips_elf_set_plt_sym_value
5751 to point to the standard PLT entry, so redirect to the compressed
5752 one. */
5753 else if ((mips16_branch_reloc_p (r_type)
5754 || micromips_branch_reloc_p (r_type))
5755 && !bfd_link_relocatable (info)
5756 && h != NULL
5757 && h->use_plt_entry
5758 && h->root.plt.plist->comp_offset != MINUS_ONE
5759 && h->root.plt.plist->mips_offset != MINUS_ONE)
5760 {
5761 bool micromips_p = MICROMIPS_P (abfd);
5762
5763 sec = htab->root.splt;
5764 symbol = (sec->output_section->vma
5765 + sec->output_offset
5766 + htab->plt_header_size
5767 + htab->plt_mips_offset
5768 + h->root.plt.plist->comp_offset
5769 + 1);
5770
5771 target_is_16_bit_code_p = !micromips_p;
5772 target_is_micromips_code_p = micromips_p;
5773 }
5774
5775 /* Make sure MIPS16 and microMIPS are not used together. */
5776 if ((mips16_branch_reloc_p (r_type) && target_is_micromips_code_p)
5777 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5778 {
5779 _bfd_error_handler
5780 (_("MIPS16 and microMIPS functions cannot call each other"));
5781 return bfd_reloc_notsupported;
5782 }
5783
5784 /* Calls from 16-bit code to 32-bit code and vice versa require the
5785 mode change. However, we can ignore calls to undefined weak symbols,
5786 which should never be executed at runtime. This exception is important
5787 because the assembly writer may have "known" that any definition of the
5788 symbol would be 16-bit code, and that direct jumps were therefore
5789 acceptable. */
5790 *cross_mode_jump_p = (!bfd_link_relocatable (info)
5791 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5792 && ((mips16_branch_reloc_p (r_type)
5793 && !target_is_16_bit_code_p)
5794 || (micromips_branch_reloc_p (r_type)
5795 && !target_is_micromips_code_p)
5796 || ((branch_reloc_p (r_type)
5797 || r_type == R_MIPS_JALR)
5798 && (target_is_16_bit_code_p
5799 || target_is_micromips_code_p))));
5800
5801 resolved_to_zero = (h != NULL
5802 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, &h->root));
5803
5804 switch (r_type)
5805 {
5806 case R_MIPS16_CALL16:
5807 case R_MIPS16_GOT16:
5808 case R_MIPS_CALL16:
5809 case R_MIPS_GOT16:
5810 case R_MIPS_GOT_PAGE:
5811 case R_MIPS_GOT_DISP:
5812 case R_MIPS_GOT_LO16:
5813 case R_MIPS_CALL_LO16:
5814 case R_MICROMIPS_CALL16:
5815 case R_MICROMIPS_GOT16:
5816 case R_MICROMIPS_GOT_PAGE:
5817 case R_MICROMIPS_GOT_DISP:
5818 case R_MICROMIPS_GOT_LO16:
5819 case R_MICROMIPS_CALL_LO16:
5820 if (resolved_to_zero
5821 && !bfd_link_relocatable (info)
5822 && mips_elf_nullify_got_load (input_bfd, contents,
5823 relocation, howto, true))
5824 return bfd_reloc_continue;
5825
5826 /* Fall through. */
5827 case R_MIPS_GOT_HI16:
5828 case R_MIPS_CALL_HI16:
5829 case R_MICROMIPS_GOT_HI16:
5830 case R_MICROMIPS_CALL_HI16:
5831 if (resolved_to_zero
5832 && htab->use_absolute_zero
5833 && bfd_link_pic (info))
5834 {
5835 /* Redirect to the special `__gnu_absolute_zero' symbol. */
5836 h = mips_elf_link_hash_lookup (htab, "__gnu_absolute_zero",
5837 false, false, false);
5838 BFD_ASSERT (h != NULL);
5839 }
5840 break;
5841 }
5842
5843 local_p = (h == NULL || mips_use_local_got_p (info, h));
5844
5845 gp0 = _bfd_get_gp_value (input_bfd);
5846 gp = _bfd_get_gp_value (abfd);
5847 if (htab->got_info)
5848 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5849
5850 if (gnu_local_gp_p)
5851 symbol = gp;
5852
5853 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5854 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5855 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5856 if (got_page_reloc_p (r_type) && !local_p)
5857 {
5858 r_type = (micromips_reloc_p (r_type)
5859 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5860 addend = 0;
5861 }
5862
5863 /* If we haven't already determined the GOT offset, and we're going
5864 to need it, get it now. */
5865 switch (r_type)
5866 {
5867 case R_MIPS16_CALL16:
5868 case R_MIPS16_GOT16:
5869 case R_MIPS_CALL16:
5870 case R_MIPS_GOT16:
5871 case R_MIPS_GOT_DISP:
5872 case R_MIPS_GOT_HI16:
5873 case R_MIPS_CALL_HI16:
5874 case R_MIPS_GOT_LO16:
5875 case R_MIPS_CALL_LO16:
5876 case R_MICROMIPS_CALL16:
5877 case R_MICROMIPS_GOT16:
5878 case R_MICROMIPS_GOT_DISP:
5879 case R_MICROMIPS_GOT_HI16:
5880 case R_MICROMIPS_CALL_HI16:
5881 case R_MICROMIPS_GOT_LO16:
5882 case R_MICROMIPS_CALL_LO16:
5883 case R_MIPS_TLS_GD:
5884 case R_MIPS_TLS_GOTTPREL:
5885 case R_MIPS_TLS_LDM:
5886 case R_MIPS16_TLS_GD:
5887 case R_MIPS16_TLS_GOTTPREL:
5888 case R_MIPS16_TLS_LDM:
5889 case R_MICROMIPS_TLS_GD:
5890 case R_MICROMIPS_TLS_GOTTPREL:
5891 case R_MICROMIPS_TLS_LDM:
5892 /* Find the index into the GOT where this value is located. */
5893 if (tls_ldm_reloc_p (r_type))
5894 {
5895 g = mips_elf_local_got_index (abfd, input_bfd, info,
5896 0, 0, NULL, r_type);
5897 if (g == MINUS_ONE)
5898 return bfd_reloc_outofrange;
5899 }
5900 else if (!local_p)
5901 {
5902 /* On VxWorks, CALL relocations should refer to the .got.plt
5903 entry, which is initialized to point at the PLT stub. */
5904 if (htab->root.target_os == is_vxworks
5905 && (call_hi16_reloc_p (r_type)
5906 || call_lo16_reloc_p (r_type)
5907 || call16_reloc_p (r_type)))
5908 {
5909 BFD_ASSERT (addend == 0);
5910 BFD_ASSERT (h->root.needs_plt);
5911 g = mips_elf_gotplt_index (info, &h->root);
5912 }
5913 else
5914 {
5915 BFD_ASSERT (addend == 0);
5916 g = mips_elf_global_got_index (abfd, info, input_bfd,
5917 &h->root, r_type);
5918 if (!TLS_RELOC_P (r_type)
5919 && !elf_hash_table (info)->dynamic_sections_created)
5920 /* This is a static link. We must initialize the GOT entry. */
5921 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->root.sgot->contents + g);
5922 }
5923 }
5924 else if (htab->root.target_os != is_vxworks
5925 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5926 /* The calculation below does not involve "g". */
5927 break;
5928 else
5929 {
5930 g = mips_elf_local_got_index (abfd, input_bfd, info,
5931 symbol + addend, r_symndx, h, r_type);
5932 if (g == MINUS_ONE)
5933 return bfd_reloc_outofrange;
5934 }
5935
5936 /* Convert GOT indices to actual offsets. */
5937 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5938 break;
5939 }
5940
5941 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5942 symbols are resolved by the loader. Add them to .rela.dyn. */
5943 if (h != NULL && is_gott_symbol (info, &h->root))
5944 {
5945 Elf_Internal_Rela outrel;
5946 bfd_byte *loc;
5947 asection *s;
5948
5949 s = mips_elf_rel_dyn_section (info, false);
5950 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5951
5952 outrel.r_offset = (input_section->output_section->vma
5953 + input_section->output_offset
5954 + relocation->r_offset);
5955 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5956 outrel.r_addend = addend;
5957 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5958
5959 /* If we've written this relocation for a readonly section,
5960 we need to set DF_TEXTREL again, so that we do not delete the
5961 DT_TEXTREL tag. */
5962 if (MIPS_ELF_READONLY_SECTION (input_section))
5963 info->flags |= DF_TEXTREL;
5964
5965 *valuep = 0;
5966 return bfd_reloc_ok;
5967 }
5968
5969 /* Figure out what kind of relocation is being performed. */
5970 switch (r_type)
5971 {
5972 case R_MIPS_NONE:
5973 return bfd_reloc_continue;
5974
5975 case R_MIPS_16:
5976 if (howto->partial_inplace)
5977 addend = _bfd_mips_elf_sign_extend (addend, 16);
5978 value = symbol + addend;
5979 overflowed_p = mips_elf_overflow_p (value, 16);
5980 break;
5981
5982 case R_MIPS_32:
5983 case R_MIPS_REL32:
5984 case R_MIPS_64:
5985 if ((bfd_link_pic (info)
5986 || (htab->root.dynamic_sections_created
5987 && h != NULL
5988 && h->root.def_dynamic
5989 && !h->root.def_regular
5990 && !h->has_static_relocs))
5991 && r_symndx != STN_UNDEF
5992 && (h == NULL
5993 || h->root.root.type != bfd_link_hash_undefweak
5994 || (ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
5995 && !resolved_to_zero))
5996 && (input_section->flags & SEC_ALLOC) != 0)
5997 {
5998 /* If we're creating a shared library, then we can't know
5999 where the symbol will end up. So, we create a relocation
6000 record in the output, and leave the job up to the dynamic
6001 linker. We must do the same for executable references to
6002 shared library symbols, unless we've decided to use copy
6003 relocs or PLTs instead. */
6004 value = addend;
6005 if (!mips_elf_create_dynamic_relocation (abfd,
6006 info,
6007 relocation,
6008 h,
6009 sec,
6010 symbol,
6011 &value,
6012 input_section))
6013 return bfd_reloc_undefined;
6014 }
6015 else
6016 {
6017 if (r_type != R_MIPS_REL32)
6018 value = symbol + addend;
6019 else
6020 value = addend;
6021 }
6022 value &= howto->dst_mask;
6023 break;
6024
6025 case R_MIPS_PC32:
6026 value = symbol + addend - p;
6027 value &= howto->dst_mask;
6028 break;
6029
6030 case R_MIPS16_26:
6031 /* The calculation for R_MIPS16_26 is just the same as for an
6032 R_MIPS_26. It's only the storage of the relocated field into
6033 the output file that's different. That's handled in
6034 mips_elf_perform_relocation. So, we just fall through to the
6035 R_MIPS_26 case here. */
6036 case R_MIPS_26:
6037 case R_MICROMIPS_26_S1:
6038 {
6039 unsigned int shift;
6040
6041 /* Shift is 2, unusually, for microMIPS JALX. */
6042 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
6043
6044 if (howto->partial_inplace && !section_p)
6045 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
6046 else
6047 value = addend;
6048 value += symbol;
6049
6050 /* Make sure the target of a jump is suitably aligned. Bit 0 must
6051 be the correct ISA mode selector except for weak undefined
6052 symbols. */
6053 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6054 && (*cross_mode_jump_p
6055 ? (value & 3) != (r_type == R_MIPS_26)
6056 : (value & ((1 << shift) - 1)) != (r_type != R_MIPS_26)))
6057 return bfd_reloc_outofrange;
6058
6059 value >>= shift;
6060 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6061 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
6062 value &= howto->dst_mask;
6063 }
6064 break;
6065
6066 case R_MIPS_TLS_DTPREL_HI16:
6067 case R_MIPS16_TLS_DTPREL_HI16:
6068 case R_MICROMIPS_TLS_DTPREL_HI16:
6069 value = (mips_elf_high (addend + symbol - dtprel_base (info))
6070 & howto->dst_mask);
6071 break;
6072
6073 case R_MIPS_TLS_DTPREL_LO16:
6074 case R_MIPS_TLS_DTPREL32:
6075 case R_MIPS_TLS_DTPREL64:
6076 case R_MIPS16_TLS_DTPREL_LO16:
6077 case R_MICROMIPS_TLS_DTPREL_LO16:
6078 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
6079 break;
6080
6081 case R_MIPS_TLS_TPREL_HI16:
6082 case R_MIPS16_TLS_TPREL_HI16:
6083 case R_MICROMIPS_TLS_TPREL_HI16:
6084 value = (mips_elf_high (addend + symbol - tprel_base (info))
6085 & howto->dst_mask);
6086 break;
6087
6088 case R_MIPS_TLS_TPREL_LO16:
6089 case R_MIPS_TLS_TPREL32:
6090 case R_MIPS_TLS_TPREL64:
6091 case R_MIPS16_TLS_TPREL_LO16:
6092 case R_MICROMIPS_TLS_TPREL_LO16:
6093 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
6094 break;
6095
6096 case R_MIPS_HI16:
6097 case R_MIPS16_HI16:
6098 case R_MICROMIPS_HI16:
6099 if (!gp_disp_p)
6100 {
6101 value = mips_elf_high (addend + symbol);
6102 value &= howto->dst_mask;
6103 }
6104 else
6105 {
6106 /* For MIPS16 ABI code we generate this sequence
6107 0: li $v0,%hi(_gp_disp)
6108 4: addiupc $v1,%lo(_gp_disp)
6109 8: sll $v0,16
6110 12: addu $v0,$v1
6111 14: move $gp,$v0
6112 So the offsets of hi and lo relocs are the same, but the
6113 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
6114 ADDIUPC clears the low two bits of the instruction address,
6115 so the base is ($t9 + 4) & ~3. */
6116 if (r_type == R_MIPS16_HI16)
6117 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
6118 /* The microMIPS .cpload sequence uses the same assembly
6119 instructions as the traditional psABI version, but the
6120 incoming $t9 has the low bit set. */
6121 else if (r_type == R_MICROMIPS_HI16)
6122 value = mips_elf_high (addend + gp - p - 1);
6123 else
6124 value = mips_elf_high (addend + gp - p);
6125 }
6126 break;
6127
6128 case R_MIPS_LO16:
6129 case R_MIPS16_LO16:
6130 case R_MICROMIPS_LO16:
6131 case R_MICROMIPS_HI0_LO16:
6132 if (!gp_disp_p)
6133 value = (symbol + addend) & howto->dst_mask;
6134 else
6135 {
6136 /* See the comment for R_MIPS16_HI16 above for the reason
6137 for this conditional. */
6138 if (r_type == R_MIPS16_LO16)
6139 value = addend + gp - (p & ~(bfd_vma) 0x3);
6140 else if (r_type == R_MICROMIPS_LO16
6141 || r_type == R_MICROMIPS_HI0_LO16)
6142 value = addend + gp - p + 3;
6143 else
6144 value = addend + gp - p + 4;
6145 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
6146 for overflow. But, on, say, IRIX5, relocations against
6147 _gp_disp are normally generated from the .cpload
6148 pseudo-op. It generates code that normally looks like
6149 this:
6150
6151 lui $gp,%hi(_gp_disp)
6152 addiu $gp,$gp,%lo(_gp_disp)
6153 addu $gp,$gp,$t9
6154
6155 Here $t9 holds the address of the function being called,
6156 as required by the MIPS ELF ABI. The R_MIPS_LO16
6157 relocation can easily overflow in this situation, but the
6158 R_MIPS_HI16 relocation will handle the overflow.
6159 Therefore, we consider this a bug in the MIPS ABI, and do
6160 not check for overflow here. */
6161 }
6162 break;
6163
6164 case R_MIPS_LITERAL:
6165 case R_MICROMIPS_LITERAL:
6166 /* Because we don't merge literal sections, we can handle this
6167 just like R_MIPS_GPREL16. In the long run, we should merge
6168 shared literals, and then we will need to additional work
6169 here. */
6170
6171 /* Fall through. */
6172
6173 case R_MIPS16_GPREL:
6174 /* The R_MIPS16_GPREL performs the same calculation as
6175 R_MIPS_GPREL16, but stores the relocated bits in a different
6176 order. We don't need to do anything special here; the
6177 differences are handled in mips_elf_perform_relocation. */
6178 case R_MIPS_GPREL16:
6179 case R_MICROMIPS_GPREL7_S2:
6180 case R_MICROMIPS_GPREL16:
6181 /* Only sign-extend the addend if it was extracted from the
6182 instruction. If the addend was separate, leave it alone,
6183 otherwise we may lose significant bits. */
6184 if (howto->partial_inplace)
6185 addend = _bfd_mips_elf_sign_extend (addend, 16);
6186 value = symbol + addend - gp;
6187 /* If the symbol was local, any earlier relocatable links will
6188 have adjusted its addend with the gp offset, so compensate
6189 for that now. Don't do it for symbols forced local in this
6190 link, though, since they won't have had the gp offset applied
6191 to them before. */
6192 if (was_local_p)
6193 value += gp0;
6194 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6195 overflowed_p = mips_elf_overflow_p (value, 16);
6196 break;
6197
6198 case R_MIPS16_GOT16:
6199 case R_MIPS16_CALL16:
6200 case R_MIPS_GOT16:
6201 case R_MIPS_CALL16:
6202 case R_MICROMIPS_GOT16:
6203 case R_MICROMIPS_CALL16:
6204 /* VxWorks does not have separate local and global semantics for
6205 R_MIPS*_GOT16; every relocation evaluates to "G". */
6206 if (htab->root.target_os != is_vxworks && local_p)
6207 {
6208 value = mips_elf_got16_entry (abfd, input_bfd, info,
6209 symbol + addend, !was_local_p);
6210 if (value == MINUS_ONE)
6211 return bfd_reloc_outofrange;
6212 value
6213 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6214 overflowed_p = mips_elf_overflow_p (value, 16);
6215 break;
6216 }
6217
6218 /* Fall through. */
6219
6220 case R_MIPS_TLS_GD:
6221 case R_MIPS_TLS_GOTTPREL:
6222 case R_MIPS_TLS_LDM:
6223 case R_MIPS_GOT_DISP:
6224 case R_MIPS16_TLS_GD:
6225 case R_MIPS16_TLS_GOTTPREL:
6226 case R_MIPS16_TLS_LDM:
6227 case R_MICROMIPS_TLS_GD:
6228 case R_MICROMIPS_TLS_GOTTPREL:
6229 case R_MICROMIPS_TLS_LDM:
6230 case R_MICROMIPS_GOT_DISP:
6231 value = g;
6232 overflowed_p = mips_elf_overflow_p (value, 16);
6233 break;
6234
6235 case R_MIPS_GPREL32:
6236 value = (addend + symbol + gp0 - gp);
6237 if (!save_addend)
6238 value &= howto->dst_mask;
6239 break;
6240
6241 case R_MIPS_PC16:
6242 case R_MIPS_GNU_REL16_S2:
6243 if (howto->partial_inplace)
6244 addend = _bfd_mips_elf_sign_extend (addend, 18);
6245
6246 /* No need to exclude weak undefined symbols here as they resolve
6247 to 0 and never set `*cross_mode_jump_p', so this alignment check
6248 will never trigger for them. */
6249 if (*cross_mode_jump_p
6250 ? ((symbol + addend) & 3) != 1
6251 : ((symbol + addend) & 3) != 0)
6252 return bfd_reloc_outofrange;
6253
6254 value = symbol + addend - p;
6255 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6256 overflowed_p = mips_elf_overflow_p (value, 18);
6257 value >>= howto->rightshift;
6258 value &= howto->dst_mask;
6259 break;
6260
6261 case R_MIPS16_PC16_S1:
6262 if (howto->partial_inplace)
6263 addend = _bfd_mips_elf_sign_extend (addend, 17);
6264
6265 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6266 && (*cross_mode_jump_p
6267 ? ((symbol + addend) & 3) != 0
6268 : ((symbol + addend) & 1) == 0))
6269 return bfd_reloc_outofrange;
6270
6271 value = symbol + addend - p;
6272 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6273 overflowed_p = mips_elf_overflow_p (value, 17);
6274 value >>= howto->rightshift;
6275 value &= howto->dst_mask;
6276 break;
6277
6278 case R_MIPS_PC21_S2:
6279 if (howto->partial_inplace)
6280 addend = _bfd_mips_elf_sign_extend (addend, 23);
6281
6282 if ((symbol + addend) & 3)
6283 return bfd_reloc_outofrange;
6284
6285 value = symbol + addend - p;
6286 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6287 overflowed_p = mips_elf_overflow_p (value, 23);
6288 value >>= howto->rightshift;
6289 value &= howto->dst_mask;
6290 break;
6291
6292 case R_MIPS_PC26_S2:
6293 if (howto->partial_inplace)
6294 addend = _bfd_mips_elf_sign_extend (addend, 28);
6295
6296 if ((symbol + addend) & 3)
6297 return bfd_reloc_outofrange;
6298
6299 value = symbol + addend - p;
6300 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6301 overflowed_p = mips_elf_overflow_p (value, 28);
6302 value >>= howto->rightshift;
6303 value &= howto->dst_mask;
6304 break;
6305
6306 case R_MIPS_PC18_S3:
6307 if (howto->partial_inplace)
6308 addend = _bfd_mips_elf_sign_extend (addend, 21);
6309
6310 if ((symbol + addend) & 7)
6311 return bfd_reloc_outofrange;
6312
6313 value = symbol + addend - ((p | 7) ^ 7);
6314 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6315 overflowed_p = mips_elf_overflow_p (value, 21);
6316 value >>= howto->rightshift;
6317 value &= howto->dst_mask;
6318 break;
6319
6320 case R_MIPS_PC19_S2:
6321 if (howto->partial_inplace)
6322 addend = _bfd_mips_elf_sign_extend (addend, 21);
6323
6324 if ((symbol + addend) & 3)
6325 return bfd_reloc_outofrange;
6326
6327 value = symbol + addend - p;
6328 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6329 overflowed_p = mips_elf_overflow_p (value, 21);
6330 value >>= howto->rightshift;
6331 value &= howto->dst_mask;
6332 break;
6333
6334 case R_MIPS_PCHI16:
6335 value = mips_elf_high (symbol + addend - p);
6336 value &= howto->dst_mask;
6337 break;
6338
6339 case R_MIPS_PCLO16:
6340 if (howto->partial_inplace)
6341 addend = _bfd_mips_elf_sign_extend (addend, 16);
6342 value = symbol + addend - p;
6343 value &= howto->dst_mask;
6344 break;
6345
6346 case R_MICROMIPS_PC7_S1:
6347 if (howto->partial_inplace)
6348 addend = _bfd_mips_elf_sign_extend (addend, 8);
6349
6350 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6351 && (*cross_mode_jump_p
6352 ? ((symbol + addend + 2) & 3) != 0
6353 : ((symbol + addend + 2) & 1) == 0))
6354 return bfd_reloc_outofrange;
6355
6356 value = symbol + addend - p;
6357 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6358 overflowed_p = mips_elf_overflow_p (value, 8);
6359 value >>= howto->rightshift;
6360 value &= howto->dst_mask;
6361 break;
6362
6363 case R_MICROMIPS_PC10_S1:
6364 if (howto->partial_inplace)
6365 addend = _bfd_mips_elf_sign_extend (addend, 11);
6366
6367 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6368 && (*cross_mode_jump_p
6369 ? ((symbol + addend + 2) & 3) != 0
6370 : ((symbol + addend + 2) & 1) == 0))
6371 return bfd_reloc_outofrange;
6372
6373 value = symbol + addend - p;
6374 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6375 overflowed_p = mips_elf_overflow_p (value, 11);
6376 value >>= howto->rightshift;
6377 value &= howto->dst_mask;
6378 break;
6379
6380 case R_MICROMIPS_PC16_S1:
6381 if (howto->partial_inplace)
6382 addend = _bfd_mips_elf_sign_extend (addend, 17);
6383
6384 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6385 && (*cross_mode_jump_p
6386 ? ((symbol + addend) & 3) != 0
6387 : ((symbol + addend) & 1) == 0))
6388 return bfd_reloc_outofrange;
6389
6390 value = symbol + addend - p;
6391 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6392 overflowed_p = mips_elf_overflow_p (value, 17);
6393 value >>= howto->rightshift;
6394 value &= howto->dst_mask;
6395 break;
6396
6397 case R_MICROMIPS_PC23_S2:
6398 if (howto->partial_inplace)
6399 addend = _bfd_mips_elf_sign_extend (addend, 25);
6400 value = symbol + addend - ((p | 3) ^ 3);
6401 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6402 overflowed_p = mips_elf_overflow_p (value, 25);
6403 value >>= howto->rightshift;
6404 value &= howto->dst_mask;
6405 break;
6406
6407 case R_MIPS_GOT_HI16:
6408 case R_MIPS_CALL_HI16:
6409 case R_MICROMIPS_GOT_HI16:
6410 case R_MICROMIPS_CALL_HI16:
6411 /* We're allowed to handle these two relocations identically.
6412 The dynamic linker is allowed to handle the CALL relocations
6413 differently by creating a lazy evaluation stub. */
6414 value = g;
6415 value = mips_elf_high (value);
6416 value &= howto->dst_mask;
6417 break;
6418
6419 case R_MIPS_GOT_LO16:
6420 case R_MIPS_CALL_LO16:
6421 case R_MICROMIPS_GOT_LO16:
6422 case R_MICROMIPS_CALL_LO16:
6423 value = g & howto->dst_mask;
6424 break;
6425
6426 case R_MIPS_GOT_PAGE:
6427 case R_MICROMIPS_GOT_PAGE:
6428 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
6429 if (value == MINUS_ONE)
6430 return bfd_reloc_outofrange;
6431 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6432 overflowed_p = mips_elf_overflow_p (value, 16);
6433 break;
6434
6435 case R_MIPS_GOT_OFST:
6436 case R_MICROMIPS_GOT_OFST:
6437 if (local_p)
6438 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
6439 else
6440 value = addend;
6441 overflowed_p = mips_elf_overflow_p (value, 16);
6442 break;
6443
6444 case R_MIPS_SUB:
6445 case R_MICROMIPS_SUB:
6446 value = symbol - addend;
6447 value &= howto->dst_mask;
6448 break;
6449
6450 case R_MIPS_HIGHER:
6451 case R_MICROMIPS_HIGHER:
6452 value = mips_elf_higher (addend + symbol);
6453 value &= howto->dst_mask;
6454 break;
6455
6456 case R_MIPS_HIGHEST:
6457 case R_MICROMIPS_HIGHEST:
6458 value = mips_elf_highest (addend + symbol);
6459 value &= howto->dst_mask;
6460 break;
6461
6462 case R_MIPS_SCN_DISP:
6463 case R_MICROMIPS_SCN_DISP:
6464 value = symbol + addend - sec->output_offset;
6465 value &= howto->dst_mask;
6466 break;
6467
6468 case R_MIPS_JALR:
6469 case R_MICROMIPS_JALR:
6470 /* This relocation is only a hint. In some cases, we optimize
6471 it into a bal instruction. But we don't try to optimize
6472 when the symbol does not resolve locally. */
6473 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
6474 return bfd_reloc_continue;
6475 /* We can't optimize cross-mode jumps either. */
6476 if (*cross_mode_jump_p)
6477 return bfd_reloc_continue;
6478 value = symbol + addend;
6479 /* Neither we can non-instruction-aligned targets. */
6480 if (r_type == R_MIPS_JALR ? (value & 3) != 0 : (value & 1) == 0)
6481 return bfd_reloc_continue;
6482 break;
6483
6484 case R_MIPS_PJUMP:
6485 case R_MIPS_GNU_VTINHERIT:
6486 case R_MIPS_GNU_VTENTRY:
6487 /* We don't do anything with these at present. */
6488 return bfd_reloc_continue;
6489
6490 default:
6491 /* An unrecognized relocation type. */
6492 return bfd_reloc_notsupported;
6493 }
6494
6495 /* Store the VALUE for our caller. */
6496 *valuep = value;
6497 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6498 }
6499
6500 /* It has been determined that the result of the RELOCATION is the
6501 VALUE. Use HOWTO to place VALUE into the output file at the
6502 appropriate position. The SECTION is the section to which the
6503 relocation applies.
6504 CROSS_MODE_JUMP_P is true if the relocation field
6505 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
6506
6507 Returns FALSE if anything goes wrong. */
6508
6509 static bool
mips_elf_perform_relocation(struct bfd_link_info * info,reloc_howto_type * howto,const Elf_Internal_Rela * relocation,bfd_vma value,bfd * input_bfd,asection * input_section,bfd_byte * contents,bool cross_mode_jump_p)6510 mips_elf_perform_relocation (struct bfd_link_info *info,
6511 reloc_howto_type *howto,
6512 const Elf_Internal_Rela *relocation,
6513 bfd_vma value, bfd *input_bfd,
6514 asection *input_section, bfd_byte *contents,
6515 bool cross_mode_jump_p)
6516 {
6517 bfd_vma x;
6518 bfd_byte *location;
6519 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6520
6521 /* Figure out where the relocation is occurring. */
6522 location = contents + relocation->r_offset;
6523
6524 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, false, location);
6525
6526 /* Obtain the current value. */
6527 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6528
6529 /* Clear the field we are setting. */
6530 x &= ~howto->dst_mask;
6531
6532 /* Set the field. */
6533 x |= (value & howto->dst_mask);
6534
6535 /* Detect incorrect JALX usage. If required, turn JAL or BAL into JALX. */
6536 if (!cross_mode_jump_p && jal_reloc_p (r_type))
6537 {
6538 bfd_vma opcode = x >> 26;
6539
6540 if (r_type == R_MIPS16_26 ? opcode == 0x7
6541 : r_type == R_MICROMIPS_26_S1 ? opcode == 0x3c
6542 : opcode == 0x1d)
6543 {
6544 info->callbacks->einfo
6545 (_("%X%H: unsupported JALX to the same ISA mode\n"),
6546 input_bfd, input_section, relocation->r_offset);
6547 return true;
6548 }
6549 }
6550 if (cross_mode_jump_p && jal_reloc_p (r_type))
6551 {
6552 bool ok;
6553 bfd_vma opcode = x >> 26;
6554 bfd_vma jalx_opcode;
6555
6556 /* Check to see if the opcode is already JAL or JALX. */
6557 if (r_type == R_MIPS16_26)
6558 {
6559 ok = ((opcode == 0x6) || (opcode == 0x7));
6560 jalx_opcode = 0x7;
6561 }
6562 else if (r_type == R_MICROMIPS_26_S1)
6563 {
6564 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6565 jalx_opcode = 0x3c;
6566 }
6567 else
6568 {
6569 ok = ((opcode == 0x3) || (opcode == 0x1d));
6570 jalx_opcode = 0x1d;
6571 }
6572
6573 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6574 convert J or JALS to JALX. */
6575 if (!ok)
6576 {
6577 info->callbacks->einfo
6578 (_("%X%H: unsupported jump between ISA modes; "
6579 "consider recompiling with interlinking enabled\n"),
6580 input_bfd, input_section, relocation->r_offset);
6581 return true;
6582 }
6583
6584 /* Make this the JALX opcode. */
6585 x = (x & ~(0x3fu << 26)) | (jalx_opcode << 26);
6586 }
6587 else if (cross_mode_jump_p && b_reloc_p (r_type))
6588 {
6589 bool ok = false;
6590 bfd_vma opcode = x >> 16;
6591 bfd_vma jalx_opcode = 0;
6592 bfd_vma sign_bit = 0;
6593 bfd_vma addr;
6594 bfd_vma dest;
6595
6596 if (r_type == R_MICROMIPS_PC16_S1)
6597 {
6598 ok = opcode == 0x4060;
6599 jalx_opcode = 0x3c;
6600 sign_bit = 0x10000;
6601 value <<= 1;
6602 }
6603 else if (r_type == R_MIPS_PC16 || r_type == R_MIPS_GNU_REL16_S2)
6604 {
6605 ok = opcode == 0x411;
6606 jalx_opcode = 0x1d;
6607 sign_bit = 0x20000;
6608 value <<= 2;
6609 }
6610
6611 if (ok && !bfd_link_pic (info))
6612 {
6613 addr = (input_section->output_section->vma
6614 + input_section->output_offset
6615 + relocation->r_offset
6616 + 4);
6617 dest = (addr
6618 + (((value & ((sign_bit << 1) - 1)) ^ sign_bit) - sign_bit));
6619
6620 if ((addr >> 28) << 28 != (dest >> 28) << 28)
6621 {
6622 info->callbacks->einfo
6623 (_("%X%H: cannot convert branch between ISA modes "
6624 "to JALX: relocation out of range\n"),
6625 input_bfd, input_section, relocation->r_offset);
6626 return true;
6627 }
6628
6629 /* Make this the JALX opcode. */
6630 x = ((dest >> 2) & 0x3ffffff) | jalx_opcode << 26;
6631 }
6632 else if (!mips_elf_hash_table (info)->ignore_branch_isa)
6633 {
6634 info->callbacks->einfo
6635 (_("%X%H: unsupported branch between ISA modes\n"),
6636 input_bfd, input_section, relocation->r_offset);
6637 return true;
6638 }
6639 }
6640
6641 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6642 range. */
6643 if (!bfd_link_relocatable (info)
6644 && !cross_mode_jump_p
6645 && ((JAL_TO_BAL_P (input_bfd)
6646 && r_type == R_MIPS_26
6647 && (x >> 26) == 0x3) /* jal addr */
6648 || (JALR_TO_BAL_P (input_bfd)
6649 && r_type == R_MIPS_JALR
6650 && x == 0x0320f809) /* jalr t9 */
6651 || (JR_TO_B_P (input_bfd)
6652 && r_type == R_MIPS_JALR
6653 && (x & ~1) == 0x03200008))) /* jr t9 / jalr zero, t9 */
6654 {
6655 bfd_vma addr;
6656 bfd_vma dest;
6657 bfd_signed_vma off;
6658
6659 addr = (input_section->output_section->vma
6660 + input_section->output_offset
6661 + relocation->r_offset
6662 + 4);
6663 if (r_type == R_MIPS_26)
6664 dest = (value << 2) | ((addr >> 28) << 28);
6665 else
6666 dest = value;
6667 off = dest - addr;
6668 if (off <= 0x1ffff && off >= -0x20000)
6669 {
6670 if ((x & ~1) == 0x03200008) /* jr t9 / jalr zero, t9 */
6671 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6672 else
6673 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6674 }
6675 }
6676
6677 /* Put the value into the output. */
6678 mips_elf_store_contents (howto, relocation, input_bfd, contents, x);
6679
6680 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
6681 location);
6682
6683 return true;
6684 }
6685
6686 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6687 is the original relocation, which is now being transformed into a
6688 dynamic relocation. The ADDENDP is adjusted if necessary; the
6689 caller should store the result in place of the original addend. */
6690
6691 static bool
mips_elf_create_dynamic_relocation(bfd * output_bfd,struct bfd_link_info * info,const Elf_Internal_Rela * rel,struct mips_elf_link_hash_entry * h,asection * sec,bfd_vma symbol,bfd_vma * addendp,asection * input_section)6692 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6693 struct bfd_link_info *info,
6694 const Elf_Internal_Rela *rel,
6695 struct mips_elf_link_hash_entry *h,
6696 asection *sec, bfd_vma symbol,
6697 bfd_vma *addendp, asection *input_section)
6698 {
6699 Elf_Internal_Rela outrel[3];
6700 asection *sreloc;
6701 bfd *dynobj;
6702 int r_type;
6703 long indx;
6704 bool defined_p;
6705 struct mips_elf_link_hash_table *htab;
6706
6707 htab = mips_elf_hash_table (info);
6708 BFD_ASSERT (htab != NULL);
6709
6710 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6711 dynobj = elf_hash_table (info)->dynobj;
6712 sreloc = mips_elf_rel_dyn_section (info, false);
6713 BFD_ASSERT (sreloc != NULL);
6714 BFD_ASSERT (sreloc->contents != NULL);
6715 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6716 < sreloc->size);
6717
6718 outrel[0].r_offset =
6719 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6720 if (ABI_64_P (output_bfd))
6721 {
6722 outrel[1].r_offset =
6723 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6724 outrel[2].r_offset =
6725 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6726 }
6727
6728 if (outrel[0].r_offset == MINUS_ONE)
6729 /* The relocation field has been deleted. */
6730 return true;
6731
6732 if (outrel[0].r_offset == MINUS_TWO)
6733 {
6734 /* The relocation field has been converted into a relative value of
6735 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6736 the field to be fully relocated, so add in the symbol's value. */
6737 *addendp += symbol;
6738 return true;
6739 }
6740
6741 /* We must now calculate the dynamic symbol table index to use
6742 in the relocation. */
6743 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6744 {
6745 BFD_ASSERT (htab->root.target_os == is_vxworks
6746 || h->global_got_area != GGA_NONE);
6747 indx = h->root.dynindx;
6748 if (SGI_COMPAT (output_bfd))
6749 defined_p = h->root.def_regular;
6750 else
6751 /* ??? glibc's ld.so just adds the final GOT entry to the
6752 relocation field. It therefore treats relocs against
6753 defined symbols in the same way as relocs against
6754 undefined symbols. */
6755 defined_p = false;
6756 }
6757 else
6758 {
6759 if (sec != NULL && bfd_is_abs_section (sec))
6760 indx = 0;
6761 else if (sec == NULL || sec->owner == NULL)
6762 {
6763 bfd_set_error (bfd_error_bad_value);
6764 return false;
6765 }
6766 else
6767 {
6768 indx = elf_section_data (sec->output_section)->dynindx;
6769 if (indx == 0)
6770 {
6771 asection *osec = htab->root.text_index_section;
6772 indx = elf_section_data (osec)->dynindx;
6773 }
6774 if (indx == 0)
6775 abort ();
6776 }
6777
6778 /* Instead of generating a relocation using the section
6779 symbol, we may as well make it a fully relative
6780 relocation. We want to avoid generating relocations to
6781 local symbols because we used to generate them
6782 incorrectly, without adding the original symbol value,
6783 which is mandated by the ABI for section symbols. In
6784 order to give dynamic loaders and applications time to
6785 phase out the incorrect use, we refrain from emitting
6786 section-relative relocations. It's not like they're
6787 useful, after all. This should be a bit more efficient
6788 as well. */
6789 /* ??? Although this behavior is compatible with glibc's ld.so,
6790 the ABI says that relocations against STN_UNDEF should have
6791 a symbol value of 0. Irix rld honors this, so relocations
6792 against STN_UNDEF have no effect. */
6793 if (!SGI_COMPAT (output_bfd))
6794 indx = 0;
6795 defined_p = true;
6796 }
6797
6798 /* If the relocation was previously an absolute relocation and
6799 this symbol will not be referred to by the relocation, we must
6800 adjust it by the value we give it in the dynamic symbol table.
6801 Otherwise leave the job up to the dynamic linker. */
6802 if (defined_p && r_type != R_MIPS_REL32)
6803 *addendp += symbol;
6804
6805 if (htab->root.target_os == is_vxworks)
6806 /* VxWorks uses non-relative relocations for this. */
6807 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6808 else
6809 /* The relocation is always an REL32 relocation because we don't
6810 know where the shared library will wind up at load-time. */
6811 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6812 R_MIPS_REL32);
6813
6814 /* For strict adherence to the ABI specification, we should
6815 generate a R_MIPS_64 relocation record by itself before the
6816 _REL32/_64 record as well, such that the addend is read in as
6817 a 64-bit value (REL32 is a 32-bit relocation, after all).
6818 However, since none of the existing ELF64 MIPS dynamic
6819 loaders seems to care, we don't waste space with these
6820 artificial relocations. If this turns out to not be true,
6821 mips_elf_allocate_dynamic_relocation() should be tweaked so
6822 as to make room for a pair of dynamic relocations per
6823 invocation if ABI_64_P, and here we should generate an
6824 additional relocation record with R_MIPS_64 by itself for a
6825 NULL symbol before this relocation record. */
6826 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6827 ABI_64_P (output_bfd)
6828 ? R_MIPS_64
6829 : R_MIPS_NONE);
6830 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6831
6832 /* Adjust the output offset of the relocation to reference the
6833 correct location in the output file. */
6834 outrel[0].r_offset += (input_section->output_section->vma
6835 + input_section->output_offset);
6836 outrel[1].r_offset += (input_section->output_section->vma
6837 + input_section->output_offset);
6838 outrel[2].r_offset += (input_section->output_section->vma
6839 + input_section->output_offset);
6840
6841 /* Put the relocation back out. We have to use the special
6842 relocation outputter in the 64-bit case since the 64-bit
6843 relocation format is non-standard. */
6844 if (ABI_64_P (output_bfd))
6845 {
6846 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6847 (output_bfd, &outrel[0],
6848 (sreloc->contents
6849 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6850 }
6851 else if (htab->root.target_os == is_vxworks)
6852 {
6853 /* VxWorks uses RELA rather than REL dynamic relocations. */
6854 outrel[0].r_addend = *addendp;
6855 bfd_elf32_swap_reloca_out
6856 (output_bfd, &outrel[0],
6857 (sreloc->contents
6858 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6859 }
6860 else
6861 bfd_elf32_swap_reloc_out
6862 (output_bfd, &outrel[0],
6863 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6864
6865 /* We've now added another relocation. */
6866 ++sreloc->reloc_count;
6867
6868 /* Make sure the output section is writable. The dynamic linker
6869 will be writing to it. */
6870 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6871 |= SHF_WRITE;
6872
6873 /* On IRIX5, make an entry of compact relocation info. */
6874 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6875 {
6876 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6877 bfd_byte *cr;
6878
6879 if (scpt)
6880 {
6881 Elf32_crinfo cptrel;
6882
6883 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6884 cptrel.vaddr = (rel->r_offset
6885 + input_section->output_section->vma
6886 + input_section->output_offset);
6887 if (r_type == R_MIPS_REL32)
6888 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6889 else
6890 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6891 mips_elf_set_cr_dist2to (cptrel, 0);
6892 cptrel.konst = *addendp;
6893
6894 cr = (scpt->contents
6895 + sizeof (Elf32_External_compact_rel));
6896 mips_elf_set_cr_relvaddr (cptrel, 0);
6897 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6898 ((Elf32_External_crinfo *) cr
6899 + scpt->reloc_count));
6900 ++scpt->reloc_count;
6901 }
6902 }
6903
6904 /* If we've written this relocation for a readonly section,
6905 we need to set DF_TEXTREL again, so that we do not delete the
6906 DT_TEXTREL tag. */
6907 if (MIPS_ELF_READONLY_SECTION (input_section))
6908 info->flags |= DF_TEXTREL;
6909
6910 return true;
6911 }
6912
6913 /* Return the MACH for a MIPS e_flags value. */
6914
6915 unsigned long
_bfd_elf_mips_mach(flagword flags)6916 _bfd_elf_mips_mach (flagword flags)
6917 {
6918 switch (flags & EF_MIPS_MACH)
6919 {
6920 case E_MIPS_MACH_3900:
6921 return bfd_mach_mips3900;
6922
6923 case E_MIPS_MACH_4010:
6924 return bfd_mach_mips4010;
6925
6926 case E_MIPS_MACH_4100:
6927 return bfd_mach_mips4100;
6928
6929 case E_MIPS_MACH_4111:
6930 return bfd_mach_mips4111;
6931
6932 case E_MIPS_MACH_4120:
6933 return bfd_mach_mips4120;
6934
6935 case E_MIPS_MACH_4650:
6936 return bfd_mach_mips4650;
6937
6938 case E_MIPS_MACH_5400:
6939 return bfd_mach_mips5400;
6940
6941 case E_MIPS_MACH_5500:
6942 return bfd_mach_mips5500;
6943
6944 case E_MIPS_MACH_5900:
6945 return bfd_mach_mips5900;
6946
6947 case E_MIPS_MACH_9000:
6948 return bfd_mach_mips9000;
6949
6950 case E_MIPS_MACH_SB1:
6951 return bfd_mach_mips_sb1;
6952
6953 case E_MIPS_MACH_LS2E:
6954 return bfd_mach_mips_loongson_2e;
6955
6956 case E_MIPS_MACH_LS2F:
6957 return bfd_mach_mips_loongson_2f;
6958
6959 case E_MIPS_MACH_GS464:
6960 return bfd_mach_mips_gs464;
6961
6962 case E_MIPS_MACH_GS464E:
6963 return bfd_mach_mips_gs464e;
6964
6965 case E_MIPS_MACH_GS264E:
6966 return bfd_mach_mips_gs264e;
6967
6968 case E_MIPS_MACH_OCTEON3:
6969 return bfd_mach_mips_octeon3;
6970
6971 case E_MIPS_MACH_OCTEON2:
6972 return bfd_mach_mips_octeon2;
6973
6974 case E_MIPS_MACH_OCTEON:
6975 return bfd_mach_mips_octeon;
6976
6977 case E_MIPS_MACH_XLR:
6978 return bfd_mach_mips_xlr;
6979
6980 case E_MIPS_MACH_IAMR2:
6981 return bfd_mach_mips_interaptiv_mr2;
6982
6983 default:
6984 switch (flags & EF_MIPS_ARCH)
6985 {
6986 default:
6987 case E_MIPS_ARCH_1:
6988 return bfd_mach_mips3000;
6989
6990 case E_MIPS_ARCH_2:
6991 return bfd_mach_mips6000;
6992
6993 case E_MIPS_ARCH_3:
6994 return bfd_mach_mips4000;
6995
6996 case E_MIPS_ARCH_4:
6997 return bfd_mach_mips8000;
6998
6999 case E_MIPS_ARCH_5:
7000 return bfd_mach_mips5;
7001
7002 case E_MIPS_ARCH_32:
7003 return bfd_mach_mipsisa32;
7004
7005 case E_MIPS_ARCH_64:
7006 return bfd_mach_mipsisa64;
7007
7008 case E_MIPS_ARCH_32R2:
7009 return bfd_mach_mipsisa32r2;
7010
7011 case E_MIPS_ARCH_64R2:
7012 return bfd_mach_mipsisa64r2;
7013
7014 case E_MIPS_ARCH_32R6:
7015 return bfd_mach_mipsisa32r6;
7016
7017 case E_MIPS_ARCH_64R6:
7018 return bfd_mach_mipsisa64r6;
7019 }
7020 }
7021
7022 return 0;
7023 }
7024
7025 /* Return printable name for ABI. */
7026
7027 static inline char *
elf_mips_abi_name(bfd * abfd)7028 elf_mips_abi_name (bfd *abfd)
7029 {
7030 flagword flags;
7031
7032 flags = elf_elfheader (abfd)->e_flags;
7033 switch (flags & EF_MIPS_ABI)
7034 {
7035 case 0:
7036 if (ABI_N32_P (abfd))
7037 return "N32";
7038 else if (ABI_64_P (abfd))
7039 return "64";
7040 else
7041 return "none";
7042 case E_MIPS_ABI_O32:
7043 return "O32";
7044 case E_MIPS_ABI_O64:
7045 return "O64";
7046 case E_MIPS_ABI_EABI32:
7047 return "EABI32";
7048 case E_MIPS_ABI_EABI64:
7049 return "EABI64";
7050 default:
7051 return "unknown abi";
7052 }
7053 }
7054
7055 /* MIPS ELF uses two common sections. One is the usual one, and the
7056 other is for small objects. All the small objects are kept
7057 together, and then referenced via the gp pointer, which yields
7058 faster assembler code. This is what we use for the small common
7059 section. This approach is copied from ecoff.c. */
7060 static asection mips_elf_scom_section;
7061 static const asymbol mips_elf_scom_symbol =
7062 GLOBAL_SYM_INIT (".scommon", &mips_elf_scom_section);
7063 static asection mips_elf_scom_section =
7064 BFD_FAKE_SECTION (mips_elf_scom_section, &mips_elf_scom_symbol,
7065 ".scommon", 0, SEC_IS_COMMON | SEC_SMALL_DATA);
7066
7067 /* MIPS ELF also uses an acommon section, which represents an
7068 allocated common symbol which may be overridden by a
7069 definition in a shared library. */
7070 static asection mips_elf_acom_section;
7071 static const asymbol mips_elf_acom_symbol =
7072 GLOBAL_SYM_INIT (".acommon", &mips_elf_acom_section);
7073 static asection mips_elf_acom_section =
7074 BFD_FAKE_SECTION (mips_elf_acom_section, &mips_elf_acom_symbol,
7075 ".acommon", 0, SEC_ALLOC);
7076
7077 /* This is used for both the 32-bit and the 64-bit ABI. */
7078
7079 void
_bfd_mips_elf_symbol_processing(bfd * abfd,asymbol * asym)7080 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
7081 {
7082 elf_symbol_type *elfsym;
7083
7084 /* Handle the special MIPS section numbers that a symbol may use. */
7085 elfsym = (elf_symbol_type *) asym;
7086 switch (elfsym->internal_elf_sym.st_shndx)
7087 {
7088 case SHN_MIPS_ACOMMON:
7089 /* This section is used in a dynamically linked executable file.
7090 It is an allocated common section. The dynamic linker can
7091 either resolve these symbols to something in a shared
7092 library, or it can just leave them here. For our purposes,
7093 we can consider these symbols to be in a new section. */
7094 asym->section = &mips_elf_acom_section;
7095 break;
7096
7097 case SHN_COMMON:
7098 /* Common symbols less than the GP size are automatically
7099 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
7100 if (asym->value > elf_gp_size (abfd)
7101 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
7102 || IRIX_COMPAT (abfd) == ict_irix6)
7103 break;
7104 /* Fall through. */
7105 case SHN_MIPS_SCOMMON:
7106 asym->section = &mips_elf_scom_section;
7107 asym->value = elfsym->internal_elf_sym.st_size;
7108 break;
7109
7110 case SHN_MIPS_SUNDEFINED:
7111 asym->section = bfd_und_section_ptr;
7112 break;
7113
7114 case SHN_MIPS_TEXT:
7115 {
7116 asection *section = bfd_get_section_by_name (abfd, ".text");
7117
7118 if (section != NULL)
7119 {
7120 asym->section = section;
7121 /* MIPS_TEXT is a bit special, the address is not an offset
7122 to the base of the .text section. So subtract the section
7123 base address to make it an offset. */
7124 asym->value -= section->vma;
7125 }
7126 }
7127 break;
7128
7129 case SHN_MIPS_DATA:
7130 {
7131 asection *section = bfd_get_section_by_name (abfd, ".data");
7132
7133 if (section != NULL)
7134 {
7135 asym->section = section;
7136 /* MIPS_DATA is a bit special, the address is not an offset
7137 to the base of the .data section. So subtract the section
7138 base address to make it an offset. */
7139 asym->value -= section->vma;
7140 }
7141 }
7142 break;
7143 }
7144
7145 /* If this is an odd-valued function symbol, assume it's a MIPS16
7146 or microMIPS one. */
7147 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
7148 && (asym->value & 1) != 0)
7149 {
7150 asym->value--;
7151 if (MICROMIPS_P (abfd))
7152 elfsym->internal_elf_sym.st_other
7153 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
7154 else
7155 elfsym->internal_elf_sym.st_other
7156 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
7157 }
7158 }
7159
7160 /* Implement elf_backend_eh_frame_address_size. This differs from
7161 the default in the way it handles EABI64.
7162
7163 EABI64 was originally specified as an LP64 ABI, and that is what
7164 -mabi=eabi normally gives on a 64-bit target. However, gcc has
7165 historically accepted the combination of -mabi=eabi and -mlong32,
7166 and this ILP32 variation has become semi-official over time.
7167 Both forms use elf32 and have pointer-sized FDE addresses.
7168
7169 If an EABI object was generated by GCC 4.0 or above, it will have
7170 an empty .gcc_compiled_longXX section, where XX is the size of longs
7171 in bits. Unfortunately, ILP32 objects generated by earlier compilers
7172 have no special marking to distinguish them from LP64 objects.
7173
7174 We don't want users of the official LP64 ABI to be punished for the
7175 existence of the ILP32 variant, but at the same time, we don't want
7176 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
7177 We therefore take the following approach:
7178
7179 - If ABFD contains a .gcc_compiled_longXX section, use it to
7180 determine the pointer size.
7181
7182 - Otherwise check the type of the first relocation. Assume that
7183 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
7184
7185 - Otherwise punt.
7186
7187 The second check is enough to detect LP64 objects generated by pre-4.0
7188 compilers because, in the kind of output generated by those compilers,
7189 the first relocation will be associated with either a CIE personality
7190 routine or an FDE start address. Furthermore, the compilers never
7191 used a special (non-pointer) encoding for this ABI.
7192
7193 Checking the relocation type should also be safe because there is no
7194 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
7195 did so. */
7196
7197 unsigned int
_bfd_mips_elf_eh_frame_address_size(bfd * abfd,const asection * sec)7198 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, const asection *sec)
7199 {
7200 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
7201 return 8;
7202 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
7203 {
7204 bool long32_p, long64_p;
7205
7206 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
7207 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
7208 if (long32_p && long64_p)
7209 return 0;
7210 if (long32_p)
7211 return 4;
7212 if (long64_p)
7213 return 8;
7214
7215 if (sec->reloc_count > 0
7216 && elf_section_data (sec)->relocs != NULL
7217 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
7218 == R_MIPS_64))
7219 return 8;
7220
7221 return 0;
7222 }
7223 return 4;
7224 }
7225
7226 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
7227 relocations against two unnamed section symbols to resolve to the
7228 same address. For example, if we have code like:
7229
7230 lw $4,%got_disp(.data)($gp)
7231 lw $25,%got_disp(.text)($gp)
7232 jalr $25
7233
7234 then the linker will resolve both relocations to .data and the program
7235 will jump there rather than to .text.
7236
7237 We can work around this problem by giving names to local section symbols.
7238 This is also what the MIPSpro tools do. */
7239
7240 bool
_bfd_mips_elf_name_local_section_symbols(bfd * abfd)7241 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
7242 {
7243 return elf_elfheader (abfd)->e_type == ET_REL && SGI_COMPAT (abfd);
7244 }
7245
7246 /* Work over a section just before writing it out. This routine is
7247 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
7248 sections that need the SHF_MIPS_GPREL flag by name; there has to be
7249 a better way. */
7250
7251 bool
_bfd_mips_elf_section_processing(bfd * abfd,Elf_Internal_Shdr * hdr)7252 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
7253 {
7254 if (hdr->sh_type == SHT_MIPS_REGINFO
7255 && hdr->sh_size > 0)
7256 {
7257 bfd_byte buf[4];
7258
7259 BFD_ASSERT (hdr->contents == NULL);
7260
7261 if (hdr->sh_size != sizeof (Elf32_External_RegInfo))
7262 {
7263 _bfd_error_handler
7264 (_("%pB: incorrect `.reginfo' section size; "
7265 "expected %" PRIu64 ", got %" PRIu64),
7266 abfd, (uint64_t) sizeof (Elf32_External_RegInfo),
7267 (uint64_t) hdr->sh_size);
7268 bfd_set_error (bfd_error_bad_value);
7269 return false;
7270 }
7271
7272 if (bfd_seek (abfd,
7273 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
7274 SEEK_SET) != 0)
7275 return false;
7276 H_PUT_32 (abfd, elf_gp (abfd), buf);
7277 if (bfd_bwrite (buf, 4, abfd) != 4)
7278 return false;
7279 }
7280
7281 if (hdr->sh_type == SHT_MIPS_OPTIONS
7282 && hdr->bfd_section != NULL
7283 && mips_elf_section_data (hdr->bfd_section) != NULL
7284 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
7285 {
7286 bfd_byte *contents, *l, *lend;
7287
7288 /* We stored the section contents in the tdata field in the
7289 set_section_contents routine. We save the section contents
7290 so that we don't have to read them again.
7291 At this point we know that elf_gp is set, so we can look
7292 through the section contents to see if there is an
7293 ODK_REGINFO structure. */
7294
7295 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
7296 l = contents;
7297 lend = contents + hdr->sh_size;
7298 while (l + sizeof (Elf_External_Options) <= lend)
7299 {
7300 Elf_Internal_Options intopt;
7301
7302 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7303 &intopt);
7304 if (intopt.size < sizeof (Elf_External_Options))
7305 {
7306 _bfd_error_handler
7307 /* xgettext:c-format */
7308 (_("%pB: warning: bad `%s' option size %u smaller than"
7309 " its header"),
7310 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7311 break;
7312 }
7313 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7314 {
7315 bfd_byte buf[8];
7316
7317 if (bfd_seek (abfd,
7318 (hdr->sh_offset
7319 + (l - contents)
7320 + sizeof (Elf_External_Options)
7321 + (sizeof (Elf64_External_RegInfo) - 8)),
7322 SEEK_SET) != 0)
7323 return false;
7324 H_PUT_64 (abfd, elf_gp (abfd), buf);
7325 if (bfd_bwrite (buf, 8, abfd) != 8)
7326 return false;
7327 }
7328 else if (intopt.kind == ODK_REGINFO)
7329 {
7330 bfd_byte buf[4];
7331
7332 if (bfd_seek (abfd,
7333 (hdr->sh_offset
7334 + (l - contents)
7335 + sizeof (Elf_External_Options)
7336 + (sizeof (Elf32_External_RegInfo) - 4)),
7337 SEEK_SET) != 0)
7338 return false;
7339 H_PUT_32 (abfd, elf_gp (abfd), buf);
7340 if (bfd_bwrite (buf, 4, abfd) != 4)
7341 return false;
7342 }
7343 l += intopt.size;
7344 }
7345 }
7346
7347 if (hdr->bfd_section != NULL)
7348 {
7349 const char *name = bfd_section_name (hdr->bfd_section);
7350
7351 /* .sbss is not handled specially here because the GNU/Linux
7352 prelinker can convert .sbss from NOBITS to PROGBITS and
7353 changing it back to NOBITS breaks the binary. The entry in
7354 _bfd_mips_elf_special_sections will ensure the correct flags
7355 are set on .sbss if BFD creates it without reading it from an
7356 input file, and without special handling here the flags set
7357 on it in an input file will be followed. */
7358 if (strcmp (name, ".sdata") == 0
7359 || strcmp (name, ".lit8") == 0
7360 || strcmp (name, ".lit4") == 0)
7361 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
7362 else if (strcmp (name, ".srdata") == 0)
7363 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
7364 else if (strcmp (name, ".compact_rel") == 0)
7365 hdr->sh_flags = 0;
7366 else if (strcmp (name, ".rtproc") == 0)
7367 {
7368 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7369 {
7370 unsigned int adjust;
7371
7372 adjust = hdr->sh_size % hdr->sh_addralign;
7373 if (adjust != 0)
7374 hdr->sh_size += hdr->sh_addralign - adjust;
7375 }
7376 }
7377 }
7378
7379 return true;
7380 }
7381
7382 /* Handle a MIPS specific section when reading an object file. This
7383 is called when elfcode.h finds a section with an unknown type.
7384 This routine supports both the 32-bit and 64-bit ELF ABI. */
7385
7386 bool
_bfd_mips_elf_section_from_shdr(bfd * abfd,Elf_Internal_Shdr * hdr,const char * name,int shindex)7387 _bfd_mips_elf_section_from_shdr (bfd *abfd,
7388 Elf_Internal_Shdr *hdr,
7389 const char *name,
7390 int shindex)
7391 {
7392 flagword flags = 0;
7393
7394 /* There ought to be a place to keep ELF backend specific flags, but
7395 at the moment there isn't one. We just keep track of the
7396 sections by their name, instead. Fortunately, the ABI gives
7397 suggested names for all the MIPS specific sections, so we will
7398 probably get away with this. */
7399 switch (hdr->sh_type)
7400 {
7401 case SHT_MIPS_LIBLIST:
7402 if (strcmp (name, ".liblist") != 0)
7403 return false;
7404 break;
7405 case SHT_MIPS_MSYM:
7406 if (strcmp (name, ".msym") != 0)
7407 return false;
7408 break;
7409 case SHT_MIPS_CONFLICT:
7410 if (strcmp (name, ".conflict") != 0)
7411 return false;
7412 break;
7413 case SHT_MIPS_GPTAB:
7414 if (! startswith (name, ".gptab."))
7415 return false;
7416 break;
7417 case SHT_MIPS_UCODE:
7418 if (strcmp (name, ".ucode") != 0)
7419 return false;
7420 break;
7421 case SHT_MIPS_DEBUG:
7422 if (strcmp (name, ".mdebug") != 0)
7423 return false;
7424 flags = SEC_DEBUGGING;
7425 break;
7426 case SHT_MIPS_REGINFO:
7427 if (strcmp (name, ".reginfo") != 0
7428 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
7429 return false;
7430 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7431 break;
7432 case SHT_MIPS_IFACE:
7433 if (strcmp (name, ".MIPS.interfaces") != 0)
7434 return false;
7435 break;
7436 case SHT_MIPS_CONTENT:
7437 if (! startswith (name, ".MIPS.content"))
7438 return false;
7439 break;
7440 case SHT_MIPS_OPTIONS:
7441 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7442 return false;
7443 break;
7444 case SHT_MIPS_ABIFLAGS:
7445 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7446 return false;
7447 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7448 break;
7449 case SHT_MIPS_DWARF:
7450 if (! startswith (name, ".debug_")
7451 && ! startswith (name, ".gnu.debuglto_.debug_")
7452 && ! startswith (name, ".zdebug_")
7453 && ! startswith (name, ".gnu.debuglto_.zdebug_"))
7454 return false;
7455 break;
7456 case SHT_MIPS_SYMBOL_LIB:
7457 if (strcmp (name, ".MIPS.symlib") != 0)
7458 return false;
7459 break;
7460 case SHT_MIPS_EVENTS:
7461 if (! startswith (name, ".MIPS.events")
7462 && ! startswith (name, ".MIPS.post_rel"))
7463 return false;
7464 break;
7465 case SHT_MIPS_XHASH:
7466 if (strcmp (name, ".MIPS.xhash") != 0)
7467 return false;
7468 default:
7469 break;
7470 }
7471
7472 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7473 return false;
7474
7475 if (hdr->sh_flags & SHF_MIPS_GPREL)
7476 flags |= SEC_SMALL_DATA;
7477
7478 if (flags)
7479 {
7480 if (!bfd_set_section_flags (hdr->bfd_section,
7481 (bfd_section_flags (hdr->bfd_section)
7482 | flags)))
7483 return false;
7484 }
7485
7486 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7487 {
7488 Elf_External_ABIFlags_v0 ext;
7489
7490 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7491 &ext, 0, sizeof ext))
7492 return false;
7493 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7494 &mips_elf_tdata (abfd)->abiflags);
7495 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7496 return false;
7497 mips_elf_tdata (abfd)->abiflags_valid = true;
7498 }
7499
7500 /* FIXME: We should record sh_info for a .gptab section. */
7501
7502 /* For a .reginfo section, set the gp value in the tdata information
7503 from the contents of this section. We need the gp value while
7504 processing relocs, so we just get it now. The .reginfo section
7505 is not used in the 64-bit MIPS ELF ABI. */
7506 if (hdr->sh_type == SHT_MIPS_REGINFO)
7507 {
7508 Elf32_External_RegInfo ext;
7509 Elf32_RegInfo s;
7510
7511 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7512 &ext, 0, sizeof ext))
7513 return false;
7514 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7515 elf_gp (abfd) = s.ri_gp_value;
7516 }
7517
7518 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7519 set the gp value based on what we find. We may see both
7520 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7521 they should agree. */
7522 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7523 {
7524 bfd_byte *contents, *l, *lend;
7525
7526 contents = bfd_malloc (hdr->sh_size);
7527 if (contents == NULL)
7528 return false;
7529 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
7530 0, hdr->sh_size))
7531 {
7532 free (contents);
7533 return false;
7534 }
7535 l = contents;
7536 lend = contents + hdr->sh_size;
7537 while (l + sizeof (Elf_External_Options) <= lend)
7538 {
7539 Elf_Internal_Options intopt;
7540
7541 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7542 &intopt);
7543 if (intopt.size < sizeof (Elf_External_Options))
7544 {
7545 bad_opt:
7546 _bfd_error_handler
7547 /* xgettext:c-format */
7548 (_("%pB: warning: truncated `%s' option"),
7549 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd));
7550 break;
7551 }
7552 if (intopt.kind == ODK_REGINFO)
7553 {
7554 if (ABI_64_P (abfd))
7555 {
7556 Elf64_Internal_RegInfo intreg;
7557 size_t needed = (sizeof (Elf_External_Options)
7558 + sizeof (Elf64_External_RegInfo));
7559 if (intopt.size < needed || (size_t) (lend - l) < needed)
7560 goto bad_opt;
7561 bfd_mips_elf64_swap_reginfo_in
7562 (abfd,
7563 ((Elf64_External_RegInfo *)
7564 (l + sizeof (Elf_External_Options))),
7565 &intreg);
7566 elf_gp (abfd) = intreg.ri_gp_value;
7567 }
7568 else
7569 {
7570 Elf32_RegInfo intreg;
7571 size_t needed = (sizeof (Elf_External_Options)
7572 + sizeof (Elf32_External_RegInfo));
7573 if (intopt.size < needed || (size_t) (lend - l) < needed)
7574 goto bad_opt;
7575 bfd_mips_elf32_swap_reginfo_in
7576 (abfd,
7577 ((Elf32_External_RegInfo *)
7578 (l + sizeof (Elf_External_Options))),
7579 &intreg);
7580 elf_gp (abfd) = intreg.ri_gp_value;
7581 }
7582 }
7583 l += intopt.size;
7584 }
7585 free (contents);
7586 }
7587
7588 return true;
7589 }
7590
7591 /* Set the correct type for a MIPS ELF section. We do this by the
7592 section name, which is a hack, but ought to work. This routine is
7593 used by both the 32-bit and the 64-bit ABI. */
7594
7595 bool
_bfd_mips_elf_fake_sections(bfd * abfd,Elf_Internal_Shdr * hdr,asection * sec)7596 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
7597 {
7598 const char *name = bfd_section_name (sec);
7599
7600 if (strcmp (name, ".liblist") == 0)
7601 {
7602 hdr->sh_type = SHT_MIPS_LIBLIST;
7603 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
7604 /* The sh_link field is set in final_write_processing. */
7605 }
7606 else if (strcmp (name, ".conflict") == 0)
7607 hdr->sh_type = SHT_MIPS_CONFLICT;
7608 else if (startswith (name, ".gptab."))
7609 {
7610 hdr->sh_type = SHT_MIPS_GPTAB;
7611 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7612 /* The sh_info field is set in final_write_processing. */
7613 }
7614 else if (strcmp (name, ".ucode") == 0)
7615 hdr->sh_type = SHT_MIPS_UCODE;
7616 else if (strcmp (name, ".mdebug") == 0)
7617 {
7618 hdr->sh_type = SHT_MIPS_DEBUG;
7619 /* In a shared object on IRIX 5.3, the .mdebug section has an
7620 entsize of 0. FIXME: Does this matter? */
7621 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7622 hdr->sh_entsize = 0;
7623 else
7624 hdr->sh_entsize = 1;
7625 }
7626 else if (strcmp (name, ".reginfo") == 0)
7627 {
7628 hdr->sh_type = SHT_MIPS_REGINFO;
7629 /* In a shared object on IRIX 5.3, the .reginfo section has an
7630 entsize of 0x18. FIXME: Does this matter? */
7631 if (SGI_COMPAT (abfd))
7632 {
7633 if ((abfd->flags & DYNAMIC) != 0)
7634 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7635 else
7636 hdr->sh_entsize = 1;
7637 }
7638 else
7639 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7640 }
7641 else if (SGI_COMPAT (abfd)
7642 && (strcmp (name, ".hash") == 0
7643 || strcmp (name, ".dynamic") == 0
7644 || strcmp (name, ".dynstr") == 0))
7645 {
7646 if (SGI_COMPAT (abfd))
7647 hdr->sh_entsize = 0;
7648 #if 0
7649 /* This isn't how the IRIX6 linker behaves. */
7650 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7651 #endif
7652 }
7653 else if (strcmp (name, ".got") == 0
7654 || strcmp (name, ".srdata") == 0
7655 || strcmp (name, ".sdata") == 0
7656 || strcmp (name, ".sbss") == 0
7657 || strcmp (name, ".lit4") == 0
7658 || strcmp (name, ".lit8") == 0)
7659 hdr->sh_flags |= SHF_MIPS_GPREL;
7660 else if (strcmp (name, ".MIPS.interfaces") == 0)
7661 {
7662 hdr->sh_type = SHT_MIPS_IFACE;
7663 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7664 }
7665 else if (startswith (name, ".MIPS.content"))
7666 {
7667 hdr->sh_type = SHT_MIPS_CONTENT;
7668 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7669 /* The sh_info field is set in final_write_processing. */
7670 }
7671 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7672 {
7673 hdr->sh_type = SHT_MIPS_OPTIONS;
7674 hdr->sh_entsize = 1;
7675 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7676 }
7677 else if (startswith (name, ".MIPS.abiflags"))
7678 {
7679 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7680 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7681 }
7682 else if (startswith (name, ".debug_")
7683 || startswith (name, ".gnu.debuglto_.debug_")
7684 || startswith (name, ".zdebug_")
7685 || startswith (name, ".gnu.debuglto_.zdebug_"))
7686 {
7687 hdr->sh_type = SHT_MIPS_DWARF;
7688
7689 /* Irix facilities such as libexc expect a single .debug_frame
7690 per executable, the system ones have NOSTRIP set and the linker
7691 doesn't merge sections with different flags so ... */
7692 if (SGI_COMPAT (abfd) && startswith (name, ".debug_frame"))
7693 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7694 }
7695 else if (strcmp (name, ".MIPS.symlib") == 0)
7696 {
7697 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7698 /* The sh_link and sh_info fields are set in
7699 final_write_processing. */
7700 }
7701 else if (startswith (name, ".MIPS.events")
7702 || startswith (name, ".MIPS.post_rel"))
7703 {
7704 hdr->sh_type = SHT_MIPS_EVENTS;
7705 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7706 /* The sh_link field is set in final_write_processing. */
7707 }
7708 else if (strcmp (name, ".msym") == 0)
7709 {
7710 hdr->sh_type = SHT_MIPS_MSYM;
7711 hdr->sh_flags |= SHF_ALLOC;
7712 hdr->sh_entsize = 8;
7713 }
7714 else if (strcmp (name, ".MIPS.xhash") == 0)
7715 {
7716 hdr->sh_type = SHT_MIPS_XHASH;
7717 hdr->sh_flags |= SHF_ALLOC;
7718 hdr->sh_entsize = get_elf_backend_data(abfd)->s->arch_size == 64 ? 0 : 4;
7719 }
7720
7721 /* The generic elf_fake_sections will set up REL_HDR using the default
7722 kind of relocations. We used to set up a second header for the
7723 non-default kind of relocations here, but only NewABI would use
7724 these, and the IRIX ld doesn't like resulting empty RELA sections.
7725 Thus we create those header only on demand now. */
7726
7727 return true;
7728 }
7729
7730 /* Given a BFD section, try to locate the corresponding ELF section
7731 index. This is used by both the 32-bit and the 64-bit ABI.
7732 Actually, it's not clear to me that the 64-bit ABI supports these,
7733 but for non-PIC objects we will certainly want support for at least
7734 the .scommon section. */
7735
7736 bool
_bfd_mips_elf_section_from_bfd_section(bfd * abfd ATTRIBUTE_UNUSED,asection * sec,int * retval)7737 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7738 asection *sec, int *retval)
7739 {
7740 if (strcmp (bfd_section_name (sec), ".scommon") == 0)
7741 {
7742 *retval = SHN_MIPS_SCOMMON;
7743 return true;
7744 }
7745 if (strcmp (bfd_section_name (sec), ".acommon") == 0)
7746 {
7747 *retval = SHN_MIPS_ACOMMON;
7748 return true;
7749 }
7750 return false;
7751 }
7752
7753 /* Hook called by the linker routine which adds symbols from an object
7754 file. We must handle the special MIPS section numbers here. */
7755
7756 bool
_bfd_mips_elf_add_symbol_hook(bfd * abfd,struct bfd_link_info * info,Elf_Internal_Sym * sym,const char ** namep,flagword * flagsp ATTRIBUTE_UNUSED,asection ** secp,bfd_vma * valp)7757 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7758 Elf_Internal_Sym *sym, const char **namep,
7759 flagword *flagsp ATTRIBUTE_UNUSED,
7760 asection **secp, bfd_vma *valp)
7761 {
7762 if (SGI_COMPAT (abfd)
7763 && (abfd->flags & DYNAMIC) != 0
7764 && strcmp (*namep, "_rld_new_interface") == 0)
7765 {
7766 /* Skip IRIX5 rld entry name. */
7767 *namep = NULL;
7768 return true;
7769 }
7770
7771 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7772 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7773 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7774 a magic symbol resolved by the linker, we ignore this bogus definition
7775 of _gp_disp. New ABI objects do not suffer from this problem so this
7776 is not done for them. */
7777 if (!NEWABI_P(abfd)
7778 && (sym->st_shndx == SHN_ABS)
7779 && (strcmp (*namep, "_gp_disp") == 0))
7780 {
7781 *namep = NULL;
7782 return true;
7783 }
7784
7785 switch (sym->st_shndx)
7786 {
7787 case SHN_COMMON:
7788 /* Common symbols less than the GP size are automatically
7789 treated as SHN_MIPS_SCOMMON symbols. */
7790 if (sym->st_size > elf_gp_size (abfd)
7791 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7792 || IRIX_COMPAT (abfd) == ict_irix6)
7793 break;
7794 /* Fall through. */
7795 case SHN_MIPS_SCOMMON:
7796 *secp = bfd_make_section_old_way (abfd, ".scommon");
7797 (*secp)->flags |= SEC_IS_COMMON | SEC_SMALL_DATA;
7798 *valp = sym->st_size;
7799 break;
7800
7801 case SHN_MIPS_TEXT:
7802 /* This section is used in a shared object. */
7803 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
7804 {
7805 asymbol *elf_text_symbol;
7806 asection *elf_text_section;
7807 size_t amt = sizeof (asection);
7808
7809 elf_text_section = bfd_zalloc (abfd, amt);
7810 if (elf_text_section == NULL)
7811 return false;
7812
7813 amt = sizeof (asymbol);
7814 elf_text_symbol = bfd_zalloc (abfd, amt);
7815 if (elf_text_symbol == NULL)
7816 return false;
7817
7818 /* Initialize the section. */
7819
7820 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7821 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7822
7823 elf_text_section->symbol = elf_text_symbol;
7824 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
7825
7826 elf_text_section->name = ".text";
7827 elf_text_section->flags = SEC_NO_FLAGS;
7828 elf_text_section->output_section = NULL;
7829 elf_text_section->owner = abfd;
7830 elf_text_symbol->name = ".text";
7831 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7832 elf_text_symbol->section = elf_text_section;
7833 }
7834 /* This code used to do *secp = bfd_und_section_ptr if
7835 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7836 so I took it out. */
7837 *secp = mips_elf_tdata (abfd)->elf_text_section;
7838 break;
7839
7840 case SHN_MIPS_ACOMMON:
7841 /* Fall through. XXX Can we treat this as allocated data? */
7842 case SHN_MIPS_DATA:
7843 /* This section is used in a shared object. */
7844 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
7845 {
7846 asymbol *elf_data_symbol;
7847 asection *elf_data_section;
7848 size_t amt = sizeof (asection);
7849
7850 elf_data_section = bfd_zalloc (abfd, amt);
7851 if (elf_data_section == NULL)
7852 return false;
7853
7854 amt = sizeof (asymbol);
7855 elf_data_symbol = bfd_zalloc (abfd, amt);
7856 if (elf_data_symbol == NULL)
7857 return false;
7858
7859 /* Initialize the section. */
7860
7861 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7862 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7863
7864 elf_data_section->symbol = elf_data_symbol;
7865 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
7866
7867 elf_data_section->name = ".data";
7868 elf_data_section->flags = SEC_NO_FLAGS;
7869 elf_data_section->output_section = NULL;
7870 elf_data_section->owner = abfd;
7871 elf_data_symbol->name = ".data";
7872 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7873 elf_data_symbol->section = elf_data_section;
7874 }
7875 /* This code used to do *secp = bfd_und_section_ptr if
7876 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7877 so I took it out. */
7878 *secp = mips_elf_tdata (abfd)->elf_data_section;
7879 break;
7880
7881 case SHN_MIPS_SUNDEFINED:
7882 *secp = bfd_und_section_ptr;
7883 break;
7884 }
7885
7886 if (SGI_COMPAT (abfd)
7887 && ! bfd_link_pic (info)
7888 && info->output_bfd->xvec == abfd->xvec
7889 && strcmp (*namep, "__rld_obj_head") == 0)
7890 {
7891 struct elf_link_hash_entry *h;
7892 struct bfd_link_hash_entry *bh;
7893
7894 /* Mark __rld_obj_head as dynamic. */
7895 bh = NULL;
7896 if (! (_bfd_generic_link_add_one_symbol
7897 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, false,
7898 get_elf_backend_data (abfd)->collect, &bh)))
7899 return false;
7900
7901 h = (struct elf_link_hash_entry *) bh;
7902 h->non_elf = 0;
7903 h->def_regular = 1;
7904 h->type = STT_OBJECT;
7905
7906 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7907 return false;
7908
7909 mips_elf_hash_table (info)->use_rld_obj_head = true;
7910 mips_elf_hash_table (info)->rld_symbol = h;
7911 }
7912
7913 /* If this is a mips16 text symbol, add 1 to the value to make it
7914 odd. This will cause something like .word SYM to come up with
7915 the right value when it is loaded into the PC. */
7916 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7917 ++*valp;
7918
7919 return true;
7920 }
7921
7922 /* This hook function is called before the linker writes out a global
7923 symbol. We mark symbols as small common if appropriate. This is
7924 also where we undo the increment of the value for a mips16 symbol. */
7925
7926 int
_bfd_mips_elf_link_output_symbol_hook(struct bfd_link_info * info ATTRIBUTE_UNUSED,const char * name ATTRIBUTE_UNUSED,Elf_Internal_Sym * sym,asection * input_sec,struct elf_link_hash_entry * h ATTRIBUTE_UNUSED)7927 _bfd_mips_elf_link_output_symbol_hook
7928 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7929 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7930 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7931 {
7932 /* If we see a common symbol, which implies a relocatable link, then
7933 if a symbol was small common in an input file, mark it as small
7934 common in the output file. */
7935 if (sym->st_shndx == SHN_COMMON
7936 && strcmp (input_sec->name, ".scommon") == 0)
7937 sym->st_shndx = SHN_MIPS_SCOMMON;
7938
7939 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7940 sym->st_value &= ~1;
7941
7942 return 1;
7943 }
7944
7945 /* Functions for the dynamic linker. */
7946
7947 /* Create dynamic sections when linking against a dynamic object. */
7948
7949 bool
_bfd_mips_elf_create_dynamic_sections(bfd * abfd,struct bfd_link_info * info)7950 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7951 {
7952 struct elf_link_hash_entry *h;
7953 struct bfd_link_hash_entry *bh;
7954 flagword flags;
7955 register asection *s;
7956 const char * const *namep;
7957 struct mips_elf_link_hash_table *htab;
7958
7959 htab = mips_elf_hash_table (info);
7960 BFD_ASSERT (htab != NULL);
7961
7962 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7963 | SEC_LINKER_CREATED | SEC_READONLY);
7964
7965 /* The psABI requires a read-only .dynamic section, but the VxWorks
7966 EABI doesn't. */
7967 if (htab->root.target_os != is_vxworks)
7968 {
7969 s = bfd_get_linker_section (abfd, ".dynamic");
7970 if (s != NULL)
7971 {
7972 if (!bfd_set_section_flags (s, flags))
7973 return false;
7974 }
7975 }
7976
7977 /* We need to create .got section. */
7978 if (!mips_elf_create_got_section (abfd, info))
7979 return false;
7980
7981 if (! mips_elf_rel_dyn_section (info, true))
7982 return false;
7983
7984 /* Create .stub section. */
7985 s = bfd_make_section_anyway_with_flags (abfd,
7986 MIPS_ELF_STUB_SECTION_NAME (abfd),
7987 flags | SEC_CODE);
7988 if (s == NULL
7989 || !bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7990 return false;
7991 htab->sstubs = s;
7992
7993 if (!mips_elf_hash_table (info)->use_rld_obj_head
7994 && bfd_link_executable (info)
7995 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7996 {
7997 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7998 flags &~ (flagword) SEC_READONLY);
7999 if (s == NULL
8000 || !bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd)))
8001 return false;
8002 }
8003
8004 /* Create .MIPS.xhash section. */
8005 if (info->emit_gnu_hash)
8006 s = bfd_make_section_anyway_with_flags (abfd, ".MIPS.xhash",
8007 flags | SEC_READONLY);
8008
8009 /* On IRIX5, we adjust add some additional symbols and change the
8010 alignments of several sections. There is no ABI documentation
8011 indicating that this is necessary on IRIX6, nor any evidence that
8012 the linker takes such action. */
8013 if (IRIX_COMPAT (abfd) == ict_irix5)
8014 {
8015 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
8016 {
8017 bh = NULL;
8018 if (! (_bfd_generic_link_add_one_symbol
8019 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
8020 NULL, false, get_elf_backend_data (abfd)->collect, &bh)))
8021 return false;
8022
8023 h = (struct elf_link_hash_entry *) bh;
8024 h->mark = 1;
8025 h->non_elf = 0;
8026 h->def_regular = 1;
8027 h->type = STT_SECTION;
8028
8029 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8030 return false;
8031 }
8032
8033 /* We need to create a .compact_rel section. */
8034 if (SGI_COMPAT (abfd))
8035 {
8036 if (!mips_elf_create_compact_rel_section (abfd, info))
8037 return false;
8038 }
8039
8040 /* Change alignments of some sections. */
8041 s = bfd_get_linker_section (abfd, ".hash");
8042 if (s != NULL)
8043 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8044
8045 s = bfd_get_linker_section (abfd, ".dynsym");
8046 if (s != NULL)
8047 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8048
8049 s = bfd_get_linker_section (abfd, ".dynstr");
8050 if (s != NULL)
8051 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8052
8053 /* ??? */
8054 s = bfd_get_section_by_name (abfd, ".reginfo");
8055 if (s != NULL)
8056 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8057
8058 s = bfd_get_linker_section (abfd, ".dynamic");
8059 if (s != NULL)
8060 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8061 }
8062
8063 if (bfd_link_executable (info))
8064 {
8065 const char *name;
8066
8067 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
8068 bh = NULL;
8069 if (!(_bfd_generic_link_add_one_symbol
8070 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
8071 NULL, false, get_elf_backend_data (abfd)->collect, &bh)))
8072 return false;
8073
8074 h = (struct elf_link_hash_entry *) bh;
8075 h->non_elf = 0;
8076 h->def_regular = 1;
8077 h->type = STT_SECTION;
8078
8079 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8080 return false;
8081
8082 if (! mips_elf_hash_table (info)->use_rld_obj_head)
8083 {
8084 /* __rld_map is a four byte word located in the .data section
8085 and is filled in by the rtld to contain a pointer to
8086 the _r_debug structure. Its symbol value will be set in
8087 _bfd_mips_elf_finish_dynamic_symbol. */
8088 s = bfd_get_linker_section (abfd, ".rld_map");
8089 BFD_ASSERT (s != NULL);
8090
8091 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
8092 bh = NULL;
8093 if (!(_bfd_generic_link_add_one_symbol
8094 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, false,
8095 get_elf_backend_data (abfd)->collect, &bh)))
8096 return false;
8097
8098 h = (struct elf_link_hash_entry *) bh;
8099 h->non_elf = 0;
8100 h->def_regular = 1;
8101 h->type = STT_OBJECT;
8102
8103 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8104 return false;
8105 mips_elf_hash_table (info)->rld_symbol = h;
8106 }
8107 }
8108
8109 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
8110 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
8111 if (!_bfd_elf_create_dynamic_sections (abfd, info))
8112 return false;
8113
8114 /* Do the usual VxWorks handling. */
8115 if (htab->root.target_os == is_vxworks
8116 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
8117 return false;
8118
8119 return true;
8120 }
8121
8122 /* Return true if relocation REL against section SEC is a REL rather than
8123 RELA relocation. RELOCS is the first relocation in the section and
8124 ABFD is the bfd that contains SEC. */
8125
8126 static bool
mips_elf_rel_relocation_p(bfd * abfd,asection * sec,const Elf_Internal_Rela * relocs,const Elf_Internal_Rela * rel)8127 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
8128 const Elf_Internal_Rela *relocs,
8129 const Elf_Internal_Rela *rel)
8130 {
8131 Elf_Internal_Shdr *rel_hdr;
8132 const struct elf_backend_data *bed;
8133
8134 /* To determine which flavor of relocation this is, we depend on the
8135 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
8136 rel_hdr = elf_section_data (sec)->rel.hdr;
8137 if (rel_hdr == NULL)
8138 return false;
8139 bed = get_elf_backend_data (abfd);
8140 return ((size_t) (rel - relocs)
8141 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
8142 }
8143
8144 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
8145 HOWTO is the relocation's howto and CONTENTS points to the contents
8146 of the section that REL is against. */
8147
8148 static bfd_vma
mips_elf_read_rel_addend(bfd * abfd,const Elf_Internal_Rela * rel,reloc_howto_type * howto,bfd_byte * contents)8149 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
8150 reloc_howto_type *howto, bfd_byte *contents)
8151 {
8152 bfd_byte *location;
8153 unsigned int r_type;
8154 bfd_vma addend;
8155 bfd_vma bytes;
8156
8157 r_type = ELF_R_TYPE (abfd, rel->r_info);
8158 location = contents + rel->r_offset;
8159
8160 /* Get the addend, which is stored in the input file. */
8161 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, false, location);
8162 bytes = mips_elf_obtain_contents (howto, rel, abfd, contents);
8163 _bfd_mips_elf_reloc_shuffle (abfd, r_type, false, location);
8164
8165 addend = bytes & howto->src_mask;
8166
8167 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend
8168 accordingly. */
8169 if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c)
8170 addend <<= 1;
8171
8172 return addend;
8173 }
8174
8175 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
8176 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
8177 and update *ADDEND with the final addend. Return true on success
8178 or false if the LO16 could not be found. RELEND is the exclusive
8179 upper bound on the relocations for REL's section. */
8180
8181 static bool
mips_elf_add_lo16_rel_addend(bfd * abfd,const Elf_Internal_Rela * rel,const Elf_Internal_Rela * relend,bfd_byte * contents,bfd_vma * addend)8182 mips_elf_add_lo16_rel_addend (bfd *abfd,
8183 const Elf_Internal_Rela *rel,
8184 const Elf_Internal_Rela *relend,
8185 bfd_byte *contents, bfd_vma *addend)
8186 {
8187 unsigned int r_type, lo16_type;
8188 const Elf_Internal_Rela *lo16_relocation;
8189 reloc_howto_type *lo16_howto;
8190 bfd_vma l;
8191
8192 r_type = ELF_R_TYPE (abfd, rel->r_info);
8193 if (mips16_reloc_p (r_type))
8194 lo16_type = R_MIPS16_LO16;
8195 else if (micromips_reloc_p (r_type))
8196 lo16_type = R_MICROMIPS_LO16;
8197 else if (r_type == R_MIPS_PCHI16)
8198 lo16_type = R_MIPS_PCLO16;
8199 else
8200 lo16_type = R_MIPS_LO16;
8201
8202 /* The combined value is the sum of the HI16 addend, left-shifted by
8203 sixteen bits, and the LO16 addend, sign extended. (Usually, the
8204 code does a `lui' of the HI16 value, and then an `addiu' of the
8205 LO16 value.)
8206
8207 Scan ahead to find a matching LO16 relocation.
8208
8209 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
8210 be immediately following. However, for the IRIX6 ABI, the next
8211 relocation may be a composed relocation consisting of several
8212 relocations for the same address. In that case, the R_MIPS_LO16
8213 relocation may occur as one of these. We permit a similar
8214 extension in general, as that is useful for GCC.
8215
8216 In some cases GCC dead code elimination removes the LO16 but keeps
8217 the corresponding HI16. This is strictly speaking a violation of
8218 the ABI but not immediately harmful. */
8219 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
8220 if (lo16_relocation == NULL)
8221 return false;
8222
8223 /* Obtain the addend kept there. */
8224 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, false);
8225 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
8226
8227 l <<= lo16_howto->rightshift;
8228 l = _bfd_mips_elf_sign_extend (l, 16);
8229
8230 *addend <<= 16;
8231 *addend += l;
8232 return true;
8233 }
8234
8235 /* Try to read the contents of section SEC in bfd ABFD. Return true and
8236 store the contents in *CONTENTS on success. Assume that *CONTENTS
8237 already holds the contents if it is nonull on entry. */
8238
8239 static bool
mips_elf_get_section_contents(bfd * abfd,asection * sec,bfd_byte ** contents)8240 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
8241 {
8242 if (*contents)
8243 return true;
8244
8245 /* Get cached copy if it exists. */
8246 if (elf_section_data (sec)->this_hdr.contents != NULL)
8247 {
8248 *contents = elf_section_data (sec)->this_hdr.contents;
8249 return true;
8250 }
8251
8252 return bfd_malloc_and_get_section (abfd, sec, contents);
8253 }
8254
8255 /* Make a new PLT record to keep internal data. */
8256
8257 static struct plt_entry *
mips_elf_make_plt_record(bfd * abfd)8258 mips_elf_make_plt_record (bfd *abfd)
8259 {
8260 struct plt_entry *entry;
8261
8262 entry = bfd_zalloc (abfd, sizeof (*entry));
8263 if (entry == NULL)
8264 return NULL;
8265
8266 entry->stub_offset = MINUS_ONE;
8267 entry->mips_offset = MINUS_ONE;
8268 entry->comp_offset = MINUS_ONE;
8269 entry->gotplt_index = MINUS_ONE;
8270 return entry;
8271 }
8272
8273 /* Define the special `__gnu_absolute_zero' symbol. We only need this
8274 for PIC code, as otherwise there is no load-time relocation involved
8275 and local GOT entries whose value is zero at static link time will
8276 retain their value at load time. */
8277
8278 static bool
mips_elf_define_absolute_zero(bfd * abfd,struct bfd_link_info * info,struct mips_elf_link_hash_table * htab,unsigned int r_type)8279 mips_elf_define_absolute_zero (bfd *abfd, struct bfd_link_info *info,
8280 struct mips_elf_link_hash_table *htab,
8281 unsigned int r_type)
8282 {
8283 union
8284 {
8285 struct elf_link_hash_entry *eh;
8286 struct bfd_link_hash_entry *bh;
8287 }
8288 hzero;
8289
8290 BFD_ASSERT (!htab->use_absolute_zero);
8291 BFD_ASSERT (bfd_link_pic (info));
8292
8293 hzero.bh = NULL;
8294 if (!_bfd_generic_link_add_one_symbol (info, abfd, "__gnu_absolute_zero",
8295 BSF_GLOBAL, bfd_abs_section_ptr, 0,
8296 NULL, false, false, &hzero.bh))
8297 return false;
8298
8299 BFD_ASSERT (hzero.bh != NULL);
8300 hzero.eh->size = 0;
8301 hzero.eh->type = STT_NOTYPE;
8302 hzero.eh->other = STV_PROTECTED;
8303 hzero.eh->def_regular = 1;
8304 hzero.eh->non_elf = 0;
8305
8306 if (!mips_elf_record_global_got_symbol (hzero.eh, abfd, info, true, r_type))
8307 return false;
8308
8309 htab->use_absolute_zero = true;
8310
8311 return true;
8312 }
8313
8314 /* Look through the relocs for a section during the first phase, and
8315 allocate space in the global offset table and record the need for
8316 standard MIPS and compressed procedure linkage table entries. */
8317
8318 bool
_bfd_mips_elf_check_relocs(bfd * abfd,struct bfd_link_info * info,asection * sec,const Elf_Internal_Rela * relocs)8319 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
8320 asection *sec, const Elf_Internal_Rela *relocs)
8321 {
8322 const char *name;
8323 bfd *dynobj;
8324 Elf_Internal_Shdr *symtab_hdr;
8325 struct elf_link_hash_entry **sym_hashes;
8326 size_t extsymoff;
8327 const Elf_Internal_Rela *rel;
8328 const Elf_Internal_Rela *rel_end;
8329 asection *sreloc;
8330 const struct elf_backend_data *bed;
8331 struct mips_elf_link_hash_table *htab;
8332 bfd_byte *contents;
8333 bfd_vma addend;
8334 reloc_howto_type *howto;
8335
8336 if (bfd_link_relocatable (info))
8337 return true;
8338
8339 htab = mips_elf_hash_table (info);
8340 BFD_ASSERT (htab != NULL);
8341
8342 dynobj = elf_hash_table (info)->dynobj;
8343 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8344 sym_hashes = elf_sym_hashes (abfd);
8345 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8346
8347 bed = get_elf_backend_data (abfd);
8348 rel_end = relocs + sec->reloc_count;
8349
8350 /* Check for the mips16 stub sections. */
8351
8352 name = bfd_section_name (sec);
8353 if (FN_STUB_P (name))
8354 {
8355 unsigned long r_symndx;
8356
8357 /* Look at the relocation information to figure out which symbol
8358 this is for. */
8359
8360 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8361 if (r_symndx == 0)
8362 {
8363 _bfd_error_handler
8364 /* xgettext:c-format */
8365 (_("%pB: warning: cannot determine the target function for"
8366 " stub section `%s'"),
8367 abfd, name);
8368 bfd_set_error (bfd_error_bad_value);
8369 return false;
8370 }
8371
8372 if (r_symndx < extsymoff
8373 || sym_hashes[r_symndx - extsymoff] == NULL)
8374 {
8375 asection *o;
8376
8377 /* This stub is for a local symbol. This stub will only be
8378 needed if there is some relocation in this BFD, other
8379 than a 16 bit function call, which refers to this symbol. */
8380 for (o = abfd->sections; o != NULL; o = o->next)
8381 {
8382 Elf_Internal_Rela *sec_relocs;
8383 const Elf_Internal_Rela *r, *rend;
8384
8385 /* We can ignore stub sections when looking for relocs. */
8386 if ((o->flags & SEC_RELOC) == 0
8387 || o->reloc_count == 0
8388 || section_allows_mips16_refs_p (o))
8389 continue;
8390
8391 sec_relocs
8392 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8393 info->keep_memory);
8394 if (sec_relocs == NULL)
8395 return false;
8396
8397 rend = sec_relocs + o->reloc_count;
8398 for (r = sec_relocs; r < rend; r++)
8399 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8400 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
8401 break;
8402
8403 if (elf_section_data (o)->relocs != sec_relocs)
8404 free (sec_relocs);
8405
8406 if (r < rend)
8407 break;
8408 }
8409
8410 if (o == NULL)
8411 {
8412 /* There is no non-call reloc for this stub, so we do
8413 not need it. Since this function is called before
8414 the linker maps input sections to output sections, we
8415 can easily discard it by setting the SEC_EXCLUDE
8416 flag. */
8417 sec->flags |= SEC_EXCLUDE;
8418 return true;
8419 }
8420
8421 /* Record this stub in an array of local symbol stubs for
8422 this BFD. */
8423 if (mips_elf_tdata (abfd)->local_stubs == NULL)
8424 {
8425 unsigned long symcount;
8426 asection **n;
8427 bfd_size_type amt;
8428
8429 if (elf_bad_symtab (abfd))
8430 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8431 else
8432 symcount = symtab_hdr->sh_info;
8433 amt = symcount * sizeof (asection *);
8434 n = bfd_zalloc (abfd, amt);
8435 if (n == NULL)
8436 return false;
8437 mips_elf_tdata (abfd)->local_stubs = n;
8438 }
8439
8440 sec->flags |= SEC_KEEP;
8441 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
8442
8443 /* We don't need to set mips16_stubs_seen in this case.
8444 That flag is used to see whether we need to look through
8445 the global symbol table for stubs. We don't need to set
8446 it here, because we just have a local stub. */
8447 }
8448 else
8449 {
8450 struct mips_elf_link_hash_entry *h;
8451
8452 h = ((struct mips_elf_link_hash_entry *)
8453 sym_hashes[r_symndx - extsymoff]);
8454
8455 while (h->root.root.type == bfd_link_hash_indirect
8456 || h->root.root.type == bfd_link_hash_warning)
8457 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8458
8459 /* H is the symbol this stub is for. */
8460
8461 /* If we already have an appropriate stub for this function, we
8462 don't need another one, so we can discard this one. Since
8463 this function is called before the linker maps input sections
8464 to output sections, we can easily discard it by setting the
8465 SEC_EXCLUDE flag. */
8466 if (h->fn_stub != NULL)
8467 {
8468 sec->flags |= SEC_EXCLUDE;
8469 return true;
8470 }
8471
8472 sec->flags |= SEC_KEEP;
8473 h->fn_stub = sec;
8474 mips_elf_hash_table (info)->mips16_stubs_seen = true;
8475 }
8476 }
8477 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
8478 {
8479 unsigned long r_symndx;
8480 struct mips_elf_link_hash_entry *h;
8481 asection **loc;
8482
8483 /* Look at the relocation information to figure out which symbol
8484 this is for. */
8485
8486 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8487 if (r_symndx == 0)
8488 {
8489 _bfd_error_handler
8490 /* xgettext:c-format */
8491 (_("%pB: warning: cannot determine the target function for"
8492 " stub section `%s'"),
8493 abfd, name);
8494 bfd_set_error (bfd_error_bad_value);
8495 return false;
8496 }
8497
8498 if (r_symndx < extsymoff
8499 || sym_hashes[r_symndx - extsymoff] == NULL)
8500 {
8501 asection *o;
8502
8503 /* This stub is for a local symbol. This stub will only be
8504 needed if there is some relocation (R_MIPS16_26) in this BFD
8505 that refers to this symbol. */
8506 for (o = abfd->sections; o != NULL; o = o->next)
8507 {
8508 Elf_Internal_Rela *sec_relocs;
8509 const Elf_Internal_Rela *r, *rend;
8510
8511 /* We can ignore stub sections when looking for relocs. */
8512 if ((o->flags & SEC_RELOC) == 0
8513 || o->reloc_count == 0
8514 || section_allows_mips16_refs_p (o))
8515 continue;
8516
8517 sec_relocs
8518 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8519 info->keep_memory);
8520 if (sec_relocs == NULL)
8521 return false;
8522
8523 rend = sec_relocs + o->reloc_count;
8524 for (r = sec_relocs; r < rend; r++)
8525 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8526 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8527 break;
8528
8529 if (elf_section_data (o)->relocs != sec_relocs)
8530 free (sec_relocs);
8531
8532 if (r < rend)
8533 break;
8534 }
8535
8536 if (o == NULL)
8537 {
8538 /* There is no non-call reloc for this stub, so we do
8539 not need it. Since this function is called before
8540 the linker maps input sections to output sections, we
8541 can easily discard it by setting the SEC_EXCLUDE
8542 flag. */
8543 sec->flags |= SEC_EXCLUDE;
8544 return true;
8545 }
8546
8547 /* Record this stub in an array of local symbol call_stubs for
8548 this BFD. */
8549 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
8550 {
8551 unsigned long symcount;
8552 asection **n;
8553 bfd_size_type amt;
8554
8555 if (elf_bad_symtab (abfd))
8556 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8557 else
8558 symcount = symtab_hdr->sh_info;
8559 amt = symcount * sizeof (asection *);
8560 n = bfd_zalloc (abfd, amt);
8561 if (n == NULL)
8562 return false;
8563 mips_elf_tdata (abfd)->local_call_stubs = n;
8564 }
8565
8566 sec->flags |= SEC_KEEP;
8567 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
8568
8569 /* We don't need to set mips16_stubs_seen in this case.
8570 That flag is used to see whether we need to look through
8571 the global symbol table for stubs. We don't need to set
8572 it here, because we just have a local stub. */
8573 }
8574 else
8575 {
8576 h = ((struct mips_elf_link_hash_entry *)
8577 sym_hashes[r_symndx - extsymoff]);
8578
8579 /* H is the symbol this stub is for. */
8580
8581 if (CALL_FP_STUB_P (name))
8582 loc = &h->call_fp_stub;
8583 else
8584 loc = &h->call_stub;
8585
8586 /* If we already have an appropriate stub for this function, we
8587 don't need another one, so we can discard this one. Since
8588 this function is called before the linker maps input sections
8589 to output sections, we can easily discard it by setting the
8590 SEC_EXCLUDE flag. */
8591 if (*loc != NULL)
8592 {
8593 sec->flags |= SEC_EXCLUDE;
8594 return true;
8595 }
8596
8597 sec->flags |= SEC_KEEP;
8598 *loc = sec;
8599 mips_elf_hash_table (info)->mips16_stubs_seen = true;
8600 }
8601 }
8602
8603 sreloc = NULL;
8604 contents = NULL;
8605 for (rel = relocs; rel < rel_end; ++rel)
8606 {
8607 unsigned long r_symndx;
8608 unsigned int r_type;
8609 struct elf_link_hash_entry *h;
8610 bool can_make_dynamic_p;
8611 bool call_reloc_p;
8612 bool constrain_symbol_p;
8613
8614 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8615 r_type = ELF_R_TYPE (abfd, rel->r_info);
8616
8617 if (r_symndx < extsymoff)
8618 h = NULL;
8619 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8620 {
8621 _bfd_error_handler
8622 /* xgettext:c-format */
8623 (_("%pB: malformed reloc detected for section %s"),
8624 abfd, name);
8625 bfd_set_error (bfd_error_bad_value);
8626 return false;
8627 }
8628 else
8629 {
8630 h = sym_hashes[r_symndx - extsymoff];
8631 if (h != NULL)
8632 {
8633 while (h->root.type == bfd_link_hash_indirect
8634 || h->root.type == bfd_link_hash_warning)
8635 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8636 }
8637 }
8638
8639 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8640 relocation into a dynamic one. */
8641 can_make_dynamic_p = false;
8642
8643 /* Set CALL_RELOC_P to true if the relocation is for a call,
8644 and if pointer equality therefore doesn't matter. */
8645 call_reloc_p = false;
8646
8647 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8648 into account when deciding how to define the symbol. */
8649 constrain_symbol_p = true;
8650
8651 switch (r_type)
8652 {
8653 case R_MIPS_CALL16:
8654 case R_MIPS_CALL_HI16:
8655 case R_MIPS_CALL_LO16:
8656 case R_MIPS16_CALL16:
8657 case R_MICROMIPS_CALL16:
8658 case R_MICROMIPS_CALL_HI16:
8659 case R_MICROMIPS_CALL_LO16:
8660 call_reloc_p = true;
8661 /* Fall through. */
8662
8663 case R_MIPS_GOT16:
8664 case R_MIPS_GOT_LO16:
8665 case R_MIPS_GOT_PAGE:
8666 case R_MIPS_GOT_DISP:
8667 case R_MIPS16_GOT16:
8668 case R_MICROMIPS_GOT16:
8669 case R_MICROMIPS_GOT_LO16:
8670 case R_MICROMIPS_GOT_PAGE:
8671 case R_MICROMIPS_GOT_DISP:
8672 /* If we have a symbol that will resolve to zero at static link
8673 time and it is used by a GOT relocation applied to code we
8674 cannot relax to an immediate zero load, then we will be using
8675 the special `__gnu_absolute_zero' symbol whose value is zero
8676 at dynamic load time. We ignore HI16-type GOT relocations at
8677 this stage, because their handling will depend entirely on
8678 the corresponding LO16-type GOT relocation. */
8679 if (!call_hi16_reloc_p (r_type)
8680 && h != NULL
8681 && bfd_link_pic (info)
8682 && !htab->use_absolute_zero
8683 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8684 {
8685 bool rel_reloc;
8686
8687 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8688 return false;
8689
8690 rel_reloc = mips_elf_rel_relocation_p (abfd, sec, relocs, rel);
8691 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, !rel_reloc);
8692
8693 if (!mips_elf_nullify_got_load (abfd, contents, rel, howto,
8694 false))
8695 if (!mips_elf_define_absolute_zero (abfd, info, htab, r_type))
8696 return false;
8697 }
8698
8699 /* Fall through. */
8700 case R_MIPS_GOT_HI16:
8701 case R_MIPS_GOT_OFST:
8702 case R_MIPS_TLS_GOTTPREL:
8703 case R_MIPS_TLS_GD:
8704 case R_MIPS_TLS_LDM:
8705 case R_MIPS16_TLS_GOTTPREL:
8706 case R_MIPS16_TLS_GD:
8707 case R_MIPS16_TLS_LDM:
8708 case R_MICROMIPS_GOT_HI16:
8709 case R_MICROMIPS_GOT_OFST:
8710 case R_MICROMIPS_TLS_GOTTPREL:
8711 case R_MICROMIPS_TLS_GD:
8712 case R_MICROMIPS_TLS_LDM:
8713 if (dynobj == NULL)
8714 elf_hash_table (info)->dynobj = dynobj = abfd;
8715 if (!mips_elf_create_got_section (dynobj, info))
8716 return false;
8717 if (htab->root.target_os == is_vxworks
8718 && !bfd_link_pic (info))
8719 {
8720 _bfd_error_handler
8721 /* xgettext:c-format */
8722 (_("%pB: GOT reloc at %#" PRIx64 " not expected in executables"),
8723 abfd, (uint64_t) rel->r_offset);
8724 bfd_set_error (bfd_error_bad_value);
8725 return false;
8726 }
8727 can_make_dynamic_p = true;
8728 break;
8729
8730 case R_MIPS_NONE:
8731 case R_MIPS_JALR:
8732 case R_MICROMIPS_JALR:
8733 /* These relocations have empty fields and are purely there to
8734 provide link information. The symbol value doesn't matter. */
8735 constrain_symbol_p = false;
8736 break;
8737
8738 case R_MIPS_GPREL16:
8739 case R_MIPS_GPREL32:
8740 case R_MIPS16_GPREL:
8741 case R_MICROMIPS_GPREL16:
8742 /* GP-relative relocations always resolve to a definition in a
8743 regular input file, ignoring the one-definition rule. This is
8744 important for the GP setup sequence in NewABI code, which
8745 always resolves to a local function even if other relocations
8746 against the symbol wouldn't. */
8747 constrain_symbol_p = false;
8748 break;
8749
8750 case R_MIPS_32:
8751 case R_MIPS_REL32:
8752 case R_MIPS_64:
8753 /* In VxWorks executables, references to external symbols
8754 must be handled using copy relocs or PLT entries; it is not
8755 possible to convert this relocation into a dynamic one.
8756
8757 For executables that use PLTs and copy-relocs, we have a
8758 choice between converting the relocation into a dynamic
8759 one or using copy relocations or PLT entries. It is
8760 usually better to do the former, unless the relocation is
8761 against a read-only section. */
8762 if ((bfd_link_pic (info)
8763 || (h != NULL
8764 && htab->root.target_os != is_vxworks
8765 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8766 && !(!info->nocopyreloc
8767 && !PIC_OBJECT_P (abfd)
8768 && MIPS_ELF_READONLY_SECTION (sec))))
8769 && (sec->flags & SEC_ALLOC) != 0)
8770 {
8771 can_make_dynamic_p = true;
8772 if (dynobj == NULL)
8773 elf_hash_table (info)->dynobj = dynobj = abfd;
8774 }
8775 break;
8776
8777 case R_MIPS_26:
8778 case R_MIPS_PC16:
8779 case R_MIPS_PC21_S2:
8780 case R_MIPS_PC26_S2:
8781 case R_MIPS16_26:
8782 case R_MIPS16_PC16_S1:
8783 case R_MICROMIPS_26_S1:
8784 case R_MICROMIPS_PC7_S1:
8785 case R_MICROMIPS_PC10_S1:
8786 case R_MICROMIPS_PC16_S1:
8787 case R_MICROMIPS_PC23_S2:
8788 call_reloc_p = true;
8789 break;
8790 }
8791
8792 if (h)
8793 {
8794 if (constrain_symbol_p)
8795 {
8796 if (!can_make_dynamic_p)
8797 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8798
8799 if (!call_reloc_p)
8800 h->pointer_equality_needed = 1;
8801
8802 /* We must not create a stub for a symbol that has
8803 relocations related to taking the function's address.
8804 This doesn't apply to VxWorks, where CALL relocs refer
8805 to a .got.plt entry instead of a normal .got entry. */
8806 if (htab->root.target_os != is_vxworks
8807 && (!can_make_dynamic_p || !call_reloc_p))
8808 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = true;
8809 }
8810
8811 /* Relocations against the special VxWorks __GOTT_BASE__ and
8812 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8813 room for them in .rela.dyn. */
8814 if (is_gott_symbol (info, h))
8815 {
8816 if (sreloc == NULL)
8817 {
8818 sreloc = mips_elf_rel_dyn_section (info, true);
8819 if (sreloc == NULL)
8820 return false;
8821 }
8822 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8823 if (MIPS_ELF_READONLY_SECTION (sec))
8824 /* We tell the dynamic linker that there are
8825 relocations against the text segment. */
8826 info->flags |= DF_TEXTREL;
8827 }
8828 }
8829 else if (call_lo16_reloc_p (r_type)
8830 || got_lo16_reloc_p (r_type)
8831 || got_disp_reloc_p (r_type)
8832 || (got16_reloc_p (r_type)
8833 && htab->root.target_os == is_vxworks))
8834 {
8835 /* We may need a local GOT entry for this relocation. We
8836 don't count R_MIPS_GOT_PAGE because we can estimate the
8837 maximum number of pages needed by looking at the size of
8838 the segment. Similar comments apply to R_MIPS*_GOT16 and
8839 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8840 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8841 R_MIPS_CALL_HI16 because these are always followed by an
8842 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8843 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8844 rel->r_addend, info, r_type))
8845 return false;
8846 }
8847
8848 if (h != NULL
8849 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8850 ELF_ST_IS_MIPS16 (h->other)))
8851 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = true;
8852
8853 switch (r_type)
8854 {
8855 case R_MIPS_CALL16:
8856 case R_MIPS16_CALL16:
8857 case R_MICROMIPS_CALL16:
8858 if (h == NULL)
8859 {
8860 _bfd_error_handler
8861 /* xgettext:c-format */
8862 (_("%pB: CALL16 reloc at %#" PRIx64 " not against global symbol"),
8863 abfd, (uint64_t) rel->r_offset);
8864 bfd_set_error (bfd_error_bad_value);
8865 return false;
8866 }
8867 /* Fall through. */
8868
8869 case R_MIPS_CALL_HI16:
8870 case R_MIPS_CALL_LO16:
8871 case R_MICROMIPS_CALL_HI16:
8872 case R_MICROMIPS_CALL_LO16:
8873 if (h != NULL)
8874 {
8875 /* Make sure there is room in the regular GOT to hold the
8876 function's address. We may eliminate it in favour of
8877 a .got.plt entry later; see mips_elf_count_got_symbols. */
8878 if (!mips_elf_record_global_got_symbol (h, abfd, info, true,
8879 r_type))
8880 return false;
8881
8882 /* We need a stub, not a plt entry for the undefined
8883 function. But we record it as if it needs plt. See
8884 _bfd_elf_adjust_dynamic_symbol. */
8885 h->needs_plt = 1;
8886 h->type = STT_FUNC;
8887 }
8888 break;
8889
8890 case R_MIPS_GOT_PAGE:
8891 case R_MICROMIPS_GOT_PAGE:
8892 case R_MIPS16_GOT16:
8893 case R_MIPS_GOT16:
8894 case R_MIPS_GOT_HI16:
8895 case R_MIPS_GOT_LO16:
8896 case R_MICROMIPS_GOT16:
8897 case R_MICROMIPS_GOT_HI16:
8898 case R_MICROMIPS_GOT_LO16:
8899 if (!h || got_page_reloc_p (r_type))
8900 {
8901 /* This relocation needs (or may need, if h != NULL) a
8902 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8903 know for sure until we know whether the symbol is
8904 preemptible. */
8905 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8906 {
8907 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8908 return false;
8909 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, false);
8910 addend = mips_elf_read_rel_addend (abfd, rel,
8911 howto, contents);
8912 if (got16_reloc_p (r_type))
8913 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8914 contents, &addend);
8915 else
8916 addend <<= howto->rightshift;
8917 }
8918 else
8919 addend = rel->r_addend;
8920 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8921 h, addend))
8922 return false;
8923
8924 if (h)
8925 {
8926 struct mips_elf_link_hash_entry *hmips =
8927 (struct mips_elf_link_hash_entry *) h;
8928
8929 /* This symbol is definitely not overridable. */
8930 if (hmips->root.def_regular
8931 && ! (bfd_link_pic (info) && ! info->symbolic
8932 && ! hmips->root.forced_local))
8933 h = NULL;
8934 }
8935 }
8936 /* If this is a global, overridable symbol, GOT_PAGE will
8937 decay to GOT_DISP, so we'll need a GOT entry for it. */
8938 /* Fall through. */
8939
8940 case R_MIPS_GOT_DISP:
8941 case R_MICROMIPS_GOT_DISP:
8942 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8943 false, r_type))
8944 return false;
8945 break;
8946
8947 case R_MIPS_TLS_GOTTPREL:
8948 case R_MIPS16_TLS_GOTTPREL:
8949 case R_MICROMIPS_TLS_GOTTPREL:
8950 if (bfd_link_pic (info))
8951 info->flags |= DF_STATIC_TLS;
8952 /* Fall through */
8953
8954 case R_MIPS_TLS_LDM:
8955 case R_MIPS16_TLS_LDM:
8956 case R_MICROMIPS_TLS_LDM:
8957 if (tls_ldm_reloc_p (r_type))
8958 {
8959 r_symndx = STN_UNDEF;
8960 h = NULL;
8961 }
8962 /* Fall through */
8963
8964 case R_MIPS_TLS_GD:
8965 case R_MIPS16_TLS_GD:
8966 case R_MICROMIPS_TLS_GD:
8967 /* This symbol requires a global offset table entry, or two
8968 for TLS GD relocations. */
8969 if (h != NULL)
8970 {
8971 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8972 false, r_type))
8973 return false;
8974 }
8975 else
8976 {
8977 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8978 rel->r_addend,
8979 info, r_type))
8980 return false;
8981 }
8982 break;
8983
8984 case R_MIPS_32:
8985 case R_MIPS_REL32:
8986 case R_MIPS_64:
8987 /* In VxWorks executables, references to external symbols
8988 are handled using copy relocs or PLT stubs, so there's
8989 no need to add a .rela.dyn entry for this relocation. */
8990 if (can_make_dynamic_p)
8991 {
8992 if (sreloc == NULL)
8993 {
8994 sreloc = mips_elf_rel_dyn_section (info, true);
8995 if (sreloc == NULL)
8996 return false;
8997 }
8998 if (bfd_link_pic (info) && h == NULL)
8999 {
9000 /* When creating a shared object, we must copy these
9001 reloc types into the output file as R_MIPS_REL32
9002 relocs. Make room for this reloc in .rel(a).dyn. */
9003 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9004 /* In the N32 and 64-bit ABIs there may be multiple
9005 consecutive relocations for the same offset. If we have
9006 a R_MIPS_GPREL32 followed by a R_MIPS_64 then that
9007 relocation is complete and needs no futher adjustment.
9008
9009 Silently ignore absolute relocations in the .eh_frame
9010 section, they will be dropped latter.
9011 */
9012 if ((rel == relocs
9013 || rel[-1].r_offset != rel->r_offset
9014 || r_type != R_MIPS_64
9015 || ELF_R_TYPE(abfd, rel[-1].r_info) != R_MIPS_GPREL32)
9016 && MIPS_ELF_READONLY_SECTION (sec)
9017 && !((r_type == R_MIPS_32 || r_type == R_MIPS_64)
9018 && strcmp(sec->name, ".eh_frame") == 0))
9019 {
9020 /* We tell the dynamic linker that there are
9021 relocations against the text segment. */
9022 info->flags |= DF_TEXTREL;
9023 info->callbacks->warning
9024 (info,
9025 _("relocation emitted against readonly section"),
9026 NULL, abfd, sec, rel->r_offset);
9027 }
9028 }
9029 else
9030 {
9031 struct mips_elf_link_hash_entry *hmips;
9032
9033 /* For a shared object, we must copy this relocation
9034 unless the symbol turns out to be undefined and
9035 weak with non-default visibility, in which case
9036 it will be left as zero.
9037
9038 We could elide R_MIPS_REL32 for locally binding symbols
9039 in shared libraries, but do not yet do so.
9040
9041 For an executable, we only need to copy this
9042 reloc if the symbol is defined in a dynamic
9043 object. */
9044 hmips = (struct mips_elf_link_hash_entry *) h;
9045 ++hmips->possibly_dynamic_relocs;
9046 if (MIPS_ELF_READONLY_SECTION (sec))
9047 /* We need it to tell the dynamic linker if there
9048 are relocations against the text segment. */
9049 hmips->readonly_reloc = true;
9050 }
9051 }
9052
9053 if (SGI_COMPAT (abfd))
9054 mips_elf_hash_table (info)->compact_rel_size +=
9055 sizeof (Elf32_External_crinfo);
9056 break;
9057
9058 case R_MIPS_26:
9059 case R_MIPS_GPREL16:
9060 case R_MIPS_LITERAL:
9061 case R_MIPS_GPREL32:
9062 case R_MICROMIPS_26_S1:
9063 case R_MICROMIPS_GPREL16:
9064 case R_MICROMIPS_LITERAL:
9065 case R_MICROMIPS_GPREL7_S2:
9066 if (SGI_COMPAT (abfd))
9067 mips_elf_hash_table (info)->compact_rel_size +=
9068 sizeof (Elf32_External_crinfo);
9069 break;
9070
9071 /* This relocation describes the C++ object vtable hierarchy.
9072 Reconstruct it for later use during GC. */
9073 case R_MIPS_GNU_VTINHERIT:
9074 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
9075 return false;
9076 break;
9077
9078 /* This relocation describes which C++ vtable entries are actually
9079 used. Record for later use during GC. */
9080 case R_MIPS_GNU_VTENTRY:
9081 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
9082 return false;
9083 break;
9084
9085 default:
9086 break;
9087 }
9088
9089 /* Record the need for a PLT entry. At this point we don't know
9090 yet if we are going to create a PLT in the first place, but
9091 we only record whether the relocation requires a standard MIPS
9092 or a compressed code entry anyway. If we don't make a PLT after
9093 all, then we'll just ignore these arrangements. Likewise if
9094 a PLT entry is not created because the symbol is satisfied
9095 locally. */
9096 if (h != NULL
9097 && (branch_reloc_p (r_type)
9098 || mips16_branch_reloc_p (r_type)
9099 || micromips_branch_reloc_p (r_type))
9100 && !SYMBOL_CALLS_LOCAL (info, h))
9101 {
9102 if (h->plt.plist == NULL)
9103 h->plt.plist = mips_elf_make_plt_record (abfd);
9104 if (h->plt.plist == NULL)
9105 return false;
9106
9107 if (branch_reloc_p (r_type))
9108 h->plt.plist->need_mips = true;
9109 else
9110 h->plt.plist->need_comp = true;
9111 }
9112
9113 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
9114 if there is one. We only need to handle global symbols here;
9115 we decide whether to keep or delete stubs for local symbols
9116 when processing the stub's relocations. */
9117 if (h != NULL
9118 && !mips16_call_reloc_p (r_type)
9119 && !section_allows_mips16_refs_p (sec))
9120 {
9121 struct mips_elf_link_hash_entry *mh;
9122
9123 mh = (struct mips_elf_link_hash_entry *) h;
9124 mh->need_fn_stub = true;
9125 }
9126
9127 /* Refuse some position-dependent relocations when creating a
9128 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
9129 not PIC, but we can create dynamic relocations and the result
9130 will be fine. Also do not refuse R_MIPS_LO16, which can be
9131 combined with R_MIPS_GOT16. */
9132 if (bfd_link_pic (info))
9133 {
9134 switch (r_type)
9135 {
9136 case R_MIPS_TLS_TPREL_HI16:
9137 case R_MIPS16_TLS_TPREL_HI16:
9138 case R_MICROMIPS_TLS_TPREL_HI16:
9139 case R_MIPS_TLS_TPREL_LO16:
9140 case R_MIPS16_TLS_TPREL_LO16:
9141 case R_MICROMIPS_TLS_TPREL_LO16:
9142 /* These are okay in PIE, but not in a shared library. */
9143 if (bfd_link_executable (info))
9144 break;
9145
9146 /* FALLTHROUGH */
9147
9148 case R_MIPS16_HI16:
9149 case R_MIPS_HI16:
9150 case R_MIPS_HIGHER:
9151 case R_MIPS_HIGHEST:
9152 case R_MICROMIPS_HI16:
9153 case R_MICROMIPS_HIGHER:
9154 case R_MICROMIPS_HIGHEST:
9155 /* Don't refuse a high part relocation if it's against
9156 no symbol (e.g. part of a compound relocation). */
9157 if (r_symndx == STN_UNDEF)
9158 break;
9159
9160 /* Likewise an absolute symbol. */
9161 if (h != NULL && bfd_is_abs_symbol (&h->root))
9162 break;
9163
9164 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
9165 and has a special meaning. */
9166 if (!NEWABI_P (abfd) && h != NULL
9167 && strcmp (h->root.root.string, "_gp_disp") == 0)
9168 break;
9169
9170 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
9171 if (is_gott_symbol (info, h))
9172 break;
9173
9174 /* FALLTHROUGH */
9175
9176 case R_MIPS16_26:
9177 case R_MIPS_26:
9178 case R_MICROMIPS_26_S1:
9179 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, NEWABI_P (abfd));
9180 /* An error for unsupported relocations is raised as part
9181 of the above search, so we can skip the following. */
9182 if (howto != NULL)
9183 info->callbacks->einfo
9184 /* xgettext:c-format */
9185 (_("%X%H: relocation %s against `%s' cannot be used"
9186 " when making a shared object; recompile with -fPIC\n"),
9187 abfd, sec, rel->r_offset, howto->name,
9188 (h) ? h->root.root.string : "a local symbol");
9189 break;
9190 default:
9191 break;
9192 }
9193 }
9194 }
9195
9196 return true;
9197 }
9198
9199 /* Allocate space for global sym dynamic relocs. */
9200
9201 static bool
allocate_dynrelocs(struct elf_link_hash_entry * h,void * inf)9202 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
9203 {
9204 struct bfd_link_info *info = inf;
9205 bfd *dynobj;
9206 struct mips_elf_link_hash_entry *hmips;
9207 struct mips_elf_link_hash_table *htab;
9208
9209 htab = mips_elf_hash_table (info);
9210 BFD_ASSERT (htab != NULL);
9211
9212 dynobj = elf_hash_table (info)->dynobj;
9213 hmips = (struct mips_elf_link_hash_entry *) h;
9214
9215 /* VxWorks executables are handled elsewhere; we only need to
9216 allocate relocations in shared objects. */
9217 if (htab->root.target_os == is_vxworks && !bfd_link_pic (info))
9218 return true;
9219
9220 /* Ignore indirect symbols. All relocations against such symbols
9221 will be redirected to the target symbol. */
9222 if (h->root.type == bfd_link_hash_indirect)
9223 return true;
9224
9225 /* If this symbol is defined in a dynamic object, or we are creating
9226 a shared library, we will need to copy any R_MIPS_32 or
9227 R_MIPS_REL32 relocs against it into the output file. */
9228 if (! bfd_link_relocatable (info)
9229 && hmips->possibly_dynamic_relocs != 0
9230 && (h->root.type == bfd_link_hash_defweak
9231 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
9232 || bfd_link_pic (info)))
9233 {
9234 bool do_copy = true;
9235
9236 if (h->root.type == bfd_link_hash_undefweak)
9237 {
9238 /* Do not copy relocations for undefined weak symbols that
9239 we are not going to export. */
9240 if (UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
9241 do_copy = false;
9242
9243 /* Make sure undefined weak symbols are output as a dynamic
9244 symbol in PIEs. */
9245 else if (h->dynindx == -1 && !h->forced_local)
9246 {
9247 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9248 return false;
9249 }
9250 }
9251
9252 if (do_copy)
9253 {
9254 /* Even though we don't directly need a GOT entry for this symbol,
9255 the SVR4 psABI requires it to have a dynamic symbol table
9256 index greater that DT_MIPS_GOTSYM if there are dynamic
9257 relocations against it.
9258
9259 VxWorks does not enforce the same mapping between the GOT
9260 and the symbol table, so the same requirement does not
9261 apply there. */
9262 if (htab->root.target_os != is_vxworks)
9263 {
9264 if (hmips->global_got_area > GGA_RELOC_ONLY)
9265 hmips->global_got_area = GGA_RELOC_ONLY;
9266 hmips->got_only_for_calls = false;
9267 }
9268
9269 mips_elf_allocate_dynamic_relocations
9270 (dynobj, info, hmips->possibly_dynamic_relocs);
9271 if (hmips->readonly_reloc)
9272 /* We tell the dynamic linker that there are relocations
9273 against the text segment. */
9274 info->flags |= DF_TEXTREL;
9275 }
9276 }
9277
9278 return true;
9279 }
9280
9281 /* Adjust a symbol defined by a dynamic object and referenced by a
9282 regular object. The current definition is in some section of the
9283 dynamic object, but we're not including those sections. We have to
9284 change the definition to something the rest of the link can
9285 understand. */
9286
9287 bool
_bfd_mips_elf_adjust_dynamic_symbol(struct bfd_link_info * info,struct elf_link_hash_entry * h)9288 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
9289 struct elf_link_hash_entry *h)
9290 {
9291 bfd *dynobj;
9292 struct mips_elf_link_hash_entry *hmips;
9293 struct mips_elf_link_hash_table *htab;
9294 asection *s, *srel;
9295
9296 htab = mips_elf_hash_table (info);
9297 BFD_ASSERT (htab != NULL);
9298
9299 dynobj = elf_hash_table (info)->dynobj;
9300 hmips = (struct mips_elf_link_hash_entry *) h;
9301
9302 /* Make sure we know what is going on here. */
9303 if (dynobj == NULL
9304 || (! h->needs_plt
9305 && ! h->is_weakalias
9306 && (! h->def_dynamic
9307 || ! h->ref_regular
9308 || h->def_regular)))
9309 {
9310 if (h->type == STT_GNU_IFUNC)
9311 _bfd_error_handler (_("IFUNC symbol %s in dynamic symbol table - IFUNCS are not supported"),
9312 h->root.root.string);
9313 else
9314 _bfd_error_handler (_("non-dynamic symbol %s in dynamic symbol table"),
9315 h->root.root.string);
9316 return true;
9317 }
9318
9319 hmips = (struct mips_elf_link_hash_entry *) h;
9320
9321 /* If there are call relocations against an externally-defined symbol,
9322 see whether we can create a MIPS lazy-binding stub for it. We can
9323 only do this if all references to the function are through call
9324 relocations, and in that case, the traditional lazy-binding stubs
9325 are much more efficient than PLT entries.
9326
9327 Traditional stubs are only available on SVR4 psABI-based systems;
9328 VxWorks always uses PLTs instead. */
9329 if (htab->root.target_os != is_vxworks
9330 && h->needs_plt
9331 && !hmips->no_fn_stub)
9332 {
9333 if (! elf_hash_table (info)->dynamic_sections_created)
9334 return true;
9335
9336 /* If this symbol is not defined in a regular file, then set
9337 the symbol to the stub location. This is required to make
9338 function pointers compare as equal between the normal
9339 executable and the shared library. */
9340 if (!h->def_regular
9341 && !bfd_is_abs_section (htab->sstubs->output_section))
9342 {
9343 hmips->needs_lazy_stub = true;
9344 htab->lazy_stub_count++;
9345 return true;
9346 }
9347 }
9348 /* As above, VxWorks requires PLT entries for externally-defined
9349 functions that are only accessed through call relocations.
9350
9351 Both VxWorks and non-VxWorks targets also need PLT entries if there
9352 are static-only relocations against an externally-defined function.
9353 This can technically occur for shared libraries if there are
9354 branches to the symbol, although it is unlikely that this will be
9355 used in practice due to the short ranges involved. It can occur
9356 for any relative or absolute relocation in executables; in that
9357 case, the PLT entry becomes the function's canonical address. */
9358 else if (((h->needs_plt && !hmips->no_fn_stub)
9359 || (h->type == STT_FUNC && hmips->has_static_relocs))
9360 && htab->use_plts_and_copy_relocs
9361 && !SYMBOL_CALLS_LOCAL (info, h)
9362 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9363 && h->root.type == bfd_link_hash_undefweak))
9364 {
9365 bool micromips_p = MICROMIPS_P (info->output_bfd);
9366 bool newabi_p = NEWABI_P (info->output_bfd);
9367
9368 /* If this is the first symbol to need a PLT entry, then make some
9369 basic setup. Also work out PLT entry sizes. We'll need them
9370 for PLT offset calculations. */
9371 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
9372 {
9373 BFD_ASSERT (htab->root.sgotplt->size == 0);
9374 BFD_ASSERT (htab->plt_got_index == 0);
9375
9376 /* If we're using the PLT additions to the psABI, each PLT
9377 entry is 16 bytes and the PLT0 entry is 32 bytes.
9378 Encourage better cache usage by aligning. We do this
9379 lazily to avoid pessimizing traditional objects. */
9380 if (htab->root.target_os != is_vxworks
9381 && !bfd_set_section_alignment (htab->root.splt, 5))
9382 return false;
9383
9384 /* Make sure that .got.plt is word-aligned. We do this lazily
9385 for the same reason as above. */
9386 if (!bfd_set_section_alignment (htab->root.sgotplt,
9387 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9388 return false;
9389
9390 /* On non-VxWorks targets, the first two entries in .got.plt
9391 are reserved. */
9392 if (htab->root.target_os != is_vxworks)
9393 htab->plt_got_index
9394 += (get_elf_backend_data (dynobj)->got_header_size
9395 / MIPS_ELF_GOT_SIZE (dynobj));
9396
9397 /* On VxWorks, also allocate room for the header's
9398 .rela.plt.unloaded entries. */
9399 if (htab->root.target_os == is_vxworks
9400 && !bfd_link_pic (info))
9401 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
9402
9403 /* Now work out the sizes of individual PLT entries. */
9404 if (htab->root.target_os == is_vxworks
9405 && bfd_link_pic (info))
9406 htab->plt_mips_entry_size
9407 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9408 else if (htab->root.target_os == is_vxworks)
9409 htab->plt_mips_entry_size
9410 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9411 else if (newabi_p)
9412 htab->plt_mips_entry_size
9413 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9414 else if (!micromips_p)
9415 {
9416 htab->plt_mips_entry_size
9417 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9418 htab->plt_comp_entry_size
9419 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9420 }
9421 else if (htab->insn32)
9422 {
9423 htab->plt_mips_entry_size
9424 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9425 htab->plt_comp_entry_size
9426 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
9427 }
9428 else
9429 {
9430 htab->plt_mips_entry_size
9431 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9432 htab->plt_comp_entry_size
9433 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
9434 }
9435 }
9436
9437 if (h->plt.plist == NULL)
9438 h->plt.plist = mips_elf_make_plt_record (dynobj);
9439 if (h->plt.plist == NULL)
9440 return false;
9441
9442 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9443 n32 or n64, so always use a standard entry there.
9444
9445 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9446 all MIPS16 calls will go via that stub, and there is no benefit
9447 to having a MIPS16 entry. And in the case of call_stub a
9448 standard entry actually has to be used as the stub ends with a J
9449 instruction. */
9450 if (newabi_p
9451 || htab->root.target_os == is_vxworks
9452 || hmips->call_stub
9453 || hmips->call_fp_stub)
9454 {
9455 h->plt.plist->need_mips = true;
9456 h->plt.plist->need_comp = false;
9457 }
9458
9459 /* Otherwise, if there are no direct calls to the function, we
9460 have a free choice of whether to use standard or compressed
9461 entries. Prefer microMIPS entries if the object is known to
9462 contain microMIPS code, so that it becomes possible to create
9463 pure microMIPS binaries. Prefer standard entries otherwise,
9464 because MIPS16 ones are no smaller and are usually slower. */
9465 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9466 {
9467 if (micromips_p)
9468 h->plt.plist->need_comp = true;
9469 else
9470 h->plt.plist->need_mips = true;
9471 }
9472
9473 if (h->plt.plist->need_mips)
9474 {
9475 h->plt.plist->mips_offset = htab->plt_mips_offset;
9476 htab->plt_mips_offset += htab->plt_mips_entry_size;
9477 }
9478 if (h->plt.plist->need_comp)
9479 {
9480 h->plt.plist->comp_offset = htab->plt_comp_offset;
9481 htab->plt_comp_offset += htab->plt_comp_entry_size;
9482 }
9483
9484 /* Reserve the corresponding .got.plt entry now too. */
9485 h->plt.plist->gotplt_index = htab->plt_got_index++;
9486
9487 /* If the output file has no definition of the symbol, set the
9488 symbol's value to the address of the stub. */
9489 if (!bfd_link_pic (info) && !h->def_regular)
9490 hmips->use_plt_entry = true;
9491
9492 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
9493 htab->root.srelplt->size += (htab->root.target_os == is_vxworks
9494 ? MIPS_ELF_RELA_SIZE (dynobj)
9495 : MIPS_ELF_REL_SIZE (dynobj));
9496
9497 /* Make room for the .rela.plt.unloaded relocations. */
9498 if (htab->root.target_os == is_vxworks && !bfd_link_pic (info))
9499 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9500
9501 /* All relocations against this symbol that could have been made
9502 dynamic will now refer to the PLT entry instead. */
9503 hmips->possibly_dynamic_relocs = 0;
9504
9505 return true;
9506 }
9507
9508 /* If this is a weak symbol, and there is a real definition, the
9509 processor independent code will have arranged for us to see the
9510 real definition first, and we can just use the same value. */
9511 if (h->is_weakalias)
9512 {
9513 struct elf_link_hash_entry *def = weakdef (h);
9514 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
9515 h->root.u.def.section = def->root.u.def.section;
9516 h->root.u.def.value = def->root.u.def.value;
9517 return true;
9518 }
9519
9520 /* Otherwise, there is nothing further to do for symbols defined
9521 in regular objects. */
9522 if (h->def_regular)
9523 return true;
9524
9525 /* There's also nothing more to do if we'll convert all relocations
9526 against this symbol into dynamic relocations. */
9527 if (!hmips->has_static_relocs)
9528 return true;
9529
9530 /* We're now relying on copy relocations. Complain if we have
9531 some that we can't convert. */
9532 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
9533 {
9534 _bfd_error_handler (_("non-dynamic relocations refer to "
9535 "dynamic symbol %s"),
9536 h->root.root.string);
9537 bfd_set_error (bfd_error_bad_value);
9538 return false;
9539 }
9540
9541 /* We must allocate the symbol in our .dynbss section, which will
9542 become part of the .bss section of the executable. There will be
9543 an entry for this symbol in the .dynsym section. The dynamic
9544 object will contain position independent code, so all references
9545 from the dynamic object to this symbol will go through the global
9546 offset table. The dynamic linker will use the .dynsym entry to
9547 determine the address it must put in the global offset table, so
9548 both the dynamic object and the regular object will refer to the
9549 same memory location for the variable. */
9550
9551 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
9552 {
9553 s = htab->root.sdynrelro;
9554 srel = htab->root.sreldynrelro;
9555 }
9556 else
9557 {
9558 s = htab->root.sdynbss;
9559 srel = htab->root.srelbss;
9560 }
9561 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9562 {
9563 if (htab->root.target_os == is_vxworks)
9564 srel->size += sizeof (Elf32_External_Rela);
9565 else
9566 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9567 h->needs_copy = 1;
9568 }
9569
9570 /* All relocations against this symbol that could have been made
9571 dynamic will now refer to the local copy instead. */
9572 hmips->possibly_dynamic_relocs = 0;
9573
9574 return _bfd_elf_adjust_dynamic_copy (info, h, s);
9575 }
9576
9577 /* This function is called after all the input files have been read,
9578 and the input sections have been assigned to output sections. We
9579 check for any mips16 stub sections that we can discard. */
9580
9581 bool
_bfd_mips_elf_always_size_sections(bfd * output_bfd,struct bfd_link_info * info)9582 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
9583 struct bfd_link_info *info)
9584 {
9585 asection *sect;
9586 struct mips_elf_link_hash_table *htab;
9587 struct mips_htab_traverse_info hti;
9588
9589 htab = mips_elf_hash_table (info);
9590 BFD_ASSERT (htab != NULL);
9591
9592 /* The .reginfo section has a fixed size. */
9593 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9594 if (sect != NULL)
9595 {
9596 bfd_set_section_size (sect, sizeof (Elf32_External_RegInfo));
9597 sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9598 }
9599
9600 /* The .MIPS.abiflags section has a fixed size. */
9601 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9602 if (sect != NULL)
9603 {
9604 bfd_set_section_size (sect, sizeof (Elf_External_ABIFlags_v0));
9605 sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9606 }
9607
9608 hti.info = info;
9609 hti.output_bfd = output_bfd;
9610 hti.error = false;
9611 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9612 mips_elf_check_symbols, &hti);
9613 if (hti.error)
9614 return false;
9615
9616 return true;
9617 }
9618
9619 /* If the link uses a GOT, lay it out and work out its size. */
9620
9621 static bool
mips_elf_lay_out_got(bfd * output_bfd,struct bfd_link_info * info)9622 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9623 {
9624 bfd *dynobj;
9625 asection *s;
9626 struct mips_got_info *g;
9627 bfd_size_type loadable_size = 0;
9628 bfd_size_type page_gotno;
9629 bfd *ibfd;
9630 struct mips_elf_traverse_got_arg tga;
9631 struct mips_elf_link_hash_table *htab;
9632
9633 htab = mips_elf_hash_table (info);
9634 BFD_ASSERT (htab != NULL);
9635
9636 s = htab->root.sgot;
9637 if (s == NULL)
9638 return true;
9639
9640 dynobj = elf_hash_table (info)->dynobj;
9641 g = htab->got_info;
9642
9643 /* Allocate room for the reserved entries. VxWorks always reserves
9644 3 entries; other objects only reserve 2 entries. */
9645 BFD_ASSERT (g->assigned_low_gotno == 0);
9646 if (htab->root.target_os == is_vxworks)
9647 htab->reserved_gotno = 3;
9648 else
9649 htab->reserved_gotno = 2;
9650 g->local_gotno += htab->reserved_gotno;
9651 g->assigned_low_gotno = htab->reserved_gotno;
9652
9653 /* Decide which symbols need to go in the global part of the GOT and
9654 count the number of reloc-only GOT symbols. */
9655 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
9656
9657 if (!mips_elf_resolve_final_got_entries (info, g))
9658 return false;
9659
9660 /* Calculate the total loadable size of the output. That
9661 will give us the maximum number of GOT_PAGE entries
9662 required. */
9663 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9664 {
9665 asection *subsection;
9666
9667 for (subsection = ibfd->sections;
9668 subsection;
9669 subsection = subsection->next)
9670 {
9671 if ((subsection->flags & SEC_ALLOC) == 0)
9672 continue;
9673 loadable_size += ((subsection->size + 0xf)
9674 &~ (bfd_size_type) 0xf);
9675 }
9676 }
9677
9678 if (htab->root.target_os == is_vxworks)
9679 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
9680 relocations against local symbols evaluate to "G", and the EABI does
9681 not include R_MIPS_GOT_PAGE. */
9682 page_gotno = 0;
9683 else
9684 /* Assume there are two loadable segments consisting of contiguous
9685 sections. Is 5 enough? */
9686 page_gotno = (loadable_size >> 16) + 5;
9687
9688 /* Choose the smaller of the two page estimates; both are intended to be
9689 conservative. */
9690 if (page_gotno > g->page_gotno)
9691 page_gotno = g->page_gotno;
9692
9693 g->local_gotno += page_gotno;
9694 g->assigned_high_gotno = g->local_gotno - 1;
9695
9696 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9697 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9698 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9699
9700 /* VxWorks does not support multiple GOTs. It initializes $gp to
9701 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9702 dynamic loader. */
9703 if (htab->root.target_os != is_vxworks
9704 && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
9705 {
9706 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
9707 return false;
9708 }
9709 else
9710 {
9711 /* Record that all bfds use G. This also has the effect of freeing
9712 the per-bfd GOTs, which we no longer need. */
9713 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9714 if (mips_elf_bfd_got (ibfd, false))
9715 mips_elf_replace_bfd_got (ibfd, g);
9716 mips_elf_replace_bfd_got (output_bfd, g);
9717
9718 /* Set up TLS entries. */
9719 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
9720 tga.info = info;
9721 tga.g = g;
9722 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9723 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9724 if (!tga.g)
9725 return false;
9726 BFD_ASSERT (g->tls_assigned_gotno
9727 == g->global_gotno + g->local_gotno + g->tls_gotno);
9728
9729 /* Each VxWorks GOT entry needs an explicit relocation. */
9730 if (htab->root.target_os == is_vxworks && bfd_link_pic (info))
9731 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9732
9733 /* Allocate room for the TLS relocations. */
9734 if (g->relocs)
9735 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
9736 }
9737
9738 return true;
9739 }
9740
9741 /* Estimate the size of the .MIPS.stubs section. */
9742
9743 static void
mips_elf_estimate_stub_size(bfd * output_bfd,struct bfd_link_info * info)9744 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9745 {
9746 struct mips_elf_link_hash_table *htab;
9747 bfd_size_type dynsymcount;
9748
9749 htab = mips_elf_hash_table (info);
9750 BFD_ASSERT (htab != NULL);
9751
9752 if (htab->lazy_stub_count == 0)
9753 return;
9754
9755 /* IRIX rld assumes that a function stub isn't at the end of the .text
9756 section, so add a dummy entry to the end. */
9757 htab->lazy_stub_count++;
9758
9759 /* Get a worst-case estimate of the number of dynamic symbols needed.
9760 At this point, dynsymcount does not account for section symbols
9761 and count_section_dynsyms may overestimate the number that will
9762 be needed. */
9763 dynsymcount = (elf_hash_table (info)->dynsymcount
9764 + count_section_dynsyms (output_bfd, info));
9765
9766 /* Determine the size of one stub entry. There's no disadvantage
9767 from using microMIPS code here, so for the sake of pure-microMIPS
9768 binaries we prefer it whenever there's any microMIPS code in
9769 output produced at all. This has a benefit of stubs being
9770 shorter by 4 bytes each too, unless in the insn32 mode. */
9771 if (!MICROMIPS_P (output_bfd))
9772 htab->function_stub_size = (dynsymcount > 0x10000
9773 ? MIPS_FUNCTION_STUB_BIG_SIZE
9774 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
9775 else if (htab->insn32)
9776 htab->function_stub_size = (dynsymcount > 0x10000
9777 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9778 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9779 else
9780 htab->function_stub_size = (dynsymcount > 0x10000
9781 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9782 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
9783
9784 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9785 }
9786
9787 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9788 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9789 stub, allocate an entry in the stubs section. */
9790
9791 static bool
mips_elf_allocate_lazy_stub(struct mips_elf_link_hash_entry * h,void * data)9792 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
9793 {
9794 struct mips_htab_traverse_info *hti = data;
9795 struct mips_elf_link_hash_table *htab;
9796 struct bfd_link_info *info;
9797 bfd *output_bfd;
9798
9799 info = hti->info;
9800 output_bfd = hti->output_bfd;
9801 htab = mips_elf_hash_table (info);
9802 BFD_ASSERT (htab != NULL);
9803
9804 if (h->needs_lazy_stub)
9805 {
9806 bool micromips_p = MICROMIPS_P (output_bfd);
9807 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9808 bfd_vma isa_bit = micromips_p;
9809
9810 BFD_ASSERT (htab->root.dynobj != NULL);
9811 if (h->root.plt.plist == NULL)
9812 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9813 if (h->root.plt.plist == NULL)
9814 {
9815 hti->error = true;
9816 return false;
9817 }
9818 h->root.root.u.def.section = htab->sstubs;
9819 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9820 h->root.plt.plist->stub_offset = htab->sstubs->size;
9821 h->root.other = other;
9822 htab->sstubs->size += htab->function_stub_size;
9823 }
9824 return true;
9825 }
9826
9827 /* Allocate offsets in the stubs section to each symbol that needs one.
9828 Set the final size of the .MIPS.stub section. */
9829
9830 static bool
mips_elf_lay_out_lazy_stubs(struct bfd_link_info * info)9831 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9832 {
9833 bfd *output_bfd = info->output_bfd;
9834 bool micromips_p = MICROMIPS_P (output_bfd);
9835 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9836 bfd_vma isa_bit = micromips_p;
9837 struct mips_elf_link_hash_table *htab;
9838 struct mips_htab_traverse_info hti;
9839 struct elf_link_hash_entry *h;
9840 bfd *dynobj;
9841
9842 htab = mips_elf_hash_table (info);
9843 BFD_ASSERT (htab != NULL);
9844
9845 if (htab->lazy_stub_count == 0)
9846 return true;
9847
9848 htab->sstubs->size = 0;
9849 hti.info = info;
9850 hti.output_bfd = output_bfd;
9851 hti.error = false;
9852 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9853 if (hti.error)
9854 return false;
9855 htab->sstubs->size += htab->function_stub_size;
9856 BFD_ASSERT (htab->sstubs->size
9857 == htab->lazy_stub_count * htab->function_stub_size);
9858
9859 dynobj = elf_hash_table (info)->dynobj;
9860 BFD_ASSERT (dynobj != NULL);
9861 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9862 if (h == NULL)
9863 return false;
9864 h->root.u.def.value = isa_bit;
9865 h->other = other;
9866 h->type = STT_FUNC;
9867
9868 return true;
9869 }
9870
9871 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9872 bfd_link_info. If H uses the address of a PLT entry as the value
9873 of the symbol, then set the entry in the symbol table now. Prefer
9874 a standard MIPS PLT entry. */
9875
9876 static bool
mips_elf_set_plt_sym_value(struct mips_elf_link_hash_entry * h,void * data)9877 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9878 {
9879 struct bfd_link_info *info = data;
9880 bool micromips_p = MICROMIPS_P (info->output_bfd);
9881 struct mips_elf_link_hash_table *htab;
9882 unsigned int other;
9883 bfd_vma isa_bit;
9884 bfd_vma val;
9885
9886 htab = mips_elf_hash_table (info);
9887 BFD_ASSERT (htab != NULL);
9888
9889 if (h->use_plt_entry)
9890 {
9891 BFD_ASSERT (h->root.plt.plist != NULL);
9892 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9893 || h->root.plt.plist->comp_offset != MINUS_ONE);
9894
9895 val = htab->plt_header_size;
9896 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9897 {
9898 isa_bit = 0;
9899 val += h->root.plt.plist->mips_offset;
9900 other = 0;
9901 }
9902 else
9903 {
9904 isa_bit = 1;
9905 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9906 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9907 }
9908 val += isa_bit;
9909 /* For VxWorks, point at the PLT load stub rather than the lazy
9910 resolution stub; this stub will become the canonical function
9911 address. */
9912 if (htab->root.target_os == is_vxworks)
9913 val += 8;
9914
9915 h->root.root.u.def.section = htab->root.splt;
9916 h->root.root.u.def.value = val;
9917 h->root.other = other;
9918 }
9919
9920 return true;
9921 }
9922
9923 /* Set the sizes of the dynamic sections. */
9924
9925 bool
_bfd_mips_elf_size_dynamic_sections(bfd * output_bfd,struct bfd_link_info * info)9926 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9927 struct bfd_link_info *info)
9928 {
9929 bfd *dynobj;
9930 asection *s, *sreldyn;
9931 bool reltext;
9932 struct mips_elf_link_hash_table *htab;
9933
9934 htab = mips_elf_hash_table (info);
9935 BFD_ASSERT (htab != NULL);
9936 dynobj = elf_hash_table (info)->dynobj;
9937 BFD_ASSERT (dynobj != NULL);
9938
9939 if (elf_hash_table (info)->dynamic_sections_created)
9940 {
9941 /* Set the contents of the .interp section to the interpreter. */
9942 if (bfd_link_executable (info) && !info->nointerp)
9943 {
9944 s = bfd_get_linker_section (dynobj, ".interp");
9945 BFD_ASSERT (s != NULL);
9946 s->size
9947 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9948 s->contents
9949 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9950 }
9951
9952 /* Figure out the size of the PLT header if we know that we
9953 are using it. For the sake of cache alignment always use
9954 a standard header whenever any standard entries are present
9955 even if microMIPS entries are present as well. This also
9956 lets the microMIPS header rely on the value of $v0 only set
9957 by microMIPS entries, for a small size reduction.
9958
9959 Set symbol table entry values for symbols that use the
9960 address of their PLT entry now that we can calculate it.
9961
9962 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9963 haven't already in _bfd_elf_create_dynamic_sections. */
9964 if (htab->root.splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
9965 {
9966 bool micromips_p = (MICROMIPS_P (output_bfd)
9967 && !htab->plt_mips_offset);
9968 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9969 bfd_vma isa_bit = micromips_p;
9970 struct elf_link_hash_entry *h;
9971 bfd_vma size;
9972
9973 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9974 BFD_ASSERT (htab->root.sgotplt->size == 0);
9975 BFD_ASSERT (htab->root.splt->size == 0);
9976
9977 if (htab->root.target_os == is_vxworks && bfd_link_pic (info))
9978 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9979 else if (htab->root.target_os == is_vxworks)
9980 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9981 else if (ABI_64_P (output_bfd))
9982 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9983 else if (ABI_N32_P (output_bfd))
9984 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9985 else if (!micromips_p)
9986 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
9987 else if (htab->insn32)
9988 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
9989 else
9990 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
9991
9992 htab->plt_header_is_comp = micromips_p;
9993 htab->plt_header_size = size;
9994 htab->root.splt->size = (size
9995 + htab->plt_mips_offset
9996 + htab->plt_comp_offset);
9997 htab->root.sgotplt->size = (htab->plt_got_index
9998 * MIPS_ELF_GOT_SIZE (dynobj));
9999
10000 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
10001
10002 if (htab->root.hplt == NULL)
10003 {
10004 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->root.splt,
10005 "_PROCEDURE_LINKAGE_TABLE_");
10006 htab->root.hplt = h;
10007 if (h == NULL)
10008 return false;
10009 }
10010
10011 h = htab->root.hplt;
10012 h->root.u.def.value = isa_bit;
10013 h->other = other;
10014 h->type = STT_FUNC;
10015 }
10016 }
10017
10018 /* Allocate space for global sym dynamic relocs. */
10019 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
10020
10021 mips_elf_estimate_stub_size (output_bfd, info);
10022
10023 if (!mips_elf_lay_out_got (output_bfd, info))
10024 return false;
10025
10026 mips_elf_lay_out_lazy_stubs (info);
10027
10028 /* The check_relocs and adjust_dynamic_symbol entry points have
10029 determined the sizes of the various dynamic sections. Allocate
10030 memory for them. */
10031 reltext = false;
10032 for (s = dynobj->sections; s != NULL; s = s->next)
10033 {
10034 const char *name;
10035
10036 /* It's OK to base decisions on the section name, because none
10037 of the dynobj section names depend upon the input files. */
10038 name = bfd_section_name (s);
10039
10040 if ((s->flags & SEC_LINKER_CREATED) == 0)
10041 continue;
10042
10043 if (startswith (name, ".rel"))
10044 {
10045 if (s->size != 0)
10046 {
10047 const char *outname;
10048 asection *target;
10049
10050 /* If this relocation section applies to a read only
10051 section, then we probably need a DT_TEXTREL entry.
10052 If the relocation section is .rel(a).dyn, we always
10053 assert a DT_TEXTREL entry rather than testing whether
10054 there exists a relocation to a read only section or
10055 not. */
10056 outname = bfd_section_name (s->output_section);
10057 target = bfd_get_section_by_name (output_bfd, outname + 4);
10058 if ((target != NULL
10059 && (target->flags & SEC_READONLY) != 0
10060 && (target->flags & SEC_ALLOC) != 0)
10061 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
10062 reltext = true;
10063
10064 /* We use the reloc_count field as a counter if we need
10065 to copy relocs into the output file. */
10066 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
10067 s->reloc_count = 0;
10068
10069 /* If combreloc is enabled, elf_link_sort_relocs() will
10070 sort relocations, but in a different way than we do,
10071 and before we're done creating relocations. Also, it
10072 will move them around between input sections'
10073 relocation's contents, so our sorting would be
10074 broken, so don't let it run. */
10075 info->combreloc = 0;
10076 }
10077 }
10078 else if (bfd_link_executable (info)
10079 && ! mips_elf_hash_table (info)->use_rld_obj_head
10080 && startswith (name, ".rld_map"))
10081 {
10082 /* We add a room for __rld_map. It will be filled in by the
10083 rtld to contain a pointer to the _r_debug structure. */
10084 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
10085 }
10086 else if (SGI_COMPAT (output_bfd)
10087 && startswith (name, ".compact_rel"))
10088 s->size += mips_elf_hash_table (info)->compact_rel_size;
10089 else if (s == htab->root.splt)
10090 {
10091 /* If the last PLT entry has a branch delay slot, allocate
10092 room for an extra nop to fill the delay slot. This is
10093 for CPUs without load interlocking. */
10094 if (! LOAD_INTERLOCKS_P (output_bfd)
10095 && htab->root.target_os != is_vxworks
10096 && s->size > 0)
10097 s->size += 4;
10098 }
10099 else if (! startswith (name, ".init")
10100 && s != htab->root.sgot
10101 && s != htab->root.sgotplt
10102 && s != htab->sstubs
10103 && s != htab->root.sdynbss
10104 && s != htab->root.sdynrelro)
10105 {
10106 /* It's not one of our sections, so don't allocate space. */
10107 continue;
10108 }
10109
10110 if (s->size == 0)
10111 {
10112 s->flags |= SEC_EXCLUDE;
10113 continue;
10114 }
10115
10116 if ((s->flags & SEC_HAS_CONTENTS) == 0)
10117 continue;
10118
10119 /* Allocate memory for the section contents. */
10120 s->contents = bfd_zalloc (dynobj, s->size);
10121 if (s->contents == NULL)
10122 {
10123 bfd_set_error (bfd_error_no_memory);
10124 return false;
10125 }
10126 }
10127
10128 if (elf_hash_table (info)->dynamic_sections_created)
10129 {
10130 /* Add some entries to the .dynamic section. We fill in the
10131 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
10132 must add the entries now so that we get the correct size for
10133 the .dynamic section. */
10134
10135 /* SGI object has the equivalence of DT_DEBUG in the
10136 DT_MIPS_RLD_MAP entry. This must come first because glibc
10137 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
10138 may only look at the first one they see. */
10139 if (!bfd_link_pic (info)
10140 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
10141 return false;
10142
10143 if (bfd_link_executable (info)
10144 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
10145 return false;
10146
10147 /* The DT_DEBUG entry may be filled in by the dynamic linker and
10148 used by the debugger. */
10149 if (bfd_link_executable (info)
10150 && !SGI_COMPAT (output_bfd)
10151 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
10152 return false;
10153
10154 if (reltext
10155 && (SGI_COMPAT (output_bfd)
10156 || htab->root.target_os == is_vxworks))
10157 info->flags |= DF_TEXTREL;
10158
10159 if ((info->flags & DF_TEXTREL) != 0)
10160 {
10161 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
10162 return false;
10163
10164 /* Clear the DF_TEXTREL flag. It will be set again if we
10165 write out an actual text relocation; we may not, because
10166 at this point we do not know whether e.g. any .eh_frame
10167 absolute relocations have been converted to PC-relative. */
10168 info->flags &= ~DF_TEXTREL;
10169 }
10170
10171 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
10172 return false;
10173
10174 sreldyn = mips_elf_rel_dyn_section (info, false);
10175 if (htab->root.target_os == is_vxworks)
10176 {
10177 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
10178 use any of the DT_MIPS_* tags. */
10179 if (sreldyn && sreldyn->size > 0)
10180 {
10181 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
10182 return false;
10183
10184 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
10185 return false;
10186
10187 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
10188 return false;
10189 }
10190 }
10191 else
10192 {
10193 if (sreldyn && sreldyn->size > 0
10194 && !bfd_is_abs_section (sreldyn->output_section))
10195 {
10196 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
10197 return false;
10198
10199 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
10200 return false;
10201
10202 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
10203 return false;
10204 }
10205
10206 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
10207 return false;
10208
10209 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
10210 return false;
10211
10212 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
10213 return false;
10214
10215 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
10216 return false;
10217
10218 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
10219 return false;
10220
10221 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
10222 return false;
10223
10224 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
10225 return false;
10226
10227 if (info->emit_gnu_hash
10228 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_XHASH, 0))
10229 return false;
10230
10231 if (IRIX_COMPAT (dynobj) == ict_irix5
10232 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
10233 return false;
10234
10235 if (IRIX_COMPAT (dynobj) == ict_irix6
10236 && (bfd_get_section_by_name
10237 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
10238 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
10239 return false;
10240 }
10241 if (htab->root.splt->size > 0)
10242 {
10243 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
10244 return false;
10245
10246 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
10247 return false;
10248
10249 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
10250 return false;
10251
10252 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
10253 return false;
10254 }
10255 if (htab->root.target_os == is_vxworks
10256 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
10257 return false;
10258 }
10259
10260 return true;
10261 }
10262
10263 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
10264 Adjust its R_ADDEND field so that it is correct for the output file.
10265 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
10266 and sections respectively; both use symbol indexes. */
10267
10268 static void
mips_elf_adjust_addend(bfd * output_bfd,struct bfd_link_info * info,bfd * input_bfd,Elf_Internal_Sym * local_syms,asection ** local_sections,Elf_Internal_Rela * rel)10269 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
10270 bfd *input_bfd, Elf_Internal_Sym *local_syms,
10271 asection **local_sections, Elf_Internal_Rela *rel)
10272 {
10273 unsigned int r_type, r_symndx;
10274 Elf_Internal_Sym *sym;
10275 asection *sec;
10276
10277 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10278 {
10279 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10280 if (gprel16_reloc_p (r_type)
10281 || r_type == R_MIPS_GPREL32
10282 || literal_reloc_p (r_type))
10283 {
10284 rel->r_addend += _bfd_get_gp_value (input_bfd);
10285 rel->r_addend -= _bfd_get_gp_value (output_bfd);
10286 }
10287
10288 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
10289 sym = local_syms + r_symndx;
10290
10291 /* Adjust REL's addend to account for section merging. */
10292 if (!bfd_link_relocatable (info))
10293 {
10294 sec = local_sections[r_symndx];
10295 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
10296 }
10297
10298 /* This would normally be done by the rela_normal code in elflink.c. */
10299 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10300 rel->r_addend += local_sections[r_symndx]->output_offset;
10301 }
10302 }
10303
10304 /* Handle relocations against symbols from removed linkonce sections,
10305 or sections discarded by a linker script. We use this wrapper around
10306 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
10307 on 64-bit ELF targets. In this case for any relocation handled, which
10308 always be the first in a triplet, the remaining two have to be processed
10309 together with the first, even if they are R_MIPS_NONE. It is the symbol
10310 index referred by the first reloc that applies to all the three and the
10311 remaining two never refer to an object symbol. And it is the final
10312 relocation (the last non-null one) that determines the output field of
10313 the whole relocation so retrieve the corresponding howto structure for
10314 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
10315
10316 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
10317 and therefore requires to be pasted in a loop. It also defines a block
10318 and does not protect any of its arguments, hence the extra brackets. */
10319
10320 static void
mips_reloc_against_discarded_section(bfd * output_bfd,struct bfd_link_info * info,bfd * input_bfd,asection * input_section,Elf_Internal_Rela ** rel,const Elf_Internal_Rela ** relend,bool rel_reloc,reloc_howto_type * howto,bfd_byte * contents)10321 mips_reloc_against_discarded_section (bfd *output_bfd,
10322 struct bfd_link_info *info,
10323 bfd *input_bfd, asection *input_section,
10324 Elf_Internal_Rela **rel,
10325 const Elf_Internal_Rela **relend,
10326 bool rel_reloc,
10327 reloc_howto_type *howto,
10328 bfd_byte *contents)
10329 {
10330 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10331 int count = bed->s->int_rels_per_ext_rel;
10332 unsigned int r_type;
10333 int i;
10334
10335 for (i = count - 1; i > 0; i--)
10336 {
10337 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
10338 if (r_type != R_MIPS_NONE)
10339 {
10340 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10341 break;
10342 }
10343 }
10344 do
10345 {
10346 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10347 (*rel), count, (*relend),
10348 howto, i, contents);
10349 }
10350 while (0);
10351 }
10352
10353 /* Relocate a MIPS ELF section. */
10354
10355 int
_bfd_mips_elf_relocate_section(bfd * output_bfd,struct bfd_link_info * info,bfd * input_bfd,asection * input_section,bfd_byte * contents,Elf_Internal_Rela * relocs,Elf_Internal_Sym * local_syms,asection ** local_sections)10356 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
10357 bfd *input_bfd, asection *input_section,
10358 bfd_byte *contents, Elf_Internal_Rela *relocs,
10359 Elf_Internal_Sym *local_syms,
10360 asection **local_sections)
10361 {
10362 Elf_Internal_Rela *rel;
10363 const Elf_Internal_Rela *relend;
10364 bfd_vma addend = 0;
10365 bool use_saved_addend_p = false;
10366
10367 relend = relocs + input_section->reloc_count;
10368 for (rel = relocs; rel < relend; ++rel)
10369 {
10370 const char *name;
10371 bfd_vma value = 0;
10372 reloc_howto_type *howto;
10373 bool cross_mode_jump_p = false;
10374 /* TRUE if the relocation is a RELA relocation, rather than a
10375 REL relocation. */
10376 bool rela_relocation_p = true;
10377 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10378 const char *msg;
10379 unsigned long r_symndx;
10380 asection *sec;
10381 Elf_Internal_Shdr *symtab_hdr;
10382 struct elf_link_hash_entry *h;
10383 bool rel_reloc;
10384
10385 rel_reloc = (NEWABI_P (input_bfd)
10386 && mips_elf_rel_relocation_p (input_bfd, input_section,
10387 relocs, rel));
10388 /* Find the relocation howto for this relocation. */
10389 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10390
10391 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
10392 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10393 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10394 {
10395 sec = local_sections[r_symndx];
10396 h = NULL;
10397 }
10398 else
10399 {
10400 unsigned long extsymoff;
10401
10402 extsymoff = 0;
10403 if (!elf_bad_symtab (input_bfd))
10404 extsymoff = symtab_hdr->sh_info;
10405 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10406 while (h->root.type == bfd_link_hash_indirect
10407 || h->root.type == bfd_link_hash_warning)
10408 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10409
10410 sec = NULL;
10411 if (h->root.type == bfd_link_hash_defined
10412 || h->root.type == bfd_link_hash_defweak)
10413 sec = h->root.u.def.section;
10414 }
10415
10416 if (sec != NULL && discarded_section (sec))
10417 {
10418 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10419 input_section, &rel, &relend,
10420 rel_reloc, howto, contents);
10421 continue;
10422 }
10423
10424 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
10425 {
10426 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10427 64-bit code, but make sure all their addresses are in the
10428 lowermost or uppermost 32-bit section of the 64-bit address
10429 space. Thus, when they use an R_MIPS_64 they mean what is
10430 usually meant by R_MIPS_32, with the exception that the
10431 stored value is sign-extended to 64 bits. */
10432 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, false);
10433
10434 /* On big-endian systems, we need to lie about the position
10435 of the reloc. */
10436 if (bfd_big_endian (input_bfd))
10437 rel->r_offset += 4;
10438 }
10439
10440 if (!use_saved_addend_p)
10441 {
10442 /* If these relocations were originally of the REL variety,
10443 we must pull the addend out of the field that will be
10444 relocated. Otherwise, we simply use the contents of the
10445 RELA relocation. */
10446 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10447 relocs, rel))
10448 {
10449 rela_relocation_p = false;
10450 addend = mips_elf_read_rel_addend (input_bfd, rel,
10451 howto, contents);
10452 if (hi16_reloc_p (r_type)
10453 || (got16_reloc_p (r_type)
10454 && mips_elf_local_relocation_p (input_bfd, rel,
10455 local_sections)))
10456 {
10457 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10458 contents, &addend))
10459 {
10460 if (h)
10461 name = h->root.root.string;
10462 else
10463 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10464 local_syms + r_symndx,
10465 sec);
10466 _bfd_error_handler
10467 /* xgettext:c-format */
10468 (_("%pB: can't find matching LO16 reloc against `%s'"
10469 " for %s at %#" PRIx64 " in section `%pA'"),
10470 input_bfd, name,
10471 howto->name, (uint64_t) rel->r_offset, input_section);
10472 }
10473 }
10474 else
10475 addend <<= howto->rightshift;
10476 }
10477 else
10478 addend = rel->r_addend;
10479 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10480 local_syms, local_sections, rel);
10481 }
10482
10483 if (bfd_link_relocatable (info))
10484 {
10485 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
10486 && bfd_big_endian (input_bfd))
10487 rel->r_offset -= 4;
10488
10489 if (!rela_relocation_p && rel->r_addend)
10490 {
10491 addend += rel->r_addend;
10492 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
10493 addend = mips_elf_high (addend);
10494 else if (r_type == R_MIPS_HIGHER)
10495 addend = mips_elf_higher (addend);
10496 else if (r_type == R_MIPS_HIGHEST)
10497 addend = mips_elf_highest (addend);
10498 else
10499 addend >>= howto->rightshift;
10500
10501 /* We use the source mask, rather than the destination
10502 mask because the place to which we are writing will be
10503 source of the addend in the final link. */
10504 addend &= howto->src_mask;
10505
10506 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10507 /* See the comment above about using R_MIPS_64 in the 32-bit
10508 ABI. Here, we need to update the addend. It would be
10509 possible to get away with just using the R_MIPS_32 reloc
10510 but for endianness. */
10511 {
10512 bfd_vma sign_bits;
10513 bfd_vma low_bits;
10514 bfd_vma high_bits;
10515
10516 if (addend & ((bfd_vma) 1 << 31))
10517 #ifdef BFD64
10518 sign_bits = ((bfd_vma) 1 << 32) - 1;
10519 #else
10520 sign_bits = -1;
10521 #endif
10522 else
10523 sign_bits = 0;
10524
10525 /* If we don't know that we have a 64-bit type,
10526 do two separate stores. */
10527 if (bfd_big_endian (input_bfd))
10528 {
10529 /* Store the sign-bits (which are most significant)
10530 first. */
10531 low_bits = sign_bits;
10532 high_bits = addend;
10533 }
10534 else
10535 {
10536 low_bits = addend;
10537 high_bits = sign_bits;
10538 }
10539 bfd_put_32 (input_bfd, low_bits,
10540 contents + rel->r_offset);
10541 bfd_put_32 (input_bfd, high_bits,
10542 contents + rel->r_offset + 4);
10543 continue;
10544 }
10545
10546 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10547 input_bfd, input_section,
10548 contents, false))
10549 return false;
10550 }
10551
10552 /* Go on to the next relocation. */
10553 continue;
10554 }
10555
10556 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10557 relocations for the same offset. In that case we are
10558 supposed to treat the output of each relocation as the addend
10559 for the next. */
10560 if (rel + 1 < relend
10561 && rel->r_offset == rel[1].r_offset
10562 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
10563 use_saved_addend_p = true;
10564 else
10565 use_saved_addend_p = false;
10566
10567 /* Figure out what value we are supposed to relocate. */
10568 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10569 input_section, contents,
10570 info, rel, addend, howto,
10571 local_syms, local_sections,
10572 &value, &name, &cross_mode_jump_p,
10573 use_saved_addend_p))
10574 {
10575 case bfd_reloc_continue:
10576 /* There's nothing to do. */
10577 continue;
10578
10579 case bfd_reloc_undefined:
10580 /* mips_elf_calculate_relocation already called the
10581 undefined_symbol callback. There's no real point in
10582 trying to perform the relocation at this point, so we
10583 just skip ahead to the next relocation. */
10584 continue;
10585
10586 case bfd_reloc_notsupported:
10587 msg = _("internal error: unsupported relocation error");
10588 info->callbacks->warning
10589 (info, msg, name, input_bfd, input_section, rel->r_offset);
10590 return false;
10591
10592 case bfd_reloc_overflow:
10593 if (use_saved_addend_p)
10594 /* Ignore overflow until we reach the last relocation for
10595 a given location. */
10596 ;
10597 else
10598 {
10599 struct mips_elf_link_hash_table *htab;
10600
10601 htab = mips_elf_hash_table (info);
10602 BFD_ASSERT (htab != NULL);
10603 BFD_ASSERT (name != NULL);
10604 if (!htab->small_data_overflow_reported
10605 && (gprel16_reloc_p (howto->type)
10606 || literal_reloc_p (howto->type)))
10607 {
10608 msg = _("small-data section exceeds 64KB;"
10609 " lower small-data size limit (see option -G)");
10610
10611 htab->small_data_overflow_reported = true;
10612 (*info->callbacks->einfo) ("%P: %s\n", msg);
10613 }
10614 (*info->callbacks->reloc_overflow)
10615 (info, NULL, name, howto->name, (bfd_vma) 0,
10616 input_bfd, input_section, rel->r_offset);
10617 }
10618 break;
10619
10620 case bfd_reloc_ok:
10621 break;
10622
10623 case bfd_reloc_outofrange:
10624 msg = NULL;
10625 if (jal_reloc_p (howto->type))
10626 msg = (cross_mode_jump_p
10627 ? _("cannot convert a jump to JALX "
10628 "for a non-word-aligned address")
10629 : (howto->type == R_MIPS16_26
10630 ? _("jump to a non-word-aligned address")
10631 : _("jump to a non-instruction-aligned address")));
10632 else if (b_reloc_p (howto->type))
10633 msg = (cross_mode_jump_p
10634 ? _("cannot convert a branch to JALX "
10635 "for a non-word-aligned address")
10636 : _("branch to a non-instruction-aligned address"));
10637 else if (aligned_pcrel_reloc_p (howto->type))
10638 msg = _("PC-relative load from unaligned address");
10639 if (msg)
10640 {
10641 info->callbacks->einfo
10642 ("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg);
10643 break;
10644 }
10645 /* Fall through. */
10646
10647 default:
10648 abort ();
10649 break;
10650 }
10651
10652 /* If we've got another relocation for the address, keep going
10653 until we reach the last one. */
10654 if (use_saved_addend_p)
10655 {
10656 addend = value;
10657 continue;
10658 }
10659
10660 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10661 /* See the comment above about using R_MIPS_64 in the 32-bit
10662 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10663 that calculated the right value. Now, however, we
10664 sign-extend the 32-bit result to 64-bits, and store it as a
10665 64-bit value. We are especially generous here in that we
10666 go to extreme lengths to support this usage on systems with
10667 only a 32-bit VMA. */
10668 {
10669 bfd_vma sign_bits;
10670 bfd_vma low_bits;
10671 bfd_vma high_bits;
10672
10673 if (value & ((bfd_vma) 1 << 31))
10674 #ifdef BFD64
10675 sign_bits = ((bfd_vma) 1 << 32) - 1;
10676 #else
10677 sign_bits = -1;
10678 #endif
10679 else
10680 sign_bits = 0;
10681
10682 /* If we don't know that we have a 64-bit type,
10683 do two separate stores. */
10684 if (bfd_big_endian (input_bfd))
10685 {
10686 /* Undo what we did above. */
10687 rel->r_offset -= 4;
10688 /* Store the sign-bits (which are most significant)
10689 first. */
10690 low_bits = sign_bits;
10691 high_bits = value;
10692 }
10693 else
10694 {
10695 low_bits = value;
10696 high_bits = sign_bits;
10697 }
10698 bfd_put_32 (input_bfd, low_bits,
10699 contents + rel->r_offset);
10700 bfd_put_32 (input_bfd, high_bits,
10701 contents + rel->r_offset + 4);
10702 continue;
10703 }
10704
10705 /* Actually perform the relocation. */
10706 if (! mips_elf_perform_relocation (info, howto, rel, value,
10707 input_bfd, input_section,
10708 contents, cross_mode_jump_p))
10709 return false;
10710 }
10711
10712 return true;
10713 }
10714
10715 /* A function that iterates over each entry in la25_stubs and fills
10716 in the code for each one. DATA points to a mips_htab_traverse_info. */
10717
10718 static int
mips_elf_create_la25_stub(void ** slot,void * data)10719 mips_elf_create_la25_stub (void **slot, void *data)
10720 {
10721 struct mips_htab_traverse_info *hti;
10722 struct mips_elf_link_hash_table *htab;
10723 struct mips_elf_la25_stub *stub;
10724 asection *s;
10725 bfd_byte *loc;
10726 bfd_vma offset, target, target_high, target_low;
10727 bfd_vma branch_pc;
10728 bfd_signed_vma pcrel_offset = 0;
10729
10730 stub = (struct mips_elf_la25_stub *) *slot;
10731 hti = (struct mips_htab_traverse_info *) data;
10732 htab = mips_elf_hash_table (hti->info);
10733 BFD_ASSERT (htab != NULL);
10734
10735 /* Create the section contents, if we haven't already. */
10736 s = stub->stub_section;
10737 loc = s->contents;
10738 if (loc == NULL)
10739 {
10740 loc = bfd_malloc (s->size);
10741 if (loc == NULL)
10742 {
10743 hti->error = true;
10744 return false;
10745 }
10746 s->contents = loc;
10747 }
10748
10749 /* Work out where in the section this stub should go. */
10750 offset = stub->offset;
10751
10752 /* We add 8 here to account for the LUI/ADDIU instructions
10753 before the branch instruction. This cannot be moved down to
10754 where pcrel_offset is calculated as 's' is updated in
10755 mips_elf_get_la25_target. */
10756 branch_pc = s->output_section->vma + s->output_offset + offset + 8;
10757
10758 /* Work out the target address. */
10759 target = mips_elf_get_la25_target (stub, &s);
10760 target += s->output_section->vma + s->output_offset;
10761
10762 target_high = ((target + 0x8000) >> 16) & 0xffff;
10763 target_low = (target & 0xffff);
10764
10765 /* Calculate the PC of the compact branch instruction (for the case where
10766 compact branches are used for either microMIPSR6 or MIPSR6 with
10767 compact branches. Add 4-bytes to account for BC using the PC of the
10768 next instruction as the base. */
10769 pcrel_offset = target - (branch_pc + 4);
10770
10771 if (stub->stub_section != htab->strampoline)
10772 {
10773 /* This is a simple LUI/ADDIU stub. Zero out the beginning
10774 of the section and write the two instructions at the end. */
10775 memset (loc, 0, offset);
10776 loc += offset;
10777 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10778 {
10779 bfd_put_micromips_32 (hti->output_bfd,
10780 LA25_LUI_MICROMIPS (target_high),
10781 loc);
10782 bfd_put_micromips_32 (hti->output_bfd,
10783 LA25_ADDIU_MICROMIPS (target_low),
10784 loc + 4);
10785 }
10786 else
10787 {
10788 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10789 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10790 }
10791 }
10792 else
10793 {
10794 /* This is trampoline. */
10795 loc += offset;
10796 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10797 {
10798 bfd_put_micromips_32 (hti->output_bfd,
10799 LA25_LUI_MICROMIPS (target_high), loc);
10800 bfd_put_micromips_32 (hti->output_bfd,
10801 LA25_J_MICROMIPS (target), loc + 4);
10802 bfd_put_micromips_32 (hti->output_bfd,
10803 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
10804 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10805 }
10806 else
10807 {
10808 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10809 if (MIPSR6_P (hti->output_bfd) && htab->compact_branches)
10810 {
10811 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10812 bfd_put_32 (hti->output_bfd, LA25_BC (pcrel_offset), loc + 8);
10813 }
10814 else
10815 {
10816 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10817 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10818 }
10819 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10820 }
10821 }
10822 return true;
10823 }
10824
10825 /* If NAME is one of the special IRIX6 symbols defined by the linker,
10826 adjust it appropriately now. */
10827
10828 static void
mips_elf_irix6_finish_dynamic_symbol(bfd * abfd ATTRIBUTE_UNUSED,const char * name,Elf_Internal_Sym * sym)10829 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10830 const char *name, Elf_Internal_Sym *sym)
10831 {
10832 /* The linker script takes care of providing names and values for
10833 these, but we must place them into the right sections. */
10834 static const char* const text_section_symbols[] = {
10835 "_ftext",
10836 "_etext",
10837 "__dso_displacement",
10838 "__elf_header",
10839 "__program_header_table",
10840 NULL
10841 };
10842
10843 static const char* const data_section_symbols[] = {
10844 "_fdata",
10845 "_edata",
10846 "_end",
10847 "_fbss",
10848 NULL
10849 };
10850
10851 const char* const *p;
10852 int i;
10853
10854 for (i = 0; i < 2; ++i)
10855 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10856 *p;
10857 ++p)
10858 if (strcmp (*p, name) == 0)
10859 {
10860 /* All of these symbols are given type STT_SECTION by the
10861 IRIX6 linker. */
10862 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10863 sym->st_other = STO_PROTECTED;
10864
10865 /* The IRIX linker puts these symbols in special sections. */
10866 if (i == 0)
10867 sym->st_shndx = SHN_MIPS_TEXT;
10868 else
10869 sym->st_shndx = SHN_MIPS_DATA;
10870
10871 break;
10872 }
10873 }
10874
10875 /* Finish up dynamic symbol handling. We set the contents of various
10876 dynamic sections here. */
10877
10878 bool
_bfd_mips_elf_finish_dynamic_symbol(bfd * output_bfd,struct bfd_link_info * info,struct elf_link_hash_entry * h,Elf_Internal_Sym * sym)10879 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10880 struct bfd_link_info *info,
10881 struct elf_link_hash_entry *h,
10882 Elf_Internal_Sym *sym)
10883 {
10884 bfd *dynobj;
10885 asection *sgot;
10886 struct mips_got_info *g, *gg;
10887 const char *name;
10888 int idx;
10889 struct mips_elf_link_hash_table *htab;
10890 struct mips_elf_link_hash_entry *hmips;
10891
10892 htab = mips_elf_hash_table (info);
10893 BFD_ASSERT (htab != NULL);
10894 dynobj = elf_hash_table (info)->dynobj;
10895 hmips = (struct mips_elf_link_hash_entry *) h;
10896
10897 BFD_ASSERT (htab->root.target_os != is_vxworks);
10898
10899 if (h->plt.plist != NULL
10900 && (h->plt.plist->mips_offset != MINUS_ONE
10901 || h->plt.plist->comp_offset != MINUS_ONE))
10902 {
10903 /* We've decided to create a PLT entry for this symbol. */
10904 bfd_byte *loc;
10905 bfd_vma header_address, got_address;
10906 bfd_vma got_address_high, got_address_low, load;
10907 bfd_vma got_index;
10908 bfd_vma isa_bit;
10909
10910 got_index = h->plt.plist->gotplt_index;
10911
10912 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10913 BFD_ASSERT (h->dynindx != -1);
10914 BFD_ASSERT (htab->root.splt != NULL);
10915 BFD_ASSERT (got_index != MINUS_ONE);
10916 BFD_ASSERT (!h->def_regular);
10917
10918 /* Calculate the address of the PLT header. */
10919 isa_bit = htab->plt_header_is_comp;
10920 header_address = (htab->root.splt->output_section->vma
10921 + htab->root.splt->output_offset + isa_bit);
10922
10923 /* Calculate the address of the .got.plt entry. */
10924 got_address = (htab->root.sgotplt->output_section->vma
10925 + htab->root.sgotplt->output_offset
10926 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10927
10928 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10929 got_address_low = got_address & 0xffff;
10930
10931 /* The PLT sequence is not safe for N64 if .got.plt entry's address
10932 cannot be loaded in two instructions. */
10933 if (ABI_64_P (output_bfd)
10934 && ((got_address + 0x80008000) & ~(bfd_vma) 0xffffffff) != 0)
10935 {
10936 _bfd_error_handler
10937 /* xgettext:c-format */
10938 (_("%pB: `%pA' entry VMA of %#" PRIx64 " outside the 32-bit range "
10939 "supported; consider using `-Ttext-segment=...'"),
10940 output_bfd,
10941 htab->root.sgotplt->output_section,
10942 (int64_t) got_address);
10943 bfd_set_error (bfd_error_no_error);
10944 return false;
10945 }
10946
10947 /* Initially point the .got.plt entry at the PLT header. */
10948 loc = (htab->root.sgotplt->contents
10949 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10950 if (ABI_64_P (output_bfd))
10951 bfd_put_64 (output_bfd, header_address, loc);
10952 else
10953 bfd_put_32 (output_bfd, header_address, loc);
10954
10955 /* Now handle the PLT itself. First the standard entry (the order
10956 does not matter, we just have to pick one). */
10957 if (h->plt.plist->mips_offset != MINUS_ONE)
10958 {
10959 const bfd_vma *plt_entry;
10960 bfd_vma plt_offset;
10961
10962 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10963
10964 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10965
10966 /* Find out where the .plt entry should go. */
10967 loc = htab->root.splt->contents + plt_offset;
10968
10969 /* Pick the load opcode. */
10970 load = MIPS_ELF_LOAD_WORD (output_bfd);
10971
10972 /* Fill in the PLT entry itself. */
10973
10974 if (MIPSR6_P (output_bfd))
10975 plt_entry = htab->compact_branches ? mipsr6_exec_plt_entry_compact
10976 : mipsr6_exec_plt_entry;
10977 else
10978 plt_entry = mips_exec_plt_entry;
10979 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10980 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10981 loc + 4);
10982
10983 if (! LOAD_INTERLOCKS_P (output_bfd)
10984 || (MIPSR6_P (output_bfd) && htab->compact_branches))
10985 {
10986 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10987 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10988 }
10989 else
10990 {
10991 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10992 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10993 loc + 12);
10994 }
10995 }
10996
10997 /* Now the compressed entry. They come after any standard ones. */
10998 if (h->plt.plist->comp_offset != MINUS_ONE)
10999 {
11000 bfd_vma plt_offset;
11001
11002 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
11003 + h->plt.plist->comp_offset);
11004
11005 BFD_ASSERT (plt_offset <= htab->root.splt->size);
11006
11007 /* Find out where the .plt entry should go. */
11008 loc = htab->root.splt->contents + plt_offset;
11009
11010 /* Fill in the PLT entry itself. */
11011 if (!MICROMIPS_P (output_bfd))
11012 {
11013 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
11014
11015 bfd_put_16 (output_bfd, plt_entry[0], loc);
11016 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
11017 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11018 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
11019 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11020 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
11021 bfd_put_32 (output_bfd, got_address, loc + 12);
11022 }
11023 else if (htab->insn32)
11024 {
11025 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
11026
11027 bfd_put_16 (output_bfd, plt_entry[0], loc);
11028 bfd_put_16 (output_bfd, got_address_high, loc + 2);
11029 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11030 bfd_put_16 (output_bfd, got_address_low, loc + 6);
11031 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11032 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
11033 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
11034 bfd_put_16 (output_bfd, got_address_low, loc + 14);
11035 }
11036 else
11037 {
11038 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
11039 bfd_signed_vma gotpc_offset;
11040 bfd_vma loc_address;
11041
11042 BFD_ASSERT (got_address % 4 == 0);
11043
11044 loc_address = (htab->root.splt->output_section->vma
11045 + htab->root.splt->output_offset + plt_offset);
11046 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
11047
11048 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11049 if (gotpc_offset + 0x1000000 >= 0x2000000)
11050 {
11051 _bfd_error_handler
11052 /* xgettext:c-format */
11053 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
11054 "beyond the range of ADDIUPC"),
11055 output_bfd,
11056 htab->root.sgotplt->output_section,
11057 (int64_t) gotpc_offset,
11058 htab->root.splt->output_section);
11059 bfd_set_error (bfd_error_no_error);
11060 return false;
11061 }
11062 bfd_put_16 (output_bfd,
11063 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11064 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11065 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11066 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
11067 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11068 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
11069 }
11070 }
11071
11072 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11073 mips_elf_output_dynamic_relocation (output_bfd, htab->root.srelplt,
11074 got_index - 2, h->dynindx,
11075 R_MIPS_JUMP_SLOT, got_address);
11076
11077 /* We distinguish between PLT entries and lazy-binding stubs by
11078 giving the former an st_other value of STO_MIPS_PLT. Set the
11079 flag and leave the value if there are any relocations in the
11080 binary where pointer equality matters. */
11081 sym->st_shndx = SHN_UNDEF;
11082 if (h->pointer_equality_needed)
11083 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
11084 else
11085 {
11086 sym->st_value = 0;
11087 sym->st_other = 0;
11088 }
11089 }
11090
11091 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
11092 {
11093 /* We've decided to create a lazy-binding stub. */
11094 bool micromips_p = MICROMIPS_P (output_bfd);
11095 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
11096 bfd_vma stub_size = htab->function_stub_size;
11097 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
11098 bfd_vma isa_bit = micromips_p;
11099 bfd_vma stub_big_size;
11100
11101 if (!micromips_p)
11102 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
11103 else if (htab->insn32)
11104 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
11105 else
11106 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
11107
11108 /* This symbol has a stub. Set it up. */
11109
11110 BFD_ASSERT (h->dynindx != -1);
11111
11112 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
11113
11114 /* Values up to 2^31 - 1 are allowed. Larger values would cause
11115 sign extension at runtime in the stub, resulting in a negative
11116 index value. */
11117 if (h->dynindx & ~0x7fffffff)
11118 return false;
11119
11120 /* Fill the stub. */
11121 if (micromips_p)
11122 {
11123 idx = 0;
11124 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
11125 stub + idx);
11126 idx += 4;
11127 if (htab->insn32)
11128 {
11129 bfd_put_micromips_32 (output_bfd,
11130 STUB_MOVE32_MICROMIPS, stub + idx);
11131 idx += 4;
11132 }
11133 else
11134 {
11135 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
11136 idx += 2;
11137 }
11138 if (stub_size == stub_big_size)
11139 {
11140 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
11141
11142 bfd_put_micromips_32 (output_bfd,
11143 STUB_LUI_MICROMIPS (dynindx_hi),
11144 stub + idx);
11145 idx += 4;
11146 }
11147 if (htab->insn32)
11148 {
11149 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
11150 stub + idx);
11151 idx += 4;
11152 }
11153 else
11154 {
11155 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
11156 idx += 2;
11157 }
11158
11159 /* If a large stub is not required and sign extension is not a
11160 problem, then use legacy code in the stub. */
11161 if (stub_size == stub_big_size)
11162 bfd_put_micromips_32 (output_bfd,
11163 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
11164 stub + idx);
11165 else if (h->dynindx & ~0x7fff)
11166 bfd_put_micromips_32 (output_bfd,
11167 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
11168 stub + idx);
11169 else
11170 bfd_put_micromips_32 (output_bfd,
11171 STUB_LI16S_MICROMIPS (output_bfd,
11172 h->dynindx),
11173 stub + idx);
11174 }
11175 else
11176 {
11177 idx = 0;
11178 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
11179 idx += 4;
11180 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
11181 idx += 4;
11182 if (stub_size == stub_big_size)
11183 {
11184 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
11185 stub + idx);
11186 idx += 4;
11187 }
11188
11189 if (!(MIPSR6_P (output_bfd) && htab->compact_branches))
11190 {
11191 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
11192 idx += 4;
11193 }
11194
11195 /* If a large stub is not required and sign extension is not a
11196 problem, then use legacy code in the stub. */
11197 if (stub_size == stub_big_size)
11198 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
11199 stub + idx);
11200 else if (h->dynindx & ~0x7fff)
11201 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
11202 stub + idx);
11203 else
11204 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
11205 stub + idx);
11206 idx += 4;
11207
11208 if (MIPSR6_P (output_bfd) && htab->compact_branches)
11209 bfd_put_32 (output_bfd, STUB_JALRC, stub + idx);
11210 }
11211
11212 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
11213 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
11214 stub, stub_size);
11215
11216 /* Mark the symbol as undefined. stub_offset != -1 occurs
11217 only for the referenced symbol. */
11218 sym->st_shndx = SHN_UNDEF;
11219
11220 /* The run-time linker uses the st_value field of the symbol
11221 to reset the global offset table entry for this external
11222 to its stub address when unlinking a shared object. */
11223 sym->st_value = (htab->sstubs->output_section->vma
11224 + htab->sstubs->output_offset
11225 + h->plt.plist->stub_offset
11226 + isa_bit);
11227 sym->st_other = other;
11228 }
11229
11230 /* If we have a MIPS16 function with a stub, the dynamic symbol must
11231 refer to the stub, since only the stub uses the standard calling
11232 conventions. */
11233 if (h->dynindx != -1 && hmips->fn_stub != NULL)
11234 {
11235 BFD_ASSERT (hmips->need_fn_stub);
11236 sym->st_value = (hmips->fn_stub->output_section->vma
11237 + hmips->fn_stub->output_offset);
11238 sym->st_size = hmips->fn_stub->size;
11239 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
11240 }
11241
11242 BFD_ASSERT (h->dynindx != -1
11243 || h->forced_local);
11244
11245 sgot = htab->root.sgot;
11246 g = htab->got_info;
11247 BFD_ASSERT (g != NULL);
11248
11249 /* Run through the global symbol table, creating GOT entries for all
11250 the symbols that need them. */
11251 if (hmips->global_got_area != GGA_NONE)
11252 {
11253 bfd_vma offset;
11254 bfd_vma value;
11255
11256 value = sym->st_value;
11257 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11258 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
11259 }
11260
11261 if (hmips->global_got_area != GGA_NONE && g->next)
11262 {
11263 struct mips_got_entry e, *p;
11264 bfd_vma entry;
11265 bfd_vma offset;
11266
11267 gg = g;
11268
11269 e.abfd = output_bfd;
11270 e.symndx = -1;
11271 e.d.h = hmips;
11272 e.tls_type = GOT_TLS_NONE;
11273
11274 for (g = g->next; g->next != gg; g = g->next)
11275 {
11276 if (g->got_entries
11277 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
11278 &e)))
11279 {
11280 offset = p->gotidx;
11281 BFD_ASSERT (offset > 0 && offset < htab->root.sgot->size);
11282 if (bfd_link_pic (info)
11283 || (elf_hash_table (info)->dynamic_sections_created
11284 && p->d.h != NULL
11285 && p->d.h->root.def_dynamic
11286 && !p->d.h->root.def_regular))
11287 {
11288 /* Create an R_MIPS_REL32 relocation for this entry. Due to
11289 the various compatibility problems, it's easier to mock
11290 up an R_MIPS_32 or R_MIPS_64 relocation and leave
11291 mips_elf_create_dynamic_relocation to calculate the
11292 appropriate addend. */
11293 Elf_Internal_Rela rel[3];
11294
11295 memset (rel, 0, sizeof (rel));
11296 if (ABI_64_P (output_bfd))
11297 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
11298 else
11299 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
11300 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
11301
11302 entry = 0;
11303 if (! (mips_elf_create_dynamic_relocation
11304 (output_bfd, info, rel,
11305 e.d.h, NULL, sym->st_value, &entry, sgot)))
11306 return false;
11307 }
11308 else
11309 entry = sym->st_value;
11310 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
11311 }
11312 }
11313 }
11314
11315 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
11316 name = h->root.root.string;
11317 if (h == elf_hash_table (info)->hdynamic
11318 || h == elf_hash_table (info)->hgot)
11319 sym->st_shndx = SHN_ABS;
11320 else if (strcmp (name, "_DYNAMIC_LINK") == 0
11321 || strcmp (name, "_DYNAMIC_LINKING") == 0)
11322 {
11323 sym->st_shndx = SHN_ABS;
11324 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11325 sym->st_value = 1;
11326 }
11327 else if (SGI_COMPAT (output_bfd))
11328 {
11329 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
11330 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
11331 {
11332 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11333 sym->st_other = STO_PROTECTED;
11334 sym->st_value = 0;
11335 sym->st_shndx = SHN_MIPS_DATA;
11336 }
11337 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
11338 {
11339 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11340 sym->st_other = STO_PROTECTED;
11341 sym->st_value = mips_elf_hash_table (info)->procedure_count;
11342 sym->st_shndx = SHN_ABS;
11343 }
11344 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
11345 {
11346 if (h->type == STT_FUNC)
11347 sym->st_shndx = SHN_MIPS_TEXT;
11348 else if (h->type == STT_OBJECT)
11349 sym->st_shndx = SHN_MIPS_DATA;
11350 }
11351 }
11352
11353 /* Emit a copy reloc, if needed. */
11354 if (h->needs_copy)
11355 {
11356 asection *s;
11357 bfd_vma symval;
11358
11359 BFD_ASSERT (h->dynindx != -1);
11360 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11361
11362 s = mips_elf_rel_dyn_section (info, false);
11363 symval = (h->root.u.def.section->output_section->vma
11364 + h->root.u.def.section->output_offset
11365 + h->root.u.def.value);
11366 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
11367 h->dynindx, R_MIPS_COPY, symval);
11368 }
11369
11370 /* Handle the IRIX6-specific symbols. */
11371 if (IRIX_COMPAT (output_bfd) == ict_irix6)
11372 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
11373
11374 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
11375 to treat compressed symbols like any other. */
11376 if (ELF_ST_IS_MIPS16 (sym->st_other))
11377 {
11378 BFD_ASSERT (sym->st_value & 1);
11379 sym->st_other -= STO_MIPS16;
11380 }
11381 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
11382 {
11383 BFD_ASSERT (sym->st_value & 1);
11384 sym->st_other -= STO_MICROMIPS;
11385 }
11386
11387 return true;
11388 }
11389
11390 /* Likewise, for VxWorks. */
11391
11392 bool
_bfd_mips_vxworks_finish_dynamic_symbol(bfd * output_bfd,struct bfd_link_info * info,struct elf_link_hash_entry * h,Elf_Internal_Sym * sym)11393 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
11394 struct bfd_link_info *info,
11395 struct elf_link_hash_entry *h,
11396 Elf_Internal_Sym *sym)
11397 {
11398 bfd *dynobj;
11399 asection *sgot;
11400 struct mips_got_info *g;
11401 struct mips_elf_link_hash_table *htab;
11402 struct mips_elf_link_hash_entry *hmips;
11403
11404 htab = mips_elf_hash_table (info);
11405 BFD_ASSERT (htab != NULL);
11406 dynobj = elf_hash_table (info)->dynobj;
11407 hmips = (struct mips_elf_link_hash_entry *) h;
11408
11409 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
11410 {
11411 bfd_byte *loc;
11412 bfd_vma plt_address, got_address, got_offset, branch_offset;
11413 Elf_Internal_Rela rel;
11414 static const bfd_vma *plt_entry;
11415 bfd_vma gotplt_index;
11416 bfd_vma plt_offset;
11417
11418 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11419 gotplt_index = h->plt.plist->gotplt_index;
11420
11421 BFD_ASSERT (h->dynindx != -1);
11422 BFD_ASSERT (htab->root.splt != NULL);
11423 BFD_ASSERT (gotplt_index != MINUS_ONE);
11424 BFD_ASSERT (plt_offset <= htab->root.splt->size);
11425
11426 /* Calculate the address of the .plt entry. */
11427 plt_address = (htab->root.splt->output_section->vma
11428 + htab->root.splt->output_offset
11429 + plt_offset);
11430
11431 /* Calculate the address of the .got.plt entry. */
11432 got_address = (htab->root.sgotplt->output_section->vma
11433 + htab->root.sgotplt->output_offset
11434 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
11435
11436 /* Calculate the offset of the .got.plt entry from
11437 _GLOBAL_OFFSET_TABLE_. */
11438 got_offset = mips_elf_gotplt_index (info, h);
11439
11440 /* Calculate the offset for the branch at the start of the PLT
11441 entry. The branch jumps to the beginning of .plt. */
11442 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
11443
11444 /* Fill in the initial value of the .got.plt entry. */
11445 bfd_put_32 (output_bfd, plt_address,
11446 (htab->root.sgotplt->contents
11447 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
11448
11449 /* Find out where the .plt entry should go. */
11450 loc = htab->root.splt->contents + plt_offset;
11451
11452 if (bfd_link_pic (info))
11453 {
11454 plt_entry = mips_vxworks_shared_plt_entry;
11455 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11456 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11457 }
11458 else
11459 {
11460 bfd_vma got_address_high, got_address_low;
11461
11462 plt_entry = mips_vxworks_exec_plt_entry;
11463 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11464 got_address_low = got_address & 0xffff;
11465
11466 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11467 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11468 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11469 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11470 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11471 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11472 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11473 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11474
11475 loc = (htab->srelplt2->contents
11476 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
11477
11478 /* Emit a relocation for the .got.plt entry. */
11479 rel.r_offset = got_address;
11480 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11481 rel.r_addend = plt_offset;
11482 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11483
11484 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11485 loc += sizeof (Elf32_External_Rela);
11486 rel.r_offset = plt_address + 8;
11487 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11488 rel.r_addend = got_offset;
11489 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11490
11491 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11492 loc += sizeof (Elf32_External_Rela);
11493 rel.r_offset += 4;
11494 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11495 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11496 }
11497
11498 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11499 loc = (htab->root.srelplt->contents
11500 + gotplt_index * sizeof (Elf32_External_Rela));
11501 rel.r_offset = got_address;
11502 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11503 rel.r_addend = 0;
11504 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11505
11506 if (!h->def_regular)
11507 sym->st_shndx = SHN_UNDEF;
11508 }
11509
11510 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11511
11512 sgot = htab->root.sgot;
11513 g = htab->got_info;
11514 BFD_ASSERT (g != NULL);
11515
11516 /* See if this symbol has an entry in the GOT. */
11517 if (hmips->global_got_area != GGA_NONE)
11518 {
11519 bfd_vma offset;
11520 Elf_Internal_Rela outrel;
11521 bfd_byte *loc;
11522 asection *s;
11523
11524 /* Install the symbol value in the GOT. */
11525 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11526 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11527
11528 /* Add a dynamic relocation for it. */
11529 s = mips_elf_rel_dyn_section (info, false);
11530 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11531 outrel.r_offset = (sgot->output_section->vma
11532 + sgot->output_offset
11533 + offset);
11534 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11535 outrel.r_addend = 0;
11536 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11537 }
11538
11539 /* Emit a copy reloc, if needed. */
11540 if (h->needs_copy)
11541 {
11542 Elf_Internal_Rela rel;
11543 asection *srel;
11544 bfd_byte *loc;
11545
11546 BFD_ASSERT (h->dynindx != -1);
11547
11548 rel.r_offset = (h->root.u.def.section->output_section->vma
11549 + h->root.u.def.section->output_offset
11550 + h->root.u.def.value);
11551 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11552 rel.r_addend = 0;
11553 if (h->root.u.def.section == htab->root.sdynrelro)
11554 srel = htab->root.sreldynrelro;
11555 else
11556 srel = htab->root.srelbss;
11557 loc = srel->contents + srel->reloc_count * sizeof (Elf32_External_Rela);
11558 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11559 ++srel->reloc_count;
11560 }
11561
11562 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11563 if (ELF_ST_IS_COMPRESSED (sym->st_other))
11564 sym->st_value &= ~1;
11565
11566 return true;
11567 }
11568
11569 /* Write out a plt0 entry to the beginning of .plt. */
11570
11571 static bool
mips_finish_exec_plt(bfd * output_bfd,struct bfd_link_info * info)11572 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11573 {
11574 bfd_byte *loc;
11575 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11576 static const bfd_vma *plt_entry;
11577 struct mips_elf_link_hash_table *htab;
11578
11579 htab = mips_elf_hash_table (info);
11580 BFD_ASSERT (htab != NULL);
11581
11582 if (ABI_64_P (output_bfd))
11583 plt_entry = (htab->compact_branches
11584 ? mipsr6_n64_exec_plt0_entry_compact
11585 : mips_n64_exec_plt0_entry);
11586 else if (ABI_N32_P (output_bfd))
11587 plt_entry = (htab->compact_branches
11588 ? mipsr6_n32_exec_plt0_entry_compact
11589 : mips_n32_exec_plt0_entry);
11590 else if (!htab->plt_header_is_comp)
11591 plt_entry = (htab->compact_branches
11592 ? mipsr6_o32_exec_plt0_entry_compact
11593 : mips_o32_exec_plt0_entry);
11594 else if (htab->insn32)
11595 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11596 else
11597 plt_entry = micromips_o32_exec_plt0_entry;
11598
11599 /* Calculate the value of .got.plt. */
11600 gotplt_value = (htab->root.sgotplt->output_section->vma
11601 + htab->root.sgotplt->output_offset);
11602 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11603 gotplt_value_low = gotplt_value & 0xffff;
11604
11605 /* The PLT sequence is not safe for N64 if .got.plt's address can
11606 not be loaded in two instructions. */
11607 if (ABI_64_P (output_bfd)
11608 && ((gotplt_value + 0x80008000) & ~(bfd_vma) 0xffffffff) != 0)
11609 {
11610 _bfd_error_handler
11611 /* xgettext:c-format */
11612 (_("%pB: `%pA' start VMA of %#" PRIx64 " outside the 32-bit range "
11613 "supported; consider using `-Ttext-segment=...'"),
11614 output_bfd,
11615 htab->root.sgotplt->output_section,
11616 (int64_t) gotplt_value);
11617 bfd_set_error (bfd_error_no_error);
11618 return false;
11619 }
11620
11621 /* Install the PLT header. */
11622 loc = htab->root.splt->contents;
11623 if (plt_entry == micromips_o32_exec_plt0_entry)
11624 {
11625 bfd_vma gotpc_offset;
11626 bfd_vma loc_address;
11627 size_t i;
11628
11629 BFD_ASSERT (gotplt_value % 4 == 0);
11630
11631 loc_address = (htab->root.splt->output_section->vma
11632 + htab->root.splt->output_offset);
11633 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11634
11635 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11636 if (gotpc_offset + 0x1000000 >= 0x2000000)
11637 {
11638 _bfd_error_handler
11639 /* xgettext:c-format */
11640 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
11641 "beyond the range of ADDIUPC"),
11642 output_bfd,
11643 htab->root.sgotplt->output_section,
11644 (int64_t) gotpc_offset,
11645 htab->root.splt->output_section);
11646 bfd_set_error (bfd_error_no_error);
11647 return false;
11648 }
11649 bfd_put_16 (output_bfd,
11650 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11651 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11652 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11653 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11654 }
11655 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11656 {
11657 size_t i;
11658
11659 bfd_put_16 (output_bfd, plt_entry[0], loc);
11660 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11661 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11662 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11663 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11664 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11665 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11666 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11667 }
11668 else
11669 {
11670 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11671 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11672 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11673 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11674 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11675 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11676 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11677 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11678 }
11679
11680 return true;
11681 }
11682
11683 /* Install the PLT header for a VxWorks executable and finalize the
11684 contents of .rela.plt.unloaded. */
11685
11686 static void
mips_vxworks_finish_exec_plt(bfd * output_bfd,struct bfd_link_info * info)11687 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11688 {
11689 Elf_Internal_Rela rela;
11690 bfd_byte *loc;
11691 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11692 static const bfd_vma *plt_entry;
11693 struct mips_elf_link_hash_table *htab;
11694
11695 htab = mips_elf_hash_table (info);
11696 BFD_ASSERT (htab != NULL);
11697
11698 plt_entry = mips_vxworks_exec_plt0_entry;
11699
11700 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11701 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11702 + htab->root.hgot->root.u.def.section->output_offset
11703 + htab->root.hgot->root.u.def.value);
11704
11705 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11706 got_value_low = got_value & 0xffff;
11707
11708 /* Calculate the address of the PLT header. */
11709 plt_address = (htab->root.splt->output_section->vma
11710 + htab->root.splt->output_offset);
11711
11712 /* Install the PLT header. */
11713 loc = htab->root.splt->contents;
11714 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11715 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11716 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11717 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11718 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11719 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11720
11721 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11722 loc = htab->srelplt2->contents;
11723 rela.r_offset = plt_address;
11724 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11725 rela.r_addend = 0;
11726 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11727 loc += sizeof (Elf32_External_Rela);
11728
11729 /* Output the relocation for the following addiu of
11730 %lo(_GLOBAL_OFFSET_TABLE_). */
11731 rela.r_offset += 4;
11732 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11733 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11734 loc += sizeof (Elf32_External_Rela);
11735
11736 /* Fix up the remaining relocations. They may have the wrong
11737 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11738 in which symbols were output. */
11739 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11740 {
11741 Elf_Internal_Rela rel;
11742
11743 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11744 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11745 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11746 loc += sizeof (Elf32_External_Rela);
11747
11748 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11749 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11750 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11751 loc += sizeof (Elf32_External_Rela);
11752
11753 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11754 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11755 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11756 loc += sizeof (Elf32_External_Rela);
11757 }
11758 }
11759
11760 /* Install the PLT header for a VxWorks shared library. */
11761
11762 static void
mips_vxworks_finish_shared_plt(bfd * output_bfd,struct bfd_link_info * info)11763 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11764 {
11765 unsigned int i;
11766 struct mips_elf_link_hash_table *htab;
11767
11768 htab = mips_elf_hash_table (info);
11769 BFD_ASSERT (htab != NULL);
11770
11771 /* We just need to copy the entry byte-by-byte. */
11772 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11773 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
11774 htab->root.splt->contents + i * 4);
11775 }
11776
11777 /* Finish up the dynamic sections. */
11778
11779 bool
_bfd_mips_elf_finish_dynamic_sections(bfd * output_bfd,struct bfd_link_info * info)11780 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11781 struct bfd_link_info *info)
11782 {
11783 bfd *dynobj;
11784 asection *sdyn;
11785 asection *sgot;
11786 struct mips_got_info *gg, *g;
11787 struct mips_elf_link_hash_table *htab;
11788
11789 htab = mips_elf_hash_table (info);
11790 BFD_ASSERT (htab != NULL);
11791
11792 dynobj = elf_hash_table (info)->dynobj;
11793
11794 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
11795
11796 sgot = htab->root.sgot;
11797 gg = htab->got_info;
11798
11799 if (elf_hash_table (info)->dynamic_sections_created)
11800 {
11801 bfd_byte *b;
11802 int dyn_to_skip = 0, dyn_skipped = 0;
11803
11804 BFD_ASSERT (sdyn != NULL);
11805 BFD_ASSERT (gg != NULL);
11806
11807 g = mips_elf_bfd_got (output_bfd, false);
11808 BFD_ASSERT (g != NULL);
11809
11810 for (b = sdyn->contents;
11811 b < sdyn->contents + sdyn->size;
11812 b += MIPS_ELF_DYN_SIZE (dynobj))
11813 {
11814 Elf_Internal_Dyn dyn;
11815 const char *name;
11816 size_t elemsize;
11817 asection *s;
11818 bool swap_out_p;
11819
11820 /* Read in the current dynamic entry. */
11821 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11822
11823 /* Assume that we're going to modify it and write it out. */
11824 swap_out_p = true;
11825
11826 switch (dyn.d_tag)
11827 {
11828 case DT_RELENT:
11829 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11830 break;
11831
11832 case DT_RELAENT:
11833 BFD_ASSERT (htab->root.target_os == is_vxworks);
11834 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11835 break;
11836
11837 case DT_STRSZ:
11838 /* Rewrite DT_STRSZ. */
11839 dyn.d_un.d_val =
11840 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11841 break;
11842
11843 case DT_PLTGOT:
11844 s = htab->root.sgot;
11845 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11846 break;
11847
11848 case DT_MIPS_PLTGOT:
11849 s = htab->root.sgotplt;
11850 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11851 break;
11852
11853 case DT_MIPS_RLD_VERSION:
11854 dyn.d_un.d_val = 1; /* XXX */
11855 break;
11856
11857 case DT_MIPS_FLAGS:
11858 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11859 break;
11860
11861 case DT_MIPS_TIME_STAMP:
11862 {
11863 time_t t;
11864 time (&t);
11865 dyn.d_un.d_val = t;
11866 }
11867 break;
11868
11869 case DT_MIPS_ICHECKSUM:
11870 /* XXX FIXME: */
11871 swap_out_p = false;
11872 break;
11873
11874 case DT_MIPS_IVERSION:
11875 /* XXX FIXME: */
11876 swap_out_p = false;
11877 break;
11878
11879 case DT_MIPS_BASE_ADDRESS:
11880 s = output_bfd->sections;
11881 BFD_ASSERT (s != NULL);
11882 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11883 break;
11884
11885 case DT_MIPS_LOCAL_GOTNO:
11886 dyn.d_un.d_val = g->local_gotno;
11887 break;
11888
11889 case DT_MIPS_UNREFEXTNO:
11890 /* The index into the dynamic symbol table which is the
11891 entry of the first external symbol that is not
11892 referenced within the same object. */
11893 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11894 break;
11895
11896 case DT_MIPS_GOTSYM:
11897 if (htab->global_gotsym)
11898 {
11899 dyn.d_un.d_val = htab->global_gotsym->dynindx;
11900 break;
11901 }
11902 /* In case if we don't have global got symbols we default
11903 to setting DT_MIPS_GOTSYM to the same value as
11904 DT_MIPS_SYMTABNO. */
11905 /* Fall through. */
11906
11907 case DT_MIPS_SYMTABNO:
11908 name = ".dynsym";
11909 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
11910 s = bfd_get_linker_section (dynobj, name);
11911
11912 if (s != NULL)
11913 dyn.d_un.d_val = s->size / elemsize;
11914 else
11915 dyn.d_un.d_val = 0;
11916 break;
11917
11918 case DT_MIPS_HIPAGENO:
11919 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
11920 break;
11921
11922 case DT_MIPS_RLD_MAP:
11923 {
11924 struct elf_link_hash_entry *h;
11925 h = mips_elf_hash_table (info)->rld_symbol;
11926 if (!h)
11927 {
11928 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11929 swap_out_p = false;
11930 break;
11931 }
11932 s = h->root.u.def.section;
11933
11934 /* The MIPS_RLD_MAP tag stores the absolute address of the
11935 debug pointer. */
11936 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11937 + h->root.u.def.value);
11938 }
11939 break;
11940
11941 case DT_MIPS_RLD_MAP_REL:
11942 {
11943 struct elf_link_hash_entry *h;
11944 bfd_vma dt_addr, rld_addr;
11945 h = mips_elf_hash_table (info)->rld_symbol;
11946 if (!h)
11947 {
11948 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11949 swap_out_p = false;
11950 break;
11951 }
11952 s = h->root.u.def.section;
11953
11954 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11955 pointer, relative to the address of the tag. */
11956 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
11957 + (b - sdyn->contents));
11958 rld_addr = (s->output_section->vma + s->output_offset
11959 + h->root.u.def.value);
11960 dyn.d_un.d_ptr = rld_addr - dt_addr;
11961 }
11962 break;
11963
11964 case DT_MIPS_OPTIONS:
11965 s = (bfd_get_section_by_name
11966 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11967 dyn.d_un.d_ptr = s->vma;
11968 break;
11969
11970 case DT_PLTREL:
11971 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11972 if (htab->root.target_os == is_vxworks)
11973 dyn.d_un.d_val = DT_RELA;
11974 else
11975 dyn.d_un.d_val = DT_REL;
11976 break;
11977
11978 case DT_PLTRELSZ:
11979 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11980 dyn.d_un.d_val = htab->root.srelplt->size;
11981 break;
11982
11983 case DT_JMPREL:
11984 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11985 dyn.d_un.d_ptr = (htab->root.srelplt->output_section->vma
11986 + htab->root.srelplt->output_offset);
11987 break;
11988
11989 case DT_TEXTREL:
11990 /* If we didn't need any text relocations after all, delete
11991 the dynamic tag. */
11992 if (!(info->flags & DF_TEXTREL))
11993 {
11994 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11995 swap_out_p = false;
11996 }
11997 break;
11998
11999 case DT_FLAGS:
12000 /* If we didn't need any text relocations after all, clear
12001 DF_TEXTREL from DT_FLAGS. */
12002 if (!(info->flags & DF_TEXTREL))
12003 dyn.d_un.d_val &= ~DF_TEXTREL;
12004 else
12005 swap_out_p = false;
12006 break;
12007
12008 case DT_MIPS_XHASH:
12009 name = ".MIPS.xhash";
12010 s = bfd_get_linker_section (dynobj, name);
12011 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
12012 break;
12013
12014 default:
12015 swap_out_p = false;
12016 if (htab->root.target_os == is_vxworks
12017 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
12018 swap_out_p = true;
12019 break;
12020 }
12021
12022 if (swap_out_p || dyn_skipped)
12023 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
12024 (dynobj, &dyn, b - dyn_skipped);
12025
12026 if (dyn_to_skip)
12027 {
12028 dyn_skipped += dyn_to_skip;
12029 dyn_to_skip = 0;
12030 }
12031 }
12032
12033 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
12034 if (dyn_skipped > 0)
12035 memset (b - dyn_skipped, 0, dyn_skipped);
12036 }
12037
12038 if (sgot != NULL && sgot->size > 0
12039 && !bfd_is_abs_section (sgot->output_section))
12040 {
12041 if (htab->root.target_os == is_vxworks)
12042 {
12043 /* The first entry of the global offset table points to the
12044 ".dynamic" section. The second is initialized by the
12045 loader and contains the shared library identifier.
12046 The third is also initialized by the loader and points
12047 to the lazy resolution stub. */
12048 MIPS_ELF_PUT_WORD (output_bfd,
12049 sdyn->output_offset + sdyn->output_section->vma,
12050 sgot->contents);
12051 MIPS_ELF_PUT_WORD (output_bfd, 0,
12052 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
12053 MIPS_ELF_PUT_WORD (output_bfd, 0,
12054 sgot->contents
12055 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
12056 }
12057 else
12058 {
12059 /* The first entry of the global offset table will be filled at
12060 runtime. The second entry will be used by some runtime loaders.
12061 This isn't the case of IRIX rld. */
12062 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
12063 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
12064 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
12065 }
12066
12067 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
12068 = MIPS_ELF_GOT_SIZE (output_bfd);
12069 }
12070
12071 /* Generate dynamic relocations for the non-primary gots. */
12072 if (gg != NULL && gg->next)
12073 {
12074 Elf_Internal_Rela rel[3];
12075 bfd_vma addend = 0;
12076
12077 memset (rel, 0, sizeof (rel));
12078 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
12079
12080 for (g = gg->next; g->next != gg; g = g->next)
12081 {
12082 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
12083 + g->next->tls_gotno;
12084
12085 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
12086 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
12087 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
12088 sgot->contents
12089 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
12090
12091 if (! bfd_link_pic (info))
12092 continue;
12093
12094 for (; got_index < g->local_gotno; got_index++)
12095 {
12096 if (got_index >= g->assigned_low_gotno
12097 && got_index <= g->assigned_high_gotno)
12098 continue;
12099
12100 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
12101 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
12102 if (!(mips_elf_create_dynamic_relocation
12103 (output_bfd, info, rel, NULL,
12104 bfd_abs_section_ptr,
12105 0, &addend, sgot)))
12106 return false;
12107 BFD_ASSERT (addend == 0);
12108 }
12109 }
12110 }
12111
12112 /* The generation of dynamic relocations for the non-primary gots
12113 adds more dynamic relocations. We cannot count them until
12114 here. */
12115
12116 if (elf_hash_table (info)->dynamic_sections_created)
12117 {
12118 bfd_byte *b;
12119 bool swap_out_p;
12120
12121 BFD_ASSERT (sdyn != NULL);
12122
12123 for (b = sdyn->contents;
12124 b < sdyn->contents + sdyn->size;
12125 b += MIPS_ELF_DYN_SIZE (dynobj))
12126 {
12127 Elf_Internal_Dyn dyn;
12128 asection *s;
12129
12130 /* Read in the current dynamic entry. */
12131 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
12132
12133 /* Assume that we're going to modify it and write it out. */
12134 swap_out_p = true;
12135
12136 switch (dyn.d_tag)
12137 {
12138 case DT_RELSZ:
12139 /* Reduce DT_RELSZ to account for any relocations we
12140 decided not to make. This is for the n64 irix rld,
12141 which doesn't seem to apply any relocations if there
12142 are trailing null entries. */
12143 s = mips_elf_rel_dyn_section (info, false);
12144 dyn.d_un.d_val = (s->reloc_count
12145 * (ABI_64_P (output_bfd)
12146 ? sizeof (Elf64_Mips_External_Rel)
12147 : sizeof (Elf32_External_Rel)));
12148 /* Adjust the section size too. Tools like the prelinker
12149 can reasonably expect the values to the same. */
12150 BFD_ASSERT (!bfd_is_abs_section (s->output_section));
12151 elf_section_data (s->output_section)->this_hdr.sh_size
12152 = dyn.d_un.d_val;
12153 break;
12154
12155 default:
12156 swap_out_p = false;
12157 break;
12158 }
12159
12160 if (swap_out_p)
12161 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
12162 (dynobj, &dyn, b);
12163 }
12164 }
12165
12166 {
12167 asection *s;
12168 Elf32_compact_rel cpt;
12169
12170 if (SGI_COMPAT (output_bfd))
12171 {
12172 /* Write .compact_rel section out. */
12173 s = bfd_get_linker_section (dynobj, ".compact_rel");
12174 if (s != NULL)
12175 {
12176 cpt.id1 = 1;
12177 cpt.num = s->reloc_count;
12178 cpt.id2 = 2;
12179 cpt.offset = (s->output_section->filepos
12180 + sizeof (Elf32_External_compact_rel));
12181 cpt.reserved0 = 0;
12182 cpt.reserved1 = 0;
12183 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
12184 ((Elf32_External_compact_rel *)
12185 s->contents));
12186
12187 /* Clean up a dummy stub function entry in .text. */
12188 if (htab->sstubs != NULL
12189 && htab->sstubs->contents != NULL)
12190 {
12191 file_ptr dummy_offset;
12192
12193 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
12194 dummy_offset = htab->sstubs->size - htab->function_stub_size;
12195 memset (htab->sstubs->contents + dummy_offset, 0,
12196 htab->function_stub_size);
12197 }
12198 }
12199 }
12200
12201 /* The psABI says that the dynamic relocations must be sorted in
12202 increasing order of r_symndx. The VxWorks EABI doesn't require
12203 this, and because the code below handles REL rather than RELA
12204 relocations, using it for VxWorks would be outright harmful. */
12205 if (htab->root.target_os != is_vxworks)
12206 {
12207 s = mips_elf_rel_dyn_section (info, false);
12208 if (s != NULL
12209 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
12210 {
12211 reldyn_sorting_bfd = output_bfd;
12212
12213 if (ABI_64_P (output_bfd))
12214 qsort ((Elf64_External_Rel *) s->contents + 1,
12215 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
12216 sort_dynamic_relocs_64);
12217 else
12218 qsort ((Elf32_External_Rel *) s->contents + 1,
12219 s->reloc_count - 1, sizeof (Elf32_External_Rel),
12220 sort_dynamic_relocs);
12221 }
12222 }
12223 }
12224
12225 if (htab->root.splt && htab->root.splt->size > 0)
12226 {
12227 if (htab->root.target_os == is_vxworks)
12228 {
12229 if (bfd_link_pic (info))
12230 mips_vxworks_finish_shared_plt (output_bfd, info);
12231 else
12232 mips_vxworks_finish_exec_plt (output_bfd, info);
12233 }
12234 else
12235 {
12236 BFD_ASSERT (!bfd_link_pic (info));
12237 if (!mips_finish_exec_plt (output_bfd, info))
12238 return false;
12239 }
12240 }
12241 return true;
12242 }
12243
12244
12245 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
12246
12247 static void
mips_set_isa_flags(bfd * abfd)12248 mips_set_isa_flags (bfd *abfd)
12249 {
12250 flagword val;
12251
12252 switch (bfd_get_mach (abfd))
12253 {
12254 default:
12255 if (ABI_N32_P (abfd) || ABI_64_P (abfd))
12256 val = E_MIPS_ARCH_3;
12257 else
12258 val = E_MIPS_ARCH_1;
12259 break;
12260
12261 case bfd_mach_mips3000:
12262 val = E_MIPS_ARCH_1;
12263 break;
12264
12265 case bfd_mach_mips3900:
12266 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
12267 break;
12268
12269 case bfd_mach_mips6000:
12270 val = E_MIPS_ARCH_2;
12271 break;
12272
12273 case bfd_mach_mips4010:
12274 val = E_MIPS_ARCH_2 | E_MIPS_MACH_4010;
12275 break;
12276
12277 case bfd_mach_mips4000:
12278 case bfd_mach_mips4300:
12279 case bfd_mach_mips4400:
12280 case bfd_mach_mips4600:
12281 val = E_MIPS_ARCH_3;
12282 break;
12283
12284 case bfd_mach_mips4100:
12285 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
12286 break;
12287
12288 case bfd_mach_mips4111:
12289 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
12290 break;
12291
12292 case bfd_mach_mips4120:
12293 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
12294 break;
12295
12296 case bfd_mach_mips4650:
12297 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
12298 break;
12299
12300 case bfd_mach_mips5400:
12301 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
12302 break;
12303
12304 case bfd_mach_mips5500:
12305 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
12306 break;
12307
12308 case bfd_mach_mips5900:
12309 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
12310 break;
12311
12312 case bfd_mach_mips9000:
12313 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
12314 break;
12315
12316 case bfd_mach_mips5000:
12317 case bfd_mach_mips7000:
12318 case bfd_mach_mips8000:
12319 case bfd_mach_mips10000:
12320 case bfd_mach_mips12000:
12321 case bfd_mach_mips14000:
12322 case bfd_mach_mips16000:
12323 val = E_MIPS_ARCH_4;
12324 break;
12325
12326 case bfd_mach_mips5:
12327 val = E_MIPS_ARCH_5;
12328 break;
12329
12330 case bfd_mach_mips_loongson_2e:
12331 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
12332 break;
12333
12334 case bfd_mach_mips_loongson_2f:
12335 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
12336 break;
12337
12338 case bfd_mach_mips_sb1:
12339 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
12340 break;
12341
12342 case bfd_mach_mips_gs464:
12343 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS464;
12344 break;
12345
12346 case bfd_mach_mips_gs464e:
12347 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS464E;
12348 break;
12349
12350 case bfd_mach_mips_gs264e:
12351 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS264E;
12352 break;
12353
12354 case bfd_mach_mips_octeon:
12355 case bfd_mach_mips_octeonp:
12356 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
12357 break;
12358
12359 case bfd_mach_mips_octeon3:
12360 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
12361 break;
12362
12363 case bfd_mach_mips_xlr:
12364 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
12365 break;
12366
12367 case bfd_mach_mips_octeon2:
12368 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
12369 break;
12370
12371 case bfd_mach_mipsisa32:
12372 val = E_MIPS_ARCH_32;
12373 break;
12374
12375 case bfd_mach_mipsisa64:
12376 val = E_MIPS_ARCH_64;
12377 break;
12378
12379 case bfd_mach_mipsisa32r2:
12380 case bfd_mach_mipsisa32r3:
12381 case bfd_mach_mipsisa32r5:
12382 val = E_MIPS_ARCH_32R2;
12383 break;
12384
12385 case bfd_mach_mips_interaptiv_mr2:
12386 val = E_MIPS_ARCH_32R2 | E_MIPS_MACH_IAMR2;
12387 break;
12388
12389 case bfd_mach_mipsisa64r2:
12390 case bfd_mach_mipsisa64r3:
12391 case bfd_mach_mipsisa64r5:
12392 val = E_MIPS_ARCH_64R2;
12393 break;
12394
12395 case bfd_mach_mipsisa32r6:
12396 val = E_MIPS_ARCH_32R6;
12397 break;
12398
12399 case bfd_mach_mipsisa64r6:
12400 val = E_MIPS_ARCH_64R6;
12401 break;
12402 }
12403 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
12404 elf_elfheader (abfd)->e_flags |= val;
12405
12406 }
12407
12408
12409 /* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
12410 Don't do so for code sections. We want to keep ordering of HI16/LO16
12411 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
12412 relocs to be sorted. */
12413
12414 bool
_bfd_mips_elf_sort_relocs_p(asection * sec)12415 _bfd_mips_elf_sort_relocs_p (asection *sec)
12416 {
12417 return (sec->flags & SEC_CODE) == 0;
12418 }
12419
12420
12421 /* The final processing done just before writing out a MIPS ELF object
12422 file. This gets the MIPS architecture right based on the machine
12423 number. This is used by both the 32-bit and the 64-bit ABI. */
12424
12425 void
_bfd_mips_final_write_processing(bfd * abfd)12426 _bfd_mips_final_write_processing (bfd *abfd)
12427 {
12428 unsigned int i;
12429 Elf_Internal_Shdr **hdrpp;
12430 const char *name;
12431 asection *sec;
12432
12433 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
12434 is nonzero. This is for compatibility with old objects, which used
12435 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
12436 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
12437 mips_set_isa_flags (abfd);
12438
12439 /* Set the sh_info field for .gptab sections and other appropriate
12440 info for each special section. */
12441 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
12442 i < elf_numsections (abfd);
12443 i++, hdrpp++)
12444 {
12445 switch ((*hdrpp)->sh_type)
12446 {
12447 case SHT_MIPS_MSYM:
12448 case SHT_MIPS_LIBLIST:
12449 sec = bfd_get_section_by_name (abfd, ".dynstr");
12450 if (sec != NULL)
12451 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12452 break;
12453
12454 case SHT_MIPS_GPTAB:
12455 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12456 name = bfd_section_name ((*hdrpp)->bfd_section);
12457 BFD_ASSERT (name != NULL
12458 && startswith (name, ".gptab."));
12459 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
12460 BFD_ASSERT (sec != NULL);
12461 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12462 break;
12463
12464 case SHT_MIPS_CONTENT:
12465 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12466 name = bfd_section_name ((*hdrpp)->bfd_section);
12467 BFD_ASSERT (name != NULL
12468 && startswith (name, ".MIPS.content"));
12469 sec = bfd_get_section_by_name (abfd,
12470 name + sizeof ".MIPS.content" - 1);
12471 BFD_ASSERT (sec != NULL);
12472 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12473 break;
12474
12475 case SHT_MIPS_SYMBOL_LIB:
12476 sec = bfd_get_section_by_name (abfd, ".dynsym");
12477 if (sec != NULL)
12478 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12479 sec = bfd_get_section_by_name (abfd, ".liblist");
12480 if (sec != NULL)
12481 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12482 break;
12483
12484 case SHT_MIPS_EVENTS:
12485 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12486 name = bfd_section_name ((*hdrpp)->bfd_section);
12487 BFD_ASSERT (name != NULL);
12488 if (startswith (name, ".MIPS.events"))
12489 sec = bfd_get_section_by_name (abfd,
12490 name + sizeof ".MIPS.events" - 1);
12491 else
12492 {
12493 BFD_ASSERT (startswith (name, ".MIPS.post_rel"));
12494 sec = bfd_get_section_by_name (abfd,
12495 (name
12496 + sizeof ".MIPS.post_rel" - 1));
12497 }
12498 BFD_ASSERT (sec != NULL);
12499 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12500 break;
12501
12502 case SHT_MIPS_XHASH:
12503 sec = bfd_get_section_by_name (abfd, ".dynsym");
12504 if (sec != NULL)
12505 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12506 }
12507 }
12508 }
12509
12510 bool
_bfd_mips_elf_final_write_processing(bfd * abfd)12511 _bfd_mips_elf_final_write_processing (bfd *abfd)
12512 {
12513 _bfd_mips_final_write_processing (abfd);
12514 return _bfd_elf_final_write_processing (abfd);
12515 }
12516
12517 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
12518 segments. */
12519
12520 int
_bfd_mips_elf_additional_program_headers(bfd * abfd,struct bfd_link_info * info ATTRIBUTE_UNUSED)12521 _bfd_mips_elf_additional_program_headers (bfd *abfd,
12522 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12523 {
12524 asection *s;
12525 int ret = 0;
12526
12527 /* See if we need a PT_MIPS_REGINFO segment. */
12528 s = bfd_get_section_by_name (abfd, ".reginfo");
12529 if (s && (s->flags & SEC_LOAD))
12530 ++ret;
12531
12532 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12533 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12534 ++ret;
12535
12536 /* See if we need a PT_MIPS_OPTIONS segment. */
12537 if (IRIX_COMPAT (abfd) == ict_irix6
12538 && bfd_get_section_by_name (abfd,
12539 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12540 ++ret;
12541
12542 /* See if we need a PT_MIPS_RTPROC segment. */
12543 if (IRIX_COMPAT (abfd) == ict_irix5
12544 && bfd_get_section_by_name (abfd, ".dynamic")
12545 && bfd_get_section_by_name (abfd, ".mdebug"))
12546 ++ret;
12547
12548 /* Allocate a PT_NULL header in dynamic objects. See
12549 _bfd_mips_elf_modify_segment_map for details. */
12550 if (!SGI_COMPAT (abfd)
12551 && bfd_get_section_by_name (abfd, ".dynamic"))
12552 ++ret;
12553
12554 return ret;
12555 }
12556
12557 /* Modify the segment map for an IRIX5 executable. */
12558
12559 bool
_bfd_mips_elf_modify_segment_map(bfd * abfd,struct bfd_link_info * info)12560 _bfd_mips_elf_modify_segment_map (bfd *abfd,
12561 struct bfd_link_info *info)
12562 {
12563 asection *s;
12564 struct elf_segment_map *m, **pm;
12565 size_t amt;
12566
12567 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12568 segment. */
12569 s = bfd_get_section_by_name (abfd, ".reginfo");
12570 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12571 {
12572 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12573 if (m->p_type == PT_MIPS_REGINFO)
12574 break;
12575 if (m == NULL)
12576 {
12577 amt = sizeof *m;
12578 m = bfd_zalloc (abfd, amt);
12579 if (m == NULL)
12580 return false;
12581
12582 m->p_type = PT_MIPS_REGINFO;
12583 m->count = 1;
12584 m->sections[0] = s;
12585
12586 /* We want to put it after the PHDR and INTERP segments. */
12587 pm = &elf_seg_map (abfd);
12588 while (*pm != NULL
12589 && ((*pm)->p_type == PT_PHDR
12590 || (*pm)->p_type == PT_INTERP))
12591 pm = &(*pm)->next;
12592
12593 m->next = *pm;
12594 *pm = m;
12595 }
12596 }
12597
12598 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12599 segment. */
12600 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12601 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12602 {
12603 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12604 if (m->p_type == PT_MIPS_ABIFLAGS)
12605 break;
12606 if (m == NULL)
12607 {
12608 amt = sizeof *m;
12609 m = bfd_zalloc (abfd, amt);
12610 if (m == NULL)
12611 return false;
12612
12613 m->p_type = PT_MIPS_ABIFLAGS;
12614 m->count = 1;
12615 m->sections[0] = s;
12616
12617 /* We want to put it after the PHDR and INTERP segments. */
12618 pm = &elf_seg_map (abfd);
12619 while (*pm != NULL
12620 && ((*pm)->p_type == PT_PHDR
12621 || (*pm)->p_type == PT_INTERP))
12622 pm = &(*pm)->next;
12623
12624 m->next = *pm;
12625 *pm = m;
12626 }
12627 }
12628
12629 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12630 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
12631 PT_MIPS_OPTIONS segment immediately following the program header
12632 table. */
12633 if (NEWABI_P (abfd)
12634 /* On non-IRIX6 new abi, we'll have already created a segment
12635 for this section, so don't create another. I'm not sure this
12636 is not also the case for IRIX 6, but I can't test it right
12637 now. */
12638 && IRIX_COMPAT (abfd) == ict_irix6)
12639 {
12640 for (s = abfd->sections; s; s = s->next)
12641 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12642 break;
12643
12644 if (s)
12645 {
12646 struct elf_segment_map *options_segment;
12647
12648 pm = &elf_seg_map (abfd);
12649 while (*pm != NULL
12650 && ((*pm)->p_type == PT_PHDR
12651 || (*pm)->p_type == PT_INTERP))
12652 pm = &(*pm)->next;
12653
12654 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12655 {
12656 amt = sizeof (struct elf_segment_map);
12657 options_segment = bfd_zalloc (abfd, amt);
12658 options_segment->next = *pm;
12659 options_segment->p_type = PT_MIPS_OPTIONS;
12660 options_segment->p_flags = PF_R;
12661 options_segment->p_flags_valid = true;
12662 options_segment->count = 1;
12663 options_segment->sections[0] = s;
12664 *pm = options_segment;
12665 }
12666 }
12667 }
12668 else
12669 {
12670 if (IRIX_COMPAT (abfd) == ict_irix5)
12671 {
12672 /* If there are .dynamic and .mdebug sections, we make a room
12673 for the RTPROC header. FIXME: Rewrite without section names. */
12674 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12675 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12676 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12677 {
12678 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12679 if (m->p_type == PT_MIPS_RTPROC)
12680 break;
12681 if (m == NULL)
12682 {
12683 amt = sizeof *m;
12684 m = bfd_zalloc (abfd, amt);
12685 if (m == NULL)
12686 return false;
12687
12688 m->p_type = PT_MIPS_RTPROC;
12689
12690 s = bfd_get_section_by_name (abfd, ".rtproc");
12691 if (s == NULL)
12692 {
12693 m->count = 0;
12694 m->p_flags = 0;
12695 m->p_flags_valid = 1;
12696 }
12697 else
12698 {
12699 m->count = 1;
12700 m->sections[0] = s;
12701 }
12702
12703 /* We want to put it after the DYNAMIC segment. */
12704 pm = &elf_seg_map (abfd);
12705 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12706 pm = &(*pm)->next;
12707 if (*pm != NULL)
12708 pm = &(*pm)->next;
12709
12710 m->next = *pm;
12711 *pm = m;
12712 }
12713 }
12714 }
12715 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
12716 .dynstr, .dynsym, and .hash sections, and everything in
12717 between. */
12718 for (pm = &elf_seg_map (abfd); *pm != NULL;
12719 pm = &(*pm)->next)
12720 if ((*pm)->p_type == PT_DYNAMIC)
12721 break;
12722 m = *pm;
12723 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12724 glibc's dynamic linker has traditionally derived the number of
12725 tags from the p_filesz field, and sometimes allocates stack
12726 arrays of that size. An overly-big PT_DYNAMIC segment can
12727 be actively harmful in such cases. Making PT_DYNAMIC contain
12728 other sections can also make life hard for the prelinker,
12729 which might move one of the other sections to a different
12730 PT_LOAD segment. */
12731 if (SGI_COMPAT (abfd)
12732 && m != NULL
12733 && m->count == 1
12734 && strcmp (m->sections[0]->name, ".dynamic") == 0)
12735 {
12736 static const char *sec_names[] =
12737 {
12738 ".dynamic", ".dynstr", ".dynsym", ".hash"
12739 };
12740 bfd_vma low, high;
12741 unsigned int i, c;
12742 struct elf_segment_map *n;
12743
12744 low = ~(bfd_vma) 0;
12745 high = 0;
12746 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12747 {
12748 s = bfd_get_section_by_name (abfd, sec_names[i]);
12749 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12750 {
12751 bfd_size_type sz;
12752
12753 if (low > s->vma)
12754 low = s->vma;
12755 sz = s->size;
12756 if (high < s->vma + sz)
12757 high = s->vma + sz;
12758 }
12759 }
12760
12761 c = 0;
12762 for (s = abfd->sections; s != NULL; s = s->next)
12763 if ((s->flags & SEC_LOAD) != 0
12764 && s->vma >= low
12765 && s->vma + s->size <= high)
12766 ++c;
12767
12768 amt = sizeof *n - sizeof (asection *) + c * sizeof (asection *);
12769 n = bfd_zalloc (abfd, amt);
12770 if (n == NULL)
12771 return false;
12772 *n = *m;
12773 n->count = c;
12774
12775 i = 0;
12776 for (s = abfd->sections; s != NULL; s = s->next)
12777 {
12778 if ((s->flags & SEC_LOAD) != 0
12779 && s->vma >= low
12780 && s->vma + s->size <= high)
12781 {
12782 n->sections[i] = s;
12783 ++i;
12784 }
12785 }
12786
12787 *pm = n;
12788 }
12789 }
12790
12791 /* Allocate a spare program header in dynamic objects so that tools
12792 like the prelinker can add an extra PT_LOAD entry.
12793
12794 If the prelinker needs to make room for a new PT_LOAD entry, its
12795 standard procedure is to move the first (read-only) sections into
12796 the new (writable) segment. However, the MIPS ABI requires
12797 .dynamic to be in a read-only segment, and the section will often
12798 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12799
12800 Although the prelinker could in principle move .dynamic to a
12801 writable segment, it seems better to allocate a spare program
12802 header instead, and avoid the need to move any sections.
12803 There is a long tradition of allocating spare dynamic tags,
12804 so allocating a spare program header seems like a natural
12805 extension.
12806
12807 If INFO is NULL, we may be copying an already prelinked binary
12808 with objcopy or strip, so do not add this header. */
12809 if (info != NULL
12810 && !SGI_COMPAT (abfd)
12811 && bfd_get_section_by_name (abfd, ".dynamic"))
12812 {
12813 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
12814 if ((*pm)->p_type == PT_NULL)
12815 break;
12816 if (*pm == NULL)
12817 {
12818 m = bfd_zalloc (abfd, sizeof (*m));
12819 if (m == NULL)
12820 return false;
12821
12822 m->p_type = PT_NULL;
12823 *pm = m;
12824 }
12825 }
12826
12827 return true;
12828 }
12829
12830 /* Return the section that should be marked against GC for a given
12831 relocation. */
12832
12833 asection *
_bfd_mips_elf_gc_mark_hook(asection * sec,struct bfd_link_info * info,Elf_Internal_Rela * rel,struct elf_link_hash_entry * h,Elf_Internal_Sym * sym)12834 _bfd_mips_elf_gc_mark_hook (asection *sec,
12835 struct bfd_link_info *info,
12836 Elf_Internal_Rela *rel,
12837 struct elf_link_hash_entry *h,
12838 Elf_Internal_Sym *sym)
12839 {
12840 /* ??? Do mips16 stub sections need to be handled special? */
12841
12842 if (h != NULL)
12843 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12844 {
12845 case R_MIPS_GNU_VTINHERIT:
12846 case R_MIPS_GNU_VTENTRY:
12847 return NULL;
12848 }
12849
12850 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12851 }
12852
12853 /* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12854
12855 bool
_bfd_mips_elf_gc_mark_extra_sections(struct bfd_link_info * info,elf_gc_mark_hook_fn gc_mark_hook)12856 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12857 elf_gc_mark_hook_fn gc_mark_hook)
12858 {
12859 bfd *sub;
12860
12861 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12862
12863 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12864 {
12865 asection *o;
12866
12867 if (! is_mips_elf (sub))
12868 continue;
12869
12870 for (o = sub->sections; o != NULL; o = o->next)
12871 if (!o->gc_mark
12872 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P (bfd_section_name (o)))
12873 {
12874 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12875 return false;
12876 }
12877 }
12878
12879 return true;
12880 }
12881
12882 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12883 hiding the old indirect symbol. Process additional relocation
12884 information. Also called for weakdefs, in which case we just let
12885 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12886
12887 void
_bfd_mips_elf_copy_indirect_symbol(struct bfd_link_info * info,struct elf_link_hash_entry * dir,struct elf_link_hash_entry * ind)12888 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
12889 struct elf_link_hash_entry *dir,
12890 struct elf_link_hash_entry *ind)
12891 {
12892 struct mips_elf_link_hash_entry *dirmips, *indmips;
12893
12894 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
12895
12896 dirmips = (struct mips_elf_link_hash_entry *) dir;
12897 indmips = (struct mips_elf_link_hash_entry *) ind;
12898 /* Any absolute non-dynamic relocations against an indirect or weak
12899 definition will be against the target symbol. */
12900 if (indmips->has_static_relocs)
12901 dirmips->has_static_relocs = true;
12902
12903 if (ind->root.type != bfd_link_hash_indirect)
12904 return;
12905
12906 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12907 if (indmips->readonly_reloc)
12908 dirmips->readonly_reloc = true;
12909 if (indmips->no_fn_stub)
12910 dirmips->no_fn_stub = true;
12911 if (indmips->fn_stub)
12912 {
12913 dirmips->fn_stub = indmips->fn_stub;
12914 indmips->fn_stub = NULL;
12915 }
12916 if (indmips->need_fn_stub)
12917 {
12918 dirmips->need_fn_stub = true;
12919 indmips->need_fn_stub = false;
12920 }
12921 if (indmips->call_stub)
12922 {
12923 dirmips->call_stub = indmips->call_stub;
12924 indmips->call_stub = NULL;
12925 }
12926 if (indmips->call_fp_stub)
12927 {
12928 dirmips->call_fp_stub = indmips->call_fp_stub;
12929 indmips->call_fp_stub = NULL;
12930 }
12931 if (indmips->global_got_area < dirmips->global_got_area)
12932 dirmips->global_got_area = indmips->global_got_area;
12933 if (indmips->global_got_area < GGA_NONE)
12934 indmips->global_got_area = GGA_NONE;
12935 if (indmips->has_nonpic_branches)
12936 dirmips->has_nonpic_branches = true;
12937 }
12938
12939 /* Take care of the special `__gnu_absolute_zero' symbol and ignore attempts
12940 to hide it. It has to remain global (it will also be protected) so as to
12941 be assigned a global GOT entry, which will then remain unchanged at load
12942 time. */
12943
12944 void
_bfd_mips_elf_hide_symbol(struct bfd_link_info * info,struct elf_link_hash_entry * entry,bool force_local)12945 _bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
12946 struct elf_link_hash_entry *entry,
12947 bool force_local)
12948 {
12949 struct mips_elf_link_hash_table *htab;
12950
12951 htab = mips_elf_hash_table (info);
12952 BFD_ASSERT (htab != NULL);
12953 if (htab->use_absolute_zero
12954 && strcmp (entry->root.root.string, "__gnu_absolute_zero") == 0)
12955 return;
12956
12957 _bfd_elf_link_hash_hide_symbol (info, entry, force_local);
12958 }
12959
12960 #define PDR_SIZE 32
12961
12962 bool
_bfd_mips_elf_discard_info(bfd * abfd,struct elf_reloc_cookie * cookie,struct bfd_link_info * info)12963 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12964 struct bfd_link_info *info)
12965 {
12966 asection *o;
12967 bool ret = false;
12968 unsigned char *tdata;
12969 size_t i, skip;
12970
12971 o = bfd_get_section_by_name (abfd, ".pdr");
12972 if (! o)
12973 return false;
12974 if (o->size == 0)
12975 return false;
12976 if (o->size % PDR_SIZE != 0)
12977 return false;
12978 if (o->output_section != NULL
12979 && bfd_is_abs_section (o->output_section))
12980 return false;
12981
12982 tdata = bfd_zmalloc (o->size / PDR_SIZE);
12983 if (! tdata)
12984 return false;
12985
12986 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
12987 info->keep_memory);
12988 if (!cookie->rels)
12989 {
12990 free (tdata);
12991 return false;
12992 }
12993
12994 cookie->rel = cookie->rels;
12995 cookie->relend = cookie->rels + o->reloc_count;
12996
12997 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
12998 {
12999 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
13000 {
13001 tdata[i] = 1;
13002 skip ++;
13003 }
13004 }
13005
13006 if (skip != 0)
13007 {
13008 mips_elf_section_data (o)->u.tdata = tdata;
13009 if (o->rawsize == 0)
13010 o->rawsize = o->size;
13011 o->size -= skip * PDR_SIZE;
13012 ret = true;
13013 }
13014 else
13015 free (tdata);
13016
13017 if (! info->keep_memory)
13018 free (cookie->rels);
13019
13020 return ret;
13021 }
13022
13023 bool
_bfd_mips_elf_ignore_discarded_relocs(asection * sec)13024 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
13025 {
13026 if (strcmp (sec->name, ".pdr") == 0)
13027 return true;
13028 return false;
13029 }
13030
13031 bool
_bfd_mips_elf_write_section(bfd * output_bfd,struct bfd_link_info * link_info ATTRIBUTE_UNUSED,asection * sec,bfd_byte * contents)13032 _bfd_mips_elf_write_section (bfd *output_bfd,
13033 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
13034 asection *sec, bfd_byte *contents)
13035 {
13036 bfd_byte *to, *from, *end;
13037 int i;
13038
13039 if (strcmp (sec->name, ".pdr") != 0)
13040 return false;
13041
13042 if (mips_elf_section_data (sec)->u.tdata == NULL)
13043 return false;
13044
13045 to = contents;
13046 end = contents + sec->size;
13047 for (from = contents, i = 0;
13048 from < end;
13049 from += PDR_SIZE, i++)
13050 {
13051 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
13052 continue;
13053 if (to != from)
13054 memcpy (to, from, PDR_SIZE);
13055 to += PDR_SIZE;
13056 }
13057 bfd_set_section_contents (output_bfd, sec->output_section, contents,
13058 sec->output_offset, sec->size);
13059 return true;
13060 }
13061
13062 /* microMIPS code retains local labels for linker relaxation. Omit them
13063 from output by default for clarity. */
13064
13065 bool
_bfd_mips_elf_is_target_special_symbol(bfd * abfd,asymbol * sym)13066 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
13067 {
13068 return _bfd_elf_is_local_label_name (abfd, sym->name);
13069 }
13070
13071 /* MIPS ELF uses a special find_nearest_line routine in order the
13072 handle the ECOFF debugging information. */
13073
13074 struct mips_elf_find_line
13075 {
13076 struct ecoff_debug_info d;
13077 struct ecoff_find_line i;
13078 };
13079
13080 bool
_bfd_mips_elf_find_nearest_line(bfd * abfd,asymbol ** symbols,asection * section,bfd_vma offset,const char ** filename_ptr,const char ** functionname_ptr,unsigned int * line_ptr,unsigned int * discriminator_ptr)13081 _bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
13082 asection *section, bfd_vma offset,
13083 const char **filename_ptr,
13084 const char **functionname_ptr,
13085 unsigned int *line_ptr,
13086 unsigned int *discriminator_ptr)
13087 {
13088 asection *msec;
13089
13090 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
13091 filename_ptr, functionname_ptr,
13092 line_ptr, discriminator_ptr,
13093 dwarf_debug_sections,
13094 &elf_tdata (abfd)->dwarf2_find_line_info)
13095 == 1)
13096 return true;
13097
13098 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
13099 filename_ptr, functionname_ptr,
13100 line_ptr))
13101 {
13102 if (!*functionname_ptr)
13103 _bfd_elf_find_function (abfd, symbols, section, offset,
13104 *filename_ptr ? NULL : filename_ptr,
13105 functionname_ptr);
13106 return true;
13107 }
13108
13109 msec = bfd_get_section_by_name (abfd, ".mdebug");
13110 if (msec != NULL)
13111 {
13112 flagword origflags;
13113 struct mips_elf_find_line *fi;
13114 const struct ecoff_debug_swap * const swap =
13115 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
13116
13117 /* If we are called during a link, mips_elf_final_link may have
13118 cleared the SEC_HAS_CONTENTS field. We force it back on here
13119 if appropriate (which it normally will be). */
13120 origflags = msec->flags;
13121 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
13122 msec->flags |= SEC_HAS_CONTENTS;
13123
13124 fi = mips_elf_tdata (abfd)->find_line_info;
13125 if (fi == NULL)
13126 {
13127 bfd_size_type external_fdr_size;
13128 char *fraw_src;
13129 char *fraw_end;
13130 struct fdr *fdr_ptr;
13131 bfd_size_type amt = sizeof (struct mips_elf_find_line);
13132
13133 fi = bfd_zalloc (abfd, amt);
13134 if (fi == NULL)
13135 {
13136 msec->flags = origflags;
13137 return false;
13138 }
13139
13140 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
13141 {
13142 msec->flags = origflags;
13143 return false;
13144 }
13145
13146 /* Swap in the FDR information. */
13147 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
13148 fi->d.fdr = bfd_alloc (abfd, amt);
13149 if (fi->d.fdr == NULL)
13150 {
13151 msec->flags = origflags;
13152 return false;
13153 }
13154 external_fdr_size = swap->external_fdr_size;
13155 fdr_ptr = fi->d.fdr;
13156 fraw_src = (char *) fi->d.external_fdr;
13157 fraw_end = (fraw_src
13158 + fi->d.symbolic_header.ifdMax * external_fdr_size);
13159 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
13160 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
13161
13162 mips_elf_tdata (abfd)->find_line_info = fi;
13163
13164 /* Note that we don't bother to ever free this information.
13165 find_nearest_line is either called all the time, as in
13166 objdump -l, so the information should be saved, or it is
13167 rarely called, as in ld error messages, so the memory
13168 wasted is unimportant. Still, it would probably be a
13169 good idea for free_cached_info to throw it away. */
13170 }
13171
13172 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
13173 &fi->i, filename_ptr, functionname_ptr,
13174 line_ptr))
13175 {
13176 msec->flags = origflags;
13177 return true;
13178 }
13179
13180 msec->flags = origflags;
13181 }
13182
13183 /* Fall back on the generic ELF find_nearest_line routine. */
13184
13185 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
13186 filename_ptr, functionname_ptr,
13187 line_ptr, discriminator_ptr);
13188 }
13189
13190 bool
_bfd_mips_elf_find_inliner_info(bfd * abfd,const char ** filename_ptr,const char ** functionname_ptr,unsigned int * line_ptr)13191 _bfd_mips_elf_find_inliner_info (bfd *abfd,
13192 const char **filename_ptr,
13193 const char **functionname_ptr,
13194 unsigned int *line_ptr)
13195 {
13196 bool found;
13197 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
13198 functionname_ptr, line_ptr,
13199 & elf_tdata (abfd)->dwarf2_find_line_info);
13200 return found;
13201 }
13202
13203
13204 /* When are writing out the .options or .MIPS.options section,
13205 remember the bytes we are writing out, so that we can install the
13206 GP value in the section_processing routine. */
13207
13208 bool
_bfd_mips_elf_set_section_contents(bfd * abfd,sec_ptr section,const void * location,file_ptr offset,bfd_size_type count)13209 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
13210 const void *location,
13211 file_ptr offset, bfd_size_type count)
13212 {
13213 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
13214 {
13215 bfd_byte *c;
13216
13217 if (elf_section_data (section) == NULL)
13218 {
13219 size_t amt = sizeof (struct bfd_elf_section_data);
13220 section->used_by_bfd = bfd_zalloc (abfd, amt);
13221 if (elf_section_data (section) == NULL)
13222 return false;
13223 }
13224 c = mips_elf_section_data (section)->u.tdata;
13225 if (c == NULL)
13226 {
13227 c = bfd_zalloc (abfd, section->size);
13228 if (c == NULL)
13229 return false;
13230 mips_elf_section_data (section)->u.tdata = c;
13231 }
13232
13233 memcpy (c + offset, location, count);
13234 }
13235
13236 return _bfd_elf_set_section_contents (abfd, section, location, offset,
13237 count);
13238 }
13239
13240 /* This is almost identical to bfd_generic_get_... except that some
13241 MIPS relocations need to be handled specially. Sigh. */
13242
13243 bfd_byte *
_bfd_elf_mips_get_relocated_section_contents(bfd * abfd,struct bfd_link_info * link_info,struct bfd_link_order * link_order,bfd_byte * data,bool relocatable,asymbol ** symbols)13244 _bfd_elf_mips_get_relocated_section_contents
13245 (bfd *abfd,
13246 struct bfd_link_info *link_info,
13247 struct bfd_link_order *link_order,
13248 bfd_byte *data,
13249 bool relocatable,
13250 asymbol **symbols)
13251 {
13252 bfd *input_bfd = link_order->u.indirect.section->owner;
13253 asection *input_section = link_order->u.indirect.section;
13254 long reloc_size;
13255 arelent **reloc_vector;
13256 long reloc_count;
13257
13258 reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
13259 if (reloc_size < 0)
13260 return NULL;
13261
13262 /* Read in the section. */
13263 if (!bfd_get_full_section_contents (input_bfd, input_section, &data))
13264 return NULL;
13265
13266 if (data == NULL)
13267 return NULL;
13268
13269 if (reloc_size == 0)
13270 return data;
13271
13272 reloc_vector = (arelent **) bfd_malloc (reloc_size);
13273 if (reloc_vector == NULL)
13274 {
13275 struct mips_hi16 **hip, *hi;
13276 error_return:
13277 /* If we are going to return an error, remove entries on
13278 mips_hi16_list that point into this section's data. Data
13279 will typically be freed on return from this function. */
13280 hip = &mips_hi16_list;
13281 while ((hi = *hip) != NULL)
13282 {
13283 if (hi->input_section == input_section)
13284 {
13285 *hip = hi->next;
13286 free (hi);
13287 }
13288 else
13289 hip = &hi->next;
13290 }
13291 data = NULL;
13292 goto out;
13293 }
13294
13295 reloc_count = bfd_canonicalize_reloc (input_bfd,
13296 input_section,
13297 reloc_vector,
13298 symbols);
13299 if (reloc_count < 0)
13300 goto error_return;
13301
13302 if (reloc_count > 0)
13303 {
13304 arelent **parent;
13305 /* for mips */
13306 int gp_found;
13307 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
13308
13309 {
13310 struct bfd_hash_entry *h;
13311 struct bfd_link_hash_entry *lh;
13312 /* Skip all this stuff if we aren't mixing formats. */
13313 if (abfd && input_bfd
13314 && abfd->xvec == input_bfd->xvec)
13315 lh = 0;
13316 else
13317 {
13318 h = bfd_hash_lookup (&link_info->hash->table, "_gp", false, false);
13319 lh = (struct bfd_link_hash_entry *) h;
13320 }
13321 lookup:
13322 if (lh)
13323 {
13324 switch (lh->type)
13325 {
13326 case bfd_link_hash_undefined:
13327 case bfd_link_hash_undefweak:
13328 case bfd_link_hash_common:
13329 gp_found = 0;
13330 break;
13331 case bfd_link_hash_defined:
13332 case bfd_link_hash_defweak:
13333 gp_found = 1;
13334 gp = lh->u.def.value;
13335 break;
13336 case bfd_link_hash_indirect:
13337 case bfd_link_hash_warning:
13338 lh = lh->u.i.link;
13339 /* @@FIXME ignoring warning for now */
13340 goto lookup;
13341 case bfd_link_hash_new:
13342 default:
13343 abort ();
13344 }
13345 }
13346 else
13347 gp_found = 0;
13348 }
13349 /* end mips */
13350
13351 for (parent = reloc_vector; *parent != NULL; parent++)
13352 {
13353 char *error_message = NULL;
13354 asymbol *symbol;
13355 bfd_reloc_status_type r;
13356
13357 symbol = *(*parent)->sym_ptr_ptr;
13358 /* PR ld/19628: A specially crafted input file
13359 can result in a NULL symbol pointer here. */
13360 if (symbol == NULL)
13361 {
13362 link_info->callbacks->einfo
13363 /* xgettext:c-format */
13364 (_("%X%P: %pB(%pA): error: relocation for offset %V has no value\n"),
13365 abfd, input_section, (* parent)->address);
13366 goto error_return;
13367 }
13368
13369 /* Zap reloc field when the symbol is from a discarded
13370 section, ignoring any addend. Do the same when called
13371 from bfd_simple_get_relocated_section_contents for
13372 undefined symbols in debug sections. This is to keep
13373 debug info reasonably sane, in particular so that
13374 DW_FORM_ref_addr to another file's .debug_info isn't
13375 confused with an offset into the current file's
13376 .debug_info. */
13377 if ((symbol->section != NULL && discarded_section (symbol->section))
13378 || (symbol->section == bfd_und_section_ptr
13379 && (input_section->flags & SEC_DEBUGGING) != 0
13380 && link_info->input_bfds == link_info->output_bfd))
13381 {
13382 bfd_vma off;
13383 static reloc_howto_type none_howto
13384 = HOWTO (0, 0, 0, 0, false, 0, complain_overflow_dont, NULL,
13385 "unused", false, 0, 0, false);
13386
13387 off = ((*parent)->address
13388 * bfd_octets_per_byte (input_bfd, input_section));
13389 _bfd_clear_contents ((*parent)->howto, input_bfd,
13390 input_section, data, off);
13391 (*parent)->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
13392 (*parent)->addend = 0;
13393 (*parent)->howto = &none_howto;
13394 r = bfd_reloc_ok;
13395 }
13396
13397 /* Specific to MIPS: Deal with relocation types that require
13398 knowing the gp of the output bfd. */
13399
13400 /* If we've managed to find the gp and have a special
13401 function for the relocation then go ahead, else default
13402 to the generic handling. */
13403 else if (gp_found
13404 && ((*parent)->howto->special_function
13405 == _bfd_mips_elf32_gprel16_reloc))
13406 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, symbol, *parent,
13407 input_section, relocatable,
13408 data, gp);
13409 else
13410 r = bfd_perform_relocation (input_bfd,
13411 *parent,
13412 data,
13413 input_section,
13414 relocatable ? abfd : NULL,
13415 &error_message);
13416
13417 if (relocatable)
13418 {
13419 asection *os = input_section->output_section;
13420
13421 /* A partial link, so keep the relocs. */
13422 os->orelocation[os->reloc_count] = *parent;
13423 os->reloc_count++;
13424 }
13425
13426 if (r != bfd_reloc_ok)
13427 {
13428 switch (r)
13429 {
13430 case bfd_reloc_undefined:
13431 (*link_info->callbacks->undefined_symbol)
13432 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13433 input_bfd, input_section, (*parent)->address, true);
13434 break;
13435 case bfd_reloc_dangerous:
13436 BFD_ASSERT (error_message != NULL);
13437 (*link_info->callbacks->reloc_dangerous)
13438 (link_info, error_message,
13439 input_bfd, input_section, (*parent)->address);
13440 break;
13441 case bfd_reloc_overflow:
13442 (*link_info->callbacks->reloc_overflow)
13443 (link_info, NULL,
13444 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13445 (*parent)->howto->name, (*parent)->addend,
13446 input_bfd, input_section, (*parent)->address);
13447 break;
13448 case bfd_reloc_outofrange:
13449 /* PR ld/13730:
13450 This error can result when processing some partially
13451 complete binaries. Do not abort, but issue an error
13452 message instead. */
13453 link_info->callbacks->einfo
13454 /* xgettext:c-format */
13455 (_("%X%P: %pB(%pA): relocation \"%pR\" goes out of range\n"),
13456 abfd, input_section, * parent);
13457 goto error_return;
13458
13459 case bfd_reloc_notsupported:
13460 /* PR ld/17512
13461 This error can result when processing a corrupt binary.
13462 Do not abort. Issue an error message instead. */
13463 link_info->callbacks->einfo
13464 /* xgettext:c-format */
13465 (_("%X%P: %pB(%pA): relocation \"%pR\" is not supported\n"),
13466 abfd, input_section, * parent);
13467 goto error_return;
13468
13469 default:
13470 /* PR 17512; file: 90c2a92e.
13471 Report unexpected results, without aborting. */
13472 link_info->callbacks->einfo
13473 /* xgettext:c-format */
13474 (_("%X%P: %pB(%pA): relocation \"%pR\" returns an unrecognized value %x\n"),
13475 abfd, input_section, * parent, r);
13476 break;
13477 }
13478
13479 }
13480 }
13481 }
13482
13483 out:
13484 free (reloc_vector);
13485 return data;
13486 }
13487
13488 static bool
mips_elf_relax_delete_bytes(bfd * abfd,asection * sec,bfd_vma addr,int count)13489 mips_elf_relax_delete_bytes (bfd *abfd,
13490 asection *sec, bfd_vma addr, int count)
13491 {
13492 Elf_Internal_Shdr *symtab_hdr;
13493 unsigned int sec_shndx;
13494 bfd_byte *contents;
13495 Elf_Internal_Rela *irel, *irelend;
13496 Elf_Internal_Sym *isym;
13497 Elf_Internal_Sym *isymend;
13498 struct elf_link_hash_entry **sym_hashes;
13499 struct elf_link_hash_entry **end_hashes;
13500 struct elf_link_hash_entry **start_hashes;
13501 unsigned int symcount;
13502
13503 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
13504 contents = elf_section_data (sec)->this_hdr.contents;
13505
13506 irel = elf_section_data (sec)->relocs;
13507 irelend = irel + sec->reloc_count;
13508
13509 /* Actually delete the bytes. */
13510 memmove (contents + addr, contents + addr + count,
13511 (size_t) (sec->size - addr - count));
13512 sec->size -= count;
13513
13514 /* Adjust all the relocs. */
13515 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
13516 {
13517 /* Get the new reloc address. */
13518 if (irel->r_offset > addr)
13519 irel->r_offset -= count;
13520 }
13521
13522 BFD_ASSERT (addr % 2 == 0);
13523 BFD_ASSERT (count % 2 == 0);
13524
13525 /* Adjust the local symbols defined in this section. */
13526 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13527 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13528 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
13529 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
13530 isym->st_value -= count;
13531
13532 /* Now adjust the global symbols defined in this section. */
13533 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13534 - symtab_hdr->sh_info);
13535 sym_hashes = start_hashes = elf_sym_hashes (abfd);
13536 end_hashes = sym_hashes + symcount;
13537
13538 for (; sym_hashes < end_hashes; sym_hashes++)
13539 {
13540 struct elf_link_hash_entry *sym_hash = *sym_hashes;
13541
13542 if ((sym_hash->root.type == bfd_link_hash_defined
13543 || sym_hash->root.type == bfd_link_hash_defweak)
13544 && sym_hash->root.u.def.section == sec)
13545 {
13546 bfd_vma value = sym_hash->root.u.def.value;
13547
13548 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13549 value &= MINUS_TWO;
13550 if (value > addr)
13551 sym_hash->root.u.def.value -= count;
13552 }
13553 }
13554
13555 return true;
13556 }
13557
13558
13559 /* Opcodes needed for microMIPS relaxation as found in
13560 opcodes/micromips-opc.c. */
13561
13562 struct opcode_descriptor {
13563 unsigned long match;
13564 unsigned long mask;
13565 };
13566
13567 /* The $ra register aka $31. */
13568
13569 #define RA 31
13570
13571 /* 32-bit instruction format register fields. */
13572
13573 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13574 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13575
13576 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
13577
13578 #define OP16_VALID_REG(r) \
13579 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13580
13581
13582 /* 32-bit and 16-bit branches. */
13583
13584 static const struct opcode_descriptor b_insns_32[] = {
13585 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13586 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13587 { 0, 0 } /* End marker for find_match(). */
13588 };
13589
13590 static const struct opcode_descriptor bc_insn_32 =
13591 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13592
13593 static const struct opcode_descriptor bz_insn_32 =
13594 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13595
13596 static const struct opcode_descriptor bzal_insn_32 =
13597 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13598
13599 static const struct opcode_descriptor beq_insn_32 =
13600 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13601
13602 static const struct opcode_descriptor b_insn_16 =
13603 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13604
13605 static const struct opcode_descriptor bz_insn_16 =
13606 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
13607
13608
13609 /* 32-bit and 16-bit branch EQ and NE zero. */
13610
13611 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13612 eq and second the ne. This convention is used when replacing a
13613 32-bit BEQ/BNE with the 16-bit version. */
13614
13615 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13616
13617 static const struct opcode_descriptor bz_rs_insns_32[] = {
13618 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13619 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13620 { 0, 0 } /* End marker for find_match(). */
13621 };
13622
13623 static const struct opcode_descriptor bz_rt_insns_32[] = {
13624 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13625 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13626 { 0, 0 } /* End marker for find_match(). */
13627 };
13628
13629 static const struct opcode_descriptor bzc_insns_32[] = {
13630 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13631 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13632 { 0, 0 } /* End marker for find_match(). */
13633 };
13634
13635 static const struct opcode_descriptor bz_insns_16[] = {
13636 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13637 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13638 { 0, 0 } /* End marker for find_match(). */
13639 };
13640
13641 /* Switch between a 5-bit register index and its 3-bit shorthand. */
13642
13643 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
13644 #define BZ16_REG_FIELD(r) (((r) & 7) << 7)
13645
13646
13647 /* 32-bit instructions with a delay slot. */
13648
13649 static const struct opcode_descriptor jal_insn_32_bd16 =
13650 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13651
13652 static const struct opcode_descriptor jal_insn_32_bd32 =
13653 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13654
13655 static const struct opcode_descriptor jal_x_insn_32_bd32 =
13656 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13657
13658 static const struct opcode_descriptor j_insn_32 =
13659 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13660
13661 static const struct opcode_descriptor jalr_insn_32 =
13662 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13663
13664 /* This table can be compacted, because no opcode replacement is made. */
13665
13666 static const struct opcode_descriptor ds_insns_32_bd16[] = {
13667 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13668
13669 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13670 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13671
13672 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13673 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13674 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13675 { 0, 0 } /* End marker for find_match(). */
13676 };
13677
13678 /* This table can be compacted, because no opcode replacement is made. */
13679
13680 static const struct opcode_descriptor ds_insns_32_bd32[] = {
13681 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13682
13683 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13684 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13685 { 0, 0 } /* End marker for find_match(). */
13686 };
13687
13688
13689 /* 16-bit instructions with a delay slot. */
13690
13691 static const struct opcode_descriptor jalr_insn_16_bd16 =
13692 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13693
13694 static const struct opcode_descriptor jalr_insn_16_bd32 =
13695 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13696
13697 static const struct opcode_descriptor jr_insn_16 =
13698 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13699
13700 #define JR16_REG(opcode) ((opcode) & 0x1f)
13701
13702 /* This table can be compacted, because no opcode replacement is made. */
13703
13704 static const struct opcode_descriptor ds_insns_16_bd16[] = {
13705 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13706
13707 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13708 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13709 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13710 { 0, 0 } /* End marker for find_match(). */
13711 };
13712
13713
13714 /* LUI instruction. */
13715
13716 static const struct opcode_descriptor lui_insn =
13717 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13718
13719
13720 /* ADDIU instruction. */
13721
13722 static const struct opcode_descriptor addiu_insn =
13723 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13724
13725 static const struct opcode_descriptor addiupc_insn =
13726 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13727
13728 #define ADDIUPC_REG_FIELD(r) \
13729 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13730
13731
13732 /* Relaxable instructions in a JAL delay slot: MOVE. */
13733
13734 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13735 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13736 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13737 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13738
13739 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13740 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13741
13742 static const struct opcode_descriptor move_insns_32[] = {
13743 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
13744 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
13745 { 0, 0 } /* End marker for find_match(). */
13746 };
13747
13748 static const struct opcode_descriptor move_insn_16 =
13749 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13750
13751
13752 /* NOP instructions. */
13753
13754 static const struct opcode_descriptor nop_insn_32 =
13755 { /* "nop", "", */ 0x00000000, 0xffffffff };
13756
13757 static const struct opcode_descriptor nop_insn_16 =
13758 { /* "nop", "", */ 0x0c00, 0xffff };
13759
13760
13761 /* Instruction match support. */
13762
13763 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13764
13765 static int
find_match(unsigned long opcode,const struct opcode_descriptor insn[])13766 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13767 {
13768 unsigned long indx;
13769
13770 for (indx = 0; insn[indx].mask != 0; indx++)
13771 if (MATCH (opcode, insn[indx]))
13772 return indx;
13773
13774 return -1;
13775 }
13776
13777
13778 /* Branch and delay slot decoding support. */
13779
13780 /* If PTR points to what *might* be a 16-bit branch or jump, then
13781 return the minimum length of its delay slot, otherwise return 0.
13782 Non-zero results are not definitive as we might be checking against
13783 the second half of another instruction. */
13784
13785 static int
check_br16_dslot(bfd * abfd,bfd_byte * ptr)13786 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13787 {
13788 unsigned long opcode;
13789 int bdsize;
13790
13791 opcode = bfd_get_16 (abfd, ptr);
13792 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13793 /* 16-bit branch/jump with a 32-bit delay slot. */
13794 bdsize = 4;
13795 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13796 || find_match (opcode, ds_insns_16_bd16) >= 0)
13797 /* 16-bit branch/jump with a 16-bit delay slot. */
13798 bdsize = 2;
13799 else
13800 /* No delay slot. */
13801 bdsize = 0;
13802
13803 return bdsize;
13804 }
13805
13806 /* If PTR points to what *might* be a 32-bit branch or jump, then
13807 return the minimum length of its delay slot, otherwise return 0.
13808 Non-zero results are not definitive as we might be checking against
13809 the second half of another instruction. */
13810
13811 static int
check_br32_dslot(bfd * abfd,bfd_byte * ptr)13812 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13813 {
13814 unsigned long opcode;
13815 int bdsize;
13816
13817 opcode = bfd_get_micromips_32 (abfd, ptr);
13818 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13819 /* 32-bit branch/jump with a 32-bit delay slot. */
13820 bdsize = 4;
13821 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13822 /* 32-bit branch/jump with a 16-bit delay slot. */
13823 bdsize = 2;
13824 else
13825 /* No delay slot. */
13826 bdsize = 0;
13827
13828 return bdsize;
13829 }
13830
13831 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13832 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13833
13834 static bool
check_br16(bfd * abfd,bfd_byte * ptr,unsigned long reg)13835 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13836 {
13837 unsigned long opcode;
13838
13839 opcode = bfd_get_16 (abfd, ptr);
13840 if (MATCH (opcode, b_insn_16)
13841 /* B16 */
13842 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13843 /* JR16 */
13844 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13845 /* BEQZ16, BNEZ16 */
13846 || (MATCH (opcode, jalr_insn_16_bd32)
13847 /* JALR16 */
13848 && reg != JR16_REG (opcode) && reg != RA))
13849 return true;
13850
13851 return false;
13852 }
13853
13854 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13855 then return TRUE, otherwise FALSE. */
13856
13857 static bool
check_br32(bfd * abfd,bfd_byte * ptr,unsigned long reg)13858 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13859 {
13860 unsigned long opcode;
13861
13862 opcode = bfd_get_micromips_32 (abfd, ptr);
13863 if (MATCH (opcode, j_insn_32)
13864 /* J */
13865 || MATCH (opcode, bc_insn_32)
13866 /* BC1F, BC1T, BC2F, BC2T */
13867 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13868 /* JAL, JALX */
13869 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13870 /* BGEZ, BGTZ, BLEZ, BLTZ */
13871 || (MATCH (opcode, bzal_insn_32)
13872 /* BGEZAL, BLTZAL */
13873 && reg != OP32_SREG (opcode) && reg != RA)
13874 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13875 /* JALR, JALR.HB, BEQ, BNE */
13876 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13877 return true;
13878
13879 return false;
13880 }
13881
13882 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13883 IRELEND) at OFFSET indicate that there must be a compact branch there,
13884 then return TRUE, otherwise FALSE. */
13885
13886 static bool
check_relocated_bzc(bfd * abfd,const bfd_byte * ptr,bfd_vma offset,const Elf_Internal_Rela * internal_relocs,const Elf_Internal_Rela * irelend)13887 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13888 const Elf_Internal_Rela *internal_relocs,
13889 const Elf_Internal_Rela *irelend)
13890 {
13891 const Elf_Internal_Rela *irel;
13892 unsigned long opcode;
13893
13894 opcode = bfd_get_micromips_32 (abfd, ptr);
13895 if (find_match (opcode, bzc_insns_32) < 0)
13896 return false;
13897
13898 for (irel = internal_relocs; irel < irelend; irel++)
13899 if (irel->r_offset == offset
13900 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13901 return true;
13902
13903 return false;
13904 }
13905
13906 /* Bitsize checking. */
13907 #define IS_BITSIZE(val, N) \
13908 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13909 - (1ULL << ((N) - 1))) == (val))
13910
13911
13912 bool
_bfd_mips_elf_relax_section(bfd * abfd,asection * sec,struct bfd_link_info * link_info,bool * again)13913 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13914 struct bfd_link_info *link_info,
13915 bool *again)
13916 {
13917 bool insn32 = mips_elf_hash_table (link_info)->insn32;
13918 Elf_Internal_Shdr *symtab_hdr;
13919 Elf_Internal_Rela *internal_relocs;
13920 Elf_Internal_Rela *irel, *irelend;
13921 bfd_byte *contents = NULL;
13922 Elf_Internal_Sym *isymbuf = NULL;
13923
13924 /* Assume nothing changes. */
13925 *again = false;
13926
13927 /* We don't have to do anything for a relocatable link, if
13928 this section does not have relocs, or if this is not a
13929 code section. */
13930
13931 if (bfd_link_relocatable (link_info)
13932 || (sec->flags & SEC_RELOC) == 0
13933 || sec->reloc_count == 0
13934 || (sec->flags & SEC_CODE) == 0)
13935 return true;
13936
13937 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13938
13939 /* Get a copy of the native relocations. */
13940 internal_relocs = (_bfd_elf_link_read_relocs
13941 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
13942 link_info->keep_memory));
13943 if (internal_relocs == NULL)
13944 goto error_return;
13945
13946 /* Walk through them looking for relaxing opportunities. */
13947 irelend = internal_relocs + sec->reloc_count;
13948 for (irel = internal_relocs; irel < irelend; irel++)
13949 {
13950 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13951 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13952 bool target_is_micromips_code_p;
13953 unsigned long opcode;
13954 bfd_vma symval;
13955 bfd_vma pcrval;
13956 bfd_byte *ptr;
13957 int fndopc;
13958
13959 /* The number of bytes to delete for relaxation and from where
13960 to delete these bytes starting at irel->r_offset. */
13961 int delcnt = 0;
13962 int deloff = 0;
13963
13964 /* If this isn't something that can be relaxed, then ignore
13965 this reloc. */
13966 if (r_type != R_MICROMIPS_HI16
13967 && r_type != R_MICROMIPS_PC16_S1
13968 && r_type != R_MICROMIPS_26_S1)
13969 continue;
13970
13971 /* Get the section contents if we haven't done so already. */
13972 if (contents == NULL)
13973 {
13974 /* Get cached copy if it exists. */
13975 if (elf_section_data (sec)->this_hdr.contents != NULL)
13976 contents = elf_section_data (sec)->this_hdr.contents;
13977 /* Go get them off disk. */
13978 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13979 goto error_return;
13980 }
13981 ptr = contents + irel->r_offset;
13982
13983 /* Read this BFD's local symbols if we haven't done so already. */
13984 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13985 {
13986 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13987 if (isymbuf == NULL)
13988 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13989 symtab_hdr->sh_info, 0,
13990 NULL, NULL, NULL);
13991 if (isymbuf == NULL)
13992 goto error_return;
13993 }
13994
13995 /* Get the value of the symbol referred to by the reloc. */
13996 if (r_symndx < symtab_hdr->sh_info)
13997 {
13998 /* A local symbol. */
13999 Elf_Internal_Sym *isym;
14000 asection *sym_sec;
14001
14002 isym = isymbuf + r_symndx;
14003 if (isym->st_shndx == SHN_UNDEF)
14004 sym_sec = bfd_und_section_ptr;
14005 else if (isym->st_shndx == SHN_ABS)
14006 sym_sec = bfd_abs_section_ptr;
14007 else if (isym->st_shndx == SHN_COMMON)
14008 sym_sec = bfd_com_section_ptr;
14009 else
14010 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
14011 symval = (isym->st_value
14012 + sym_sec->output_section->vma
14013 + sym_sec->output_offset);
14014 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
14015 }
14016 else
14017 {
14018 unsigned long indx;
14019 struct elf_link_hash_entry *h;
14020
14021 /* An external symbol. */
14022 indx = r_symndx - symtab_hdr->sh_info;
14023 h = elf_sym_hashes (abfd)[indx];
14024 BFD_ASSERT (h != NULL);
14025
14026 if (h->root.type != bfd_link_hash_defined
14027 && h->root.type != bfd_link_hash_defweak)
14028 /* This appears to be a reference to an undefined
14029 symbol. Just ignore it -- it will be caught by the
14030 regular reloc processing. */
14031 continue;
14032
14033 symval = (h->root.u.def.value
14034 + h->root.u.def.section->output_section->vma
14035 + h->root.u.def.section->output_offset);
14036 target_is_micromips_code_p = (!h->needs_plt
14037 && ELF_ST_IS_MICROMIPS (h->other));
14038 }
14039
14040
14041 /* For simplicity of coding, we are going to modify the
14042 section contents, the section relocs, and the BFD symbol
14043 table. We must tell the rest of the code not to free up this
14044 information. It would be possible to instead create a table
14045 of changes which have to be made, as is done in coff-mips.c;
14046 that would be more work, but would require less memory when
14047 the linker is run. */
14048
14049 /* Only 32-bit instructions relaxed. */
14050 if (irel->r_offset + 4 > sec->size)
14051 continue;
14052
14053 opcode = bfd_get_micromips_32 (abfd, ptr);
14054
14055 /* This is the pc-relative distance from the instruction the
14056 relocation is applied to, to the symbol referred. */
14057 pcrval = (symval
14058 - (sec->output_section->vma + sec->output_offset)
14059 - irel->r_offset);
14060
14061 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
14062 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
14063 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
14064
14065 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
14066
14067 where pcrval has first to be adjusted to apply against the LO16
14068 location (we make the adjustment later on, when we have figured
14069 out the offset). */
14070 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
14071 {
14072 bool bzc = false;
14073 unsigned long nextopc;
14074 unsigned long reg;
14075 bfd_vma offset;
14076
14077 /* Give up if the previous reloc was a HI16 against this symbol
14078 too. */
14079 if (irel > internal_relocs
14080 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
14081 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
14082 continue;
14083
14084 /* Or if the next reloc is not a LO16 against this symbol. */
14085 if (irel + 1 >= irelend
14086 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
14087 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
14088 continue;
14089
14090 /* Or if the second next reloc is a LO16 against this symbol too. */
14091 if (irel + 2 >= irelend
14092 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
14093 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
14094 continue;
14095
14096 /* See if the LUI instruction *might* be in a branch delay slot.
14097 We check whether what looks like a 16-bit branch or jump is
14098 actually an immediate argument to a compact branch, and let
14099 it through if so. */
14100 if (irel->r_offset >= 2
14101 && check_br16_dslot (abfd, ptr - 2)
14102 && !(irel->r_offset >= 4
14103 && (bzc = check_relocated_bzc (abfd,
14104 ptr - 4, irel->r_offset - 4,
14105 internal_relocs, irelend))))
14106 continue;
14107 if (irel->r_offset >= 4
14108 && !bzc
14109 && check_br32_dslot (abfd, ptr - 4))
14110 continue;
14111
14112 reg = OP32_SREG (opcode);
14113
14114 /* We only relax adjacent instructions or ones separated with
14115 a branch or jump that has a delay slot. The branch or jump
14116 must not fiddle with the register used to hold the address.
14117 Subtract 4 for the LUI itself. */
14118 offset = irel[1].r_offset - irel[0].r_offset;
14119 switch (offset - 4)
14120 {
14121 case 0:
14122 break;
14123 case 2:
14124 if (check_br16 (abfd, ptr + 4, reg))
14125 break;
14126 continue;
14127 case 4:
14128 if (check_br32 (abfd, ptr + 4, reg))
14129 break;
14130 continue;
14131 default:
14132 continue;
14133 }
14134
14135 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
14136
14137 /* Give up unless the same register is used with both
14138 relocations. */
14139 if (OP32_SREG (nextopc) != reg)
14140 continue;
14141
14142 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
14143 and rounding up to take masking of the two LSBs into account. */
14144 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
14145
14146 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
14147 if (IS_BITSIZE (symval, 16))
14148 {
14149 /* Fix the relocation's type. */
14150 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
14151
14152 /* Instructions using R_MICROMIPS_LO16 have the base or
14153 source register in bits 20:16. This register becomes $0
14154 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
14155 nextopc &= ~0x001f0000;
14156 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
14157 contents + irel[1].r_offset);
14158 }
14159
14160 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
14161 We add 4 to take LUI deletion into account while checking
14162 the PC-relative distance. */
14163 else if (symval % 4 == 0
14164 && IS_BITSIZE (pcrval + 4, 25)
14165 && MATCH (nextopc, addiu_insn)
14166 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
14167 && OP16_VALID_REG (OP32_TREG (nextopc)))
14168 {
14169 /* Fix the relocation's type. */
14170 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
14171
14172 /* Replace ADDIU with the ADDIUPC version. */
14173 nextopc = (addiupc_insn.match
14174 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
14175
14176 bfd_put_micromips_32 (abfd, nextopc,
14177 contents + irel[1].r_offset);
14178 }
14179
14180 /* Can't do anything, give up, sigh... */
14181 else
14182 continue;
14183
14184 /* Fix the relocation's type. */
14185 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
14186
14187 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
14188 delcnt = 4;
14189 deloff = 0;
14190 }
14191
14192 /* Compact branch relaxation -- due to the multitude of macros
14193 employed by the compiler/assembler, compact branches are not
14194 always generated. Obviously, this can/will be fixed elsewhere,
14195 but there is no drawback in double checking it here. */
14196 else if (r_type == R_MICROMIPS_PC16_S1
14197 && irel->r_offset + 5 < sec->size
14198 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
14199 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
14200 && ((!insn32
14201 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
14202 nop_insn_16) ? 2 : 0))
14203 || (irel->r_offset + 7 < sec->size
14204 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
14205 ptr + 4),
14206 nop_insn_32) ? 4 : 0))))
14207 {
14208 unsigned long reg;
14209
14210 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
14211
14212 /* Replace BEQZ/BNEZ with the compact version. */
14213 opcode = (bzc_insns_32[fndopc].match
14214 | BZC32_REG_FIELD (reg)
14215 | (opcode & 0xffff)); /* Addend value. */
14216
14217 bfd_put_micromips_32 (abfd, opcode, ptr);
14218
14219 /* Delete the delay slot NOP: two or four bytes from
14220 irel->offset + 4; delcnt has already been set above. */
14221 deloff = 4;
14222 }
14223
14224 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
14225 to check the distance from the next instruction, so subtract 2. */
14226 else if (!insn32
14227 && r_type == R_MICROMIPS_PC16_S1
14228 && IS_BITSIZE (pcrval - 2, 11)
14229 && find_match (opcode, b_insns_32) >= 0)
14230 {
14231 /* Fix the relocation's type. */
14232 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
14233
14234 /* Replace the 32-bit opcode with a 16-bit opcode. */
14235 bfd_put_16 (abfd,
14236 (b_insn_16.match
14237 | (opcode & 0x3ff)), /* Addend value. */
14238 ptr);
14239
14240 /* Delete 2 bytes from irel->r_offset + 2. */
14241 delcnt = 2;
14242 deloff = 2;
14243 }
14244
14245 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
14246 to check the distance from the next instruction, so subtract 2. */
14247 else if (!insn32
14248 && r_type == R_MICROMIPS_PC16_S1
14249 && IS_BITSIZE (pcrval - 2, 8)
14250 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
14251 && OP16_VALID_REG (OP32_SREG (opcode)))
14252 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
14253 && OP16_VALID_REG (OP32_TREG (opcode)))))
14254 {
14255 unsigned long reg;
14256
14257 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
14258
14259 /* Fix the relocation's type. */
14260 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
14261
14262 /* Replace the 32-bit opcode with a 16-bit opcode. */
14263 bfd_put_16 (abfd,
14264 (bz_insns_16[fndopc].match
14265 | BZ16_REG_FIELD (reg)
14266 | (opcode & 0x7f)), /* Addend value. */
14267 ptr);
14268
14269 /* Delete 2 bytes from irel->r_offset + 2. */
14270 delcnt = 2;
14271 deloff = 2;
14272 }
14273
14274 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
14275 else if (!insn32
14276 && r_type == R_MICROMIPS_26_S1
14277 && target_is_micromips_code_p
14278 && irel->r_offset + 7 < sec->size
14279 && MATCH (opcode, jal_insn_32_bd32))
14280 {
14281 unsigned long n32opc;
14282 bool relaxed = false;
14283
14284 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
14285
14286 if (MATCH (n32opc, nop_insn_32))
14287 {
14288 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
14289 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
14290
14291 relaxed = true;
14292 }
14293 else if (find_match (n32opc, move_insns_32) >= 0)
14294 {
14295 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
14296 bfd_put_16 (abfd,
14297 (move_insn_16.match
14298 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
14299 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
14300 ptr + 4);
14301
14302 relaxed = true;
14303 }
14304 /* Other 32-bit instructions relaxable to 16-bit
14305 instructions will be handled here later. */
14306
14307 if (relaxed)
14308 {
14309 /* JAL with 32-bit delay slot that is changed to a JALS
14310 with 16-bit delay slot. */
14311 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
14312
14313 /* Delete 2 bytes from irel->r_offset + 6. */
14314 delcnt = 2;
14315 deloff = 6;
14316 }
14317 }
14318
14319 if (delcnt != 0)
14320 {
14321 /* Note that we've changed the relocs, section contents, etc. */
14322 elf_section_data (sec)->relocs = internal_relocs;
14323 elf_section_data (sec)->this_hdr.contents = contents;
14324 symtab_hdr->contents = (unsigned char *) isymbuf;
14325
14326 /* Delete bytes depending on the delcnt and deloff. */
14327 if (!mips_elf_relax_delete_bytes (abfd, sec,
14328 irel->r_offset + deloff, delcnt))
14329 goto error_return;
14330
14331 /* That will change things, so we should relax again.
14332 Note that this is not required, and it may be slow. */
14333 *again = true;
14334 }
14335 }
14336
14337 if (isymbuf != NULL
14338 && symtab_hdr->contents != (unsigned char *) isymbuf)
14339 {
14340 if (! link_info->keep_memory)
14341 free (isymbuf);
14342 else
14343 {
14344 /* Cache the symbols for elf_link_input_bfd. */
14345 symtab_hdr->contents = (unsigned char *) isymbuf;
14346 }
14347 }
14348
14349 if (contents != NULL
14350 && elf_section_data (sec)->this_hdr.contents != contents)
14351 {
14352 if (! link_info->keep_memory)
14353 free (contents);
14354 else
14355 {
14356 /* Cache the section contents for elf_link_input_bfd. */
14357 elf_section_data (sec)->this_hdr.contents = contents;
14358 }
14359 }
14360
14361 if (elf_section_data (sec)->relocs != internal_relocs)
14362 free (internal_relocs);
14363
14364 return true;
14365
14366 error_return:
14367 if (symtab_hdr->contents != (unsigned char *) isymbuf)
14368 free (isymbuf);
14369 if (elf_section_data (sec)->this_hdr.contents != contents)
14370 free (contents);
14371 if (elf_section_data (sec)->relocs != internal_relocs)
14372 free (internal_relocs);
14373
14374 return false;
14375 }
14376
14377 /* Create a MIPS ELF linker hash table. */
14378
14379 struct bfd_link_hash_table *
_bfd_mips_elf_link_hash_table_create(bfd * abfd)14380 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
14381 {
14382 struct mips_elf_link_hash_table *ret;
14383 size_t amt = sizeof (struct mips_elf_link_hash_table);
14384
14385 ret = bfd_zmalloc (amt);
14386 if (ret == NULL)
14387 return NULL;
14388
14389 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
14390 mips_elf_link_hash_newfunc,
14391 sizeof (struct mips_elf_link_hash_entry),
14392 MIPS_ELF_DATA))
14393 {
14394 free (ret);
14395 return NULL;
14396 }
14397 ret->root.init_plt_refcount.plist = NULL;
14398 ret->root.init_plt_offset.plist = NULL;
14399
14400 return &ret->root.root;
14401 }
14402
14403 /* Likewise, but indicate that the target is VxWorks. */
14404
14405 struct bfd_link_hash_table *
_bfd_mips_vxworks_link_hash_table_create(bfd * abfd)14406 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
14407 {
14408 struct bfd_link_hash_table *ret;
14409
14410 ret = _bfd_mips_elf_link_hash_table_create (abfd);
14411 if (ret)
14412 {
14413 struct mips_elf_link_hash_table *htab;
14414
14415 htab = (struct mips_elf_link_hash_table *) ret;
14416 htab->use_plts_and_copy_relocs = true;
14417 }
14418 return ret;
14419 }
14420
14421 /* A function that the linker calls if we are allowed to use PLTs
14422 and copy relocs. */
14423
14424 void
_bfd_mips_elf_use_plts_and_copy_relocs(struct bfd_link_info * info)14425 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
14426 {
14427 mips_elf_hash_table (info)->use_plts_and_copy_relocs = true;
14428 }
14429
14430 /* A function that the linker calls to select between all or only
14431 32-bit microMIPS instructions, and between making or ignoring
14432 branch relocation checks for invalid transitions between ISA modes.
14433 Also record whether we have been configured for a GNU target. */
14434
14435 void
_bfd_mips_elf_linker_flags(struct bfd_link_info * info,bool insn32,bool ignore_branch_isa,bool gnu_target)14436 _bfd_mips_elf_linker_flags (struct bfd_link_info *info, bool insn32,
14437 bool ignore_branch_isa,
14438 bool gnu_target)
14439 {
14440 mips_elf_hash_table (info)->insn32 = insn32;
14441 mips_elf_hash_table (info)->ignore_branch_isa = ignore_branch_isa;
14442 mips_elf_hash_table (info)->gnu_target = gnu_target;
14443 }
14444
14445 /* A function that the linker calls to enable use of compact branches in
14446 linker generated code for MIPSR6. */
14447
14448 void
_bfd_mips_elf_compact_branches(struct bfd_link_info * info,bool on)14449 _bfd_mips_elf_compact_branches (struct bfd_link_info *info, bool on)
14450 {
14451 mips_elf_hash_table (info)->compact_branches = on;
14452 }
14453
14454
14455 /* Structure for saying that BFD machine EXTENSION extends BASE. */
14456
14457 struct mips_mach_extension
14458 {
14459 unsigned long extension, base;
14460 };
14461
14462
14463 /* An array describing how BFD machines relate to one another. The entries
14464 are ordered topologically with MIPS I extensions listed last. */
14465
14466 static const struct mips_mach_extension mips_mach_extensions[] =
14467 {
14468 /* MIPS64r2 extensions. */
14469 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
14470 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
14471 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
14472 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
14473 { bfd_mach_mips_gs264e, bfd_mach_mips_gs464e },
14474 { bfd_mach_mips_gs464e, bfd_mach_mips_gs464 },
14475 { bfd_mach_mips_gs464, bfd_mach_mipsisa64r2 },
14476
14477 /* MIPS64 extensions. */
14478 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
14479 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
14480 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
14481
14482 /* MIPS V extensions. */
14483 { bfd_mach_mipsisa64, bfd_mach_mips5 },
14484
14485 /* R10000 extensions. */
14486 { bfd_mach_mips12000, bfd_mach_mips10000 },
14487 { bfd_mach_mips14000, bfd_mach_mips10000 },
14488 { bfd_mach_mips16000, bfd_mach_mips10000 },
14489
14490 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
14491 vr5400 ISA, but doesn't include the multimedia stuff. It seems
14492 better to allow vr5400 and vr5500 code to be merged anyway, since
14493 many libraries will just use the core ISA. Perhaps we could add
14494 some sort of ASE flag if this ever proves a problem. */
14495 { bfd_mach_mips5500, bfd_mach_mips5400 },
14496 { bfd_mach_mips5400, bfd_mach_mips5000 },
14497
14498 /* MIPS IV extensions. */
14499 { bfd_mach_mips5, bfd_mach_mips8000 },
14500 { bfd_mach_mips10000, bfd_mach_mips8000 },
14501 { bfd_mach_mips5000, bfd_mach_mips8000 },
14502 { bfd_mach_mips7000, bfd_mach_mips8000 },
14503 { bfd_mach_mips9000, bfd_mach_mips8000 },
14504
14505 /* VR4100 extensions. */
14506 { bfd_mach_mips4120, bfd_mach_mips4100 },
14507 { bfd_mach_mips4111, bfd_mach_mips4100 },
14508
14509 /* MIPS III extensions. */
14510 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
14511 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
14512 { bfd_mach_mips8000, bfd_mach_mips4000 },
14513 { bfd_mach_mips4650, bfd_mach_mips4000 },
14514 { bfd_mach_mips4600, bfd_mach_mips4000 },
14515 { bfd_mach_mips4400, bfd_mach_mips4000 },
14516 { bfd_mach_mips4300, bfd_mach_mips4000 },
14517 { bfd_mach_mips4100, bfd_mach_mips4000 },
14518 { bfd_mach_mips5900, bfd_mach_mips4000 },
14519
14520 /* MIPS32r3 extensions. */
14521 { bfd_mach_mips_interaptiv_mr2, bfd_mach_mipsisa32r3 },
14522
14523 /* MIPS32r2 extensions. */
14524 { bfd_mach_mipsisa32r3, bfd_mach_mipsisa32r2 },
14525
14526 /* MIPS32 extensions. */
14527 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14528
14529 /* MIPS II extensions. */
14530 { bfd_mach_mips4000, bfd_mach_mips6000 },
14531 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
14532 { bfd_mach_mips4010, bfd_mach_mips6000 },
14533
14534 /* MIPS I extensions. */
14535 { bfd_mach_mips6000, bfd_mach_mips3000 },
14536 { bfd_mach_mips3900, bfd_mach_mips3000 }
14537 };
14538
14539 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14540
14541 static bool
mips_mach_extends_p(unsigned long base,unsigned long extension)14542 mips_mach_extends_p (unsigned long base, unsigned long extension)
14543 {
14544 size_t i;
14545
14546 if (extension == base)
14547 return true;
14548
14549 if (base == bfd_mach_mipsisa32
14550 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14551 return true;
14552
14553 if (base == bfd_mach_mipsisa32r2
14554 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14555 return true;
14556
14557 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14558 if (extension == mips_mach_extensions[i].extension)
14559 {
14560 extension = mips_mach_extensions[i].base;
14561 if (extension == base)
14562 return true;
14563 }
14564
14565 return false;
14566 }
14567
14568 /* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14569
14570 static unsigned long
bfd_mips_isa_ext_mach(unsigned int isa_ext)14571 bfd_mips_isa_ext_mach (unsigned int isa_ext)
14572 {
14573 switch (isa_ext)
14574 {
14575 case AFL_EXT_3900: return bfd_mach_mips3900;
14576 case AFL_EXT_4010: return bfd_mach_mips4010;
14577 case AFL_EXT_4100: return bfd_mach_mips4100;
14578 case AFL_EXT_4111: return bfd_mach_mips4111;
14579 case AFL_EXT_4120: return bfd_mach_mips4120;
14580 case AFL_EXT_4650: return bfd_mach_mips4650;
14581 case AFL_EXT_5400: return bfd_mach_mips5400;
14582 case AFL_EXT_5500: return bfd_mach_mips5500;
14583 case AFL_EXT_5900: return bfd_mach_mips5900;
14584 case AFL_EXT_10000: return bfd_mach_mips10000;
14585 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14586 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
14587 case AFL_EXT_SB1: return bfd_mach_mips_sb1;
14588 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon;
14589 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp;
14590 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2;
14591 case AFL_EXT_XLR: return bfd_mach_mips_xlr;
14592 default: return bfd_mach_mips3000;
14593 }
14594 }
14595
14596 /* Return the .MIPS.abiflags value representing each ISA Extension. */
14597
14598 unsigned int
bfd_mips_isa_ext(bfd * abfd)14599 bfd_mips_isa_ext (bfd *abfd)
14600 {
14601 switch (bfd_get_mach (abfd))
14602 {
14603 case bfd_mach_mips3900: return AFL_EXT_3900;
14604 case bfd_mach_mips4010: return AFL_EXT_4010;
14605 case bfd_mach_mips4100: return AFL_EXT_4100;
14606 case bfd_mach_mips4111: return AFL_EXT_4111;
14607 case bfd_mach_mips4120: return AFL_EXT_4120;
14608 case bfd_mach_mips4650: return AFL_EXT_4650;
14609 case bfd_mach_mips5400: return AFL_EXT_5400;
14610 case bfd_mach_mips5500: return AFL_EXT_5500;
14611 case bfd_mach_mips5900: return AFL_EXT_5900;
14612 case bfd_mach_mips10000: return AFL_EXT_10000;
14613 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14614 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
14615 case bfd_mach_mips_sb1: return AFL_EXT_SB1;
14616 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON;
14617 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP;
14618 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3;
14619 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2;
14620 case bfd_mach_mips_xlr: return AFL_EXT_XLR;
14621 case bfd_mach_mips_interaptiv_mr2:
14622 return AFL_EXT_INTERAPTIV_MR2;
14623 default: return 0;
14624 }
14625 }
14626
14627 /* Encode ISA level and revision as a single value. */
14628 #define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14629
14630 /* Decode a single value into level and revision. */
14631 #define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14632 #define ISA_REV(LEVREV) ((LEVREV) & 0x7)
14633
14634 /* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14635
14636 static void
update_mips_abiflags_isa(bfd * abfd,Elf_Internal_ABIFlags_v0 * abiflags)14637 update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14638 {
14639 int new_isa = 0;
14640 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14641 {
14642 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break;
14643 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break;
14644 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break;
14645 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break;
14646 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break;
14647 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break;
14648 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14649 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14650 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break;
14651 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14652 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
14653 default:
14654 _bfd_error_handler
14655 /* xgettext:c-format */
14656 (_("%pB: unknown architecture %s"),
14657 abfd, bfd_printable_name (abfd));
14658 }
14659
14660 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14661 {
14662 abiflags->isa_level = ISA_LEVEL (new_isa);
14663 abiflags->isa_rev = ISA_REV (new_isa);
14664 }
14665
14666 /* Update the isa_ext if ABFD describes a further extension. */
14667 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14668 bfd_get_mach (abfd)))
14669 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
14670 }
14671
14672 /* Return true if the given ELF header flags describe a 32-bit binary. */
14673
14674 static bool
mips_32bit_flags_p(flagword flags)14675 mips_32bit_flags_p (flagword flags)
14676 {
14677 return ((flags & EF_MIPS_32BITMODE) != 0
14678 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14679 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14680 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14681 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14682 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
14683 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14684 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
14685 }
14686
14687 /* Infer the content of the ABI flags based on the elf header. */
14688
14689 static void
infer_mips_abiflags(bfd * abfd,Elf_Internal_ABIFlags_v0 * abiflags)14690 infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14691 {
14692 obj_attribute *in_attr;
14693
14694 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14695 update_mips_abiflags_isa (abfd, abiflags);
14696
14697 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14698 abiflags->gpr_size = AFL_REG_32;
14699 else
14700 abiflags->gpr_size = AFL_REG_64;
14701
14702 abiflags->cpr1_size = AFL_REG_NONE;
14703
14704 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14705 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14706
14707 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14708 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14709 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14710 && abiflags->gpr_size == AFL_REG_32))
14711 abiflags->cpr1_size = AFL_REG_32;
14712 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14713 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14714 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14715 abiflags->cpr1_size = AFL_REG_64;
14716
14717 abiflags->cpr2_size = AFL_REG_NONE;
14718
14719 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14720 abiflags->ases |= AFL_ASE_MDMX;
14721 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14722 abiflags->ases |= AFL_ASE_MIPS16;
14723 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14724 abiflags->ases |= AFL_ASE_MICROMIPS;
14725
14726 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14727 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14728 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14729 && abiflags->isa_level >= 32
14730 && abiflags->ases != AFL_ASE_LOONGSON_EXT)
14731 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14732 }
14733
14734 /* We need to use a special link routine to handle the .reginfo and
14735 the .mdebug sections. We need to merge all instances of these
14736 sections together, not write them all out sequentially. */
14737
14738 bool
_bfd_mips_elf_final_link(bfd * abfd,struct bfd_link_info * info)14739 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
14740 {
14741 asection *o;
14742 struct bfd_link_order *p;
14743 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
14744 asection *rtproc_sec, *abiflags_sec;
14745 Elf32_RegInfo reginfo;
14746 struct ecoff_debug_info debug;
14747 struct mips_htab_traverse_info hti;
14748 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14749 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
14750 HDRR *symhdr = &debug.symbolic_header;
14751 void *mdebug_handle = NULL;
14752 asection *s;
14753 EXTR esym;
14754 unsigned int i;
14755 bfd_size_type amt;
14756 struct mips_elf_link_hash_table *htab;
14757
14758 static const char * const secname[] =
14759 {
14760 ".text", ".init", ".fini", ".data",
14761 ".rodata", ".sdata", ".sbss", ".bss"
14762 };
14763 static const int sc[] =
14764 {
14765 scText, scInit, scFini, scData,
14766 scRData, scSData, scSBss, scBss
14767 };
14768
14769 htab = mips_elf_hash_table (info);
14770 BFD_ASSERT (htab != NULL);
14771
14772 /* Sort the dynamic symbols so that those with GOT entries come after
14773 those without. */
14774 if (!mips_elf_sort_hash_table (abfd, info))
14775 return false;
14776
14777 /* Create any scheduled LA25 stubs. */
14778 hti.info = info;
14779 hti.output_bfd = abfd;
14780 hti.error = false;
14781 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14782 if (hti.error)
14783 return false;
14784
14785 /* Get a value for the GP register. */
14786 if (elf_gp (abfd) == 0)
14787 {
14788 struct bfd_link_hash_entry *h;
14789
14790 h = bfd_link_hash_lookup (info->hash, "_gp", false, false, true);
14791 if (h != NULL && h->type == bfd_link_hash_defined)
14792 elf_gp (abfd) = (h->u.def.value
14793 + h->u.def.section->output_section->vma
14794 + h->u.def.section->output_offset);
14795 else if (htab->root.target_os == is_vxworks
14796 && (h = bfd_link_hash_lookup (info->hash,
14797 "_GLOBAL_OFFSET_TABLE_",
14798 false, false, true))
14799 && h->type == bfd_link_hash_defined)
14800 elf_gp (abfd) = (h->u.def.section->output_section->vma
14801 + h->u.def.section->output_offset
14802 + h->u.def.value);
14803 else if (bfd_link_relocatable (info))
14804 {
14805 bfd_vma lo = MINUS_ONE;
14806
14807 /* Find the GP-relative section with the lowest offset. */
14808 for (o = abfd->sections; o != NULL; o = o->next)
14809 if (o->vma < lo
14810 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14811 lo = o->vma;
14812
14813 /* And calculate GP relative to that. */
14814 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
14815 }
14816 else
14817 {
14818 /* If the relocate_section function needs to do a reloc
14819 involving the GP value, it should make a reloc_dangerous
14820 callback to warn that GP is not defined. */
14821 }
14822 }
14823
14824 /* Go through the sections and collect the .reginfo and .mdebug
14825 information. */
14826 abiflags_sec = NULL;
14827 reginfo_sec = NULL;
14828 mdebug_sec = NULL;
14829 gptab_data_sec = NULL;
14830 gptab_bss_sec = NULL;
14831 for (o = abfd->sections; o != NULL; o = o->next)
14832 {
14833 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14834 {
14835 /* We have found the .MIPS.abiflags section in the output file.
14836 Look through all the link_orders comprising it and remove them.
14837 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14838 for (p = o->map_head.link_order; p != NULL; p = p->next)
14839 {
14840 asection *input_section;
14841
14842 if (p->type != bfd_indirect_link_order)
14843 {
14844 if (p->type == bfd_data_link_order)
14845 continue;
14846 abort ();
14847 }
14848
14849 input_section = p->u.indirect.section;
14850
14851 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14852 elf_link_input_bfd ignores this section. */
14853 input_section->flags &= ~SEC_HAS_CONTENTS;
14854 }
14855
14856 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14857 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14858
14859 /* Skip this section later on (I don't think this currently
14860 matters, but someday it might). */
14861 o->map_head.link_order = NULL;
14862
14863 abiflags_sec = o;
14864 }
14865
14866 if (strcmp (o->name, ".reginfo") == 0)
14867 {
14868 memset (®info, 0, sizeof reginfo);
14869
14870 /* We have found the .reginfo section in the output file.
14871 Look through all the link_orders comprising it and merge
14872 the information together. */
14873 for (p = o->map_head.link_order; p != NULL; p = p->next)
14874 {
14875 asection *input_section;
14876 bfd *input_bfd;
14877 Elf32_External_RegInfo ext;
14878 Elf32_RegInfo sub;
14879 bfd_size_type sz;
14880
14881 if (p->type != bfd_indirect_link_order)
14882 {
14883 if (p->type == bfd_data_link_order)
14884 continue;
14885 abort ();
14886 }
14887
14888 input_section = p->u.indirect.section;
14889 input_bfd = input_section->owner;
14890
14891 sz = (input_section->size < sizeof (ext)
14892 ? input_section->size : sizeof (ext));
14893 memset (&ext, 0, sizeof (ext));
14894 if (! bfd_get_section_contents (input_bfd, input_section,
14895 &ext, 0, sz))
14896 return false;
14897
14898 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14899
14900 reginfo.ri_gprmask |= sub.ri_gprmask;
14901 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14902 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14903 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14904 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14905
14906 /* ri_gp_value is set by the function
14907 `_bfd_mips_elf_section_processing' when the section is
14908 finally written out. */
14909
14910 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14911 elf_link_input_bfd ignores this section. */
14912 input_section->flags &= ~SEC_HAS_CONTENTS;
14913 }
14914
14915 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14916 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
14917
14918 /* Skip this section later on (I don't think this currently
14919 matters, but someday it might). */
14920 o->map_head.link_order = NULL;
14921
14922 reginfo_sec = o;
14923 }
14924
14925 if (strcmp (o->name, ".mdebug") == 0)
14926 {
14927 struct extsym_info einfo;
14928 bfd_vma last;
14929
14930 /* We have found the .mdebug section in the output file.
14931 Look through all the link_orders comprising it and merge
14932 the information together. */
14933 symhdr->magic = swap->sym_magic;
14934 /* FIXME: What should the version stamp be? */
14935 symhdr->vstamp = 0;
14936 symhdr->ilineMax = 0;
14937 symhdr->cbLine = 0;
14938 symhdr->idnMax = 0;
14939 symhdr->ipdMax = 0;
14940 symhdr->isymMax = 0;
14941 symhdr->ioptMax = 0;
14942 symhdr->iauxMax = 0;
14943 symhdr->issMax = 0;
14944 symhdr->issExtMax = 0;
14945 symhdr->ifdMax = 0;
14946 symhdr->crfd = 0;
14947 symhdr->iextMax = 0;
14948
14949 /* We accumulate the debugging information itself in the
14950 debug_info structure. */
14951 debug.line = NULL;
14952 debug.external_dnr = NULL;
14953 debug.external_pdr = NULL;
14954 debug.external_sym = NULL;
14955 debug.external_opt = NULL;
14956 debug.external_aux = NULL;
14957 debug.ss = NULL;
14958 debug.ssext = debug.ssext_end = NULL;
14959 debug.external_fdr = NULL;
14960 debug.external_rfd = NULL;
14961 debug.external_ext = debug.external_ext_end = NULL;
14962
14963 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
14964 if (mdebug_handle == NULL)
14965 return false;
14966
14967 esym.jmptbl = 0;
14968 esym.cobol_main = 0;
14969 esym.weakext = 0;
14970 esym.reserved = 0;
14971 esym.ifd = ifdNil;
14972 esym.asym.iss = issNil;
14973 esym.asym.st = stLocal;
14974 esym.asym.reserved = 0;
14975 esym.asym.index = indexNil;
14976 last = 0;
14977 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14978 {
14979 esym.asym.sc = sc[i];
14980 s = bfd_get_section_by_name (abfd, secname[i]);
14981 if (s != NULL)
14982 {
14983 esym.asym.value = s->vma;
14984 last = s->vma + s->size;
14985 }
14986 else
14987 esym.asym.value = last;
14988 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14989 secname[i], &esym))
14990 return false;
14991 }
14992
14993 for (p = o->map_head.link_order; p != NULL; p = p->next)
14994 {
14995 asection *input_section;
14996 bfd *input_bfd;
14997 const struct ecoff_debug_swap *input_swap;
14998 struct ecoff_debug_info input_debug;
14999 char *eraw_src;
15000 char *eraw_end;
15001
15002 if (p->type != bfd_indirect_link_order)
15003 {
15004 if (p->type == bfd_data_link_order)
15005 continue;
15006 abort ();
15007 }
15008
15009 input_section = p->u.indirect.section;
15010 input_bfd = input_section->owner;
15011
15012 if (!is_mips_elf (input_bfd))
15013 {
15014 /* I don't know what a non MIPS ELF bfd would be
15015 doing with a .mdebug section, but I don't really
15016 want to deal with it. */
15017 continue;
15018 }
15019
15020 input_swap = (get_elf_backend_data (input_bfd)
15021 ->elf_backend_ecoff_debug_swap);
15022
15023 BFD_ASSERT (p->size == input_section->size);
15024
15025 /* The ECOFF linking code expects that we have already
15026 read in the debugging information and set up an
15027 ecoff_debug_info structure, so we do that now. */
15028 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
15029 &input_debug))
15030 return false;
15031
15032 if (! (bfd_ecoff_debug_accumulate
15033 (mdebug_handle, abfd, &debug, swap, input_bfd,
15034 &input_debug, input_swap, info)))
15035 return false;
15036
15037 /* Loop through the external symbols. For each one with
15038 interesting information, try to find the symbol in
15039 the linker global hash table and save the information
15040 for the output external symbols. */
15041 eraw_src = input_debug.external_ext;
15042 eraw_end = (eraw_src
15043 + (input_debug.symbolic_header.iextMax
15044 * input_swap->external_ext_size));
15045 for (;
15046 eraw_src < eraw_end;
15047 eraw_src += input_swap->external_ext_size)
15048 {
15049 EXTR ext;
15050 const char *name;
15051 struct mips_elf_link_hash_entry *h;
15052
15053 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
15054 if (ext.asym.sc == scNil
15055 || ext.asym.sc == scUndefined
15056 || ext.asym.sc == scSUndefined)
15057 continue;
15058
15059 name = input_debug.ssext + ext.asym.iss;
15060 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
15061 name, false, false, true);
15062 if (h == NULL || h->esym.ifd != -2)
15063 continue;
15064
15065 if (ext.ifd != -1)
15066 {
15067 BFD_ASSERT (ext.ifd
15068 < input_debug.symbolic_header.ifdMax);
15069 ext.ifd = input_debug.ifdmap[ext.ifd];
15070 }
15071
15072 h->esym = ext;
15073 }
15074
15075 /* Free up the information we just read. */
15076 free (input_debug.line);
15077 free (input_debug.external_dnr);
15078 free (input_debug.external_pdr);
15079 free (input_debug.external_sym);
15080 free (input_debug.external_opt);
15081 free (input_debug.external_aux);
15082 free (input_debug.ss);
15083 free (input_debug.ssext);
15084 free (input_debug.external_fdr);
15085 free (input_debug.external_rfd);
15086 free (input_debug.external_ext);
15087
15088 /* Hack: reset the SEC_HAS_CONTENTS flag so that
15089 elf_link_input_bfd ignores this section. */
15090 input_section->flags &= ~SEC_HAS_CONTENTS;
15091 }
15092
15093 if (SGI_COMPAT (abfd) && bfd_link_pic (info))
15094 {
15095 /* Create .rtproc section. */
15096 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
15097 if (rtproc_sec == NULL)
15098 {
15099 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
15100 | SEC_LINKER_CREATED | SEC_READONLY);
15101
15102 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
15103 ".rtproc",
15104 flags);
15105 if (rtproc_sec == NULL
15106 || !bfd_set_section_alignment (rtproc_sec, 4))
15107 return false;
15108 }
15109
15110 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
15111 info, rtproc_sec,
15112 &debug))
15113 return false;
15114 }
15115
15116 /* Build the external symbol information. */
15117 einfo.abfd = abfd;
15118 einfo.info = info;
15119 einfo.debug = &debug;
15120 einfo.swap = swap;
15121 einfo.failed = false;
15122 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
15123 mips_elf_output_extsym, &einfo);
15124 if (einfo.failed)
15125 return false;
15126
15127 /* Set the size of the .mdebug section. */
15128 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
15129
15130 /* Skip this section later on (I don't think this currently
15131 matters, but someday it might). */
15132 o->map_head.link_order = NULL;
15133
15134 mdebug_sec = o;
15135 }
15136
15137 if (startswith (o->name, ".gptab."))
15138 {
15139 const char *subname;
15140 unsigned int c;
15141 Elf32_gptab *tab;
15142 Elf32_External_gptab *ext_tab;
15143 unsigned int j;
15144
15145 /* The .gptab.sdata and .gptab.sbss sections hold
15146 information describing how the small data area would
15147 change depending upon the -G switch. These sections
15148 not used in executables files. */
15149 if (! bfd_link_relocatable (info))
15150 {
15151 for (p = o->map_head.link_order; p != NULL; p = p->next)
15152 {
15153 asection *input_section;
15154
15155 if (p->type != bfd_indirect_link_order)
15156 {
15157 if (p->type == bfd_data_link_order)
15158 continue;
15159 abort ();
15160 }
15161
15162 input_section = p->u.indirect.section;
15163
15164 /* Hack: reset the SEC_HAS_CONTENTS flag so that
15165 elf_link_input_bfd ignores this section. */
15166 input_section->flags &= ~SEC_HAS_CONTENTS;
15167 }
15168
15169 /* Skip this section later on (I don't think this
15170 currently matters, but someday it might). */
15171 o->map_head.link_order = NULL;
15172
15173 /* Really remove the section. */
15174 bfd_section_list_remove (abfd, o);
15175 --abfd->section_count;
15176
15177 continue;
15178 }
15179
15180 /* There is one gptab for initialized data, and one for
15181 uninitialized data. */
15182 if (strcmp (o->name, ".gptab.sdata") == 0)
15183 gptab_data_sec = o;
15184 else if (strcmp (o->name, ".gptab.sbss") == 0)
15185 gptab_bss_sec = o;
15186 else
15187 {
15188 _bfd_error_handler
15189 /* xgettext:c-format */
15190 (_("%pB: illegal section name `%pA'"), abfd, o);
15191 bfd_set_error (bfd_error_nonrepresentable_section);
15192 return false;
15193 }
15194
15195 /* The linker script always combines .gptab.data and
15196 .gptab.sdata into .gptab.sdata, and likewise for
15197 .gptab.bss and .gptab.sbss. It is possible that there is
15198 no .sdata or .sbss section in the output file, in which
15199 case we must change the name of the output section. */
15200 subname = o->name + sizeof ".gptab" - 1;
15201 if (bfd_get_section_by_name (abfd, subname) == NULL)
15202 {
15203 if (o == gptab_data_sec)
15204 o->name = ".gptab.data";
15205 else
15206 o->name = ".gptab.bss";
15207 subname = o->name + sizeof ".gptab" - 1;
15208 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
15209 }
15210
15211 /* Set up the first entry. */
15212 c = 1;
15213 amt = c * sizeof (Elf32_gptab);
15214 tab = bfd_malloc (amt);
15215 if (tab == NULL)
15216 return false;
15217 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
15218 tab[0].gt_header.gt_unused = 0;
15219
15220 /* Combine the input sections. */
15221 for (p = o->map_head.link_order; p != NULL; p = p->next)
15222 {
15223 asection *input_section;
15224 bfd *input_bfd;
15225 bfd_size_type size;
15226 unsigned long last;
15227 bfd_size_type gpentry;
15228
15229 if (p->type != bfd_indirect_link_order)
15230 {
15231 if (p->type == bfd_data_link_order)
15232 continue;
15233 abort ();
15234 }
15235
15236 input_section = p->u.indirect.section;
15237 input_bfd = input_section->owner;
15238
15239 /* Combine the gptab entries for this input section one
15240 by one. We know that the input gptab entries are
15241 sorted by ascending -G value. */
15242 size = input_section->size;
15243 last = 0;
15244 for (gpentry = sizeof (Elf32_External_gptab);
15245 gpentry < size;
15246 gpentry += sizeof (Elf32_External_gptab))
15247 {
15248 Elf32_External_gptab ext_gptab;
15249 Elf32_gptab int_gptab;
15250 unsigned long val;
15251 unsigned long add;
15252 bool exact;
15253 unsigned int look;
15254
15255 if (! (bfd_get_section_contents
15256 (input_bfd, input_section, &ext_gptab, gpentry,
15257 sizeof (Elf32_External_gptab))))
15258 {
15259 free (tab);
15260 return false;
15261 }
15262
15263 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
15264 &int_gptab);
15265 val = int_gptab.gt_entry.gt_g_value;
15266 add = int_gptab.gt_entry.gt_bytes - last;
15267
15268 exact = false;
15269 for (look = 1; look < c; look++)
15270 {
15271 if (tab[look].gt_entry.gt_g_value >= val)
15272 tab[look].gt_entry.gt_bytes += add;
15273
15274 if (tab[look].gt_entry.gt_g_value == val)
15275 exact = true;
15276 }
15277
15278 if (! exact)
15279 {
15280 Elf32_gptab *new_tab;
15281 unsigned int max;
15282
15283 /* We need a new table entry. */
15284 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
15285 new_tab = bfd_realloc (tab, amt);
15286 if (new_tab == NULL)
15287 {
15288 free (tab);
15289 return false;
15290 }
15291 tab = new_tab;
15292 tab[c].gt_entry.gt_g_value = val;
15293 tab[c].gt_entry.gt_bytes = add;
15294
15295 /* Merge in the size for the next smallest -G
15296 value, since that will be implied by this new
15297 value. */
15298 max = 0;
15299 for (look = 1; look < c; look++)
15300 {
15301 if (tab[look].gt_entry.gt_g_value < val
15302 && (max == 0
15303 || (tab[look].gt_entry.gt_g_value
15304 > tab[max].gt_entry.gt_g_value)))
15305 max = look;
15306 }
15307 if (max != 0)
15308 tab[c].gt_entry.gt_bytes +=
15309 tab[max].gt_entry.gt_bytes;
15310
15311 ++c;
15312 }
15313
15314 last = int_gptab.gt_entry.gt_bytes;
15315 }
15316
15317 /* Hack: reset the SEC_HAS_CONTENTS flag so that
15318 elf_link_input_bfd ignores this section. */
15319 input_section->flags &= ~SEC_HAS_CONTENTS;
15320 }
15321
15322 /* The table must be sorted by -G value. */
15323 if (c > 2)
15324 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
15325
15326 /* Swap out the table. */
15327 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
15328 ext_tab = bfd_alloc (abfd, amt);
15329 if (ext_tab == NULL)
15330 {
15331 free (tab);
15332 return false;
15333 }
15334
15335 for (j = 0; j < c; j++)
15336 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
15337 free (tab);
15338
15339 o->size = c * sizeof (Elf32_External_gptab);
15340 o->contents = (bfd_byte *) ext_tab;
15341
15342 /* Skip this section later on (I don't think this currently
15343 matters, but someday it might). */
15344 o->map_head.link_order = NULL;
15345 }
15346 }
15347
15348 /* Invoke the regular ELF backend linker to do all the work. */
15349 if (!bfd_elf_final_link (abfd, info))
15350 return false;
15351
15352 /* Now write out the computed sections. */
15353
15354 if (abiflags_sec != NULL)
15355 {
15356 Elf_External_ABIFlags_v0 ext;
15357 Elf_Internal_ABIFlags_v0 *abiflags;
15358
15359 abiflags = &mips_elf_tdata (abfd)->abiflags;
15360
15361 /* Set up the abiflags if no valid input sections were found. */
15362 if (!mips_elf_tdata (abfd)->abiflags_valid)
15363 {
15364 infer_mips_abiflags (abfd, abiflags);
15365 mips_elf_tdata (abfd)->abiflags_valid = true;
15366 }
15367 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
15368 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
15369 return false;
15370 }
15371
15372 if (reginfo_sec != NULL)
15373 {
15374 Elf32_External_RegInfo ext;
15375
15376 bfd_mips_elf32_swap_reginfo_out (abfd, ®info, &ext);
15377 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
15378 return false;
15379 }
15380
15381 if (mdebug_sec != NULL)
15382 {
15383 BFD_ASSERT (abfd->output_has_begun);
15384 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
15385 swap, info,
15386 mdebug_sec->filepos))
15387 return false;
15388
15389 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
15390 }
15391
15392 if (gptab_data_sec != NULL)
15393 {
15394 if (! bfd_set_section_contents (abfd, gptab_data_sec,
15395 gptab_data_sec->contents,
15396 0, gptab_data_sec->size))
15397 return false;
15398 }
15399
15400 if (gptab_bss_sec != NULL)
15401 {
15402 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
15403 gptab_bss_sec->contents,
15404 0, gptab_bss_sec->size))
15405 return false;
15406 }
15407
15408 if (SGI_COMPAT (abfd))
15409 {
15410 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
15411 if (rtproc_sec != NULL)
15412 {
15413 if (! bfd_set_section_contents (abfd, rtproc_sec,
15414 rtproc_sec->contents,
15415 0, rtproc_sec->size))
15416 return false;
15417 }
15418 }
15419
15420 return true;
15421 }
15422
15423 /* Merge object file header flags from IBFD into OBFD. Raise an error
15424 if there are conflicting settings. */
15425
15426 static bool
mips_elf_merge_obj_e_flags(bfd * ibfd,struct bfd_link_info * info)15427 mips_elf_merge_obj_e_flags (bfd *ibfd, struct bfd_link_info *info)
15428 {
15429 bfd *obfd = info->output_bfd;
15430 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15431 flagword old_flags;
15432 flagword new_flags;
15433 bool ok;
15434
15435 new_flags = elf_elfheader (ibfd)->e_flags;
15436 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
15437 old_flags = elf_elfheader (obfd)->e_flags;
15438
15439 /* Check flag compatibility. */
15440
15441 new_flags &= ~EF_MIPS_NOREORDER;
15442 old_flags &= ~EF_MIPS_NOREORDER;
15443
15444 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
15445 doesn't seem to matter. */
15446 new_flags &= ~EF_MIPS_XGOT;
15447 old_flags &= ~EF_MIPS_XGOT;
15448
15449 /* MIPSpro generates ucode info in n64 objects. Again, we should
15450 just be able to ignore this. */
15451 new_flags &= ~EF_MIPS_UCODE;
15452 old_flags &= ~EF_MIPS_UCODE;
15453
15454 /* DSOs should only be linked with CPIC code. */
15455 if ((ibfd->flags & DYNAMIC) != 0)
15456 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
15457
15458 if (new_flags == old_flags)
15459 return true;
15460
15461 ok = true;
15462
15463 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
15464 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
15465 {
15466 _bfd_error_handler
15467 (_("%pB: warning: linking abicalls files with non-abicalls files"),
15468 ibfd);
15469 ok = true;
15470 }
15471
15472 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
15473 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
15474 if (! (new_flags & EF_MIPS_PIC))
15475 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
15476
15477 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15478 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15479
15480 /* Compare the ISAs. */
15481 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
15482 {
15483 _bfd_error_handler
15484 (_("%pB: linking 32-bit code with 64-bit code"),
15485 ibfd);
15486 ok = false;
15487 }
15488 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
15489 {
15490 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
15491 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
15492 {
15493 /* Copy the architecture info from IBFD to OBFD. Also copy
15494 the 32-bit flag (if set) so that we continue to recognise
15495 OBFD as a 32-bit binary. */
15496 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
15497 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
15498 elf_elfheader (obfd)->e_flags
15499 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15500
15501 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
15502 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15503
15504 /* Copy across the ABI flags if OBFD doesn't use them
15505 and if that was what caused us to treat IBFD as 32-bit. */
15506 if ((old_flags & EF_MIPS_ABI) == 0
15507 && mips_32bit_flags_p (new_flags)
15508 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15509 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
15510 }
15511 else
15512 {
15513 /* The ISAs aren't compatible. */
15514 _bfd_error_handler
15515 /* xgettext:c-format */
15516 (_("%pB: linking %s module with previous %s modules"),
15517 ibfd,
15518 bfd_printable_name (ibfd),
15519 bfd_printable_name (obfd));
15520 ok = false;
15521 }
15522 }
15523
15524 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15525 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15526
15527 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
15528 does set EI_CLASS differently from any 32-bit ABI. */
15529 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15530 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15531 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15532 {
15533 /* Only error if both are set (to different values). */
15534 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15535 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15536 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15537 {
15538 _bfd_error_handler
15539 /* xgettext:c-format */
15540 (_("%pB: ABI mismatch: linking %s module with previous %s modules"),
15541 ibfd,
15542 elf_mips_abi_name (ibfd),
15543 elf_mips_abi_name (obfd));
15544 ok = false;
15545 }
15546 new_flags &= ~EF_MIPS_ABI;
15547 old_flags &= ~EF_MIPS_ABI;
15548 }
15549
15550 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15551 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15552 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15553 {
15554 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15555 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15556 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15557 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15558 int micro_mis = old_m16 && new_micro;
15559 int m16_mis = old_micro && new_m16;
15560
15561 if (m16_mis || micro_mis)
15562 {
15563 _bfd_error_handler
15564 /* xgettext:c-format */
15565 (_("%pB: ASE mismatch: linking %s module with previous %s modules"),
15566 ibfd,
15567 m16_mis ? "MIPS16" : "microMIPS",
15568 m16_mis ? "microMIPS" : "MIPS16");
15569 ok = false;
15570 }
15571
15572 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15573
15574 new_flags &= ~ EF_MIPS_ARCH_ASE;
15575 old_flags &= ~ EF_MIPS_ARCH_ASE;
15576 }
15577
15578 /* Compare NaN encodings. */
15579 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15580 {
15581 /* xgettext:c-format */
15582 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
15583 ibfd,
15584 (new_flags & EF_MIPS_NAN2008
15585 ? "-mnan=2008" : "-mnan=legacy"),
15586 (old_flags & EF_MIPS_NAN2008
15587 ? "-mnan=2008" : "-mnan=legacy"));
15588 ok = false;
15589 new_flags &= ~EF_MIPS_NAN2008;
15590 old_flags &= ~EF_MIPS_NAN2008;
15591 }
15592
15593 /* Compare FP64 state. */
15594 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15595 {
15596 /* xgettext:c-format */
15597 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
15598 ibfd,
15599 (new_flags & EF_MIPS_FP64
15600 ? "-mfp64" : "-mfp32"),
15601 (old_flags & EF_MIPS_FP64
15602 ? "-mfp64" : "-mfp32"));
15603 ok = false;
15604 new_flags &= ~EF_MIPS_FP64;
15605 old_flags &= ~EF_MIPS_FP64;
15606 }
15607
15608 /* Warn about any other mismatches */
15609 if (new_flags != old_flags)
15610 {
15611 /* xgettext:c-format */
15612 _bfd_error_handler
15613 (_("%pB: uses different e_flags (%#x) fields than previous modules "
15614 "(%#x)"),
15615 ibfd, new_flags, old_flags);
15616 ok = false;
15617 }
15618
15619 return ok;
15620 }
15621
15622 /* Merge object attributes from IBFD into OBFD. Raise an error if
15623 there are conflicting attributes. */
15624 static bool
mips_elf_merge_obj_attributes(bfd * ibfd,struct bfd_link_info * info)15625 mips_elf_merge_obj_attributes (bfd *ibfd, struct bfd_link_info *info)
15626 {
15627 bfd *obfd = info->output_bfd;
15628 obj_attribute *in_attr;
15629 obj_attribute *out_attr;
15630 bfd *abi_fp_bfd;
15631 bfd *abi_msa_bfd;
15632
15633 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
15634 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15635 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
15636 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15637
15638 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
15639 if (!abi_msa_bfd
15640 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15641 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
15642
15643 if (!elf_known_obj_attributes_proc (obfd)[0].i)
15644 {
15645 /* This is the first object. Copy the attributes. */
15646 _bfd_elf_copy_obj_attributes (ibfd, obfd);
15647
15648 /* Use the Tag_null value to indicate the attributes have been
15649 initialized. */
15650 elf_known_obj_attributes_proc (obfd)[0].i = 1;
15651
15652 return true;
15653 }
15654
15655 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15656 non-conflicting ones. */
15657 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15658 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
15659 {
15660 int out_fp, in_fp;
15661
15662 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15663 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15664 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
15665 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
15666 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
15667 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
15668 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15669 || in_fp == Val_GNU_MIPS_ABI_FP_64
15670 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
15671 {
15672 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15673 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15674 }
15675 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
15676 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15677 || out_fp == Val_GNU_MIPS_ABI_FP_64
15678 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
15679 /* Keep the current setting. */;
15680 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
15681 && in_fp == Val_GNU_MIPS_ABI_FP_64)
15682 {
15683 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15684 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15685 }
15686 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
15687 && out_fp == Val_GNU_MIPS_ABI_FP_64)
15688 /* Keep the current setting. */;
15689 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
15690 {
15691 const char *out_string, *in_string;
15692
15693 out_string = _bfd_mips_fp_abi_string (out_fp);
15694 in_string = _bfd_mips_fp_abi_string (in_fp);
15695 /* First warn about cases involving unrecognised ABIs. */
15696 if (!out_string && !in_string)
15697 /* xgettext:c-format */
15698 _bfd_error_handler
15699 (_("warning: %pB uses unknown floating point ABI %d "
15700 "(set by %pB), %pB uses unknown floating point ABI %d"),
15701 obfd, out_fp, abi_fp_bfd, ibfd, in_fp);
15702 else if (!out_string)
15703 _bfd_error_handler
15704 /* xgettext:c-format */
15705 (_("warning: %pB uses unknown floating point ABI %d "
15706 "(set by %pB), %pB uses %s"),
15707 obfd, out_fp, abi_fp_bfd, ibfd, in_string);
15708 else if (!in_string)
15709 _bfd_error_handler
15710 /* xgettext:c-format */
15711 (_("warning: %pB uses %s (set by %pB), "
15712 "%pB uses unknown floating point ABI %d"),
15713 obfd, out_string, abi_fp_bfd, ibfd, in_fp);
15714 else
15715 {
15716 /* If one of the bfds is soft-float, the other must be
15717 hard-float. The exact choice of hard-float ABI isn't
15718 really relevant to the error message. */
15719 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15720 out_string = "-mhard-float";
15721 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15722 in_string = "-mhard-float";
15723 _bfd_error_handler
15724 /* xgettext:c-format */
15725 (_("warning: %pB uses %s (set by %pB), %pB uses %s"),
15726 obfd, out_string, abi_fp_bfd, ibfd, in_string);
15727 }
15728 }
15729 }
15730
15731 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15732 non-conflicting ones. */
15733 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15734 {
15735 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
15736 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
15737 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
15738 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15739 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15740 {
15741 case Val_GNU_MIPS_ABI_MSA_128:
15742 _bfd_error_handler
15743 /* xgettext:c-format */
15744 (_("warning: %pB uses %s (set by %pB), "
15745 "%pB uses unknown MSA ABI %d"),
15746 obfd, "-mmsa", abi_msa_bfd,
15747 ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15748 break;
15749
15750 default:
15751 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15752 {
15753 case Val_GNU_MIPS_ABI_MSA_128:
15754 _bfd_error_handler
15755 /* xgettext:c-format */
15756 (_("warning: %pB uses unknown MSA ABI %d "
15757 "(set by %pB), %pB uses %s"),
15758 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15759 abi_msa_bfd, ibfd, "-mmsa");
15760 break;
15761
15762 default:
15763 _bfd_error_handler
15764 /* xgettext:c-format */
15765 (_("warning: %pB uses unknown MSA ABI %d "
15766 "(set by %pB), %pB uses unknown MSA ABI %d"),
15767 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15768 abi_msa_bfd, ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15769 break;
15770 }
15771 }
15772 }
15773
15774 /* Merge Tag_compatibility attributes and any common GNU ones. */
15775 return _bfd_elf_merge_object_attributes (ibfd, info);
15776 }
15777
15778 /* Merge object ABI flags from IBFD into OBFD. Raise an error if
15779 there are conflicting settings. */
15780
15781 static bool
mips_elf_merge_obj_abiflags(bfd * ibfd,bfd * obfd)15782 mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd)
15783 {
15784 obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15785 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15786 struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd);
15787
15788 /* Update the output abiflags fp_abi using the computed fp_abi. */
15789 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15790
15791 #define max(a, b) ((a) > (b) ? (a) : (b))
15792 /* Merge abiflags. */
15793 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level,
15794 in_tdata->abiflags.isa_level);
15795 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev,
15796 in_tdata->abiflags.isa_rev);
15797 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size,
15798 in_tdata->abiflags.gpr_size);
15799 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size,
15800 in_tdata->abiflags.cpr1_size);
15801 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size,
15802 in_tdata->abiflags.cpr2_size);
15803 #undef max
15804 out_tdata->abiflags.ases |= in_tdata->abiflags.ases;
15805 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1;
15806
15807 return true;
15808 }
15809
15810 /* Merge backend specific data from an object file to the output
15811 object file when linking. */
15812
15813 bool
_bfd_mips_elf_merge_private_bfd_data(bfd * ibfd,struct bfd_link_info * info)15814 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
15815 {
15816 bfd *obfd = info->output_bfd;
15817 struct mips_elf_obj_tdata *out_tdata;
15818 struct mips_elf_obj_tdata *in_tdata;
15819 bool null_input_bfd = true;
15820 asection *sec;
15821 bool ok;
15822
15823 /* Check if we have the same endianness. */
15824 if (! _bfd_generic_verify_endian_match (ibfd, info))
15825 {
15826 _bfd_error_handler
15827 (_("%pB: endianness incompatible with that of the selected emulation"),
15828 ibfd);
15829 return false;
15830 }
15831
15832 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
15833 return true;
15834
15835 in_tdata = mips_elf_tdata (ibfd);
15836 out_tdata = mips_elf_tdata (obfd);
15837
15838 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15839 {
15840 _bfd_error_handler
15841 (_("%pB: ABI is incompatible with that of the selected emulation"),
15842 ibfd);
15843 return false;
15844 }
15845
15846 /* Check to see if the input BFD actually contains any sections. If not,
15847 then it has no attributes, and its flags may not have been initialized
15848 either, but it cannot actually cause any incompatibility. */
15849 /* FIXME: This excludes any input shared library from consideration. */
15850 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15851 {
15852 /* Ignore synthetic sections and empty .text, .data and .bss sections
15853 which are automatically generated by gas. Also ignore fake
15854 (s)common sections, since merely defining a common symbol does
15855 not affect compatibility. */
15856 if ((sec->flags & SEC_IS_COMMON) == 0
15857 && strcmp (sec->name, ".reginfo")
15858 && strcmp (sec->name, ".mdebug")
15859 && (sec->size != 0
15860 || (strcmp (sec->name, ".text")
15861 && strcmp (sec->name, ".data")
15862 && strcmp (sec->name, ".bss"))))
15863 {
15864 null_input_bfd = false;
15865 break;
15866 }
15867 }
15868 if (null_input_bfd)
15869 return true;
15870
15871 /* Populate abiflags using existing information. */
15872 if (in_tdata->abiflags_valid)
15873 {
15874 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15875 Elf_Internal_ABIFlags_v0 in_abiflags;
15876 Elf_Internal_ABIFlags_v0 abiflags;
15877
15878 /* Set up the FP ABI attribute from the abiflags if it is not already
15879 set. */
15880 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
15881 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi;
15882
15883 infer_mips_abiflags (ibfd, &abiflags);
15884 in_abiflags = in_tdata->abiflags;
15885
15886 /* It is not possible to infer the correct ISA revision
15887 for R3 or R5 so drop down to R2 for the checks. */
15888 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15889 in_abiflags.isa_rev = 2;
15890
15891 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15892 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
15893 _bfd_error_handler
15894 (_("%pB: warning: inconsistent ISA between e_flags and "
15895 ".MIPS.abiflags"), ibfd);
15896 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15897 && in_abiflags.fp_abi != abiflags.fp_abi)
15898 _bfd_error_handler
15899 (_("%pB: warning: inconsistent FP ABI between .gnu.attributes and "
15900 ".MIPS.abiflags"), ibfd);
15901 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
15902 _bfd_error_handler
15903 (_("%pB: warning: inconsistent ASEs between e_flags and "
15904 ".MIPS.abiflags"), ibfd);
15905 /* The isa_ext is allowed to be an extension of what can be inferred
15906 from e_flags. */
15907 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15908 bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
15909 _bfd_error_handler
15910 (_("%pB: warning: inconsistent ISA extensions between e_flags and "
15911 ".MIPS.abiflags"), ibfd);
15912 if (in_abiflags.flags2 != 0)
15913 _bfd_error_handler
15914 (_("%pB: warning: unexpected flag in the flags2 field of "
15915 ".MIPS.abiflags (0x%lx)"), ibfd,
15916 in_abiflags.flags2);
15917 }
15918 else
15919 {
15920 infer_mips_abiflags (ibfd, &in_tdata->abiflags);
15921 in_tdata->abiflags_valid = true;
15922 }
15923
15924 if (!out_tdata->abiflags_valid)
15925 {
15926 /* Copy input abiflags if output abiflags are not already valid. */
15927 out_tdata->abiflags = in_tdata->abiflags;
15928 out_tdata->abiflags_valid = true;
15929 }
15930
15931 if (! elf_flags_init (obfd))
15932 {
15933 elf_flags_init (obfd) = true;
15934 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
15935 elf_elfheader (obfd)->e_ident[EI_CLASS]
15936 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15937
15938 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15939 && (bfd_get_arch_info (obfd)->the_default
15940 || mips_mach_extends_p (bfd_get_mach (obfd),
15941 bfd_get_mach (ibfd))))
15942 {
15943 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15944 bfd_get_mach (ibfd)))
15945 return false;
15946
15947 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
15948 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15949 }
15950
15951 ok = true;
15952 }
15953 else
15954 ok = mips_elf_merge_obj_e_flags (ibfd, info);
15955
15956 ok = mips_elf_merge_obj_attributes (ibfd, info) && ok;
15957
15958 ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok;
15959
15960 if (!ok)
15961 {
15962 bfd_set_error (bfd_error_bad_value);
15963 return false;
15964 }
15965
15966 return true;
15967 }
15968
15969 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15970
15971 bool
_bfd_mips_elf_set_private_flags(bfd * abfd,flagword flags)15972 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
15973 {
15974 BFD_ASSERT (!elf_flags_init (abfd)
15975 || elf_elfheader (abfd)->e_flags == flags);
15976
15977 elf_elfheader (abfd)->e_flags = flags;
15978 elf_flags_init (abfd) = true;
15979 return true;
15980 }
15981
15982 char *
_bfd_mips_elf_get_target_dtag(bfd_vma dtag)15983 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15984 {
15985 switch (dtag)
15986 {
15987 default: return "";
15988 case DT_MIPS_RLD_VERSION:
15989 return "MIPS_RLD_VERSION";
15990 case DT_MIPS_TIME_STAMP:
15991 return "MIPS_TIME_STAMP";
15992 case DT_MIPS_ICHECKSUM:
15993 return "MIPS_ICHECKSUM";
15994 case DT_MIPS_IVERSION:
15995 return "MIPS_IVERSION";
15996 case DT_MIPS_FLAGS:
15997 return "MIPS_FLAGS";
15998 case DT_MIPS_BASE_ADDRESS:
15999 return "MIPS_BASE_ADDRESS";
16000 case DT_MIPS_MSYM:
16001 return "MIPS_MSYM";
16002 case DT_MIPS_CONFLICT:
16003 return "MIPS_CONFLICT";
16004 case DT_MIPS_LIBLIST:
16005 return "MIPS_LIBLIST";
16006 case DT_MIPS_LOCAL_GOTNO:
16007 return "MIPS_LOCAL_GOTNO";
16008 case DT_MIPS_CONFLICTNO:
16009 return "MIPS_CONFLICTNO";
16010 case DT_MIPS_LIBLISTNO:
16011 return "MIPS_LIBLISTNO";
16012 case DT_MIPS_SYMTABNO:
16013 return "MIPS_SYMTABNO";
16014 case DT_MIPS_UNREFEXTNO:
16015 return "MIPS_UNREFEXTNO";
16016 case DT_MIPS_GOTSYM:
16017 return "MIPS_GOTSYM";
16018 case DT_MIPS_HIPAGENO:
16019 return "MIPS_HIPAGENO";
16020 case DT_MIPS_RLD_MAP:
16021 return "MIPS_RLD_MAP";
16022 case DT_MIPS_RLD_MAP_REL:
16023 return "MIPS_RLD_MAP_REL";
16024 case DT_MIPS_DELTA_CLASS:
16025 return "MIPS_DELTA_CLASS";
16026 case DT_MIPS_DELTA_CLASS_NO:
16027 return "MIPS_DELTA_CLASS_NO";
16028 case DT_MIPS_DELTA_INSTANCE:
16029 return "MIPS_DELTA_INSTANCE";
16030 case DT_MIPS_DELTA_INSTANCE_NO:
16031 return "MIPS_DELTA_INSTANCE_NO";
16032 case DT_MIPS_DELTA_RELOC:
16033 return "MIPS_DELTA_RELOC";
16034 case DT_MIPS_DELTA_RELOC_NO:
16035 return "MIPS_DELTA_RELOC_NO";
16036 case DT_MIPS_DELTA_SYM:
16037 return "MIPS_DELTA_SYM";
16038 case DT_MIPS_DELTA_SYM_NO:
16039 return "MIPS_DELTA_SYM_NO";
16040 case DT_MIPS_DELTA_CLASSSYM:
16041 return "MIPS_DELTA_CLASSSYM";
16042 case DT_MIPS_DELTA_CLASSSYM_NO:
16043 return "MIPS_DELTA_CLASSSYM_NO";
16044 case DT_MIPS_CXX_FLAGS:
16045 return "MIPS_CXX_FLAGS";
16046 case DT_MIPS_PIXIE_INIT:
16047 return "MIPS_PIXIE_INIT";
16048 case DT_MIPS_SYMBOL_LIB:
16049 return "MIPS_SYMBOL_LIB";
16050 case DT_MIPS_LOCALPAGE_GOTIDX:
16051 return "MIPS_LOCALPAGE_GOTIDX";
16052 case DT_MIPS_LOCAL_GOTIDX:
16053 return "MIPS_LOCAL_GOTIDX";
16054 case DT_MIPS_HIDDEN_GOTIDX:
16055 return "MIPS_HIDDEN_GOTIDX";
16056 case DT_MIPS_PROTECTED_GOTIDX:
16057 return "MIPS_PROTECTED_GOT_IDX";
16058 case DT_MIPS_OPTIONS:
16059 return "MIPS_OPTIONS";
16060 case DT_MIPS_INTERFACE:
16061 return "MIPS_INTERFACE";
16062 case DT_MIPS_DYNSTR_ALIGN:
16063 return "DT_MIPS_DYNSTR_ALIGN";
16064 case DT_MIPS_INTERFACE_SIZE:
16065 return "DT_MIPS_INTERFACE_SIZE";
16066 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
16067 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
16068 case DT_MIPS_PERF_SUFFIX:
16069 return "DT_MIPS_PERF_SUFFIX";
16070 case DT_MIPS_COMPACT_SIZE:
16071 return "DT_MIPS_COMPACT_SIZE";
16072 case DT_MIPS_GP_VALUE:
16073 return "DT_MIPS_GP_VALUE";
16074 case DT_MIPS_AUX_DYNAMIC:
16075 return "DT_MIPS_AUX_DYNAMIC";
16076 case DT_MIPS_PLTGOT:
16077 return "DT_MIPS_PLTGOT";
16078 case DT_MIPS_RWPLT:
16079 return "DT_MIPS_RWPLT";
16080 case DT_MIPS_XHASH:
16081 return "DT_MIPS_XHASH";
16082 }
16083 }
16084
16085 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
16086 not known. */
16087
16088 const char *
_bfd_mips_fp_abi_string(int fp)16089 _bfd_mips_fp_abi_string (int fp)
16090 {
16091 switch (fp)
16092 {
16093 /* These strings aren't translated because they're simply
16094 option lists. */
16095 case Val_GNU_MIPS_ABI_FP_DOUBLE:
16096 return "-mdouble-float";
16097
16098 case Val_GNU_MIPS_ABI_FP_SINGLE:
16099 return "-msingle-float";
16100
16101 case Val_GNU_MIPS_ABI_FP_SOFT:
16102 return "-msoft-float";
16103
16104 case Val_GNU_MIPS_ABI_FP_OLD_64:
16105 return _("-mips32r2 -mfp64 (12 callee-saved)");
16106
16107 case Val_GNU_MIPS_ABI_FP_XX:
16108 return "-mfpxx";
16109
16110 case Val_GNU_MIPS_ABI_FP_64:
16111 return "-mgp32 -mfp64";
16112
16113 case Val_GNU_MIPS_ABI_FP_64A:
16114 return "-mgp32 -mfp64 -mno-odd-spreg";
16115
16116 default:
16117 return 0;
16118 }
16119 }
16120
16121 static void
print_mips_ases(FILE * file,unsigned int mask)16122 print_mips_ases (FILE *file, unsigned int mask)
16123 {
16124 if (mask & AFL_ASE_DSP)
16125 fputs ("\n\tDSP ASE", file);
16126 if (mask & AFL_ASE_DSPR2)
16127 fputs ("\n\tDSP R2 ASE", file);
16128 if (mask & AFL_ASE_DSPR3)
16129 fputs ("\n\tDSP R3 ASE", file);
16130 if (mask & AFL_ASE_EVA)
16131 fputs ("\n\tEnhanced VA Scheme", file);
16132 if (mask & AFL_ASE_MCU)
16133 fputs ("\n\tMCU (MicroController) ASE", file);
16134 if (mask & AFL_ASE_MDMX)
16135 fputs ("\n\tMDMX ASE", file);
16136 if (mask & AFL_ASE_MIPS3D)
16137 fputs ("\n\tMIPS-3D ASE", file);
16138 if (mask & AFL_ASE_MT)
16139 fputs ("\n\tMT ASE", file);
16140 if (mask & AFL_ASE_SMARTMIPS)
16141 fputs ("\n\tSmartMIPS ASE", file);
16142 if (mask & AFL_ASE_VIRT)
16143 fputs ("\n\tVZ ASE", file);
16144 if (mask & AFL_ASE_MSA)
16145 fputs ("\n\tMSA ASE", file);
16146 if (mask & AFL_ASE_MIPS16)
16147 fputs ("\n\tMIPS16 ASE", file);
16148 if (mask & AFL_ASE_MICROMIPS)
16149 fputs ("\n\tMICROMIPS ASE", file);
16150 if (mask & AFL_ASE_XPA)
16151 fputs ("\n\tXPA ASE", file);
16152 if (mask & AFL_ASE_MIPS16E2)
16153 fputs ("\n\tMIPS16e2 ASE", file);
16154 if (mask & AFL_ASE_CRC)
16155 fputs ("\n\tCRC ASE", file);
16156 if (mask & AFL_ASE_GINV)
16157 fputs ("\n\tGINV ASE", file);
16158 if (mask & AFL_ASE_LOONGSON_MMI)
16159 fputs ("\n\tLoongson MMI ASE", file);
16160 if (mask & AFL_ASE_LOONGSON_CAM)
16161 fputs ("\n\tLoongson CAM ASE", file);
16162 if (mask & AFL_ASE_LOONGSON_EXT)
16163 fputs ("\n\tLoongson EXT ASE", file);
16164 if (mask & AFL_ASE_LOONGSON_EXT2)
16165 fputs ("\n\tLoongson EXT2 ASE", file);
16166 if (mask == 0)
16167 fprintf (file, "\n\t%s", _("None"));
16168 else if ((mask & ~AFL_ASE_MASK) != 0)
16169 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
16170 }
16171
16172 static void
print_mips_isa_ext(FILE * file,unsigned int isa_ext)16173 print_mips_isa_ext (FILE *file, unsigned int isa_ext)
16174 {
16175 switch (isa_ext)
16176 {
16177 case 0:
16178 fputs (_("None"), file);
16179 break;
16180 case AFL_EXT_XLR:
16181 fputs ("RMI XLR", file);
16182 break;
16183 case AFL_EXT_OCTEON3:
16184 fputs ("Cavium Networks Octeon3", file);
16185 break;
16186 case AFL_EXT_OCTEON2:
16187 fputs ("Cavium Networks Octeon2", file);
16188 break;
16189 case AFL_EXT_OCTEONP:
16190 fputs ("Cavium Networks OcteonP", file);
16191 break;
16192 case AFL_EXT_OCTEON:
16193 fputs ("Cavium Networks Octeon", file);
16194 break;
16195 case AFL_EXT_5900:
16196 fputs ("Toshiba R5900", file);
16197 break;
16198 case AFL_EXT_4650:
16199 fputs ("MIPS R4650", file);
16200 break;
16201 case AFL_EXT_4010:
16202 fputs ("LSI R4010", file);
16203 break;
16204 case AFL_EXT_4100:
16205 fputs ("NEC VR4100", file);
16206 break;
16207 case AFL_EXT_3900:
16208 fputs ("Toshiba R3900", file);
16209 break;
16210 case AFL_EXT_10000:
16211 fputs ("MIPS R10000", file);
16212 break;
16213 case AFL_EXT_SB1:
16214 fputs ("Broadcom SB-1", file);
16215 break;
16216 case AFL_EXT_4111:
16217 fputs ("NEC VR4111/VR4181", file);
16218 break;
16219 case AFL_EXT_4120:
16220 fputs ("NEC VR4120", file);
16221 break;
16222 case AFL_EXT_5400:
16223 fputs ("NEC VR5400", file);
16224 break;
16225 case AFL_EXT_5500:
16226 fputs ("NEC VR5500", file);
16227 break;
16228 case AFL_EXT_LOONGSON_2E:
16229 fputs ("ST Microelectronics Loongson 2E", file);
16230 break;
16231 case AFL_EXT_LOONGSON_2F:
16232 fputs ("ST Microelectronics Loongson 2F", file);
16233 break;
16234 case AFL_EXT_INTERAPTIV_MR2:
16235 fputs ("Imagination interAptiv MR2", file);
16236 break;
16237 default:
16238 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
16239 break;
16240 }
16241 }
16242
16243 static void
print_mips_fp_abi_value(FILE * file,int val)16244 print_mips_fp_abi_value (FILE *file, int val)
16245 {
16246 switch (val)
16247 {
16248 case Val_GNU_MIPS_ABI_FP_ANY:
16249 fprintf (file, _("Hard or soft float\n"));
16250 break;
16251 case Val_GNU_MIPS_ABI_FP_DOUBLE:
16252 fprintf (file, _("Hard float (double precision)\n"));
16253 break;
16254 case Val_GNU_MIPS_ABI_FP_SINGLE:
16255 fprintf (file, _("Hard float (single precision)\n"));
16256 break;
16257 case Val_GNU_MIPS_ABI_FP_SOFT:
16258 fprintf (file, _("Soft float\n"));
16259 break;
16260 case Val_GNU_MIPS_ABI_FP_OLD_64:
16261 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
16262 break;
16263 case Val_GNU_MIPS_ABI_FP_XX:
16264 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
16265 break;
16266 case Val_GNU_MIPS_ABI_FP_64:
16267 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
16268 break;
16269 case Val_GNU_MIPS_ABI_FP_64A:
16270 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
16271 break;
16272 default:
16273 fprintf (file, "??? (%d)\n", val);
16274 break;
16275 }
16276 }
16277
16278 static int
get_mips_reg_size(int reg_size)16279 get_mips_reg_size (int reg_size)
16280 {
16281 return (reg_size == AFL_REG_NONE) ? 0
16282 : (reg_size == AFL_REG_32) ? 32
16283 : (reg_size == AFL_REG_64) ? 64
16284 : (reg_size == AFL_REG_128) ? 128
16285 : -1;
16286 }
16287
16288 bool
_bfd_mips_elf_print_private_bfd_data(bfd * abfd,void * ptr)16289 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
16290 {
16291 FILE *file = ptr;
16292
16293 BFD_ASSERT (abfd != NULL && ptr != NULL);
16294
16295 /* Print normal ELF private data. */
16296 _bfd_elf_print_private_bfd_data (abfd, ptr);
16297
16298 /* xgettext:c-format */
16299 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
16300
16301 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
16302 fprintf (file, _(" [abi=O32]"));
16303 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
16304 fprintf (file, _(" [abi=O64]"));
16305 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
16306 fprintf (file, _(" [abi=EABI32]"));
16307 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
16308 fprintf (file, _(" [abi=EABI64]"));
16309 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
16310 fprintf (file, _(" [abi unknown]"));
16311 else if (ABI_N32_P (abfd))
16312 fprintf (file, _(" [abi=N32]"));
16313 else if (ABI_64_P (abfd))
16314 fprintf (file, _(" [abi=64]"));
16315 else
16316 fprintf (file, _(" [no abi set]"));
16317
16318 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
16319 fprintf (file, " [mips1]");
16320 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
16321 fprintf (file, " [mips2]");
16322 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
16323 fprintf (file, " [mips3]");
16324 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
16325 fprintf (file, " [mips4]");
16326 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
16327 fprintf (file, " [mips5]");
16328 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
16329 fprintf (file, " [mips32]");
16330 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
16331 fprintf (file, " [mips64]");
16332 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
16333 fprintf (file, " [mips32r2]");
16334 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
16335 fprintf (file, " [mips64r2]");
16336 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
16337 fprintf (file, " [mips32r6]");
16338 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
16339 fprintf (file, " [mips64r6]");
16340 else
16341 fprintf (file, _(" [unknown ISA]"));
16342
16343 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
16344 fprintf (file, " [mdmx]");
16345
16346 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
16347 fprintf (file, " [mips16]");
16348
16349 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
16350 fprintf (file, " [micromips]");
16351
16352 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
16353 fprintf (file, " [nan2008]");
16354
16355 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
16356 fprintf (file, " [old fp64]");
16357
16358 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
16359 fprintf (file, " [32bitmode]");
16360 else
16361 fprintf (file, _(" [not 32bitmode]"));
16362
16363 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
16364 fprintf (file, " [noreorder]");
16365
16366 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
16367 fprintf (file, " [PIC]");
16368
16369 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
16370 fprintf (file, " [CPIC]");
16371
16372 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
16373 fprintf (file, " [XGOT]");
16374
16375 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
16376 fprintf (file, " [UCODE]");
16377
16378 fputc ('\n', file);
16379
16380 if (mips_elf_tdata (abfd)->abiflags_valid)
16381 {
16382 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
16383 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
16384 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
16385 if (abiflags->isa_rev > 1)
16386 fprintf (file, "r%d", abiflags->isa_rev);
16387 fprintf (file, "\nGPR size: %d",
16388 get_mips_reg_size (abiflags->gpr_size));
16389 fprintf (file, "\nCPR1 size: %d",
16390 get_mips_reg_size (abiflags->cpr1_size));
16391 fprintf (file, "\nCPR2 size: %d",
16392 get_mips_reg_size (abiflags->cpr2_size));
16393 fputs ("\nFP ABI: ", file);
16394 print_mips_fp_abi_value (file, abiflags->fp_abi);
16395 fputs ("ISA Extension: ", file);
16396 print_mips_isa_ext (file, abiflags->isa_ext);
16397 fputs ("\nASEs:", file);
16398 print_mips_ases (file, abiflags->ases);
16399 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
16400 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
16401 fputc ('\n', file);
16402 }
16403
16404 return true;
16405 }
16406
16407 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
16408 {
16409 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16410 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16411 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
16412 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16413 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16414 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
16415 { STRING_COMMA_LEN (".MIPS.xhash"), 0, SHT_MIPS_XHASH, SHF_ALLOC },
16416 { NULL, 0, 0, 0, 0 }
16417 };
16418
16419 /* Merge non visibility st_other attributes. Ensure that the
16420 STO_OPTIONAL flag is copied into h->other, even if this is not a
16421 definiton of the symbol. */
16422 void
_bfd_mips_elf_merge_symbol_attribute(struct elf_link_hash_entry * h,unsigned int st_other,bool definition,bool dynamic ATTRIBUTE_UNUSED)16423 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
16424 unsigned int st_other,
16425 bool definition,
16426 bool dynamic ATTRIBUTE_UNUSED)
16427 {
16428 if ((st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
16429 {
16430 unsigned char other;
16431
16432 other = (definition ? st_other : h->other);
16433 other &= ~ELF_ST_VISIBILITY (-1);
16434 h->other = other | ELF_ST_VISIBILITY (h->other);
16435 }
16436
16437 if (!definition
16438 && ELF_MIPS_IS_OPTIONAL (st_other))
16439 h->other |= STO_OPTIONAL;
16440 }
16441
16442 /* Decide whether an undefined symbol is special and can be ignored.
16443 This is the case for OPTIONAL symbols on IRIX. */
16444 bool
_bfd_mips_elf_ignore_undef_symbol(struct elf_link_hash_entry * h)16445 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
16446 {
16447 return ELF_MIPS_IS_OPTIONAL (h->other) != 0;
16448 }
16449
16450 bool
_bfd_mips_elf_common_definition(Elf_Internal_Sym * sym)16451 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
16452 {
16453 return (sym->st_shndx == SHN_COMMON
16454 || sym->st_shndx == SHN_MIPS_ACOMMON
16455 || sym->st_shndx == SHN_MIPS_SCOMMON);
16456 }
16457
16458 /* Return address for Ith PLT stub in section PLT, for relocation REL
16459 or (bfd_vma) -1 if it should not be included. */
16460
16461 bfd_vma
_bfd_mips_elf_plt_sym_val(bfd_vma i,const asection * plt,const arelent * rel ATTRIBUTE_UNUSED)16462 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
16463 const arelent *rel ATTRIBUTE_UNUSED)
16464 {
16465 return (plt->vma
16466 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
16467 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
16468 }
16469
16470 /* Build a table of synthetic symbols to represent the PLT. As with MIPS16
16471 and microMIPS PLT slots we may have a many-to-one mapping between .plt
16472 and .got.plt and also the slots may be of a different size each we walk
16473 the PLT manually fetching instructions and matching them against known
16474 patterns. To make things easier standard MIPS slots, if any, always come
16475 first. As we don't create proper ELF symbols we use the UDATA.I member
16476 of ASYMBOL to carry ISA annotation. The encoding used is the same as
16477 with the ST_OTHER member of the ELF symbol. */
16478
16479 long
_bfd_mips_elf_get_synthetic_symtab(bfd * abfd,long symcount ATTRIBUTE_UNUSED,asymbol ** syms ATTRIBUTE_UNUSED,long dynsymcount,asymbol ** dynsyms,asymbol ** ret)16480 _bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
16481 long symcount ATTRIBUTE_UNUSED,
16482 asymbol **syms ATTRIBUTE_UNUSED,
16483 long dynsymcount, asymbol **dynsyms,
16484 asymbol **ret)
16485 {
16486 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
16487 static const char microsuffix[] = "@micromipsplt";
16488 static const char m16suffix[] = "@mips16plt";
16489 static const char mipssuffix[] = "@plt";
16490
16491 bool (*slurp_relocs) (bfd *, asection *, asymbol **, bool);
16492 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
16493 bool micromips_p = MICROMIPS_P (abfd);
16494 Elf_Internal_Shdr *hdr;
16495 bfd_byte *plt_data;
16496 bfd_vma plt_offset;
16497 unsigned int other;
16498 bfd_vma entry_size;
16499 bfd_vma plt0_size;
16500 asection *relplt;
16501 bfd_vma opcode;
16502 asection *plt;
16503 asymbol *send;
16504 size_t size;
16505 char *names;
16506 long counti;
16507 arelent *p;
16508 asymbol *s;
16509 char *nend;
16510 long count;
16511 long pi;
16512 long i;
16513 long n;
16514
16515 *ret = NULL;
16516
16517 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
16518 return 0;
16519
16520 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
16521 if (relplt == NULL)
16522 return 0;
16523
16524 hdr = &elf_section_data (relplt)->this_hdr;
16525 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
16526 return 0;
16527
16528 plt = bfd_get_section_by_name (abfd, ".plt");
16529 if (plt == NULL)
16530 return 0;
16531
16532 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
16533 if (!(*slurp_relocs) (abfd, relplt, dynsyms, true))
16534 return -1;
16535 p = relplt->relocation;
16536
16537 /* Calculating the exact amount of space required for symbols would
16538 require two passes over the PLT, so just pessimise assuming two
16539 PLT slots per relocation. */
16540 count = relplt->size / hdr->sh_entsize;
16541 counti = count * bed->s->int_rels_per_ext_rel;
16542 size = 2 * count * sizeof (asymbol);
16543 size += count * (sizeof (mipssuffix) +
16544 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
16545 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
16546 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
16547
16548 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
16549 size += sizeof (asymbol) + sizeof (pltname);
16550
16551 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
16552 return -1;
16553
16554 if (plt->size < 16)
16555 return -1;
16556
16557 s = *ret = bfd_malloc (size);
16558 if (s == NULL)
16559 return -1;
16560 send = s + 2 * count + 1;
16561
16562 names = (char *) send;
16563 nend = (char *) s + size;
16564 n = 0;
16565
16566 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
16567 if (opcode == 0x3302fffe)
16568 {
16569 if (!micromips_p)
16570 return -1;
16571 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
16572 other = STO_MICROMIPS;
16573 }
16574 else if (opcode == 0x0398c1d0)
16575 {
16576 if (!micromips_p)
16577 return -1;
16578 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
16579 other = STO_MICROMIPS;
16580 }
16581 else
16582 {
16583 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
16584 other = 0;
16585 }
16586
16587 s->the_bfd = abfd;
16588 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
16589 s->section = plt;
16590 s->value = 0;
16591 s->name = names;
16592 s->udata.i = other;
16593 memcpy (names, pltname, sizeof (pltname));
16594 names += sizeof (pltname);
16595 ++s, ++n;
16596
16597 pi = 0;
16598 for (plt_offset = plt0_size;
16599 plt_offset + 8 <= plt->size && s < send;
16600 plt_offset += entry_size)
16601 {
16602 bfd_vma gotplt_addr;
16603 const char *suffix;
16604 bfd_vma gotplt_hi;
16605 bfd_vma gotplt_lo;
16606 size_t suffixlen;
16607
16608 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16609
16610 /* Check if the second word matches the expected MIPS16 instruction. */
16611 if (opcode == 0x651aeb00)
16612 {
16613 if (micromips_p)
16614 return -1;
16615 /* Truncated table??? */
16616 if (plt_offset + 16 > plt->size)
16617 break;
16618 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16619 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16620 suffixlen = sizeof (m16suffix);
16621 suffix = m16suffix;
16622 other = STO_MIPS16;
16623 }
16624 /* Likewise the expected microMIPS instruction (no insn32 mode). */
16625 else if (opcode == 0xff220000)
16626 {
16627 if (!micromips_p)
16628 return -1;
16629 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16630 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16631 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16632 gotplt_lo <<= 2;
16633 gotplt_addr = gotplt_hi + gotplt_lo;
16634 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16635 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16636 suffixlen = sizeof (microsuffix);
16637 suffix = microsuffix;
16638 other = STO_MICROMIPS;
16639 }
16640 /* Likewise the expected microMIPS instruction (insn32 mode). */
16641 else if ((opcode & 0xffff0000) == 0xff2f0000)
16642 {
16643 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16644 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16645 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16646 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16647 gotplt_addr = gotplt_hi + gotplt_lo;
16648 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16649 suffixlen = sizeof (microsuffix);
16650 suffix = microsuffix;
16651 other = STO_MICROMIPS;
16652 }
16653 /* Otherwise assume standard MIPS code. */
16654 else
16655 {
16656 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16657 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16658 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16659 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16660 gotplt_addr = gotplt_hi + gotplt_lo;
16661 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16662 suffixlen = sizeof (mipssuffix);
16663 suffix = mipssuffix;
16664 other = 0;
16665 }
16666 /* Truncated table??? */
16667 if (plt_offset + entry_size > plt->size)
16668 break;
16669
16670 for (i = 0;
16671 i < count && p[pi].address != gotplt_addr;
16672 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16673
16674 if (i < count)
16675 {
16676 size_t namelen;
16677 size_t len;
16678
16679 *s = **p[pi].sym_ptr_ptr;
16680 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16681 we are defining a symbol, ensure one of them is set. */
16682 if ((s->flags & BSF_LOCAL) == 0)
16683 s->flags |= BSF_GLOBAL;
16684 s->flags |= BSF_SYNTHETIC;
16685 s->section = plt;
16686 s->value = plt_offset;
16687 s->name = names;
16688 s->udata.i = other;
16689
16690 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16691 namelen = len + suffixlen;
16692 if (names + namelen > nend)
16693 break;
16694
16695 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16696 names += len;
16697 memcpy (names, suffix, suffixlen);
16698 names += suffixlen;
16699
16700 ++s, ++n;
16701 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16702 }
16703 }
16704
16705 free (plt_data);
16706
16707 return n;
16708 }
16709
16710 /* Return the ABI flags associated with ABFD if available. */
16711
16712 Elf_Internal_ABIFlags_v0 *
bfd_mips_elf_get_abiflags(bfd * abfd)16713 bfd_mips_elf_get_abiflags (bfd *abfd)
16714 {
16715 struct mips_elf_obj_tdata *tdata = mips_elf_tdata (abfd);
16716
16717 return tdata->abiflags_valid ? &tdata->abiflags : NULL;
16718 }
16719
16720 /* MIPS libc ABI versions, used with the EI_ABIVERSION ELF file header
16721 field. Taken from `libc-abis.h' generated at GNU libc build time.
16722 Using a MIPS_ prefix as other libc targets use different values. */
16723 enum
16724 {
16725 MIPS_LIBC_ABI_DEFAULT = 0,
16726 MIPS_LIBC_ABI_MIPS_PLT,
16727 MIPS_LIBC_ABI_UNIQUE,
16728 MIPS_LIBC_ABI_MIPS_O32_FP64,
16729 MIPS_LIBC_ABI_ABSOLUTE,
16730 MIPS_LIBC_ABI_XHASH,
16731 MIPS_LIBC_ABI_MAX
16732 };
16733
16734 bool
_bfd_mips_init_file_header(bfd * abfd,struct bfd_link_info * link_info)16735 _bfd_mips_init_file_header (bfd *abfd, struct bfd_link_info *link_info)
16736 {
16737 struct mips_elf_link_hash_table *htab = NULL;
16738 Elf_Internal_Ehdr *i_ehdrp;
16739
16740 if (!_bfd_elf_init_file_header (abfd, link_info))
16741 return false;
16742
16743 i_ehdrp = elf_elfheader (abfd);
16744 if (link_info)
16745 {
16746 htab = mips_elf_hash_table (link_info);
16747 BFD_ASSERT (htab != NULL);
16748 }
16749
16750 if (htab != NULL
16751 && htab->use_plts_and_copy_relocs
16752 && htab->root.target_os != is_vxworks)
16753 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_MIPS_PLT;
16754
16755 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16756 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16757 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_MIPS_O32_FP64;
16758
16759 /* Mark that we need support for absolute symbols in the dynamic loader. */
16760 if (htab != NULL && htab->use_absolute_zero && htab->gnu_target)
16761 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_ABSOLUTE;
16762
16763 /* Mark that we need support for .MIPS.xhash in the dynamic linker,
16764 if it is the only hash section that will be created. */
16765 if (link_info && link_info->emit_gnu_hash && !link_info->emit_hash)
16766 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_XHASH;
16767 return true;
16768 }
16769
16770 int
_bfd_mips_elf_compact_eh_encoding(struct bfd_link_info * link_info ATTRIBUTE_UNUSED)16771 _bfd_mips_elf_compact_eh_encoding
16772 (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16773 {
16774 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16775 }
16776
16777 /* Return the opcode for can't unwind. */
16778
16779 int
_bfd_mips_elf_cant_unwind_opcode(struct bfd_link_info * link_info ATTRIBUTE_UNUSED)16780 _bfd_mips_elf_cant_unwind_opcode
16781 (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16782 {
16783 return COMPACT_EH_CANT_UNWIND_OPCODE;
16784 }
16785
16786 /* Record a position XLAT_LOC in the xlat translation table, associated with
16787 the hash entry H. The entry in the translation table will later be
16788 populated with the real symbol dynindx. */
16789
16790 void
_bfd_mips_elf_record_xhash_symbol(struct elf_link_hash_entry * h,bfd_vma xlat_loc)16791 _bfd_mips_elf_record_xhash_symbol (struct elf_link_hash_entry *h,
16792 bfd_vma xlat_loc)
16793 {
16794 struct mips_elf_link_hash_entry *hmips;
16795
16796 hmips = (struct mips_elf_link_hash_entry *) h;
16797 hmips->mipsxhash_loc = xlat_loc;
16798 }
16799