xref: /netbsd-src/external/gpl3/binutils.old/dist/bfd/elfxx-mips.c (revision e992f068c547fd6e84b3f104dc2340adcc955732)
1 /* MIPS-specific support for ELF
2    Copyright (C) 1993-2022 Free Software Foundation, Inc.
3 
4    Most of the information added by Ian Lance Taylor, Cygnus Support,
5    <ian@cygnus.com>.
6    N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7    <mark@codesourcery.com>
8    Traditional MIPS targets support added by Koundinya.K, Dansk Data
9    Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10 
11    This file is part of BFD, the Binary File Descriptor library.
12 
13    This program is free software; you can redistribute it and/or modify
14    it under the terms of the GNU General Public License as published by
15    the Free Software Foundation; either version 3 of the License, or
16    (at your option) any later version.
17 
18    This program is distributed in the hope that it will be useful,
19    but WITHOUT ANY WARRANTY; without even the implied warranty of
20    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21    GNU General Public License for more details.
22 
23    You should have received a copy of the GNU General Public License
24    along with this program; if not, write to the Free Software
25    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26    MA 02110-1301, USA.  */
27 
28 
29 /* This file handles functionality common to the different MIPS ABI's.  */
30 
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "libiberty.h"
35 #include "elf-bfd.h"
36 #include "ecoff-bfd.h"
37 #include "elfxx-mips.h"
38 #include "elf/mips.h"
39 #include "elf-vxworks.h"
40 #include "dwarf2.h"
41 
42 /* Get the ECOFF swapping routines.  */
43 #include "coff/sym.h"
44 #include "coff/symconst.h"
45 #include "coff/ecoff.h"
46 #include "coff/mips.h"
47 
48 #include "hashtab.h"
49 
50 /* Types of TLS GOT entry.  */
51 enum mips_got_tls_type {
52   GOT_TLS_NONE,
53   GOT_TLS_GD,
54   GOT_TLS_LDM,
55   GOT_TLS_IE
56 };
57 
58 /* This structure is used to hold information about one GOT entry.
59    There are four types of entry:
60 
61       (1) an absolute address
62 	    requires: abfd == NULL
63 	    fields: d.address
64 
65       (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
66 	    requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
67 	    fields: abfd, symndx, d.addend, tls_type
68 
69       (3) a SYMBOL address, where SYMBOL is not local to an input bfd
70 	    requires: abfd != NULL, symndx == -1
71 	    fields: d.h, tls_type
72 
73       (4) a TLS LDM slot
74 	    requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
75 	    fields: none; there's only one of these per GOT.  */
76 struct mips_got_entry
77 {
78   /* One input bfd that needs the GOT entry.  */
79   bfd *abfd;
80   /* The index of the symbol, as stored in the relocation r_info, if
81      we have a local symbol; -1 otherwise.  */
82   long symndx;
83   union
84   {
85     /* If abfd == NULL, an address that must be stored in the got.  */
86     bfd_vma address;
87     /* If abfd != NULL && symndx != -1, the addend of the relocation
88        that should be added to the symbol value.  */
89     bfd_vma addend;
90     /* If abfd != NULL && symndx == -1, the hash table entry
91        corresponding to a symbol in the GOT.  The symbol's entry
92        is in the local area if h->global_got_area is GGA_NONE,
93        otherwise it is in the global area.  */
94     struct mips_elf_link_hash_entry *h;
95   } d;
96 
97   /* The TLS type of this GOT entry.  An LDM GOT entry will be a local
98      symbol entry with r_symndx == 0.  */
99   unsigned char tls_type;
100 
101   /* True if we have filled in the GOT contents for a TLS entry,
102      and created the associated relocations.  */
103   unsigned char tls_initialized;
104 
105   /* The offset from the beginning of the .got section to the entry
106      corresponding to this symbol+addend.  If it's a global symbol
107      whose offset is yet to be decided, it's going to be -1.  */
108   long gotidx;
109 };
110 
111 /* This structure represents a GOT page reference from an input bfd.
112    Each instance represents a symbol + ADDEND, where the representation
113    of the symbol depends on whether it is local to the input bfd.
114    If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
115    Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
116 
117    Page references with SYMNDX >= 0 always become page references
118    in the output.  Page references with SYMNDX < 0 only become page
119    references if the symbol binds locally; in other cases, the page
120    reference decays to a global GOT reference.  */
121 struct mips_got_page_ref
122 {
123   long symndx;
124   union
125   {
126     struct mips_elf_link_hash_entry *h;
127     bfd *abfd;
128   } u;
129   bfd_vma addend;
130 };
131 
132 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
133    The structures form a non-overlapping list that is sorted by increasing
134    MIN_ADDEND.  */
135 struct mips_got_page_range
136 {
137   struct mips_got_page_range *next;
138   bfd_signed_vma min_addend;
139   bfd_signed_vma max_addend;
140 };
141 
142 /* This structure describes the range of addends that are applied to page
143    relocations against a given section.  */
144 struct mips_got_page_entry
145 {
146   /* The section that these entries are based on.  */
147   asection *sec;
148   /* The ranges for this page entry.  */
149   struct mips_got_page_range *ranges;
150   /* The maximum number of page entries needed for RANGES.  */
151   bfd_vma num_pages;
152 };
153 
154 /* This structure is used to hold .got information when linking.  */
155 
156 struct mips_got_info
157 {
158   /* The number of global .got entries.  */
159   unsigned int global_gotno;
160   /* The number of global .got entries that are in the GGA_RELOC_ONLY area.  */
161   unsigned int reloc_only_gotno;
162   /* The number of .got slots used for TLS.  */
163   unsigned int tls_gotno;
164   /* The first unused TLS .got entry.  Used only during
165      mips_elf_initialize_tls_index.  */
166   unsigned int tls_assigned_gotno;
167   /* The number of local .got entries, eventually including page entries.  */
168   unsigned int local_gotno;
169   /* The maximum number of page entries needed.  */
170   unsigned int page_gotno;
171   /* The number of relocations needed for the GOT entries.  */
172   unsigned int relocs;
173   /* The first unused local .got entry.  */
174   unsigned int assigned_low_gotno;
175   /* The last unused local .got entry.  */
176   unsigned int assigned_high_gotno;
177   /* A hash table holding members of the got.  */
178   struct htab *got_entries;
179   /* A hash table holding mips_got_page_ref structures.  */
180   struct htab *got_page_refs;
181   /* A hash table of mips_got_page_entry structures.  */
182   struct htab *got_page_entries;
183   /* In multi-got links, a pointer to the next got (err, rather, most
184      of the time, it points to the previous got).  */
185   struct mips_got_info *next;
186 };
187 
188 /* Structure passed when merging bfds' gots.  */
189 
190 struct mips_elf_got_per_bfd_arg
191 {
192   /* The output bfd.  */
193   bfd *obfd;
194   /* The link information.  */
195   struct bfd_link_info *info;
196   /* A pointer to the primary got, i.e., the one that's going to get
197      the implicit relocations from DT_MIPS_LOCAL_GOTNO and
198      DT_MIPS_GOTSYM.  */
199   struct mips_got_info *primary;
200   /* A non-primary got we're trying to merge with other input bfd's
201      gots.  */
202   struct mips_got_info *current;
203   /* The maximum number of got entries that can be addressed with a
204      16-bit offset.  */
205   unsigned int max_count;
206   /* The maximum number of page entries needed by each got.  */
207   unsigned int max_pages;
208   /* The total number of global entries which will live in the
209      primary got and be automatically relocated.  This includes
210      those not referenced by the primary GOT but included in
211      the "master" GOT.  */
212   unsigned int global_count;
213 };
214 
215 /* A structure used to pass information to htab_traverse callbacks
216    when laying out the GOT.  */
217 
218 struct mips_elf_traverse_got_arg
219 {
220   struct bfd_link_info *info;
221   struct mips_got_info *g;
222   int value;
223 };
224 
225 struct _mips_elf_section_data
226 {
227   struct bfd_elf_section_data elf;
228   union
229   {
230     bfd_byte *tdata;
231   } u;
232 };
233 
234 #define mips_elf_section_data(sec) \
235   ((struct _mips_elf_section_data *) elf_section_data (sec))
236 
237 #define is_mips_elf(bfd)				\
238   (bfd_get_flavour (bfd) == bfd_target_elf_flavour	\
239    && elf_tdata (bfd) != NULL				\
240    && elf_object_id (bfd) == MIPS_ELF_DATA)
241 
242 /* The ABI says that every symbol used by dynamic relocations must have
243    a global GOT entry.  Among other things, this provides the dynamic
244    linker with a free, directly-indexed cache.  The GOT can therefore
245    contain symbols that are not referenced by GOT relocations themselves
246    (in other words, it may have symbols that are not referenced by things
247    like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
248 
249    GOT relocations are less likely to overflow if we put the associated
250    GOT entries towards the beginning.  We therefore divide the global
251    GOT entries into two areas: "normal" and "reloc-only".  Entries in
252    the first area can be used for both dynamic relocations and GP-relative
253    accesses, while those in the "reloc-only" area are for dynamic
254    relocations only.
255 
256    These GGA_* ("Global GOT Area") values are organised so that lower
257    values are more general than higher values.  Also, non-GGA_NONE
258    values are ordered by the position of the area in the GOT.  */
259 #define GGA_NORMAL 0
260 #define GGA_RELOC_ONLY 1
261 #define GGA_NONE 2
262 
263 /* Information about a non-PIC interface to a PIC function.  There are
264    two ways of creating these interfaces.  The first is to add:
265 
266 	lui	$25,%hi(func)
267 	addiu	$25,$25,%lo(func)
268 
269    immediately before a PIC function "func".  The second is to add:
270 
271 	lui	$25,%hi(func)
272 	j	func
273 	addiu	$25,$25,%lo(func)
274 
275    to a separate trampoline section.
276 
277    Stubs of the first kind go in a new section immediately before the
278    target function.  Stubs of the second kind go in a single section
279    pointed to by the hash table's "strampoline" field.  */
280 struct mips_elf_la25_stub {
281   /* The generated section that contains this stub.  */
282   asection *stub_section;
283 
284   /* The offset of the stub from the start of STUB_SECTION.  */
285   bfd_vma offset;
286 
287   /* One symbol for the original function.  Its location is available
288      in H->root.root.u.def.  */
289   struct mips_elf_link_hash_entry *h;
290 };
291 
292 /* Macros for populating a mips_elf_la25_stub.  */
293 
294 #define LA25_LUI(VAL) (0x3c190000 | (VAL))	/* lui t9,VAL */
295 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
296 #define LA25_BC(VAL) (0xc8000000 | (((VAL) >> 2) & 0x3ffffff)) /* bc VAL */
297 #define LA25_ADDIU(VAL) (0x27390000 | (VAL))	/* addiu t9,t9,VAL */
298 #define LA25_LUI_MICROMIPS(VAL)						\
299   (0x41b90000 | (VAL))				/* lui t9,VAL */
300 #define LA25_J_MICROMIPS(VAL)						\
301   (0xd4000000 | (((VAL) >> 1) & 0x3ffffff))	/* j VAL */
302 #define LA25_ADDIU_MICROMIPS(VAL)					\
303   (0x33390000 | (VAL))				/* addiu t9,t9,VAL */
304 
305 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
306    the dynamic symbols.  */
307 
308 struct mips_elf_hash_sort_data
309 {
310   /* The symbol in the global GOT with the lowest dynamic symbol table
311      index.  */
312   struct elf_link_hash_entry *low;
313   /* The least dynamic symbol table index corresponding to a non-TLS
314      symbol with a GOT entry.  */
315   bfd_size_type min_got_dynindx;
316   /* The greatest dynamic symbol table index corresponding to a symbol
317      with a GOT entry that is not referenced (e.g., a dynamic symbol
318      with dynamic relocations pointing to it from non-primary GOTs).  */
319   bfd_size_type max_unref_got_dynindx;
320   /* The greatest dynamic symbol table index corresponding to a local
321      symbol.  */
322   bfd_size_type max_local_dynindx;
323   /* The greatest dynamic symbol table index corresponding to an external
324      symbol without a GOT entry.  */
325   bfd_size_type max_non_got_dynindx;
326   /* If non-NULL, output BFD for .MIPS.xhash finalization.  */
327   bfd *output_bfd;
328   /* If non-NULL, pointer to contents of .MIPS.xhash for filling in
329      real final dynindx.  */
330   bfd_byte *mipsxhash;
331 };
332 
333 /* We make up to two PLT entries if needed, one for standard MIPS code
334    and one for compressed code, either a MIPS16 or microMIPS one.  We
335    keep a separate record of traditional lazy-binding stubs, for easier
336    processing.  */
337 
338 struct plt_entry
339 {
340   /* Traditional SVR4 stub offset, or -1 if none.  */
341   bfd_vma stub_offset;
342 
343   /* Standard PLT entry offset, or -1 if none.  */
344   bfd_vma mips_offset;
345 
346   /* Compressed PLT entry offset, or -1 if none.  */
347   bfd_vma comp_offset;
348 
349   /* The corresponding .got.plt index, or -1 if none.  */
350   bfd_vma gotplt_index;
351 
352   /* Whether we need a standard PLT entry.  */
353   unsigned int need_mips : 1;
354 
355   /* Whether we need a compressed PLT entry.  */
356   unsigned int need_comp : 1;
357 };
358 
359 /* The MIPS ELF linker needs additional information for each symbol in
360    the global hash table.  */
361 
362 struct mips_elf_link_hash_entry
363 {
364   struct elf_link_hash_entry root;
365 
366   /* External symbol information.  */
367   EXTR esym;
368 
369   /* The la25 stub we have created for ths symbol, if any.  */
370   struct mips_elf_la25_stub *la25_stub;
371 
372   /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
373      this symbol.  */
374   unsigned int possibly_dynamic_relocs;
375 
376   /* If there is a stub that 32 bit functions should use to call this
377      16 bit function, this points to the section containing the stub.  */
378   asection *fn_stub;
379 
380   /* If there is a stub that 16 bit functions should use to call this
381      32 bit function, this points to the section containing the stub.  */
382   asection *call_stub;
383 
384   /* This is like the call_stub field, but it is used if the function
385      being called returns a floating point value.  */
386   asection *call_fp_stub;
387 
388   /* If non-zero, location in .MIPS.xhash to write real final dynindx.  */
389   bfd_vma mipsxhash_loc;
390 
391   /* The highest GGA_* value that satisfies all references to this symbol.  */
392   unsigned int global_got_area : 2;
393 
394   /* True if all GOT relocations against this symbol are for calls.  This is
395      a looser condition than no_fn_stub below, because there may be other
396      non-call non-GOT relocations against the symbol.  */
397   unsigned int got_only_for_calls : 1;
398 
399   /* True if one of the relocations described by possibly_dynamic_relocs
400      is against a readonly section.  */
401   unsigned int readonly_reloc : 1;
402 
403   /* True if there is a relocation against this symbol that must be
404      resolved by the static linker (in other words, if the relocation
405      cannot possibly be made dynamic).  */
406   unsigned int has_static_relocs : 1;
407 
408   /* True if we must not create a .MIPS.stubs entry for this symbol.
409      This is set, for example, if there are relocations related to
410      taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
411      See "MIPS ABI Supplement, 3rd Edition", p. 4-20.  */
412   unsigned int no_fn_stub : 1;
413 
414   /* Whether we need the fn_stub; this is true if this symbol appears
415      in any relocs other than a 16 bit call.  */
416   unsigned int need_fn_stub : 1;
417 
418   /* True if this symbol is referenced by branch relocations from
419      any non-PIC input file.  This is used to determine whether an
420      la25 stub is required.  */
421   unsigned int has_nonpic_branches : 1;
422 
423   /* Does this symbol need a traditional MIPS lazy-binding stub
424      (as opposed to a PLT entry)?  */
425   unsigned int needs_lazy_stub : 1;
426 
427   /* Does this symbol resolve to a PLT entry?  */
428   unsigned int use_plt_entry : 1;
429 };
430 
431 /* MIPS ELF linker hash table.  */
432 
433 struct mips_elf_link_hash_table
434 {
435   struct elf_link_hash_table root;
436 
437   /* The number of .rtproc entries.  */
438   bfd_size_type procedure_count;
439 
440   /* The size of the .compact_rel section (if SGI_COMPAT).  */
441   bfd_size_type compact_rel_size;
442 
443   /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
444      is set to the address of __rld_obj_head as in IRIX5 and IRIX6.  */
445   bool use_rld_obj_head;
446 
447   /* The  __rld_map or __rld_obj_head symbol. */
448   struct elf_link_hash_entry *rld_symbol;
449 
450   /* This is set if we see any mips16 stub sections.  */
451   bool mips16_stubs_seen;
452 
453   /* True if we can generate copy relocs and PLTs.  */
454   bool use_plts_and_copy_relocs;
455 
456   /* True if we can only use 32-bit microMIPS instructions.  */
457   bool insn32;
458 
459   /* True if we suppress checks for invalid branches between ISA modes.  */
460   bool ignore_branch_isa;
461 
462   /* True if we are targetting R6 compact branches.  */
463   bool compact_branches;
464 
465   /* True if we already reported the small-data section overflow.  */
466   bool small_data_overflow_reported;
467 
468   /* True if we use the special `__gnu_absolute_zero' symbol.  */
469   bool use_absolute_zero;
470 
471   /* True if we have been configured for a GNU target.  */
472   bool gnu_target;
473 
474   /* Shortcuts to some dynamic sections, or NULL if they are not
475      being used.  */
476   asection *srelplt2;
477   asection *sstubs;
478 
479   /* The master GOT information.  */
480   struct mips_got_info *got_info;
481 
482   /* The global symbol in the GOT with the lowest index in the dynamic
483      symbol table.  */
484   struct elf_link_hash_entry *global_gotsym;
485 
486   /* The size of the PLT header in bytes.  */
487   bfd_vma plt_header_size;
488 
489   /* The size of a standard PLT entry in bytes.  */
490   bfd_vma plt_mips_entry_size;
491 
492   /* The size of a compressed PLT entry in bytes.  */
493   bfd_vma plt_comp_entry_size;
494 
495   /* The offset of the next standard PLT entry to create.  */
496   bfd_vma plt_mips_offset;
497 
498   /* The offset of the next compressed PLT entry to create.  */
499   bfd_vma plt_comp_offset;
500 
501   /* The index of the next .got.plt entry to create.  */
502   bfd_vma plt_got_index;
503 
504   /* The number of functions that need a lazy-binding stub.  */
505   bfd_vma lazy_stub_count;
506 
507   /* The size of a function stub entry in bytes.  */
508   bfd_vma function_stub_size;
509 
510   /* The number of reserved entries at the beginning of the GOT.  */
511   unsigned int reserved_gotno;
512 
513   /* The section used for mips_elf_la25_stub trampolines.
514      See the comment above that structure for details.  */
515   asection *strampoline;
516 
517   /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
518      pairs.  */
519   htab_t la25_stubs;
520 
521   /* A function FN (NAME, IS, OS) that creates a new input section
522      called NAME and links it to output section OS.  If IS is nonnull,
523      the new section should go immediately before it, otherwise it
524      should go at the (current) beginning of OS.
525 
526      The function returns the new section on success, otherwise it
527      returns null.  */
528   asection *(*add_stub_section) (const char *, asection *, asection *);
529 
530   /* Is the PLT header compressed?  */
531   unsigned int plt_header_is_comp : 1;
532 };
533 
534 /* Get the MIPS ELF linker hash table from a link_info structure.  */
535 
536 #define mips_elf_hash_table(p) \
537   ((is_elf_hash_table ((p)->hash)					\
538     && elf_hash_table_id (elf_hash_table (p)) == MIPS_ELF_DATA)		\
539    ? (struct mips_elf_link_hash_table *) (p)->hash : NULL)
540 
541 /* A structure used to communicate with htab_traverse callbacks.  */
542 struct mips_htab_traverse_info
543 {
544   /* The usual link-wide information.  */
545   struct bfd_link_info *info;
546   bfd *output_bfd;
547 
548   /* Starts off FALSE and is set to TRUE if the link should be aborted.  */
549   bool error;
550 };
551 
552 /* MIPS ELF private object data.  */
553 
554 struct mips_elf_obj_tdata
555 {
556   /* Generic ELF private object data.  */
557   struct elf_obj_tdata root;
558 
559   /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output.  */
560   bfd *abi_fp_bfd;
561 
562   /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output.  */
563   bfd *abi_msa_bfd;
564 
565   /* The abiflags for this object.  */
566   Elf_Internal_ABIFlags_v0 abiflags;
567   bool abiflags_valid;
568 
569   /* The GOT requirements of input bfds.  */
570   struct mips_got_info *got;
571 
572   /* Used by _bfd_mips_elf_find_nearest_line.  The structure could be
573      included directly in this one, but there's no point to wasting
574      the memory just for the infrequently called find_nearest_line.  */
575   struct mips_elf_find_line *find_line_info;
576 
577   /* An array of stub sections indexed by symbol number.  */
578   asection **local_stubs;
579   asection **local_call_stubs;
580 
581   /* The Irix 5 support uses two virtual sections, which represent
582      text/data symbols defined in dynamic objects.  */
583   asymbol *elf_data_symbol;
584   asymbol *elf_text_symbol;
585   asection *elf_data_section;
586   asection *elf_text_section;
587 };
588 
589 /* Get MIPS ELF private object data from BFD's tdata.  */
590 
591 #define mips_elf_tdata(bfd) \
592   ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
593 
594 #define TLS_RELOC_P(r_type) \
595   (r_type == R_MIPS_TLS_DTPMOD32		\
596    || r_type == R_MIPS_TLS_DTPMOD64		\
597    || r_type == R_MIPS_TLS_DTPREL32		\
598    || r_type == R_MIPS_TLS_DTPREL64		\
599    || r_type == R_MIPS_TLS_GD			\
600    || r_type == R_MIPS_TLS_LDM			\
601    || r_type == R_MIPS_TLS_DTPREL_HI16		\
602    || r_type == R_MIPS_TLS_DTPREL_LO16		\
603    || r_type == R_MIPS_TLS_GOTTPREL		\
604    || r_type == R_MIPS_TLS_TPREL32		\
605    || r_type == R_MIPS_TLS_TPREL64		\
606    || r_type == R_MIPS_TLS_TPREL_HI16		\
607    || r_type == R_MIPS_TLS_TPREL_LO16		\
608    || r_type == R_MIPS16_TLS_GD			\
609    || r_type == R_MIPS16_TLS_LDM		\
610    || r_type == R_MIPS16_TLS_DTPREL_HI16	\
611    || r_type == R_MIPS16_TLS_DTPREL_LO16	\
612    || r_type == R_MIPS16_TLS_GOTTPREL		\
613    || r_type == R_MIPS16_TLS_TPREL_HI16		\
614    || r_type == R_MIPS16_TLS_TPREL_LO16		\
615    || r_type == R_MICROMIPS_TLS_GD		\
616    || r_type == R_MICROMIPS_TLS_LDM		\
617    || r_type == R_MICROMIPS_TLS_DTPREL_HI16	\
618    || r_type == R_MICROMIPS_TLS_DTPREL_LO16	\
619    || r_type == R_MICROMIPS_TLS_GOTTPREL	\
620    || r_type == R_MICROMIPS_TLS_TPREL_HI16	\
621    || r_type == R_MICROMIPS_TLS_TPREL_LO16)
622 
623 /* Structure used to pass information to mips_elf_output_extsym.  */
624 
625 struct extsym_info
626 {
627   bfd *abfd;
628   struct bfd_link_info *info;
629   struct ecoff_debug_info *debug;
630   const struct ecoff_debug_swap *swap;
631   bool failed;
632 };
633 
634 /* The names of the runtime procedure table symbols used on IRIX5.  */
635 
636 static const char * const mips_elf_dynsym_rtproc_names[] =
637 {
638   "_procedure_table",
639   "_procedure_string_table",
640   "_procedure_table_size",
641   NULL
642 };
643 
644 /* These structures are used to generate the .compact_rel section on
645    IRIX5.  */
646 
647 typedef struct
648 {
649   unsigned long id1;		/* Always one?  */
650   unsigned long num;		/* Number of compact relocation entries.  */
651   unsigned long id2;		/* Always two?  */
652   unsigned long offset;		/* The file offset of the first relocation.  */
653   unsigned long reserved0;	/* Zero?  */
654   unsigned long reserved1;	/* Zero?  */
655 } Elf32_compact_rel;
656 
657 typedef struct
658 {
659   bfd_byte id1[4];
660   bfd_byte num[4];
661   bfd_byte id2[4];
662   bfd_byte offset[4];
663   bfd_byte reserved0[4];
664   bfd_byte reserved1[4];
665 } Elf32_External_compact_rel;
666 
667 typedef struct
668 {
669   unsigned int ctype : 1;	/* 1: long 0: short format. See below.  */
670   unsigned int rtype : 4;	/* Relocation types. See below.  */
671   unsigned int dist2to : 8;
672   unsigned int relvaddr : 19;	/* (VADDR - vaddr of the previous entry)/ 4 */
673   unsigned long konst;		/* KONST field. See below.  */
674   unsigned long vaddr;		/* VADDR to be relocated.  */
675 } Elf32_crinfo;
676 
677 typedef struct
678 {
679   unsigned int ctype : 1;	/* 1: long 0: short format. See below.  */
680   unsigned int rtype : 4;	/* Relocation types. See below.  */
681   unsigned int dist2to : 8;
682   unsigned int relvaddr : 19;	/* (VADDR - vaddr of the previous entry)/ 4 */
683   unsigned long konst;		/* KONST field. See below.  */
684 } Elf32_crinfo2;
685 
686 typedef struct
687 {
688   bfd_byte info[4];
689   bfd_byte konst[4];
690   bfd_byte vaddr[4];
691 } Elf32_External_crinfo;
692 
693 typedef struct
694 {
695   bfd_byte info[4];
696   bfd_byte konst[4];
697 } Elf32_External_crinfo2;
698 
699 /* These are the constants used to swap the bitfields in a crinfo.  */
700 
701 #define CRINFO_CTYPE (0x1U)
702 #define CRINFO_CTYPE_SH (31)
703 #define CRINFO_RTYPE (0xfU)
704 #define CRINFO_RTYPE_SH (27)
705 #define CRINFO_DIST2TO (0xffU)
706 #define CRINFO_DIST2TO_SH (19)
707 #define CRINFO_RELVADDR (0x7ffffU)
708 #define CRINFO_RELVADDR_SH (0)
709 
710 /* A compact relocation info has long (3 words) or short (2 words)
711    formats.  A short format doesn't have VADDR field and relvaddr
712    fields contains ((VADDR - vaddr of the previous entry) >> 2).  */
713 #define CRF_MIPS_LONG			1
714 #define CRF_MIPS_SHORT			0
715 
716 /* There are 4 types of compact relocation at least. The value KONST
717    has different meaning for each type:
718 
719    (type)		(konst)
720    CT_MIPS_REL32	Address in data
721    CT_MIPS_WORD		Address in word (XXX)
722    CT_MIPS_GPHI_LO	GP - vaddr
723    CT_MIPS_JMPAD	Address to jump
724    */
725 
726 #define CRT_MIPS_REL32			0xa
727 #define CRT_MIPS_WORD			0xb
728 #define CRT_MIPS_GPHI_LO		0xc
729 #define CRT_MIPS_JMPAD			0xd
730 
731 #define mips_elf_set_cr_format(x,format)	((x).ctype = (format))
732 #define mips_elf_set_cr_type(x,type)		((x).rtype = (type))
733 #define mips_elf_set_cr_dist2to(x,v)		((x).dist2to = (v))
734 #define mips_elf_set_cr_relvaddr(x,d)		((x).relvaddr = (d)<<2)
735 
736 /* The structure of the runtime procedure descriptor created by the
737    loader for use by the static exception system.  */
738 
739 typedef struct runtime_pdr {
740 	bfd_vma	adr;		/* Memory address of start of procedure.  */
741 	long	regmask;	/* Save register mask.  */
742 	long	regoffset;	/* Save register offset.  */
743 	long	fregmask;	/* Save floating point register mask.  */
744 	long	fregoffset;	/* Save floating point register offset.  */
745 	long	frameoffset;	/* Frame size.  */
746 	short	framereg;	/* Frame pointer register.  */
747 	short	pcreg;		/* Offset or reg of return pc.  */
748 	long	irpss;		/* Index into the runtime string table.  */
749 	long	reserved;
750 	struct exception_info *exception_info;/* Pointer to exception array.  */
751 } RPDR, *pRPDR;
752 #define cbRPDR sizeof (RPDR)
753 #define rpdNil ((pRPDR) 0)
754 
755 static struct mips_got_entry *mips_elf_create_local_got_entry
756   (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
757    struct mips_elf_link_hash_entry *, int);
758 static bool mips_elf_sort_hash_table_f
759   (struct mips_elf_link_hash_entry *, void *);
760 static bfd_vma mips_elf_high
761   (bfd_vma);
762 static bool mips_elf_create_dynamic_relocation
763   (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
764    struct mips_elf_link_hash_entry *, asection *, bfd_vma,
765    bfd_vma *, asection *);
766 static bfd_vma mips_elf_adjust_gp
767   (bfd *, struct mips_got_info *, bfd *);
768 
769 /* This will be used when we sort the dynamic relocation records.  */
770 static bfd *reldyn_sorting_bfd;
771 
772 /* True if ABFD is for CPUs with load interlocking that include
773    non-MIPS1 CPUs and R3900.  */
774 #define LOAD_INTERLOCKS_P(abfd) \
775   (   ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
776    || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
777 
778 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
779    This should be safe for all architectures.  We enable this predicate
780    for RM9000 for now.  */
781 #define JAL_TO_BAL_P(abfd) \
782   ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
783 
784 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
785    This should be safe for all architectures.  We enable this predicate for
786    all CPUs.  */
787 #define JALR_TO_BAL_P(abfd) 1
788 
789 /* True if ABFD is for CPUs that are faster if JR is converted to B.
790    This should be safe for all architectures.  We enable this predicate for
791    all CPUs.  */
792 #define JR_TO_B_P(abfd) 1
793 
794 /* True if ABFD is a PIC object.  */
795 #define PIC_OBJECT_P(abfd) \
796   ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
797 
798 /* Nonzero if ABFD is using the O32 ABI.  */
799 #define ABI_O32_P(abfd) \
800   ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
801 
802 /* Nonzero if ABFD is using the N32 ABI.  */
803 #define ABI_N32_P(abfd) \
804   ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
805 
806 /* Nonzero if ABFD is using the N64 ABI.  */
807 #define ABI_64_P(abfd) \
808   (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
809 
810 /* Nonzero if ABFD is using NewABI conventions.  */
811 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
812 
813 /* Nonzero if ABFD has microMIPS code.  */
814 #define MICROMIPS_P(abfd) \
815   ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
816 
817 /* Nonzero if ABFD is MIPS R6.  */
818 #define MIPSR6_P(abfd) \
819   ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
820     || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
821 
822 /* The IRIX compatibility level we are striving for.  */
823 #define IRIX_COMPAT(abfd) \
824   (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
825 
826 /* Whether we are trying to be compatible with IRIX at all.  */
827 #define SGI_COMPAT(abfd) \
828   (IRIX_COMPAT (abfd) != ict_none)
829 
830 /* The name of the options section.  */
831 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
832   (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
833 
834 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
835    Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME.  */
836 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
837   (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
838 
839 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section.  */
840 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
841   (strcmp (NAME, ".MIPS.abiflags") == 0)
842 
843 /* Whether the section is readonly.  */
844 #define MIPS_ELF_READONLY_SECTION(sec) \
845   ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))		\
846    == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
847 
848 /* The name of the stub section.  */
849 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
850 
851 /* The size of an external REL relocation.  */
852 #define MIPS_ELF_REL_SIZE(abfd) \
853   (get_elf_backend_data (abfd)->s->sizeof_rel)
854 
855 /* The size of an external RELA relocation.  */
856 #define MIPS_ELF_RELA_SIZE(abfd) \
857   (get_elf_backend_data (abfd)->s->sizeof_rela)
858 
859 /* The size of an external dynamic table entry.  */
860 #define MIPS_ELF_DYN_SIZE(abfd) \
861   (get_elf_backend_data (abfd)->s->sizeof_dyn)
862 
863 /* The size of a GOT entry.  */
864 #define MIPS_ELF_GOT_SIZE(abfd) \
865   (get_elf_backend_data (abfd)->s->arch_size / 8)
866 
867 /* The size of the .rld_map section. */
868 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
869   (get_elf_backend_data (abfd)->s->arch_size / 8)
870 
871 /* The size of a symbol-table entry.  */
872 #define MIPS_ELF_SYM_SIZE(abfd) \
873   (get_elf_backend_data (abfd)->s->sizeof_sym)
874 
875 /* The default alignment for sections, as a power of two.  */
876 #define MIPS_ELF_LOG_FILE_ALIGN(abfd)				\
877   (get_elf_backend_data (abfd)->s->log_file_align)
878 
879 /* Get word-sized data.  */
880 #define MIPS_ELF_GET_WORD(abfd, ptr) \
881   (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
882 
883 /* Put out word-sized data.  */
884 #define MIPS_ELF_PUT_WORD(abfd, val, ptr)	\
885   (ABI_64_P (abfd)				\
886    ? bfd_put_64 (abfd, val, ptr)		\
887    : bfd_put_32 (abfd, val, ptr))
888 
889 /* The opcode for word-sized loads (LW or LD).  */
890 #define MIPS_ELF_LOAD_WORD(abfd) \
891   (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
892 
893 /* Add a dynamic symbol table-entry.  */
894 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val)	\
895   _bfd_elf_add_dynamic_entry (info, tag, val)
896 
897 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela)			\
898   (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (abfd, rtype, rela))
899 
900 /* The name of the dynamic relocation section.  */
901 #define MIPS_ELF_REL_DYN_NAME(INFO) \
902   (mips_elf_hash_table (INFO)->root.target_os == is_vxworks \
903    ? ".rela.dyn" : ".rel.dyn")
904 
905 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
906    from smaller values.  Start with zero, widen, *then* decrement.  */
907 #define MINUS_ONE	(((bfd_vma)0) - 1)
908 #define MINUS_TWO	(((bfd_vma)0) - 2)
909 
910 /* The value to write into got[1] for SVR4 targets, to identify it is
911    a GNU object.  The dynamic linker can then use got[1] to store the
912    module pointer.  */
913 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
914   ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
915 
916 /* The offset of $gp from the beginning of the .got section.  */
917 #define ELF_MIPS_GP_OFFSET(INFO) \
918   (mips_elf_hash_table (INFO)->root.target_os == is_vxworks \
919    ? 0x0 : 0x7ff0)
920 
921 /* The maximum size of the GOT for it to be addressable using 16-bit
922    offsets from $gp.  */
923 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
924 
925 /* Instructions which appear in a stub.  */
926 #define STUB_LW(abfd)							\
927   ((ABI_64_P (abfd)							\
928     ? 0xdf998010				/* ld t9,0x8010(gp) */	\
929     : 0x8f998010))				/* lw t9,0x8010(gp) */
930 #define STUB_MOVE 0x03e07825			/* or t7,ra,zero */
931 #define STUB_LUI(VAL) (0x3c180000 + (VAL))	/* lui t8,VAL */
932 #define STUB_JALR 0x0320f809			/* jalr ra,t9 */
933 #define STUB_JALRC 0xf8190000			/* jalrc ra,t9 */
934 #define STUB_ORI(VAL) (0x37180000 + (VAL))	/* ori t8,t8,VAL */
935 #define STUB_LI16U(VAL) (0x34180000 + (VAL))	/* ori t8,zero,VAL unsigned */
936 #define STUB_LI16S(abfd, VAL)						\
937    ((ABI_64_P (abfd)							\
938     ? (0x64180000 + (VAL))	/* daddiu t8,zero,VAL sign extended */	\
939     : (0x24180000 + (VAL))))	/* addiu t8,zero,VAL sign extended */
940 
941 /* Likewise for the microMIPS ASE.  */
942 #define STUB_LW_MICROMIPS(abfd)						\
943   (ABI_64_P (abfd)							\
944    ? 0xdf3c8010					/* ld t9,0x8010(gp) */	\
945    : 0xff3c8010)				/* lw t9,0x8010(gp) */
946 #define STUB_MOVE_MICROMIPS 0x0dff		/* move t7,ra */
947 #define STUB_MOVE32_MICROMIPS 0x001f7a90	/* or t7,ra,zero */
948 #define STUB_LUI_MICROMIPS(VAL)						\
949    (0x41b80000 + (VAL))				/* lui t8,VAL */
950 #define STUB_JALR_MICROMIPS 0x45d9		/* jalr t9 */
951 #define STUB_JALR32_MICROMIPS 0x03f90f3c	/* jalr ra,t9 */
952 #define STUB_ORI_MICROMIPS(VAL)						\
953   (0x53180000 + (VAL))				/* ori t8,t8,VAL */
954 #define STUB_LI16U_MICROMIPS(VAL)					\
955   (0x53000000 + (VAL))				/* ori t8,zero,VAL unsigned */
956 #define STUB_LI16S_MICROMIPS(abfd, VAL)					\
957    (ABI_64_P (abfd)							\
958     ? 0x5f000000 + (VAL)	/* daddiu t8,zero,VAL sign extended */	\
959     : 0x33000000 + (VAL))	/* addiu t8,zero,VAL sign extended */
960 
961 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
962 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
963 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
964 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
965 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
966 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
967 
968 /* The name of the dynamic interpreter.  This is put in the .interp
969    section.  */
970 
971 #define ELF_DYNAMIC_INTERPRETER(abfd)		\
972    (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1"	\
973     : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1"	\
974     : "/usr/lib/libc.so.1")
975 
976 #ifdef BFD64
977 #define MNAME(bfd,pre,pos) \
978   (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
979 #define ELF_R_SYM(bfd, i)					\
980   (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
981 #define ELF_R_TYPE(bfd, i)					\
982   (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
983 #define ELF_R_INFO(bfd, s, t)					\
984   (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
985 #else
986 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
987 #define ELF_R_SYM(bfd, i)					\
988   (ELF32_R_SYM (i))
989 #define ELF_R_TYPE(bfd, i)					\
990   (ELF32_R_TYPE (i))
991 #define ELF_R_INFO(bfd, s, t)					\
992   (ELF32_R_INFO (s, t))
993 #endif
994 
995   /* The mips16 compiler uses a couple of special sections to handle
996      floating point arguments.
997 
998      Section names that look like .mips16.fn.FNNAME contain stubs that
999      copy floating point arguments from the fp regs to the gp regs and
1000      then jump to FNNAME.  If any 32 bit function calls FNNAME, the
1001      call should be redirected to the stub instead.  If no 32 bit
1002      function calls FNNAME, the stub should be discarded.  We need to
1003      consider any reference to the function, not just a call, because
1004      if the address of the function is taken we will need the stub,
1005      since the address might be passed to a 32 bit function.
1006 
1007      Section names that look like .mips16.call.FNNAME contain stubs
1008      that copy floating point arguments from the gp regs to the fp
1009      regs and then jump to FNNAME.  If FNNAME is a 32 bit function,
1010      then any 16 bit function that calls FNNAME should be redirected
1011      to the stub instead.  If FNNAME is not a 32 bit function, the
1012      stub should be discarded.
1013 
1014      .mips16.call.fp.FNNAME sections are similar, but contain stubs
1015      which call FNNAME and then copy the return value from the fp regs
1016      to the gp regs.  These stubs store the return value in $18 while
1017      calling FNNAME; any function which might call one of these stubs
1018      must arrange to save $18 around the call.  (This case is not
1019      needed for 32 bit functions that call 16 bit functions, because
1020      16 bit functions always return floating point values in both
1021      $f0/$f1 and $2/$3.)
1022 
1023      Note that in all cases FNNAME might be defined statically.
1024      Therefore, FNNAME is not used literally.  Instead, the relocation
1025      information will indicate which symbol the section is for.
1026 
1027      We record any stubs that we find in the symbol table.  */
1028 
1029 #define FN_STUB ".mips16.fn."
1030 #define CALL_STUB ".mips16.call."
1031 #define CALL_FP_STUB ".mips16.call.fp."
1032 
1033 #define FN_STUB_P(name) startswith (name, FN_STUB)
1034 #define CALL_STUB_P(name) startswith (name, CALL_STUB)
1035 #define CALL_FP_STUB_P(name) startswith (name, CALL_FP_STUB)
1036 
1037 /* The format of the first PLT entry in an O32 executable.  */
1038 static const bfd_vma mips_o32_exec_plt0_entry[] =
1039 {
1040   0x3c1c0000,	/* lui $28, %hi(&GOTPLT[0])				*/
1041   0x8f990000,	/* lw $25, %lo(&GOTPLT[0])($28)				*/
1042   0x279c0000,	/* addiu $28, $28, %lo(&GOTPLT[0])			*/
1043   0x031cc023,	/* subu $24, $24, $28					*/
1044   0x03e07825,	/* or t7, ra, zero					*/
1045   0x0018c082,	/* srl $24, $24, 2					*/
1046   0x0320f809,	/* jalr $25						*/
1047   0x2718fffe	/* subu $24, $24, 2					*/
1048 };
1049 
1050 /* The format of the first PLT entry in an O32 executable using compact
1051    jumps.  */
1052 static const bfd_vma mipsr6_o32_exec_plt0_entry_compact[] =
1053 {
1054   0x3c1c0000,	/* lui $28, %hi(&GOTPLT[0])				*/
1055   0x8f990000,	/* lw $25, %lo(&GOTPLT[0])($28)				*/
1056   0x279c0000,	/* addiu $28, $28, %lo(&GOTPLT[0])			*/
1057   0x031cc023,	/* subu $24, $24, $28					*/
1058   0x03e07821,	/* move $15, $31	# 32-bit move (addu)		*/
1059   0x0018c082,	/* srl $24, $24, 2					*/
1060   0x2718fffe,	/* subu $24, $24, 2					*/
1061   0xf8190000	/* jalrc $25						*/
1062 };
1063 
1064 /* The format of the first PLT entry in an N32 executable.  Different
1065    because gp ($28) is not available; we use t2 ($14) instead.  */
1066 static const bfd_vma mips_n32_exec_plt0_entry[] =
1067 {
1068   0x3c0e0000,	/* lui $14, %hi(&GOTPLT[0])				*/
1069   0x8dd90000,	/* lw $25, %lo(&GOTPLT[0])($14)				*/
1070   0x25ce0000,	/* addiu $14, $14, %lo(&GOTPLT[0])			*/
1071   0x030ec023,	/* subu $24, $24, $14					*/
1072   0x03e07825,	/* or t7, ra, zero					*/
1073   0x0018c082,	/* srl $24, $24, 2					*/
1074   0x0320f809,	/* jalr $25						*/
1075   0x2718fffe	/* subu $24, $24, 2					*/
1076 };
1077 
1078 /* The format of the first PLT entry in an N32 executable using compact
1079    jumps.  Different because gp ($28) is not available; we use t2 ($14)
1080    instead.  */
1081 static const bfd_vma mipsr6_n32_exec_plt0_entry_compact[] =
1082 {
1083   0x3c0e0000,	/* lui $14, %hi(&GOTPLT[0])				*/
1084   0x8dd90000,	/* lw $25, %lo(&GOTPLT[0])($14)				*/
1085   0x25ce0000,	/* addiu $14, $14, %lo(&GOTPLT[0])			*/
1086   0x030ec023,	/* subu $24, $24, $14					*/
1087   0x03e07821,	/* move $15, $31	# 32-bit move (addu)		*/
1088   0x0018c082,	/* srl $24, $24, 2					*/
1089   0x2718fffe,	/* subu $24, $24, 2					*/
1090   0xf8190000	/* jalrc $25						*/
1091 };
1092 
1093 /* The format of the first PLT entry in an N64 executable.  Different
1094    from N32 because of the increased size of GOT entries.  */
1095 static const bfd_vma mips_n64_exec_plt0_entry[] =
1096 {
1097   0x3c0e0000,	/* lui $14, %hi(&GOTPLT[0])				*/
1098   0xddd90000,	/* ld $25, %lo(&GOTPLT[0])($14)				*/
1099   0x25ce0000,	/* addiu $14, $14, %lo(&GOTPLT[0])			*/
1100   0x030ec023,	/* subu $24, $24, $14					*/
1101   0x03e07825,	/* or t7, ra, zero					*/
1102   0x0018c0c2,	/* srl $24, $24, 3					*/
1103   0x0320f809,	/* jalr $25						*/
1104   0x2718fffe	/* subu $24, $24, 2					*/
1105 };
1106 
1107 /* The format of the first PLT entry in an N64 executable using compact
1108    jumps.  Different from N32 because of the increased size of GOT
1109    entries.  */
1110 static const bfd_vma mipsr6_n64_exec_plt0_entry_compact[] =
1111 {
1112   0x3c0e0000,	/* lui $14, %hi(&GOTPLT[0])				*/
1113   0xddd90000,	/* ld $25, %lo(&GOTPLT[0])($14)				*/
1114   0x25ce0000,	/* addiu $14, $14, %lo(&GOTPLT[0])			*/
1115   0x030ec023,	/* subu $24, $24, $14					*/
1116   0x03e0782d,	/* move $15, $31	# 64-bit move (daddu)		*/
1117   0x0018c0c2,	/* srl $24, $24, 3					*/
1118   0x2718fffe,	/* subu $24, $24, 2					*/
1119   0xf8190000	/* jalrc $25						*/
1120 };
1121 
1122 
1123 /* The format of the microMIPS first PLT entry in an O32 executable.
1124    We rely on v0 ($2) rather than t8 ($24) to contain the address
1125    of the GOTPLT entry handled, so this stub may only be used when
1126    all the subsequent PLT entries are microMIPS code too.
1127 
1128    The trailing NOP is for alignment and correct disassembly only.  */
1129 static const bfd_vma micromips_o32_exec_plt0_entry[] =
1130 {
1131   0x7980, 0x0000,	/* addiupc $3, (&GOTPLT[0]) - .			*/
1132   0xff23, 0x0000,	/* lw $25, 0($3)				*/
1133   0x0535,		/* subu $2, $2, $3				*/
1134   0x2525,		/* srl $2, $2, 2				*/
1135   0x3302, 0xfffe,	/* subu $24, $2, 2				*/
1136   0x0dff,		/* move $15, $31				*/
1137   0x45f9,		/* jalrs $25					*/
1138   0x0f83,		/* move $28, $3					*/
1139   0x0c00		/* nop						*/
1140 };
1141 
1142 /* The format of the microMIPS first PLT entry in an O32 executable
1143    in the insn32 mode.  */
1144 static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1145 {
1146   0x41bc, 0x0000,	/* lui $28, %hi(&GOTPLT[0])			*/
1147   0xff3c, 0x0000,	/* lw $25, %lo(&GOTPLT[0])($28)			*/
1148   0x339c, 0x0000,	/* addiu $28, $28, %lo(&GOTPLT[0])		*/
1149   0x0398, 0xc1d0,	/* subu $24, $24, $28				*/
1150   0x001f, 0x7a90,	/* or $15, $31, zero				*/
1151   0x0318, 0x1040,	/* srl $24, $24, 2				*/
1152   0x03f9, 0x0f3c,	/* jalr $25					*/
1153   0x3318, 0xfffe	/* subu $24, $24, 2				*/
1154 };
1155 
1156 /* The format of subsequent standard PLT entries.  */
1157 static const bfd_vma mips_exec_plt_entry[] =
1158 {
1159   0x3c0f0000,	/* lui $15, %hi(.got.plt entry)			*/
1160   0x01f90000,	/* l[wd] $25, %lo(.got.plt entry)($15)		*/
1161   0x25f80000,	/* addiu $24, $15, %lo(.got.plt entry)		*/
1162   0x03200008	/* jr $25					*/
1163 };
1164 
1165 static const bfd_vma mipsr6_exec_plt_entry[] =
1166 {
1167   0x3c0f0000,	/* lui $15, %hi(.got.plt entry)			*/
1168   0x01f90000,	/* l[wd] $25, %lo(.got.plt entry)($15)		*/
1169   0x25f80000,	/* addiu $24, $15, %lo(.got.plt entry)		*/
1170   0x03200009	/* jr $25					*/
1171 };
1172 
1173 static const bfd_vma mipsr6_exec_plt_entry_compact[] =
1174 {
1175   0x3c0f0000,	/* lui $15, %hi(.got.plt entry)			*/
1176   0x01f90000,	/* l[wd] $25, %lo(.got.plt entry)($15)		*/
1177   0x25f80000,	/* addiu $24, $15, %lo(.got.plt entry)		*/
1178   0xd8190000	/* jic $25, 0					*/
1179 };
1180 
1181 /* The format of subsequent MIPS16 o32 PLT entries.  We use v0 ($2)
1182    and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1183    directly addressable.  */
1184 static const bfd_vma mips16_o32_exec_plt_entry[] =
1185 {
1186   0xb203,		/* lw $2, 12($pc)			*/
1187   0x9a60,		/* lw $3, 0($2)				*/
1188   0x651a,		/* move $24, $2				*/
1189   0xeb00,		/* jr $3				*/
1190   0x653b,		/* move $25, $3				*/
1191   0x6500,		/* nop					*/
1192   0x0000, 0x0000	/* .word (.got.plt entry)		*/
1193 };
1194 
1195 /* The format of subsequent microMIPS o32 PLT entries.  We use v0 ($2)
1196    as a temporary because t8 ($24) is not addressable with ADDIUPC.  */
1197 static const bfd_vma micromips_o32_exec_plt_entry[] =
1198 {
1199   0x7900, 0x0000,	/* addiupc $2, (.got.plt entry) - .	*/
1200   0xff22, 0x0000,	/* lw $25, 0($2)			*/
1201   0x4599,		/* jr $25				*/
1202   0x0f02		/* move $24, $2				*/
1203 };
1204 
1205 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode.  */
1206 static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1207 {
1208   0x41af, 0x0000,	/* lui $15, %hi(.got.plt entry)		*/
1209   0xff2f, 0x0000,	/* lw $25, %lo(.got.plt entry)($15)	*/
1210   0x0019, 0x0f3c,	/* jr $25				*/
1211   0x330f, 0x0000	/* addiu $24, $15, %lo(.got.plt entry)	*/
1212 };
1213 
1214 /* The format of the first PLT entry in a VxWorks executable.  */
1215 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1216 {
1217   0x3c190000,	/* lui t9, %hi(_GLOBAL_OFFSET_TABLE_)		*/
1218   0x27390000,	/* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_)	*/
1219   0x8f390008,	/* lw t9, 8(t9)					*/
1220   0x00000000,	/* nop						*/
1221   0x03200008,	/* jr t9					*/
1222   0x00000000	/* nop						*/
1223 };
1224 
1225 /* The format of subsequent PLT entries.  */
1226 static const bfd_vma mips_vxworks_exec_plt_entry[] =
1227 {
1228   0x10000000,	/* b .PLT_resolver			*/
1229   0x24180000,	/* li t8, <pltindex>			*/
1230   0x3c190000,	/* lui t9, %hi(<.got.plt slot>)		*/
1231   0x27390000,	/* addiu t9, t9, %lo(<.got.plt slot>)	*/
1232   0x8f390000,	/* lw t9, 0(t9)				*/
1233   0x00000000,	/* nop					*/
1234   0x03200008,	/* jr t9				*/
1235   0x00000000	/* nop					*/
1236 };
1237 
1238 /* The format of the first PLT entry in a VxWorks shared object.  */
1239 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1240 {
1241   0x8f990008,	/* lw t9, 8(gp)		*/
1242   0x00000000,	/* nop			*/
1243   0x03200008,	/* jr t9		*/
1244   0x00000000,	/* nop			*/
1245   0x00000000,	/* nop			*/
1246   0x00000000	/* nop			*/
1247 };
1248 
1249 /* The format of subsequent PLT entries.  */
1250 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1251 {
1252   0x10000000,	/* b .PLT_resolver	*/
1253   0x24180000	/* li t8, <pltindex>	*/
1254 };
1255 
1256 /* microMIPS 32-bit opcode helper installer.  */
1257 
1258 static void
bfd_put_micromips_32(const bfd * abfd,bfd_vma opcode,bfd_byte * ptr)1259 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1260 {
1261   bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1262   bfd_put_16 (abfd,  opcode	   & 0xffff, ptr + 2);
1263 }
1264 
1265 /* microMIPS 32-bit opcode helper retriever.  */
1266 
1267 static bfd_vma
bfd_get_micromips_32(const bfd * abfd,const bfd_byte * ptr)1268 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1269 {
1270   return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1271 }
1272 
1273 /* Look up an entry in a MIPS ELF linker hash table.  */
1274 
1275 #define mips_elf_link_hash_lookup(table, string, create, copy, follow)	\
1276   ((struct mips_elf_link_hash_entry *)					\
1277    elf_link_hash_lookup (&(table)->root, (string), (create),		\
1278 			 (copy), (follow)))
1279 
1280 /* Traverse a MIPS ELF linker hash table.  */
1281 
1282 #define mips_elf_link_hash_traverse(table, func, info)			\
1283   (elf_link_hash_traverse						\
1284    (&(table)->root,							\
1285     (bool (*) (struct elf_link_hash_entry *, void *)) (func),		\
1286     (info)))
1287 
1288 /* Find the base offsets for thread-local storage in this object,
1289    for GD/LD and IE/LE respectively.  */
1290 
1291 #define TP_OFFSET 0x7000
1292 #define DTP_OFFSET 0x8000
1293 
1294 static bfd_vma
dtprel_base(struct bfd_link_info * info)1295 dtprel_base (struct bfd_link_info *info)
1296 {
1297   /* If tls_sec is NULL, we should have signalled an error already.  */
1298   if (elf_hash_table (info)->tls_sec == NULL)
1299     return 0;
1300   return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1301 }
1302 
1303 static bfd_vma
tprel_base(struct bfd_link_info * info)1304 tprel_base (struct bfd_link_info *info)
1305 {
1306   /* If tls_sec is NULL, we should have signalled an error already.  */
1307   if (elf_hash_table (info)->tls_sec == NULL)
1308     return 0;
1309   return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1310 }
1311 
1312 /* Create an entry in a MIPS ELF linker hash table.  */
1313 
1314 static struct bfd_hash_entry *
mips_elf_link_hash_newfunc(struct bfd_hash_entry * entry,struct bfd_hash_table * table,const char * string)1315 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1316 			    struct bfd_hash_table *table, const char *string)
1317 {
1318   struct mips_elf_link_hash_entry *ret =
1319     (struct mips_elf_link_hash_entry *) entry;
1320 
1321   /* Allocate the structure if it has not already been allocated by a
1322      subclass.  */
1323   if (ret == NULL)
1324     ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1325   if (ret == NULL)
1326     return (struct bfd_hash_entry *) ret;
1327 
1328   /* Call the allocation method of the superclass.  */
1329   ret = ((struct mips_elf_link_hash_entry *)
1330 	 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1331 				     table, string));
1332   if (ret != NULL)
1333     {
1334       /* Set local fields.  */
1335       memset (&ret->esym, 0, sizeof (EXTR));
1336       /* We use -2 as a marker to indicate that the information has
1337 	 not been set.  -1 means there is no associated ifd.  */
1338       ret->esym.ifd = -2;
1339       ret->la25_stub = 0;
1340       ret->possibly_dynamic_relocs = 0;
1341       ret->fn_stub = NULL;
1342       ret->call_stub = NULL;
1343       ret->call_fp_stub = NULL;
1344       ret->mipsxhash_loc = 0;
1345       ret->global_got_area = GGA_NONE;
1346       ret->got_only_for_calls = true;
1347       ret->readonly_reloc = false;
1348       ret->has_static_relocs = false;
1349       ret->no_fn_stub = false;
1350       ret->need_fn_stub = false;
1351       ret->has_nonpic_branches = false;
1352       ret->needs_lazy_stub = false;
1353       ret->use_plt_entry = false;
1354     }
1355 
1356   return (struct bfd_hash_entry *) ret;
1357 }
1358 
1359 /* Allocate MIPS ELF private object data.  */
1360 
1361 bool
_bfd_mips_elf_mkobject(bfd * abfd)1362 _bfd_mips_elf_mkobject (bfd *abfd)
1363 {
1364   return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1365 				  MIPS_ELF_DATA);
1366 }
1367 
1368 bool
_bfd_mips_elf_new_section_hook(bfd * abfd,asection * sec)1369 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1370 {
1371   if (!sec->used_by_bfd)
1372     {
1373       struct _mips_elf_section_data *sdata;
1374       size_t amt = sizeof (*sdata);
1375 
1376       sdata = bfd_zalloc (abfd, amt);
1377       if (sdata == NULL)
1378 	return false;
1379       sec->used_by_bfd = sdata;
1380     }
1381 
1382   return _bfd_elf_new_section_hook (abfd, sec);
1383 }
1384 
1385 /* Read ECOFF debugging information from a .mdebug section into a
1386    ecoff_debug_info structure.  */
1387 
1388 bool
_bfd_mips_elf_read_ecoff_info(bfd * abfd,asection * section,struct ecoff_debug_info * debug)1389 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1390 			       struct ecoff_debug_info *debug)
1391 {
1392   HDRR *symhdr;
1393   const struct ecoff_debug_swap *swap;
1394   char *ext_hdr;
1395 
1396   swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1397   memset (debug, 0, sizeof (*debug));
1398 
1399   ext_hdr = bfd_malloc (swap->external_hdr_size);
1400   if (ext_hdr == NULL && swap->external_hdr_size != 0)
1401     goto error_return;
1402 
1403   if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1404 				  swap->external_hdr_size))
1405     goto error_return;
1406 
1407   symhdr = &debug->symbolic_header;
1408   (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1409 
1410   /* The symbolic header contains absolute file offsets and sizes to
1411      read.  */
1412 #define READ(ptr, offset, count, size, type)				\
1413   do									\
1414     {									\
1415       size_t amt;							\
1416       debug->ptr = NULL;						\
1417       if (symhdr->count == 0)						\
1418 	break;								\
1419       if (_bfd_mul_overflow (size, symhdr->count, &amt))		\
1420 	{								\
1421 	  bfd_set_error (bfd_error_file_too_big);			\
1422 	  goto error_return;						\
1423 	}								\
1424       if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0)		\
1425 	goto error_return;						\
1426       debug->ptr = (type) _bfd_malloc_and_read (abfd, amt, amt);	\
1427       if (debug->ptr == NULL)						\
1428 	goto error_return;						\
1429     } while (0)
1430 
1431   READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1432   READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1433   READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1434   READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1435   READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1436   READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1437 	union aux_ext *);
1438   READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1439   READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1440   READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1441   READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1442   READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1443 #undef READ
1444 
1445   debug->fdr = NULL;
1446 
1447   return true;
1448 
1449  error_return:
1450   free (ext_hdr);
1451   free (debug->line);
1452   free (debug->external_dnr);
1453   free (debug->external_pdr);
1454   free (debug->external_sym);
1455   free (debug->external_opt);
1456   free (debug->external_aux);
1457   free (debug->ss);
1458   free (debug->ssext);
1459   free (debug->external_fdr);
1460   free (debug->external_rfd);
1461   free (debug->external_ext);
1462   return false;
1463 }
1464 
1465 /* Swap RPDR (runtime procedure table entry) for output.  */
1466 
1467 static void
ecoff_swap_rpdr_out(bfd * abfd,const RPDR * in,struct rpdr_ext * ex)1468 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1469 {
1470   H_PUT_S32 (abfd, in->adr, ex->p_adr);
1471   H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1472   H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1473   H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1474   H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1475   H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1476 
1477   H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1478   H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1479 
1480   H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1481 }
1482 
1483 /* Create a runtime procedure table from the .mdebug section.  */
1484 
1485 static bool
mips_elf_create_procedure_table(void * handle,bfd * abfd,struct bfd_link_info * info,asection * s,struct ecoff_debug_info * debug)1486 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1487 				 struct bfd_link_info *info, asection *s,
1488 				 struct ecoff_debug_info *debug)
1489 {
1490   const struct ecoff_debug_swap *swap;
1491   HDRR *hdr = &debug->symbolic_header;
1492   RPDR *rpdr, *rp;
1493   struct rpdr_ext *erp;
1494   void *rtproc;
1495   struct pdr_ext *epdr;
1496   struct sym_ext *esym;
1497   char *ss, **sv;
1498   char *str;
1499   bfd_size_type size;
1500   bfd_size_type count;
1501   unsigned long sindex;
1502   unsigned long i;
1503   PDR pdr;
1504   SYMR sym;
1505   const char *no_name_func = _("static procedure (no name)");
1506 
1507   epdr = NULL;
1508   rpdr = NULL;
1509   esym = NULL;
1510   ss = NULL;
1511   sv = NULL;
1512 
1513   swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1514 
1515   sindex = strlen (no_name_func) + 1;
1516   count = hdr->ipdMax;
1517   if (count > 0)
1518     {
1519       size = swap->external_pdr_size;
1520 
1521       epdr = bfd_malloc (size * count);
1522       if (epdr == NULL)
1523 	goto error_return;
1524 
1525       if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1526 	goto error_return;
1527 
1528       size = sizeof (RPDR);
1529       rp = rpdr = bfd_malloc (size * count);
1530       if (rpdr == NULL)
1531 	goto error_return;
1532 
1533       size = sizeof (char *);
1534       sv = bfd_malloc (size * count);
1535       if (sv == NULL)
1536 	goto error_return;
1537 
1538       count = hdr->isymMax;
1539       size = swap->external_sym_size;
1540       esym = bfd_malloc (size * count);
1541       if (esym == NULL)
1542 	goto error_return;
1543 
1544       if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1545 	goto error_return;
1546 
1547       count = hdr->issMax;
1548       ss = bfd_malloc (count);
1549       if (ss == NULL)
1550 	goto error_return;
1551       if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1552 	goto error_return;
1553 
1554       count = hdr->ipdMax;
1555       for (i = 0; i < (unsigned long) count; i++, rp++)
1556 	{
1557 	  (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1558 	  (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1559 	  rp->adr = sym.value;
1560 	  rp->regmask = pdr.regmask;
1561 	  rp->regoffset = pdr.regoffset;
1562 	  rp->fregmask = pdr.fregmask;
1563 	  rp->fregoffset = pdr.fregoffset;
1564 	  rp->frameoffset = pdr.frameoffset;
1565 	  rp->framereg = pdr.framereg;
1566 	  rp->pcreg = pdr.pcreg;
1567 	  rp->irpss = sindex;
1568 	  sv[i] = ss + sym.iss;
1569 	  sindex += strlen (sv[i]) + 1;
1570 	}
1571     }
1572 
1573   size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1574   size = BFD_ALIGN (size, 16);
1575   rtproc = bfd_alloc (abfd, size);
1576   if (rtproc == NULL)
1577     {
1578       mips_elf_hash_table (info)->procedure_count = 0;
1579       goto error_return;
1580     }
1581 
1582   mips_elf_hash_table (info)->procedure_count = count + 2;
1583 
1584   erp = rtproc;
1585   memset (erp, 0, sizeof (struct rpdr_ext));
1586   erp++;
1587   str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1588   strcpy (str, no_name_func);
1589   str += strlen (no_name_func) + 1;
1590   for (i = 0; i < count; i++)
1591     {
1592       ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1593       strcpy (str, sv[i]);
1594       str += strlen (sv[i]) + 1;
1595     }
1596   H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1597 
1598   /* Set the size and contents of .rtproc section.  */
1599   s->size = size;
1600   s->contents = rtproc;
1601 
1602   /* Skip this section later on (I don't think this currently
1603      matters, but someday it might).  */
1604   s->map_head.link_order = NULL;
1605 
1606   free (epdr);
1607   free (rpdr);
1608   free (esym);
1609   free (ss);
1610   free (sv);
1611   return true;
1612 
1613  error_return:
1614   free (epdr);
1615   free (rpdr);
1616   free (esym);
1617   free (ss);
1618   free (sv);
1619   return false;
1620 }
1621 
1622 /* We're going to create a stub for H.  Create a symbol for the stub's
1623    value and size, to help make the disassembly easier to read.  */
1624 
1625 static bool
mips_elf_create_stub_symbol(struct bfd_link_info * info,struct mips_elf_link_hash_entry * h,const char * prefix,asection * s,bfd_vma value,bfd_vma size)1626 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1627 			     struct mips_elf_link_hash_entry *h,
1628 			     const char *prefix, asection *s, bfd_vma value,
1629 			     bfd_vma size)
1630 {
1631   bool micromips_p = ELF_ST_IS_MICROMIPS (h->root.other);
1632   struct bfd_link_hash_entry *bh;
1633   struct elf_link_hash_entry *elfh;
1634   char *name;
1635   bool res;
1636 
1637   if (micromips_p)
1638     value |= 1;
1639 
1640   /* Create a new symbol.  */
1641   name = concat (prefix, h->root.root.root.string, NULL);
1642   bh = NULL;
1643   res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1644 					  BSF_LOCAL, s, value, NULL,
1645 					  true, false, &bh);
1646   free (name);
1647   if (! res)
1648     return false;
1649 
1650   /* Make it a local function.  */
1651   elfh = (struct elf_link_hash_entry *) bh;
1652   elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1653   elfh->size = size;
1654   elfh->forced_local = 1;
1655   if (micromips_p)
1656     elfh->other = ELF_ST_SET_MICROMIPS (elfh->other);
1657   return true;
1658 }
1659 
1660 /* We're about to redefine H.  Create a symbol to represent H's
1661    current value and size, to help make the disassembly easier
1662    to read.  */
1663 
1664 static bool
mips_elf_create_shadow_symbol(struct bfd_link_info * info,struct mips_elf_link_hash_entry * h,const char * prefix)1665 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1666 			       struct mips_elf_link_hash_entry *h,
1667 			       const char *prefix)
1668 {
1669   struct bfd_link_hash_entry *bh;
1670   struct elf_link_hash_entry *elfh;
1671   char *name;
1672   asection *s;
1673   bfd_vma value;
1674   bool res;
1675 
1676   /* Read the symbol's value.  */
1677   BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1678 	      || h->root.root.type == bfd_link_hash_defweak);
1679   s = h->root.root.u.def.section;
1680   value = h->root.root.u.def.value;
1681 
1682   /* Create a new symbol.  */
1683   name = concat (prefix, h->root.root.root.string, NULL);
1684   bh = NULL;
1685   res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1686 					  BSF_LOCAL, s, value, NULL,
1687 					  true, false, &bh);
1688   free (name);
1689   if (! res)
1690     return false;
1691 
1692   /* Make it local and copy the other attributes from H.  */
1693   elfh = (struct elf_link_hash_entry *) bh;
1694   elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1695   elfh->other = h->root.other;
1696   elfh->size = h->root.size;
1697   elfh->forced_local = 1;
1698   return true;
1699 }
1700 
1701 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1702    function rather than to a hard-float stub.  */
1703 
1704 static bool
section_allows_mips16_refs_p(asection * section)1705 section_allows_mips16_refs_p (asection *section)
1706 {
1707   const char *name;
1708 
1709   name = bfd_section_name (section);
1710   return (FN_STUB_P (name)
1711 	  || CALL_STUB_P (name)
1712 	  || CALL_FP_STUB_P (name)
1713 	  || strcmp (name, ".pdr") == 0);
1714 }
1715 
1716 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1717    stub section of some kind.  Return the R_SYMNDX of the target
1718    function, or 0 if we can't decide which function that is.  */
1719 
1720 static unsigned long
mips16_stub_symndx(const struct elf_backend_data * bed,asection * sec ATTRIBUTE_UNUSED,const Elf_Internal_Rela * relocs,const Elf_Internal_Rela * relend)1721 mips16_stub_symndx (const struct elf_backend_data *bed,
1722 		    asection *sec ATTRIBUTE_UNUSED,
1723 		    const Elf_Internal_Rela *relocs,
1724 		    const Elf_Internal_Rela *relend)
1725 {
1726   int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1727   const Elf_Internal_Rela *rel;
1728 
1729   /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1730      one in a compound relocation.  */
1731   for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1732     if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1733       return ELF_R_SYM (sec->owner, rel->r_info);
1734 
1735   /* Otherwise trust the first relocation, whatever its kind.  This is
1736      the traditional behavior.  */
1737   if (relocs < relend)
1738     return ELF_R_SYM (sec->owner, relocs->r_info);
1739 
1740   return 0;
1741 }
1742 
1743 /* Check the mips16 stubs for a particular symbol, and see if we can
1744    discard them.  */
1745 
1746 static void
mips_elf_check_mips16_stubs(struct bfd_link_info * info,struct mips_elf_link_hash_entry * h)1747 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1748 			     struct mips_elf_link_hash_entry *h)
1749 {
1750   /* Dynamic symbols must use the standard call interface, in case other
1751      objects try to call them.  */
1752   if (h->fn_stub != NULL
1753       && h->root.dynindx != -1)
1754     {
1755       mips_elf_create_shadow_symbol (info, h, ".mips16.");
1756       h->need_fn_stub = true;
1757     }
1758 
1759   if (h->fn_stub != NULL
1760       && ! h->need_fn_stub)
1761     {
1762       /* We don't need the fn_stub; the only references to this symbol
1763 	 are 16 bit calls.  Clobber the size to 0 to prevent it from
1764 	 being included in the link.  */
1765       h->fn_stub->size = 0;
1766       h->fn_stub->flags &= ~SEC_RELOC;
1767       h->fn_stub->reloc_count = 0;
1768       h->fn_stub->flags |= SEC_EXCLUDE;
1769       h->fn_stub->output_section = bfd_abs_section_ptr;
1770     }
1771 
1772   if (h->call_stub != NULL
1773       && ELF_ST_IS_MIPS16 (h->root.other))
1774     {
1775       /* We don't need the call_stub; this is a 16 bit function, so
1776 	 calls from other 16 bit functions are OK.  Clobber the size
1777 	 to 0 to prevent it from being included in the link.  */
1778       h->call_stub->size = 0;
1779       h->call_stub->flags &= ~SEC_RELOC;
1780       h->call_stub->reloc_count = 0;
1781       h->call_stub->flags |= SEC_EXCLUDE;
1782       h->call_stub->output_section = bfd_abs_section_ptr;
1783     }
1784 
1785   if (h->call_fp_stub != NULL
1786       && ELF_ST_IS_MIPS16 (h->root.other))
1787     {
1788       /* We don't need the call_stub; this is a 16 bit function, so
1789 	 calls from other 16 bit functions are OK.  Clobber the size
1790 	 to 0 to prevent it from being included in the link.  */
1791       h->call_fp_stub->size = 0;
1792       h->call_fp_stub->flags &= ~SEC_RELOC;
1793       h->call_fp_stub->reloc_count = 0;
1794       h->call_fp_stub->flags |= SEC_EXCLUDE;
1795       h->call_fp_stub->output_section = bfd_abs_section_ptr;
1796     }
1797 }
1798 
1799 /* Hashtable callbacks for mips_elf_la25_stubs.  */
1800 
1801 static hashval_t
mips_elf_la25_stub_hash(const void * entry_)1802 mips_elf_la25_stub_hash (const void *entry_)
1803 {
1804   const struct mips_elf_la25_stub *entry;
1805 
1806   entry = (struct mips_elf_la25_stub *) entry_;
1807   return entry->h->root.root.u.def.section->id
1808     + entry->h->root.root.u.def.value;
1809 }
1810 
1811 static int
mips_elf_la25_stub_eq(const void * entry1_,const void * entry2_)1812 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1813 {
1814   const struct mips_elf_la25_stub *entry1, *entry2;
1815 
1816   entry1 = (struct mips_elf_la25_stub *) entry1_;
1817   entry2 = (struct mips_elf_la25_stub *) entry2_;
1818   return ((entry1->h->root.root.u.def.section
1819 	   == entry2->h->root.root.u.def.section)
1820 	  && (entry1->h->root.root.u.def.value
1821 	      == entry2->h->root.root.u.def.value));
1822 }
1823 
1824 /* Called by the linker to set up the la25 stub-creation code.  FN is
1825    the linker's implementation of add_stub_function.  Return true on
1826    success.  */
1827 
1828 bool
_bfd_mips_elf_init_stubs(struct bfd_link_info * info,asection * (* fn)(const char *,asection *,asection *))1829 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1830 			  asection *(*fn) (const char *, asection *,
1831 					   asection *))
1832 {
1833   struct mips_elf_link_hash_table *htab;
1834 
1835   htab = mips_elf_hash_table (info);
1836   if (htab == NULL)
1837     return false;
1838 
1839   htab->add_stub_section = fn;
1840   htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1841 				      mips_elf_la25_stub_eq, NULL);
1842   if (htab->la25_stubs == NULL)
1843     return false;
1844 
1845   return true;
1846 }
1847 
1848 /* Return true if H is a locally-defined PIC function, in the sense
1849    that it or its fn_stub might need $25 to be valid on entry.
1850    Note that MIPS16 functions set up $gp using PC-relative instructions,
1851    so they themselves never need $25 to be valid.  Only non-MIPS16
1852    entry points are of interest here.  */
1853 
1854 static bool
mips_elf_local_pic_function_p(struct mips_elf_link_hash_entry * h)1855 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1856 {
1857   return ((h->root.root.type == bfd_link_hash_defined
1858 	   || h->root.root.type == bfd_link_hash_defweak)
1859 	  && h->root.def_regular
1860 	  && !bfd_is_abs_section (h->root.root.u.def.section)
1861 	  && !bfd_is_und_section (h->root.root.u.def.section)
1862 	  && (!ELF_ST_IS_MIPS16 (h->root.other)
1863 	      || (h->fn_stub && h->need_fn_stub))
1864 	  && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1865 	      || ELF_ST_IS_MIPS_PIC (h->root.other)));
1866 }
1867 
1868 /* Set *SEC to the input section that contains the target of STUB.
1869    Return the offset of the target from the start of that section.  */
1870 
1871 static bfd_vma
mips_elf_get_la25_target(struct mips_elf_la25_stub * stub,asection ** sec)1872 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1873 			  asection **sec)
1874 {
1875   if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1876     {
1877       BFD_ASSERT (stub->h->need_fn_stub);
1878       *sec = stub->h->fn_stub;
1879       return 0;
1880     }
1881   else
1882     {
1883       *sec = stub->h->root.root.u.def.section;
1884       return stub->h->root.root.u.def.value;
1885     }
1886 }
1887 
1888 /* STUB describes an la25 stub that we have decided to implement
1889    by inserting an LUI/ADDIU pair before the target function.
1890    Create the section and redirect the function symbol to it.  */
1891 
1892 static bool
mips_elf_add_la25_intro(struct mips_elf_la25_stub * stub,struct bfd_link_info * info)1893 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1894 			 struct bfd_link_info *info)
1895 {
1896   struct mips_elf_link_hash_table *htab;
1897   char *name;
1898   asection *s, *input_section;
1899   unsigned int align;
1900 
1901   htab = mips_elf_hash_table (info);
1902   if (htab == NULL)
1903     return false;
1904 
1905   /* Create a unique name for the new section.  */
1906   name = bfd_malloc (11 + sizeof (".text.stub."));
1907   if (name == NULL)
1908     return false;
1909   sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1910 
1911   /* Create the section.  */
1912   mips_elf_get_la25_target (stub, &input_section);
1913   s = htab->add_stub_section (name, input_section,
1914 			      input_section->output_section);
1915   if (s == NULL)
1916     return false;
1917 
1918   /* Make sure that any padding goes before the stub.  */
1919   align = input_section->alignment_power;
1920   if (!bfd_set_section_alignment (s, align))
1921     return false;
1922   if (align > 3)
1923     s->size = (1 << align) - 8;
1924 
1925   /* Create a symbol for the stub.  */
1926   mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1927   stub->stub_section = s;
1928   stub->offset = s->size;
1929 
1930   /* Allocate room for it.  */
1931   s->size += 8;
1932   return true;
1933 }
1934 
1935 /* STUB describes an la25 stub that we have decided to implement
1936    with a separate trampoline.  Allocate room for it and redirect
1937    the function symbol to it.  */
1938 
1939 static bool
mips_elf_add_la25_trampoline(struct mips_elf_la25_stub * stub,struct bfd_link_info * info)1940 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1941 			      struct bfd_link_info *info)
1942 {
1943   struct mips_elf_link_hash_table *htab;
1944   asection *s;
1945 
1946   htab = mips_elf_hash_table (info);
1947   if (htab == NULL)
1948     return false;
1949 
1950   /* Create a trampoline section, if we haven't already.  */
1951   s = htab->strampoline;
1952   if (s == NULL)
1953     {
1954       asection *input_section = stub->h->root.root.u.def.section;
1955       s = htab->add_stub_section (".text", NULL,
1956 				  input_section->output_section);
1957       if (s == NULL || !bfd_set_section_alignment (s, 4))
1958 	return false;
1959       htab->strampoline = s;
1960     }
1961 
1962   /* Create a symbol for the stub.  */
1963   mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1964   stub->stub_section = s;
1965   stub->offset = s->size;
1966 
1967   /* Allocate room for it.  */
1968   s->size += 16;
1969   return true;
1970 }
1971 
1972 /* H describes a symbol that needs an la25 stub.  Make sure that an
1973    appropriate stub exists and point H at it.  */
1974 
1975 static bool
mips_elf_add_la25_stub(struct bfd_link_info * info,struct mips_elf_link_hash_entry * h)1976 mips_elf_add_la25_stub (struct bfd_link_info *info,
1977 			struct mips_elf_link_hash_entry *h)
1978 {
1979   struct mips_elf_link_hash_table *htab;
1980   struct mips_elf_la25_stub search, *stub;
1981   bool use_trampoline_p;
1982   asection *s;
1983   bfd_vma value;
1984   void **slot;
1985 
1986   /* Describe the stub we want.  */
1987   search.stub_section = NULL;
1988   search.offset = 0;
1989   search.h = h;
1990 
1991   /* See if we've already created an equivalent stub.  */
1992   htab = mips_elf_hash_table (info);
1993   if (htab == NULL)
1994     return false;
1995 
1996   slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1997   if (slot == NULL)
1998     return false;
1999 
2000   stub = (struct mips_elf_la25_stub *) *slot;
2001   if (stub != NULL)
2002     {
2003       /* We can reuse the existing stub.  */
2004       h->la25_stub = stub;
2005       return true;
2006     }
2007 
2008   /* Create a permanent copy of ENTRY and add it to the hash table.  */
2009   stub = bfd_malloc (sizeof (search));
2010   if (stub == NULL)
2011     return false;
2012   *stub = search;
2013   *slot = stub;
2014 
2015   /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
2016      of the section and if we would need no more than 2 nops.  */
2017   value = mips_elf_get_la25_target (stub, &s);
2018   if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
2019     value &= ~1;
2020   use_trampoline_p = (value != 0 || s->alignment_power > 4);
2021 
2022   h->la25_stub = stub;
2023   return (use_trampoline_p
2024 	  ? mips_elf_add_la25_trampoline (stub, info)
2025 	  : mips_elf_add_la25_intro (stub, info));
2026 }
2027 
2028 /* A mips_elf_link_hash_traverse callback that is called before sizing
2029    sections.  DATA points to a mips_htab_traverse_info structure.  */
2030 
2031 static bool
mips_elf_check_symbols(struct mips_elf_link_hash_entry * h,void * data)2032 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
2033 {
2034   struct mips_htab_traverse_info *hti;
2035 
2036   hti = (struct mips_htab_traverse_info *) data;
2037   if (!bfd_link_relocatable (hti->info))
2038     mips_elf_check_mips16_stubs (hti->info, h);
2039 
2040   if (mips_elf_local_pic_function_p (h))
2041     {
2042       /* PR 12845: If H is in a section that has been garbage
2043 	 collected it will have its output section set to *ABS*.  */
2044       if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
2045 	return true;
2046 
2047       /* H is a function that might need $25 to be valid on entry.
2048 	 If we're creating a non-PIC relocatable object, mark H as
2049 	 being PIC.  If we're creating a non-relocatable object with
2050 	 non-PIC branches and jumps to H, make sure that H has an la25
2051 	 stub.  */
2052       if (bfd_link_relocatable (hti->info))
2053 	{
2054 	  if (!PIC_OBJECT_P (hti->output_bfd))
2055 	    h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
2056 	}
2057       else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2058 	{
2059 	  hti->error = true;
2060 	  return false;
2061 	}
2062     }
2063   return true;
2064 }
2065 
2066 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2067    Most mips16 instructions are 16 bits, but these instructions
2068    are 32 bits.
2069 
2070    The format of these instructions is:
2071 
2072    +--------------+--------------------------------+
2073    |     JALX     | X|   Imm 20:16  |   Imm 25:21  |
2074    +--------------+--------------------------------+
2075    |		    Immediate  15:0		   |
2076    +-----------------------------------------------+
2077 
2078    JALX is the 5-bit value 00011.  X is 0 for jal, 1 for jalx.
2079    Note that the immediate value in the first word is swapped.
2080 
2081    When producing a relocatable object file, R_MIPS16_26 is
2082    handled mostly like R_MIPS_26.  In particular, the addend is
2083    stored as a straight 26-bit value in a 32-bit instruction.
2084    (gas makes life simpler for itself by never adjusting a
2085    R_MIPS16_26 reloc to be against a section, so the addend is
2086    always zero).  However, the 32 bit instruction is stored as 2
2087    16-bit values, rather than a single 32-bit value.  In a
2088    big-endian file, the result is the same; in a little-endian
2089    file, the two 16-bit halves of the 32 bit value are swapped.
2090    This is so that a disassembler can recognize the jal
2091    instruction.
2092 
2093    When doing a final link, R_MIPS16_26 is treated as a 32 bit
2094    instruction stored as two 16-bit values.  The addend A is the
2095    contents of the targ26 field.  The calculation is the same as
2096    R_MIPS_26.  When storing the calculated value, reorder the
2097    immediate value as shown above, and don't forget to store the
2098    value as two 16-bit values.
2099 
2100    To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2101    defined as
2102 
2103    big-endian:
2104    +--------+----------------------+
2105    |	    |			   |
2106    |	    |	 targ26-16	   |
2107    |31	  26|25			  0|
2108    +--------+----------------------+
2109 
2110    little-endian:
2111    +----------+------+-------------+
2112    |	      |	     |		   |
2113    |  sub1    |	     |	   sub2	   |
2114    |0	     9|10  15|16	 31|
2115    +----------+--------------------+
2116    where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2117    ((sub1 << 16) | sub2)).
2118 
2119    When producing a relocatable object file, the calculation is
2120    (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2121    When producing a fully linked file, the calculation is
2122    let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2123    ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2124 
2125    The table below lists the other MIPS16 instruction relocations.
2126    Each one is calculated in the same way as the non-MIPS16 relocation
2127    given on the right, but using the extended MIPS16 layout of 16-bit
2128    immediate fields:
2129 
2130 	R_MIPS16_GPREL		R_MIPS_GPREL16
2131 	R_MIPS16_GOT16		R_MIPS_GOT16
2132 	R_MIPS16_CALL16		R_MIPS_CALL16
2133 	R_MIPS16_HI16		R_MIPS_HI16
2134 	R_MIPS16_LO16		R_MIPS_LO16
2135 
2136    A typical instruction will have a format like this:
2137 
2138    +--------------+--------------------------------+
2139    |    EXTEND    |     Imm 10:5    |   Imm 15:11  |
2140    +--------------+--------------------------------+
2141    |    Major     |   rx   |   ry   |   Imm  4:0   |
2142    +--------------+--------------------------------+
2143 
2144    EXTEND is the five bit value 11110.  Major is the instruction
2145    opcode.
2146 
2147    All we need to do here is shuffle the bits appropriately.
2148    As above, the two 16-bit halves must be swapped on a
2149    little-endian system.
2150 
2151    Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the
2152    relocatable field is shifted by 1 rather than 2 and the same bit
2153    shuffling is done as with the relocations above.  */
2154 
2155 static inline bool
mips16_reloc_p(int r_type)2156 mips16_reloc_p (int r_type)
2157 {
2158   switch (r_type)
2159     {
2160     case R_MIPS16_26:
2161     case R_MIPS16_GPREL:
2162     case R_MIPS16_GOT16:
2163     case R_MIPS16_CALL16:
2164     case R_MIPS16_HI16:
2165     case R_MIPS16_LO16:
2166     case R_MIPS16_TLS_GD:
2167     case R_MIPS16_TLS_LDM:
2168     case R_MIPS16_TLS_DTPREL_HI16:
2169     case R_MIPS16_TLS_DTPREL_LO16:
2170     case R_MIPS16_TLS_GOTTPREL:
2171     case R_MIPS16_TLS_TPREL_HI16:
2172     case R_MIPS16_TLS_TPREL_LO16:
2173     case R_MIPS16_PC16_S1:
2174       return true;
2175 
2176     default:
2177       return false;
2178     }
2179 }
2180 
2181 /* Check if a microMIPS reloc.  */
2182 
2183 static inline bool
micromips_reloc_p(unsigned int r_type)2184 micromips_reloc_p (unsigned int r_type)
2185 {
2186   return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2187 }
2188 
2189 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2190    on a little-endian system.  This does not apply to R_MICROMIPS_PC7_S1
2191    and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions.  */
2192 
2193 static inline bool
micromips_reloc_shuffle_p(unsigned int r_type)2194 micromips_reloc_shuffle_p (unsigned int r_type)
2195 {
2196   return (micromips_reloc_p (r_type)
2197 	  && r_type != R_MICROMIPS_PC7_S1
2198 	  && r_type != R_MICROMIPS_PC10_S1);
2199 }
2200 
2201 static inline bool
got16_reloc_p(int r_type)2202 got16_reloc_p (int r_type)
2203 {
2204   return (r_type == R_MIPS_GOT16
2205 	  || r_type == R_MIPS16_GOT16
2206 	  || r_type == R_MICROMIPS_GOT16);
2207 }
2208 
2209 static inline bool
call16_reloc_p(int r_type)2210 call16_reloc_p (int r_type)
2211 {
2212   return (r_type == R_MIPS_CALL16
2213 	  || r_type == R_MIPS16_CALL16
2214 	  || r_type == R_MICROMIPS_CALL16);
2215 }
2216 
2217 static inline bool
got_disp_reloc_p(unsigned int r_type)2218 got_disp_reloc_p (unsigned int r_type)
2219 {
2220   return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2221 }
2222 
2223 static inline bool
got_page_reloc_p(unsigned int r_type)2224 got_page_reloc_p (unsigned int r_type)
2225 {
2226   return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2227 }
2228 
2229 static inline bool
got_lo16_reloc_p(unsigned int r_type)2230 got_lo16_reloc_p (unsigned int r_type)
2231 {
2232   return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2233 }
2234 
2235 static inline bool
call_hi16_reloc_p(unsigned int r_type)2236 call_hi16_reloc_p (unsigned int r_type)
2237 {
2238   return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2239 }
2240 
2241 static inline bool
call_lo16_reloc_p(unsigned int r_type)2242 call_lo16_reloc_p (unsigned int r_type)
2243 {
2244   return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2245 }
2246 
2247 static inline bool
hi16_reloc_p(int r_type)2248 hi16_reloc_p (int r_type)
2249 {
2250   return (r_type == R_MIPS_HI16
2251 	  || r_type == R_MIPS16_HI16
2252 	  || r_type == R_MICROMIPS_HI16
2253 	  || r_type == R_MIPS_PCHI16);
2254 }
2255 
2256 static inline bool
lo16_reloc_p(int r_type)2257 lo16_reloc_p (int r_type)
2258 {
2259   return (r_type == R_MIPS_LO16
2260 	  || r_type == R_MIPS16_LO16
2261 	  || r_type == R_MICROMIPS_LO16
2262 	  || r_type == R_MIPS_PCLO16);
2263 }
2264 
2265 static inline bool
mips16_call_reloc_p(int r_type)2266 mips16_call_reloc_p (int r_type)
2267 {
2268   return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2269 }
2270 
2271 static inline bool
jal_reloc_p(int r_type)2272 jal_reloc_p (int r_type)
2273 {
2274   return (r_type == R_MIPS_26
2275 	  || r_type == R_MIPS16_26
2276 	  || r_type == R_MICROMIPS_26_S1);
2277 }
2278 
2279 static inline bool
b_reloc_p(int r_type)2280 b_reloc_p (int r_type)
2281 {
2282   return (r_type == R_MIPS_PC26_S2
2283 	  || r_type == R_MIPS_PC21_S2
2284 	  || r_type == R_MIPS_PC16
2285 	  || r_type == R_MIPS_GNU_REL16_S2
2286 	  || r_type == R_MIPS16_PC16_S1
2287 	  || r_type == R_MICROMIPS_PC16_S1
2288 	  || r_type == R_MICROMIPS_PC10_S1
2289 	  || r_type == R_MICROMIPS_PC7_S1);
2290 }
2291 
2292 static inline bool
aligned_pcrel_reloc_p(int r_type)2293 aligned_pcrel_reloc_p (int r_type)
2294 {
2295   return (r_type == R_MIPS_PC18_S3
2296 	  || r_type == R_MIPS_PC19_S2);
2297 }
2298 
2299 static inline bool
branch_reloc_p(int r_type)2300 branch_reloc_p (int r_type)
2301 {
2302   return (r_type == R_MIPS_26
2303 	  || r_type == R_MIPS_PC26_S2
2304 	  || r_type == R_MIPS_PC21_S2
2305 	  || r_type == R_MIPS_PC16
2306 	  || r_type == R_MIPS_GNU_REL16_S2);
2307 }
2308 
2309 static inline bool
mips16_branch_reloc_p(int r_type)2310 mips16_branch_reloc_p (int r_type)
2311 {
2312   return (r_type == R_MIPS16_26
2313 	  || r_type == R_MIPS16_PC16_S1);
2314 }
2315 
2316 static inline bool
micromips_branch_reloc_p(int r_type)2317 micromips_branch_reloc_p (int r_type)
2318 {
2319   return (r_type == R_MICROMIPS_26_S1
2320 	  || r_type == R_MICROMIPS_PC16_S1
2321 	  || r_type == R_MICROMIPS_PC10_S1
2322 	  || r_type == R_MICROMIPS_PC7_S1);
2323 }
2324 
2325 static inline bool
tls_gd_reloc_p(unsigned int r_type)2326 tls_gd_reloc_p (unsigned int r_type)
2327 {
2328   return (r_type == R_MIPS_TLS_GD
2329 	  || r_type == R_MIPS16_TLS_GD
2330 	  || r_type == R_MICROMIPS_TLS_GD);
2331 }
2332 
2333 static inline bool
tls_ldm_reloc_p(unsigned int r_type)2334 tls_ldm_reloc_p (unsigned int r_type)
2335 {
2336   return (r_type == R_MIPS_TLS_LDM
2337 	  || r_type == R_MIPS16_TLS_LDM
2338 	  || r_type == R_MICROMIPS_TLS_LDM);
2339 }
2340 
2341 static inline bool
tls_gottprel_reloc_p(unsigned int r_type)2342 tls_gottprel_reloc_p (unsigned int r_type)
2343 {
2344   return (r_type == R_MIPS_TLS_GOTTPREL
2345 	  || r_type == R_MIPS16_TLS_GOTTPREL
2346 	  || r_type == R_MICROMIPS_TLS_GOTTPREL);
2347 }
2348 
2349 void
_bfd_mips_elf_reloc_unshuffle(bfd * abfd,int r_type,bool jal_shuffle,bfd_byte * data)2350 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2351 			       bool jal_shuffle, bfd_byte *data)
2352 {
2353   bfd_vma first, second, val;
2354 
2355   if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2356     return;
2357 
2358   /* Pick up the first and second halfwords of the instruction.  */
2359   first = bfd_get_16 (abfd, data);
2360   second = bfd_get_16 (abfd, data + 2);
2361   if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2362     val = first << 16 | second;
2363   else if (r_type != R_MIPS16_26)
2364     val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2365 	   | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2366   else
2367     val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2368 	   | ((first & 0x1f) << 21) | second);
2369   bfd_put_32 (abfd, val, data);
2370 }
2371 
2372 void
_bfd_mips_elf_reloc_shuffle(bfd * abfd,int r_type,bool jal_shuffle,bfd_byte * data)2373 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2374 			     bool jal_shuffle, bfd_byte *data)
2375 {
2376   bfd_vma first, second, val;
2377 
2378   if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2379     return;
2380 
2381   val = bfd_get_32 (abfd, data);
2382   if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2383     {
2384       second = val & 0xffff;
2385       first = val >> 16;
2386     }
2387   else if (r_type != R_MIPS16_26)
2388     {
2389       second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2390       first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2391     }
2392   else
2393     {
2394       second = val & 0xffff;
2395       first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2396 	       | ((val >> 21) & 0x1f);
2397     }
2398   bfd_put_16 (abfd, second, data + 2);
2399   bfd_put_16 (abfd, first, data);
2400 }
2401 
2402 bfd_reloc_status_type
_bfd_mips_elf_gprel16_with_gp(bfd * abfd,asymbol * symbol,arelent * reloc_entry,asection * input_section,bool relocatable,void * data,bfd_vma gp)2403 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2404 			       arelent *reloc_entry, asection *input_section,
2405 			       bool relocatable, void *data, bfd_vma gp)
2406 {
2407   bfd_vma relocation;
2408   bfd_signed_vma val;
2409   bfd_reloc_status_type status;
2410 
2411   if (bfd_is_com_section (symbol->section))
2412     relocation = 0;
2413   else
2414     relocation = symbol->value;
2415 
2416   relocation += symbol->section->output_section->vma;
2417   relocation += symbol->section->output_offset;
2418 
2419   if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2420     return bfd_reloc_outofrange;
2421 
2422   /* Set val to the offset into the section or symbol.  */
2423   val = reloc_entry->addend;
2424 
2425   _bfd_mips_elf_sign_extend (val, 16);
2426 
2427   /* Adjust val for the final section location and GP value.  If we
2428      are producing relocatable output, we don't want to do this for
2429      an external symbol.  */
2430   if (! relocatable
2431       || (symbol->flags & BSF_SECTION_SYM) != 0)
2432     val += relocation - gp;
2433 
2434   if (reloc_entry->howto->partial_inplace)
2435     {
2436       status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2437 				       (bfd_byte *) data
2438 				       + reloc_entry->address);
2439       if (status != bfd_reloc_ok)
2440 	return status;
2441     }
2442   else
2443     reloc_entry->addend = val;
2444 
2445   if (relocatable)
2446     reloc_entry->address += input_section->output_offset;
2447 
2448   return bfd_reloc_ok;
2449 }
2450 
2451 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2452    R_MIPS_GOT16.  REL is the relocation, INPUT_SECTION is the section
2453    that contains the relocation field and DATA points to the start of
2454    INPUT_SECTION.  */
2455 
2456 struct mips_hi16
2457 {
2458   struct mips_hi16 *next;
2459   bfd_byte *data;
2460   asection *input_section;
2461   arelent rel;
2462 };
2463 
2464 /* FIXME: This should not be a static variable.  */
2465 
2466 static struct mips_hi16 *mips_hi16_list;
2467 
2468 /* A howto special_function for REL *HI16 relocations.  We can only
2469    calculate the correct value once we've seen the partnering
2470    *LO16 relocation, so just save the information for later.
2471 
2472    The ABI requires that the *LO16 immediately follow the *HI16.
2473    However, as a GNU extension, we permit an arbitrary number of
2474    *HI16s to be associated with a single *LO16.  This significantly
2475    simplies the relocation handling in gcc.  */
2476 
2477 bfd_reloc_status_type
_bfd_mips_elf_hi16_reloc(bfd * abfd ATTRIBUTE_UNUSED,arelent * reloc_entry,asymbol * symbol ATTRIBUTE_UNUSED,void * data,asection * input_section,bfd * output_bfd,char ** error_message ATTRIBUTE_UNUSED)2478 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2479 			  asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2480 			  asection *input_section, bfd *output_bfd,
2481 			  char **error_message ATTRIBUTE_UNUSED)
2482 {
2483   struct mips_hi16 *n;
2484 
2485   if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2486     return bfd_reloc_outofrange;
2487 
2488   n = bfd_malloc (sizeof *n);
2489   if (n == NULL)
2490     return bfd_reloc_outofrange;
2491 
2492   n->next = mips_hi16_list;
2493   n->data = data;
2494   n->input_section = input_section;
2495   n->rel = *reloc_entry;
2496   mips_hi16_list = n;
2497 
2498   if (output_bfd != NULL)
2499     reloc_entry->address += input_section->output_offset;
2500 
2501   return bfd_reloc_ok;
2502 }
2503 
2504 /* A howto special_function for REL R_MIPS*_GOT16 relocations.  This is just
2505    like any other 16-bit relocation when applied to global symbols, but is
2506    treated in the same as R_MIPS_HI16 when applied to local symbols.  */
2507 
2508 bfd_reloc_status_type
_bfd_mips_elf_got16_reloc(bfd * abfd,arelent * reloc_entry,asymbol * symbol,void * data,asection * input_section,bfd * output_bfd,char ** error_message)2509 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2510 			   void *data, asection *input_section,
2511 			   bfd *output_bfd, char **error_message)
2512 {
2513   if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2514       || bfd_is_und_section (bfd_asymbol_section (symbol))
2515       || bfd_is_com_section (bfd_asymbol_section (symbol)))
2516     /* The relocation is against a global symbol.  */
2517     return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2518 					input_section, output_bfd,
2519 					error_message);
2520 
2521   return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2522 				   input_section, output_bfd, error_message);
2523 }
2524 
2525 /* A howto special_function for REL *LO16 relocations.  The *LO16 itself
2526    is a straightforward 16 bit inplace relocation, but we must deal with
2527    any partnering high-part relocations as well.  */
2528 
2529 bfd_reloc_status_type
_bfd_mips_elf_lo16_reloc(bfd * abfd,arelent * reloc_entry,asymbol * symbol,void * data,asection * input_section,bfd * output_bfd,char ** error_message)2530 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2531 			  void *data, asection *input_section,
2532 			  bfd *output_bfd, char **error_message)
2533 {
2534   bfd_vma vallo;
2535   bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2536 
2537   if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2538     return bfd_reloc_outofrange;
2539 
2540   _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, false,
2541 				 location);
2542   vallo = bfd_get_32 (abfd, location);
2543   _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, false,
2544 			       location);
2545 
2546   while (mips_hi16_list != NULL)
2547     {
2548       bfd_reloc_status_type ret;
2549       struct mips_hi16 *hi;
2550 
2551       hi = mips_hi16_list;
2552 
2553       /* R_MIPS*_GOT16 relocations are something of a special case.  We
2554 	 want to install the addend in the same way as for a R_MIPS*_HI16
2555 	 relocation (with a rightshift of 16).  However, since GOT16
2556 	 relocations can also be used with global symbols, their howto
2557 	 has a rightshift of 0.  */
2558       if (hi->rel.howto->type == R_MIPS_GOT16)
2559 	hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, false);
2560       else if (hi->rel.howto->type == R_MIPS16_GOT16)
2561 	hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, false);
2562       else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2563 	hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, false);
2564 
2565       /* VALLO is a signed 16-bit number.  Bias it by 0x8000 so that any
2566 	 carry or borrow will induce a change of +1 or -1 in the high part.  */
2567       hi->rel.addend += (vallo + 0x8000) & 0xffff;
2568 
2569       ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2570 					 hi->input_section, output_bfd,
2571 					 error_message);
2572       if (ret != bfd_reloc_ok)
2573 	return ret;
2574 
2575       mips_hi16_list = hi->next;
2576       free (hi);
2577     }
2578 
2579   return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2580 				      input_section, output_bfd,
2581 				      error_message);
2582 }
2583 
2584 /* A generic howto special_function.  This calculates and installs the
2585    relocation itself, thus avoiding the oft-discussed problems in
2586    bfd_perform_relocation and bfd_install_relocation.  */
2587 
2588 bfd_reloc_status_type
_bfd_mips_elf_generic_reloc(bfd * abfd ATTRIBUTE_UNUSED,arelent * reloc_entry,asymbol * symbol,void * data ATTRIBUTE_UNUSED,asection * input_section,bfd * output_bfd,char ** error_message ATTRIBUTE_UNUSED)2589 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2590 			     asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2591 			     asection *input_section, bfd *output_bfd,
2592 			     char **error_message ATTRIBUTE_UNUSED)
2593 {
2594   bfd_signed_vma val;
2595   bfd_reloc_status_type status;
2596   bool relocatable;
2597 
2598   relocatable = (output_bfd != NULL);
2599 
2600   if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2601     return bfd_reloc_outofrange;
2602 
2603   /* Build up the field adjustment in VAL.  */
2604   val = 0;
2605   if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2606     {
2607       /* Either we're calculating the final field value or we have a
2608 	 relocation against a section symbol.  Add in the section's
2609 	 offset or address.  */
2610       val += symbol->section->output_section->vma;
2611       val += symbol->section->output_offset;
2612     }
2613 
2614   if (!relocatable)
2615     {
2616       /* We're calculating the final field value.  Add in the symbol's value
2617 	 and, if pc-relative, subtract the address of the field itself.  */
2618       val += symbol->value;
2619       if (reloc_entry->howto->pc_relative)
2620 	{
2621 	  val -= input_section->output_section->vma;
2622 	  val -= input_section->output_offset;
2623 	  val -= reloc_entry->address;
2624 	}
2625     }
2626 
2627   /* VAL is now the final adjustment.  If we're keeping this relocation
2628      in the output file, and if the relocation uses a separate addend,
2629      we just need to add VAL to that addend.  Otherwise we need to add
2630      VAL to the relocation field itself.  */
2631   if (relocatable && !reloc_entry->howto->partial_inplace)
2632     reloc_entry->addend += val;
2633   else
2634     {
2635       bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2636 
2637       /* Add in the separate addend, if any.  */
2638       val += reloc_entry->addend;
2639 
2640       /* Add VAL to the relocation field.  */
2641       _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, false,
2642 				     location);
2643       status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2644 				       location);
2645       _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, false,
2646 				   location);
2647 
2648       if (status != bfd_reloc_ok)
2649 	return status;
2650     }
2651 
2652   if (relocatable)
2653     reloc_entry->address += input_section->output_offset;
2654 
2655   return bfd_reloc_ok;
2656 }
2657 
2658 /* Swap an entry in a .gptab section.  Note that these routines rely
2659    on the equivalence of the two elements of the union.  */
2660 
2661 static void
bfd_mips_elf32_swap_gptab_in(bfd * abfd,const Elf32_External_gptab * ex,Elf32_gptab * in)2662 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2663 			      Elf32_gptab *in)
2664 {
2665   in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2666   in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2667 }
2668 
2669 static void
bfd_mips_elf32_swap_gptab_out(bfd * abfd,const Elf32_gptab * in,Elf32_External_gptab * ex)2670 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2671 			       Elf32_External_gptab *ex)
2672 {
2673   H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2674   H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2675 }
2676 
2677 static void
bfd_elf32_swap_compact_rel_out(bfd * abfd,const Elf32_compact_rel * in,Elf32_External_compact_rel * ex)2678 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2679 				Elf32_External_compact_rel *ex)
2680 {
2681   H_PUT_32 (abfd, in->id1, ex->id1);
2682   H_PUT_32 (abfd, in->num, ex->num);
2683   H_PUT_32 (abfd, in->id2, ex->id2);
2684   H_PUT_32 (abfd, in->offset, ex->offset);
2685   H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2686   H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2687 }
2688 
2689 static void
bfd_elf32_swap_crinfo_out(bfd * abfd,const Elf32_crinfo * in,Elf32_External_crinfo * ex)2690 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2691 			   Elf32_External_crinfo *ex)
2692 {
2693   unsigned long l;
2694 
2695   l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2696        | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2697        | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2698        | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2699   H_PUT_32 (abfd, l, ex->info);
2700   H_PUT_32 (abfd, in->konst, ex->konst);
2701   H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2702 }
2703 
2704 /* A .reginfo section holds a single Elf32_RegInfo structure.  These
2705    routines swap this structure in and out.  They are used outside of
2706    BFD, so they are globally visible.  */
2707 
2708 void
bfd_mips_elf32_swap_reginfo_in(bfd * abfd,const Elf32_External_RegInfo * ex,Elf32_RegInfo * in)2709 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2710 				Elf32_RegInfo *in)
2711 {
2712   in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2713   in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2714   in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2715   in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2716   in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2717   in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2718 }
2719 
2720 void
bfd_mips_elf32_swap_reginfo_out(bfd * abfd,const Elf32_RegInfo * in,Elf32_External_RegInfo * ex)2721 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2722 				 Elf32_External_RegInfo *ex)
2723 {
2724   H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2725   H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2726   H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2727   H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2728   H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2729   H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2730 }
2731 
2732 /* In the 64 bit ABI, the .MIPS.options section holds register
2733    information in an Elf64_Reginfo structure.  These routines swap
2734    them in and out.  They are globally visible because they are used
2735    outside of BFD.  These routines are here so that gas can call them
2736    without worrying about whether the 64 bit ABI has been included.  */
2737 
2738 void
bfd_mips_elf64_swap_reginfo_in(bfd * abfd,const Elf64_External_RegInfo * ex,Elf64_Internal_RegInfo * in)2739 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2740 				Elf64_Internal_RegInfo *in)
2741 {
2742   in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2743   in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2744   in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2745   in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2746   in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2747   in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2748   in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2749 }
2750 
2751 void
bfd_mips_elf64_swap_reginfo_out(bfd * abfd,const Elf64_Internal_RegInfo * in,Elf64_External_RegInfo * ex)2752 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2753 				 Elf64_External_RegInfo *ex)
2754 {
2755   H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2756   H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2757   H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2758   H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2759   H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2760   H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2761   H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2762 }
2763 
2764 /* Swap in an options header.  */
2765 
2766 void
bfd_mips_elf_swap_options_in(bfd * abfd,const Elf_External_Options * ex,Elf_Internal_Options * in)2767 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2768 			      Elf_Internal_Options *in)
2769 {
2770   in->kind = H_GET_8 (abfd, ex->kind);
2771   in->size = H_GET_8 (abfd, ex->size);
2772   in->section = H_GET_16 (abfd, ex->section);
2773   in->info = H_GET_32 (abfd, ex->info);
2774 }
2775 
2776 /* Swap out an options header.  */
2777 
2778 void
bfd_mips_elf_swap_options_out(bfd * abfd,const Elf_Internal_Options * in,Elf_External_Options * ex)2779 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2780 			       Elf_External_Options *ex)
2781 {
2782   H_PUT_8 (abfd, in->kind, ex->kind);
2783   H_PUT_8 (abfd, in->size, ex->size);
2784   H_PUT_16 (abfd, in->section, ex->section);
2785   H_PUT_32 (abfd, in->info, ex->info);
2786 }
2787 
2788 /* Swap in an abiflags structure.  */
2789 
2790 void
bfd_mips_elf_swap_abiflags_v0_in(bfd * abfd,const Elf_External_ABIFlags_v0 * ex,Elf_Internal_ABIFlags_v0 * in)2791 bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2792 				  const Elf_External_ABIFlags_v0 *ex,
2793 				  Elf_Internal_ABIFlags_v0 *in)
2794 {
2795   in->version = H_GET_16 (abfd, ex->version);
2796   in->isa_level = H_GET_8 (abfd, ex->isa_level);
2797   in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2798   in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2799   in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2800   in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2801   in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2802   in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2803   in->ases = H_GET_32 (abfd, ex->ases);
2804   in->flags1 = H_GET_32 (abfd, ex->flags1);
2805   in->flags2 = H_GET_32 (abfd, ex->flags2);
2806 }
2807 
2808 /* Swap out an abiflags structure.  */
2809 
2810 void
bfd_mips_elf_swap_abiflags_v0_out(bfd * abfd,const Elf_Internal_ABIFlags_v0 * in,Elf_External_ABIFlags_v0 * ex)2811 bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2812 				   const Elf_Internal_ABIFlags_v0 *in,
2813 				   Elf_External_ABIFlags_v0 *ex)
2814 {
2815   H_PUT_16 (abfd, in->version, ex->version);
2816   H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2817   H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2818   H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2819   H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2820   H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2821   H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2822   H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2823   H_PUT_32 (abfd, in->ases, ex->ases);
2824   H_PUT_32 (abfd, in->flags1, ex->flags1);
2825   H_PUT_32 (abfd, in->flags2, ex->flags2);
2826 }
2827 
2828 /* This function is called via qsort() to sort the dynamic relocation
2829    entries by increasing r_symndx value.  */
2830 
2831 static int
sort_dynamic_relocs(const void * arg1,const void * arg2)2832 sort_dynamic_relocs (const void *arg1, const void *arg2)
2833 {
2834   Elf_Internal_Rela int_reloc1;
2835   Elf_Internal_Rela int_reloc2;
2836   int diff;
2837 
2838   bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2839   bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2840 
2841   diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2842   if (diff != 0)
2843     return diff;
2844 
2845   if (int_reloc1.r_offset < int_reloc2.r_offset)
2846     return -1;
2847   if (int_reloc1.r_offset > int_reloc2.r_offset)
2848     return 1;
2849   return 0;
2850 }
2851 
2852 /* Like sort_dynamic_relocs, but used for elf64 relocations.  */
2853 
2854 static int
sort_dynamic_relocs_64(const void * arg1 ATTRIBUTE_UNUSED,const void * arg2 ATTRIBUTE_UNUSED)2855 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2856 			const void *arg2 ATTRIBUTE_UNUSED)
2857 {
2858 #ifdef BFD64
2859   Elf_Internal_Rela int_reloc1[3];
2860   Elf_Internal_Rela int_reloc2[3];
2861 
2862   (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2863     (reldyn_sorting_bfd, arg1, int_reloc1);
2864   (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2865     (reldyn_sorting_bfd, arg2, int_reloc2);
2866 
2867   if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2868     return -1;
2869   if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2870     return 1;
2871 
2872   if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2873     return -1;
2874   if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2875     return 1;
2876   return 0;
2877 #else
2878   abort ();
2879 #endif
2880 }
2881 
2882 
2883 /* This routine is used to write out ECOFF debugging external symbol
2884    information.  It is called via mips_elf_link_hash_traverse.  The
2885    ECOFF external symbol information must match the ELF external
2886    symbol information.  Unfortunately, at this point we don't know
2887    whether a symbol is required by reloc information, so the two
2888    tables may wind up being different.  We must sort out the external
2889    symbol information before we can set the final size of the .mdebug
2890    section, and we must set the size of the .mdebug section before we
2891    can relocate any sections, and we can't know which symbols are
2892    required by relocation until we relocate the sections.
2893    Fortunately, it is relatively unlikely that any symbol will be
2894    stripped but required by a reloc.  In particular, it can not happen
2895    when generating a final executable.  */
2896 
2897 static bool
mips_elf_output_extsym(struct mips_elf_link_hash_entry * h,void * data)2898 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2899 {
2900   struct extsym_info *einfo = data;
2901   bool strip;
2902   asection *sec, *output_section;
2903 
2904   if (h->root.indx == -2)
2905     strip = false;
2906   else if ((h->root.def_dynamic
2907 	    || h->root.ref_dynamic
2908 	    || h->root.type == bfd_link_hash_new)
2909 	   && !h->root.def_regular
2910 	   && !h->root.ref_regular)
2911     strip = true;
2912   else if (einfo->info->strip == strip_all
2913 	   || (einfo->info->strip == strip_some
2914 	       && bfd_hash_lookup (einfo->info->keep_hash,
2915 				   h->root.root.root.string,
2916 				   false, false) == NULL))
2917     strip = true;
2918   else
2919     strip = false;
2920 
2921   if (strip)
2922     return true;
2923 
2924   if (h->esym.ifd == -2)
2925     {
2926       h->esym.jmptbl = 0;
2927       h->esym.cobol_main = 0;
2928       h->esym.weakext = 0;
2929       h->esym.reserved = 0;
2930       h->esym.ifd = ifdNil;
2931       h->esym.asym.value = 0;
2932       h->esym.asym.st = stGlobal;
2933 
2934       if (h->root.root.type == bfd_link_hash_undefined
2935 	  || h->root.root.type == bfd_link_hash_undefweak)
2936 	{
2937 	  const char *name;
2938 
2939 	  /* Use undefined class.  Also, set class and type for some
2940 	     special symbols.  */
2941 	  name = h->root.root.root.string;
2942 	  if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2943 	      || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2944 	    {
2945 	      h->esym.asym.sc = scData;
2946 	      h->esym.asym.st = stLabel;
2947 	      h->esym.asym.value = 0;
2948 	    }
2949 	  else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2950 	    {
2951 	      h->esym.asym.sc = scAbs;
2952 	      h->esym.asym.st = stLabel;
2953 	      h->esym.asym.value =
2954 		mips_elf_hash_table (einfo->info)->procedure_count;
2955 	    }
2956 	  else
2957 	    h->esym.asym.sc = scUndefined;
2958 	}
2959       else if (h->root.root.type != bfd_link_hash_defined
2960 	  && h->root.root.type != bfd_link_hash_defweak)
2961 	h->esym.asym.sc = scAbs;
2962       else
2963 	{
2964 	  const char *name;
2965 
2966 	  sec = h->root.root.u.def.section;
2967 	  output_section = sec->output_section;
2968 
2969 	  /* When making a shared library and symbol h is the one from
2970 	     the another shared library, OUTPUT_SECTION may be null.  */
2971 	  if (output_section == NULL)
2972 	    h->esym.asym.sc = scUndefined;
2973 	  else
2974 	    {
2975 	      name = bfd_section_name (output_section);
2976 
2977 	      if (strcmp (name, ".text") == 0)
2978 		h->esym.asym.sc = scText;
2979 	      else if (strcmp (name, ".data") == 0)
2980 		h->esym.asym.sc = scData;
2981 	      else if (strcmp (name, ".sdata") == 0)
2982 		h->esym.asym.sc = scSData;
2983 	      else if (strcmp (name, ".rodata") == 0
2984 		       || strcmp (name, ".rdata") == 0)
2985 		h->esym.asym.sc = scRData;
2986 	      else if (strcmp (name, ".bss") == 0)
2987 		h->esym.asym.sc = scBss;
2988 	      else if (strcmp (name, ".sbss") == 0)
2989 		h->esym.asym.sc = scSBss;
2990 	      else if (strcmp (name, ".init") == 0)
2991 		h->esym.asym.sc = scInit;
2992 	      else if (strcmp (name, ".fini") == 0)
2993 		h->esym.asym.sc = scFini;
2994 	      else
2995 		h->esym.asym.sc = scAbs;
2996 	    }
2997 	}
2998 
2999       h->esym.asym.reserved = 0;
3000       h->esym.asym.index = indexNil;
3001     }
3002 
3003   if (h->root.root.type == bfd_link_hash_common)
3004     h->esym.asym.value = h->root.root.u.c.size;
3005   else if (h->root.root.type == bfd_link_hash_defined
3006 	   || h->root.root.type == bfd_link_hash_defweak)
3007     {
3008       if (h->esym.asym.sc == scCommon)
3009 	h->esym.asym.sc = scBss;
3010       else if (h->esym.asym.sc == scSCommon)
3011 	h->esym.asym.sc = scSBss;
3012 
3013       sec = h->root.root.u.def.section;
3014       output_section = sec->output_section;
3015       if (output_section != NULL)
3016 	h->esym.asym.value = (h->root.root.u.def.value
3017 			      + sec->output_offset
3018 			      + output_section->vma);
3019       else
3020 	h->esym.asym.value = 0;
3021     }
3022   else
3023     {
3024       struct mips_elf_link_hash_entry *hd = h;
3025 
3026       while (hd->root.root.type == bfd_link_hash_indirect)
3027 	hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
3028 
3029       if (hd->needs_lazy_stub)
3030 	{
3031 	  BFD_ASSERT (hd->root.plt.plist != NULL);
3032 	  BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
3033 	  /* Set type and value for a symbol with a function stub.  */
3034 	  h->esym.asym.st = stProc;
3035 	  sec = hd->root.root.u.def.section;
3036 	  if (sec == NULL)
3037 	    h->esym.asym.value = 0;
3038 	  else
3039 	    {
3040 	      output_section = sec->output_section;
3041 	      if (output_section != NULL)
3042 		h->esym.asym.value = (hd->root.plt.plist->stub_offset
3043 				      + sec->output_offset
3044 				      + output_section->vma);
3045 	      else
3046 		h->esym.asym.value = 0;
3047 	    }
3048 	}
3049     }
3050 
3051   if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
3052 				      h->root.root.root.string,
3053 				      &h->esym))
3054     {
3055       einfo->failed = true;
3056       return false;
3057     }
3058 
3059   return true;
3060 }
3061 
3062 /* A comparison routine used to sort .gptab entries.  */
3063 
3064 static int
gptab_compare(const void * p1,const void * p2)3065 gptab_compare (const void *p1, const void *p2)
3066 {
3067   const Elf32_gptab *a1 = p1;
3068   const Elf32_gptab *a2 = p2;
3069 
3070   return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
3071 }
3072 
3073 /* Functions to manage the got entry hash table.  */
3074 
3075 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
3076    hash number.  */
3077 
3078 static inline hashval_t
mips_elf_hash_bfd_vma(bfd_vma addr)3079 mips_elf_hash_bfd_vma (bfd_vma addr)
3080 {
3081 #ifdef BFD64
3082   return addr + (addr >> 32);
3083 #else
3084   return addr;
3085 #endif
3086 }
3087 
3088 static hashval_t
mips_elf_got_entry_hash(const void * entry_)3089 mips_elf_got_entry_hash (const void *entry_)
3090 {
3091   const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3092 
3093   return (entry->symndx
3094 	  + ((entry->tls_type == GOT_TLS_LDM) << 18)
3095 	  + (entry->tls_type == GOT_TLS_LDM ? 0
3096 	     : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3097 	     : entry->symndx >= 0 ? (entry->abfd->id
3098 				     + mips_elf_hash_bfd_vma (entry->d.addend))
3099 	     : entry->d.h->root.root.root.hash));
3100 }
3101 
3102 static int
mips_elf_got_entry_eq(const void * entry1,const void * entry2)3103 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
3104 {
3105   const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3106   const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3107 
3108   return (e1->symndx == e2->symndx
3109 	  && e1->tls_type == e2->tls_type
3110 	  && (e1->tls_type == GOT_TLS_LDM ? true
3111 	      : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3112 	      : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3113 				   && e1->d.addend == e2->d.addend)
3114 	      : e2->abfd && e1->d.h == e2->d.h));
3115 }
3116 
3117 static hashval_t
mips_got_page_ref_hash(const void * ref_)3118 mips_got_page_ref_hash (const void *ref_)
3119 {
3120   const struct mips_got_page_ref *ref;
3121 
3122   ref = (const struct mips_got_page_ref *) ref_;
3123   return ((ref->symndx >= 0
3124 	   ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3125 	   : ref->u.h->root.root.root.hash)
3126 	  + mips_elf_hash_bfd_vma (ref->addend));
3127 }
3128 
3129 static int
mips_got_page_ref_eq(const void * ref1_,const void * ref2_)3130 mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3131 {
3132   const struct mips_got_page_ref *ref1, *ref2;
3133 
3134   ref1 = (const struct mips_got_page_ref *) ref1_;
3135   ref2 = (const struct mips_got_page_ref *) ref2_;
3136   return (ref1->symndx == ref2->symndx
3137 	  && (ref1->symndx < 0
3138 	      ? ref1->u.h == ref2->u.h
3139 	      : ref1->u.abfd == ref2->u.abfd)
3140 	  && ref1->addend == ref2->addend);
3141 }
3142 
3143 static hashval_t
mips_got_page_entry_hash(const void * entry_)3144 mips_got_page_entry_hash (const void *entry_)
3145 {
3146   const struct mips_got_page_entry *entry;
3147 
3148   entry = (const struct mips_got_page_entry *) entry_;
3149   return entry->sec->id;
3150 }
3151 
3152 static int
mips_got_page_entry_eq(const void * entry1_,const void * entry2_)3153 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3154 {
3155   const struct mips_got_page_entry *entry1, *entry2;
3156 
3157   entry1 = (const struct mips_got_page_entry *) entry1_;
3158   entry2 = (const struct mips_got_page_entry *) entry2_;
3159   return entry1->sec == entry2->sec;
3160 }
3161 
3162 /* Create and return a new mips_got_info structure.  */
3163 
3164 static struct mips_got_info *
mips_elf_create_got_info(bfd * abfd)3165 mips_elf_create_got_info (bfd *abfd)
3166 {
3167   struct mips_got_info *g;
3168 
3169   g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3170   if (g == NULL)
3171     return NULL;
3172 
3173   g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3174 				    mips_elf_got_entry_eq, NULL);
3175   if (g->got_entries == NULL)
3176     return NULL;
3177 
3178   g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3179 				      mips_got_page_ref_eq, NULL);
3180   if (g->got_page_refs == NULL)
3181     return NULL;
3182 
3183   return g;
3184 }
3185 
3186 /* Return the GOT info for input bfd ABFD, trying to create a new one if
3187    CREATE_P and if ABFD doesn't already have a GOT.  */
3188 
3189 static struct mips_got_info *
mips_elf_bfd_got(bfd * abfd,bool create_p)3190 mips_elf_bfd_got (bfd *abfd, bool create_p)
3191 {
3192   struct mips_elf_obj_tdata *tdata;
3193 
3194   if (!is_mips_elf (abfd))
3195     return NULL;
3196 
3197   tdata = mips_elf_tdata (abfd);
3198   if (!tdata->got && create_p)
3199     tdata->got = mips_elf_create_got_info (abfd);
3200   return tdata->got;
3201 }
3202 
3203 /* Record that ABFD should use output GOT G.  */
3204 
3205 static void
mips_elf_replace_bfd_got(bfd * abfd,struct mips_got_info * g)3206 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3207 {
3208   struct mips_elf_obj_tdata *tdata;
3209 
3210   BFD_ASSERT (is_mips_elf (abfd));
3211   tdata = mips_elf_tdata (abfd);
3212   if (tdata->got)
3213     {
3214       /* The GOT structure itself and the hash table entries are
3215 	 allocated to a bfd, but the hash tables aren't.  */
3216       htab_delete (tdata->got->got_entries);
3217       htab_delete (tdata->got->got_page_refs);
3218       if (tdata->got->got_page_entries)
3219 	htab_delete (tdata->got->got_page_entries);
3220     }
3221   tdata->got = g;
3222 }
3223 
3224 /* Return the dynamic relocation section.  If it doesn't exist, try to
3225    create a new it if CREATE_P, otherwise return NULL.  Also return NULL
3226    if creation fails.  */
3227 
3228 static asection *
mips_elf_rel_dyn_section(struct bfd_link_info * info,bool create_p)3229 mips_elf_rel_dyn_section (struct bfd_link_info *info, bool create_p)
3230 {
3231   const char *dname;
3232   asection *sreloc;
3233   bfd *dynobj;
3234 
3235   dname = MIPS_ELF_REL_DYN_NAME (info);
3236   dynobj = elf_hash_table (info)->dynobj;
3237   sreloc = bfd_get_linker_section (dynobj, dname);
3238   if (sreloc == NULL && create_p)
3239     {
3240       sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3241 						   (SEC_ALLOC
3242 						    | SEC_LOAD
3243 						    | SEC_HAS_CONTENTS
3244 						    | SEC_IN_MEMORY
3245 						    | SEC_LINKER_CREATED
3246 						    | SEC_READONLY));
3247       if (sreloc == NULL
3248 	  || !bfd_set_section_alignment (sreloc,
3249 					 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
3250 	return NULL;
3251     }
3252   return sreloc;
3253 }
3254 
3255 /* Return the GOT_TLS_* type required by relocation type R_TYPE.  */
3256 
3257 static int
mips_elf_reloc_tls_type(unsigned int r_type)3258 mips_elf_reloc_tls_type (unsigned int r_type)
3259 {
3260   if (tls_gd_reloc_p (r_type))
3261     return GOT_TLS_GD;
3262 
3263   if (tls_ldm_reloc_p (r_type))
3264     return GOT_TLS_LDM;
3265 
3266   if (tls_gottprel_reloc_p (r_type))
3267     return GOT_TLS_IE;
3268 
3269   return GOT_TLS_NONE;
3270 }
3271 
3272 /* Return the number of GOT slots needed for GOT TLS type TYPE.  */
3273 
3274 static int
mips_tls_got_entries(unsigned int type)3275 mips_tls_got_entries (unsigned int type)
3276 {
3277   switch (type)
3278     {
3279     case GOT_TLS_GD:
3280     case GOT_TLS_LDM:
3281       return 2;
3282 
3283     case GOT_TLS_IE:
3284       return 1;
3285 
3286     case GOT_TLS_NONE:
3287       return 0;
3288     }
3289   abort ();
3290 }
3291 
3292 /* Count the number of relocations needed for a TLS GOT entry, with
3293    access types from TLS_TYPE, and symbol H (or a local symbol if H
3294    is NULL).  */
3295 
3296 static int
mips_tls_got_relocs(struct bfd_link_info * info,unsigned char tls_type,struct elf_link_hash_entry * h)3297 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3298 		     struct elf_link_hash_entry *h)
3299 {
3300   int indx = 0;
3301   bool need_relocs = false;
3302   bool dyn = elf_hash_table (info)->dynamic_sections_created;
3303 
3304   if (h != NULL
3305       && h->dynindx != -1
3306       && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3307       && (bfd_link_dll (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
3308     indx = h->dynindx;
3309 
3310   if ((bfd_link_dll (info) || indx != 0)
3311       && (h == NULL
3312 	  || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3313 	  || h->root.type != bfd_link_hash_undefweak))
3314     need_relocs = true;
3315 
3316   if (!need_relocs)
3317     return 0;
3318 
3319   switch (tls_type)
3320     {
3321     case GOT_TLS_GD:
3322       return indx != 0 ? 2 : 1;
3323 
3324     case GOT_TLS_IE:
3325       return 1;
3326 
3327     case GOT_TLS_LDM:
3328       return bfd_link_dll (info) ? 1 : 0;
3329 
3330     default:
3331       return 0;
3332     }
3333 }
3334 
3335 /* Add the number of GOT entries and TLS relocations required by ENTRY
3336    to G.  */
3337 
3338 static void
mips_elf_count_got_entry(struct bfd_link_info * info,struct mips_got_info * g,struct mips_got_entry * entry)3339 mips_elf_count_got_entry (struct bfd_link_info *info,
3340 			  struct mips_got_info *g,
3341 			  struct mips_got_entry *entry)
3342 {
3343   if (entry->tls_type)
3344     {
3345       g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3346       g->relocs += mips_tls_got_relocs (info, entry->tls_type,
3347 					entry->symndx < 0
3348 					? &entry->d.h->root : NULL);
3349     }
3350   else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3351     g->local_gotno += 1;
3352   else
3353     g->global_gotno += 1;
3354 }
3355 
3356 /* Output a simple dynamic relocation into SRELOC.  */
3357 
3358 static void
mips_elf_output_dynamic_relocation(bfd * output_bfd,asection * sreloc,unsigned long reloc_index,unsigned long indx,int r_type,bfd_vma offset)3359 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3360 				    asection *sreloc,
3361 				    unsigned long reloc_index,
3362 				    unsigned long indx,
3363 				    int r_type,
3364 				    bfd_vma offset)
3365 {
3366   Elf_Internal_Rela rel[3];
3367 
3368   memset (rel, 0, sizeof (rel));
3369 
3370   rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3371   rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3372 
3373   if (ABI_64_P (output_bfd))
3374     {
3375       (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3376 	(output_bfd, &rel[0],
3377 	 (sreloc->contents
3378 	  + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3379     }
3380   else
3381     bfd_elf32_swap_reloc_out
3382       (output_bfd, &rel[0],
3383        (sreloc->contents
3384 	+ reloc_index * sizeof (Elf32_External_Rel)));
3385 }
3386 
3387 /* Initialize a set of TLS GOT entries for one symbol.  */
3388 
3389 static void
mips_elf_initialize_tls_slots(bfd * abfd,struct bfd_link_info * info,struct mips_got_entry * entry,struct mips_elf_link_hash_entry * h,bfd_vma value)3390 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3391 			       struct mips_got_entry *entry,
3392 			       struct mips_elf_link_hash_entry *h,
3393 			       bfd_vma value)
3394 {
3395   bool dyn = elf_hash_table (info)->dynamic_sections_created;
3396   struct mips_elf_link_hash_table *htab;
3397   int indx;
3398   asection *sreloc, *sgot;
3399   bfd_vma got_offset, got_offset2;
3400   bool need_relocs = false;
3401 
3402   htab = mips_elf_hash_table (info);
3403   if (htab == NULL)
3404     return;
3405 
3406   sgot = htab->root.sgot;
3407 
3408   indx = 0;
3409   if (h != NULL
3410       && h->root.dynindx != -1
3411       && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), &h->root)
3412       && (bfd_link_dll (info) || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3413     indx = h->root.dynindx;
3414 
3415   if (entry->tls_initialized)
3416     return;
3417 
3418   if ((bfd_link_dll (info) || indx != 0)
3419       && (h == NULL
3420 	  || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3421 	  || h->root.type != bfd_link_hash_undefweak))
3422     need_relocs = true;
3423 
3424   /* MINUS_ONE means the symbol is not defined in this object.  It may not
3425      be defined at all; assume that the value doesn't matter in that
3426      case.  Otherwise complain if we would use the value.  */
3427   BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3428 	      || h->root.root.type == bfd_link_hash_undefweak);
3429 
3430   /* Emit necessary relocations.  */
3431   sreloc = mips_elf_rel_dyn_section (info, false);
3432   got_offset = entry->gotidx;
3433 
3434   switch (entry->tls_type)
3435     {
3436     case GOT_TLS_GD:
3437       /* General Dynamic.  */
3438       got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3439 
3440       if (need_relocs)
3441 	{
3442 	  mips_elf_output_dynamic_relocation
3443 	    (abfd, sreloc, sreloc->reloc_count++, indx,
3444 	     ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3445 	     sgot->output_offset + sgot->output_section->vma + got_offset);
3446 
3447 	  if (indx)
3448 	    mips_elf_output_dynamic_relocation
3449 	      (abfd, sreloc, sreloc->reloc_count++, indx,
3450 	       ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3451 	       sgot->output_offset + sgot->output_section->vma + got_offset2);
3452 	  else
3453 	    MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3454 			       sgot->contents + got_offset2);
3455 	}
3456       else
3457 	{
3458 	  MIPS_ELF_PUT_WORD (abfd, 1,
3459 			     sgot->contents + got_offset);
3460 	  MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3461 			     sgot->contents + got_offset2);
3462 	}
3463       break;
3464 
3465     case GOT_TLS_IE:
3466       /* Initial Exec model.  */
3467       if (need_relocs)
3468 	{
3469 	  if (indx == 0)
3470 	    MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3471 			       sgot->contents + got_offset);
3472 	  else
3473 	    MIPS_ELF_PUT_WORD (abfd, 0,
3474 			       sgot->contents + got_offset);
3475 
3476 	  mips_elf_output_dynamic_relocation
3477 	    (abfd, sreloc, sreloc->reloc_count++, indx,
3478 	     ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3479 	     sgot->output_offset + sgot->output_section->vma + got_offset);
3480 	}
3481       else
3482 	MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3483 			   sgot->contents + got_offset);
3484       break;
3485 
3486     case GOT_TLS_LDM:
3487       /* The initial offset is zero, and the LD offsets will include the
3488 	 bias by DTP_OFFSET.  */
3489       MIPS_ELF_PUT_WORD (abfd, 0,
3490 			 sgot->contents + got_offset
3491 			 + MIPS_ELF_GOT_SIZE (abfd));
3492 
3493       if (!bfd_link_dll (info))
3494 	MIPS_ELF_PUT_WORD (abfd, 1,
3495 			   sgot->contents + got_offset);
3496       else
3497 	mips_elf_output_dynamic_relocation
3498 	  (abfd, sreloc, sreloc->reloc_count++, indx,
3499 	   ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3500 	   sgot->output_offset + sgot->output_section->vma + got_offset);
3501       break;
3502 
3503     default:
3504       abort ();
3505     }
3506 
3507   entry->tls_initialized = true;
3508 }
3509 
3510 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3511    for global symbol H.  .got.plt comes before the GOT, so the offset
3512    will be negative.  */
3513 
3514 static bfd_vma
mips_elf_gotplt_index(struct bfd_link_info * info,struct elf_link_hash_entry * h)3515 mips_elf_gotplt_index (struct bfd_link_info *info,
3516 		       struct elf_link_hash_entry *h)
3517 {
3518   bfd_vma got_address, got_value;
3519   struct mips_elf_link_hash_table *htab;
3520 
3521   htab = mips_elf_hash_table (info);
3522   BFD_ASSERT (htab != NULL);
3523 
3524   BFD_ASSERT (h->plt.plist != NULL);
3525   BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
3526 
3527   /* Calculate the address of the associated .got.plt entry.  */
3528   got_address = (htab->root.sgotplt->output_section->vma
3529 		 + htab->root.sgotplt->output_offset
3530 		 + (h->plt.plist->gotplt_index
3531 		    * MIPS_ELF_GOT_SIZE (info->output_bfd)));
3532 
3533   /* Calculate the value of _GLOBAL_OFFSET_TABLE_.  */
3534   got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3535 	       + htab->root.hgot->root.u.def.section->output_offset
3536 	       + htab->root.hgot->root.u.def.value);
3537 
3538   return got_address - got_value;
3539 }
3540 
3541 /* Return the GOT offset for address VALUE.   If there is not yet a GOT
3542    entry for this value, create one.  If R_SYMNDX refers to a TLS symbol,
3543    create a TLS GOT entry instead.  Return -1 if no satisfactory GOT
3544    offset can be found.  */
3545 
3546 static bfd_vma
mips_elf_local_got_index(bfd * abfd,bfd * ibfd,struct bfd_link_info * info,bfd_vma value,unsigned long r_symndx,struct mips_elf_link_hash_entry * h,int r_type)3547 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3548 			  bfd_vma value, unsigned long r_symndx,
3549 			  struct mips_elf_link_hash_entry *h, int r_type)
3550 {
3551   struct mips_elf_link_hash_table *htab;
3552   struct mips_got_entry *entry;
3553 
3554   htab = mips_elf_hash_table (info);
3555   BFD_ASSERT (htab != NULL);
3556 
3557   entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3558 					   r_symndx, h, r_type);
3559   if (!entry)
3560     return MINUS_ONE;
3561 
3562   if (entry->tls_type)
3563     mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3564   return entry->gotidx;
3565 }
3566 
3567 /* Return the GOT index of global symbol H in the primary GOT.  */
3568 
3569 static bfd_vma
mips_elf_primary_global_got_index(bfd * obfd,struct bfd_link_info * info,struct elf_link_hash_entry * h)3570 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3571 				   struct elf_link_hash_entry *h)
3572 {
3573   struct mips_elf_link_hash_table *htab;
3574   long global_got_dynindx;
3575   struct mips_got_info *g;
3576   bfd_vma got_index;
3577 
3578   htab = mips_elf_hash_table (info);
3579   BFD_ASSERT (htab != NULL);
3580 
3581   global_got_dynindx = 0;
3582   if (htab->global_gotsym != NULL)
3583     global_got_dynindx = htab->global_gotsym->dynindx;
3584 
3585   /* Once we determine the global GOT entry with the lowest dynamic
3586      symbol table index, we must put all dynamic symbols with greater
3587      indices into the primary GOT.  That makes it easy to calculate the
3588      GOT offset.  */
3589   BFD_ASSERT (h->dynindx >= global_got_dynindx);
3590   g = mips_elf_bfd_got (obfd, false);
3591   got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3592 	       * MIPS_ELF_GOT_SIZE (obfd));
3593   BFD_ASSERT (got_index < htab->root.sgot->size);
3594 
3595   return got_index;
3596 }
3597 
3598 /* Return the GOT index for the global symbol indicated by H, which is
3599    referenced by a relocation of type R_TYPE in IBFD.  */
3600 
3601 static bfd_vma
mips_elf_global_got_index(bfd * obfd,struct bfd_link_info * info,bfd * ibfd,struct elf_link_hash_entry * h,int r_type)3602 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3603 			   struct elf_link_hash_entry *h, int r_type)
3604 {
3605   struct mips_elf_link_hash_table *htab;
3606   struct mips_got_info *g;
3607   struct mips_got_entry lookup, *entry;
3608   bfd_vma gotidx;
3609 
3610   htab = mips_elf_hash_table (info);
3611   BFD_ASSERT (htab != NULL);
3612 
3613   g = mips_elf_bfd_got (ibfd, false);
3614   BFD_ASSERT (g);
3615 
3616   lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3617   if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, false))
3618     return mips_elf_primary_global_got_index (obfd, info, h);
3619 
3620   lookup.abfd = ibfd;
3621   lookup.symndx = -1;
3622   lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3623   entry = htab_find (g->got_entries, &lookup);
3624   BFD_ASSERT (entry);
3625 
3626   gotidx = entry->gotidx;
3627   BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3628 
3629   if (lookup.tls_type)
3630     {
3631       bfd_vma value = MINUS_ONE;
3632 
3633       if ((h->root.type == bfd_link_hash_defined
3634 	   || h->root.type == bfd_link_hash_defweak)
3635 	  && h->root.u.def.section->output_section)
3636 	value = (h->root.u.def.value
3637 		 + h->root.u.def.section->output_offset
3638 		 + h->root.u.def.section->output_section->vma);
3639 
3640       mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3641     }
3642   return gotidx;
3643 }
3644 
3645 /* Find a GOT page entry that points to within 32KB of VALUE.  These
3646    entries are supposed to be placed at small offsets in the GOT, i.e.,
3647    within 32KB of GP.  Return the index of the GOT entry, or -1 if no
3648    entry could be created.  If OFFSETP is nonnull, use it to return the
3649    offset of the GOT entry from VALUE.  */
3650 
3651 static bfd_vma
mips_elf_got_page(bfd * abfd,bfd * ibfd,struct bfd_link_info * info,bfd_vma value,bfd_vma * offsetp)3652 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3653 		   bfd_vma value, bfd_vma *offsetp)
3654 {
3655   bfd_vma page, got_index;
3656   struct mips_got_entry *entry;
3657 
3658   page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3659   entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3660 					   NULL, R_MIPS_GOT_PAGE);
3661 
3662   if (!entry)
3663     return MINUS_ONE;
3664 
3665   got_index = entry->gotidx;
3666 
3667   if (offsetp)
3668     *offsetp = value - entry->d.address;
3669 
3670   return got_index;
3671 }
3672 
3673 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3674    EXTERNAL is true if the relocation was originally against a global
3675    symbol that binds locally.  */
3676 
3677 static bfd_vma
mips_elf_got16_entry(bfd * abfd,bfd * ibfd,struct bfd_link_info * info,bfd_vma value,bool external)3678 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3679 		      bfd_vma value, bool external)
3680 {
3681   struct mips_got_entry *entry;
3682 
3683   /* GOT16 relocations against local symbols are followed by a LO16
3684      relocation; those against global symbols are not.  Thus if the
3685      symbol was originally local, the GOT16 relocation should load the
3686      equivalent of %hi(VALUE), otherwise it should load VALUE itself.  */
3687   if (! external)
3688     value = mips_elf_high (value) << 16;
3689 
3690   /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3691      R_MIPS16_GOT16, R_MIPS_CALL16, etc.  The format of the entry is the
3692      same in all cases.  */
3693   entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3694 					   NULL, R_MIPS_GOT16);
3695   if (entry)
3696     return entry->gotidx;
3697   else
3698     return MINUS_ONE;
3699 }
3700 
3701 /* Returns the offset for the entry at the INDEXth position
3702    in the GOT.  */
3703 
3704 static bfd_vma
mips_elf_got_offset_from_index(struct bfd_link_info * info,bfd * output_bfd,bfd * input_bfd,bfd_vma got_index)3705 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3706 				bfd *input_bfd, bfd_vma got_index)
3707 {
3708   struct mips_elf_link_hash_table *htab;
3709   asection *sgot;
3710   bfd_vma gp;
3711 
3712   htab = mips_elf_hash_table (info);
3713   BFD_ASSERT (htab != NULL);
3714 
3715   sgot = htab->root.sgot;
3716   gp = _bfd_get_gp_value (output_bfd)
3717     + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3718 
3719   return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3720 }
3721 
3722 /* Create and return a local GOT entry for VALUE, which was calculated
3723    from a symbol belonging to INPUT_SECTON.  Return NULL if it could not
3724    be created.  If R_SYMNDX refers to a TLS symbol, create a TLS entry
3725    instead.  */
3726 
3727 static struct mips_got_entry *
mips_elf_create_local_got_entry(bfd * abfd,struct bfd_link_info * info,bfd * ibfd,bfd_vma value,unsigned long r_symndx,struct mips_elf_link_hash_entry * h,int r_type)3728 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3729 				 bfd *ibfd, bfd_vma value,
3730 				 unsigned long r_symndx,
3731 				 struct mips_elf_link_hash_entry *h,
3732 				 int r_type)
3733 {
3734   struct mips_got_entry lookup, *entry;
3735   void **loc;
3736   struct mips_got_info *g;
3737   struct mips_elf_link_hash_table *htab;
3738   bfd_vma gotidx;
3739 
3740   htab = mips_elf_hash_table (info);
3741   BFD_ASSERT (htab != NULL);
3742 
3743   g = mips_elf_bfd_got (ibfd, false);
3744   if (g == NULL)
3745     {
3746       g = mips_elf_bfd_got (abfd, false);
3747       BFD_ASSERT (g != NULL);
3748     }
3749 
3750   /* This function shouldn't be called for symbols that live in the global
3751      area of the GOT.  */
3752   BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3753 
3754   lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3755   if (lookup.tls_type)
3756     {
3757       lookup.abfd = ibfd;
3758       if (tls_ldm_reloc_p (r_type))
3759 	{
3760 	  lookup.symndx = 0;
3761 	  lookup.d.addend = 0;
3762 	}
3763       else if (h == NULL)
3764 	{
3765 	  lookup.symndx = r_symndx;
3766 	  lookup.d.addend = 0;
3767 	}
3768       else
3769 	{
3770 	  lookup.symndx = -1;
3771 	  lookup.d.h = h;
3772 	}
3773 
3774       entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3775       BFD_ASSERT (entry);
3776 
3777       gotidx = entry->gotidx;
3778       BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3779 
3780       return entry;
3781     }
3782 
3783   lookup.abfd = NULL;
3784   lookup.symndx = -1;
3785   lookup.d.address = value;
3786   loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3787   if (!loc)
3788     return NULL;
3789 
3790   entry = (struct mips_got_entry *) *loc;
3791   if (entry)
3792     return entry;
3793 
3794   if (g->assigned_low_gotno > g->assigned_high_gotno)
3795     {
3796       /* We didn't allocate enough space in the GOT.  */
3797       _bfd_error_handler
3798 	(_("not enough GOT space for local GOT entries"));
3799       bfd_set_error (bfd_error_bad_value);
3800       return NULL;
3801     }
3802 
3803   entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3804   if (!entry)
3805     return NULL;
3806 
3807   if (got16_reloc_p (r_type)
3808       || call16_reloc_p (r_type)
3809       || got_page_reloc_p (r_type)
3810       || got_disp_reloc_p (r_type))
3811     lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3812   else
3813     lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3814 
3815   *entry = lookup;
3816   *loc = entry;
3817 
3818   MIPS_ELF_PUT_WORD (abfd, value, htab->root.sgot->contents + entry->gotidx);
3819 
3820   /* These GOT entries need a dynamic relocation on VxWorks.  */
3821   if (htab->root.target_os == is_vxworks)
3822     {
3823       Elf_Internal_Rela outrel;
3824       asection *s;
3825       bfd_byte *rloc;
3826       bfd_vma got_address;
3827 
3828       s = mips_elf_rel_dyn_section (info, false);
3829       got_address = (htab->root.sgot->output_section->vma
3830 		     + htab->root.sgot->output_offset
3831 		     + entry->gotidx);
3832 
3833       rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3834       outrel.r_offset = got_address;
3835       outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3836       outrel.r_addend = value;
3837       bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3838     }
3839 
3840   return entry;
3841 }
3842 
3843 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3844    The number might be exact or a worst-case estimate, depending on how
3845    much information is available to elf_backend_omit_section_dynsym at
3846    the current linking stage.  */
3847 
3848 static bfd_size_type
count_section_dynsyms(bfd * output_bfd,struct bfd_link_info * info)3849 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3850 {
3851   bfd_size_type count;
3852 
3853   count = 0;
3854   if (bfd_link_pic (info)
3855       || elf_hash_table (info)->is_relocatable_executable)
3856     {
3857       asection *p;
3858       const struct elf_backend_data *bed;
3859 
3860       bed = get_elf_backend_data (output_bfd);
3861       for (p = output_bfd->sections; p ; p = p->next)
3862 	if ((p->flags & SEC_EXCLUDE) == 0
3863 	    && (p->flags & SEC_ALLOC) != 0
3864 	    && elf_hash_table (info)->dynamic_relocs
3865 	    && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3866 	  ++count;
3867     }
3868   return count;
3869 }
3870 
3871 /* Sort the dynamic symbol table so that symbols that need GOT entries
3872    appear towards the end.  */
3873 
3874 static bool
mips_elf_sort_hash_table(bfd * abfd,struct bfd_link_info * info)3875 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3876 {
3877   struct mips_elf_link_hash_table *htab;
3878   struct mips_elf_hash_sort_data hsd;
3879   struct mips_got_info *g;
3880 
3881   htab = mips_elf_hash_table (info);
3882   BFD_ASSERT (htab != NULL);
3883 
3884   if (htab->root.dynsymcount == 0)
3885     return true;
3886 
3887   g = htab->got_info;
3888   if (g == NULL)
3889     return true;
3890 
3891   hsd.low = NULL;
3892   hsd.max_unref_got_dynindx
3893     = hsd.min_got_dynindx
3894     = (htab->root.dynsymcount - g->reloc_only_gotno);
3895   /* Add 1 to local symbol indices to account for the mandatory NULL entry
3896      at the head of the table; see `_bfd_elf_link_renumber_dynsyms'.  */
3897   hsd.max_local_dynindx = count_section_dynsyms (abfd, info) + 1;
3898   hsd.max_non_got_dynindx = htab->root.local_dynsymcount + 1;
3899   hsd.output_bfd = abfd;
3900   if (htab->root.dynobj != NULL
3901       && htab->root.dynamic_sections_created
3902       && info->emit_gnu_hash)
3903     {
3904       asection *s = bfd_get_linker_section (htab->root.dynobj, ".MIPS.xhash");
3905       BFD_ASSERT (s != NULL);
3906       hsd.mipsxhash = s->contents;
3907       BFD_ASSERT (hsd.mipsxhash != NULL);
3908     }
3909   else
3910     hsd.mipsxhash = NULL;
3911   mips_elf_link_hash_traverse (htab, mips_elf_sort_hash_table_f, &hsd);
3912 
3913   /* There should have been enough room in the symbol table to
3914      accommodate both the GOT and non-GOT symbols.  */
3915   BFD_ASSERT (hsd.max_local_dynindx <= htab->root.local_dynsymcount + 1);
3916   BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3917   BFD_ASSERT (hsd.max_unref_got_dynindx == htab->root.dynsymcount);
3918   BFD_ASSERT (htab->root.dynsymcount - hsd.min_got_dynindx == g->global_gotno);
3919 
3920   /* Now we know which dynamic symbol has the lowest dynamic symbol
3921      table index in the GOT.  */
3922   htab->global_gotsym = hsd.low;
3923 
3924   return true;
3925 }
3926 
3927 /* If H needs a GOT entry, assign it the highest available dynamic
3928    index.  Otherwise, assign it the lowest available dynamic
3929    index.  */
3930 
3931 static bool
mips_elf_sort_hash_table_f(struct mips_elf_link_hash_entry * h,void * data)3932 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3933 {
3934   struct mips_elf_hash_sort_data *hsd = data;
3935 
3936   /* Symbols without dynamic symbol table entries aren't interesting
3937      at all.  */
3938   if (h->root.dynindx == -1)
3939     return true;
3940 
3941   switch (h->global_got_area)
3942     {
3943     case GGA_NONE:
3944       if (h->root.forced_local)
3945 	h->root.dynindx = hsd->max_local_dynindx++;
3946       else
3947 	h->root.dynindx = hsd->max_non_got_dynindx++;
3948       break;
3949 
3950     case GGA_NORMAL:
3951       h->root.dynindx = --hsd->min_got_dynindx;
3952       hsd->low = (struct elf_link_hash_entry *) h;
3953       break;
3954 
3955     case GGA_RELOC_ONLY:
3956       if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3957 	hsd->low = (struct elf_link_hash_entry *) h;
3958       h->root.dynindx = hsd->max_unref_got_dynindx++;
3959       break;
3960     }
3961 
3962   /* Populate the .MIPS.xhash translation table entry with
3963      the symbol dynindx.  */
3964   if (h->mipsxhash_loc != 0 && hsd->mipsxhash != NULL)
3965     bfd_put_32 (hsd->output_bfd, h->root.dynindx,
3966 		hsd->mipsxhash + h->mipsxhash_loc);
3967 
3968   return true;
3969 }
3970 
3971 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3972    (which is owned by the caller and shouldn't be added to the
3973    hash table directly).  */
3974 
3975 static bool
mips_elf_record_got_entry(struct bfd_link_info * info,bfd * abfd,struct mips_got_entry * lookup)3976 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3977 			   struct mips_got_entry *lookup)
3978 {
3979   struct mips_elf_link_hash_table *htab;
3980   struct mips_got_entry *entry;
3981   struct mips_got_info *g;
3982   void **loc, **bfd_loc;
3983 
3984   /* Make sure there's a slot for this entry in the master GOT.  */
3985   htab = mips_elf_hash_table (info);
3986   g = htab->got_info;
3987   loc = htab_find_slot (g->got_entries, lookup, INSERT);
3988   if (!loc)
3989     return false;
3990 
3991   /* Populate the entry if it isn't already.  */
3992   entry = (struct mips_got_entry *) *loc;
3993   if (!entry)
3994     {
3995       entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3996       if (!entry)
3997 	return false;
3998 
3999       lookup->tls_initialized = false;
4000       lookup->gotidx = -1;
4001       *entry = *lookup;
4002       *loc = entry;
4003     }
4004 
4005   /* Reuse the same GOT entry for the BFD's GOT.  */
4006   g = mips_elf_bfd_got (abfd, true);
4007   if (!g)
4008     return false;
4009 
4010   bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
4011   if (!bfd_loc)
4012     return false;
4013 
4014   if (!*bfd_loc)
4015     *bfd_loc = entry;
4016   return true;
4017 }
4018 
4019 /* ABFD has a GOT relocation of type R_TYPE against H.  Reserve a GOT
4020    entry for it.  FOR_CALL is true if the caller is only interested in
4021    using the GOT entry for calls.  */
4022 
4023 static bool
mips_elf_record_global_got_symbol(struct elf_link_hash_entry * h,bfd * abfd,struct bfd_link_info * info,bool for_call,int r_type)4024 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
4025 				   bfd *abfd, struct bfd_link_info *info,
4026 				   bool for_call, int r_type)
4027 {
4028   struct mips_elf_link_hash_table *htab;
4029   struct mips_elf_link_hash_entry *hmips;
4030   struct mips_got_entry entry;
4031   unsigned char tls_type;
4032 
4033   htab = mips_elf_hash_table (info);
4034   BFD_ASSERT (htab != NULL);
4035 
4036   hmips = (struct mips_elf_link_hash_entry *) h;
4037   if (!for_call)
4038     hmips->got_only_for_calls = false;
4039 
4040   /* A global symbol in the GOT must also be in the dynamic symbol
4041      table.  */
4042   if (h->dynindx == -1)
4043     {
4044       switch (ELF_ST_VISIBILITY (h->other))
4045 	{
4046 	case STV_INTERNAL:
4047 	case STV_HIDDEN:
4048 	  _bfd_mips_elf_hide_symbol (info, h, true);
4049 	  break;
4050 	}
4051       if (!bfd_elf_link_record_dynamic_symbol (info, h))
4052 	return false;
4053     }
4054 
4055   tls_type = mips_elf_reloc_tls_type (r_type);
4056   if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
4057     hmips->global_got_area = GGA_NORMAL;
4058 
4059   entry.abfd = abfd;
4060   entry.symndx = -1;
4061   entry.d.h = (struct mips_elf_link_hash_entry *) h;
4062   entry.tls_type = tls_type;
4063   return mips_elf_record_got_entry (info, abfd, &entry);
4064 }
4065 
4066 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
4067    where SYMNDX is a local symbol.  Reserve a GOT entry for it.  */
4068 
4069 static bool
mips_elf_record_local_got_symbol(bfd * abfd,long symndx,bfd_vma addend,struct bfd_link_info * info,int r_type)4070 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
4071 				  struct bfd_link_info *info, int r_type)
4072 {
4073   struct mips_elf_link_hash_table *htab;
4074   struct mips_got_info *g;
4075   struct mips_got_entry entry;
4076 
4077   htab = mips_elf_hash_table (info);
4078   BFD_ASSERT (htab != NULL);
4079 
4080   g = htab->got_info;
4081   BFD_ASSERT (g != NULL);
4082 
4083   entry.abfd = abfd;
4084   entry.symndx = symndx;
4085   entry.d.addend = addend;
4086   entry.tls_type = mips_elf_reloc_tls_type (r_type);
4087   return mips_elf_record_got_entry (info, abfd, &entry);
4088 }
4089 
4090 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
4091    H is the symbol's hash table entry, or null if SYMNDX is local
4092    to ABFD.  */
4093 
4094 static bool
mips_elf_record_got_page_ref(struct bfd_link_info * info,bfd * abfd,long symndx,struct elf_link_hash_entry * h,bfd_signed_vma addend)4095 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
4096 			      long symndx, struct elf_link_hash_entry *h,
4097 			      bfd_signed_vma addend)
4098 {
4099   struct mips_elf_link_hash_table *htab;
4100   struct mips_got_info *g1, *g2;
4101   struct mips_got_page_ref lookup, *entry;
4102   void **loc, **bfd_loc;
4103 
4104   htab = mips_elf_hash_table (info);
4105   BFD_ASSERT (htab != NULL);
4106 
4107   g1 = htab->got_info;
4108   BFD_ASSERT (g1 != NULL);
4109 
4110   if (h)
4111     {
4112       lookup.symndx = -1;
4113       lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4114     }
4115   else
4116     {
4117       lookup.symndx = symndx;
4118       lookup.u.abfd = abfd;
4119     }
4120   lookup.addend = addend;
4121   loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
4122   if (loc == NULL)
4123     return false;
4124 
4125   entry = (struct mips_got_page_ref *) *loc;
4126   if (!entry)
4127     {
4128       entry = bfd_alloc (abfd, sizeof (*entry));
4129       if (!entry)
4130 	return false;
4131 
4132       *entry = lookup;
4133       *loc = entry;
4134     }
4135 
4136   /* Add the same entry to the BFD's GOT.  */
4137   g2 = mips_elf_bfd_got (abfd, true);
4138   if (!g2)
4139     return false;
4140 
4141   bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
4142   if (!bfd_loc)
4143     return false;
4144 
4145   if (!*bfd_loc)
4146     *bfd_loc = entry;
4147 
4148   return true;
4149 }
4150 
4151 /* Add room for N relocations to the .rel(a).dyn section in ABFD.  */
4152 
4153 static void
mips_elf_allocate_dynamic_relocations(bfd * abfd,struct bfd_link_info * info,unsigned int n)4154 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4155 				       unsigned int n)
4156 {
4157   asection *s;
4158   struct mips_elf_link_hash_table *htab;
4159 
4160   htab = mips_elf_hash_table (info);
4161   BFD_ASSERT (htab != NULL);
4162 
4163   s = mips_elf_rel_dyn_section (info, false);
4164   BFD_ASSERT (s != NULL);
4165 
4166   if (htab->root.target_os == is_vxworks)
4167     s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4168   else
4169     {
4170       if (s->size == 0)
4171 	{
4172 	  /* Make room for a null element.  */
4173 	  s->size += MIPS_ELF_REL_SIZE (abfd);
4174 	  ++s->reloc_count;
4175 	}
4176       s->size += n * MIPS_ELF_REL_SIZE (abfd);
4177     }
4178 }
4179 
4180 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4181    mips_elf_traverse_got_arg structure.  Count the number of GOT
4182    entries and TLS relocs.  Set DATA->value to true if we need
4183    to resolve indirect or warning symbols and then recreate the GOT.  */
4184 
4185 static int
mips_elf_check_recreate_got(void ** entryp,void * data)4186 mips_elf_check_recreate_got (void **entryp, void *data)
4187 {
4188   struct mips_got_entry *entry;
4189   struct mips_elf_traverse_got_arg *arg;
4190 
4191   entry = (struct mips_got_entry *) *entryp;
4192   arg = (struct mips_elf_traverse_got_arg *) data;
4193   if (entry->abfd != NULL && entry->symndx == -1)
4194     {
4195       struct mips_elf_link_hash_entry *h;
4196 
4197       h = entry->d.h;
4198       if (h->root.root.type == bfd_link_hash_indirect
4199 	  || h->root.root.type == bfd_link_hash_warning)
4200 	{
4201 	  arg->value = true;
4202 	  return 0;
4203 	}
4204     }
4205   mips_elf_count_got_entry (arg->info, arg->g, entry);
4206   return 1;
4207 }
4208 
4209 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4210    mips_elf_traverse_got_arg structure.  Add all entries to DATA->g,
4211    converting entries for indirect and warning symbols into entries
4212    for the target symbol.  Set DATA->g to null on error.  */
4213 
4214 static int
mips_elf_recreate_got(void ** entryp,void * data)4215 mips_elf_recreate_got (void **entryp, void *data)
4216 {
4217   struct mips_got_entry new_entry, *entry;
4218   struct mips_elf_traverse_got_arg *arg;
4219   void **slot;
4220 
4221   entry = (struct mips_got_entry *) *entryp;
4222   arg = (struct mips_elf_traverse_got_arg *) data;
4223   if (entry->abfd != NULL
4224       && entry->symndx == -1
4225       && (entry->d.h->root.root.type == bfd_link_hash_indirect
4226 	  || entry->d.h->root.root.type == bfd_link_hash_warning))
4227     {
4228       struct mips_elf_link_hash_entry *h;
4229 
4230       new_entry = *entry;
4231       entry = &new_entry;
4232       h = entry->d.h;
4233       do
4234 	{
4235 	  BFD_ASSERT (h->global_got_area == GGA_NONE);
4236 	  h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4237 	}
4238       while (h->root.root.type == bfd_link_hash_indirect
4239 	     || h->root.root.type == bfd_link_hash_warning);
4240       entry->d.h = h;
4241     }
4242   slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4243   if (slot == NULL)
4244     {
4245       arg->g = NULL;
4246       return 0;
4247     }
4248   if (*slot == NULL)
4249     {
4250       if (entry == &new_entry)
4251 	{
4252 	  entry = bfd_alloc (entry->abfd, sizeof (*entry));
4253 	  if (!entry)
4254 	    {
4255 	      arg->g = NULL;
4256 	      return 0;
4257 	    }
4258 	  *entry = new_entry;
4259 	}
4260       *slot = entry;
4261       mips_elf_count_got_entry (arg->info, arg->g, entry);
4262     }
4263   return 1;
4264 }
4265 
4266 /* Return the maximum number of GOT page entries required for RANGE.  */
4267 
4268 static bfd_vma
mips_elf_pages_for_range(const struct mips_got_page_range * range)4269 mips_elf_pages_for_range (const struct mips_got_page_range *range)
4270 {
4271   return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4272 }
4273 
4274 /* Record that G requires a page entry that can reach SEC + ADDEND.  */
4275 
4276 static bool
mips_elf_record_got_page_entry(struct mips_elf_traverse_got_arg * arg,asection * sec,bfd_signed_vma addend)4277 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
4278 				asection *sec, bfd_signed_vma addend)
4279 {
4280   struct mips_got_info *g = arg->g;
4281   struct mips_got_page_entry lookup, *entry;
4282   struct mips_got_page_range **range_ptr, *range;
4283   bfd_vma old_pages, new_pages;
4284   void **loc;
4285 
4286   /* Find the mips_got_page_entry hash table entry for this section.  */
4287   lookup.sec = sec;
4288   loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4289   if (loc == NULL)
4290     return false;
4291 
4292   /* Create a mips_got_page_entry if this is the first time we've
4293      seen the section.  */
4294   entry = (struct mips_got_page_entry *) *loc;
4295   if (!entry)
4296     {
4297       entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
4298       if (!entry)
4299 	return false;
4300 
4301       entry->sec = sec;
4302       *loc = entry;
4303     }
4304 
4305   /* Skip over ranges whose maximum extent cannot share a page entry
4306      with ADDEND.  */
4307   range_ptr = &entry->ranges;
4308   while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4309     range_ptr = &(*range_ptr)->next;
4310 
4311   /* If we scanned to the end of the list, or found a range whose
4312      minimum extent cannot share a page entry with ADDEND, create
4313      a new singleton range.  */
4314   range = *range_ptr;
4315   if (!range || addend < range->min_addend - 0xffff)
4316     {
4317       range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
4318       if (!range)
4319 	return false;
4320 
4321       range->next = *range_ptr;
4322       range->min_addend = addend;
4323       range->max_addend = addend;
4324 
4325       *range_ptr = range;
4326       entry->num_pages++;
4327       g->page_gotno++;
4328       return true;
4329     }
4330 
4331   /* Remember how many pages the old range contributed.  */
4332   old_pages = mips_elf_pages_for_range (range);
4333 
4334   /* Update the ranges.  */
4335   if (addend < range->min_addend)
4336     range->min_addend = addend;
4337   else if (addend > range->max_addend)
4338     {
4339       if (range->next && addend >= range->next->min_addend - 0xffff)
4340 	{
4341 	  old_pages += mips_elf_pages_for_range (range->next);
4342 	  range->max_addend = range->next->max_addend;
4343 	  range->next = range->next->next;
4344 	}
4345       else
4346 	range->max_addend = addend;
4347     }
4348 
4349   /* Record any change in the total estimate.  */
4350   new_pages = mips_elf_pages_for_range (range);
4351   if (old_pages != new_pages)
4352     {
4353       entry->num_pages += new_pages - old_pages;
4354       g->page_gotno += new_pages - old_pages;
4355     }
4356 
4357   return true;
4358 }
4359 
4360 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4361    and for which DATA points to a mips_elf_traverse_got_arg.  Work out
4362    whether the page reference described by *REFP needs a GOT page entry,
4363    and record that entry in DATA->g if so.  Set DATA->g to null on failure.  */
4364 
4365 static int
mips_elf_resolve_got_page_ref(void ** refp,void * data)4366 mips_elf_resolve_got_page_ref (void **refp, void *data)
4367 {
4368   struct mips_got_page_ref *ref;
4369   struct mips_elf_traverse_got_arg *arg;
4370   struct mips_elf_link_hash_table *htab;
4371   asection *sec;
4372   bfd_vma addend;
4373 
4374   ref = (struct mips_got_page_ref *) *refp;
4375   arg = (struct mips_elf_traverse_got_arg *) data;
4376   htab = mips_elf_hash_table (arg->info);
4377 
4378   if (ref->symndx < 0)
4379     {
4380       struct mips_elf_link_hash_entry *h;
4381 
4382       /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries.  */
4383       h = ref->u.h;
4384       if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4385 	return 1;
4386 
4387       /* Ignore undefined symbols; we'll issue an error later if
4388 	 appropriate.  */
4389       if (!((h->root.root.type == bfd_link_hash_defined
4390 	     || h->root.root.type == bfd_link_hash_defweak)
4391 	    && h->root.root.u.def.section))
4392 	return 1;
4393 
4394       sec = h->root.root.u.def.section;
4395       addend = h->root.root.u.def.value + ref->addend;
4396     }
4397   else
4398     {
4399       Elf_Internal_Sym *isym;
4400 
4401       /* Read in the symbol.  */
4402       isym = bfd_sym_from_r_symndx (&htab->root.sym_cache, ref->u.abfd,
4403 				    ref->symndx);
4404       if (isym == NULL)
4405 	{
4406 	  arg->g = NULL;
4407 	  return 0;
4408 	}
4409 
4410       /* Get the associated input section.  */
4411       sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4412       if (sec == NULL)
4413 	{
4414 	  arg->g = NULL;
4415 	  return 0;
4416 	}
4417 
4418       /* If this is a mergable section, work out the section and offset
4419 	 of the merged data.  For section symbols, the addend specifies
4420 	 of the offset _of_ the first byte in the data, otherwise it
4421 	 specifies the offset _from_ the first byte.  */
4422       if (sec->flags & SEC_MERGE)
4423 	{
4424 	  void *secinfo;
4425 
4426 	  secinfo = elf_section_data (sec)->sec_info;
4427 	  if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4428 	    addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4429 						 isym->st_value + ref->addend);
4430 	  else
4431 	    addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4432 						 isym->st_value) + ref->addend;
4433 	}
4434       else
4435 	addend = isym->st_value + ref->addend;
4436     }
4437   if (!mips_elf_record_got_page_entry (arg, sec, addend))
4438     {
4439       arg->g = NULL;
4440       return 0;
4441     }
4442   return 1;
4443 }
4444 
4445 /* If any entries in G->got_entries are for indirect or warning symbols,
4446    replace them with entries for the target symbol.  Convert g->got_page_refs
4447    into got_page_entry structures and estimate the number of page entries
4448    that they require.  */
4449 
4450 static bool
mips_elf_resolve_final_got_entries(struct bfd_link_info * info,struct mips_got_info * g)4451 mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4452 				    struct mips_got_info *g)
4453 {
4454   struct mips_elf_traverse_got_arg tga;
4455   struct mips_got_info oldg;
4456 
4457   oldg = *g;
4458 
4459   tga.info = info;
4460   tga.g = g;
4461   tga.value = false;
4462   htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4463   if (tga.value)
4464     {
4465       *g = oldg;
4466       g->got_entries = htab_create (htab_size (oldg.got_entries),
4467 				    mips_elf_got_entry_hash,
4468 				    mips_elf_got_entry_eq, NULL);
4469       if (!g->got_entries)
4470 	return false;
4471 
4472       htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4473       if (!tga.g)
4474 	return false;
4475 
4476       htab_delete (oldg.got_entries);
4477     }
4478 
4479   g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4480 					 mips_got_page_entry_eq, NULL);
4481   if (g->got_page_entries == NULL)
4482     return false;
4483 
4484   tga.info = info;
4485   tga.g = g;
4486   htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4487 
4488   return true;
4489 }
4490 
4491 /* Return true if a GOT entry for H should live in the local rather than
4492    global GOT area.  */
4493 
4494 static bool
mips_use_local_got_p(struct bfd_link_info * info,struct mips_elf_link_hash_entry * h)4495 mips_use_local_got_p (struct bfd_link_info *info,
4496 		      struct mips_elf_link_hash_entry *h)
4497 {
4498   /* Symbols that aren't in the dynamic symbol table must live in the
4499      local GOT.  This includes symbols that are completely undefined
4500      and which therefore don't bind locally.  We'll report undefined
4501      symbols later if appropriate.  */
4502   if (h->root.dynindx == -1)
4503     return true;
4504 
4505   /* Absolute symbols, if ever they need a GOT entry, cannot ever go
4506      to the local GOT, as they would be implicitly relocated by the
4507      base address by the dynamic loader.  */
4508   if (bfd_is_abs_symbol (&h->root.root))
4509     return false;
4510 
4511   /* Symbols that bind locally can (and in the case of forced-local
4512      symbols, must) live in the local GOT.  */
4513   if (h->got_only_for_calls
4514       ? SYMBOL_CALLS_LOCAL (info, &h->root)
4515       : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4516     return true;
4517 
4518   /* If this is an executable that must provide a definition of the symbol,
4519      either though PLTs or copy relocations, then that address should go in
4520      the local rather than global GOT.  */
4521   if (bfd_link_executable (info) && h->has_static_relocs)
4522     return true;
4523 
4524   return false;
4525 }
4526 
4527 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4528    link_info structure.  Decide whether the hash entry needs an entry in
4529    the global part of the primary GOT, setting global_got_area accordingly.
4530    Count the number of global symbols that are in the primary GOT only
4531    because they have relocations against them (reloc_only_gotno).  */
4532 
4533 static bool
mips_elf_count_got_symbols(struct mips_elf_link_hash_entry * h,void * data)4534 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4535 {
4536   struct bfd_link_info *info;
4537   struct mips_elf_link_hash_table *htab;
4538   struct mips_got_info *g;
4539 
4540   info = (struct bfd_link_info *) data;
4541   htab = mips_elf_hash_table (info);
4542   g = htab->got_info;
4543   if (h->global_got_area != GGA_NONE)
4544     {
4545       /* Make a final decision about whether the symbol belongs in the
4546 	 local or global GOT.  */
4547       if (mips_use_local_got_p (info, h))
4548 	/* The symbol belongs in the local GOT.  We no longer need this
4549 	   entry if it was only used for relocations; those relocations
4550 	   will be against the null or section symbol instead of H.  */
4551 	h->global_got_area = GGA_NONE;
4552       else if (htab->root.target_os == is_vxworks
4553 	       && h->got_only_for_calls
4554 	       && h->root.plt.plist->mips_offset != MINUS_ONE)
4555 	/* On VxWorks, calls can refer directly to the .got.plt entry;
4556 	   they don't need entries in the regular GOT.  .got.plt entries
4557 	   will be allocated by _bfd_mips_elf_adjust_dynamic_symbol.  */
4558 	h->global_got_area = GGA_NONE;
4559       else if (h->global_got_area == GGA_RELOC_ONLY)
4560 	{
4561 	  g->reloc_only_gotno++;
4562 	  g->global_gotno++;
4563 	}
4564     }
4565   return 1;
4566 }
4567 
4568 /* A htab_traverse callback for GOT entries.  Add each one to the GOT
4569    given in mips_elf_traverse_got_arg DATA.  Clear DATA->G on error.  */
4570 
4571 static int
mips_elf_add_got_entry(void ** entryp,void * data)4572 mips_elf_add_got_entry (void **entryp, void *data)
4573 {
4574   struct mips_got_entry *entry;
4575   struct mips_elf_traverse_got_arg *arg;
4576   void **slot;
4577 
4578   entry = (struct mips_got_entry *) *entryp;
4579   arg = (struct mips_elf_traverse_got_arg *) data;
4580   slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4581   if (!slot)
4582     {
4583       arg->g = NULL;
4584       return 0;
4585     }
4586   if (!*slot)
4587     {
4588       *slot = entry;
4589       mips_elf_count_got_entry (arg->info, arg->g, entry);
4590     }
4591   return 1;
4592 }
4593 
4594 /* A htab_traverse callback for GOT page entries.  Add each one to the GOT
4595    given in mips_elf_traverse_got_arg DATA.  Clear DATA->G on error.  */
4596 
4597 static int
mips_elf_add_got_page_entry(void ** entryp,void * data)4598 mips_elf_add_got_page_entry (void **entryp, void *data)
4599 {
4600   struct mips_got_page_entry *entry;
4601   struct mips_elf_traverse_got_arg *arg;
4602   void **slot;
4603 
4604   entry = (struct mips_got_page_entry *) *entryp;
4605   arg = (struct mips_elf_traverse_got_arg *) data;
4606   slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4607   if (!slot)
4608     {
4609       arg->g = NULL;
4610       return 0;
4611     }
4612   if (!*slot)
4613     {
4614       *slot = entry;
4615       arg->g->page_gotno += entry->num_pages;
4616     }
4617   return 1;
4618 }
4619 
4620 /* Consider merging FROM, which is ABFD's GOT, into TO.  Return -1 if
4621    this would lead to overflow, 1 if they were merged successfully,
4622    and 0 if a merge failed due to lack of memory.  (These values are chosen
4623    so that nonnegative return values can be returned by a htab_traverse
4624    callback.)  */
4625 
4626 static int
mips_elf_merge_got_with(bfd * abfd,struct mips_got_info * from,struct mips_got_info * to,struct mips_elf_got_per_bfd_arg * arg)4627 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4628 			 struct mips_got_info *to,
4629 			 struct mips_elf_got_per_bfd_arg *arg)
4630 {
4631   struct mips_elf_traverse_got_arg tga;
4632   unsigned int estimate;
4633 
4634   /* Work out how many page entries we would need for the combined GOT.  */
4635   estimate = arg->max_pages;
4636   if (estimate >= from->page_gotno + to->page_gotno)
4637     estimate = from->page_gotno + to->page_gotno;
4638 
4639   /* And conservatively estimate how many local and TLS entries
4640      would be needed.  */
4641   estimate += from->local_gotno + to->local_gotno;
4642   estimate += from->tls_gotno + to->tls_gotno;
4643 
4644   /* If we're merging with the primary got, any TLS relocations will
4645      come after the full set of global entries.  Otherwise estimate those
4646      conservatively as well.  */
4647   if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4648     estimate += arg->global_count;
4649   else
4650     estimate += from->global_gotno + to->global_gotno;
4651 
4652   /* Bail out if the combined GOT might be too big.  */
4653   if (estimate > arg->max_count)
4654     return -1;
4655 
4656   /* Transfer the bfd's got information from FROM to TO.  */
4657   tga.info = arg->info;
4658   tga.g = to;
4659   htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4660   if (!tga.g)
4661     return 0;
4662 
4663   htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4664   if (!tga.g)
4665     return 0;
4666 
4667   mips_elf_replace_bfd_got (abfd, to);
4668   return 1;
4669 }
4670 
4671 /* Attempt to merge GOT G, which belongs to ABFD.  Try to use as much
4672    as possible of the primary got, since it doesn't require explicit
4673    dynamic relocations, but don't use bfds that would reference global
4674    symbols out of the addressable range.  Failing the primary got,
4675    attempt to merge with the current got, or finish the current got
4676    and then make make the new got current.  */
4677 
4678 static bool
mips_elf_merge_got(bfd * abfd,struct mips_got_info * g,struct mips_elf_got_per_bfd_arg * arg)4679 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4680 		    struct mips_elf_got_per_bfd_arg *arg)
4681 {
4682   unsigned int estimate;
4683   int result;
4684 
4685   if (!mips_elf_resolve_final_got_entries (arg->info, g))
4686     return false;
4687 
4688   /* Work out the number of page, local and TLS entries.  */
4689   estimate = arg->max_pages;
4690   if (estimate > g->page_gotno)
4691     estimate = g->page_gotno;
4692   estimate += g->local_gotno + g->tls_gotno;
4693 
4694   /* We place TLS GOT entries after both locals and globals.  The globals
4695      for the primary GOT may overflow the normal GOT size limit, so be
4696      sure not to merge a GOT which requires TLS with the primary GOT in that
4697      case.  This doesn't affect non-primary GOTs.  */
4698   estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4699 
4700   if (estimate <= arg->max_count)
4701     {
4702       /* If we don't have a primary GOT, use it as
4703 	 a starting point for the primary GOT.  */
4704       if (!arg->primary)
4705 	{
4706 	  arg->primary = g;
4707 	  return true;
4708 	}
4709 
4710       /* Try merging with the primary GOT.  */
4711       result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4712       if (result >= 0)
4713 	return result;
4714     }
4715 
4716   /* If we can merge with the last-created got, do it.  */
4717   if (arg->current)
4718     {
4719       result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4720       if (result >= 0)
4721 	return result;
4722     }
4723 
4724   /* Well, we couldn't merge, so create a new GOT.  Don't check if it
4725      fits; if it turns out that it doesn't, we'll get relocation
4726      overflows anyway.  */
4727   g->next = arg->current;
4728   arg->current = g;
4729 
4730   return true;
4731 }
4732 
4733 /* ENTRYP is a hash table entry for a mips_got_entry.  Set its gotidx
4734    to GOTIDX, duplicating the entry if it has already been assigned
4735    an index in a different GOT.  */
4736 
4737 static bool
mips_elf_set_gotidx(void ** entryp,long gotidx)4738 mips_elf_set_gotidx (void **entryp, long gotidx)
4739 {
4740   struct mips_got_entry *entry;
4741 
4742   entry = (struct mips_got_entry *) *entryp;
4743   if (entry->gotidx > 0)
4744     {
4745       struct mips_got_entry *new_entry;
4746 
4747       new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4748       if (!new_entry)
4749 	return false;
4750 
4751       *new_entry = *entry;
4752       *entryp = new_entry;
4753       entry = new_entry;
4754     }
4755   entry->gotidx = gotidx;
4756   return true;
4757 }
4758 
4759 /* Set the TLS GOT index for the GOT entry in ENTRYP.  DATA points to a
4760    mips_elf_traverse_got_arg in which DATA->value is the size of one
4761    GOT entry.  Set DATA->g to null on failure.  */
4762 
4763 static int
mips_elf_initialize_tls_index(void ** entryp,void * data)4764 mips_elf_initialize_tls_index (void **entryp, void *data)
4765 {
4766   struct mips_got_entry *entry;
4767   struct mips_elf_traverse_got_arg *arg;
4768 
4769   /* We're only interested in TLS symbols.  */
4770   entry = (struct mips_got_entry *) *entryp;
4771   if (entry->tls_type == GOT_TLS_NONE)
4772     return 1;
4773 
4774   arg = (struct mips_elf_traverse_got_arg *) data;
4775   if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4776     {
4777       arg->g = NULL;
4778       return 0;
4779     }
4780 
4781   /* Account for the entries we've just allocated.  */
4782   arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4783   return 1;
4784 }
4785 
4786 /* A htab_traverse callback for GOT entries, where DATA points to a
4787    mips_elf_traverse_got_arg.  Set the global_got_area of each global
4788    symbol to DATA->value.  */
4789 
4790 static int
mips_elf_set_global_got_area(void ** entryp,void * data)4791 mips_elf_set_global_got_area (void **entryp, void *data)
4792 {
4793   struct mips_got_entry *entry;
4794   struct mips_elf_traverse_got_arg *arg;
4795 
4796   entry = (struct mips_got_entry *) *entryp;
4797   arg = (struct mips_elf_traverse_got_arg *) data;
4798   if (entry->abfd != NULL
4799       && entry->symndx == -1
4800       && entry->d.h->global_got_area != GGA_NONE)
4801     entry->d.h->global_got_area = arg->value;
4802   return 1;
4803 }
4804 
4805 /* A htab_traverse callback for secondary GOT entries, where DATA points
4806    to a mips_elf_traverse_got_arg.  Assign GOT indices to global entries
4807    and record the number of relocations they require.  DATA->value is
4808    the size of one GOT entry.  Set DATA->g to null on failure.  */
4809 
4810 static int
mips_elf_set_global_gotidx(void ** entryp,void * data)4811 mips_elf_set_global_gotidx (void **entryp, void *data)
4812 {
4813   struct mips_got_entry *entry;
4814   struct mips_elf_traverse_got_arg *arg;
4815 
4816   entry = (struct mips_got_entry *) *entryp;
4817   arg = (struct mips_elf_traverse_got_arg *) data;
4818   if (entry->abfd != NULL
4819       && entry->symndx == -1
4820       && entry->d.h->global_got_area != GGA_NONE)
4821     {
4822       if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
4823 	{
4824 	  arg->g = NULL;
4825 	  return 0;
4826 	}
4827       arg->g->assigned_low_gotno += 1;
4828 
4829       if (bfd_link_pic (arg->info)
4830 	  || (elf_hash_table (arg->info)->dynamic_sections_created
4831 	      && entry->d.h->root.def_dynamic
4832 	      && !entry->d.h->root.def_regular))
4833 	arg->g->relocs += 1;
4834     }
4835 
4836   return 1;
4837 }
4838 
4839 /* A htab_traverse callback for GOT entries for which DATA is the
4840    bfd_link_info.  Forbid any global symbols from having traditional
4841    lazy-binding stubs.  */
4842 
4843 static int
mips_elf_forbid_lazy_stubs(void ** entryp,void * data)4844 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4845 {
4846   struct bfd_link_info *info;
4847   struct mips_elf_link_hash_table *htab;
4848   struct mips_got_entry *entry;
4849 
4850   entry = (struct mips_got_entry *) *entryp;
4851   info = (struct bfd_link_info *) data;
4852   htab = mips_elf_hash_table (info);
4853   BFD_ASSERT (htab != NULL);
4854 
4855   if (entry->abfd != NULL
4856       && entry->symndx == -1
4857       && entry->d.h->needs_lazy_stub)
4858     {
4859       entry->d.h->needs_lazy_stub = false;
4860       htab->lazy_stub_count--;
4861     }
4862 
4863   return 1;
4864 }
4865 
4866 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4867    the primary GOT.  */
4868 static bfd_vma
mips_elf_adjust_gp(bfd * abfd,struct mips_got_info * g,bfd * ibfd)4869 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4870 {
4871   if (!g->next)
4872     return 0;
4873 
4874   g = mips_elf_bfd_got (ibfd, false);
4875   if (! g)
4876     return 0;
4877 
4878   BFD_ASSERT (g->next);
4879 
4880   g = g->next;
4881 
4882   return (g->local_gotno + g->global_gotno + g->tls_gotno)
4883     * MIPS_ELF_GOT_SIZE (abfd);
4884 }
4885 
4886 /* Turn a single GOT that is too big for 16-bit addressing into
4887    a sequence of GOTs, each one 16-bit addressable.  */
4888 
4889 static bool
mips_elf_multi_got(bfd * abfd,struct bfd_link_info * info,asection * got,bfd_size_type pages)4890 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4891 		    asection *got, bfd_size_type pages)
4892 {
4893   struct mips_elf_link_hash_table *htab;
4894   struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4895   struct mips_elf_traverse_got_arg tga;
4896   struct mips_got_info *g, *gg;
4897   unsigned int assign, needed_relocs;
4898   bfd *dynobj, *ibfd;
4899 
4900   dynobj = elf_hash_table (info)->dynobj;
4901   htab = mips_elf_hash_table (info);
4902   BFD_ASSERT (htab != NULL);
4903 
4904   g = htab->got_info;
4905 
4906   got_per_bfd_arg.obfd = abfd;
4907   got_per_bfd_arg.info = info;
4908   got_per_bfd_arg.current = NULL;
4909   got_per_bfd_arg.primary = NULL;
4910   got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4911 				/ MIPS_ELF_GOT_SIZE (abfd))
4912 			       - htab->reserved_gotno);
4913   got_per_bfd_arg.max_pages = pages;
4914   /* The number of globals that will be included in the primary GOT.
4915      See the calls to mips_elf_set_global_got_area below for more
4916      information.  */
4917   got_per_bfd_arg.global_count = g->global_gotno;
4918 
4919   /* Try to merge the GOTs of input bfds together, as long as they
4920      don't seem to exceed the maximum GOT size, choosing one of them
4921      to be the primary GOT.  */
4922   for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
4923     {
4924       gg = mips_elf_bfd_got (ibfd, false);
4925       if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4926 	return false;
4927     }
4928 
4929   /* If we do not find any suitable primary GOT, create an empty one.  */
4930   if (got_per_bfd_arg.primary == NULL)
4931     g->next = mips_elf_create_got_info (abfd);
4932   else
4933     g->next = got_per_bfd_arg.primary;
4934   g->next->next = got_per_bfd_arg.current;
4935 
4936   /* GG is now the master GOT, and G is the primary GOT.  */
4937   gg = g;
4938   g = g->next;
4939 
4940   /* Map the output bfd to the primary got.  That's what we're going
4941      to use for bfds that use GOT16 or GOT_PAGE relocations that we
4942      didn't mark in check_relocs, and we want a quick way to find it.
4943      We can't just use gg->next because we're going to reverse the
4944      list.  */
4945   mips_elf_replace_bfd_got (abfd, g);
4946 
4947   /* Every symbol that is referenced in a dynamic relocation must be
4948      present in the primary GOT, so arrange for them to appear after
4949      those that are actually referenced.  */
4950   gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4951   g->global_gotno = gg->global_gotno;
4952 
4953   tga.info = info;
4954   tga.value = GGA_RELOC_ONLY;
4955   htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4956   tga.value = GGA_NORMAL;
4957   htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4958 
4959   /* Now go through the GOTs assigning them offset ranges.
4960      [assigned_low_gotno, local_gotno[ will be set to the range of local
4961      entries in each GOT.  We can then compute the end of a GOT by
4962      adding local_gotno to global_gotno.  We reverse the list and make
4963      it circular since then we'll be able to quickly compute the
4964      beginning of a GOT, by computing the end of its predecessor.  To
4965      avoid special cases for the primary GOT, while still preserving
4966      assertions that are valid for both single- and multi-got links,
4967      we arrange for the main got struct to have the right number of
4968      global entries, but set its local_gotno such that the initial
4969      offset of the primary GOT is zero.  Remember that the primary GOT
4970      will become the last item in the circular linked list, so it
4971      points back to the master GOT.  */
4972   gg->local_gotno = -g->global_gotno;
4973   gg->global_gotno = g->global_gotno;
4974   gg->tls_gotno = 0;
4975   assign = 0;
4976   gg->next = gg;
4977 
4978   do
4979     {
4980       struct mips_got_info *gn;
4981 
4982       assign += htab->reserved_gotno;
4983       g->assigned_low_gotno = assign;
4984       g->local_gotno += assign;
4985       g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4986       g->assigned_high_gotno = g->local_gotno - 1;
4987       assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4988 
4989       /* Take g out of the direct list, and push it onto the reversed
4990 	 list that gg points to.  g->next is guaranteed to be nonnull after
4991 	 this operation, as required by mips_elf_initialize_tls_index. */
4992       gn = g->next;
4993       g->next = gg->next;
4994       gg->next = g;
4995 
4996       /* Set up any TLS entries.  We always place the TLS entries after
4997 	 all non-TLS entries.  */
4998       g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4999       tga.g = g;
5000       tga.value = MIPS_ELF_GOT_SIZE (abfd);
5001       htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
5002       if (!tga.g)
5003 	return false;
5004       BFD_ASSERT (g->tls_assigned_gotno == assign);
5005 
5006       /* Move onto the next GOT.  It will be a secondary GOT if nonull.  */
5007       g = gn;
5008 
5009       /* Forbid global symbols in every non-primary GOT from having
5010 	 lazy-binding stubs.  */
5011       if (g)
5012 	htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
5013     }
5014   while (g);
5015 
5016   got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
5017 
5018   needed_relocs = 0;
5019   for (g = gg->next; g && g->next != gg; g = g->next)
5020     {
5021       unsigned int save_assign;
5022 
5023       /* Assign offsets to global GOT entries and count how many
5024 	 relocations they need.  */
5025       save_assign = g->assigned_low_gotno;
5026       g->assigned_low_gotno = g->local_gotno;
5027       tga.info = info;
5028       tga.value = MIPS_ELF_GOT_SIZE (abfd);
5029       tga.g = g;
5030       htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
5031       if (!tga.g)
5032 	return false;
5033       BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
5034       g->assigned_low_gotno = save_assign;
5035 
5036       if (bfd_link_pic (info))
5037 	{
5038 	  g->relocs += g->local_gotno - g->assigned_low_gotno;
5039 	  BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
5040 		      + g->next->global_gotno
5041 		      + g->next->tls_gotno
5042 		      + htab->reserved_gotno);
5043 	}
5044       needed_relocs += g->relocs;
5045     }
5046   needed_relocs += g->relocs;
5047 
5048   if (needed_relocs)
5049     mips_elf_allocate_dynamic_relocations (dynobj, info,
5050 					   needed_relocs);
5051 
5052   return true;
5053 }
5054 
5055 
5056 /* Returns the first relocation of type r_type found, beginning with
5057    RELOCATION.  RELEND is one-past-the-end of the relocation table.  */
5058 
5059 static const Elf_Internal_Rela *
mips_elf_next_relocation(bfd * abfd ATTRIBUTE_UNUSED,unsigned int r_type,const Elf_Internal_Rela * relocation,const Elf_Internal_Rela * relend)5060 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
5061 			  const Elf_Internal_Rela *relocation,
5062 			  const Elf_Internal_Rela *relend)
5063 {
5064   unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
5065 
5066   while (relocation < relend)
5067     {
5068       if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
5069 	  && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
5070 	return relocation;
5071 
5072       ++relocation;
5073     }
5074 
5075   /* We didn't find it.  */
5076   return NULL;
5077 }
5078 
5079 /* Return whether an input relocation is against a local symbol.  */
5080 
5081 static bool
mips_elf_local_relocation_p(bfd * input_bfd,const Elf_Internal_Rela * relocation,asection ** local_sections)5082 mips_elf_local_relocation_p (bfd *input_bfd,
5083 			     const Elf_Internal_Rela *relocation,
5084 			     asection **local_sections)
5085 {
5086   unsigned long r_symndx;
5087   Elf_Internal_Shdr *symtab_hdr;
5088   size_t extsymoff;
5089 
5090   r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5091   symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5092   extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5093 
5094   if (r_symndx < extsymoff)
5095     return true;
5096   if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
5097     return true;
5098 
5099   return false;
5100 }
5101 
5102 /* Sign-extend VALUE, which has the indicated number of BITS.  */
5103 
5104 bfd_vma
_bfd_mips_elf_sign_extend(bfd_vma value,int bits)5105 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
5106 {
5107   if (value & ((bfd_vma) 1 << (bits - 1)))
5108     /* VALUE is negative.  */
5109     value |= ((bfd_vma) - 1) << bits;
5110 
5111   return value;
5112 }
5113 
5114 /* Return non-zero if the indicated VALUE has overflowed the maximum
5115    range expressible by a signed number with the indicated number of
5116    BITS.  */
5117 
5118 static bool
mips_elf_overflow_p(bfd_vma value,int bits)5119 mips_elf_overflow_p (bfd_vma value, int bits)
5120 {
5121   bfd_signed_vma svalue = (bfd_signed_vma) value;
5122 
5123   if (svalue > (1 << (bits - 1)) - 1)
5124     /* The value is too big.  */
5125     return true;
5126   else if (svalue < -(1 << (bits - 1)))
5127     /* The value is too small.  */
5128     return true;
5129 
5130   /* All is well.  */
5131   return false;
5132 }
5133 
5134 /* Calculate the %high function.  */
5135 
5136 static bfd_vma
mips_elf_high(bfd_vma value)5137 mips_elf_high (bfd_vma value)
5138 {
5139   return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5140 }
5141 
5142 /* Calculate the %higher function.  */
5143 
5144 static bfd_vma
mips_elf_higher(bfd_vma value ATTRIBUTE_UNUSED)5145 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
5146 {
5147 #ifdef BFD64
5148   return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5149 #else
5150   abort ();
5151   return MINUS_ONE;
5152 #endif
5153 }
5154 
5155 /* Calculate the %highest function.  */
5156 
5157 static bfd_vma
mips_elf_highest(bfd_vma value ATTRIBUTE_UNUSED)5158 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
5159 {
5160 #ifdef BFD64
5161   return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
5162 #else
5163   abort ();
5164   return MINUS_ONE;
5165 #endif
5166 }
5167 
5168 /* Create the .compact_rel section.  */
5169 
5170 static bool
mips_elf_create_compact_rel_section(bfd * abfd,struct bfd_link_info * info ATTRIBUTE_UNUSED)5171 mips_elf_create_compact_rel_section
5172   (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
5173 {
5174   flagword flags;
5175   register asection *s;
5176 
5177   if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
5178     {
5179       flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5180 	       | SEC_READONLY);
5181 
5182       s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
5183       if (s == NULL
5184 	  || !bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5185 	return false;
5186 
5187       s->size = sizeof (Elf32_External_compact_rel);
5188     }
5189 
5190   return true;
5191 }
5192 
5193 /* Create the .got section to hold the global offset table.  */
5194 
5195 static bool
mips_elf_create_got_section(bfd * abfd,struct bfd_link_info * info)5196 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
5197 {
5198   flagword flags;
5199   register asection *s;
5200   struct elf_link_hash_entry *h;
5201   struct bfd_link_hash_entry *bh;
5202   struct mips_elf_link_hash_table *htab;
5203 
5204   htab = mips_elf_hash_table (info);
5205   BFD_ASSERT (htab != NULL);
5206 
5207   /* This function may be called more than once.  */
5208   if (htab->root.sgot)
5209     return true;
5210 
5211   flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5212 	   | SEC_LINKER_CREATED);
5213 
5214   /* We have to use an alignment of 2**4 here because this is hardcoded
5215      in the function stub generation and in the linker script.  */
5216   s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
5217   if (s == NULL
5218       || !bfd_set_section_alignment (s, 4))
5219     return false;
5220   htab->root.sgot = s;
5221 
5222   /* Define the symbol _GLOBAL_OFFSET_TABLE_.  We don't do this in the
5223      linker script because we don't want to define the symbol if we
5224      are not creating a global offset table.  */
5225   bh = NULL;
5226   if (! (_bfd_generic_link_add_one_symbol
5227 	 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
5228 	  0, NULL, false, get_elf_backend_data (abfd)->collect, &bh)))
5229     return false;
5230 
5231   h = (struct elf_link_hash_entry *) bh;
5232   h->non_elf = 0;
5233   h->def_regular = 1;
5234   h->type = STT_OBJECT;
5235   h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
5236   elf_hash_table (info)->hgot = h;
5237 
5238   if (bfd_link_pic (info)
5239       && ! bfd_elf_link_record_dynamic_symbol (info, h))
5240     return false;
5241 
5242   htab->got_info = mips_elf_create_got_info (abfd);
5243   mips_elf_section_data (s)->elf.this_hdr.sh_flags
5244     |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5245 
5246   /* We also need a .got.plt section when generating PLTs.  */
5247   s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5248 					  SEC_ALLOC | SEC_LOAD
5249 					  | SEC_HAS_CONTENTS
5250 					  | SEC_IN_MEMORY
5251 					  | SEC_LINKER_CREATED);
5252   if (s == NULL)
5253     return false;
5254   htab->root.sgotplt = s;
5255 
5256   return true;
5257 }
5258 
5259 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5260    __GOTT_INDEX__ symbols.  These symbols are only special for
5261    shared objects; they are not used in executables.  */
5262 
5263 static bool
is_gott_symbol(struct bfd_link_info * info,struct elf_link_hash_entry * h)5264 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5265 {
5266   return (mips_elf_hash_table (info)->root.target_os == is_vxworks
5267 	  && bfd_link_pic (info)
5268 	  && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5269 	      || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5270 }
5271 
5272 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5273    require an la25 stub.  See also mips_elf_local_pic_function_p,
5274    which determines whether the destination function ever requires a
5275    stub.  */
5276 
5277 static bool
mips_elf_relocation_needs_la25_stub(bfd * input_bfd,int r_type,bool target_is_16_bit_code_p)5278 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5279 				     bool target_is_16_bit_code_p)
5280 {
5281   /* We specifically ignore branches and jumps from EF_PIC objects,
5282      where the onus is on the compiler or programmer to perform any
5283      necessary initialization of $25.  Sometimes such initialization
5284      is unnecessary; for example, -mno-shared functions do not use
5285      the incoming value of $25, and may therefore be called directly.  */
5286   if (PIC_OBJECT_P (input_bfd))
5287     return false;
5288 
5289   switch (r_type)
5290     {
5291     case R_MIPS_26:
5292     case R_MIPS_PC16:
5293     case R_MIPS_PC21_S2:
5294     case R_MIPS_PC26_S2:
5295     case R_MICROMIPS_26_S1:
5296     case R_MICROMIPS_PC7_S1:
5297     case R_MICROMIPS_PC10_S1:
5298     case R_MICROMIPS_PC16_S1:
5299     case R_MICROMIPS_PC23_S2:
5300       return true;
5301 
5302     case R_MIPS16_26:
5303       return !target_is_16_bit_code_p;
5304 
5305     default:
5306       return false;
5307     }
5308 }
5309 
5310 /* Obtain the field relocated by RELOCATION.  */
5311 
5312 static bfd_vma
mips_elf_obtain_contents(reloc_howto_type * howto,const Elf_Internal_Rela * relocation,bfd * input_bfd,bfd_byte * contents)5313 mips_elf_obtain_contents (reloc_howto_type *howto,
5314 			  const Elf_Internal_Rela *relocation,
5315 			  bfd *input_bfd, bfd_byte *contents)
5316 {
5317   bfd_vma x = 0;
5318   bfd_byte *location = contents + relocation->r_offset;
5319   unsigned int size = bfd_get_reloc_size (howto);
5320 
5321   /* Obtain the bytes.  */
5322   if (size != 0)
5323     x = bfd_get (8 * size, input_bfd, location);
5324 
5325   return x;
5326 }
5327 
5328 /* Store the field relocated by RELOCATION.  */
5329 
5330 static void
mips_elf_store_contents(reloc_howto_type * howto,const Elf_Internal_Rela * relocation,bfd * input_bfd,bfd_byte * contents,bfd_vma x)5331 mips_elf_store_contents (reloc_howto_type *howto,
5332 			 const Elf_Internal_Rela *relocation,
5333 			 bfd *input_bfd, bfd_byte *contents, bfd_vma x)
5334 {
5335   bfd_byte *location = contents + relocation->r_offset;
5336   unsigned int size = bfd_get_reloc_size (howto);
5337 
5338   /* Put the value into the output.  */
5339   if (size != 0)
5340     bfd_put (8 * size, input_bfd, x, location);
5341 }
5342 
5343 /* Try to patch a load from GOT instruction in CONTENTS pointed to by
5344    RELOCATION described by HOWTO, with a move of 0 to the load target
5345    register, returning TRUE if that is successful and FALSE otherwise.
5346    If DOIT is FALSE, then only determine it patching is possible and
5347    return status without actually changing CONTENTS.
5348 */
5349 
5350 static bool
mips_elf_nullify_got_load(bfd * input_bfd,bfd_byte * contents,const Elf_Internal_Rela * relocation,reloc_howto_type * howto,bool doit)5351 mips_elf_nullify_got_load (bfd *input_bfd, bfd_byte *contents,
5352 			   const Elf_Internal_Rela *relocation,
5353 			   reloc_howto_type *howto, bool doit)
5354 {
5355   int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5356   bfd_byte *location = contents + relocation->r_offset;
5357   bool nullified = true;
5358   bfd_vma x;
5359 
5360   _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, false, location);
5361 
5362   /* Obtain the current value.  */
5363   x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5364 
5365   /* Note that in the unshuffled MIPS16 encoding RX is at bits [21:19]
5366      while RY is at bits [18:16] of the combined 32-bit instruction word.  */
5367   if (mips16_reloc_p (r_type)
5368       && (((x >> 22) & 0x3ff) == 0x3d3				/* LW */
5369 	  || ((x >> 22) & 0x3ff) == 0x3c7))			/* LD */
5370     x = (0x3cdU << 22) | (x & (7 << 16)) << 3;			/* LI */
5371   else if (micromips_reloc_p (r_type)
5372 	   && ((x >> 26) & 0x37) == 0x37)			/* LW/LD */
5373     x = (0xc << 26) | (x & (0x1f << 21));			/* ADDIU */
5374   else if (((x >> 26) & 0x3f) == 0x23				/* LW */
5375 	   || ((x >> 26) & 0x3f) == 0x37)			/* LD */
5376     x = (0x9 << 26) | (x & (0x1f << 16));			/* ADDIU */
5377   else
5378     nullified = false;
5379 
5380   /* Put the value into the output.  */
5381   if (doit && nullified)
5382     mips_elf_store_contents (howto, relocation, input_bfd, contents, x);
5383 
5384   _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, false, location);
5385 
5386   return nullified;
5387 }
5388 
5389 /* Calculate the value produced by the RELOCATION (which comes from
5390    the INPUT_BFD).  The ADDEND is the addend to use for this
5391    RELOCATION; RELOCATION->R_ADDEND is ignored.
5392 
5393    The result of the relocation calculation is stored in VALUEP.
5394    On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5395    is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5396 
5397    This function returns bfd_reloc_continue if the caller need take no
5398    further action regarding this relocation, bfd_reloc_notsupported if
5399    something goes dramatically wrong, bfd_reloc_overflow if an
5400    overflow occurs, and bfd_reloc_ok to indicate success.  */
5401 
5402 static bfd_reloc_status_type
mips_elf_calculate_relocation(bfd * abfd,bfd * input_bfd,asection * input_section,bfd_byte * contents,struct bfd_link_info * info,const Elf_Internal_Rela * relocation,bfd_vma addend,reloc_howto_type * howto,Elf_Internal_Sym * local_syms,asection ** local_sections,bfd_vma * valuep,const char ** namep,bool * cross_mode_jump_p,bool save_addend)5403 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5404 			       asection *input_section, bfd_byte *contents,
5405 			       struct bfd_link_info *info,
5406 			       const Elf_Internal_Rela *relocation,
5407 			       bfd_vma addend, reloc_howto_type *howto,
5408 			       Elf_Internal_Sym *local_syms,
5409 			       asection **local_sections, bfd_vma *valuep,
5410 			       const char **namep,
5411 			       bool *cross_mode_jump_p,
5412 			       bool save_addend)
5413 {
5414   /* The eventual value we will return.  */
5415   bfd_vma value;
5416   /* The address of the symbol against which the relocation is
5417      occurring.  */
5418   bfd_vma symbol = 0;
5419   /* The final GP value to be used for the relocatable, executable, or
5420      shared object file being produced.  */
5421   bfd_vma gp;
5422   /* The place (section offset or address) of the storage unit being
5423      relocated.  */
5424   bfd_vma p;
5425   /* The value of GP used to create the relocatable object.  */
5426   bfd_vma gp0;
5427   /* The offset into the global offset table at which the address of
5428      the relocation entry symbol, adjusted by the addend, resides
5429      during execution.  */
5430   bfd_vma g = MINUS_ONE;
5431   /* The section in which the symbol referenced by the relocation is
5432      located.  */
5433   asection *sec = NULL;
5434   struct mips_elf_link_hash_entry *h = NULL;
5435   /* TRUE if the symbol referred to by this relocation is a local
5436      symbol.  */
5437   bool local_p, was_local_p;
5438   /* TRUE if the symbol referred to by this relocation is a section
5439      symbol.  */
5440   bool section_p = false;
5441   /* TRUE if the symbol referred to by this relocation is "_gp_disp".  */
5442   bool gp_disp_p = false;
5443   /* TRUE if the symbol referred to by this relocation is
5444      "__gnu_local_gp".  */
5445   bool gnu_local_gp_p = false;
5446   Elf_Internal_Shdr *symtab_hdr;
5447   size_t extsymoff;
5448   unsigned long r_symndx;
5449   int r_type;
5450   /* TRUE if overflow occurred during the calculation of the
5451      relocation value.  */
5452   bool overflowed_p;
5453   /* TRUE if this relocation refers to a MIPS16 function.  */
5454   bool target_is_16_bit_code_p = false;
5455   bool target_is_micromips_code_p = false;
5456   struct mips_elf_link_hash_table *htab;
5457   bfd *dynobj;
5458   bool resolved_to_zero;
5459 
5460   dynobj = elf_hash_table (info)->dynobj;
5461   htab = mips_elf_hash_table (info);
5462   BFD_ASSERT (htab != NULL);
5463 
5464   /* Parse the relocation.  */
5465   r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5466   r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5467   p = (input_section->output_section->vma
5468        + input_section->output_offset
5469        + relocation->r_offset);
5470 
5471   /* Assume that there will be no overflow.  */
5472   overflowed_p = false;
5473 
5474   /* Figure out whether or not the symbol is local, and get the offset
5475      used in the array of hash table entries.  */
5476   symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5477   local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5478 					 local_sections);
5479   was_local_p = local_p;
5480   if (! elf_bad_symtab (input_bfd))
5481     extsymoff = symtab_hdr->sh_info;
5482   else
5483     {
5484       /* The symbol table does not follow the rule that local symbols
5485 	 must come before globals.  */
5486       extsymoff = 0;
5487     }
5488 
5489   /* Figure out the value of the symbol.  */
5490   if (local_p)
5491     {
5492       bool micromips_p = MICROMIPS_P (abfd);
5493       Elf_Internal_Sym *sym;
5494 
5495       sym = local_syms + r_symndx;
5496       sec = local_sections[r_symndx];
5497 
5498       section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION;
5499 
5500       symbol = sec->output_section->vma + sec->output_offset;
5501       if (!section_p || (sec->flags & SEC_MERGE))
5502 	symbol += sym->st_value;
5503       if ((sec->flags & SEC_MERGE) && section_p)
5504 	{
5505 	  addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5506 	  addend -= symbol;
5507 	  addend += sec->output_section->vma + sec->output_offset;
5508 	}
5509 
5510       /* MIPS16/microMIPS text labels should be treated as odd.  */
5511       if (ELF_ST_IS_COMPRESSED (sym->st_other))
5512 	++symbol;
5513 
5514       /* Record the name of this symbol, for our caller.  */
5515       *namep = bfd_elf_string_from_elf_section (input_bfd,
5516 						symtab_hdr->sh_link,
5517 						sym->st_name);
5518       if (*namep == NULL || **namep == '\0')
5519 	*namep = bfd_section_name (sec);
5520 
5521       /* For relocations against a section symbol and ones against no
5522 	 symbol (absolute relocations) infer the ISA mode from the addend.  */
5523       if (section_p || r_symndx == STN_UNDEF)
5524 	{
5525 	  target_is_16_bit_code_p = (addend & 1) && !micromips_p;
5526 	  target_is_micromips_code_p = (addend & 1) && micromips_p;
5527 	}
5528       /* For relocations against an absolute symbol infer the ISA mode
5529 	 from the value of the symbol plus addend.  */
5530       else if (bfd_is_abs_section (sec))
5531 	{
5532 	  target_is_16_bit_code_p = ((symbol + addend) & 1) && !micromips_p;
5533 	  target_is_micromips_code_p = ((symbol + addend) & 1) && micromips_p;
5534 	}
5535       /* Otherwise just use the regular symbol annotation available.  */
5536       else
5537 	{
5538 	  target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5539 	  target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5540 	}
5541     }
5542   else
5543     {
5544       /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ?  */
5545 
5546       /* For global symbols we look up the symbol in the hash-table.  */
5547       h = ((struct mips_elf_link_hash_entry *)
5548 	   elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5549       /* Find the real hash-table entry for this symbol.  */
5550       while (h->root.root.type == bfd_link_hash_indirect
5551 	     || h->root.root.type == bfd_link_hash_warning)
5552 	h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5553 
5554       /* Record the name of this symbol, for our caller.  */
5555       *namep = h->root.root.root.string;
5556 
5557       /* See if this is the special _gp_disp symbol.  Note that such a
5558 	 symbol must always be a global symbol.  */
5559       if (strcmp (*namep, "_gp_disp") == 0
5560 	  && ! NEWABI_P (input_bfd))
5561 	{
5562 	  /* Relocations against _gp_disp are permitted only with
5563 	     R_MIPS_HI16 and R_MIPS_LO16 relocations.  */
5564 	  if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5565 	    return bfd_reloc_notsupported;
5566 
5567 	  gp_disp_p = true;
5568 	}
5569       /* See if this is the special _gp symbol.  Note that such a
5570 	 symbol must always be a global symbol.  */
5571       else if (strcmp (*namep, "__gnu_local_gp") == 0)
5572 	gnu_local_gp_p = true;
5573 
5574 
5575       /* If this symbol is defined, calculate its address.  Note that
5576 	 _gp_disp is a magic symbol, always implicitly defined by the
5577 	 linker, so it's inappropriate to check to see whether or not
5578 	 its defined.  */
5579       else if ((h->root.root.type == bfd_link_hash_defined
5580 		|| h->root.root.type == bfd_link_hash_defweak)
5581 	       && h->root.root.u.def.section)
5582 	{
5583 	  sec = h->root.root.u.def.section;
5584 	  if (sec->output_section)
5585 	    symbol = (h->root.root.u.def.value
5586 		      + sec->output_section->vma
5587 		      + sec->output_offset);
5588 	  else
5589 	    symbol = h->root.root.u.def.value;
5590 	}
5591       else if (h->root.root.type == bfd_link_hash_undefweak)
5592 	/* We allow relocations against undefined weak symbols, giving
5593 	   it the value zero, so that you can undefined weak functions
5594 	   and check to see if they exist by looking at their
5595 	   addresses.  */
5596 	symbol = 0;
5597       else if (info->unresolved_syms_in_objects == RM_IGNORE
5598 	       && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5599 	symbol = 0;
5600       else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5601 		       ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5602 	{
5603 	  /* If this is a dynamic link, we should have created a
5604 	     _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5605 	     in _bfd_mips_elf_create_dynamic_sections.
5606 	     Otherwise, we should define the symbol with a value of 0.
5607 	     FIXME: It should probably get into the symbol table
5608 	     somehow as well.  */
5609 	  BFD_ASSERT (! bfd_link_pic (info));
5610 	  BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5611 	  symbol = 0;
5612 	}
5613       else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5614 	{
5615 	  /* This is an optional symbol - an Irix specific extension to the
5616 	     ELF spec.  Ignore it for now.
5617 	     XXX - FIXME - there is more to the spec for OPTIONAL symbols
5618 	     than simply ignoring them, but we do not handle this for now.
5619 	     For information see the "64-bit ELF Object File Specification"
5620 	     which is available from here:
5621 	     http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf  */
5622 	  symbol = 0;
5623 	}
5624       else
5625 	{
5626           bool reject_undefined
5627 	    = ((info->unresolved_syms_in_objects == RM_DIAGNOSE
5628 		&& !info->warn_unresolved_syms)
5629 	       || ELF_ST_VISIBILITY (h->root.other) != STV_DEFAULT);
5630 
5631 	  info->callbacks->undefined_symbol
5632 	    (info, h->root.root.root.string, input_bfd,
5633 	     input_section, relocation->r_offset, reject_undefined);
5634 
5635 	  if (reject_undefined)
5636 	    return bfd_reloc_undefined;
5637 
5638 	  symbol = 0;
5639 	}
5640 
5641       target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5642       target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
5643     }
5644 
5645   /* If this is a reference to a 16-bit function with a stub, we need
5646      to redirect the relocation to the stub unless:
5647 
5648      (a) the relocation is for a MIPS16 JAL;
5649 
5650      (b) the relocation is for a MIPS16 PIC call, and there are no
5651 	 non-MIPS16 uses of the GOT slot; or
5652 
5653      (c) the section allows direct references to MIPS16 functions.  */
5654   if (r_type != R_MIPS16_26
5655       && !bfd_link_relocatable (info)
5656       && ((h != NULL
5657 	   && h->fn_stub != NULL
5658 	   && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5659 	  || (local_p
5660 	      && mips_elf_tdata (input_bfd)->local_stubs != NULL
5661 	      && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5662       && !section_allows_mips16_refs_p (input_section))
5663     {
5664       /* This is a 32- or 64-bit call to a 16-bit function.  We should
5665 	 have already noticed that we were going to need the
5666 	 stub.  */
5667       if (local_p)
5668 	{
5669 	  sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
5670 	  value = 0;
5671 	}
5672       else
5673 	{
5674 	  BFD_ASSERT (h->need_fn_stub);
5675 	  if (h->la25_stub)
5676 	    {
5677 	      /* If a LA25 header for the stub itself exists, point to the
5678 		 prepended LUI/ADDIU sequence.  */
5679 	      sec = h->la25_stub->stub_section;
5680 	      value = h->la25_stub->offset;
5681 	    }
5682 	  else
5683 	    {
5684 	      sec = h->fn_stub;
5685 	      value = 0;
5686 	    }
5687 	}
5688 
5689       symbol = sec->output_section->vma + sec->output_offset + value;
5690       /* The target is 16-bit, but the stub isn't.  */
5691       target_is_16_bit_code_p = false;
5692     }
5693   /* If this is a MIPS16 call with a stub, that is made through the PLT or
5694      to a standard MIPS function, we need to redirect the call to the stub.
5695      Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5696      indirect calls should use an indirect stub instead.  */
5697   else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
5698 	   && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5699 	       || (local_p
5700 		   && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5701 		   && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5702 	   && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
5703     {
5704       if (local_p)
5705 	sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5706       else
5707 	{
5708 	  /* If both call_stub and call_fp_stub are defined, we can figure
5709 	     out which one to use by checking which one appears in the input
5710 	     file.  */
5711 	  if (h->call_stub != NULL && h->call_fp_stub != NULL)
5712 	    {
5713 	      asection *o;
5714 
5715 	      sec = NULL;
5716 	      for (o = input_bfd->sections; o != NULL; o = o->next)
5717 		{
5718 		  if (CALL_FP_STUB_P (bfd_section_name (o)))
5719 		    {
5720 		      sec = h->call_fp_stub;
5721 		      break;
5722 		    }
5723 		}
5724 	      if (sec == NULL)
5725 		sec = h->call_stub;
5726 	    }
5727 	  else if (h->call_stub != NULL)
5728 	    sec = h->call_stub;
5729 	  else
5730 	    sec = h->call_fp_stub;
5731 	}
5732 
5733       BFD_ASSERT (sec->size > 0);
5734       symbol = sec->output_section->vma + sec->output_offset;
5735     }
5736   /* If this is a direct call to a PIC function, redirect to the
5737      non-PIC stub.  */
5738   else if (h != NULL && h->la25_stub
5739 	   && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5740 						   target_is_16_bit_code_p))
5741     {
5742 	symbol = (h->la25_stub->stub_section->output_section->vma
5743 		  + h->la25_stub->stub_section->output_offset
5744 		  + h->la25_stub->offset);
5745 	if (ELF_ST_IS_MICROMIPS (h->root.other))
5746 	  symbol |= 1;
5747     }
5748   /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5749      entry is used if a standard PLT entry has also been made.  In this
5750      case the symbol will have been set by mips_elf_set_plt_sym_value
5751      to point to the standard PLT entry, so redirect to the compressed
5752      one.  */
5753   else if ((mips16_branch_reloc_p (r_type)
5754 	    || micromips_branch_reloc_p (r_type))
5755 	   && !bfd_link_relocatable (info)
5756 	   && h != NULL
5757 	   && h->use_plt_entry
5758 	   && h->root.plt.plist->comp_offset != MINUS_ONE
5759 	   && h->root.plt.plist->mips_offset != MINUS_ONE)
5760     {
5761       bool micromips_p = MICROMIPS_P (abfd);
5762 
5763       sec = htab->root.splt;
5764       symbol = (sec->output_section->vma
5765 		+ sec->output_offset
5766 		+ htab->plt_header_size
5767 		+ htab->plt_mips_offset
5768 		+ h->root.plt.plist->comp_offset
5769 		+ 1);
5770 
5771       target_is_16_bit_code_p = !micromips_p;
5772       target_is_micromips_code_p = micromips_p;
5773     }
5774 
5775   /* Make sure MIPS16 and microMIPS are not used together.  */
5776   if ((mips16_branch_reloc_p (r_type) && target_is_micromips_code_p)
5777       || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5778    {
5779       _bfd_error_handler
5780 	(_("MIPS16 and microMIPS functions cannot call each other"));
5781       return bfd_reloc_notsupported;
5782    }
5783 
5784   /* Calls from 16-bit code to 32-bit code and vice versa require the
5785      mode change.  However, we can ignore calls to undefined weak symbols,
5786      which should never be executed at runtime.  This exception is important
5787      because the assembly writer may have "known" that any definition of the
5788      symbol would be 16-bit code, and that direct jumps were therefore
5789      acceptable.  */
5790   *cross_mode_jump_p = (!bfd_link_relocatable (info)
5791 			&& !(h && h->root.root.type == bfd_link_hash_undefweak)
5792 			&& ((mips16_branch_reloc_p (r_type)
5793 			     && !target_is_16_bit_code_p)
5794 			    || (micromips_branch_reloc_p (r_type)
5795 				&& !target_is_micromips_code_p)
5796 			    || ((branch_reloc_p (r_type)
5797 				 || r_type == R_MIPS_JALR)
5798 				&& (target_is_16_bit_code_p
5799 				    || target_is_micromips_code_p))));
5800 
5801   resolved_to_zero = (h != NULL
5802 		      && UNDEFWEAK_NO_DYNAMIC_RELOC (info, &h->root));
5803 
5804   switch (r_type)
5805     {
5806     case R_MIPS16_CALL16:
5807     case R_MIPS16_GOT16:
5808     case R_MIPS_CALL16:
5809     case R_MIPS_GOT16:
5810     case R_MIPS_GOT_PAGE:
5811     case R_MIPS_GOT_DISP:
5812     case R_MIPS_GOT_LO16:
5813     case R_MIPS_CALL_LO16:
5814     case R_MICROMIPS_CALL16:
5815     case R_MICROMIPS_GOT16:
5816     case R_MICROMIPS_GOT_PAGE:
5817     case R_MICROMIPS_GOT_DISP:
5818     case R_MICROMIPS_GOT_LO16:
5819     case R_MICROMIPS_CALL_LO16:
5820       if (resolved_to_zero
5821 	  && !bfd_link_relocatable (info)
5822 	  && mips_elf_nullify_got_load (input_bfd, contents,
5823 					relocation, howto, true))
5824 	return bfd_reloc_continue;
5825 
5826       /* Fall through.  */
5827     case R_MIPS_GOT_HI16:
5828     case R_MIPS_CALL_HI16:
5829     case R_MICROMIPS_GOT_HI16:
5830     case R_MICROMIPS_CALL_HI16:
5831       if (resolved_to_zero
5832 	  && htab->use_absolute_zero
5833 	  && bfd_link_pic (info))
5834 	{
5835 	  /* Redirect to the special `__gnu_absolute_zero' symbol.  */
5836 	  h = mips_elf_link_hash_lookup (htab, "__gnu_absolute_zero",
5837 					 false, false, false);
5838 	  BFD_ASSERT (h != NULL);
5839 	}
5840       break;
5841     }
5842 
5843   local_p = (h == NULL || mips_use_local_got_p (info, h));
5844 
5845   gp0 = _bfd_get_gp_value (input_bfd);
5846   gp = _bfd_get_gp_value (abfd);
5847   if (htab->got_info)
5848     gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5849 
5850   if (gnu_local_gp_p)
5851     symbol = gp;
5852 
5853   /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5854      to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP.  The addend is applied by the
5855      corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST.  */
5856   if (got_page_reloc_p (r_type) && !local_p)
5857     {
5858       r_type = (micromips_reloc_p (r_type)
5859 		? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5860       addend = 0;
5861     }
5862 
5863   /* If we haven't already determined the GOT offset, and we're going
5864      to need it, get it now.  */
5865   switch (r_type)
5866     {
5867     case R_MIPS16_CALL16:
5868     case R_MIPS16_GOT16:
5869     case R_MIPS_CALL16:
5870     case R_MIPS_GOT16:
5871     case R_MIPS_GOT_DISP:
5872     case R_MIPS_GOT_HI16:
5873     case R_MIPS_CALL_HI16:
5874     case R_MIPS_GOT_LO16:
5875     case R_MIPS_CALL_LO16:
5876     case R_MICROMIPS_CALL16:
5877     case R_MICROMIPS_GOT16:
5878     case R_MICROMIPS_GOT_DISP:
5879     case R_MICROMIPS_GOT_HI16:
5880     case R_MICROMIPS_CALL_HI16:
5881     case R_MICROMIPS_GOT_LO16:
5882     case R_MICROMIPS_CALL_LO16:
5883     case R_MIPS_TLS_GD:
5884     case R_MIPS_TLS_GOTTPREL:
5885     case R_MIPS_TLS_LDM:
5886     case R_MIPS16_TLS_GD:
5887     case R_MIPS16_TLS_GOTTPREL:
5888     case R_MIPS16_TLS_LDM:
5889     case R_MICROMIPS_TLS_GD:
5890     case R_MICROMIPS_TLS_GOTTPREL:
5891     case R_MICROMIPS_TLS_LDM:
5892       /* Find the index into the GOT where this value is located.  */
5893       if (tls_ldm_reloc_p (r_type))
5894 	{
5895 	  g = mips_elf_local_got_index (abfd, input_bfd, info,
5896 					0, 0, NULL, r_type);
5897 	  if (g == MINUS_ONE)
5898 	    return bfd_reloc_outofrange;
5899 	}
5900       else if (!local_p)
5901 	{
5902 	  /* On VxWorks, CALL relocations should refer to the .got.plt
5903 	     entry, which is initialized to point at the PLT stub.  */
5904 	  if (htab->root.target_os == is_vxworks
5905 	      && (call_hi16_reloc_p (r_type)
5906 		  || call_lo16_reloc_p (r_type)
5907 		  || call16_reloc_p (r_type)))
5908 	    {
5909 	      BFD_ASSERT (addend == 0);
5910 	      BFD_ASSERT (h->root.needs_plt);
5911 	      g = mips_elf_gotplt_index (info, &h->root);
5912 	    }
5913 	  else
5914 	    {
5915 	      BFD_ASSERT (addend == 0);
5916 	      g = mips_elf_global_got_index (abfd, info, input_bfd,
5917 					     &h->root, r_type);
5918 	      if (!TLS_RELOC_P (r_type)
5919 		  && !elf_hash_table (info)->dynamic_sections_created)
5920 		/* This is a static link.  We must initialize the GOT entry.  */
5921 		MIPS_ELF_PUT_WORD (dynobj, symbol, htab->root.sgot->contents + g);
5922 	    }
5923 	}
5924       else if (htab->root.target_os != is_vxworks
5925 	       && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5926 	/* The calculation below does not involve "g".  */
5927 	break;
5928       else
5929 	{
5930 	  g = mips_elf_local_got_index (abfd, input_bfd, info,
5931 					symbol + addend, r_symndx, h, r_type);
5932 	  if (g == MINUS_ONE)
5933 	    return bfd_reloc_outofrange;
5934 	}
5935 
5936       /* Convert GOT indices to actual offsets.  */
5937       g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5938       break;
5939     }
5940 
5941   /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5942      symbols are resolved by the loader.  Add them to .rela.dyn.  */
5943   if (h != NULL && is_gott_symbol (info, &h->root))
5944     {
5945       Elf_Internal_Rela outrel;
5946       bfd_byte *loc;
5947       asection *s;
5948 
5949       s = mips_elf_rel_dyn_section (info, false);
5950       loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5951 
5952       outrel.r_offset = (input_section->output_section->vma
5953 			 + input_section->output_offset
5954 			 + relocation->r_offset);
5955       outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5956       outrel.r_addend = addend;
5957       bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5958 
5959       /* If we've written this relocation for a readonly section,
5960 	 we need to set DF_TEXTREL again, so that we do not delete the
5961 	 DT_TEXTREL tag.  */
5962       if (MIPS_ELF_READONLY_SECTION (input_section))
5963 	info->flags |= DF_TEXTREL;
5964 
5965       *valuep = 0;
5966       return bfd_reloc_ok;
5967     }
5968 
5969   /* Figure out what kind of relocation is being performed.  */
5970   switch (r_type)
5971     {
5972     case R_MIPS_NONE:
5973       return bfd_reloc_continue;
5974 
5975     case R_MIPS_16:
5976       if (howto->partial_inplace)
5977 	addend = _bfd_mips_elf_sign_extend (addend, 16);
5978       value = symbol + addend;
5979       overflowed_p = mips_elf_overflow_p (value, 16);
5980       break;
5981 
5982     case R_MIPS_32:
5983     case R_MIPS_REL32:
5984     case R_MIPS_64:
5985       if ((bfd_link_pic (info)
5986 	   || (htab->root.dynamic_sections_created
5987 	       && h != NULL
5988 	       && h->root.def_dynamic
5989 	       && !h->root.def_regular
5990 	       && !h->has_static_relocs))
5991 	  && r_symndx != STN_UNDEF
5992 	  && (h == NULL
5993 	      || h->root.root.type != bfd_link_hash_undefweak
5994 	      || (ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
5995 		  && !resolved_to_zero))
5996 	  && (input_section->flags & SEC_ALLOC) != 0)
5997 	{
5998 	  /* If we're creating a shared library, then we can't know
5999 	     where the symbol will end up.  So, we create a relocation
6000 	     record in the output, and leave the job up to the dynamic
6001 	     linker.  We must do the same for executable references to
6002 	     shared library symbols, unless we've decided to use copy
6003 	     relocs or PLTs instead.  */
6004 	  value = addend;
6005 	  if (!mips_elf_create_dynamic_relocation (abfd,
6006 						   info,
6007 						   relocation,
6008 						   h,
6009 						   sec,
6010 						   symbol,
6011 						   &value,
6012 						   input_section))
6013 	    return bfd_reloc_undefined;
6014 	}
6015       else
6016 	{
6017 	  if (r_type != R_MIPS_REL32)
6018 	    value = symbol + addend;
6019 	  else
6020 	    value = addend;
6021 	}
6022       value &= howto->dst_mask;
6023       break;
6024 
6025     case R_MIPS_PC32:
6026       value = symbol + addend - p;
6027       value &= howto->dst_mask;
6028       break;
6029 
6030     case R_MIPS16_26:
6031       /* The calculation for R_MIPS16_26 is just the same as for an
6032 	 R_MIPS_26.  It's only the storage of the relocated field into
6033 	 the output file that's different.  That's handled in
6034 	 mips_elf_perform_relocation.  So, we just fall through to the
6035 	 R_MIPS_26 case here.  */
6036     case R_MIPS_26:
6037     case R_MICROMIPS_26_S1:
6038       {
6039 	unsigned int shift;
6040 
6041 	/* Shift is 2, unusually, for microMIPS JALX.  */
6042 	shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
6043 
6044 	if (howto->partial_inplace && !section_p)
6045 	  value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
6046 	else
6047 	  value = addend;
6048 	value += symbol;
6049 
6050 	/* Make sure the target of a jump is suitably aligned.  Bit 0 must
6051 	   be the correct ISA mode selector except for weak undefined
6052 	   symbols.  */
6053 	if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6054 	    && (*cross_mode_jump_p
6055 		? (value & 3) != (r_type == R_MIPS_26)
6056 		: (value & ((1 << shift) - 1)) != (r_type != R_MIPS_26)))
6057 	  return bfd_reloc_outofrange;
6058 
6059 	value >>= shift;
6060 	if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6061 	  overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
6062 	value &= howto->dst_mask;
6063       }
6064       break;
6065 
6066     case R_MIPS_TLS_DTPREL_HI16:
6067     case R_MIPS16_TLS_DTPREL_HI16:
6068     case R_MICROMIPS_TLS_DTPREL_HI16:
6069       value = (mips_elf_high (addend + symbol - dtprel_base (info))
6070 	       & howto->dst_mask);
6071       break;
6072 
6073     case R_MIPS_TLS_DTPREL_LO16:
6074     case R_MIPS_TLS_DTPREL32:
6075     case R_MIPS_TLS_DTPREL64:
6076     case R_MIPS16_TLS_DTPREL_LO16:
6077     case R_MICROMIPS_TLS_DTPREL_LO16:
6078       value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
6079       break;
6080 
6081     case R_MIPS_TLS_TPREL_HI16:
6082     case R_MIPS16_TLS_TPREL_HI16:
6083     case R_MICROMIPS_TLS_TPREL_HI16:
6084       value = (mips_elf_high (addend + symbol - tprel_base (info))
6085 	       & howto->dst_mask);
6086       break;
6087 
6088     case R_MIPS_TLS_TPREL_LO16:
6089     case R_MIPS_TLS_TPREL32:
6090     case R_MIPS_TLS_TPREL64:
6091     case R_MIPS16_TLS_TPREL_LO16:
6092     case R_MICROMIPS_TLS_TPREL_LO16:
6093       value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
6094       break;
6095 
6096     case R_MIPS_HI16:
6097     case R_MIPS16_HI16:
6098     case R_MICROMIPS_HI16:
6099       if (!gp_disp_p)
6100 	{
6101 	  value = mips_elf_high (addend + symbol);
6102 	  value &= howto->dst_mask;
6103 	}
6104       else
6105 	{
6106 	  /* For MIPS16 ABI code we generate this sequence
6107 		0: li      $v0,%hi(_gp_disp)
6108 		4: addiupc $v1,%lo(_gp_disp)
6109 		8: sll     $v0,16
6110 	       12: addu    $v0,$v1
6111 	       14: move    $gp,$v0
6112 	     So the offsets of hi and lo relocs are the same, but the
6113 	     base $pc is that used by the ADDIUPC instruction at $t9 + 4.
6114 	     ADDIUPC clears the low two bits of the instruction address,
6115 	     so the base is ($t9 + 4) & ~3.  */
6116 	  if (r_type == R_MIPS16_HI16)
6117 	    value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
6118 	  /* The microMIPS .cpload sequence uses the same assembly
6119 	     instructions as the traditional psABI version, but the
6120 	     incoming $t9 has the low bit set.  */
6121 	  else if (r_type == R_MICROMIPS_HI16)
6122 	    value = mips_elf_high (addend + gp - p - 1);
6123 	  else
6124 	    value = mips_elf_high (addend + gp - p);
6125 	}
6126       break;
6127 
6128     case R_MIPS_LO16:
6129     case R_MIPS16_LO16:
6130     case R_MICROMIPS_LO16:
6131     case R_MICROMIPS_HI0_LO16:
6132       if (!gp_disp_p)
6133 	value = (symbol + addend) & howto->dst_mask;
6134       else
6135 	{
6136 	  /* See the comment for R_MIPS16_HI16 above for the reason
6137 	     for this conditional.  */
6138 	  if (r_type == R_MIPS16_LO16)
6139 	    value = addend + gp - (p & ~(bfd_vma) 0x3);
6140 	  else if (r_type == R_MICROMIPS_LO16
6141 		   || r_type == R_MICROMIPS_HI0_LO16)
6142 	    value = addend + gp - p + 3;
6143 	  else
6144 	    value = addend + gp - p + 4;
6145 	  /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
6146 	     for overflow.  But, on, say, IRIX5, relocations against
6147 	     _gp_disp are normally generated from the .cpload
6148 	     pseudo-op.  It generates code that normally looks like
6149 	     this:
6150 
6151 	       lui    $gp,%hi(_gp_disp)
6152 	       addiu  $gp,$gp,%lo(_gp_disp)
6153 	       addu   $gp,$gp,$t9
6154 
6155 	     Here $t9 holds the address of the function being called,
6156 	     as required by the MIPS ELF ABI.  The R_MIPS_LO16
6157 	     relocation can easily overflow in this situation, but the
6158 	     R_MIPS_HI16 relocation will handle the overflow.
6159 	     Therefore, we consider this a bug in the MIPS ABI, and do
6160 	     not check for overflow here.  */
6161 	}
6162       break;
6163 
6164     case R_MIPS_LITERAL:
6165     case R_MICROMIPS_LITERAL:
6166       /* Because we don't merge literal sections, we can handle this
6167 	 just like R_MIPS_GPREL16.  In the long run, we should merge
6168 	 shared literals, and then we will need to additional work
6169 	 here.  */
6170 
6171       /* Fall through.  */
6172 
6173     case R_MIPS16_GPREL:
6174       /* The R_MIPS16_GPREL performs the same calculation as
6175 	 R_MIPS_GPREL16, but stores the relocated bits in a different
6176 	 order.  We don't need to do anything special here; the
6177 	 differences are handled in mips_elf_perform_relocation.  */
6178     case R_MIPS_GPREL16:
6179     case R_MICROMIPS_GPREL7_S2:
6180     case R_MICROMIPS_GPREL16:
6181       /* Only sign-extend the addend if it was extracted from the
6182 	 instruction.  If the addend was separate, leave it alone,
6183 	 otherwise we may lose significant bits.  */
6184       if (howto->partial_inplace)
6185 	addend = _bfd_mips_elf_sign_extend (addend, 16);
6186       value = symbol + addend - gp;
6187       /* If the symbol was local, any earlier relocatable links will
6188 	 have adjusted its addend with the gp offset, so compensate
6189 	 for that now.  Don't do it for symbols forced local in this
6190 	 link, though, since they won't have had the gp offset applied
6191 	 to them before.  */
6192       if (was_local_p)
6193 	value += gp0;
6194       if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6195 	overflowed_p = mips_elf_overflow_p (value, 16);
6196       break;
6197 
6198     case R_MIPS16_GOT16:
6199     case R_MIPS16_CALL16:
6200     case R_MIPS_GOT16:
6201     case R_MIPS_CALL16:
6202     case R_MICROMIPS_GOT16:
6203     case R_MICROMIPS_CALL16:
6204       /* VxWorks does not have separate local and global semantics for
6205 	 R_MIPS*_GOT16; every relocation evaluates to "G".  */
6206       if (htab->root.target_os != is_vxworks && local_p)
6207 	{
6208 	  value = mips_elf_got16_entry (abfd, input_bfd, info,
6209 					symbol + addend, !was_local_p);
6210 	  if (value == MINUS_ONE)
6211 	    return bfd_reloc_outofrange;
6212 	  value
6213 	    = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6214 	  overflowed_p = mips_elf_overflow_p (value, 16);
6215 	  break;
6216 	}
6217 
6218       /* Fall through.  */
6219 
6220     case R_MIPS_TLS_GD:
6221     case R_MIPS_TLS_GOTTPREL:
6222     case R_MIPS_TLS_LDM:
6223     case R_MIPS_GOT_DISP:
6224     case R_MIPS16_TLS_GD:
6225     case R_MIPS16_TLS_GOTTPREL:
6226     case R_MIPS16_TLS_LDM:
6227     case R_MICROMIPS_TLS_GD:
6228     case R_MICROMIPS_TLS_GOTTPREL:
6229     case R_MICROMIPS_TLS_LDM:
6230     case R_MICROMIPS_GOT_DISP:
6231       value = g;
6232       overflowed_p = mips_elf_overflow_p (value, 16);
6233       break;
6234 
6235     case R_MIPS_GPREL32:
6236       value = (addend + symbol + gp0 - gp);
6237       if (!save_addend)
6238 	value &= howto->dst_mask;
6239       break;
6240 
6241     case R_MIPS_PC16:
6242     case R_MIPS_GNU_REL16_S2:
6243       if (howto->partial_inplace)
6244 	addend = _bfd_mips_elf_sign_extend (addend, 18);
6245 
6246       /* No need to exclude weak undefined symbols here as they resolve
6247 	 to 0 and never set `*cross_mode_jump_p', so this alignment check
6248 	 will never trigger for them.  */
6249       if (*cross_mode_jump_p
6250 	  ? ((symbol + addend) & 3) != 1
6251 	  : ((symbol + addend) & 3) != 0)
6252 	return bfd_reloc_outofrange;
6253 
6254       value = symbol + addend - p;
6255       if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6256 	overflowed_p = mips_elf_overflow_p (value, 18);
6257       value >>= howto->rightshift;
6258       value &= howto->dst_mask;
6259       break;
6260 
6261     case R_MIPS16_PC16_S1:
6262       if (howto->partial_inplace)
6263 	addend = _bfd_mips_elf_sign_extend (addend, 17);
6264 
6265       if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6266 	  && (*cross_mode_jump_p
6267 	      ? ((symbol + addend) & 3) != 0
6268 	      : ((symbol + addend) & 1) == 0))
6269 	return bfd_reloc_outofrange;
6270 
6271       value = symbol + addend - p;
6272       if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6273 	overflowed_p = mips_elf_overflow_p (value, 17);
6274       value >>= howto->rightshift;
6275       value &= howto->dst_mask;
6276       break;
6277 
6278     case R_MIPS_PC21_S2:
6279       if (howto->partial_inplace)
6280 	addend = _bfd_mips_elf_sign_extend (addend, 23);
6281 
6282       if ((symbol + addend) & 3)
6283 	return bfd_reloc_outofrange;
6284 
6285       value = symbol + addend - p;
6286       if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6287 	overflowed_p = mips_elf_overflow_p (value, 23);
6288       value >>= howto->rightshift;
6289       value &= howto->dst_mask;
6290       break;
6291 
6292     case R_MIPS_PC26_S2:
6293       if (howto->partial_inplace)
6294 	addend = _bfd_mips_elf_sign_extend (addend, 28);
6295 
6296       if ((symbol + addend) & 3)
6297 	return bfd_reloc_outofrange;
6298 
6299       value = symbol + addend - p;
6300       if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6301 	overflowed_p = mips_elf_overflow_p (value, 28);
6302       value >>= howto->rightshift;
6303       value &= howto->dst_mask;
6304       break;
6305 
6306     case R_MIPS_PC18_S3:
6307       if (howto->partial_inplace)
6308 	addend = _bfd_mips_elf_sign_extend (addend, 21);
6309 
6310       if ((symbol + addend) & 7)
6311 	return bfd_reloc_outofrange;
6312 
6313       value = symbol + addend - ((p | 7) ^ 7);
6314       if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6315 	overflowed_p = mips_elf_overflow_p (value, 21);
6316       value >>= howto->rightshift;
6317       value &= howto->dst_mask;
6318       break;
6319 
6320     case R_MIPS_PC19_S2:
6321       if (howto->partial_inplace)
6322 	addend = _bfd_mips_elf_sign_extend (addend, 21);
6323 
6324       if ((symbol + addend) & 3)
6325 	return bfd_reloc_outofrange;
6326 
6327       value = symbol + addend - p;
6328       if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6329 	overflowed_p = mips_elf_overflow_p (value, 21);
6330       value >>= howto->rightshift;
6331       value &= howto->dst_mask;
6332       break;
6333 
6334     case R_MIPS_PCHI16:
6335       value = mips_elf_high (symbol + addend - p);
6336       value &= howto->dst_mask;
6337       break;
6338 
6339     case R_MIPS_PCLO16:
6340       if (howto->partial_inplace)
6341 	addend = _bfd_mips_elf_sign_extend (addend, 16);
6342       value = symbol + addend - p;
6343       value &= howto->dst_mask;
6344       break;
6345 
6346     case R_MICROMIPS_PC7_S1:
6347       if (howto->partial_inplace)
6348 	addend = _bfd_mips_elf_sign_extend (addend, 8);
6349 
6350       if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6351 	  && (*cross_mode_jump_p
6352 	      ? ((symbol + addend + 2) & 3) != 0
6353 	      : ((symbol + addend + 2) & 1) == 0))
6354 	return bfd_reloc_outofrange;
6355 
6356       value = symbol + addend - p;
6357       if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6358 	overflowed_p = mips_elf_overflow_p (value, 8);
6359       value >>= howto->rightshift;
6360       value &= howto->dst_mask;
6361       break;
6362 
6363     case R_MICROMIPS_PC10_S1:
6364       if (howto->partial_inplace)
6365 	addend = _bfd_mips_elf_sign_extend (addend, 11);
6366 
6367       if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6368 	  && (*cross_mode_jump_p
6369 	      ? ((symbol + addend + 2) & 3) != 0
6370 	      : ((symbol + addend + 2) & 1) == 0))
6371 	return bfd_reloc_outofrange;
6372 
6373       value = symbol + addend - p;
6374       if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6375 	overflowed_p = mips_elf_overflow_p (value, 11);
6376       value >>= howto->rightshift;
6377       value &= howto->dst_mask;
6378       break;
6379 
6380     case R_MICROMIPS_PC16_S1:
6381       if (howto->partial_inplace)
6382 	addend = _bfd_mips_elf_sign_extend (addend, 17);
6383 
6384       if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6385 	  && (*cross_mode_jump_p
6386 	      ? ((symbol + addend) & 3) != 0
6387 	      : ((symbol + addend) & 1) == 0))
6388 	return bfd_reloc_outofrange;
6389 
6390       value = symbol + addend - p;
6391       if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6392 	overflowed_p = mips_elf_overflow_p (value, 17);
6393       value >>= howto->rightshift;
6394       value &= howto->dst_mask;
6395       break;
6396 
6397     case R_MICROMIPS_PC23_S2:
6398       if (howto->partial_inplace)
6399 	addend = _bfd_mips_elf_sign_extend (addend, 25);
6400       value = symbol + addend - ((p | 3) ^ 3);
6401       if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6402 	overflowed_p = mips_elf_overflow_p (value, 25);
6403       value >>= howto->rightshift;
6404       value &= howto->dst_mask;
6405       break;
6406 
6407     case R_MIPS_GOT_HI16:
6408     case R_MIPS_CALL_HI16:
6409     case R_MICROMIPS_GOT_HI16:
6410     case R_MICROMIPS_CALL_HI16:
6411       /* We're allowed to handle these two relocations identically.
6412 	 The dynamic linker is allowed to handle the CALL relocations
6413 	 differently by creating a lazy evaluation stub.  */
6414       value = g;
6415       value = mips_elf_high (value);
6416       value &= howto->dst_mask;
6417       break;
6418 
6419     case R_MIPS_GOT_LO16:
6420     case R_MIPS_CALL_LO16:
6421     case R_MICROMIPS_GOT_LO16:
6422     case R_MICROMIPS_CALL_LO16:
6423       value = g & howto->dst_mask;
6424       break;
6425 
6426     case R_MIPS_GOT_PAGE:
6427     case R_MICROMIPS_GOT_PAGE:
6428       value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
6429       if (value == MINUS_ONE)
6430 	return bfd_reloc_outofrange;
6431       value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6432       overflowed_p = mips_elf_overflow_p (value, 16);
6433       break;
6434 
6435     case R_MIPS_GOT_OFST:
6436     case R_MICROMIPS_GOT_OFST:
6437       if (local_p)
6438 	mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
6439       else
6440 	value = addend;
6441       overflowed_p = mips_elf_overflow_p (value, 16);
6442       break;
6443 
6444     case R_MIPS_SUB:
6445     case R_MICROMIPS_SUB:
6446       value = symbol - addend;
6447       value &= howto->dst_mask;
6448       break;
6449 
6450     case R_MIPS_HIGHER:
6451     case R_MICROMIPS_HIGHER:
6452       value = mips_elf_higher (addend + symbol);
6453       value &= howto->dst_mask;
6454       break;
6455 
6456     case R_MIPS_HIGHEST:
6457     case R_MICROMIPS_HIGHEST:
6458       value = mips_elf_highest (addend + symbol);
6459       value &= howto->dst_mask;
6460       break;
6461 
6462     case R_MIPS_SCN_DISP:
6463     case R_MICROMIPS_SCN_DISP:
6464       value = symbol + addend - sec->output_offset;
6465       value &= howto->dst_mask;
6466       break;
6467 
6468     case R_MIPS_JALR:
6469     case R_MICROMIPS_JALR:
6470       /* This relocation is only a hint.  In some cases, we optimize
6471 	 it into a bal instruction.  But we don't try to optimize
6472 	 when the symbol does not resolve locally.  */
6473       if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
6474 	return bfd_reloc_continue;
6475       /* We can't optimize cross-mode jumps either.  */
6476       if (*cross_mode_jump_p)
6477 	return bfd_reloc_continue;
6478       value = symbol + addend;
6479       /* Neither we can non-instruction-aligned targets.  */
6480       if (r_type == R_MIPS_JALR ? (value & 3) != 0 : (value & 1) == 0)
6481 	return bfd_reloc_continue;
6482       break;
6483 
6484     case R_MIPS_PJUMP:
6485     case R_MIPS_GNU_VTINHERIT:
6486     case R_MIPS_GNU_VTENTRY:
6487       /* We don't do anything with these at present.  */
6488       return bfd_reloc_continue;
6489 
6490     default:
6491       /* An unrecognized relocation type.  */
6492       return bfd_reloc_notsupported;
6493     }
6494 
6495   /* Store the VALUE for our caller.  */
6496   *valuep = value;
6497   return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6498 }
6499 
6500 /* It has been determined that the result of the RELOCATION is the
6501    VALUE.  Use HOWTO to place VALUE into the output file at the
6502    appropriate position.  The SECTION is the section to which the
6503    relocation applies.
6504    CROSS_MODE_JUMP_P is true if the relocation field
6505    is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
6506 
6507    Returns FALSE if anything goes wrong.  */
6508 
6509 static bool
mips_elf_perform_relocation(struct bfd_link_info * info,reloc_howto_type * howto,const Elf_Internal_Rela * relocation,bfd_vma value,bfd * input_bfd,asection * input_section,bfd_byte * contents,bool cross_mode_jump_p)6510 mips_elf_perform_relocation (struct bfd_link_info *info,
6511 			     reloc_howto_type *howto,
6512 			     const Elf_Internal_Rela *relocation,
6513 			     bfd_vma value, bfd *input_bfd,
6514 			     asection *input_section, bfd_byte *contents,
6515 			     bool cross_mode_jump_p)
6516 {
6517   bfd_vma x;
6518   bfd_byte *location;
6519   int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6520 
6521   /* Figure out where the relocation is occurring.  */
6522   location = contents + relocation->r_offset;
6523 
6524   _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, false, location);
6525 
6526   /* Obtain the current value.  */
6527   x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6528 
6529   /* Clear the field we are setting.  */
6530   x &= ~howto->dst_mask;
6531 
6532   /* Set the field.  */
6533   x |= (value & howto->dst_mask);
6534 
6535   /* Detect incorrect JALX usage.  If required, turn JAL or BAL into JALX.  */
6536   if (!cross_mode_jump_p && jal_reloc_p (r_type))
6537     {
6538       bfd_vma opcode = x >> 26;
6539 
6540       if (r_type == R_MIPS16_26 ? opcode == 0x7
6541 	  : r_type == R_MICROMIPS_26_S1 ? opcode == 0x3c
6542 	  : opcode == 0x1d)
6543 	{
6544 	  info->callbacks->einfo
6545 	    (_("%X%H: unsupported JALX to the same ISA mode\n"),
6546 	     input_bfd, input_section, relocation->r_offset);
6547 	  return true;
6548 	}
6549     }
6550   if (cross_mode_jump_p && jal_reloc_p (r_type))
6551     {
6552       bool ok;
6553       bfd_vma opcode = x >> 26;
6554       bfd_vma jalx_opcode;
6555 
6556       /* Check to see if the opcode is already JAL or JALX.  */
6557       if (r_type == R_MIPS16_26)
6558 	{
6559 	  ok = ((opcode == 0x6) || (opcode == 0x7));
6560 	  jalx_opcode = 0x7;
6561 	}
6562       else if (r_type == R_MICROMIPS_26_S1)
6563 	{
6564 	  ok = ((opcode == 0x3d) || (opcode == 0x3c));
6565 	  jalx_opcode = 0x3c;
6566 	}
6567       else
6568 	{
6569 	  ok = ((opcode == 0x3) || (opcode == 0x1d));
6570 	  jalx_opcode = 0x1d;
6571 	}
6572 
6573       /* If the opcode is not JAL or JALX, there's a problem.  We cannot
6574 	 convert J or JALS to JALX.  */
6575       if (!ok)
6576 	{
6577 	  info->callbacks->einfo
6578 	    (_("%X%H: unsupported jump between ISA modes; "
6579 	       "consider recompiling with interlinking enabled\n"),
6580 	     input_bfd, input_section, relocation->r_offset);
6581 	  return true;
6582 	}
6583 
6584       /* Make this the JALX opcode.  */
6585       x = (x & ~(0x3fu << 26)) | (jalx_opcode << 26);
6586     }
6587   else if (cross_mode_jump_p && b_reloc_p (r_type))
6588     {
6589       bool ok = false;
6590       bfd_vma opcode = x >> 16;
6591       bfd_vma jalx_opcode = 0;
6592       bfd_vma sign_bit = 0;
6593       bfd_vma addr;
6594       bfd_vma dest;
6595 
6596       if (r_type == R_MICROMIPS_PC16_S1)
6597 	{
6598 	  ok = opcode == 0x4060;
6599 	  jalx_opcode = 0x3c;
6600 	  sign_bit = 0x10000;
6601 	  value <<= 1;
6602 	}
6603       else if (r_type == R_MIPS_PC16 || r_type == R_MIPS_GNU_REL16_S2)
6604 	{
6605 	  ok = opcode == 0x411;
6606 	  jalx_opcode = 0x1d;
6607 	  sign_bit = 0x20000;
6608 	  value <<= 2;
6609 	}
6610 
6611       if (ok && !bfd_link_pic (info))
6612 	{
6613 	  addr = (input_section->output_section->vma
6614 		  + input_section->output_offset
6615 		  + relocation->r_offset
6616 		  + 4);
6617 	  dest = (addr
6618 		  + (((value & ((sign_bit << 1) - 1)) ^ sign_bit) - sign_bit));
6619 
6620 	  if ((addr >> 28) << 28 != (dest >> 28) << 28)
6621 	    {
6622 	      info->callbacks->einfo
6623 		(_("%X%H: cannot convert branch between ISA modes "
6624 		   "to JALX: relocation out of range\n"),
6625 		 input_bfd, input_section, relocation->r_offset);
6626 	      return true;
6627 	    }
6628 
6629 	  /* Make this the JALX opcode.  */
6630 	  x = ((dest >> 2) & 0x3ffffff) | jalx_opcode << 26;
6631 	}
6632       else if (!mips_elf_hash_table (info)->ignore_branch_isa)
6633 	{
6634 	  info->callbacks->einfo
6635 	    (_("%X%H: unsupported branch between ISA modes\n"),
6636 	     input_bfd, input_section, relocation->r_offset);
6637 	  return true;
6638 	}
6639     }
6640 
6641   /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6642      range.  */
6643   if (!bfd_link_relocatable (info)
6644       && !cross_mode_jump_p
6645       && ((JAL_TO_BAL_P (input_bfd)
6646 	   && r_type == R_MIPS_26
6647 	   && (x >> 26) == 0x3)			/* jal addr */
6648 	  || (JALR_TO_BAL_P (input_bfd)
6649 	      && r_type == R_MIPS_JALR
6650 	      && x == 0x0320f809)		/* jalr t9 */
6651 	  || (JR_TO_B_P (input_bfd)
6652 	      && r_type == R_MIPS_JALR
6653 	      && (x & ~1) == 0x03200008)))	/* jr t9 / jalr zero, t9 */
6654     {
6655       bfd_vma addr;
6656       bfd_vma dest;
6657       bfd_signed_vma off;
6658 
6659       addr = (input_section->output_section->vma
6660 	      + input_section->output_offset
6661 	      + relocation->r_offset
6662 	      + 4);
6663       if (r_type == R_MIPS_26)
6664 	dest = (value << 2) | ((addr >> 28) << 28);
6665       else
6666 	dest = value;
6667       off = dest - addr;
6668       if (off <= 0x1ffff && off >= -0x20000)
6669 	{
6670 	  if ((x & ~1) == 0x03200008)		/* jr t9 / jalr zero, t9 */
6671 	    x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff);   /* b addr */
6672 	  else
6673 	    x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff);   /* bal addr */
6674 	}
6675     }
6676 
6677   /* Put the value into the output.  */
6678   mips_elf_store_contents (howto, relocation, input_bfd, contents, x);
6679 
6680   _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
6681 			       location);
6682 
6683   return true;
6684 }
6685 
6686 /* Create a rel.dyn relocation for the dynamic linker to resolve.  REL
6687    is the original relocation, which is now being transformed into a
6688    dynamic relocation.  The ADDENDP is adjusted if necessary; the
6689    caller should store the result in place of the original addend.  */
6690 
6691 static bool
mips_elf_create_dynamic_relocation(bfd * output_bfd,struct bfd_link_info * info,const Elf_Internal_Rela * rel,struct mips_elf_link_hash_entry * h,asection * sec,bfd_vma symbol,bfd_vma * addendp,asection * input_section)6692 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6693 				    struct bfd_link_info *info,
6694 				    const Elf_Internal_Rela *rel,
6695 				    struct mips_elf_link_hash_entry *h,
6696 				    asection *sec, bfd_vma symbol,
6697 				    bfd_vma *addendp, asection *input_section)
6698 {
6699   Elf_Internal_Rela outrel[3];
6700   asection *sreloc;
6701   bfd *dynobj;
6702   int r_type;
6703   long indx;
6704   bool defined_p;
6705   struct mips_elf_link_hash_table *htab;
6706 
6707   htab = mips_elf_hash_table (info);
6708   BFD_ASSERT (htab != NULL);
6709 
6710   r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6711   dynobj = elf_hash_table (info)->dynobj;
6712   sreloc = mips_elf_rel_dyn_section (info, false);
6713   BFD_ASSERT (sreloc != NULL);
6714   BFD_ASSERT (sreloc->contents != NULL);
6715   BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6716 	      < sreloc->size);
6717 
6718   outrel[0].r_offset =
6719     _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6720   if (ABI_64_P (output_bfd))
6721     {
6722       outrel[1].r_offset =
6723 	_bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6724       outrel[2].r_offset =
6725 	_bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6726     }
6727 
6728   if (outrel[0].r_offset == MINUS_ONE)
6729     /* The relocation field has been deleted.  */
6730     return true;
6731 
6732   if (outrel[0].r_offset == MINUS_TWO)
6733     {
6734       /* The relocation field has been converted into a relative value of
6735 	 some sort.  Functions like _bfd_elf_write_section_eh_frame expect
6736 	 the field to be fully relocated, so add in the symbol's value.  */
6737       *addendp += symbol;
6738       return true;
6739     }
6740 
6741   /* We must now calculate the dynamic symbol table index to use
6742      in the relocation.  */
6743   if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6744     {
6745       BFD_ASSERT (htab->root.target_os == is_vxworks
6746 		  || h->global_got_area != GGA_NONE);
6747       indx = h->root.dynindx;
6748       if (SGI_COMPAT (output_bfd))
6749 	defined_p = h->root.def_regular;
6750       else
6751 	/* ??? glibc's ld.so just adds the final GOT entry to the
6752 	   relocation field.  It therefore treats relocs against
6753 	   defined symbols in the same way as relocs against
6754 	   undefined symbols.  */
6755 	defined_p = false;
6756     }
6757   else
6758     {
6759       if (sec != NULL && bfd_is_abs_section (sec))
6760 	indx = 0;
6761       else if (sec == NULL || sec->owner == NULL)
6762 	{
6763 	  bfd_set_error (bfd_error_bad_value);
6764 	  return false;
6765 	}
6766       else
6767 	{
6768 	  indx = elf_section_data (sec->output_section)->dynindx;
6769 	  if (indx == 0)
6770 	    {
6771 	      asection *osec = htab->root.text_index_section;
6772 	      indx = elf_section_data (osec)->dynindx;
6773 	    }
6774 	  if (indx == 0)
6775 	    abort ();
6776 	}
6777 
6778       /* Instead of generating a relocation using the section
6779 	 symbol, we may as well make it a fully relative
6780 	 relocation.  We want to avoid generating relocations to
6781 	 local symbols because we used to generate them
6782 	 incorrectly, without adding the original symbol value,
6783 	 which is mandated by the ABI for section symbols.  In
6784 	 order to give dynamic loaders and applications time to
6785 	 phase out the incorrect use, we refrain from emitting
6786 	 section-relative relocations.  It's not like they're
6787 	 useful, after all.  This should be a bit more efficient
6788 	 as well.  */
6789       /* ??? Although this behavior is compatible with glibc's ld.so,
6790 	 the ABI says that relocations against STN_UNDEF should have
6791 	 a symbol value of 0.  Irix rld honors this, so relocations
6792 	 against STN_UNDEF have no effect.  */
6793       if (!SGI_COMPAT (output_bfd))
6794 	indx = 0;
6795       defined_p = true;
6796     }
6797 
6798   /* If the relocation was previously an absolute relocation and
6799      this symbol will not be referred to by the relocation, we must
6800      adjust it by the value we give it in the dynamic symbol table.
6801      Otherwise leave the job up to the dynamic linker.  */
6802   if (defined_p && r_type != R_MIPS_REL32)
6803     *addendp += symbol;
6804 
6805   if (htab->root.target_os == is_vxworks)
6806     /* VxWorks uses non-relative relocations for this.  */
6807     outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6808   else
6809     /* The relocation is always an REL32 relocation because we don't
6810        know where the shared library will wind up at load-time.  */
6811     outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6812 				   R_MIPS_REL32);
6813 
6814   /* For strict adherence to the ABI specification, we should
6815      generate a R_MIPS_64 relocation record by itself before the
6816      _REL32/_64 record as well, such that the addend is read in as
6817      a 64-bit value (REL32 is a 32-bit relocation, after all).
6818      However, since none of the existing ELF64 MIPS dynamic
6819      loaders seems to care, we don't waste space with these
6820      artificial relocations.  If this turns out to not be true,
6821      mips_elf_allocate_dynamic_relocation() should be tweaked so
6822      as to make room for a pair of dynamic relocations per
6823      invocation if ABI_64_P, and here we should generate an
6824      additional relocation record with R_MIPS_64 by itself for a
6825      NULL symbol before this relocation record.  */
6826   outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6827 				 ABI_64_P (output_bfd)
6828 				 ? R_MIPS_64
6829 				 : R_MIPS_NONE);
6830   outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6831 
6832   /* Adjust the output offset of the relocation to reference the
6833      correct location in the output file.  */
6834   outrel[0].r_offset += (input_section->output_section->vma
6835 			 + input_section->output_offset);
6836   outrel[1].r_offset += (input_section->output_section->vma
6837 			 + input_section->output_offset);
6838   outrel[2].r_offset += (input_section->output_section->vma
6839 			 + input_section->output_offset);
6840 
6841   /* Put the relocation back out.  We have to use the special
6842      relocation outputter in the 64-bit case since the 64-bit
6843      relocation format is non-standard.  */
6844   if (ABI_64_P (output_bfd))
6845     {
6846       (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6847 	(output_bfd, &outrel[0],
6848 	 (sreloc->contents
6849 	  + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6850     }
6851   else if (htab->root.target_os == is_vxworks)
6852     {
6853       /* VxWorks uses RELA rather than REL dynamic relocations.  */
6854       outrel[0].r_addend = *addendp;
6855       bfd_elf32_swap_reloca_out
6856 	(output_bfd, &outrel[0],
6857 	 (sreloc->contents
6858 	  + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6859     }
6860   else
6861     bfd_elf32_swap_reloc_out
6862       (output_bfd, &outrel[0],
6863        (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6864 
6865   /* We've now added another relocation.  */
6866   ++sreloc->reloc_count;
6867 
6868   /* Make sure the output section is writable.  The dynamic linker
6869      will be writing to it.  */
6870   elf_section_data (input_section->output_section)->this_hdr.sh_flags
6871     |= SHF_WRITE;
6872 
6873   /* On IRIX5, make an entry of compact relocation info.  */
6874   if (IRIX_COMPAT (output_bfd) == ict_irix5)
6875     {
6876       asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6877       bfd_byte *cr;
6878 
6879       if (scpt)
6880 	{
6881 	  Elf32_crinfo cptrel;
6882 
6883 	  mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6884 	  cptrel.vaddr = (rel->r_offset
6885 			  + input_section->output_section->vma
6886 			  + input_section->output_offset);
6887 	  if (r_type == R_MIPS_REL32)
6888 	    mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6889 	  else
6890 	    mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6891 	  mips_elf_set_cr_dist2to (cptrel, 0);
6892 	  cptrel.konst = *addendp;
6893 
6894 	  cr = (scpt->contents
6895 		+ sizeof (Elf32_External_compact_rel));
6896 	  mips_elf_set_cr_relvaddr (cptrel, 0);
6897 	  bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6898 				     ((Elf32_External_crinfo *) cr
6899 				      + scpt->reloc_count));
6900 	  ++scpt->reloc_count;
6901 	}
6902     }
6903 
6904   /* If we've written this relocation for a readonly section,
6905      we need to set DF_TEXTREL again, so that we do not delete the
6906      DT_TEXTREL tag.  */
6907   if (MIPS_ELF_READONLY_SECTION (input_section))
6908     info->flags |= DF_TEXTREL;
6909 
6910   return true;
6911 }
6912 
6913 /* Return the MACH for a MIPS e_flags value.  */
6914 
6915 unsigned long
_bfd_elf_mips_mach(flagword flags)6916 _bfd_elf_mips_mach (flagword flags)
6917 {
6918   switch (flags & EF_MIPS_MACH)
6919     {
6920     case E_MIPS_MACH_3900:
6921       return bfd_mach_mips3900;
6922 
6923     case E_MIPS_MACH_4010:
6924       return bfd_mach_mips4010;
6925 
6926     case E_MIPS_MACH_4100:
6927       return bfd_mach_mips4100;
6928 
6929     case E_MIPS_MACH_4111:
6930       return bfd_mach_mips4111;
6931 
6932     case E_MIPS_MACH_4120:
6933       return bfd_mach_mips4120;
6934 
6935     case E_MIPS_MACH_4650:
6936       return bfd_mach_mips4650;
6937 
6938     case E_MIPS_MACH_5400:
6939       return bfd_mach_mips5400;
6940 
6941     case E_MIPS_MACH_5500:
6942       return bfd_mach_mips5500;
6943 
6944     case E_MIPS_MACH_5900:
6945       return bfd_mach_mips5900;
6946 
6947     case E_MIPS_MACH_9000:
6948       return bfd_mach_mips9000;
6949 
6950     case E_MIPS_MACH_SB1:
6951       return bfd_mach_mips_sb1;
6952 
6953     case E_MIPS_MACH_LS2E:
6954       return bfd_mach_mips_loongson_2e;
6955 
6956     case E_MIPS_MACH_LS2F:
6957       return bfd_mach_mips_loongson_2f;
6958 
6959     case E_MIPS_MACH_GS464:
6960       return bfd_mach_mips_gs464;
6961 
6962     case E_MIPS_MACH_GS464E:
6963       return bfd_mach_mips_gs464e;
6964 
6965     case E_MIPS_MACH_GS264E:
6966       return bfd_mach_mips_gs264e;
6967 
6968     case E_MIPS_MACH_OCTEON3:
6969       return bfd_mach_mips_octeon3;
6970 
6971     case E_MIPS_MACH_OCTEON2:
6972       return bfd_mach_mips_octeon2;
6973 
6974     case E_MIPS_MACH_OCTEON:
6975       return bfd_mach_mips_octeon;
6976 
6977     case E_MIPS_MACH_XLR:
6978       return bfd_mach_mips_xlr;
6979 
6980     case E_MIPS_MACH_IAMR2:
6981       return bfd_mach_mips_interaptiv_mr2;
6982 
6983     default:
6984       switch (flags & EF_MIPS_ARCH)
6985 	{
6986 	default:
6987 	case E_MIPS_ARCH_1:
6988 	  return bfd_mach_mips3000;
6989 
6990 	case E_MIPS_ARCH_2:
6991 	  return bfd_mach_mips6000;
6992 
6993 	case E_MIPS_ARCH_3:
6994 	  return bfd_mach_mips4000;
6995 
6996 	case E_MIPS_ARCH_4:
6997 	  return bfd_mach_mips8000;
6998 
6999 	case E_MIPS_ARCH_5:
7000 	  return bfd_mach_mips5;
7001 
7002 	case E_MIPS_ARCH_32:
7003 	  return bfd_mach_mipsisa32;
7004 
7005 	case E_MIPS_ARCH_64:
7006 	  return bfd_mach_mipsisa64;
7007 
7008 	case E_MIPS_ARCH_32R2:
7009 	  return bfd_mach_mipsisa32r2;
7010 
7011 	case E_MIPS_ARCH_64R2:
7012 	  return bfd_mach_mipsisa64r2;
7013 
7014 	case E_MIPS_ARCH_32R6:
7015 	  return bfd_mach_mipsisa32r6;
7016 
7017 	case E_MIPS_ARCH_64R6:
7018 	  return bfd_mach_mipsisa64r6;
7019 	}
7020     }
7021 
7022   return 0;
7023 }
7024 
7025 /* Return printable name for ABI.  */
7026 
7027 static inline char *
elf_mips_abi_name(bfd * abfd)7028 elf_mips_abi_name (bfd *abfd)
7029 {
7030   flagword flags;
7031 
7032   flags = elf_elfheader (abfd)->e_flags;
7033   switch (flags & EF_MIPS_ABI)
7034     {
7035     case 0:
7036       if (ABI_N32_P (abfd))
7037 	return "N32";
7038       else if (ABI_64_P (abfd))
7039 	return "64";
7040       else
7041 	return "none";
7042     case E_MIPS_ABI_O32:
7043       return "O32";
7044     case E_MIPS_ABI_O64:
7045       return "O64";
7046     case E_MIPS_ABI_EABI32:
7047       return "EABI32";
7048     case E_MIPS_ABI_EABI64:
7049       return "EABI64";
7050     default:
7051       return "unknown abi";
7052     }
7053 }
7054 
7055 /* MIPS ELF uses two common sections.  One is the usual one, and the
7056    other is for small objects.  All the small objects are kept
7057    together, and then referenced via the gp pointer, which yields
7058    faster assembler code.  This is what we use for the small common
7059    section.  This approach is copied from ecoff.c.  */
7060 static asection mips_elf_scom_section;
7061 static const asymbol mips_elf_scom_symbol =
7062   GLOBAL_SYM_INIT (".scommon", &mips_elf_scom_section);
7063 static asection mips_elf_scom_section =
7064   BFD_FAKE_SECTION (mips_elf_scom_section, &mips_elf_scom_symbol,
7065 		    ".scommon", 0, SEC_IS_COMMON | SEC_SMALL_DATA);
7066 
7067 /* MIPS ELF also uses an acommon section, which represents an
7068    allocated common symbol which may be overridden by a
7069    definition in a shared library.  */
7070 static asection mips_elf_acom_section;
7071 static const asymbol mips_elf_acom_symbol =
7072   GLOBAL_SYM_INIT (".acommon", &mips_elf_acom_section);
7073 static asection mips_elf_acom_section =
7074   BFD_FAKE_SECTION (mips_elf_acom_section, &mips_elf_acom_symbol,
7075 		    ".acommon", 0, SEC_ALLOC);
7076 
7077 /* This is used for both the 32-bit and the 64-bit ABI.  */
7078 
7079 void
_bfd_mips_elf_symbol_processing(bfd * abfd,asymbol * asym)7080 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
7081 {
7082   elf_symbol_type *elfsym;
7083 
7084   /* Handle the special MIPS section numbers that a symbol may use.  */
7085   elfsym = (elf_symbol_type *) asym;
7086   switch (elfsym->internal_elf_sym.st_shndx)
7087     {
7088     case SHN_MIPS_ACOMMON:
7089       /* This section is used in a dynamically linked executable file.
7090 	 It is an allocated common section.  The dynamic linker can
7091 	 either resolve these symbols to something in a shared
7092 	 library, or it can just leave them here.  For our purposes,
7093 	 we can consider these symbols to be in a new section.  */
7094       asym->section = &mips_elf_acom_section;
7095       break;
7096 
7097     case SHN_COMMON:
7098       /* Common symbols less than the GP size are automatically
7099 	 treated as SHN_MIPS_SCOMMON symbols on IRIX5.  */
7100       if (asym->value > elf_gp_size (abfd)
7101 	  || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
7102 	  || IRIX_COMPAT (abfd) == ict_irix6)
7103 	break;
7104       /* Fall through.  */
7105     case SHN_MIPS_SCOMMON:
7106       asym->section = &mips_elf_scom_section;
7107       asym->value = elfsym->internal_elf_sym.st_size;
7108       break;
7109 
7110     case SHN_MIPS_SUNDEFINED:
7111       asym->section = bfd_und_section_ptr;
7112       break;
7113 
7114     case SHN_MIPS_TEXT:
7115       {
7116 	asection *section = bfd_get_section_by_name (abfd, ".text");
7117 
7118 	if (section != NULL)
7119 	  {
7120 	    asym->section = section;
7121 	    /* MIPS_TEXT is a bit special, the address is not an offset
7122 	       to the base of the .text section.  So subtract the section
7123 	       base address to make it an offset.  */
7124 	    asym->value -= section->vma;
7125 	  }
7126       }
7127       break;
7128 
7129     case SHN_MIPS_DATA:
7130       {
7131 	asection *section = bfd_get_section_by_name (abfd, ".data");
7132 
7133 	if (section != NULL)
7134 	  {
7135 	    asym->section = section;
7136 	    /* MIPS_DATA is a bit special, the address is not an offset
7137 	       to the base of the .data section.  So subtract the section
7138 	       base address to make it an offset.  */
7139 	    asym->value -= section->vma;
7140 	  }
7141       }
7142       break;
7143     }
7144 
7145   /* If this is an odd-valued function symbol, assume it's a MIPS16
7146      or microMIPS one.  */
7147   if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
7148       && (asym->value & 1) != 0)
7149     {
7150       asym->value--;
7151       if (MICROMIPS_P (abfd))
7152 	elfsym->internal_elf_sym.st_other
7153 	  = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
7154       else
7155 	elfsym->internal_elf_sym.st_other
7156 	  = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
7157     }
7158 }
7159 
7160 /* Implement elf_backend_eh_frame_address_size.  This differs from
7161    the default in the way it handles EABI64.
7162 
7163    EABI64 was originally specified as an LP64 ABI, and that is what
7164    -mabi=eabi normally gives on a 64-bit target.  However, gcc has
7165    historically accepted the combination of -mabi=eabi and -mlong32,
7166    and this ILP32 variation has become semi-official over time.
7167    Both forms use elf32 and have pointer-sized FDE addresses.
7168 
7169    If an EABI object was generated by GCC 4.0 or above, it will have
7170    an empty .gcc_compiled_longXX section, where XX is the size of longs
7171    in bits.  Unfortunately, ILP32 objects generated by earlier compilers
7172    have no special marking to distinguish them from LP64 objects.
7173 
7174    We don't want users of the official LP64 ABI to be punished for the
7175    existence of the ILP32 variant, but at the same time, we don't want
7176    to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
7177    We therefore take the following approach:
7178 
7179       - If ABFD contains a .gcc_compiled_longXX section, use it to
7180 	determine the pointer size.
7181 
7182       - Otherwise check the type of the first relocation.  Assume that
7183 	the LP64 ABI is being used if the relocation is of type R_MIPS_64.
7184 
7185       - Otherwise punt.
7186 
7187    The second check is enough to detect LP64 objects generated by pre-4.0
7188    compilers because, in the kind of output generated by those compilers,
7189    the first relocation will be associated with either a CIE personality
7190    routine or an FDE start address.  Furthermore, the compilers never
7191    used a special (non-pointer) encoding for this ABI.
7192 
7193    Checking the relocation type should also be safe because there is no
7194    reason to use R_MIPS_64 in an ILP32 object.  Pre-4.0 compilers never
7195    did so.  */
7196 
7197 unsigned int
_bfd_mips_elf_eh_frame_address_size(bfd * abfd,const asection * sec)7198 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, const asection *sec)
7199 {
7200   if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
7201     return 8;
7202   if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
7203     {
7204       bool long32_p, long64_p;
7205 
7206       long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
7207       long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
7208       if (long32_p && long64_p)
7209 	return 0;
7210       if (long32_p)
7211 	return 4;
7212       if (long64_p)
7213 	return 8;
7214 
7215       if (sec->reloc_count > 0
7216 	  && elf_section_data (sec)->relocs != NULL
7217 	  && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
7218 	      == R_MIPS_64))
7219 	return 8;
7220 
7221       return 0;
7222     }
7223   return 4;
7224 }
7225 
7226 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
7227    relocations against two unnamed section symbols to resolve to the
7228    same address.  For example, if we have code like:
7229 
7230 	lw	$4,%got_disp(.data)($gp)
7231 	lw	$25,%got_disp(.text)($gp)
7232 	jalr	$25
7233 
7234    then the linker will resolve both relocations to .data and the program
7235    will jump there rather than to .text.
7236 
7237    We can work around this problem by giving names to local section symbols.
7238    This is also what the MIPSpro tools do.  */
7239 
7240 bool
_bfd_mips_elf_name_local_section_symbols(bfd * abfd)7241 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
7242 {
7243   return elf_elfheader (abfd)->e_type == ET_REL && SGI_COMPAT (abfd);
7244 }
7245 
7246 /* Work over a section just before writing it out.  This routine is
7247    used by both the 32-bit and the 64-bit ABI.  FIXME: We recognize
7248    sections that need the SHF_MIPS_GPREL flag by name; there has to be
7249    a better way.  */
7250 
7251 bool
_bfd_mips_elf_section_processing(bfd * abfd,Elf_Internal_Shdr * hdr)7252 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
7253 {
7254   if (hdr->sh_type == SHT_MIPS_REGINFO
7255       && hdr->sh_size > 0)
7256     {
7257       bfd_byte buf[4];
7258 
7259       BFD_ASSERT (hdr->contents == NULL);
7260 
7261       if (hdr->sh_size != sizeof (Elf32_External_RegInfo))
7262 	{
7263 	  _bfd_error_handler
7264 	    (_("%pB: incorrect `.reginfo' section size; "
7265 	       "expected %" PRIu64 ", got %" PRIu64),
7266 	     abfd, (uint64_t) sizeof (Elf32_External_RegInfo),
7267 	     (uint64_t) hdr->sh_size);
7268 	  bfd_set_error (bfd_error_bad_value);
7269 	  return false;
7270 	}
7271 
7272       if (bfd_seek (abfd,
7273 		    hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
7274 		    SEEK_SET) != 0)
7275 	return false;
7276       H_PUT_32 (abfd, elf_gp (abfd), buf);
7277       if (bfd_bwrite (buf, 4, abfd) != 4)
7278 	return false;
7279     }
7280 
7281   if (hdr->sh_type == SHT_MIPS_OPTIONS
7282       && hdr->bfd_section != NULL
7283       && mips_elf_section_data (hdr->bfd_section) != NULL
7284       && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
7285     {
7286       bfd_byte *contents, *l, *lend;
7287 
7288       /* We stored the section contents in the tdata field in the
7289 	 set_section_contents routine.  We save the section contents
7290 	 so that we don't have to read them again.
7291 	 At this point we know that elf_gp is set, so we can look
7292 	 through the section contents to see if there is an
7293 	 ODK_REGINFO structure.  */
7294 
7295       contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
7296       l = contents;
7297       lend = contents + hdr->sh_size;
7298       while (l + sizeof (Elf_External_Options) <= lend)
7299 	{
7300 	  Elf_Internal_Options intopt;
7301 
7302 	  bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7303 					&intopt);
7304 	  if (intopt.size < sizeof (Elf_External_Options))
7305 	    {
7306 	      _bfd_error_handler
7307 		/* xgettext:c-format */
7308 		(_("%pB: warning: bad `%s' option size %u smaller than"
7309 		   " its header"),
7310 		abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7311 	      break;
7312 	    }
7313 	  if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7314 	    {
7315 	      bfd_byte buf[8];
7316 
7317 	      if (bfd_seek (abfd,
7318 			    (hdr->sh_offset
7319 			     + (l - contents)
7320 			     + sizeof (Elf_External_Options)
7321 			     + (sizeof (Elf64_External_RegInfo) - 8)),
7322 			     SEEK_SET) != 0)
7323 		return false;
7324 	      H_PUT_64 (abfd, elf_gp (abfd), buf);
7325 	      if (bfd_bwrite (buf, 8, abfd) != 8)
7326 		return false;
7327 	    }
7328 	  else if (intopt.kind == ODK_REGINFO)
7329 	    {
7330 	      bfd_byte buf[4];
7331 
7332 	      if (bfd_seek (abfd,
7333 			    (hdr->sh_offset
7334 			     + (l - contents)
7335 			     + sizeof (Elf_External_Options)
7336 			     + (sizeof (Elf32_External_RegInfo) - 4)),
7337 			    SEEK_SET) != 0)
7338 		return false;
7339 	      H_PUT_32 (abfd, elf_gp (abfd), buf);
7340 	      if (bfd_bwrite (buf, 4, abfd) != 4)
7341 		return false;
7342 	    }
7343 	  l += intopt.size;
7344 	}
7345     }
7346 
7347   if (hdr->bfd_section != NULL)
7348     {
7349       const char *name = bfd_section_name (hdr->bfd_section);
7350 
7351       /* .sbss is not handled specially here because the GNU/Linux
7352 	 prelinker can convert .sbss from NOBITS to PROGBITS and
7353 	 changing it back to NOBITS breaks the binary.  The entry in
7354 	 _bfd_mips_elf_special_sections will ensure the correct flags
7355 	 are set on .sbss if BFD creates it without reading it from an
7356 	 input file, and without special handling here the flags set
7357 	 on it in an input file will be followed.  */
7358       if (strcmp (name, ".sdata") == 0
7359 	  || strcmp (name, ".lit8") == 0
7360 	  || strcmp (name, ".lit4") == 0)
7361 	hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
7362       else if (strcmp (name, ".srdata") == 0)
7363 	hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
7364       else if (strcmp (name, ".compact_rel") == 0)
7365 	hdr->sh_flags = 0;
7366       else if (strcmp (name, ".rtproc") == 0)
7367 	{
7368 	  if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7369 	    {
7370 	      unsigned int adjust;
7371 
7372 	      adjust = hdr->sh_size % hdr->sh_addralign;
7373 	      if (adjust != 0)
7374 		hdr->sh_size += hdr->sh_addralign - adjust;
7375 	    }
7376 	}
7377     }
7378 
7379   return true;
7380 }
7381 
7382 /* Handle a MIPS specific section when reading an object file.  This
7383    is called when elfcode.h finds a section with an unknown type.
7384    This routine supports both the 32-bit and 64-bit ELF ABI.  */
7385 
7386 bool
_bfd_mips_elf_section_from_shdr(bfd * abfd,Elf_Internal_Shdr * hdr,const char * name,int shindex)7387 _bfd_mips_elf_section_from_shdr (bfd *abfd,
7388 				 Elf_Internal_Shdr *hdr,
7389 				 const char *name,
7390 				 int shindex)
7391 {
7392   flagword flags = 0;
7393 
7394   /* There ought to be a place to keep ELF backend specific flags, but
7395      at the moment there isn't one.  We just keep track of the
7396      sections by their name, instead.  Fortunately, the ABI gives
7397      suggested names for all the MIPS specific sections, so we will
7398      probably get away with this.  */
7399   switch (hdr->sh_type)
7400     {
7401     case SHT_MIPS_LIBLIST:
7402       if (strcmp (name, ".liblist") != 0)
7403 	return false;
7404       break;
7405     case SHT_MIPS_MSYM:
7406       if (strcmp (name, ".msym") != 0)
7407 	return false;
7408       break;
7409     case SHT_MIPS_CONFLICT:
7410       if (strcmp (name, ".conflict") != 0)
7411 	return false;
7412       break;
7413     case SHT_MIPS_GPTAB:
7414       if (! startswith (name, ".gptab."))
7415 	return false;
7416       break;
7417     case SHT_MIPS_UCODE:
7418       if (strcmp (name, ".ucode") != 0)
7419 	return false;
7420       break;
7421     case SHT_MIPS_DEBUG:
7422       if (strcmp (name, ".mdebug") != 0)
7423 	return false;
7424       flags = SEC_DEBUGGING;
7425       break;
7426     case SHT_MIPS_REGINFO:
7427       if (strcmp (name, ".reginfo") != 0
7428 	  || hdr->sh_size != sizeof (Elf32_External_RegInfo))
7429 	return false;
7430       flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7431       break;
7432     case SHT_MIPS_IFACE:
7433       if (strcmp (name, ".MIPS.interfaces") != 0)
7434 	return false;
7435       break;
7436     case SHT_MIPS_CONTENT:
7437       if (! startswith (name, ".MIPS.content"))
7438 	return false;
7439       break;
7440     case SHT_MIPS_OPTIONS:
7441       if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7442 	return false;
7443       break;
7444     case SHT_MIPS_ABIFLAGS:
7445       if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7446 	return false;
7447       flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7448       break;
7449     case SHT_MIPS_DWARF:
7450       if (! startswith (name, ".debug_")
7451          && ! startswith (name, ".gnu.debuglto_.debug_")
7452          && ! startswith (name, ".zdebug_")
7453          && ! startswith (name, ".gnu.debuglto_.zdebug_"))
7454 	return false;
7455       break;
7456     case SHT_MIPS_SYMBOL_LIB:
7457       if (strcmp (name, ".MIPS.symlib") != 0)
7458 	return false;
7459       break;
7460     case SHT_MIPS_EVENTS:
7461       if (! startswith (name, ".MIPS.events")
7462 	  && ! startswith (name, ".MIPS.post_rel"))
7463 	return false;
7464       break;
7465     case SHT_MIPS_XHASH:
7466       if (strcmp (name, ".MIPS.xhash") != 0)
7467 	return false;
7468     default:
7469       break;
7470     }
7471 
7472   if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7473     return false;
7474 
7475   if (hdr->sh_flags & SHF_MIPS_GPREL)
7476     flags |= SEC_SMALL_DATA;
7477 
7478   if (flags)
7479     {
7480       if (!bfd_set_section_flags (hdr->bfd_section,
7481 				  (bfd_section_flags (hdr->bfd_section)
7482 				   | flags)))
7483 	return false;
7484     }
7485 
7486   if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7487     {
7488       Elf_External_ABIFlags_v0 ext;
7489 
7490       if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7491 				      &ext, 0, sizeof ext))
7492 	return false;
7493       bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7494 					&mips_elf_tdata (abfd)->abiflags);
7495       if (mips_elf_tdata (abfd)->abiflags.version != 0)
7496 	return false;
7497       mips_elf_tdata (abfd)->abiflags_valid = true;
7498     }
7499 
7500   /* FIXME: We should record sh_info for a .gptab section.  */
7501 
7502   /* For a .reginfo section, set the gp value in the tdata information
7503      from the contents of this section.  We need the gp value while
7504      processing relocs, so we just get it now.  The .reginfo section
7505      is not used in the 64-bit MIPS ELF ABI.  */
7506   if (hdr->sh_type == SHT_MIPS_REGINFO)
7507     {
7508       Elf32_External_RegInfo ext;
7509       Elf32_RegInfo s;
7510 
7511       if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7512 				      &ext, 0, sizeof ext))
7513 	return false;
7514       bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7515       elf_gp (abfd) = s.ri_gp_value;
7516     }
7517 
7518   /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7519      set the gp value based on what we find.  We may see both
7520      SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7521      they should agree.  */
7522   if (hdr->sh_type == SHT_MIPS_OPTIONS)
7523     {
7524       bfd_byte *contents, *l, *lend;
7525 
7526       contents = bfd_malloc (hdr->sh_size);
7527       if (contents == NULL)
7528 	return false;
7529       if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
7530 				      0, hdr->sh_size))
7531 	{
7532 	  free (contents);
7533 	  return false;
7534 	}
7535       l = contents;
7536       lend = contents + hdr->sh_size;
7537       while (l + sizeof (Elf_External_Options) <= lend)
7538 	{
7539 	  Elf_Internal_Options intopt;
7540 
7541 	  bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7542 					&intopt);
7543 	  if (intopt.size < sizeof (Elf_External_Options))
7544 	    {
7545 	    bad_opt:
7546 	      _bfd_error_handler
7547 		/* xgettext:c-format */
7548 		(_("%pB: warning: truncated `%s' option"),
7549 		 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd));
7550 	      break;
7551 	    }
7552 	  if (intopt.kind == ODK_REGINFO)
7553 	    {
7554 	      if (ABI_64_P (abfd))
7555 		{
7556 		  Elf64_Internal_RegInfo intreg;
7557 		  size_t needed = (sizeof (Elf_External_Options)
7558 				   + sizeof (Elf64_External_RegInfo));
7559 		  if (intopt.size < needed || (size_t) (lend - l) < needed)
7560 		    goto bad_opt;
7561 		  bfd_mips_elf64_swap_reginfo_in
7562 		    (abfd,
7563 		     ((Elf64_External_RegInfo *)
7564 		      (l + sizeof (Elf_External_Options))),
7565 		     &intreg);
7566 		  elf_gp (abfd) = intreg.ri_gp_value;
7567 		}
7568 	      else
7569 		{
7570 		  Elf32_RegInfo intreg;
7571 		  size_t needed = (sizeof (Elf_External_Options)
7572 				   + sizeof (Elf32_External_RegInfo));
7573 		  if (intopt.size < needed || (size_t) (lend - l) < needed)
7574 		    goto bad_opt;
7575 		  bfd_mips_elf32_swap_reginfo_in
7576 		    (abfd,
7577 		     ((Elf32_External_RegInfo *)
7578 		      (l + sizeof (Elf_External_Options))),
7579 		     &intreg);
7580 		  elf_gp (abfd) = intreg.ri_gp_value;
7581 		}
7582 	    }
7583 	  l += intopt.size;
7584 	}
7585       free (contents);
7586     }
7587 
7588   return true;
7589 }
7590 
7591 /* Set the correct type for a MIPS ELF section.  We do this by the
7592    section name, which is a hack, but ought to work.  This routine is
7593    used by both the 32-bit and the 64-bit ABI.  */
7594 
7595 bool
_bfd_mips_elf_fake_sections(bfd * abfd,Elf_Internal_Shdr * hdr,asection * sec)7596 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
7597 {
7598   const char *name = bfd_section_name (sec);
7599 
7600   if (strcmp (name, ".liblist") == 0)
7601     {
7602       hdr->sh_type = SHT_MIPS_LIBLIST;
7603       hdr->sh_info = sec->size / sizeof (Elf32_Lib);
7604       /* The sh_link field is set in final_write_processing.  */
7605     }
7606   else if (strcmp (name, ".conflict") == 0)
7607     hdr->sh_type = SHT_MIPS_CONFLICT;
7608   else if (startswith (name, ".gptab."))
7609     {
7610       hdr->sh_type = SHT_MIPS_GPTAB;
7611       hdr->sh_entsize = sizeof (Elf32_External_gptab);
7612       /* The sh_info field is set in final_write_processing.  */
7613     }
7614   else if (strcmp (name, ".ucode") == 0)
7615     hdr->sh_type = SHT_MIPS_UCODE;
7616   else if (strcmp (name, ".mdebug") == 0)
7617     {
7618       hdr->sh_type = SHT_MIPS_DEBUG;
7619       /* In a shared object on IRIX 5.3, the .mdebug section has an
7620 	 entsize of 0.  FIXME: Does this matter?  */
7621       if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7622 	hdr->sh_entsize = 0;
7623       else
7624 	hdr->sh_entsize = 1;
7625     }
7626   else if (strcmp (name, ".reginfo") == 0)
7627     {
7628       hdr->sh_type = SHT_MIPS_REGINFO;
7629       /* In a shared object on IRIX 5.3, the .reginfo section has an
7630 	 entsize of 0x18.  FIXME: Does this matter?  */
7631       if (SGI_COMPAT (abfd))
7632 	{
7633 	  if ((abfd->flags & DYNAMIC) != 0)
7634 	    hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7635 	  else
7636 	    hdr->sh_entsize = 1;
7637 	}
7638       else
7639 	hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7640     }
7641   else if (SGI_COMPAT (abfd)
7642 	   && (strcmp (name, ".hash") == 0
7643 	       || strcmp (name, ".dynamic") == 0
7644 	       || strcmp (name, ".dynstr") == 0))
7645     {
7646       if (SGI_COMPAT (abfd))
7647 	hdr->sh_entsize = 0;
7648 #if 0
7649       /* This isn't how the IRIX6 linker behaves.  */
7650       hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7651 #endif
7652     }
7653   else if (strcmp (name, ".got") == 0
7654 	   || strcmp (name, ".srdata") == 0
7655 	   || strcmp (name, ".sdata") == 0
7656 	   || strcmp (name, ".sbss") == 0
7657 	   || strcmp (name, ".lit4") == 0
7658 	   || strcmp (name, ".lit8") == 0)
7659     hdr->sh_flags |= SHF_MIPS_GPREL;
7660   else if (strcmp (name, ".MIPS.interfaces") == 0)
7661     {
7662       hdr->sh_type = SHT_MIPS_IFACE;
7663       hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7664     }
7665   else if (startswith (name, ".MIPS.content"))
7666     {
7667       hdr->sh_type = SHT_MIPS_CONTENT;
7668       hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7669       /* The sh_info field is set in final_write_processing.  */
7670     }
7671   else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7672     {
7673       hdr->sh_type = SHT_MIPS_OPTIONS;
7674       hdr->sh_entsize = 1;
7675       hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7676     }
7677   else if (startswith (name, ".MIPS.abiflags"))
7678     {
7679       hdr->sh_type = SHT_MIPS_ABIFLAGS;
7680       hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7681     }
7682   else if (startswith (name, ".debug_")
7683 	   || startswith (name, ".gnu.debuglto_.debug_")
7684 	   || startswith (name, ".zdebug_")
7685 	   || startswith (name, ".gnu.debuglto_.zdebug_"))
7686     {
7687       hdr->sh_type = SHT_MIPS_DWARF;
7688 
7689       /* Irix facilities such as libexc expect a single .debug_frame
7690 	 per executable, the system ones have NOSTRIP set and the linker
7691 	 doesn't merge sections with different flags so ...  */
7692       if (SGI_COMPAT (abfd) && startswith (name, ".debug_frame"))
7693 	hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7694     }
7695   else if (strcmp (name, ".MIPS.symlib") == 0)
7696     {
7697       hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7698       /* The sh_link and sh_info fields are set in
7699 	 final_write_processing.  */
7700     }
7701   else if (startswith (name, ".MIPS.events")
7702 	   || startswith (name, ".MIPS.post_rel"))
7703     {
7704       hdr->sh_type = SHT_MIPS_EVENTS;
7705       hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7706       /* The sh_link field is set in final_write_processing.  */
7707     }
7708   else if (strcmp (name, ".msym") == 0)
7709     {
7710       hdr->sh_type = SHT_MIPS_MSYM;
7711       hdr->sh_flags |= SHF_ALLOC;
7712       hdr->sh_entsize = 8;
7713     }
7714   else if (strcmp (name, ".MIPS.xhash") == 0)
7715     {
7716       hdr->sh_type = SHT_MIPS_XHASH;
7717       hdr->sh_flags |= SHF_ALLOC;
7718       hdr->sh_entsize = get_elf_backend_data(abfd)->s->arch_size == 64 ? 0 : 4;
7719     }
7720 
7721   /* The generic elf_fake_sections will set up REL_HDR using the default
7722    kind of relocations.  We used to set up a second header for the
7723    non-default kind of relocations here, but only NewABI would use
7724    these, and the IRIX ld doesn't like resulting empty RELA sections.
7725    Thus we create those header only on demand now.  */
7726 
7727   return true;
7728 }
7729 
7730 /* Given a BFD section, try to locate the corresponding ELF section
7731    index.  This is used by both the 32-bit and the 64-bit ABI.
7732    Actually, it's not clear to me that the 64-bit ABI supports these,
7733    but for non-PIC objects we will certainly want support for at least
7734    the .scommon section.  */
7735 
7736 bool
_bfd_mips_elf_section_from_bfd_section(bfd * abfd ATTRIBUTE_UNUSED,asection * sec,int * retval)7737 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7738 					asection *sec, int *retval)
7739 {
7740   if (strcmp (bfd_section_name (sec), ".scommon") == 0)
7741     {
7742       *retval = SHN_MIPS_SCOMMON;
7743       return true;
7744     }
7745   if (strcmp (bfd_section_name (sec), ".acommon") == 0)
7746     {
7747       *retval = SHN_MIPS_ACOMMON;
7748       return true;
7749     }
7750   return false;
7751 }
7752 
7753 /* Hook called by the linker routine which adds symbols from an object
7754    file.  We must handle the special MIPS section numbers here.  */
7755 
7756 bool
_bfd_mips_elf_add_symbol_hook(bfd * abfd,struct bfd_link_info * info,Elf_Internal_Sym * sym,const char ** namep,flagword * flagsp ATTRIBUTE_UNUSED,asection ** secp,bfd_vma * valp)7757 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7758 			       Elf_Internal_Sym *sym, const char **namep,
7759 			       flagword *flagsp ATTRIBUTE_UNUSED,
7760 			       asection **secp, bfd_vma *valp)
7761 {
7762   if (SGI_COMPAT (abfd)
7763       && (abfd->flags & DYNAMIC) != 0
7764       && strcmp (*namep, "_rld_new_interface") == 0)
7765     {
7766       /* Skip IRIX5 rld entry name.  */
7767       *namep = NULL;
7768       return true;
7769     }
7770 
7771   /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7772      a SECTION *ABS*.  This causes ld to think it can resolve _gp_disp
7773      by setting a DT_NEEDED for the shared object.  Since _gp_disp is
7774      a magic symbol resolved by the linker, we ignore this bogus definition
7775      of _gp_disp.  New ABI objects do not suffer from this problem so this
7776      is not done for them. */
7777   if (!NEWABI_P(abfd)
7778       && (sym->st_shndx == SHN_ABS)
7779       && (strcmp (*namep, "_gp_disp") == 0))
7780     {
7781       *namep = NULL;
7782       return true;
7783     }
7784 
7785   switch (sym->st_shndx)
7786     {
7787     case SHN_COMMON:
7788       /* Common symbols less than the GP size are automatically
7789 	 treated as SHN_MIPS_SCOMMON symbols.  */
7790       if (sym->st_size > elf_gp_size (abfd)
7791 	  || ELF_ST_TYPE (sym->st_info) == STT_TLS
7792 	  || IRIX_COMPAT (abfd) == ict_irix6)
7793 	break;
7794       /* Fall through.  */
7795     case SHN_MIPS_SCOMMON:
7796       *secp = bfd_make_section_old_way (abfd, ".scommon");
7797       (*secp)->flags |= SEC_IS_COMMON | SEC_SMALL_DATA;
7798       *valp = sym->st_size;
7799       break;
7800 
7801     case SHN_MIPS_TEXT:
7802       /* This section is used in a shared object.  */
7803       if (mips_elf_tdata (abfd)->elf_text_section == NULL)
7804 	{
7805 	  asymbol *elf_text_symbol;
7806 	  asection *elf_text_section;
7807 	  size_t amt = sizeof (asection);
7808 
7809 	  elf_text_section = bfd_zalloc (abfd, amt);
7810 	  if (elf_text_section == NULL)
7811 	    return false;
7812 
7813 	  amt = sizeof (asymbol);
7814 	  elf_text_symbol = bfd_zalloc (abfd, amt);
7815 	  if (elf_text_symbol == NULL)
7816 	    return false;
7817 
7818 	  /* Initialize the section.  */
7819 
7820 	  mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7821 	  mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7822 
7823 	  elf_text_section->symbol = elf_text_symbol;
7824 	  elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
7825 
7826 	  elf_text_section->name = ".text";
7827 	  elf_text_section->flags = SEC_NO_FLAGS;
7828 	  elf_text_section->output_section = NULL;
7829 	  elf_text_section->owner = abfd;
7830 	  elf_text_symbol->name = ".text";
7831 	  elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7832 	  elf_text_symbol->section = elf_text_section;
7833 	}
7834       /* This code used to do *secp = bfd_und_section_ptr if
7835 	 bfd_link_pic (info).  I don't know why, and that doesn't make sense,
7836 	 so I took it out.  */
7837       *secp = mips_elf_tdata (abfd)->elf_text_section;
7838       break;
7839 
7840     case SHN_MIPS_ACOMMON:
7841       /* Fall through. XXX Can we treat this as allocated data?  */
7842     case SHN_MIPS_DATA:
7843       /* This section is used in a shared object.  */
7844       if (mips_elf_tdata (abfd)->elf_data_section == NULL)
7845 	{
7846 	  asymbol *elf_data_symbol;
7847 	  asection *elf_data_section;
7848 	  size_t amt = sizeof (asection);
7849 
7850 	  elf_data_section = bfd_zalloc (abfd, amt);
7851 	  if (elf_data_section == NULL)
7852 	    return false;
7853 
7854 	  amt = sizeof (asymbol);
7855 	  elf_data_symbol = bfd_zalloc (abfd, amt);
7856 	  if (elf_data_symbol == NULL)
7857 	    return false;
7858 
7859 	  /* Initialize the section.  */
7860 
7861 	  mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7862 	  mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7863 
7864 	  elf_data_section->symbol = elf_data_symbol;
7865 	  elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
7866 
7867 	  elf_data_section->name = ".data";
7868 	  elf_data_section->flags = SEC_NO_FLAGS;
7869 	  elf_data_section->output_section = NULL;
7870 	  elf_data_section->owner = abfd;
7871 	  elf_data_symbol->name = ".data";
7872 	  elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7873 	  elf_data_symbol->section = elf_data_section;
7874 	}
7875       /* This code used to do *secp = bfd_und_section_ptr if
7876 	 bfd_link_pic (info).  I don't know why, and that doesn't make sense,
7877 	 so I took it out.  */
7878       *secp = mips_elf_tdata (abfd)->elf_data_section;
7879       break;
7880 
7881     case SHN_MIPS_SUNDEFINED:
7882       *secp = bfd_und_section_ptr;
7883       break;
7884     }
7885 
7886   if (SGI_COMPAT (abfd)
7887       && ! bfd_link_pic (info)
7888       && info->output_bfd->xvec == abfd->xvec
7889       && strcmp (*namep, "__rld_obj_head") == 0)
7890     {
7891       struct elf_link_hash_entry *h;
7892       struct bfd_link_hash_entry *bh;
7893 
7894       /* Mark __rld_obj_head as dynamic.  */
7895       bh = NULL;
7896       if (! (_bfd_generic_link_add_one_symbol
7897 	     (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, false,
7898 	      get_elf_backend_data (abfd)->collect, &bh)))
7899 	return false;
7900 
7901       h = (struct elf_link_hash_entry *) bh;
7902       h->non_elf = 0;
7903       h->def_regular = 1;
7904       h->type = STT_OBJECT;
7905 
7906       if (! bfd_elf_link_record_dynamic_symbol (info, h))
7907 	return false;
7908 
7909       mips_elf_hash_table (info)->use_rld_obj_head = true;
7910       mips_elf_hash_table (info)->rld_symbol = h;
7911     }
7912 
7913   /* If this is a mips16 text symbol, add 1 to the value to make it
7914      odd.  This will cause something like .word SYM to come up with
7915      the right value when it is loaded into the PC.  */
7916   if (ELF_ST_IS_COMPRESSED (sym->st_other))
7917     ++*valp;
7918 
7919   return true;
7920 }
7921 
7922 /* This hook function is called before the linker writes out a global
7923    symbol.  We mark symbols as small common if appropriate.  This is
7924    also where we undo the increment of the value for a mips16 symbol.  */
7925 
7926 int
_bfd_mips_elf_link_output_symbol_hook(struct bfd_link_info * info ATTRIBUTE_UNUSED,const char * name ATTRIBUTE_UNUSED,Elf_Internal_Sym * sym,asection * input_sec,struct elf_link_hash_entry * h ATTRIBUTE_UNUSED)7927 _bfd_mips_elf_link_output_symbol_hook
7928   (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7929    const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7930    asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7931 {
7932   /* If we see a common symbol, which implies a relocatable link, then
7933      if a symbol was small common in an input file, mark it as small
7934      common in the output file.  */
7935   if (sym->st_shndx == SHN_COMMON
7936       && strcmp (input_sec->name, ".scommon") == 0)
7937     sym->st_shndx = SHN_MIPS_SCOMMON;
7938 
7939   if (ELF_ST_IS_COMPRESSED (sym->st_other))
7940     sym->st_value &= ~1;
7941 
7942   return 1;
7943 }
7944 
7945 /* Functions for the dynamic linker.  */
7946 
7947 /* Create dynamic sections when linking against a dynamic object.  */
7948 
7949 bool
_bfd_mips_elf_create_dynamic_sections(bfd * abfd,struct bfd_link_info * info)7950 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7951 {
7952   struct elf_link_hash_entry *h;
7953   struct bfd_link_hash_entry *bh;
7954   flagword flags;
7955   register asection *s;
7956   const char * const *namep;
7957   struct mips_elf_link_hash_table *htab;
7958 
7959   htab = mips_elf_hash_table (info);
7960   BFD_ASSERT (htab != NULL);
7961 
7962   flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7963 	   | SEC_LINKER_CREATED | SEC_READONLY);
7964 
7965   /* The psABI requires a read-only .dynamic section, but the VxWorks
7966      EABI doesn't.  */
7967   if (htab->root.target_os != is_vxworks)
7968     {
7969       s = bfd_get_linker_section (abfd, ".dynamic");
7970       if (s != NULL)
7971 	{
7972 	  if (!bfd_set_section_flags (s, flags))
7973 	    return false;
7974 	}
7975     }
7976 
7977   /* We need to create .got section.  */
7978   if (!mips_elf_create_got_section (abfd, info))
7979     return false;
7980 
7981   if (! mips_elf_rel_dyn_section (info, true))
7982     return false;
7983 
7984   /* Create .stub section.  */
7985   s = bfd_make_section_anyway_with_flags (abfd,
7986 					  MIPS_ELF_STUB_SECTION_NAME (abfd),
7987 					  flags | SEC_CODE);
7988   if (s == NULL
7989       || !bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7990     return false;
7991   htab->sstubs = s;
7992 
7993   if (!mips_elf_hash_table (info)->use_rld_obj_head
7994       && bfd_link_executable (info)
7995       && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7996     {
7997       s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7998 					      flags &~ (flagword) SEC_READONLY);
7999       if (s == NULL
8000 	  || !bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd)))
8001 	return false;
8002     }
8003 
8004   /* Create .MIPS.xhash section.  */
8005   if (info->emit_gnu_hash)
8006     s = bfd_make_section_anyway_with_flags (abfd, ".MIPS.xhash",
8007 					    flags | SEC_READONLY);
8008 
8009   /* On IRIX5, we adjust add some additional symbols and change the
8010      alignments of several sections.  There is no ABI documentation
8011      indicating that this is necessary on IRIX6, nor any evidence that
8012      the linker takes such action.  */
8013   if (IRIX_COMPAT (abfd) == ict_irix5)
8014     {
8015       for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
8016 	{
8017 	  bh = NULL;
8018 	  if (! (_bfd_generic_link_add_one_symbol
8019 		 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
8020 		  NULL, false, get_elf_backend_data (abfd)->collect, &bh)))
8021 	    return false;
8022 
8023 	  h = (struct elf_link_hash_entry *) bh;
8024 	  h->mark = 1;
8025 	  h->non_elf = 0;
8026 	  h->def_regular = 1;
8027 	  h->type = STT_SECTION;
8028 
8029 	  if (! bfd_elf_link_record_dynamic_symbol (info, h))
8030 	    return false;
8031 	}
8032 
8033       /* We need to create a .compact_rel section.  */
8034       if (SGI_COMPAT (abfd))
8035 	{
8036 	  if (!mips_elf_create_compact_rel_section (abfd, info))
8037 	    return false;
8038 	}
8039 
8040       /* Change alignments of some sections.  */
8041       s = bfd_get_linker_section (abfd, ".hash");
8042       if (s != NULL)
8043 	bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8044 
8045       s = bfd_get_linker_section (abfd, ".dynsym");
8046       if (s != NULL)
8047 	bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8048 
8049       s = bfd_get_linker_section (abfd, ".dynstr");
8050       if (s != NULL)
8051 	bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8052 
8053       /* ??? */
8054       s = bfd_get_section_by_name (abfd, ".reginfo");
8055       if (s != NULL)
8056 	bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8057 
8058       s = bfd_get_linker_section (abfd, ".dynamic");
8059       if (s != NULL)
8060 	bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8061     }
8062 
8063   if (bfd_link_executable (info))
8064     {
8065       const char *name;
8066 
8067       name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
8068       bh = NULL;
8069       if (!(_bfd_generic_link_add_one_symbol
8070 	    (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
8071 	     NULL, false, get_elf_backend_data (abfd)->collect, &bh)))
8072 	return false;
8073 
8074       h = (struct elf_link_hash_entry *) bh;
8075       h->non_elf = 0;
8076       h->def_regular = 1;
8077       h->type = STT_SECTION;
8078 
8079       if (! bfd_elf_link_record_dynamic_symbol (info, h))
8080 	return false;
8081 
8082       if (! mips_elf_hash_table (info)->use_rld_obj_head)
8083 	{
8084 	  /* __rld_map is a four byte word located in the .data section
8085 	     and is filled in by the rtld to contain a pointer to
8086 	     the _r_debug structure. Its symbol value will be set in
8087 	     _bfd_mips_elf_finish_dynamic_symbol.  */
8088 	  s = bfd_get_linker_section (abfd, ".rld_map");
8089 	  BFD_ASSERT (s != NULL);
8090 
8091 	  name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
8092 	  bh = NULL;
8093 	  if (!(_bfd_generic_link_add_one_symbol
8094 		(info, abfd, name, BSF_GLOBAL, s, 0, NULL, false,
8095 		 get_elf_backend_data (abfd)->collect, &bh)))
8096 	    return false;
8097 
8098 	  h = (struct elf_link_hash_entry *) bh;
8099 	  h->non_elf = 0;
8100 	  h->def_regular = 1;
8101 	  h->type = STT_OBJECT;
8102 
8103 	  if (! bfd_elf_link_record_dynamic_symbol (info, h))
8104 	    return false;
8105 	  mips_elf_hash_table (info)->rld_symbol = h;
8106 	}
8107     }
8108 
8109   /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
8110      Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol.  */
8111   if (!_bfd_elf_create_dynamic_sections (abfd, info))
8112     return false;
8113 
8114   /* Do the usual VxWorks handling.  */
8115   if (htab->root.target_os == is_vxworks
8116       && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
8117     return false;
8118 
8119   return true;
8120 }
8121 
8122 /* Return true if relocation REL against section SEC is a REL rather than
8123    RELA relocation.  RELOCS is the first relocation in the section and
8124    ABFD is the bfd that contains SEC.  */
8125 
8126 static bool
mips_elf_rel_relocation_p(bfd * abfd,asection * sec,const Elf_Internal_Rela * relocs,const Elf_Internal_Rela * rel)8127 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
8128 			   const Elf_Internal_Rela *relocs,
8129 			   const Elf_Internal_Rela *rel)
8130 {
8131   Elf_Internal_Shdr *rel_hdr;
8132   const struct elf_backend_data *bed;
8133 
8134   /* To determine which flavor of relocation this is, we depend on the
8135      fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR.  */
8136   rel_hdr = elf_section_data (sec)->rel.hdr;
8137   if (rel_hdr == NULL)
8138     return false;
8139   bed = get_elf_backend_data (abfd);
8140   return ((size_t) (rel - relocs)
8141 	  < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
8142 }
8143 
8144 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
8145    HOWTO is the relocation's howto and CONTENTS points to the contents
8146    of the section that REL is against.  */
8147 
8148 static bfd_vma
mips_elf_read_rel_addend(bfd * abfd,const Elf_Internal_Rela * rel,reloc_howto_type * howto,bfd_byte * contents)8149 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
8150 			  reloc_howto_type *howto, bfd_byte *contents)
8151 {
8152   bfd_byte *location;
8153   unsigned int r_type;
8154   bfd_vma addend;
8155   bfd_vma bytes;
8156 
8157   r_type = ELF_R_TYPE (abfd, rel->r_info);
8158   location = contents + rel->r_offset;
8159 
8160   /* Get the addend, which is stored in the input file.  */
8161   _bfd_mips_elf_reloc_unshuffle (abfd, r_type, false, location);
8162   bytes = mips_elf_obtain_contents (howto, rel, abfd, contents);
8163   _bfd_mips_elf_reloc_shuffle (abfd, r_type, false, location);
8164 
8165   addend = bytes & howto->src_mask;
8166 
8167   /* Shift is 2, unusually, for microMIPS JALX.  Adjust the addend
8168      accordingly.  */
8169   if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c)
8170     addend <<= 1;
8171 
8172   return addend;
8173 }
8174 
8175 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
8176    and *ADDEND is the addend for REL itself.  Look for the LO16 relocation
8177    and update *ADDEND with the final addend.  Return true on success
8178    or false if the LO16 could not be found.  RELEND is the exclusive
8179    upper bound on the relocations for REL's section.  */
8180 
8181 static bool
mips_elf_add_lo16_rel_addend(bfd * abfd,const Elf_Internal_Rela * rel,const Elf_Internal_Rela * relend,bfd_byte * contents,bfd_vma * addend)8182 mips_elf_add_lo16_rel_addend (bfd *abfd,
8183 			      const Elf_Internal_Rela *rel,
8184 			      const Elf_Internal_Rela *relend,
8185 			      bfd_byte *contents, bfd_vma *addend)
8186 {
8187   unsigned int r_type, lo16_type;
8188   const Elf_Internal_Rela *lo16_relocation;
8189   reloc_howto_type *lo16_howto;
8190   bfd_vma l;
8191 
8192   r_type = ELF_R_TYPE (abfd, rel->r_info);
8193   if (mips16_reloc_p (r_type))
8194     lo16_type = R_MIPS16_LO16;
8195   else if (micromips_reloc_p (r_type))
8196     lo16_type = R_MICROMIPS_LO16;
8197   else if (r_type == R_MIPS_PCHI16)
8198     lo16_type = R_MIPS_PCLO16;
8199   else
8200     lo16_type = R_MIPS_LO16;
8201 
8202   /* The combined value is the sum of the HI16 addend, left-shifted by
8203      sixteen bits, and the LO16 addend, sign extended.  (Usually, the
8204      code does a `lui' of the HI16 value, and then an `addiu' of the
8205      LO16 value.)
8206 
8207      Scan ahead to find a matching LO16 relocation.
8208 
8209      According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
8210      be immediately following.  However, for the IRIX6 ABI, the next
8211      relocation may be a composed relocation consisting of several
8212      relocations for the same address.  In that case, the R_MIPS_LO16
8213      relocation may occur as one of these.  We permit a similar
8214      extension in general, as that is useful for GCC.
8215 
8216      In some cases GCC dead code elimination removes the LO16 but keeps
8217      the corresponding HI16.  This is strictly speaking a violation of
8218      the ABI but not immediately harmful.  */
8219   lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
8220   if (lo16_relocation == NULL)
8221     return false;
8222 
8223   /* Obtain the addend kept there.  */
8224   lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, false);
8225   l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
8226 
8227   l <<= lo16_howto->rightshift;
8228   l = _bfd_mips_elf_sign_extend (l, 16);
8229 
8230   *addend <<= 16;
8231   *addend += l;
8232   return true;
8233 }
8234 
8235 /* Try to read the contents of section SEC in bfd ABFD.  Return true and
8236    store the contents in *CONTENTS on success.  Assume that *CONTENTS
8237    already holds the contents if it is nonull on entry.  */
8238 
8239 static bool
mips_elf_get_section_contents(bfd * abfd,asection * sec,bfd_byte ** contents)8240 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
8241 {
8242   if (*contents)
8243     return true;
8244 
8245   /* Get cached copy if it exists.  */
8246   if (elf_section_data (sec)->this_hdr.contents != NULL)
8247     {
8248       *contents = elf_section_data (sec)->this_hdr.contents;
8249       return true;
8250     }
8251 
8252   return bfd_malloc_and_get_section (abfd, sec, contents);
8253 }
8254 
8255 /* Make a new PLT record to keep internal data.  */
8256 
8257 static struct plt_entry *
mips_elf_make_plt_record(bfd * abfd)8258 mips_elf_make_plt_record (bfd *abfd)
8259 {
8260   struct plt_entry *entry;
8261 
8262   entry = bfd_zalloc (abfd, sizeof (*entry));
8263   if (entry == NULL)
8264     return NULL;
8265 
8266   entry->stub_offset = MINUS_ONE;
8267   entry->mips_offset = MINUS_ONE;
8268   entry->comp_offset = MINUS_ONE;
8269   entry->gotplt_index = MINUS_ONE;
8270   return entry;
8271 }
8272 
8273 /* Define the special `__gnu_absolute_zero' symbol.  We only need this
8274    for PIC code, as otherwise there is no load-time relocation involved
8275    and local GOT entries whose value is zero at static link time will
8276    retain their value at load time.  */
8277 
8278 static bool
mips_elf_define_absolute_zero(bfd * abfd,struct bfd_link_info * info,struct mips_elf_link_hash_table * htab,unsigned int r_type)8279 mips_elf_define_absolute_zero (bfd *abfd, struct bfd_link_info *info,
8280 			       struct mips_elf_link_hash_table *htab,
8281 			       unsigned int r_type)
8282 {
8283   union
8284     {
8285       struct elf_link_hash_entry *eh;
8286       struct bfd_link_hash_entry *bh;
8287     }
8288   hzero;
8289 
8290   BFD_ASSERT (!htab->use_absolute_zero);
8291   BFD_ASSERT (bfd_link_pic (info));
8292 
8293   hzero.bh = NULL;
8294   if (!_bfd_generic_link_add_one_symbol (info, abfd, "__gnu_absolute_zero",
8295 					 BSF_GLOBAL, bfd_abs_section_ptr, 0,
8296 					 NULL, false, false, &hzero.bh))
8297     return false;
8298 
8299   BFD_ASSERT (hzero.bh != NULL);
8300   hzero.eh->size = 0;
8301   hzero.eh->type = STT_NOTYPE;
8302   hzero.eh->other = STV_PROTECTED;
8303   hzero.eh->def_regular = 1;
8304   hzero.eh->non_elf = 0;
8305 
8306   if (!mips_elf_record_global_got_symbol (hzero.eh, abfd, info, true, r_type))
8307     return false;
8308 
8309   htab->use_absolute_zero = true;
8310 
8311   return true;
8312 }
8313 
8314 /* Look through the relocs for a section during the first phase, and
8315    allocate space in the global offset table and record the need for
8316    standard MIPS and compressed procedure linkage table entries.  */
8317 
8318 bool
_bfd_mips_elf_check_relocs(bfd * abfd,struct bfd_link_info * info,asection * sec,const Elf_Internal_Rela * relocs)8319 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
8320 			    asection *sec, const Elf_Internal_Rela *relocs)
8321 {
8322   const char *name;
8323   bfd *dynobj;
8324   Elf_Internal_Shdr *symtab_hdr;
8325   struct elf_link_hash_entry **sym_hashes;
8326   size_t extsymoff;
8327   const Elf_Internal_Rela *rel;
8328   const Elf_Internal_Rela *rel_end;
8329   asection *sreloc;
8330   const struct elf_backend_data *bed;
8331   struct mips_elf_link_hash_table *htab;
8332   bfd_byte *contents;
8333   bfd_vma addend;
8334   reloc_howto_type *howto;
8335 
8336   if (bfd_link_relocatable (info))
8337     return true;
8338 
8339   htab = mips_elf_hash_table (info);
8340   BFD_ASSERT (htab != NULL);
8341 
8342   dynobj = elf_hash_table (info)->dynobj;
8343   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8344   sym_hashes = elf_sym_hashes (abfd);
8345   extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8346 
8347   bed = get_elf_backend_data (abfd);
8348   rel_end = relocs + sec->reloc_count;
8349 
8350   /* Check for the mips16 stub sections.  */
8351 
8352   name = bfd_section_name (sec);
8353   if (FN_STUB_P (name))
8354     {
8355       unsigned long r_symndx;
8356 
8357       /* Look at the relocation information to figure out which symbol
8358 	 this is for.  */
8359 
8360       r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8361       if (r_symndx == 0)
8362 	{
8363 	  _bfd_error_handler
8364 	    /* xgettext:c-format */
8365 	    (_("%pB: warning: cannot determine the target function for"
8366 	       " stub section `%s'"),
8367 	     abfd, name);
8368 	  bfd_set_error (bfd_error_bad_value);
8369 	  return false;
8370 	}
8371 
8372       if (r_symndx < extsymoff
8373 	  || sym_hashes[r_symndx - extsymoff] == NULL)
8374 	{
8375 	  asection *o;
8376 
8377 	  /* This stub is for a local symbol.  This stub will only be
8378 	     needed if there is some relocation in this BFD, other
8379 	     than a 16 bit function call, which refers to this symbol.  */
8380 	  for (o = abfd->sections; o != NULL; o = o->next)
8381 	    {
8382 	      Elf_Internal_Rela *sec_relocs;
8383 	      const Elf_Internal_Rela *r, *rend;
8384 
8385 	      /* We can ignore stub sections when looking for relocs.  */
8386 	      if ((o->flags & SEC_RELOC) == 0
8387 		  || o->reloc_count == 0
8388 		  || section_allows_mips16_refs_p (o))
8389 		continue;
8390 
8391 	      sec_relocs
8392 		= _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8393 					     info->keep_memory);
8394 	      if (sec_relocs == NULL)
8395 		return false;
8396 
8397 	      rend = sec_relocs + o->reloc_count;
8398 	      for (r = sec_relocs; r < rend; r++)
8399 		if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8400 		    && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
8401 		  break;
8402 
8403 	      if (elf_section_data (o)->relocs != sec_relocs)
8404 		free (sec_relocs);
8405 
8406 	      if (r < rend)
8407 		break;
8408 	    }
8409 
8410 	  if (o == NULL)
8411 	    {
8412 	      /* There is no non-call reloc for this stub, so we do
8413 		 not need it.  Since this function is called before
8414 		 the linker maps input sections to output sections, we
8415 		 can easily discard it by setting the SEC_EXCLUDE
8416 		 flag.  */
8417 	      sec->flags |= SEC_EXCLUDE;
8418 	      return true;
8419 	    }
8420 
8421 	  /* Record this stub in an array of local symbol stubs for
8422 	     this BFD.  */
8423 	  if (mips_elf_tdata (abfd)->local_stubs == NULL)
8424 	    {
8425 	      unsigned long symcount;
8426 	      asection **n;
8427 	      bfd_size_type amt;
8428 
8429 	      if (elf_bad_symtab (abfd))
8430 		symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8431 	      else
8432 		symcount = symtab_hdr->sh_info;
8433 	      amt = symcount * sizeof (asection *);
8434 	      n = bfd_zalloc (abfd, amt);
8435 	      if (n == NULL)
8436 		return false;
8437 	      mips_elf_tdata (abfd)->local_stubs = n;
8438 	    }
8439 
8440 	  sec->flags |= SEC_KEEP;
8441 	  mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
8442 
8443 	  /* We don't need to set mips16_stubs_seen in this case.
8444 	     That flag is used to see whether we need to look through
8445 	     the global symbol table for stubs.  We don't need to set
8446 	     it here, because we just have a local stub.  */
8447 	}
8448       else
8449 	{
8450 	  struct mips_elf_link_hash_entry *h;
8451 
8452 	  h = ((struct mips_elf_link_hash_entry *)
8453 	       sym_hashes[r_symndx - extsymoff]);
8454 
8455 	  while (h->root.root.type == bfd_link_hash_indirect
8456 		 || h->root.root.type == bfd_link_hash_warning)
8457 	    h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8458 
8459 	  /* H is the symbol this stub is for.  */
8460 
8461 	  /* If we already have an appropriate stub for this function, we
8462 	     don't need another one, so we can discard this one.  Since
8463 	     this function is called before the linker maps input sections
8464 	     to output sections, we can easily discard it by setting the
8465 	     SEC_EXCLUDE flag.  */
8466 	  if (h->fn_stub != NULL)
8467 	    {
8468 	      sec->flags |= SEC_EXCLUDE;
8469 	      return true;
8470 	    }
8471 
8472 	  sec->flags |= SEC_KEEP;
8473 	  h->fn_stub = sec;
8474 	  mips_elf_hash_table (info)->mips16_stubs_seen = true;
8475 	}
8476     }
8477   else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
8478     {
8479       unsigned long r_symndx;
8480       struct mips_elf_link_hash_entry *h;
8481       asection **loc;
8482 
8483       /* Look at the relocation information to figure out which symbol
8484 	 this is for.  */
8485 
8486       r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8487       if (r_symndx == 0)
8488 	{
8489 	  _bfd_error_handler
8490 	    /* xgettext:c-format */
8491 	    (_("%pB: warning: cannot determine the target function for"
8492 	       " stub section `%s'"),
8493 	     abfd, name);
8494 	  bfd_set_error (bfd_error_bad_value);
8495 	  return false;
8496 	}
8497 
8498       if (r_symndx < extsymoff
8499 	  || sym_hashes[r_symndx - extsymoff] == NULL)
8500 	{
8501 	  asection *o;
8502 
8503 	  /* This stub is for a local symbol.  This stub will only be
8504 	     needed if there is some relocation (R_MIPS16_26) in this BFD
8505 	     that refers to this symbol.  */
8506 	  for (o = abfd->sections; o != NULL; o = o->next)
8507 	    {
8508 	      Elf_Internal_Rela *sec_relocs;
8509 	      const Elf_Internal_Rela *r, *rend;
8510 
8511 	      /* We can ignore stub sections when looking for relocs.  */
8512 	      if ((o->flags & SEC_RELOC) == 0
8513 		  || o->reloc_count == 0
8514 		  || section_allows_mips16_refs_p (o))
8515 		continue;
8516 
8517 	      sec_relocs
8518 		= _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8519 					     info->keep_memory);
8520 	      if (sec_relocs == NULL)
8521 		return false;
8522 
8523 	      rend = sec_relocs + o->reloc_count;
8524 	      for (r = sec_relocs; r < rend; r++)
8525 		if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8526 		    && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8527 		    break;
8528 
8529 	      if (elf_section_data (o)->relocs != sec_relocs)
8530 		free (sec_relocs);
8531 
8532 	      if (r < rend)
8533 		break;
8534 	    }
8535 
8536 	  if (o == NULL)
8537 	    {
8538 	      /* There is no non-call reloc for this stub, so we do
8539 		 not need it.  Since this function is called before
8540 		 the linker maps input sections to output sections, we
8541 		 can easily discard it by setting the SEC_EXCLUDE
8542 		 flag.  */
8543 	      sec->flags |= SEC_EXCLUDE;
8544 	      return true;
8545 	    }
8546 
8547 	  /* Record this stub in an array of local symbol call_stubs for
8548 	     this BFD.  */
8549 	  if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
8550 	    {
8551 	      unsigned long symcount;
8552 	      asection **n;
8553 	      bfd_size_type amt;
8554 
8555 	      if (elf_bad_symtab (abfd))
8556 		symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8557 	      else
8558 		symcount = symtab_hdr->sh_info;
8559 	      amt = symcount * sizeof (asection *);
8560 	      n = bfd_zalloc (abfd, amt);
8561 	      if (n == NULL)
8562 		return false;
8563 	      mips_elf_tdata (abfd)->local_call_stubs = n;
8564 	    }
8565 
8566 	  sec->flags |= SEC_KEEP;
8567 	  mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
8568 
8569 	  /* We don't need to set mips16_stubs_seen in this case.
8570 	     That flag is used to see whether we need to look through
8571 	     the global symbol table for stubs.  We don't need to set
8572 	     it here, because we just have a local stub.  */
8573 	}
8574       else
8575 	{
8576 	  h = ((struct mips_elf_link_hash_entry *)
8577 	       sym_hashes[r_symndx - extsymoff]);
8578 
8579 	  /* H is the symbol this stub is for.  */
8580 
8581 	  if (CALL_FP_STUB_P (name))
8582 	    loc = &h->call_fp_stub;
8583 	  else
8584 	    loc = &h->call_stub;
8585 
8586 	  /* If we already have an appropriate stub for this function, we
8587 	     don't need another one, so we can discard this one.  Since
8588 	     this function is called before the linker maps input sections
8589 	     to output sections, we can easily discard it by setting the
8590 	     SEC_EXCLUDE flag.  */
8591 	  if (*loc != NULL)
8592 	    {
8593 	      sec->flags |= SEC_EXCLUDE;
8594 	      return true;
8595 	    }
8596 
8597 	  sec->flags |= SEC_KEEP;
8598 	  *loc = sec;
8599 	  mips_elf_hash_table (info)->mips16_stubs_seen = true;
8600 	}
8601     }
8602 
8603   sreloc = NULL;
8604   contents = NULL;
8605   for (rel = relocs; rel < rel_end; ++rel)
8606     {
8607       unsigned long r_symndx;
8608       unsigned int r_type;
8609       struct elf_link_hash_entry *h;
8610       bool can_make_dynamic_p;
8611       bool call_reloc_p;
8612       bool constrain_symbol_p;
8613 
8614       r_symndx = ELF_R_SYM (abfd, rel->r_info);
8615       r_type = ELF_R_TYPE (abfd, rel->r_info);
8616 
8617       if (r_symndx < extsymoff)
8618 	h = NULL;
8619       else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8620 	{
8621 	  _bfd_error_handler
8622 	    /* xgettext:c-format */
8623 	    (_("%pB: malformed reloc detected for section %s"),
8624 	     abfd, name);
8625 	  bfd_set_error (bfd_error_bad_value);
8626 	  return false;
8627 	}
8628       else
8629 	{
8630 	  h = sym_hashes[r_symndx - extsymoff];
8631 	  if (h != NULL)
8632 	    {
8633 	      while (h->root.type == bfd_link_hash_indirect
8634 		     || h->root.type == bfd_link_hash_warning)
8635 		h = (struct elf_link_hash_entry *) h->root.u.i.link;
8636 	    }
8637 	}
8638 
8639       /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8640 	 relocation into a dynamic one.  */
8641       can_make_dynamic_p = false;
8642 
8643       /* Set CALL_RELOC_P to true if the relocation is for a call,
8644 	 and if pointer equality therefore doesn't matter.  */
8645       call_reloc_p = false;
8646 
8647       /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8648 	 into account when deciding how to define the symbol.  */
8649       constrain_symbol_p = true;
8650 
8651       switch (r_type)
8652 	{
8653 	case R_MIPS_CALL16:
8654 	case R_MIPS_CALL_HI16:
8655 	case R_MIPS_CALL_LO16:
8656 	case R_MIPS16_CALL16:
8657 	case R_MICROMIPS_CALL16:
8658 	case R_MICROMIPS_CALL_HI16:
8659 	case R_MICROMIPS_CALL_LO16:
8660 	  call_reloc_p = true;
8661 	  /* Fall through.  */
8662 
8663 	case R_MIPS_GOT16:
8664 	case R_MIPS_GOT_LO16:
8665 	case R_MIPS_GOT_PAGE:
8666 	case R_MIPS_GOT_DISP:
8667 	case R_MIPS16_GOT16:
8668 	case R_MICROMIPS_GOT16:
8669 	case R_MICROMIPS_GOT_LO16:
8670 	case R_MICROMIPS_GOT_PAGE:
8671 	case R_MICROMIPS_GOT_DISP:
8672 	  /* If we have a symbol that will resolve to zero at static link
8673 	     time and it is used by a GOT relocation applied to code we
8674 	     cannot relax to an immediate zero load, then we will be using
8675 	     the special `__gnu_absolute_zero' symbol whose value is zero
8676 	     at dynamic load time.  We ignore HI16-type GOT relocations at
8677 	     this stage, because their handling will depend entirely on
8678 	     the corresponding LO16-type GOT relocation.  */
8679 	  if (!call_hi16_reloc_p (r_type)
8680 	      && h != NULL
8681 	      && bfd_link_pic (info)
8682 	      && !htab->use_absolute_zero
8683 	      && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8684 	    {
8685 	      bool rel_reloc;
8686 
8687 	      if (!mips_elf_get_section_contents (abfd, sec, &contents))
8688 		return false;
8689 
8690 	      rel_reloc = mips_elf_rel_relocation_p (abfd, sec, relocs, rel);
8691 	      howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, !rel_reloc);
8692 
8693 	      if (!mips_elf_nullify_got_load (abfd, contents, rel, howto,
8694 					      false))
8695 		if (!mips_elf_define_absolute_zero (abfd, info, htab, r_type))
8696 		  return false;
8697 	    }
8698 
8699 	  /* Fall through.  */
8700 	case R_MIPS_GOT_HI16:
8701 	case R_MIPS_GOT_OFST:
8702 	case R_MIPS_TLS_GOTTPREL:
8703 	case R_MIPS_TLS_GD:
8704 	case R_MIPS_TLS_LDM:
8705 	case R_MIPS16_TLS_GOTTPREL:
8706 	case R_MIPS16_TLS_GD:
8707 	case R_MIPS16_TLS_LDM:
8708 	case R_MICROMIPS_GOT_HI16:
8709 	case R_MICROMIPS_GOT_OFST:
8710 	case R_MICROMIPS_TLS_GOTTPREL:
8711 	case R_MICROMIPS_TLS_GD:
8712 	case R_MICROMIPS_TLS_LDM:
8713 	  if (dynobj == NULL)
8714 	    elf_hash_table (info)->dynobj = dynobj = abfd;
8715 	  if (!mips_elf_create_got_section (dynobj, info))
8716 	    return false;
8717 	  if (htab->root.target_os == is_vxworks
8718 	      && !bfd_link_pic (info))
8719 	    {
8720 	      _bfd_error_handler
8721 		/* xgettext:c-format */
8722 		(_("%pB: GOT reloc at %#" PRIx64 " not expected in executables"),
8723 		 abfd, (uint64_t) rel->r_offset);
8724 	      bfd_set_error (bfd_error_bad_value);
8725 	      return false;
8726 	    }
8727 	  can_make_dynamic_p = true;
8728 	  break;
8729 
8730 	case R_MIPS_NONE:
8731 	case R_MIPS_JALR:
8732 	case R_MICROMIPS_JALR:
8733 	  /* These relocations have empty fields and are purely there to
8734 	     provide link information.  The symbol value doesn't matter.  */
8735 	  constrain_symbol_p = false;
8736 	  break;
8737 
8738 	case R_MIPS_GPREL16:
8739 	case R_MIPS_GPREL32:
8740 	case R_MIPS16_GPREL:
8741 	case R_MICROMIPS_GPREL16:
8742 	  /* GP-relative relocations always resolve to a definition in a
8743 	     regular input file, ignoring the one-definition rule.  This is
8744 	     important for the GP setup sequence in NewABI code, which
8745 	     always resolves to a local function even if other relocations
8746 	     against the symbol wouldn't.  */
8747 	  constrain_symbol_p = false;
8748 	  break;
8749 
8750 	case R_MIPS_32:
8751 	case R_MIPS_REL32:
8752 	case R_MIPS_64:
8753 	  /* In VxWorks executables, references to external symbols
8754 	     must be handled using copy relocs or PLT entries; it is not
8755 	     possible to convert this relocation into a dynamic one.
8756 
8757 	     For executables that use PLTs and copy-relocs, we have a
8758 	     choice between converting the relocation into a dynamic
8759 	     one or using copy relocations or PLT entries.  It is
8760 	     usually better to do the former, unless the relocation is
8761 	     against a read-only section.  */
8762 	  if ((bfd_link_pic (info)
8763 	       || (h != NULL
8764 		   && htab->root.target_os != is_vxworks
8765 		   && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8766 		   && !(!info->nocopyreloc
8767 			&& !PIC_OBJECT_P (abfd)
8768 			&& MIPS_ELF_READONLY_SECTION (sec))))
8769 	      && (sec->flags & SEC_ALLOC) != 0)
8770 	    {
8771 	      can_make_dynamic_p = true;
8772 	      if (dynobj == NULL)
8773 		elf_hash_table (info)->dynobj = dynobj = abfd;
8774 	    }
8775 	  break;
8776 
8777 	case R_MIPS_26:
8778 	case R_MIPS_PC16:
8779 	case R_MIPS_PC21_S2:
8780 	case R_MIPS_PC26_S2:
8781 	case R_MIPS16_26:
8782 	case R_MIPS16_PC16_S1:
8783 	case R_MICROMIPS_26_S1:
8784 	case R_MICROMIPS_PC7_S1:
8785 	case R_MICROMIPS_PC10_S1:
8786 	case R_MICROMIPS_PC16_S1:
8787 	case R_MICROMIPS_PC23_S2:
8788 	  call_reloc_p = true;
8789 	  break;
8790 	}
8791 
8792       if (h)
8793 	{
8794 	  if (constrain_symbol_p)
8795 	    {
8796 	      if (!can_make_dynamic_p)
8797 		((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8798 
8799 	      if (!call_reloc_p)
8800 		h->pointer_equality_needed = 1;
8801 
8802 	      /* We must not create a stub for a symbol that has
8803 		 relocations related to taking the function's address.
8804 		 This doesn't apply to VxWorks, where CALL relocs refer
8805 		 to a .got.plt entry instead of a normal .got entry.  */
8806 	      if (htab->root.target_os != is_vxworks
8807 		  && (!can_make_dynamic_p || !call_reloc_p))
8808 		((struct mips_elf_link_hash_entry *) h)->no_fn_stub = true;
8809 	    }
8810 
8811 	  /* Relocations against the special VxWorks __GOTT_BASE__ and
8812 	     __GOTT_INDEX__ symbols must be left to the loader.  Allocate
8813 	     room for them in .rela.dyn.  */
8814 	  if (is_gott_symbol (info, h))
8815 	    {
8816 	      if (sreloc == NULL)
8817 		{
8818 		  sreloc = mips_elf_rel_dyn_section (info, true);
8819 		  if (sreloc == NULL)
8820 		    return false;
8821 		}
8822 	      mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8823 	      if (MIPS_ELF_READONLY_SECTION (sec))
8824 		/* We tell the dynamic linker that there are
8825 		   relocations against the text segment.  */
8826 		info->flags |= DF_TEXTREL;
8827 	    }
8828 	}
8829       else if (call_lo16_reloc_p (r_type)
8830 	       || got_lo16_reloc_p (r_type)
8831 	       || got_disp_reloc_p (r_type)
8832 	       || (got16_reloc_p (r_type)
8833 		   && htab->root.target_os == is_vxworks))
8834 	{
8835 	  /* We may need a local GOT entry for this relocation.  We
8836 	     don't count R_MIPS_GOT_PAGE because we can estimate the
8837 	     maximum number of pages needed by looking at the size of
8838 	     the segment.  Similar comments apply to R_MIPS*_GOT16 and
8839 	     R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8840 	     always evaluate to "G".  We don't count R_MIPS_GOT_HI16, or
8841 	     R_MIPS_CALL_HI16 because these are always followed by an
8842 	     R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16.  */
8843 	  if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8844 						 rel->r_addend, info, r_type))
8845 	    return false;
8846 	}
8847 
8848       if (h != NULL
8849 	  && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8850 						  ELF_ST_IS_MIPS16 (h->other)))
8851 	((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = true;
8852 
8853       switch (r_type)
8854 	{
8855 	case R_MIPS_CALL16:
8856 	case R_MIPS16_CALL16:
8857 	case R_MICROMIPS_CALL16:
8858 	  if (h == NULL)
8859 	    {
8860 	      _bfd_error_handler
8861 		/* xgettext:c-format */
8862 		(_("%pB: CALL16 reloc at %#" PRIx64 " not against global symbol"),
8863 		 abfd, (uint64_t) rel->r_offset);
8864 	      bfd_set_error (bfd_error_bad_value);
8865 	      return false;
8866 	    }
8867 	  /* Fall through.  */
8868 
8869 	case R_MIPS_CALL_HI16:
8870 	case R_MIPS_CALL_LO16:
8871 	case R_MICROMIPS_CALL_HI16:
8872 	case R_MICROMIPS_CALL_LO16:
8873 	  if (h != NULL)
8874 	    {
8875 	      /* Make sure there is room in the regular GOT to hold the
8876 		 function's address.  We may eliminate it in favour of
8877 		 a .got.plt entry later; see mips_elf_count_got_symbols.  */
8878 	      if (!mips_elf_record_global_got_symbol (h, abfd, info, true,
8879 						      r_type))
8880 		return false;
8881 
8882 	      /* We need a stub, not a plt entry for the undefined
8883 		 function.  But we record it as if it needs plt.  See
8884 		 _bfd_elf_adjust_dynamic_symbol.  */
8885 	      h->needs_plt = 1;
8886 	      h->type = STT_FUNC;
8887 	    }
8888 	  break;
8889 
8890 	case R_MIPS_GOT_PAGE:
8891 	case R_MICROMIPS_GOT_PAGE:
8892 	case R_MIPS16_GOT16:
8893 	case R_MIPS_GOT16:
8894 	case R_MIPS_GOT_HI16:
8895 	case R_MIPS_GOT_LO16:
8896 	case R_MICROMIPS_GOT16:
8897 	case R_MICROMIPS_GOT_HI16:
8898 	case R_MICROMIPS_GOT_LO16:
8899 	  if (!h || got_page_reloc_p (r_type))
8900 	    {
8901 	      /* This relocation needs (or may need, if h != NULL) a
8902 		 page entry in the GOT.  For R_MIPS_GOT_PAGE we do not
8903 		 know for sure until we know whether the symbol is
8904 		 preemptible.  */
8905 	      if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8906 		{
8907 		  if (!mips_elf_get_section_contents (abfd, sec, &contents))
8908 		    return false;
8909 		  howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, false);
8910 		  addend = mips_elf_read_rel_addend (abfd, rel,
8911 						     howto, contents);
8912 		  if (got16_reloc_p (r_type))
8913 		    mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8914 						  contents, &addend);
8915 		  else
8916 		    addend <<= howto->rightshift;
8917 		}
8918 	      else
8919 		addend = rel->r_addend;
8920 	      if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8921 						 h, addend))
8922 		return false;
8923 
8924 	      if (h)
8925 		{
8926 		  struct mips_elf_link_hash_entry *hmips =
8927 		    (struct mips_elf_link_hash_entry *) h;
8928 
8929 		  /* This symbol is definitely not overridable.  */
8930 		  if (hmips->root.def_regular
8931 		      && ! (bfd_link_pic (info) && ! info->symbolic
8932 			    && ! hmips->root.forced_local))
8933 		    h = NULL;
8934 		}
8935 	    }
8936 	  /* If this is a global, overridable symbol, GOT_PAGE will
8937 	     decay to GOT_DISP, so we'll need a GOT entry for it.  */
8938 	  /* Fall through.  */
8939 
8940 	case R_MIPS_GOT_DISP:
8941 	case R_MICROMIPS_GOT_DISP:
8942 	  if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8943 						       false, r_type))
8944 	    return false;
8945 	  break;
8946 
8947 	case R_MIPS_TLS_GOTTPREL:
8948 	case R_MIPS16_TLS_GOTTPREL:
8949 	case R_MICROMIPS_TLS_GOTTPREL:
8950 	  if (bfd_link_pic (info))
8951 	    info->flags |= DF_STATIC_TLS;
8952 	  /* Fall through */
8953 
8954 	case R_MIPS_TLS_LDM:
8955 	case R_MIPS16_TLS_LDM:
8956 	case R_MICROMIPS_TLS_LDM:
8957 	  if (tls_ldm_reloc_p (r_type))
8958 	    {
8959 	      r_symndx = STN_UNDEF;
8960 	      h = NULL;
8961 	    }
8962 	  /* Fall through */
8963 
8964 	case R_MIPS_TLS_GD:
8965 	case R_MIPS16_TLS_GD:
8966 	case R_MICROMIPS_TLS_GD:
8967 	  /* This symbol requires a global offset table entry, or two
8968 	     for TLS GD relocations.  */
8969 	  if (h != NULL)
8970 	    {
8971 	      if (!mips_elf_record_global_got_symbol (h, abfd, info,
8972 						      false, r_type))
8973 		return false;
8974 	    }
8975 	  else
8976 	    {
8977 	      if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8978 						     rel->r_addend,
8979 						     info, r_type))
8980 		return false;
8981 	    }
8982 	  break;
8983 
8984 	case R_MIPS_32:
8985 	case R_MIPS_REL32:
8986 	case R_MIPS_64:
8987 	  /* In VxWorks executables, references to external symbols
8988 	     are handled using copy relocs or PLT stubs, so there's
8989 	     no need to add a .rela.dyn entry for this relocation.  */
8990 	  if (can_make_dynamic_p)
8991 	    {
8992 	      if (sreloc == NULL)
8993 		{
8994 		  sreloc = mips_elf_rel_dyn_section (info, true);
8995 		  if (sreloc == NULL)
8996 		    return false;
8997 		}
8998 	      if (bfd_link_pic (info) && h == NULL)
8999 		{
9000 		  /* When creating a shared object, we must copy these
9001 		     reloc types into the output file as R_MIPS_REL32
9002 		     relocs.  Make room for this reloc in .rel(a).dyn.  */
9003 		  mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9004 		  /* In the N32 and 64-bit ABIs there may be multiple
9005 		     consecutive relocations for the same offset.  If we have
9006 		     a R_MIPS_GPREL32 followed by a R_MIPS_64 then that
9007 		     relocation is complete and needs no futher adjustment.
9008 
9009 		     Silently ignore absolute relocations in the .eh_frame
9010 		     section, they will be dropped latter.
9011 		   */
9012 		  if ((rel == relocs
9013 		      || rel[-1].r_offset != rel->r_offset
9014 		      || r_type != R_MIPS_64
9015 		      || ELF_R_TYPE(abfd, rel[-1].r_info) != R_MIPS_GPREL32)
9016 		      && MIPS_ELF_READONLY_SECTION (sec)
9017 		      && !((r_type == R_MIPS_32 || r_type == R_MIPS_64)
9018 		           && strcmp(sec->name, ".eh_frame") == 0))
9019 		    {
9020 		      /* We tell the dynamic linker that there are
9021 		         relocations against the text segment.  */
9022 		      info->flags |= DF_TEXTREL;
9023 		      info->callbacks->warning
9024 			(info,
9025 			 _("relocation emitted against readonly section"),
9026 			 NULL, abfd, sec, rel->r_offset);
9027 		    }
9028 		}
9029 	      else
9030 		{
9031 		  struct mips_elf_link_hash_entry *hmips;
9032 
9033 		  /* For a shared object, we must copy this relocation
9034 		     unless the symbol turns out to be undefined and
9035 		     weak with non-default visibility, in which case
9036 		     it will be left as zero.
9037 
9038 		     We could elide R_MIPS_REL32 for locally binding symbols
9039 		     in shared libraries, but do not yet do so.
9040 
9041 		     For an executable, we only need to copy this
9042 		     reloc if the symbol is defined in a dynamic
9043 		     object.  */
9044 		  hmips = (struct mips_elf_link_hash_entry *) h;
9045 		  ++hmips->possibly_dynamic_relocs;
9046 		  if (MIPS_ELF_READONLY_SECTION (sec))
9047 		    /* We need it to tell the dynamic linker if there
9048 		       are relocations against the text segment.  */
9049 		    hmips->readonly_reloc = true;
9050 		}
9051 	    }
9052 
9053 	  if (SGI_COMPAT (abfd))
9054 	    mips_elf_hash_table (info)->compact_rel_size +=
9055 	      sizeof (Elf32_External_crinfo);
9056 	  break;
9057 
9058 	case R_MIPS_26:
9059 	case R_MIPS_GPREL16:
9060 	case R_MIPS_LITERAL:
9061 	case R_MIPS_GPREL32:
9062 	case R_MICROMIPS_26_S1:
9063 	case R_MICROMIPS_GPREL16:
9064 	case R_MICROMIPS_LITERAL:
9065 	case R_MICROMIPS_GPREL7_S2:
9066 	  if (SGI_COMPAT (abfd))
9067 	    mips_elf_hash_table (info)->compact_rel_size +=
9068 	      sizeof (Elf32_External_crinfo);
9069 	  break;
9070 
9071 	  /* This relocation describes the C++ object vtable hierarchy.
9072 	     Reconstruct it for later use during GC.  */
9073 	case R_MIPS_GNU_VTINHERIT:
9074 	  if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
9075 	    return false;
9076 	  break;
9077 
9078 	  /* This relocation describes which C++ vtable entries are actually
9079 	     used.  Record for later use during GC.  */
9080 	case R_MIPS_GNU_VTENTRY:
9081 	  if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
9082 	    return false;
9083 	  break;
9084 
9085 	default:
9086 	  break;
9087 	}
9088 
9089       /* Record the need for a PLT entry.  At this point we don't know
9090 	 yet if we are going to create a PLT in the first place, but
9091 	 we only record whether the relocation requires a standard MIPS
9092 	 or a compressed code entry anyway.  If we don't make a PLT after
9093 	 all, then we'll just ignore these arrangements.  Likewise if
9094 	 a PLT entry is not created because the symbol is satisfied
9095 	 locally.  */
9096       if (h != NULL
9097 	  && (branch_reloc_p (r_type)
9098 	      || mips16_branch_reloc_p (r_type)
9099 	      || micromips_branch_reloc_p (r_type))
9100 	  && !SYMBOL_CALLS_LOCAL (info, h))
9101 	{
9102 	  if (h->plt.plist == NULL)
9103 	    h->plt.plist = mips_elf_make_plt_record (abfd);
9104 	  if (h->plt.plist == NULL)
9105 	    return false;
9106 
9107 	  if (branch_reloc_p (r_type))
9108 	    h->plt.plist->need_mips = true;
9109 	  else
9110 	    h->plt.plist->need_comp = true;
9111 	}
9112 
9113       /* See if this reloc would need to refer to a MIPS16 hard-float stub,
9114 	 if there is one.  We only need to handle global symbols here;
9115 	 we decide whether to keep or delete stubs for local symbols
9116 	 when processing the stub's relocations.  */
9117       if (h != NULL
9118 	  && !mips16_call_reloc_p (r_type)
9119 	  && !section_allows_mips16_refs_p (sec))
9120 	{
9121 	  struct mips_elf_link_hash_entry *mh;
9122 
9123 	  mh = (struct mips_elf_link_hash_entry *) h;
9124 	  mh->need_fn_stub = true;
9125 	}
9126 
9127       /* Refuse some position-dependent relocations when creating a
9128 	 shared library.  Do not refuse R_MIPS_32 / R_MIPS_64; they're
9129 	 not PIC, but we can create dynamic relocations and the result
9130 	 will be fine.  Also do not refuse R_MIPS_LO16, which can be
9131 	 combined with R_MIPS_GOT16.  */
9132       if (bfd_link_pic (info))
9133 	{
9134 	  switch (r_type)
9135 	    {
9136 	    case R_MIPS_TLS_TPREL_HI16:
9137 	    case R_MIPS16_TLS_TPREL_HI16:
9138 	    case R_MICROMIPS_TLS_TPREL_HI16:
9139 	    case R_MIPS_TLS_TPREL_LO16:
9140 	    case R_MIPS16_TLS_TPREL_LO16:
9141 	    case R_MICROMIPS_TLS_TPREL_LO16:
9142 	      /* These are okay in PIE, but not in a shared library.  */
9143 	      if (bfd_link_executable (info))
9144 		break;
9145 
9146 	      /* FALLTHROUGH */
9147 
9148 	    case R_MIPS16_HI16:
9149 	    case R_MIPS_HI16:
9150 	    case R_MIPS_HIGHER:
9151 	    case R_MIPS_HIGHEST:
9152 	    case R_MICROMIPS_HI16:
9153 	    case R_MICROMIPS_HIGHER:
9154 	    case R_MICROMIPS_HIGHEST:
9155 	      /* Don't refuse a high part relocation if it's against
9156 		 no symbol (e.g. part of a compound relocation).  */
9157 	      if (r_symndx == STN_UNDEF)
9158 		break;
9159 
9160 	      /* Likewise an absolute symbol.  */
9161 	      if (h != NULL && bfd_is_abs_symbol (&h->root))
9162 		break;
9163 
9164 	      /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
9165 		 and has a special meaning.  */
9166 	      if (!NEWABI_P (abfd) && h != NULL
9167 		  && strcmp (h->root.root.string, "_gp_disp") == 0)
9168 		break;
9169 
9170 	      /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks.  */
9171 	      if (is_gott_symbol (info, h))
9172 		break;
9173 
9174 	      /* FALLTHROUGH */
9175 
9176 	    case R_MIPS16_26:
9177 	    case R_MIPS_26:
9178 	    case R_MICROMIPS_26_S1:
9179 	      howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, NEWABI_P (abfd));
9180 	      /* An error for unsupported relocations is raised as part
9181 		 of the above search, so we can skip the following.  */
9182 	      if (howto != NULL)
9183 		info->callbacks->einfo
9184 		  /* xgettext:c-format */
9185 		  (_("%X%H: relocation %s against `%s' cannot be used"
9186 		     " when making a shared object; recompile with -fPIC\n"),
9187 		   abfd, sec, rel->r_offset, howto->name,
9188 		   (h) ? h->root.root.string : "a local symbol");
9189 	      break;
9190 	    default:
9191 	      break;
9192 	    }
9193 	}
9194     }
9195 
9196   return true;
9197 }
9198 
9199 /* Allocate space for global sym dynamic relocs.  */
9200 
9201 static bool
allocate_dynrelocs(struct elf_link_hash_entry * h,void * inf)9202 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
9203 {
9204   struct bfd_link_info *info = inf;
9205   bfd *dynobj;
9206   struct mips_elf_link_hash_entry *hmips;
9207   struct mips_elf_link_hash_table *htab;
9208 
9209   htab = mips_elf_hash_table (info);
9210   BFD_ASSERT (htab != NULL);
9211 
9212   dynobj = elf_hash_table (info)->dynobj;
9213   hmips = (struct mips_elf_link_hash_entry *) h;
9214 
9215   /* VxWorks executables are handled elsewhere; we only need to
9216      allocate relocations in shared objects.  */
9217   if (htab->root.target_os == is_vxworks && !bfd_link_pic (info))
9218     return true;
9219 
9220   /* Ignore indirect symbols.  All relocations against such symbols
9221      will be redirected to the target symbol.  */
9222   if (h->root.type == bfd_link_hash_indirect)
9223     return true;
9224 
9225   /* If this symbol is defined in a dynamic object, or we are creating
9226      a shared library, we will need to copy any R_MIPS_32 or
9227      R_MIPS_REL32 relocs against it into the output file.  */
9228   if (! bfd_link_relocatable (info)
9229       && hmips->possibly_dynamic_relocs != 0
9230       && (h->root.type == bfd_link_hash_defweak
9231 	  || (!h->def_regular && !ELF_COMMON_DEF_P (h))
9232 	  || bfd_link_pic (info)))
9233     {
9234       bool do_copy = true;
9235 
9236       if (h->root.type == bfd_link_hash_undefweak)
9237 	{
9238 	  /* Do not copy relocations for undefined weak symbols that
9239 	     we are not going to export.  */
9240 	  if (UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
9241 	    do_copy = false;
9242 
9243 	  /* Make sure undefined weak symbols are output as a dynamic
9244 	     symbol in PIEs.  */
9245 	  else if (h->dynindx == -1 && !h->forced_local)
9246 	    {
9247 	      if (! bfd_elf_link_record_dynamic_symbol (info, h))
9248 		return false;
9249 	    }
9250 	}
9251 
9252       if (do_copy)
9253 	{
9254 	  /* Even though we don't directly need a GOT entry for this symbol,
9255 	     the SVR4 psABI requires it to have a dynamic symbol table
9256 	     index greater that DT_MIPS_GOTSYM if there are dynamic
9257 	     relocations against it.
9258 
9259 	     VxWorks does not enforce the same mapping between the GOT
9260 	     and the symbol table, so the same requirement does not
9261 	     apply there.  */
9262 	  if (htab->root.target_os != is_vxworks)
9263 	    {
9264 	      if (hmips->global_got_area > GGA_RELOC_ONLY)
9265 		hmips->global_got_area = GGA_RELOC_ONLY;
9266 	      hmips->got_only_for_calls = false;
9267 	    }
9268 
9269 	  mips_elf_allocate_dynamic_relocations
9270 	    (dynobj, info, hmips->possibly_dynamic_relocs);
9271 	  if (hmips->readonly_reloc)
9272 	    /* We tell the dynamic linker that there are relocations
9273 	       against the text segment.  */
9274 	    info->flags |= DF_TEXTREL;
9275 	}
9276     }
9277 
9278   return true;
9279 }
9280 
9281 /* Adjust a symbol defined by a dynamic object and referenced by a
9282    regular object.  The current definition is in some section of the
9283    dynamic object, but we're not including those sections.  We have to
9284    change the definition to something the rest of the link can
9285    understand.  */
9286 
9287 bool
_bfd_mips_elf_adjust_dynamic_symbol(struct bfd_link_info * info,struct elf_link_hash_entry * h)9288 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
9289 				     struct elf_link_hash_entry *h)
9290 {
9291   bfd *dynobj;
9292   struct mips_elf_link_hash_entry *hmips;
9293   struct mips_elf_link_hash_table *htab;
9294   asection *s, *srel;
9295 
9296   htab = mips_elf_hash_table (info);
9297   BFD_ASSERT (htab != NULL);
9298 
9299   dynobj = elf_hash_table (info)->dynobj;
9300   hmips = (struct mips_elf_link_hash_entry *) h;
9301 
9302   /* Make sure we know what is going on here.  */
9303   if (dynobj == NULL
9304       || (! h->needs_plt
9305 	  && ! h->is_weakalias
9306 	  && (! h->def_dynamic
9307 	      || ! h->ref_regular
9308 	      || h->def_regular)))
9309     {
9310       if (h->type == STT_GNU_IFUNC)
9311 	_bfd_error_handler (_("IFUNC symbol %s in dynamic symbol table - IFUNCS are not supported"),
9312 			    h->root.root.string);
9313       else
9314 	_bfd_error_handler (_("non-dynamic symbol %s in dynamic symbol table"),
9315 			    h->root.root.string);
9316       return true;
9317     }
9318 
9319   hmips = (struct mips_elf_link_hash_entry *) h;
9320 
9321   /* If there are call relocations against an externally-defined symbol,
9322      see whether we can create a MIPS lazy-binding stub for it.  We can
9323      only do this if all references to the function are through call
9324      relocations, and in that case, the traditional lazy-binding stubs
9325      are much more efficient than PLT entries.
9326 
9327      Traditional stubs are only available on SVR4 psABI-based systems;
9328      VxWorks always uses PLTs instead.  */
9329   if (htab->root.target_os != is_vxworks
9330       && h->needs_plt
9331       && !hmips->no_fn_stub)
9332     {
9333       if (! elf_hash_table (info)->dynamic_sections_created)
9334 	return true;
9335 
9336       /* If this symbol is not defined in a regular file, then set
9337 	 the symbol to the stub location.  This is required to make
9338 	 function pointers compare as equal between the normal
9339 	 executable and the shared library.  */
9340       if (!h->def_regular
9341 	  && !bfd_is_abs_section (htab->sstubs->output_section))
9342 	{
9343 	  hmips->needs_lazy_stub = true;
9344 	  htab->lazy_stub_count++;
9345 	  return true;
9346 	}
9347     }
9348   /* As above, VxWorks requires PLT entries for externally-defined
9349      functions that are only accessed through call relocations.
9350 
9351      Both VxWorks and non-VxWorks targets also need PLT entries if there
9352      are static-only relocations against an externally-defined function.
9353      This can technically occur for shared libraries if there are
9354      branches to the symbol, although it is unlikely that this will be
9355      used in practice due to the short ranges involved.  It can occur
9356      for any relative or absolute relocation in executables; in that
9357      case, the PLT entry becomes the function's canonical address.  */
9358   else if (((h->needs_plt && !hmips->no_fn_stub)
9359 	    || (h->type == STT_FUNC && hmips->has_static_relocs))
9360 	   && htab->use_plts_and_copy_relocs
9361 	   && !SYMBOL_CALLS_LOCAL (info, h)
9362 	   && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9363 		&& h->root.type == bfd_link_hash_undefweak))
9364     {
9365       bool micromips_p = MICROMIPS_P (info->output_bfd);
9366       bool newabi_p = NEWABI_P (info->output_bfd);
9367 
9368       /* If this is the first symbol to need a PLT entry, then make some
9369 	 basic setup.  Also work out PLT entry sizes.  We'll need them
9370 	 for PLT offset calculations.  */
9371       if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
9372 	{
9373 	  BFD_ASSERT (htab->root.sgotplt->size == 0);
9374 	  BFD_ASSERT (htab->plt_got_index == 0);
9375 
9376 	  /* If we're using the PLT additions to the psABI, each PLT
9377 	     entry is 16 bytes and the PLT0 entry is 32 bytes.
9378 	     Encourage better cache usage by aligning.  We do this
9379 	     lazily to avoid pessimizing traditional objects.  */
9380 	  if (htab->root.target_os != is_vxworks
9381 	      && !bfd_set_section_alignment (htab->root.splt, 5))
9382 	    return false;
9383 
9384 	  /* Make sure that .got.plt is word-aligned.  We do this lazily
9385 	     for the same reason as above.  */
9386 	  if (!bfd_set_section_alignment (htab->root.sgotplt,
9387 					  MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9388 	    return false;
9389 
9390 	  /* On non-VxWorks targets, the first two entries in .got.plt
9391 	     are reserved.  */
9392 	  if (htab->root.target_os != is_vxworks)
9393 	    htab->plt_got_index
9394 	      += (get_elf_backend_data (dynobj)->got_header_size
9395 		  / MIPS_ELF_GOT_SIZE (dynobj));
9396 
9397 	  /* On VxWorks, also allocate room for the header's
9398 	     .rela.plt.unloaded entries.  */
9399 	  if (htab->root.target_os == is_vxworks
9400 	      && !bfd_link_pic (info))
9401 	    htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
9402 
9403 	  /* Now work out the sizes of individual PLT entries.  */
9404 	  if (htab->root.target_os == is_vxworks
9405 	      && bfd_link_pic (info))
9406 	    htab->plt_mips_entry_size
9407 	      = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9408 	  else if (htab->root.target_os == is_vxworks)
9409 	    htab->plt_mips_entry_size
9410 	      = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9411 	  else if (newabi_p)
9412 	    htab->plt_mips_entry_size
9413 	      = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9414 	  else if (!micromips_p)
9415 	    {
9416 	      htab->plt_mips_entry_size
9417 		= 4 * ARRAY_SIZE (mips_exec_plt_entry);
9418 	      htab->plt_comp_entry_size
9419 		= 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9420 	    }
9421 	  else if (htab->insn32)
9422 	    {
9423 	      htab->plt_mips_entry_size
9424 		= 4 * ARRAY_SIZE (mips_exec_plt_entry);
9425 	      htab->plt_comp_entry_size
9426 		= 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
9427 	    }
9428 	  else
9429 	    {
9430 	      htab->plt_mips_entry_size
9431 		= 4 * ARRAY_SIZE (mips_exec_plt_entry);
9432 	      htab->plt_comp_entry_size
9433 		= 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
9434 	    }
9435 	}
9436 
9437       if (h->plt.plist == NULL)
9438 	h->plt.plist = mips_elf_make_plt_record (dynobj);
9439       if (h->plt.plist == NULL)
9440 	return false;
9441 
9442       /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9443 	 n32 or n64, so always use a standard entry there.
9444 
9445 	 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9446 	 all MIPS16 calls will go via that stub, and there is no benefit
9447 	 to having a MIPS16 entry.  And in the case of call_stub a
9448 	 standard entry actually has to be used as the stub ends with a J
9449 	 instruction.  */
9450       if (newabi_p
9451 	  || htab->root.target_os == is_vxworks
9452 	  || hmips->call_stub
9453 	  || hmips->call_fp_stub)
9454 	{
9455 	  h->plt.plist->need_mips = true;
9456 	  h->plt.plist->need_comp = false;
9457 	}
9458 
9459       /* Otherwise, if there are no direct calls to the function, we
9460 	 have a free choice of whether to use standard or compressed
9461 	 entries.  Prefer microMIPS entries if the object is known to
9462 	 contain microMIPS code, so that it becomes possible to create
9463 	 pure microMIPS binaries.  Prefer standard entries otherwise,
9464 	 because MIPS16 ones are no smaller and are usually slower.  */
9465       if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9466 	{
9467 	  if (micromips_p)
9468 	    h->plt.plist->need_comp = true;
9469 	  else
9470 	    h->plt.plist->need_mips = true;
9471 	}
9472 
9473       if (h->plt.plist->need_mips)
9474 	{
9475 	  h->plt.plist->mips_offset = htab->plt_mips_offset;
9476 	  htab->plt_mips_offset += htab->plt_mips_entry_size;
9477 	}
9478       if (h->plt.plist->need_comp)
9479 	{
9480 	  h->plt.plist->comp_offset = htab->plt_comp_offset;
9481 	  htab->plt_comp_offset += htab->plt_comp_entry_size;
9482 	}
9483 
9484       /* Reserve the corresponding .got.plt entry now too.  */
9485       h->plt.plist->gotplt_index = htab->plt_got_index++;
9486 
9487       /* If the output file has no definition of the symbol, set the
9488 	 symbol's value to the address of the stub.  */
9489       if (!bfd_link_pic (info) && !h->def_regular)
9490 	hmips->use_plt_entry = true;
9491 
9492       /* Make room for the R_MIPS_JUMP_SLOT relocation.  */
9493       htab->root.srelplt->size += (htab->root.target_os == is_vxworks
9494 				   ? MIPS_ELF_RELA_SIZE (dynobj)
9495 				   : MIPS_ELF_REL_SIZE (dynobj));
9496 
9497       /* Make room for the .rela.plt.unloaded relocations.  */
9498       if (htab->root.target_os == is_vxworks && !bfd_link_pic (info))
9499 	htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9500 
9501       /* All relocations against this symbol that could have been made
9502 	 dynamic will now refer to the PLT entry instead.  */
9503       hmips->possibly_dynamic_relocs = 0;
9504 
9505       return true;
9506     }
9507 
9508   /* If this is a weak symbol, and there is a real definition, the
9509      processor independent code will have arranged for us to see the
9510      real definition first, and we can just use the same value.  */
9511   if (h->is_weakalias)
9512     {
9513       struct elf_link_hash_entry *def = weakdef (h);
9514       BFD_ASSERT (def->root.type == bfd_link_hash_defined);
9515       h->root.u.def.section = def->root.u.def.section;
9516       h->root.u.def.value = def->root.u.def.value;
9517       return true;
9518     }
9519 
9520   /* Otherwise, there is nothing further to do for symbols defined
9521      in regular objects.  */
9522   if (h->def_regular)
9523     return true;
9524 
9525   /* There's also nothing more to do if we'll convert all relocations
9526      against this symbol into dynamic relocations.  */
9527   if (!hmips->has_static_relocs)
9528     return true;
9529 
9530   /* We're now relying on copy relocations.  Complain if we have
9531      some that we can't convert.  */
9532   if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
9533     {
9534       _bfd_error_handler (_("non-dynamic relocations refer to "
9535 			    "dynamic symbol %s"),
9536 			  h->root.root.string);
9537       bfd_set_error (bfd_error_bad_value);
9538       return false;
9539     }
9540 
9541   /* We must allocate the symbol in our .dynbss section, which will
9542      become part of the .bss section of the executable.  There will be
9543      an entry for this symbol in the .dynsym section.  The dynamic
9544      object will contain position independent code, so all references
9545      from the dynamic object to this symbol will go through the global
9546      offset table.  The dynamic linker will use the .dynsym entry to
9547      determine the address it must put in the global offset table, so
9548      both the dynamic object and the regular object will refer to the
9549      same memory location for the variable.  */
9550 
9551   if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
9552     {
9553       s = htab->root.sdynrelro;
9554       srel = htab->root.sreldynrelro;
9555     }
9556   else
9557     {
9558       s = htab->root.sdynbss;
9559       srel = htab->root.srelbss;
9560     }
9561   if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9562     {
9563       if (htab->root.target_os == is_vxworks)
9564 	srel->size += sizeof (Elf32_External_Rela);
9565       else
9566 	mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9567       h->needs_copy = 1;
9568     }
9569 
9570   /* All relocations against this symbol that could have been made
9571      dynamic will now refer to the local copy instead.  */
9572   hmips->possibly_dynamic_relocs = 0;
9573 
9574   return _bfd_elf_adjust_dynamic_copy (info, h, s);
9575 }
9576 
9577 /* This function is called after all the input files have been read,
9578    and the input sections have been assigned to output sections.  We
9579    check for any mips16 stub sections that we can discard.  */
9580 
9581 bool
_bfd_mips_elf_always_size_sections(bfd * output_bfd,struct bfd_link_info * info)9582 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
9583 				    struct bfd_link_info *info)
9584 {
9585   asection *sect;
9586   struct mips_elf_link_hash_table *htab;
9587   struct mips_htab_traverse_info hti;
9588 
9589   htab = mips_elf_hash_table (info);
9590   BFD_ASSERT (htab != NULL);
9591 
9592   /* The .reginfo section has a fixed size.  */
9593   sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9594   if (sect != NULL)
9595     {
9596       bfd_set_section_size (sect, sizeof (Elf32_External_RegInfo));
9597       sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9598     }
9599 
9600   /* The .MIPS.abiflags section has a fixed size.  */
9601   sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9602   if (sect != NULL)
9603     {
9604       bfd_set_section_size (sect, sizeof (Elf_External_ABIFlags_v0));
9605       sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9606     }
9607 
9608   hti.info = info;
9609   hti.output_bfd = output_bfd;
9610   hti.error = false;
9611   mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9612 			       mips_elf_check_symbols, &hti);
9613   if (hti.error)
9614     return false;
9615 
9616   return true;
9617 }
9618 
9619 /* If the link uses a GOT, lay it out and work out its size.  */
9620 
9621 static bool
mips_elf_lay_out_got(bfd * output_bfd,struct bfd_link_info * info)9622 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9623 {
9624   bfd *dynobj;
9625   asection *s;
9626   struct mips_got_info *g;
9627   bfd_size_type loadable_size = 0;
9628   bfd_size_type page_gotno;
9629   bfd *ibfd;
9630   struct mips_elf_traverse_got_arg tga;
9631   struct mips_elf_link_hash_table *htab;
9632 
9633   htab = mips_elf_hash_table (info);
9634   BFD_ASSERT (htab != NULL);
9635 
9636   s = htab->root.sgot;
9637   if (s == NULL)
9638     return true;
9639 
9640   dynobj = elf_hash_table (info)->dynobj;
9641   g = htab->got_info;
9642 
9643   /* Allocate room for the reserved entries.  VxWorks always reserves
9644      3 entries; other objects only reserve 2 entries.  */
9645   BFD_ASSERT (g->assigned_low_gotno == 0);
9646   if (htab->root.target_os == is_vxworks)
9647     htab->reserved_gotno = 3;
9648   else
9649     htab->reserved_gotno = 2;
9650   g->local_gotno += htab->reserved_gotno;
9651   g->assigned_low_gotno = htab->reserved_gotno;
9652 
9653   /* Decide which symbols need to go in the global part of the GOT and
9654      count the number of reloc-only GOT symbols.  */
9655   mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
9656 
9657   if (!mips_elf_resolve_final_got_entries (info, g))
9658     return false;
9659 
9660   /* Calculate the total loadable size of the output.  That
9661      will give us the maximum number of GOT_PAGE entries
9662      required.  */
9663   for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9664     {
9665       asection *subsection;
9666 
9667       for (subsection = ibfd->sections;
9668 	   subsection;
9669 	   subsection = subsection->next)
9670 	{
9671 	  if ((subsection->flags & SEC_ALLOC) == 0)
9672 	    continue;
9673 	  loadable_size += ((subsection->size + 0xf)
9674 			    &~ (bfd_size_type) 0xf);
9675 	}
9676     }
9677 
9678   if (htab->root.target_os == is_vxworks)
9679     /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
9680        relocations against local symbols evaluate to "G", and the EABI does
9681        not include R_MIPS_GOT_PAGE.  */
9682     page_gotno = 0;
9683   else
9684     /* Assume there are two loadable segments consisting of contiguous
9685        sections.  Is 5 enough?  */
9686     page_gotno = (loadable_size >> 16) + 5;
9687 
9688   /* Choose the smaller of the two page estimates; both are intended to be
9689      conservative.  */
9690   if (page_gotno > g->page_gotno)
9691     page_gotno = g->page_gotno;
9692 
9693   g->local_gotno += page_gotno;
9694   g->assigned_high_gotno = g->local_gotno - 1;
9695 
9696   s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9697   s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9698   s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9699 
9700   /* VxWorks does not support multiple GOTs.  It initializes $gp to
9701      __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9702      dynamic loader.  */
9703   if (htab->root.target_os != is_vxworks
9704       && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
9705     {
9706       if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
9707 	return false;
9708     }
9709   else
9710     {
9711       /* Record that all bfds use G.  This also has the effect of freeing
9712 	 the per-bfd GOTs, which we no longer need.  */
9713       for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9714 	if (mips_elf_bfd_got (ibfd, false))
9715 	  mips_elf_replace_bfd_got (ibfd, g);
9716       mips_elf_replace_bfd_got (output_bfd, g);
9717 
9718       /* Set up TLS entries.  */
9719       g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
9720       tga.info = info;
9721       tga.g = g;
9722       tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9723       htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9724       if (!tga.g)
9725 	return false;
9726       BFD_ASSERT (g->tls_assigned_gotno
9727 		  == g->global_gotno + g->local_gotno + g->tls_gotno);
9728 
9729       /* Each VxWorks GOT entry needs an explicit relocation.  */
9730       if (htab->root.target_os == is_vxworks && bfd_link_pic (info))
9731 	g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9732 
9733       /* Allocate room for the TLS relocations.  */
9734       if (g->relocs)
9735 	mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
9736     }
9737 
9738   return true;
9739 }
9740 
9741 /* Estimate the size of the .MIPS.stubs section.  */
9742 
9743 static void
mips_elf_estimate_stub_size(bfd * output_bfd,struct bfd_link_info * info)9744 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9745 {
9746   struct mips_elf_link_hash_table *htab;
9747   bfd_size_type dynsymcount;
9748 
9749   htab = mips_elf_hash_table (info);
9750   BFD_ASSERT (htab != NULL);
9751 
9752   if (htab->lazy_stub_count == 0)
9753     return;
9754 
9755   /* IRIX rld assumes that a function stub isn't at the end of the .text
9756      section, so add a dummy entry to the end.  */
9757   htab->lazy_stub_count++;
9758 
9759   /* Get a worst-case estimate of the number of dynamic symbols needed.
9760      At this point, dynsymcount does not account for section symbols
9761      and count_section_dynsyms may overestimate the number that will
9762      be needed.  */
9763   dynsymcount = (elf_hash_table (info)->dynsymcount
9764 		 + count_section_dynsyms (output_bfd, info));
9765 
9766   /* Determine the size of one stub entry.  There's no disadvantage
9767      from using microMIPS code here, so for the sake of pure-microMIPS
9768      binaries we prefer it whenever there's any microMIPS code in
9769      output produced at all.  This has a benefit of stubs being
9770      shorter by 4 bytes each too, unless in the insn32 mode.  */
9771   if (!MICROMIPS_P (output_bfd))
9772     htab->function_stub_size = (dynsymcount > 0x10000
9773 				? MIPS_FUNCTION_STUB_BIG_SIZE
9774 				: MIPS_FUNCTION_STUB_NORMAL_SIZE);
9775   else if (htab->insn32)
9776     htab->function_stub_size = (dynsymcount > 0x10000
9777 				? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9778 				: MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9779   else
9780     htab->function_stub_size = (dynsymcount > 0x10000
9781 				? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9782 				: MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
9783 
9784   htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9785 }
9786 
9787 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9788    mips_htab_traverse_info.  If H needs a traditional MIPS lazy-binding
9789    stub, allocate an entry in the stubs section.  */
9790 
9791 static bool
mips_elf_allocate_lazy_stub(struct mips_elf_link_hash_entry * h,void * data)9792 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
9793 {
9794   struct mips_htab_traverse_info *hti = data;
9795   struct mips_elf_link_hash_table *htab;
9796   struct bfd_link_info *info;
9797   bfd *output_bfd;
9798 
9799   info = hti->info;
9800   output_bfd = hti->output_bfd;
9801   htab = mips_elf_hash_table (info);
9802   BFD_ASSERT (htab != NULL);
9803 
9804   if (h->needs_lazy_stub)
9805     {
9806       bool micromips_p = MICROMIPS_P (output_bfd);
9807       unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9808       bfd_vma isa_bit = micromips_p;
9809 
9810       BFD_ASSERT (htab->root.dynobj != NULL);
9811       if (h->root.plt.plist == NULL)
9812 	h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9813       if (h->root.plt.plist == NULL)
9814 	{
9815 	  hti->error = true;
9816 	  return false;
9817 	}
9818       h->root.root.u.def.section = htab->sstubs;
9819       h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9820       h->root.plt.plist->stub_offset = htab->sstubs->size;
9821       h->root.other = other;
9822       htab->sstubs->size += htab->function_stub_size;
9823     }
9824   return true;
9825 }
9826 
9827 /* Allocate offsets in the stubs section to each symbol that needs one.
9828    Set the final size of the .MIPS.stub section.  */
9829 
9830 static bool
mips_elf_lay_out_lazy_stubs(struct bfd_link_info * info)9831 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9832 {
9833   bfd *output_bfd = info->output_bfd;
9834   bool micromips_p = MICROMIPS_P (output_bfd);
9835   unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9836   bfd_vma isa_bit = micromips_p;
9837   struct mips_elf_link_hash_table *htab;
9838   struct mips_htab_traverse_info hti;
9839   struct elf_link_hash_entry *h;
9840   bfd *dynobj;
9841 
9842   htab = mips_elf_hash_table (info);
9843   BFD_ASSERT (htab != NULL);
9844 
9845   if (htab->lazy_stub_count == 0)
9846     return true;
9847 
9848   htab->sstubs->size = 0;
9849   hti.info = info;
9850   hti.output_bfd = output_bfd;
9851   hti.error = false;
9852   mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9853   if (hti.error)
9854     return false;
9855   htab->sstubs->size += htab->function_stub_size;
9856   BFD_ASSERT (htab->sstubs->size
9857 	      == htab->lazy_stub_count * htab->function_stub_size);
9858 
9859   dynobj = elf_hash_table (info)->dynobj;
9860   BFD_ASSERT (dynobj != NULL);
9861   h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9862   if (h == NULL)
9863     return false;
9864   h->root.u.def.value = isa_bit;
9865   h->other = other;
9866   h->type = STT_FUNC;
9867 
9868   return true;
9869 }
9870 
9871 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9872    bfd_link_info.  If H uses the address of a PLT entry as the value
9873    of the symbol, then set the entry in the symbol table now.  Prefer
9874    a standard MIPS PLT entry.  */
9875 
9876 static bool
mips_elf_set_plt_sym_value(struct mips_elf_link_hash_entry * h,void * data)9877 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9878 {
9879   struct bfd_link_info *info = data;
9880   bool micromips_p = MICROMIPS_P (info->output_bfd);
9881   struct mips_elf_link_hash_table *htab;
9882   unsigned int other;
9883   bfd_vma isa_bit;
9884   bfd_vma val;
9885 
9886   htab = mips_elf_hash_table (info);
9887   BFD_ASSERT (htab != NULL);
9888 
9889   if (h->use_plt_entry)
9890     {
9891       BFD_ASSERT (h->root.plt.plist != NULL);
9892       BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9893 		  || h->root.plt.plist->comp_offset != MINUS_ONE);
9894 
9895       val = htab->plt_header_size;
9896       if (h->root.plt.plist->mips_offset != MINUS_ONE)
9897 	{
9898 	  isa_bit = 0;
9899 	  val += h->root.plt.plist->mips_offset;
9900 	  other = 0;
9901 	}
9902       else
9903 	{
9904 	  isa_bit = 1;
9905 	  val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9906 	  other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9907 	}
9908       val += isa_bit;
9909       /* For VxWorks, point at the PLT load stub rather than the lazy
9910 	 resolution stub; this stub will become the canonical function
9911 	 address.  */
9912       if (htab->root.target_os == is_vxworks)
9913 	val += 8;
9914 
9915       h->root.root.u.def.section = htab->root.splt;
9916       h->root.root.u.def.value = val;
9917       h->root.other = other;
9918     }
9919 
9920   return true;
9921 }
9922 
9923 /* Set the sizes of the dynamic sections.  */
9924 
9925 bool
_bfd_mips_elf_size_dynamic_sections(bfd * output_bfd,struct bfd_link_info * info)9926 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9927 				     struct bfd_link_info *info)
9928 {
9929   bfd *dynobj;
9930   asection *s, *sreldyn;
9931   bool reltext;
9932   struct mips_elf_link_hash_table *htab;
9933 
9934   htab = mips_elf_hash_table (info);
9935   BFD_ASSERT (htab != NULL);
9936   dynobj = elf_hash_table (info)->dynobj;
9937   BFD_ASSERT (dynobj != NULL);
9938 
9939   if (elf_hash_table (info)->dynamic_sections_created)
9940     {
9941       /* Set the contents of the .interp section to the interpreter.  */
9942       if (bfd_link_executable (info) && !info->nointerp)
9943 	{
9944 	  s = bfd_get_linker_section (dynobj, ".interp");
9945 	  BFD_ASSERT (s != NULL);
9946 	  s->size
9947 	    = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9948 	  s->contents
9949 	    = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9950 	}
9951 
9952       /* Figure out the size of the PLT header if we know that we
9953 	 are using it.  For the sake of cache alignment always use
9954 	 a standard header whenever any standard entries are present
9955 	 even if microMIPS entries are present as well.  This also
9956 	 lets the microMIPS header rely on the value of $v0 only set
9957 	 by microMIPS entries, for a small size reduction.
9958 
9959 	 Set symbol table entry values for symbols that use the
9960 	 address of their PLT entry now that we can calculate it.
9961 
9962 	 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9963 	 haven't already in _bfd_elf_create_dynamic_sections.  */
9964       if (htab->root.splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
9965 	{
9966 	  bool micromips_p = (MICROMIPS_P (output_bfd)
9967 				     && !htab->plt_mips_offset);
9968 	  unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9969 	  bfd_vma isa_bit = micromips_p;
9970 	  struct elf_link_hash_entry *h;
9971 	  bfd_vma size;
9972 
9973 	  BFD_ASSERT (htab->use_plts_and_copy_relocs);
9974 	  BFD_ASSERT (htab->root.sgotplt->size == 0);
9975 	  BFD_ASSERT (htab->root.splt->size == 0);
9976 
9977 	  if (htab->root.target_os == is_vxworks && bfd_link_pic (info))
9978 	    size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9979 	  else if (htab->root.target_os == is_vxworks)
9980 	    size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9981 	  else if (ABI_64_P (output_bfd))
9982 	    size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9983 	  else if (ABI_N32_P (output_bfd))
9984 	    size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9985 	  else if (!micromips_p)
9986 	    size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
9987 	  else if (htab->insn32)
9988 	    size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
9989 	  else
9990 	    size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
9991 
9992 	  htab->plt_header_is_comp = micromips_p;
9993 	  htab->plt_header_size = size;
9994 	  htab->root.splt->size = (size
9995 				   + htab->plt_mips_offset
9996 				   + htab->plt_comp_offset);
9997 	  htab->root.sgotplt->size = (htab->plt_got_index
9998 				      * MIPS_ELF_GOT_SIZE (dynobj));
9999 
10000 	  mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
10001 
10002 	  if (htab->root.hplt == NULL)
10003 	    {
10004 	      h = _bfd_elf_define_linkage_sym (dynobj, info, htab->root.splt,
10005 					       "_PROCEDURE_LINKAGE_TABLE_");
10006 	      htab->root.hplt = h;
10007 	      if (h == NULL)
10008 		return false;
10009 	    }
10010 
10011 	  h = htab->root.hplt;
10012 	  h->root.u.def.value = isa_bit;
10013 	  h->other = other;
10014 	  h->type = STT_FUNC;
10015 	}
10016     }
10017 
10018   /* Allocate space for global sym dynamic relocs.  */
10019   elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
10020 
10021   mips_elf_estimate_stub_size (output_bfd, info);
10022 
10023   if (!mips_elf_lay_out_got (output_bfd, info))
10024     return false;
10025 
10026   mips_elf_lay_out_lazy_stubs (info);
10027 
10028   /* The check_relocs and adjust_dynamic_symbol entry points have
10029      determined the sizes of the various dynamic sections.  Allocate
10030      memory for them.  */
10031   reltext = false;
10032   for (s = dynobj->sections; s != NULL; s = s->next)
10033     {
10034       const char *name;
10035 
10036       /* It's OK to base decisions on the section name, because none
10037 	 of the dynobj section names depend upon the input files.  */
10038       name = bfd_section_name (s);
10039 
10040       if ((s->flags & SEC_LINKER_CREATED) == 0)
10041 	continue;
10042 
10043       if (startswith (name, ".rel"))
10044 	{
10045 	  if (s->size != 0)
10046 	    {
10047 	      const char *outname;
10048 	      asection *target;
10049 
10050 	      /* If this relocation section applies to a read only
10051 		 section, then we probably need a DT_TEXTREL entry.
10052 		 If the relocation section is .rel(a).dyn, we always
10053 		 assert a DT_TEXTREL entry rather than testing whether
10054 		 there exists a relocation to a read only section or
10055 		 not.  */
10056 	      outname = bfd_section_name (s->output_section);
10057 	      target = bfd_get_section_by_name (output_bfd, outname + 4);
10058 	      if ((target != NULL
10059 		   && (target->flags & SEC_READONLY) != 0
10060 		   && (target->flags & SEC_ALLOC) != 0)
10061 		  || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
10062 		reltext = true;
10063 
10064 	      /* We use the reloc_count field as a counter if we need
10065 		 to copy relocs into the output file.  */
10066 	      if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
10067 		s->reloc_count = 0;
10068 
10069 	      /* If combreloc is enabled, elf_link_sort_relocs() will
10070 		 sort relocations, but in a different way than we do,
10071 		 and before we're done creating relocations.  Also, it
10072 		 will move them around between input sections'
10073 		 relocation's contents, so our sorting would be
10074 		 broken, so don't let it run.  */
10075 	      info->combreloc = 0;
10076 	    }
10077 	}
10078       else if (bfd_link_executable (info)
10079 	       && ! mips_elf_hash_table (info)->use_rld_obj_head
10080 	       && startswith (name, ".rld_map"))
10081 	{
10082 	  /* We add a room for __rld_map.  It will be filled in by the
10083 	     rtld to contain a pointer to the _r_debug structure.  */
10084 	  s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
10085 	}
10086       else if (SGI_COMPAT (output_bfd)
10087 	       && startswith (name, ".compact_rel"))
10088 	s->size += mips_elf_hash_table (info)->compact_rel_size;
10089       else if (s == htab->root.splt)
10090 	{
10091 	  /* If the last PLT entry has a branch delay slot, allocate
10092 	     room for an extra nop to fill the delay slot.  This is
10093 	     for CPUs without load interlocking.  */
10094 	  if (! LOAD_INTERLOCKS_P (output_bfd)
10095 	      && htab->root.target_os != is_vxworks
10096 	      && s->size > 0)
10097 	    s->size += 4;
10098 	}
10099       else if (! startswith (name, ".init")
10100 	       && s != htab->root.sgot
10101 	       && s != htab->root.sgotplt
10102 	       && s != htab->sstubs
10103 	       && s != htab->root.sdynbss
10104 	       && s != htab->root.sdynrelro)
10105 	{
10106 	  /* It's not one of our sections, so don't allocate space.  */
10107 	  continue;
10108 	}
10109 
10110       if (s->size == 0)
10111 	{
10112 	  s->flags |= SEC_EXCLUDE;
10113 	  continue;
10114 	}
10115 
10116       if ((s->flags & SEC_HAS_CONTENTS) == 0)
10117 	continue;
10118 
10119       /* Allocate memory for the section contents.  */
10120       s->contents = bfd_zalloc (dynobj, s->size);
10121       if (s->contents == NULL)
10122 	{
10123 	  bfd_set_error (bfd_error_no_memory);
10124 	  return false;
10125 	}
10126     }
10127 
10128   if (elf_hash_table (info)->dynamic_sections_created)
10129     {
10130       /* Add some entries to the .dynamic section.  We fill in the
10131 	 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
10132 	 must add the entries now so that we get the correct size for
10133 	 the .dynamic section.  */
10134 
10135       /* SGI object has the equivalence of DT_DEBUG in the
10136 	 DT_MIPS_RLD_MAP entry.  This must come first because glibc
10137 	 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
10138 	 may only look at the first one they see.  */
10139       if (!bfd_link_pic (info)
10140 	  && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
10141 	return false;
10142 
10143       if (bfd_link_executable (info)
10144 	  && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
10145 	return false;
10146 
10147       /* The DT_DEBUG entry may be filled in by the dynamic linker and
10148 	 used by the debugger.  */
10149       if (bfd_link_executable (info)
10150 	  && !SGI_COMPAT (output_bfd)
10151 	  && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
10152 	return false;
10153 
10154       if (reltext
10155 	  && (SGI_COMPAT (output_bfd)
10156 	      || htab->root.target_os == is_vxworks))
10157 	info->flags |= DF_TEXTREL;
10158 
10159       if ((info->flags & DF_TEXTREL) != 0)
10160 	{
10161 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
10162 	    return false;
10163 
10164 	  /* Clear the DF_TEXTREL flag.  It will be set again if we
10165 	     write out an actual text relocation; we may not, because
10166 	     at this point we do not know whether e.g. any .eh_frame
10167 	     absolute relocations have been converted to PC-relative.  */
10168 	  info->flags &= ~DF_TEXTREL;
10169 	}
10170 
10171       if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
10172 	return false;
10173 
10174       sreldyn = mips_elf_rel_dyn_section (info, false);
10175       if (htab->root.target_os == is_vxworks)
10176 	{
10177 	  /* VxWorks uses .rela.dyn instead of .rel.dyn.  It does not
10178 	     use any of the DT_MIPS_* tags.  */
10179 	  if (sreldyn && sreldyn->size > 0)
10180 	    {
10181 	      if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
10182 		return false;
10183 
10184 	      if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
10185 		return false;
10186 
10187 	      if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
10188 		return false;
10189 	    }
10190 	}
10191       else
10192 	{
10193 	  if (sreldyn && sreldyn->size > 0
10194 	      && !bfd_is_abs_section (sreldyn->output_section))
10195 	    {
10196 	      if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
10197 		return false;
10198 
10199 	      if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
10200 		return false;
10201 
10202 	      if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
10203 		return false;
10204 	    }
10205 
10206 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
10207 	    return false;
10208 
10209 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
10210 	    return false;
10211 
10212 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
10213 	    return false;
10214 
10215 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
10216 	    return false;
10217 
10218 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
10219 	    return false;
10220 
10221 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
10222 	    return false;
10223 
10224 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
10225 	    return false;
10226 
10227 	  if (info->emit_gnu_hash
10228 	      && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_XHASH, 0))
10229 	    return false;
10230 
10231 	  if (IRIX_COMPAT (dynobj) == ict_irix5
10232 	      && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
10233 	    return false;
10234 
10235 	  if (IRIX_COMPAT (dynobj) == ict_irix6
10236 	      && (bfd_get_section_by_name
10237 		  (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
10238 	      && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
10239 	    return false;
10240 	}
10241       if (htab->root.splt->size > 0)
10242 	{
10243 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
10244 	    return false;
10245 
10246 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
10247 	    return false;
10248 
10249 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
10250 	    return false;
10251 
10252 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
10253 	    return false;
10254 	}
10255       if (htab->root.target_os == is_vxworks
10256 	  && !elf_vxworks_add_dynamic_entries (output_bfd, info))
10257 	return false;
10258     }
10259 
10260   return true;
10261 }
10262 
10263 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
10264    Adjust its R_ADDEND field so that it is correct for the output file.
10265    LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
10266    and sections respectively; both use symbol indexes.  */
10267 
10268 static void
mips_elf_adjust_addend(bfd * output_bfd,struct bfd_link_info * info,bfd * input_bfd,Elf_Internal_Sym * local_syms,asection ** local_sections,Elf_Internal_Rela * rel)10269 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
10270 			bfd *input_bfd, Elf_Internal_Sym *local_syms,
10271 			asection **local_sections, Elf_Internal_Rela *rel)
10272 {
10273   unsigned int r_type, r_symndx;
10274   Elf_Internal_Sym *sym;
10275   asection *sec;
10276 
10277   if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10278     {
10279       r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10280       if (gprel16_reloc_p (r_type)
10281 	  || r_type == R_MIPS_GPREL32
10282 	  || literal_reloc_p (r_type))
10283 	{
10284 	  rel->r_addend += _bfd_get_gp_value (input_bfd);
10285 	  rel->r_addend -= _bfd_get_gp_value (output_bfd);
10286 	}
10287 
10288       r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
10289       sym = local_syms + r_symndx;
10290 
10291       /* Adjust REL's addend to account for section merging.  */
10292       if (!bfd_link_relocatable (info))
10293 	{
10294 	  sec = local_sections[r_symndx];
10295 	  _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
10296 	}
10297 
10298       /* This would normally be done by the rela_normal code in elflink.c.  */
10299       if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10300 	rel->r_addend += local_sections[r_symndx]->output_offset;
10301     }
10302 }
10303 
10304 /* Handle relocations against symbols from removed linkonce sections,
10305    or sections discarded by a linker script.  We use this wrapper around
10306    RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
10307    on 64-bit ELF targets.  In this case for any relocation handled, which
10308    always be the first in a triplet, the remaining two have to be processed
10309    together with the first, even if they are R_MIPS_NONE.  It is the symbol
10310    index referred by the first reloc that applies to all the three and the
10311    remaining two never refer to an object symbol.  And it is the final
10312    relocation (the last non-null one) that determines the output field of
10313    the whole relocation so retrieve the corresponding howto structure for
10314    the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
10315 
10316    Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
10317    and therefore requires to be pasted in a loop.  It also defines a block
10318    and does not protect any of its arguments, hence the extra brackets.  */
10319 
10320 static void
mips_reloc_against_discarded_section(bfd * output_bfd,struct bfd_link_info * info,bfd * input_bfd,asection * input_section,Elf_Internal_Rela ** rel,const Elf_Internal_Rela ** relend,bool rel_reloc,reloc_howto_type * howto,bfd_byte * contents)10321 mips_reloc_against_discarded_section (bfd *output_bfd,
10322 				      struct bfd_link_info *info,
10323 				      bfd *input_bfd, asection *input_section,
10324 				      Elf_Internal_Rela **rel,
10325 				      const Elf_Internal_Rela **relend,
10326 				      bool rel_reloc,
10327 				      reloc_howto_type *howto,
10328 				      bfd_byte *contents)
10329 {
10330   const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10331   int count = bed->s->int_rels_per_ext_rel;
10332   unsigned int r_type;
10333   int i;
10334 
10335   for (i = count - 1; i > 0; i--)
10336     {
10337       r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
10338       if (r_type != R_MIPS_NONE)
10339 	{
10340 	  howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10341 	  break;
10342 	}
10343     }
10344   do
10345     {
10346        RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10347 					(*rel), count, (*relend),
10348 					howto, i, contents);
10349     }
10350   while (0);
10351 }
10352 
10353 /* Relocate a MIPS ELF section.  */
10354 
10355 int
_bfd_mips_elf_relocate_section(bfd * output_bfd,struct bfd_link_info * info,bfd * input_bfd,asection * input_section,bfd_byte * contents,Elf_Internal_Rela * relocs,Elf_Internal_Sym * local_syms,asection ** local_sections)10356 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
10357 				bfd *input_bfd, asection *input_section,
10358 				bfd_byte *contents, Elf_Internal_Rela *relocs,
10359 				Elf_Internal_Sym *local_syms,
10360 				asection **local_sections)
10361 {
10362   Elf_Internal_Rela *rel;
10363   const Elf_Internal_Rela *relend;
10364   bfd_vma addend = 0;
10365   bool use_saved_addend_p = false;
10366 
10367   relend = relocs + input_section->reloc_count;
10368   for (rel = relocs; rel < relend; ++rel)
10369     {
10370       const char *name;
10371       bfd_vma value = 0;
10372       reloc_howto_type *howto;
10373       bool cross_mode_jump_p = false;
10374       /* TRUE if the relocation is a RELA relocation, rather than a
10375 	 REL relocation.  */
10376       bool rela_relocation_p = true;
10377       unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10378       const char *msg;
10379       unsigned long r_symndx;
10380       asection *sec;
10381       Elf_Internal_Shdr *symtab_hdr;
10382       struct elf_link_hash_entry *h;
10383       bool rel_reloc;
10384 
10385       rel_reloc = (NEWABI_P (input_bfd)
10386 		   && mips_elf_rel_relocation_p (input_bfd, input_section,
10387 						 relocs, rel));
10388       /* Find the relocation howto for this relocation.  */
10389       howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10390 
10391       r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
10392       symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10393       if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10394 	{
10395 	  sec = local_sections[r_symndx];
10396 	  h = NULL;
10397 	}
10398       else
10399 	{
10400 	  unsigned long extsymoff;
10401 
10402 	  extsymoff = 0;
10403 	  if (!elf_bad_symtab (input_bfd))
10404 	    extsymoff = symtab_hdr->sh_info;
10405 	  h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10406 	  while (h->root.type == bfd_link_hash_indirect
10407 		 || h->root.type == bfd_link_hash_warning)
10408 	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
10409 
10410 	  sec = NULL;
10411 	  if (h->root.type == bfd_link_hash_defined
10412 	      || h->root.type == bfd_link_hash_defweak)
10413 	    sec = h->root.u.def.section;
10414 	}
10415 
10416       if (sec != NULL && discarded_section (sec))
10417 	{
10418 	  mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10419 						input_section, &rel, &relend,
10420 						rel_reloc, howto, contents);
10421 	  continue;
10422 	}
10423 
10424       if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
10425 	{
10426 	  /* Some 32-bit code uses R_MIPS_64.  In particular, people use
10427 	     64-bit code, but make sure all their addresses are in the
10428 	     lowermost or uppermost 32-bit section of the 64-bit address
10429 	     space.  Thus, when they use an R_MIPS_64 they mean what is
10430 	     usually meant by R_MIPS_32, with the exception that the
10431 	     stored value is sign-extended to 64 bits.  */
10432 	  howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, false);
10433 
10434 	  /* On big-endian systems, we need to lie about the position
10435 	     of the reloc.  */
10436 	  if (bfd_big_endian (input_bfd))
10437 	    rel->r_offset += 4;
10438 	}
10439 
10440       if (!use_saved_addend_p)
10441 	{
10442 	  /* If these relocations were originally of the REL variety,
10443 	     we must pull the addend out of the field that will be
10444 	     relocated.  Otherwise, we simply use the contents of the
10445 	     RELA relocation.  */
10446 	  if (mips_elf_rel_relocation_p (input_bfd, input_section,
10447 					 relocs, rel))
10448 	    {
10449 	      rela_relocation_p = false;
10450 	      addend = mips_elf_read_rel_addend (input_bfd, rel,
10451 						 howto, contents);
10452 	      if (hi16_reloc_p (r_type)
10453 		  || (got16_reloc_p (r_type)
10454 		      && mips_elf_local_relocation_p (input_bfd, rel,
10455 						      local_sections)))
10456 		{
10457 		  if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10458 						     contents, &addend))
10459 		    {
10460 		      if (h)
10461 			name = h->root.root.string;
10462 		      else
10463 			name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10464 						 local_syms + r_symndx,
10465 						 sec);
10466 		      _bfd_error_handler
10467 			/* xgettext:c-format */
10468 			(_("%pB: can't find matching LO16 reloc against `%s'"
10469 			   " for %s at %#" PRIx64 " in section `%pA'"),
10470 			 input_bfd, name,
10471 			 howto->name, (uint64_t) rel->r_offset, input_section);
10472 		    }
10473 		}
10474 	      else
10475 		addend <<= howto->rightshift;
10476 	    }
10477 	  else
10478 	    addend = rel->r_addend;
10479 	  mips_elf_adjust_addend (output_bfd, info, input_bfd,
10480 				  local_syms, local_sections, rel);
10481 	}
10482 
10483       if (bfd_link_relocatable (info))
10484 	{
10485 	  if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
10486 	      && bfd_big_endian (input_bfd))
10487 	    rel->r_offset -= 4;
10488 
10489 	  if (!rela_relocation_p && rel->r_addend)
10490 	    {
10491 	      addend += rel->r_addend;
10492 	      if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
10493 		addend = mips_elf_high (addend);
10494 	      else if (r_type == R_MIPS_HIGHER)
10495 		addend = mips_elf_higher (addend);
10496 	      else if (r_type == R_MIPS_HIGHEST)
10497 		addend = mips_elf_highest (addend);
10498 	      else
10499 		addend >>= howto->rightshift;
10500 
10501 	      /* We use the source mask, rather than the destination
10502 		 mask because the place to which we are writing will be
10503 		 source of the addend in the final link.  */
10504 	      addend &= howto->src_mask;
10505 
10506 	      if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10507 		/* See the comment above about using R_MIPS_64 in the 32-bit
10508 		   ABI.  Here, we need to update the addend.  It would be
10509 		   possible to get away with just using the R_MIPS_32 reloc
10510 		   but for endianness.  */
10511 		{
10512 		  bfd_vma sign_bits;
10513 		  bfd_vma low_bits;
10514 		  bfd_vma high_bits;
10515 
10516 		  if (addend & ((bfd_vma) 1 << 31))
10517 #ifdef BFD64
10518 		    sign_bits = ((bfd_vma) 1 << 32) - 1;
10519 #else
10520 		    sign_bits = -1;
10521 #endif
10522 		  else
10523 		    sign_bits = 0;
10524 
10525 		  /* If we don't know that we have a 64-bit type,
10526 		     do two separate stores.  */
10527 		  if (bfd_big_endian (input_bfd))
10528 		    {
10529 		      /* Store the sign-bits (which are most significant)
10530 			 first.  */
10531 		      low_bits = sign_bits;
10532 		      high_bits = addend;
10533 		    }
10534 		  else
10535 		    {
10536 		      low_bits = addend;
10537 		      high_bits = sign_bits;
10538 		    }
10539 		  bfd_put_32 (input_bfd, low_bits,
10540 			      contents + rel->r_offset);
10541 		  bfd_put_32 (input_bfd, high_bits,
10542 			      contents + rel->r_offset + 4);
10543 		  continue;
10544 		}
10545 
10546 	      if (! mips_elf_perform_relocation (info, howto, rel, addend,
10547 						 input_bfd, input_section,
10548 						 contents, false))
10549 		return false;
10550 	    }
10551 
10552 	  /* Go on to the next relocation.  */
10553 	  continue;
10554 	}
10555 
10556       /* In the N32 and 64-bit ABIs there may be multiple consecutive
10557 	 relocations for the same offset.  In that case we are
10558 	 supposed to treat the output of each relocation as the addend
10559 	 for the next.  */
10560       if (rel + 1 < relend
10561 	  && rel->r_offset == rel[1].r_offset
10562 	  && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
10563 	use_saved_addend_p = true;
10564       else
10565 	use_saved_addend_p = false;
10566 
10567       /* Figure out what value we are supposed to relocate.  */
10568       switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10569 					     input_section, contents,
10570 					     info, rel, addend, howto,
10571 					     local_syms, local_sections,
10572 					     &value, &name, &cross_mode_jump_p,
10573 					     use_saved_addend_p))
10574 	{
10575 	case bfd_reloc_continue:
10576 	  /* There's nothing to do.  */
10577 	  continue;
10578 
10579 	case bfd_reloc_undefined:
10580 	  /* mips_elf_calculate_relocation already called the
10581 	     undefined_symbol callback.  There's no real point in
10582 	     trying to perform the relocation at this point, so we
10583 	     just skip ahead to the next relocation.  */
10584 	  continue;
10585 
10586 	case bfd_reloc_notsupported:
10587 	  msg = _("internal error: unsupported relocation error");
10588 	  info->callbacks->warning
10589 	    (info, msg, name, input_bfd, input_section, rel->r_offset);
10590 	  return false;
10591 
10592 	case bfd_reloc_overflow:
10593 	  if (use_saved_addend_p)
10594 	    /* Ignore overflow until we reach the last relocation for
10595 	       a given location.  */
10596 	    ;
10597 	  else
10598 	    {
10599 	      struct mips_elf_link_hash_table *htab;
10600 
10601 	      htab = mips_elf_hash_table (info);
10602 	      BFD_ASSERT (htab != NULL);
10603 	      BFD_ASSERT (name != NULL);
10604 	      if (!htab->small_data_overflow_reported
10605 		  && (gprel16_reloc_p (howto->type)
10606 		      || literal_reloc_p (howto->type)))
10607 		{
10608 		  msg = _("small-data section exceeds 64KB;"
10609 			  " lower small-data size limit (see option -G)");
10610 
10611 		  htab->small_data_overflow_reported = true;
10612 		  (*info->callbacks->einfo) ("%P: %s\n", msg);
10613 		}
10614 	      (*info->callbacks->reloc_overflow)
10615 		(info, NULL, name, howto->name, (bfd_vma) 0,
10616 		 input_bfd, input_section, rel->r_offset);
10617 	    }
10618 	  break;
10619 
10620 	case bfd_reloc_ok:
10621 	  break;
10622 
10623 	case bfd_reloc_outofrange:
10624 	  msg = NULL;
10625 	  if (jal_reloc_p (howto->type))
10626 	    msg = (cross_mode_jump_p
10627 		   ? _("cannot convert a jump to JALX "
10628 		       "for a non-word-aligned address")
10629 		   : (howto->type == R_MIPS16_26
10630 		      ? _("jump to a non-word-aligned address")
10631 		      : _("jump to a non-instruction-aligned address")));
10632 	  else if (b_reloc_p (howto->type))
10633 	    msg = (cross_mode_jump_p
10634 		   ? _("cannot convert a branch to JALX "
10635 		       "for a non-word-aligned address")
10636 		   : _("branch to a non-instruction-aligned address"));
10637 	  else if (aligned_pcrel_reloc_p (howto->type))
10638 	    msg = _("PC-relative load from unaligned address");
10639 	  if (msg)
10640 	    {
10641 	      info->callbacks->einfo
10642 		("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg);
10643 	      break;
10644 	    }
10645 	  /* Fall through.  */
10646 
10647 	default:
10648 	  abort ();
10649 	  break;
10650 	}
10651 
10652       /* If we've got another relocation for the address, keep going
10653 	 until we reach the last one.  */
10654       if (use_saved_addend_p)
10655 	{
10656 	  addend = value;
10657 	  continue;
10658 	}
10659 
10660       if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10661 	/* See the comment above about using R_MIPS_64 in the 32-bit
10662 	   ABI.  Until now, we've been using the HOWTO for R_MIPS_32;
10663 	   that calculated the right value.  Now, however, we
10664 	   sign-extend the 32-bit result to 64-bits, and store it as a
10665 	   64-bit value.  We are especially generous here in that we
10666 	   go to extreme lengths to support this usage on systems with
10667 	   only a 32-bit VMA.  */
10668 	{
10669 	  bfd_vma sign_bits;
10670 	  bfd_vma low_bits;
10671 	  bfd_vma high_bits;
10672 
10673 	  if (value & ((bfd_vma) 1 << 31))
10674 #ifdef BFD64
10675 	    sign_bits = ((bfd_vma) 1 << 32) - 1;
10676 #else
10677 	    sign_bits = -1;
10678 #endif
10679 	  else
10680 	    sign_bits = 0;
10681 
10682 	  /* If we don't know that we have a 64-bit type,
10683 	     do two separate stores.  */
10684 	  if (bfd_big_endian (input_bfd))
10685 	    {
10686 	      /* Undo what we did above.  */
10687 	      rel->r_offset -= 4;
10688 	      /* Store the sign-bits (which are most significant)
10689 		 first.  */
10690 	      low_bits = sign_bits;
10691 	      high_bits = value;
10692 	    }
10693 	  else
10694 	    {
10695 	      low_bits = value;
10696 	      high_bits = sign_bits;
10697 	    }
10698 	  bfd_put_32 (input_bfd, low_bits,
10699 		      contents + rel->r_offset);
10700 	  bfd_put_32 (input_bfd, high_bits,
10701 		      contents + rel->r_offset + 4);
10702 	  continue;
10703 	}
10704 
10705       /* Actually perform the relocation.  */
10706       if (! mips_elf_perform_relocation (info, howto, rel, value,
10707 					 input_bfd, input_section,
10708 					 contents, cross_mode_jump_p))
10709 	return false;
10710     }
10711 
10712   return true;
10713 }
10714 
10715 /* A function that iterates over each entry in la25_stubs and fills
10716    in the code for each one.  DATA points to a mips_htab_traverse_info.  */
10717 
10718 static int
mips_elf_create_la25_stub(void ** slot,void * data)10719 mips_elf_create_la25_stub (void **slot, void *data)
10720 {
10721   struct mips_htab_traverse_info *hti;
10722   struct mips_elf_link_hash_table *htab;
10723   struct mips_elf_la25_stub *stub;
10724   asection *s;
10725   bfd_byte *loc;
10726   bfd_vma offset, target, target_high, target_low;
10727   bfd_vma branch_pc;
10728   bfd_signed_vma pcrel_offset = 0;
10729 
10730   stub = (struct mips_elf_la25_stub *) *slot;
10731   hti = (struct mips_htab_traverse_info *) data;
10732   htab = mips_elf_hash_table (hti->info);
10733   BFD_ASSERT (htab != NULL);
10734 
10735   /* Create the section contents, if we haven't already.  */
10736   s = stub->stub_section;
10737   loc = s->contents;
10738   if (loc == NULL)
10739     {
10740       loc = bfd_malloc (s->size);
10741       if (loc == NULL)
10742 	{
10743 	  hti->error = true;
10744 	  return false;
10745 	}
10746       s->contents = loc;
10747     }
10748 
10749   /* Work out where in the section this stub should go.  */
10750   offset = stub->offset;
10751 
10752   /* We add 8 here to account for the LUI/ADDIU instructions
10753      before the branch instruction.  This cannot be moved down to
10754      where pcrel_offset is calculated as 's' is updated in
10755      mips_elf_get_la25_target.  */
10756   branch_pc = s->output_section->vma + s->output_offset + offset + 8;
10757 
10758   /* Work out the target address.  */
10759   target = mips_elf_get_la25_target (stub, &s);
10760   target += s->output_section->vma + s->output_offset;
10761 
10762   target_high = ((target + 0x8000) >> 16) & 0xffff;
10763   target_low = (target & 0xffff);
10764 
10765   /* Calculate the PC of the compact branch instruction (for the case where
10766      compact branches are used for either microMIPSR6 or MIPSR6 with
10767      compact branches.  Add 4-bytes to account for BC using the PC of the
10768      next instruction as the base.  */
10769   pcrel_offset = target - (branch_pc + 4);
10770 
10771   if (stub->stub_section != htab->strampoline)
10772     {
10773       /* This is a simple LUI/ADDIU stub.  Zero out the beginning
10774 	 of the section and write the two instructions at the end.  */
10775       memset (loc, 0, offset);
10776       loc += offset;
10777       if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10778 	{
10779 	  bfd_put_micromips_32 (hti->output_bfd,
10780 				LA25_LUI_MICROMIPS (target_high),
10781 				loc);
10782 	  bfd_put_micromips_32 (hti->output_bfd,
10783 				LA25_ADDIU_MICROMIPS (target_low),
10784 				loc + 4);
10785 	}
10786       else
10787 	{
10788 	  bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10789 	  bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10790 	}
10791     }
10792   else
10793     {
10794       /* This is trampoline.  */
10795       loc += offset;
10796       if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10797 	{
10798 	  bfd_put_micromips_32 (hti->output_bfd,
10799 				LA25_LUI_MICROMIPS (target_high), loc);
10800 	  bfd_put_micromips_32 (hti->output_bfd,
10801 				LA25_J_MICROMIPS (target), loc + 4);
10802 	  bfd_put_micromips_32 (hti->output_bfd,
10803 				LA25_ADDIU_MICROMIPS (target_low), loc + 8);
10804 	  bfd_put_32 (hti->output_bfd, 0, loc + 12);
10805 	}
10806       else
10807 	{
10808 	  bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10809 	  if (MIPSR6_P (hti->output_bfd) && htab->compact_branches)
10810 	    {
10811 	      bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10812 	      bfd_put_32 (hti->output_bfd, LA25_BC (pcrel_offset), loc + 8);
10813 	    }
10814 	  else
10815 	    {
10816 	      bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10817 	      bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10818 	    }
10819 	  bfd_put_32 (hti->output_bfd, 0, loc + 12);
10820 	}
10821     }
10822   return true;
10823 }
10824 
10825 /* If NAME is one of the special IRIX6 symbols defined by the linker,
10826    adjust it appropriately now.  */
10827 
10828 static void
mips_elf_irix6_finish_dynamic_symbol(bfd * abfd ATTRIBUTE_UNUSED,const char * name,Elf_Internal_Sym * sym)10829 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10830 				      const char *name, Elf_Internal_Sym *sym)
10831 {
10832   /* The linker script takes care of providing names and values for
10833      these, but we must place them into the right sections.  */
10834   static const char* const text_section_symbols[] = {
10835     "_ftext",
10836     "_etext",
10837     "__dso_displacement",
10838     "__elf_header",
10839     "__program_header_table",
10840     NULL
10841   };
10842 
10843   static const char* const data_section_symbols[] = {
10844     "_fdata",
10845     "_edata",
10846     "_end",
10847     "_fbss",
10848     NULL
10849   };
10850 
10851   const char* const *p;
10852   int i;
10853 
10854   for (i = 0; i < 2; ++i)
10855     for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10856 	 *p;
10857 	 ++p)
10858       if (strcmp (*p, name) == 0)
10859 	{
10860 	  /* All of these symbols are given type STT_SECTION by the
10861 	     IRIX6 linker.  */
10862 	  sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10863 	  sym->st_other = STO_PROTECTED;
10864 
10865 	  /* The IRIX linker puts these symbols in special sections.  */
10866 	  if (i == 0)
10867 	    sym->st_shndx = SHN_MIPS_TEXT;
10868 	  else
10869 	    sym->st_shndx = SHN_MIPS_DATA;
10870 
10871 	  break;
10872 	}
10873 }
10874 
10875 /* Finish up dynamic symbol handling.  We set the contents of various
10876    dynamic sections here.  */
10877 
10878 bool
_bfd_mips_elf_finish_dynamic_symbol(bfd * output_bfd,struct bfd_link_info * info,struct elf_link_hash_entry * h,Elf_Internal_Sym * sym)10879 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10880 				     struct bfd_link_info *info,
10881 				     struct elf_link_hash_entry *h,
10882 				     Elf_Internal_Sym *sym)
10883 {
10884   bfd *dynobj;
10885   asection *sgot;
10886   struct mips_got_info *g, *gg;
10887   const char *name;
10888   int idx;
10889   struct mips_elf_link_hash_table *htab;
10890   struct mips_elf_link_hash_entry *hmips;
10891 
10892   htab = mips_elf_hash_table (info);
10893   BFD_ASSERT (htab != NULL);
10894   dynobj = elf_hash_table (info)->dynobj;
10895   hmips = (struct mips_elf_link_hash_entry *) h;
10896 
10897   BFD_ASSERT (htab->root.target_os != is_vxworks);
10898 
10899   if (h->plt.plist != NULL
10900       && (h->plt.plist->mips_offset != MINUS_ONE
10901 	  || h->plt.plist->comp_offset != MINUS_ONE))
10902     {
10903       /* We've decided to create a PLT entry for this symbol.  */
10904       bfd_byte *loc;
10905       bfd_vma header_address, got_address;
10906       bfd_vma got_address_high, got_address_low, load;
10907       bfd_vma got_index;
10908       bfd_vma isa_bit;
10909 
10910       got_index = h->plt.plist->gotplt_index;
10911 
10912       BFD_ASSERT (htab->use_plts_and_copy_relocs);
10913       BFD_ASSERT (h->dynindx != -1);
10914       BFD_ASSERT (htab->root.splt != NULL);
10915       BFD_ASSERT (got_index != MINUS_ONE);
10916       BFD_ASSERT (!h->def_regular);
10917 
10918       /* Calculate the address of the PLT header.  */
10919       isa_bit = htab->plt_header_is_comp;
10920       header_address = (htab->root.splt->output_section->vma
10921 			+ htab->root.splt->output_offset + isa_bit);
10922 
10923       /* Calculate the address of the .got.plt entry.  */
10924       got_address = (htab->root.sgotplt->output_section->vma
10925 		     + htab->root.sgotplt->output_offset
10926 		     + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10927 
10928       got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10929       got_address_low = got_address & 0xffff;
10930 
10931       /* The PLT sequence is not safe for N64 if .got.plt entry's address
10932 	 cannot be loaded in two instructions.  */
10933       if (ABI_64_P (output_bfd)
10934 	  && ((got_address + 0x80008000) & ~(bfd_vma) 0xffffffff) != 0)
10935 	{
10936 	  _bfd_error_handler
10937 	    /* xgettext:c-format */
10938 	    (_("%pB: `%pA' entry VMA of %#" PRIx64 " outside the 32-bit range "
10939 	       "supported; consider using `-Ttext-segment=...'"),
10940 	     output_bfd,
10941 	     htab->root.sgotplt->output_section,
10942 	     (int64_t) got_address);
10943 	  bfd_set_error (bfd_error_no_error);
10944 	  return false;
10945 	}
10946 
10947       /* Initially point the .got.plt entry at the PLT header.  */
10948       loc = (htab->root.sgotplt->contents
10949 	     + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10950       if (ABI_64_P (output_bfd))
10951 	bfd_put_64 (output_bfd, header_address, loc);
10952       else
10953 	bfd_put_32 (output_bfd, header_address, loc);
10954 
10955       /* Now handle the PLT itself.  First the standard entry (the order
10956 	 does not matter, we just have to pick one).  */
10957       if (h->plt.plist->mips_offset != MINUS_ONE)
10958 	{
10959 	  const bfd_vma *plt_entry;
10960 	  bfd_vma plt_offset;
10961 
10962 	  plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10963 
10964 	  BFD_ASSERT (plt_offset <= htab->root.splt->size);
10965 
10966 	  /* Find out where the .plt entry should go.  */
10967 	  loc = htab->root.splt->contents + plt_offset;
10968 
10969 	  /* Pick the load opcode.  */
10970 	  load = MIPS_ELF_LOAD_WORD (output_bfd);
10971 
10972 	  /* Fill in the PLT entry itself.  */
10973 
10974 	  if (MIPSR6_P (output_bfd))
10975 	    plt_entry = htab->compact_branches ? mipsr6_exec_plt_entry_compact
10976 					       : mipsr6_exec_plt_entry;
10977 	  else
10978 	    plt_entry = mips_exec_plt_entry;
10979 	  bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10980 	  bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10981 		      loc + 4);
10982 
10983 	  if (! LOAD_INTERLOCKS_P (output_bfd)
10984 	      || (MIPSR6_P (output_bfd) && htab->compact_branches))
10985 	    {
10986 	      bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10987 	      bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10988 	    }
10989 	  else
10990 	    {
10991 	      bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10992 	      bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10993 			  loc + 12);
10994 	    }
10995 	}
10996 
10997       /* Now the compressed entry.  They come after any standard ones.  */
10998       if (h->plt.plist->comp_offset != MINUS_ONE)
10999 	{
11000 	  bfd_vma plt_offset;
11001 
11002 	  plt_offset = (htab->plt_header_size + htab->plt_mips_offset
11003 			+ h->plt.plist->comp_offset);
11004 
11005 	  BFD_ASSERT (plt_offset <= htab->root.splt->size);
11006 
11007 	  /* Find out where the .plt entry should go.  */
11008 	  loc = htab->root.splt->contents + plt_offset;
11009 
11010 	  /* Fill in the PLT entry itself.  */
11011 	  if (!MICROMIPS_P (output_bfd))
11012 	    {
11013 	      const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
11014 
11015 	      bfd_put_16 (output_bfd, plt_entry[0], loc);
11016 	      bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
11017 	      bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11018 	      bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
11019 	      bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11020 	      bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
11021 	      bfd_put_32 (output_bfd, got_address, loc + 12);
11022 	    }
11023 	  else if (htab->insn32)
11024 	    {
11025 	      const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
11026 
11027 	      bfd_put_16 (output_bfd, plt_entry[0], loc);
11028 	      bfd_put_16 (output_bfd, got_address_high, loc + 2);
11029 	      bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11030 	      bfd_put_16 (output_bfd, got_address_low, loc + 6);
11031 	      bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11032 	      bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
11033 	      bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
11034 	      bfd_put_16 (output_bfd, got_address_low, loc + 14);
11035 	    }
11036 	  else
11037 	    {
11038 	      const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
11039 	      bfd_signed_vma gotpc_offset;
11040 	      bfd_vma loc_address;
11041 
11042 	      BFD_ASSERT (got_address % 4 == 0);
11043 
11044 	      loc_address = (htab->root.splt->output_section->vma
11045 			     + htab->root.splt->output_offset + plt_offset);
11046 	      gotpc_offset = got_address - ((loc_address | 3) ^ 3);
11047 
11048 	      /* ADDIUPC has a span of +/-16MB, check we're in range.  */
11049 	      if (gotpc_offset + 0x1000000 >= 0x2000000)
11050 		{
11051 		  _bfd_error_handler
11052 		    /* xgettext:c-format */
11053 		    (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
11054 		       "beyond the range of ADDIUPC"),
11055 		     output_bfd,
11056 		     htab->root.sgotplt->output_section,
11057 		     (int64_t) gotpc_offset,
11058 		     htab->root.splt->output_section);
11059 		  bfd_set_error (bfd_error_no_error);
11060 		  return false;
11061 		}
11062 	      bfd_put_16 (output_bfd,
11063 			  plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11064 	      bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11065 	      bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11066 	      bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
11067 	      bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11068 	      bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
11069 	    }
11070 	}
11071 
11072       /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry.  */
11073       mips_elf_output_dynamic_relocation (output_bfd, htab->root.srelplt,
11074 					  got_index - 2, h->dynindx,
11075 					  R_MIPS_JUMP_SLOT, got_address);
11076 
11077       /* We distinguish between PLT entries and lazy-binding stubs by
11078 	 giving the former an st_other value of STO_MIPS_PLT.  Set the
11079 	 flag and leave the value if there are any relocations in the
11080 	 binary where pointer equality matters.  */
11081       sym->st_shndx = SHN_UNDEF;
11082       if (h->pointer_equality_needed)
11083 	sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
11084       else
11085 	{
11086 	  sym->st_value = 0;
11087 	  sym->st_other = 0;
11088 	}
11089     }
11090 
11091   if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
11092     {
11093       /* We've decided to create a lazy-binding stub.  */
11094       bool micromips_p = MICROMIPS_P (output_bfd);
11095       unsigned int other = micromips_p ? STO_MICROMIPS : 0;
11096       bfd_vma stub_size = htab->function_stub_size;
11097       bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
11098       bfd_vma isa_bit = micromips_p;
11099       bfd_vma stub_big_size;
11100 
11101       if (!micromips_p)
11102 	stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
11103       else if (htab->insn32)
11104 	stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
11105       else
11106 	stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
11107 
11108       /* This symbol has a stub.  Set it up.  */
11109 
11110       BFD_ASSERT (h->dynindx != -1);
11111 
11112       BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
11113 
11114       /* Values up to 2^31 - 1 are allowed.  Larger values would cause
11115 	 sign extension at runtime in the stub, resulting in a negative
11116 	 index value.  */
11117       if (h->dynindx & ~0x7fffffff)
11118 	return false;
11119 
11120       /* Fill the stub.  */
11121       if (micromips_p)
11122 	{
11123 	  idx = 0;
11124 	  bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
11125 				stub + idx);
11126 	  idx += 4;
11127 	  if (htab->insn32)
11128 	    {
11129 	      bfd_put_micromips_32 (output_bfd,
11130 				    STUB_MOVE32_MICROMIPS, stub + idx);
11131 	      idx += 4;
11132 	    }
11133 	  else
11134 	    {
11135 	      bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
11136 	      idx += 2;
11137 	    }
11138 	  if (stub_size == stub_big_size)
11139 	    {
11140 	      long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
11141 
11142 	      bfd_put_micromips_32 (output_bfd,
11143 				    STUB_LUI_MICROMIPS (dynindx_hi),
11144 				    stub + idx);
11145 	      idx += 4;
11146 	    }
11147 	  if (htab->insn32)
11148 	    {
11149 	      bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
11150 				    stub + idx);
11151 	      idx += 4;
11152 	    }
11153 	  else
11154 	    {
11155 	      bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
11156 	      idx += 2;
11157 	    }
11158 
11159 	  /* If a large stub is not required and sign extension is not a
11160 	     problem, then use legacy code in the stub.  */
11161 	  if (stub_size == stub_big_size)
11162 	    bfd_put_micromips_32 (output_bfd,
11163 				  STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
11164 				  stub + idx);
11165 	  else if (h->dynindx & ~0x7fff)
11166 	    bfd_put_micromips_32 (output_bfd,
11167 				  STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
11168 				  stub + idx);
11169 	  else
11170 	    bfd_put_micromips_32 (output_bfd,
11171 				  STUB_LI16S_MICROMIPS (output_bfd,
11172 							h->dynindx),
11173 				  stub + idx);
11174 	}
11175       else
11176 	{
11177 	  idx = 0;
11178 	  bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
11179 	  idx += 4;
11180 	  bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
11181 	  idx += 4;
11182 	  if (stub_size == stub_big_size)
11183 	    {
11184 	      bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
11185 			  stub + idx);
11186 	      idx += 4;
11187 	    }
11188 
11189 	  if (!(MIPSR6_P (output_bfd) && htab->compact_branches))
11190 	    {
11191 	      bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
11192 	      idx += 4;
11193 	    }
11194 
11195 	  /* If a large stub is not required and sign extension is not a
11196 	     problem, then use legacy code in the stub.  */
11197 	  if (stub_size == stub_big_size)
11198 	    bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
11199 			stub + idx);
11200 	  else if (h->dynindx & ~0x7fff)
11201 	    bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
11202 			stub + idx);
11203 	  else
11204 	    bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
11205 			stub + idx);
11206 	  idx += 4;
11207 
11208 	  if (MIPSR6_P (output_bfd) && htab->compact_branches)
11209 	    bfd_put_32 (output_bfd, STUB_JALRC, stub + idx);
11210 	}
11211 
11212       BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
11213       memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
11214 	      stub, stub_size);
11215 
11216       /* Mark the symbol as undefined.  stub_offset != -1 occurs
11217 	 only for the referenced symbol.  */
11218       sym->st_shndx = SHN_UNDEF;
11219 
11220       /* The run-time linker uses the st_value field of the symbol
11221 	 to reset the global offset table entry for this external
11222 	 to its stub address when unlinking a shared object.  */
11223       sym->st_value = (htab->sstubs->output_section->vma
11224 		       + htab->sstubs->output_offset
11225 		       + h->plt.plist->stub_offset
11226 		       + isa_bit);
11227       sym->st_other = other;
11228     }
11229 
11230   /* If we have a MIPS16 function with a stub, the dynamic symbol must
11231      refer to the stub, since only the stub uses the standard calling
11232      conventions.  */
11233   if (h->dynindx != -1 && hmips->fn_stub != NULL)
11234     {
11235       BFD_ASSERT (hmips->need_fn_stub);
11236       sym->st_value = (hmips->fn_stub->output_section->vma
11237 		       + hmips->fn_stub->output_offset);
11238       sym->st_size = hmips->fn_stub->size;
11239       sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
11240     }
11241 
11242   BFD_ASSERT (h->dynindx != -1
11243 	      || h->forced_local);
11244 
11245   sgot = htab->root.sgot;
11246   g = htab->got_info;
11247   BFD_ASSERT (g != NULL);
11248 
11249   /* Run through the global symbol table, creating GOT entries for all
11250      the symbols that need them.  */
11251   if (hmips->global_got_area != GGA_NONE)
11252     {
11253       bfd_vma offset;
11254       bfd_vma value;
11255 
11256       value = sym->st_value;
11257       offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11258       MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
11259     }
11260 
11261   if (hmips->global_got_area != GGA_NONE && g->next)
11262     {
11263       struct mips_got_entry e, *p;
11264       bfd_vma entry;
11265       bfd_vma offset;
11266 
11267       gg = g;
11268 
11269       e.abfd = output_bfd;
11270       e.symndx = -1;
11271       e.d.h = hmips;
11272       e.tls_type = GOT_TLS_NONE;
11273 
11274       for (g = g->next; g->next != gg; g = g->next)
11275 	{
11276 	  if (g->got_entries
11277 	      && (p = (struct mips_got_entry *) htab_find (g->got_entries,
11278 							   &e)))
11279 	    {
11280 	      offset = p->gotidx;
11281 	      BFD_ASSERT (offset > 0 && offset < htab->root.sgot->size);
11282 	      if (bfd_link_pic (info)
11283 		  || (elf_hash_table (info)->dynamic_sections_created
11284 		      && p->d.h != NULL
11285 		      && p->d.h->root.def_dynamic
11286 		      && !p->d.h->root.def_regular))
11287 		{
11288 		  /* Create an R_MIPS_REL32 relocation for this entry.  Due to
11289 		     the various compatibility problems, it's easier to mock
11290 		     up an R_MIPS_32 or R_MIPS_64 relocation and leave
11291 		     mips_elf_create_dynamic_relocation to calculate the
11292 		     appropriate addend.  */
11293 		  Elf_Internal_Rela rel[3];
11294 
11295 		  memset (rel, 0, sizeof (rel));
11296 		  if (ABI_64_P (output_bfd))
11297 		    rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
11298 		  else
11299 		    rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
11300 		  rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
11301 
11302 		  entry = 0;
11303 		  if (! (mips_elf_create_dynamic_relocation
11304 			 (output_bfd, info, rel,
11305 			  e.d.h, NULL, sym->st_value, &entry, sgot)))
11306 		    return false;
11307 		}
11308 	      else
11309 		entry = sym->st_value;
11310 	      MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
11311 	    }
11312 	}
11313     }
11314 
11315   /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute.  */
11316   name = h->root.root.string;
11317   if (h == elf_hash_table (info)->hdynamic
11318       || h == elf_hash_table (info)->hgot)
11319     sym->st_shndx = SHN_ABS;
11320   else if (strcmp (name, "_DYNAMIC_LINK") == 0
11321 	   || strcmp (name, "_DYNAMIC_LINKING") == 0)
11322     {
11323       sym->st_shndx = SHN_ABS;
11324       sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11325       sym->st_value = 1;
11326     }
11327   else if (SGI_COMPAT (output_bfd))
11328     {
11329       if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
11330 	  || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
11331 	{
11332 	  sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11333 	  sym->st_other = STO_PROTECTED;
11334 	  sym->st_value = 0;
11335 	  sym->st_shndx = SHN_MIPS_DATA;
11336 	}
11337       else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
11338 	{
11339 	  sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11340 	  sym->st_other = STO_PROTECTED;
11341 	  sym->st_value = mips_elf_hash_table (info)->procedure_count;
11342 	  sym->st_shndx = SHN_ABS;
11343 	}
11344       else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
11345 	{
11346 	  if (h->type == STT_FUNC)
11347 	    sym->st_shndx = SHN_MIPS_TEXT;
11348 	  else if (h->type == STT_OBJECT)
11349 	    sym->st_shndx = SHN_MIPS_DATA;
11350 	}
11351     }
11352 
11353   /* Emit a copy reloc, if needed.  */
11354   if (h->needs_copy)
11355     {
11356       asection *s;
11357       bfd_vma symval;
11358 
11359       BFD_ASSERT (h->dynindx != -1);
11360       BFD_ASSERT (htab->use_plts_and_copy_relocs);
11361 
11362       s = mips_elf_rel_dyn_section (info, false);
11363       symval = (h->root.u.def.section->output_section->vma
11364 		+ h->root.u.def.section->output_offset
11365 		+ h->root.u.def.value);
11366       mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
11367 					  h->dynindx, R_MIPS_COPY, symval);
11368     }
11369 
11370   /* Handle the IRIX6-specific symbols.  */
11371   if (IRIX_COMPAT (output_bfd) == ict_irix6)
11372     mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
11373 
11374   /* Keep dynamic compressed symbols odd.  This allows the dynamic linker
11375      to treat compressed symbols like any other.  */
11376   if (ELF_ST_IS_MIPS16 (sym->st_other))
11377     {
11378       BFD_ASSERT (sym->st_value & 1);
11379       sym->st_other -= STO_MIPS16;
11380     }
11381   else if (ELF_ST_IS_MICROMIPS (sym->st_other))
11382     {
11383       BFD_ASSERT (sym->st_value & 1);
11384       sym->st_other -= STO_MICROMIPS;
11385     }
11386 
11387   return true;
11388 }
11389 
11390 /* Likewise, for VxWorks.  */
11391 
11392 bool
_bfd_mips_vxworks_finish_dynamic_symbol(bfd * output_bfd,struct bfd_link_info * info,struct elf_link_hash_entry * h,Elf_Internal_Sym * sym)11393 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
11394 					 struct bfd_link_info *info,
11395 					 struct elf_link_hash_entry *h,
11396 					 Elf_Internal_Sym *sym)
11397 {
11398   bfd *dynobj;
11399   asection *sgot;
11400   struct mips_got_info *g;
11401   struct mips_elf_link_hash_table *htab;
11402   struct mips_elf_link_hash_entry *hmips;
11403 
11404   htab = mips_elf_hash_table (info);
11405   BFD_ASSERT (htab != NULL);
11406   dynobj = elf_hash_table (info)->dynobj;
11407   hmips = (struct mips_elf_link_hash_entry *) h;
11408 
11409   if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
11410     {
11411       bfd_byte *loc;
11412       bfd_vma plt_address, got_address, got_offset, branch_offset;
11413       Elf_Internal_Rela rel;
11414       static const bfd_vma *plt_entry;
11415       bfd_vma gotplt_index;
11416       bfd_vma plt_offset;
11417 
11418       plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11419       gotplt_index = h->plt.plist->gotplt_index;
11420 
11421       BFD_ASSERT (h->dynindx != -1);
11422       BFD_ASSERT (htab->root.splt != NULL);
11423       BFD_ASSERT (gotplt_index != MINUS_ONE);
11424       BFD_ASSERT (plt_offset <= htab->root.splt->size);
11425 
11426       /* Calculate the address of the .plt entry.  */
11427       plt_address = (htab->root.splt->output_section->vma
11428 		     + htab->root.splt->output_offset
11429 		     + plt_offset);
11430 
11431       /* Calculate the address of the .got.plt entry.  */
11432       got_address = (htab->root.sgotplt->output_section->vma
11433 		     + htab->root.sgotplt->output_offset
11434 		     + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
11435 
11436       /* Calculate the offset of the .got.plt entry from
11437 	 _GLOBAL_OFFSET_TABLE_.  */
11438       got_offset = mips_elf_gotplt_index (info, h);
11439 
11440       /* Calculate the offset for the branch at the start of the PLT
11441 	 entry.  The branch jumps to the beginning of .plt.  */
11442       branch_offset = -(plt_offset / 4 + 1) & 0xffff;
11443 
11444       /* Fill in the initial value of the .got.plt entry.  */
11445       bfd_put_32 (output_bfd, plt_address,
11446 		  (htab->root.sgotplt->contents
11447 		   + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
11448 
11449       /* Find out where the .plt entry should go.  */
11450       loc = htab->root.splt->contents + plt_offset;
11451 
11452       if (bfd_link_pic (info))
11453 	{
11454 	  plt_entry = mips_vxworks_shared_plt_entry;
11455 	  bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11456 	  bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11457 	}
11458       else
11459 	{
11460 	  bfd_vma got_address_high, got_address_low;
11461 
11462 	  plt_entry = mips_vxworks_exec_plt_entry;
11463 	  got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11464 	  got_address_low = got_address & 0xffff;
11465 
11466 	  bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11467 	  bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11468 	  bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11469 	  bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11470 	  bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11471 	  bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11472 	  bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11473 	  bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11474 
11475 	  loc = (htab->srelplt2->contents
11476 		 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
11477 
11478 	  /* Emit a relocation for the .got.plt entry.  */
11479 	  rel.r_offset = got_address;
11480 	  rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11481 	  rel.r_addend = plt_offset;
11482 	  bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11483 
11484 	  /* Emit a relocation for the lui of %hi(<.got.plt slot>).  */
11485 	  loc += sizeof (Elf32_External_Rela);
11486 	  rel.r_offset = plt_address + 8;
11487 	  rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11488 	  rel.r_addend = got_offset;
11489 	  bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11490 
11491 	  /* Emit a relocation for the addiu of %lo(<.got.plt slot>).  */
11492 	  loc += sizeof (Elf32_External_Rela);
11493 	  rel.r_offset += 4;
11494 	  rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11495 	  bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11496 	}
11497 
11498       /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry.  */
11499       loc = (htab->root.srelplt->contents
11500 	     + gotplt_index * sizeof (Elf32_External_Rela));
11501       rel.r_offset = got_address;
11502       rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11503       rel.r_addend = 0;
11504       bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11505 
11506       if (!h->def_regular)
11507 	sym->st_shndx = SHN_UNDEF;
11508     }
11509 
11510   BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11511 
11512   sgot = htab->root.sgot;
11513   g = htab->got_info;
11514   BFD_ASSERT (g != NULL);
11515 
11516   /* See if this symbol has an entry in the GOT.  */
11517   if (hmips->global_got_area != GGA_NONE)
11518     {
11519       bfd_vma offset;
11520       Elf_Internal_Rela outrel;
11521       bfd_byte *loc;
11522       asection *s;
11523 
11524       /* Install the symbol value in the GOT.   */
11525       offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11526       MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11527 
11528       /* Add a dynamic relocation for it.  */
11529       s = mips_elf_rel_dyn_section (info, false);
11530       loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11531       outrel.r_offset = (sgot->output_section->vma
11532 			 + sgot->output_offset
11533 			 + offset);
11534       outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11535       outrel.r_addend = 0;
11536       bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11537     }
11538 
11539   /* Emit a copy reloc, if needed.  */
11540   if (h->needs_copy)
11541     {
11542       Elf_Internal_Rela rel;
11543       asection *srel;
11544       bfd_byte *loc;
11545 
11546       BFD_ASSERT (h->dynindx != -1);
11547 
11548       rel.r_offset = (h->root.u.def.section->output_section->vma
11549 		      + h->root.u.def.section->output_offset
11550 		      + h->root.u.def.value);
11551       rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11552       rel.r_addend = 0;
11553       if (h->root.u.def.section == htab->root.sdynrelro)
11554 	srel = htab->root.sreldynrelro;
11555       else
11556 	srel = htab->root.srelbss;
11557       loc = srel->contents + srel->reloc_count * sizeof (Elf32_External_Rela);
11558       bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11559       ++srel->reloc_count;
11560     }
11561 
11562   /* If this is a mips16/microMIPS symbol, force the value to be even.  */
11563   if (ELF_ST_IS_COMPRESSED (sym->st_other))
11564     sym->st_value &= ~1;
11565 
11566   return true;
11567 }
11568 
11569 /* Write out a plt0 entry to the beginning of .plt.  */
11570 
11571 static bool
mips_finish_exec_plt(bfd * output_bfd,struct bfd_link_info * info)11572 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11573 {
11574   bfd_byte *loc;
11575   bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11576   static const bfd_vma *plt_entry;
11577   struct mips_elf_link_hash_table *htab;
11578 
11579   htab = mips_elf_hash_table (info);
11580   BFD_ASSERT (htab != NULL);
11581 
11582   if (ABI_64_P (output_bfd))
11583     plt_entry = (htab->compact_branches
11584 		 ? mipsr6_n64_exec_plt0_entry_compact
11585 		 : mips_n64_exec_plt0_entry);
11586   else if (ABI_N32_P (output_bfd))
11587     plt_entry = (htab->compact_branches
11588 		 ? mipsr6_n32_exec_plt0_entry_compact
11589 		 : mips_n32_exec_plt0_entry);
11590   else if (!htab->plt_header_is_comp)
11591     plt_entry = (htab->compact_branches
11592 		 ? mipsr6_o32_exec_plt0_entry_compact
11593 		 : mips_o32_exec_plt0_entry);
11594   else if (htab->insn32)
11595     plt_entry = micromips_insn32_o32_exec_plt0_entry;
11596   else
11597     plt_entry = micromips_o32_exec_plt0_entry;
11598 
11599   /* Calculate the value of .got.plt.  */
11600   gotplt_value = (htab->root.sgotplt->output_section->vma
11601 		  + htab->root.sgotplt->output_offset);
11602   gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11603   gotplt_value_low = gotplt_value & 0xffff;
11604 
11605   /* The PLT sequence is not safe for N64 if .got.plt's address can
11606      not be loaded in two instructions.  */
11607   if (ABI_64_P (output_bfd)
11608       && ((gotplt_value + 0x80008000) & ~(bfd_vma) 0xffffffff) != 0)
11609     {
11610       _bfd_error_handler
11611 	/* xgettext:c-format */
11612 	(_("%pB: `%pA' start VMA of %#" PRIx64 " outside the 32-bit range "
11613 	   "supported; consider using `-Ttext-segment=...'"),
11614 	 output_bfd,
11615 	 htab->root.sgotplt->output_section,
11616 	 (int64_t) gotplt_value);
11617       bfd_set_error (bfd_error_no_error);
11618       return false;
11619     }
11620 
11621   /* Install the PLT header.  */
11622   loc = htab->root.splt->contents;
11623   if (plt_entry == micromips_o32_exec_plt0_entry)
11624     {
11625       bfd_vma gotpc_offset;
11626       bfd_vma loc_address;
11627       size_t i;
11628 
11629       BFD_ASSERT (gotplt_value % 4 == 0);
11630 
11631       loc_address = (htab->root.splt->output_section->vma
11632 		     + htab->root.splt->output_offset);
11633       gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11634 
11635       /* ADDIUPC has a span of +/-16MB, check we're in range.  */
11636       if (gotpc_offset + 0x1000000 >= 0x2000000)
11637 	{
11638 	  _bfd_error_handler
11639 	    /* xgettext:c-format */
11640 	    (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
11641 	       "beyond the range of ADDIUPC"),
11642 	     output_bfd,
11643 	     htab->root.sgotplt->output_section,
11644 	     (int64_t) gotpc_offset,
11645 	     htab->root.splt->output_section);
11646 	  bfd_set_error (bfd_error_no_error);
11647 	  return false;
11648 	}
11649       bfd_put_16 (output_bfd,
11650 		  plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11651       bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11652       for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11653 	bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11654     }
11655   else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11656     {
11657       size_t i;
11658 
11659       bfd_put_16 (output_bfd, plt_entry[0], loc);
11660       bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11661       bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11662       bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11663       bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11664       bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11665       for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11666 	bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11667     }
11668   else
11669     {
11670       bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11671       bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11672       bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11673       bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11674       bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11675       bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11676       bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11677       bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11678     }
11679 
11680   return true;
11681 }
11682 
11683 /* Install the PLT header for a VxWorks executable and finalize the
11684    contents of .rela.plt.unloaded.  */
11685 
11686 static void
mips_vxworks_finish_exec_plt(bfd * output_bfd,struct bfd_link_info * info)11687 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11688 {
11689   Elf_Internal_Rela rela;
11690   bfd_byte *loc;
11691   bfd_vma got_value, got_value_high, got_value_low, plt_address;
11692   static const bfd_vma *plt_entry;
11693   struct mips_elf_link_hash_table *htab;
11694 
11695   htab = mips_elf_hash_table (info);
11696   BFD_ASSERT (htab != NULL);
11697 
11698   plt_entry = mips_vxworks_exec_plt0_entry;
11699 
11700   /* Calculate the value of _GLOBAL_OFFSET_TABLE_.  */
11701   got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11702 	       + htab->root.hgot->root.u.def.section->output_offset
11703 	       + htab->root.hgot->root.u.def.value);
11704 
11705   got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11706   got_value_low = got_value & 0xffff;
11707 
11708   /* Calculate the address of the PLT header.  */
11709   plt_address = (htab->root.splt->output_section->vma
11710 		 + htab->root.splt->output_offset);
11711 
11712   /* Install the PLT header.  */
11713   loc = htab->root.splt->contents;
11714   bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11715   bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11716   bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11717   bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11718   bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11719   bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11720 
11721   /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_).  */
11722   loc = htab->srelplt2->contents;
11723   rela.r_offset = plt_address;
11724   rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11725   rela.r_addend = 0;
11726   bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11727   loc += sizeof (Elf32_External_Rela);
11728 
11729   /* Output the relocation for the following addiu of
11730      %lo(_GLOBAL_OFFSET_TABLE_).  */
11731   rela.r_offset += 4;
11732   rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11733   bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11734   loc += sizeof (Elf32_External_Rela);
11735 
11736   /* Fix up the remaining relocations.  They may have the wrong
11737      symbol index for _G_O_T_ or _P_L_T_ depending on the order
11738      in which symbols were output.  */
11739   while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11740     {
11741       Elf_Internal_Rela rel;
11742 
11743       bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11744       rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11745       bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11746       loc += sizeof (Elf32_External_Rela);
11747 
11748       bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11749       rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11750       bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11751       loc += sizeof (Elf32_External_Rela);
11752 
11753       bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11754       rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11755       bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11756       loc += sizeof (Elf32_External_Rela);
11757     }
11758 }
11759 
11760 /* Install the PLT header for a VxWorks shared library.  */
11761 
11762 static void
mips_vxworks_finish_shared_plt(bfd * output_bfd,struct bfd_link_info * info)11763 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11764 {
11765   unsigned int i;
11766   struct mips_elf_link_hash_table *htab;
11767 
11768   htab = mips_elf_hash_table (info);
11769   BFD_ASSERT (htab != NULL);
11770 
11771   /* We just need to copy the entry byte-by-byte.  */
11772   for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11773     bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
11774 		htab->root.splt->contents + i * 4);
11775 }
11776 
11777 /* Finish up the dynamic sections.  */
11778 
11779 bool
_bfd_mips_elf_finish_dynamic_sections(bfd * output_bfd,struct bfd_link_info * info)11780 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11781 				       struct bfd_link_info *info)
11782 {
11783   bfd *dynobj;
11784   asection *sdyn;
11785   asection *sgot;
11786   struct mips_got_info *gg, *g;
11787   struct mips_elf_link_hash_table *htab;
11788 
11789   htab = mips_elf_hash_table (info);
11790   BFD_ASSERT (htab != NULL);
11791 
11792   dynobj = elf_hash_table (info)->dynobj;
11793 
11794   sdyn = bfd_get_linker_section (dynobj, ".dynamic");
11795 
11796   sgot = htab->root.sgot;
11797   gg = htab->got_info;
11798 
11799   if (elf_hash_table (info)->dynamic_sections_created)
11800     {
11801       bfd_byte *b;
11802       int dyn_to_skip = 0, dyn_skipped = 0;
11803 
11804       BFD_ASSERT (sdyn != NULL);
11805       BFD_ASSERT (gg != NULL);
11806 
11807       g = mips_elf_bfd_got (output_bfd, false);
11808       BFD_ASSERT (g != NULL);
11809 
11810       for (b = sdyn->contents;
11811 	   b < sdyn->contents + sdyn->size;
11812 	   b += MIPS_ELF_DYN_SIZE (dynobj))
11813 	{
11814 	  Elf_Internal_Dyn dyn;
11815 	  const char *name;
11816 	  size_t elemsize;
11817 	  asection *s;
11818 	  bool swap_out_p;
11819 
11820 	  /* Read in the current dynamic entry.  */
11821 	  (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11822 
11823 	  /* Assume that we're going to modify it and write it out.  */
11824 	  swap_out_p = true;
11825 
11826 	  switch (dyn.d_tag)
11827 	    {
11828 	    case DT_RELENT:
11829 	      dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11830 	      break;
11831 
11832 	    case DT_RELAENT:
11833 	      BFD_ASSERT (htab->root.target_os == is_vxworks);
11834 	      dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11835 	      break;
11836 
11837 	    case DT_STRSZ:
11838 	      /* Rewrite DT_STRSZ.  */
11839 	      dyn.d_un.d_val =
11840 		_bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11841 	      break;
11842 
11843 	    case DT_PLTGOT:
11844 	      s = htab->root.sgot;
11845 	      dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11846 	      break;
11847 
11848 	    case DT_MIPS_PLTGOT:
11849 	      s = htab->root.sgotplt;
11850 	      dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11851 	      break;
11852 
11853 	    case DT_MIPS_RLD_VERSION:
11854 	      dyn.d_un.d_val = 1; /* XXX */
11855 	      break;
11856 
11857 	    case DT_MIPS_FLAGS:
11858 	      dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11859 	      break;
11860 
11861 	    case DT_MIPS_TIME_STAMP:
11862 	      {
11863 		time_t t;
11864 		time (&t);
11865 		dyn.d_un.d_val = t;
11866 	      }
11867 	      break;
11868 
11869 	    case DT_MIPS_ICHECKSUM:
11870 	      /* XXX FIXME: */
11871 	      swap_out_p = false;
11872 	      break;
11873 
11874 	    case DT_MIPS_IVERSION:
11875 	      /* XXX FIXME: */
11876 	      swap_out_p = false;
11877 	      break;
11878 
11879 	    case DT_MIPS_BASE_ADDRESS:
11880 	      s = output_bfd->sections;
11881 	      BFD_ASSERT (s != NULL);
11882 	      dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11883 	      break;
11884 
11885 	    case DT_MIPS_LOCAL_GOTNO:
11886 	      dyn.d_un.d_val = g->local_gotno;
11887 	      break;
11888 
11889 	    case DT_MIPS_UNREFEXTNO:
11890 	      /* The index into the dynamic symbol table which is the
11891 		 entry of the first external symbol that is not
11892 		 referenced within the same object.  */
11893 	      dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11894 	      break;
11895 
11896 	    case DT_MIPS_GOTSYM:
11897 	      if (htab->global_gotsym)
11898 		{
11899 		  dyn.d_un.d_val = htab->global_gotsym->dynindx;
11900 		  break;
11901 		}
11902 	      /* In case if we don't have global got symbols we default
11903 		 to setting DT_MIPS_GOTSYM to the same value as
11904 		 DT_MIPS_SYMTABNO.  */
11905 	      /* Fall through.  */
11906 
11907 	    case DT_MIPS_SYMTABNO:
11908 	      name = ".dynsym";
11909 	      elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
11910 	      s = bfd_get_linker_section (dynobj, name);
11911 
11912 	      if (s != NULL)
11913 		dyn.d_un.d_val = s->size / elemsize;
11914 	      else
11915 		dyn.d_un.d_val = 0;
11916 	      break;
11917 
11918 	    case DT_MIPS_HIPAGENO:
11919 	      dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
11920 	      break;
11921 
11922 	    case DT_MIPS_RLD_MAP:
11923 	      {
11924 		struct elf_link_hash_entry *h;
11925 		h = mips_elf_hash_table (info)->rld_symbol;
11926 		if (!h)
11927 		  {
11928 		    dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11929 		    swap_out_p = false;
11930 		    break;
11931 		  }
11932 		s = h->root.u.def.section;
11933 
11934 		/* The MIPS_RLD_MAP tag stores the absolute address of the
11935 		   debug pointer.  */
11936 		dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11937 				  + h->root.u.def.value);
11938 	      }
11939 	      break;
11940 
11941 	    case DT_MIPS_RLD_MAP_REL:
11942 	      {
11943 		struct elf_link_hash_entry *h;
11944 		bfd_vma dt_addr, rld_addr;
11945 		h = mips_elf_hash_table (info)->rld_symbol;
11946 		if (!h)
11947 		  {
11948 		    dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11949 		    swap_out_p = false;
11950 		    break;
11951 		  }
11952 		s = h->root.u.def.section;
11953 
11954 		/* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11955 		   pointer, relative to the address of the tag.  */
11956 		dt_addr = (sdyn->output_section->vma + sdyn->output_offset
11957 			   + (b - sdyn->contents));
11958 		rld_addr = (s->output_section->vma + s->output_offset
11959 			    + h->root.u.def.value);
11960 		dyn.d_un.d_ptr = rld_addr - dt_addr;
11961 	      }
11962 	      break;
11963 
11964 	    case DT_MIPS_OPTIONS:
11965 	      s = (bfd_get_section_by_name
11966 		   (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11967 	      dyn.d_un.d_ptr = s->vma;
11968 	      break;
11969 
11970 	    case DT_PLTREL:
11971 	      BFD_ASSERT (htab->use_plts_and_copy_relocs);
11972 	      if (htab->root.target_os == is_vxworks)
11973 		dyn.d_un.d_val = DT_RELA;
11974 	      else
11975 		dyn.d_un.d_val = DT_REL;
11976 	      break;
11977 
11978 	    case DT_PLTRELSZ:
11979 	      BFD_ASSERT (htab->use_plts_and_copy_relocs);
11980 	      dyn.d_un.d_val = htab->root.srelplt->size;
11981 	      break;
11982 
11983 	    case DT_JMPREL:
11984 	      BFD_ASSERT (htab->use_plts_and_copy_relocs);
11985 	      dyn.d_un.d_ptr = (htab->root.srelplt->output_section->vma
11986 				+ htab->root.srelplt->output_offset);
11987 	      break;
11988 
11989 	    case DT_TEXTREL:
11990 	      /* If we didn't need any text relocations after all, delete
11991 		 the dynamic tag.  */
11992 	      if (!(info->flags & DF_TEXTREL))
11993 		{
11994 		  dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11995 		  swap_out_p = false;
11996 		}
11997 	      break;
11998 
11999 	    case DT_FLAGS:
12000 	      /* If we didn't need any text relocations after all, clear
12001 		 DF_TEXTREL from DT_FLAGS.  */
12002 	      if (!(info->flags & DF_TEXTREL))
12003 		dyn.d_un.d_val &= ~DF_TEXTREL;
12004 	      else
12005 		swap_out_p = false;
12006 	      break;
12007 
12008 	    case DT_MIPS_XHASH:
12009 	      name = ".MIPS.xhash";
12010 	      s = bfd_get_linker_section (dynobj, name);
12011 	      dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
12012 	      break;
12013 
12014 	    default:
12015 	      swap_out_p = false;
12016 	      if (htab->root.target_os == is_vxworks
12017 		  && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
12018 		swap_out_p = true;
12019 	      break;
12020 	    }
12021 
12022 	  if (swap_out_p || dyn_skipped)
12023 	    (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
12024 	      (dynobj, &dyn, b - dyn_skipped);
12025 
12026 	  if (dyn_to_skip)
12027 	    {
12028 	      dyn_skipped += dyn_to_skip;
12029 	      dyn_to_skip = 0;
12030 	    }
12031 	}
12032 
12033       /* Wipe out any trailing entries if we shifted down a dynamic tag.  */
12034       if (dyn_skipped > 0)
12035 	memset (b - dyn_skipped, 0, dyn_skipped);
12036     }
12037 
12038   if (sgot != NULL && sgot->size > 0
12039       && !bfd_is_abs_section (sgot->output_section))
12040     {
12041       if (htab->root.target_os == is_vxworks)
12042 	{
12043 	  /* The first entry of the global offset table points to the
12044 	     ".dynamic" section.  The second is initialized by the
12045 	     loader and contains the shared library identifier.
12046 	     The third is also initialized by the loader and points
12047 	     to the lazy resolution stub.  */
12048 	  MIPS_ELF_PUT_WORD (output_bfd,
12049 			     sdyn->output_offset + sdyn->output_section->vma,
12050 			     sgot->contents);
12051 	  MIPS_ELF_PUT_WORD (output_bfd, 0,
12052 			     sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
12053 	  MIPS_ELF_PUT_WORD (output_bfd, 0,
12054 			     sgot->contents
12055 			     + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
12056 	}
12057       else
12058 	{
12059 	  /* The first entry of the global offset table will be filled at
12060 	     runtime. The second entry will be used by some runtime loaders.
12061 	     This isn't the case of IRIX rld.  */
12062 	  MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
12063 	  MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
12064 			     sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
12065 	}
12066 
12067       elf_section_data (sgot->output_section)->this_hdr.sh_entsize
12068 	 = MIPS_ELF_GOT_SIZE (output_bfd);
12069     }
12070 
12071   /* Generate dynamic relocations for the non-primary gots.  */
12072   if (gg != NULL && gg->next)
12073     {
12074       Elf_Internal_Rela rel[3];
12075       bfd_vma addend = 0;
12076 
12077       memset (rel, 0, sizeof (rel));
12078       rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
12079 
12080       for (g = gg->next; g->next != gg; g = g->next)
12081 	{
12082 	  bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
12083 	    + g->next->tls_gotno;
12084 
12085 	  MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
12086 			     + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
12087 	  MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
12088 			     sgot->contents
12089 			     + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
12090 
12091 	  if (! bfd_link_pic (info))
12092 	    continue;
12093 
12094 	  for (; got_index < g->local_gotno; got_index++)
12095 	    {
12096 	      if (got_index >= g->assigned_low_gotno
12097 		  && got_index <= g->assigned_high_gotno)
12098 		continue;
12099 
12100 	      rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
12101 		= got_index * MIPS_ELF_GOT_SIZE (output_bfd);
12102 	      if (!(mips_elf_create_dynamic_relocation
12103 		    (output_bfd, info, rel, NULL,
12104 		     bfd_abs_section_ptr,
12105 		     0, &addend, sgot)))
12106 		return false;
12107 	      BFD_ASSERT (addend == 0);
12108 	    }
12109 	}
12110     }
12111 
12112   /* The generation of dynamic relocations for the non-primary gots
12113      adds more dynamic relocations.  We cannot count them until
12114      here.  */
12115 
12116   if (elf_hash_table (info)->dynamic_sections_created)
12117     {
12118       bfd_byte *b;
12119       bool swap_out_p;
12120 
12121       BFD_ASSERT (sdyn != NULL);
12122 
12123       for (b = sdyn->contents;
12124 	   b < sdyn->contents + sdyn->size;
12125 	   b += MIPS_ELF_DYN_SIZE (dynobj))
12126 	{
12127 	  Elf_Internal_Dyn dyn;
12128 	  asection *s;
12129 
12130 	  /* Read in the current dynamic entry.  */
12131 	  (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
12132 
12133 	  /* Assume that we're going to modify it and write it out.  */
12134 	  swap_out_p = true;
12135 
12136 	  switch (dyn.d_tag)
12137 	    {
12138 	    case DT_RELSZ:
12139 	      /* Reduce DT_RELSZ to account for any relocations we
12140 		 decided not to make.  This is for the n64 irix rld,
12141 		 which doesn't seem to apply any relocations if there
12142 		 are trailing null entries.  */
12143 	      s = mips_elf_rel_dyn_section (info, false);
12144 	      dyn.d_un.d_val = (s->reloc_count
12145 				* (ABI_64_P (output_bfd)
12146 				   ? sizeof (Elf64_Mips_External_Rel)
12147 				   : sizeof (Elf32_External_Rel)));
12148 	      /* Adjust the section size too.  Tools like the prelinker
12149 		 can reasonably expect the values to the same.  */
12150 	      BFD_ASSERT (!bfd_is_abs_section (s->output_section));
12151 	      elf_section_data (s->output_section)->this_hdr.sh_size
12152 		= dyn.d_un.d_val;
12153 	      break;
12154 
12155 	    default:
12156 	      swap_out_p = false;
12157 	      break;
12158 	    }
12159 
12160 	  if (swap_out_p)
12161 	    (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
12162 	      (dynobj, &dyn, b);
12163 	}
12164     }
12165 
12166   {
12167     asection *s;
12168     Elf32_compact_rel cpt;
12169 
12170     if (SGI_COMPAT (output_bfd))
12171       {
12172 	/* Write .compact_rel section out.  */
12173 	s = bfd_get_linker_section (dynobj, ".compact_rel");
12174 	if (s != NULL)
12175 	  {
12176 	    cpt.id1 = 1;
12177 	    cpt.num = s->reloc_count;
12178 	    cpt.id2 = 2;
12179 	    cpt.offset = (s->output_section->filepos
12180 			  + sizeof (Elf32_External_compact_rel));
12181 	    cpt.reserved0 = 0;
12182 	    cpt.reserved1 = 0;
12183 	    bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
12184 					    ((Elf32_External_compact_rel *)
12185 					     s->contents));
12186 
12187 	    /* Clean up a dummy stub function entry in .text.  */
12188 	    if (htab->sstubs != NULL
12189 		&& htab->sstubs->contents != NULL)
12190 	      {
12191 		file_ptr dummy_offset;
12192 
12193 		BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
12194 		dummy_offset = htab->sstubs->size - htab->function_stub_size;
12195 		memset (htab->sstubs->contents + dummy_offset, 0,
12196 			htab->function_stub_size);
12197 	      }
12198 	  }
12199       }
12200 
12201     /* The psABI says that the dynamic relocations must be sorted in
12202        increasing order of r_symndx.  The VxWorks EABI doesn't require
12203        this, and because the code below handles REL rather than RELA
12204        relocations, using it for VxWorks would be outright harmful.  */
12205     if (htab->root.target_os != is_vxworks)
12206       {
12207 	s = mips_elf_rel_dyn_section (info, false);
12208 	if (s != NULL
12209 	    && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
12210 	  {
12211 	    reldyn_sorting_bfd = output_bfd;
12212 
12213 	    if (ABI_64_P (output_bfd))
12214 	      qsort ((Elf64_External_Rel *) s->contents + 1,
12215 		     s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
12216 		     sort_dynamic_relocs_64);
12217 	    else
12218 	      qsort ((Elf32_External_Rel *) s->contents + 1,
12219 		     s->reloc_count - 1, sizeof (Elf32_External_Rel),
12220 		     sort_dynamic_relocs);
12221 	  }
12222       }
12223   }
12224 
12225   if (htab->root.splt && htab->root.splt->size > 0)
12226     {
12227       if (htab->root.target_os == is_vxworks)
12228 	{
12229 	  if (bfd_link_pic (info))
12230 	    mips_vxworks_finish_shared_plt (output_bfd, info);
12231 	  else
12232 	    mips_vxworks_finish_exec_plt (output_bfd, info);
12233 	}
12234       else
12235 	{
12236 	  BFD_ASSERT (!bfd_link_pic (info));
12237 	  if (!mips_finish_exec_plt (output_bfd, info))
12238 	    return false;
12239 	}
12240     }
12241   return true;
12242 }
12243 
12244 
12245 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags.  */
12246 
12247 static void
mips_set_isa_flags(bfd * abfd)12248 mips_set_isa_flags (bfd *abfd)
12249 {
12250   flagword val;
12251 
12252   switch (bfd_get_mach (abfd))
12253     {
12254     default:
12255       if (ABI_N32_P (abfd) || ABI_64_P (abfd))
12256         val = E_MIPS_ARCH_3;
12257       else
12258         val = E_MIPS_ARCH_1;
12259       break;
12260 
12261     case bfd_mach_mips3000:
12262       val = E_MIPS_ARCH_1;
12263       break;
12264 
12265     case bfd_mach_mips3900:
12266       val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
12267       break;
12268 
12269     case bfd_mach_mips6000:
12270       val = E_MIPS_ARCH_2;
12271       break;
12272 
12273     case bfd_mach_mips4010:
12274       val = E_MIPS_ARCH_2 | E_MIPS_MACH_4010;
12275       break;
12276 
12277     case bfd_mach_mips4000:
12278     case bfd_mach_mips4300:
12279     case bfd_mach_mips4400:
12280     case bfd_mach_mips4600:
12281       val = E_MIPS_ARCH_3;
12282       break;
12283 
12284     case bfd_mach_mips4100:
12285       val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
12286       break;
12287 
12288     case bfd_mach_mips4111:
12289       val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
12290       break;
12291 
12292     case bfd_mach_mips4120:
12293       val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
12294       break;
12295 
12296     case bfd_mach_mips4650:
12297       val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
12298       break;
12299 
12300     case bfd_mach_mips5400:
12301       val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
12302       break;
12303 
12304     case bfd_mach_mips5500:
12305       val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
12306       break;
12307 
12308     case bfd_mach_mips5900:
12309       val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
12310       break;
12311 
12312     case bfd_mach_mips9000:
12313       val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
12314       break;
12315 
12316     case bfd_mach_mips5000:
12317     case bfd_mach_mips7000:
12318     case bfd_mach_mips8000:
12319     case bfd_mach_mips10000:
12320     case bfd_mach_mips12000:
12321     case bfd_mach_mips14000:
12322     case bfd_mach_mips16000:
12323       val = E_MIPS_ARCH_4;
12324       break;
12325 
12326     case bfd_mach_mips5:
12327       val = E_MIPS_ARCH_5;
12328       break;
12329 
12330     case bfd_mach_mips_loongson_2e:
12331       val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
12332       break;
12333 
12334     case bfd_mach_mips_loongson_2f:
12335       val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
12336       break;
12337 
12338     case bfd_mach_mips_sb1:
12339       val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
12340       break;
12341 
12342     case bfd_mach_mips_gs464:
12343       val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS464;
12344       break;
12345 
12346     case bfd_mach_mips_gs464e:
12347       val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS464E;
12348       break;
12349 
12350     case bfd_mach_mips_gs264e:
12351       val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS264E;
12352       break;
12353 
12354     case bfd_mach_mips_octeon:
12355     case bfd_mach_mips_octeonp:
12356       val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
12357       break;
12358 
12359     case bfd_mach_mips_octeon3:
12360       val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
12361       break;
12362 
12363     case bfd_mach_mips_xlr:
12364       val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
12365       break;
12366 
12367     case bfd_mach_mips_octeon2:
12368       val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
12369       break;
12370 
12371     case bfd_mach_mipsisa32:
12372       val = E_MIPS_ARCH_32;
12373       break;
12374 
12375     case bfd_mach_mipsisa64:
12376       val = E_MIPS_ARCH_64;
12377       break;
12378 
12379     case bfd_mach_mipsisa32r2:
12380     case bfd_mach_mipsisa32r3:
12381     case bfd_mach_mipsisa32r5:
12382       val = E_MIPS_ARCH_32R2;
12383       break;
12384 
12385     case bfd_mach_mips_interaptiv_mr2:
12386       val = E_MIPS_ARCH_32R2 | E_MIPS_MACH_IAMR2;
12387       break;
12388 
12389     case bfd_mach_mipsisa64r2:
12390     case bfd_mach_mipsisa64r3:
12391     case bfd_mach_mipsisa64r5:
12392       val = E_MIPS_ARCH_64R2;
12393       break;
12394 
12395     case bfd_mach_mipsisa32r6:
12396       val = E_MIPS_ARCH_32R6;
12397       break;
12398 
12399     case bfd_mach_mipsisa64r6:
12400       val = E_MIPS_ARCH_64R6;
12401       break;
12402     }
12403   elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
12404   elf_elfheader (abfd)->e_flags |= val;
12405 
12406 }
12407 
12408 
12409 /* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
12410    Don't do so for code sections.  We want to keep ordering of HI16/LO16
12411    as is.  On the other hand, elf-eh-frame.c processing requires .eh_frame
12412    relocs to be sorted.  */
12413 
12414 bool
_bfd_mips_elf_sort_relocs_p(asection * sec)12415 _bfd_mips_elf_sort_relocs_p (asection *sec)
12416 {
12417   return (sec->flags & SEC_CODE) == 0;
12418 }
12419 
12420 
12421 /* The final processing done just before writing out a MIPS ELF object
12422    file.  This gets the MIPS architecture right based on the machine
12423    number.  This is used by both the 32-bit and the 64-bit ABI.  */
12424 
12425 void
_bfd_mips_final_write_processing(bfd * abfd)12426 _bfd_mips_final_write_processing (bfd *abfd)
12427 {
12428   unsigned int i;
12429   Elf_Internal_Shdr **hdrpp;
12430   const char *name;
12431   asection *sec;
12432 
12433   /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
12434      is nonzero.  This is for compatibility with old objects, which used
12435      a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH.  */
12436   if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
12437     mips_set_isa_flags (abfd);
12438 
12439   /* Set the sh_info field for .gptab sections and other appropriate
12440      info for each special section.  */
12441   for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
12442        i < elf_numsections (abfd);
12443        i++, hdrpp++)
12444     {
12445       switch ((*hdrpp)->sh_type)
12446 	{
12447 	case SHT_MIPS_MSYM:
12448 	case SHT_MIPS_LIBLIST:
12449 	  sec = bfd_get_section_by_name (abfd, ".dynstr");
12450 	  if (sec != NULL)
12451 	    (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12452 	  break;
12453 
12454 	case SHT_MIPS_GPTAB:
12455 	  BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12456 	  name = bfd_section_name ((*hdrpp)->bfd_section);
12457 	  BFD_ASSERT (name != NULL
12458 		      && startswith (name, ".gptab."));
12459 	  sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
12460 	  BFD_ASSERT (sec != NULL);
12461 	  (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12462 	  break;
12463 
12464 	case SHT_MIPS_CONTENT:
12465 	  BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12466 	  name = bfd_section_name ((*hdrpp)->bfd_section);
12467 	  BFD_ASSERT (name != NULL
12468 		      && startswith (name, ".MIPS.content"));
12469 	  sec = bfd_get_section_by_name (abfd,
12470 					 name + sizeof ".MIPS.content" - 1);
12471 	  BFD_ASSERT (sec != NULL);
12472 	  (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12473 	  break;
12474 
12475 	case SHT_MIPS_SYMBOL_LIB:
12476 	  sec = bfd_get_section_by_name (abfd, ".dynsym");
12477 	  if (sec != NULL)
12478 	    (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12479 	  sec = bfd_get_section_by_name (abfd, ".liblist");
12480 	  if (sec != NULL)
12481 	    (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12482 	  break;
12483 
12484 	case SHT_MIPS_EVENTS:
12485 	  BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12486 	  name = bfd_section_name ((*hdrpp)->bfd_section);
12487 	  BFD_ASSERT (name != NULL);
12488 	  if (startswith (name, ".MIPS.events"))
12489 	    sec = bfd_get_section_by_name (abfd,
12490 					   name + sizeof ".MIPS.events" - 1);
12491 	  else
12492 	    {
12493 	      BFD_ASSERT (startswith (name, ".MIPS.post_rel"));
12494 	      sec = bfd_get_section_by_name (abfd,
12495 					     (name
12496 					      + sizeof ".MIPS.post_rel" - 1));
12497 	    }
12498 	  BFD_ASSERT (sec != NULL);
12499 	  (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12500 	  break;
12501 
12502 	case SHT_MIPS_XHASH:
12503 	  sec = bfd_get_section_by_name (abfd, ".dynsym");
12504 	  if (sec != NULL)
12505 	    (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12506 	}
12507     }
12508 }
12509 
12510 bool
_bfd_mips_elf_final_write_processing(bfd * abfd)12511 _bfd_mips_elf_final_write_processing (bfd *abfd)
12512 {
12513   _bfd_mips_final_write_processing (abfd);
12514   return _bfd_elf_final_write_processing (abfd);
12515 }
12516 
12517 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
12518    segments.  */
12519 
12520 int
_bfd_mips_elf_additional_program_headers(bfd * abfd,struct bfd_link_info * info ATTRIBUTE_UNUSED)12521 _bfd_mips_elf_additional_program_headers (bfd *abfd,
12522 					  struct bfd_link_info *info ATTRIBUTE_UNUSED)
12523 {
12524   asection *s;
12525   int ret = 0;
12526 
12527   /* See if we need a PT_MIPS_REGINFO segment.  */
12528   s = bfd_get_section_by_name (abfd, ".reginfo");
12529   if (s && (s->flags & SEC_LOAD))
12530     ++ret;
12531 
12532   /* See if we need a PT_MIPS_ABIFLAGS segment.  */
12533   if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12534     ++ret;
12535 
12536   /* See if we need a PT_MIPS_OPTIONS segment.  */
12537   if (IRIX_COMPAT (abfd) == ict_irix6
12538       && bfd_get_section_by_name (abfd,
12539 				  MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12540     ++ret;
12541 
12542   /* See if we need a PT_MIPS_RTPROC segment.  */
12543   if (IRIX_COMPAT (abfd) == ict_irix5
12544       && bfd_get_section_by_name (abfd, ".dynamic")
12545       && bfd_get_section_by_name (abfd, ".mdebug"))
12546     ++ret;
12547 
12548   /* Allocate a PT_NULL header in dynamic objects.  See
12549      _bfd_mips_elf_modify_segment_map for details.  */
12550   if (!SGI_COMPAT (abfd)
12551       && bfd_get_section_by_name (abfd, ".dynamic"))
12552     ++ret;
12553 
12554   return ret;
12555 }
12556 
12557 /* Modify the segment map for an IRIX5 executable.  */
12558 
12559 bool
_bfd_mips_elf_modify_segment_map(bfd * abfd,struct bfd_link_info * info)12560 _bfd_mips_elf_modify_segment_map (bfd *abfd,
12561 				  struct bfd_link_info *info)
12562 {
12563   asection *s;
12564   struct elf_segment_map *m, **pm;
12565   size_t amt;
12566 
12567   /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12568      segment.  */
12569   s = bfd_get_section_by_name (abfd, ".reginfo");
12570   if (s != NULL && (s->flags & SEC_LOAD) != 0)
12571     {
12572       for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12573 	if (m->p_type == PT_MIPS_REGINFO)
12574 	  break;
12575       if (m == NULL)
12576 	{
12577 	  amt = sizeof *m;
12578 	  m = bfd_zalloc (abfd, amt);
12579 	  if (m == NULL)
12580 	    return false;
12581 
12582 	  m->p_type = PT_MIPS_REGINFO;
12583 	  m->count = 1;
12584 	  m->sections[0] = s;
12585 
12586 	  /* We want to put it after the PHDR and INTERP segments.  */
12587 	  pm = &elf_seg_map (abfd);
12588 	  while (*pm != NULL
12589 		 && ((*pm)->p_type == PT_PHDR
12590 		     || (*pm)->p_type == PT_INTERP))
12591 	    pm = &(*pm)->next;
12592 
12593 	  m->next = *pm;
12594 	  *pm = m;
12595 	}
12596     }
12597 
12598   /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12599      segment.  */
12600   s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12601   if (s != NULL && (s->flags & SEC_LOAD) != 0)
12602     {
12603       for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12604 	if (m->p_type == PT_MIPS_ABIFLAGS)
12605 	  break;
12606       if (m == NULL)
12607 	{
12608 	  amt = sizeof *m;
12609 	  m = bfd_zalloc (abfd, amt);
12610 	  if (m == NULL)
12611 	    return false;
12612 
12613 	  m->p_type = PT_MIPS_ABIFLAGS;
12614 	  m->count = 1;
12615 	  m->sections[0] = s;
12616 
12617 	  /* We want to put it after the PHDR and INTERP segments.  */
12618 	  pm = &elf_seg_map (abfd);
12619 	  while (*pm != NULL
12620 		 && ((*pm)->p_type == PT_PHDR
12621 		     || (*pm)->p_type == PT_INTERP))
12622 	    pm = &(*pm)->next;
12623 
12624 	  m->next = *pm;
12625 	  *pm = m;
12626 	}
12627     }
12628 
12629   /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12630      .dynamic end up in PT_DYNAMIC.  However, we do have to insert a
12631      PT_MIPS_OPTIONS segment immediately following the program header
12632      table.  */
12633   if (NEWABI_P (abfd)
12634       /* On non-IRIX6 new abi, we'll have already created a segment
12635 	 for this section, so don't create another.  I'm not sure this
12636 	 is not also the case for IRIX 6, but I can't test it right
12637 	 now.  */
12638       && IRIX_COMPAT (abfd) == ict_irix6)
12639     {
12640       for (s = abfd->sections; s; s = s->next)
12641 	if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12642 	  break;
12643 
12644       if (s)
12645 	{
12646 	  struct elf_segment_map *options_segment;
12647 
12648 	  pm = &elf_seg_map (abfd);
12649 	  while (*pm != NULL
12650 		 && ((*pm)->p_type == PT_PHDR
12651 		     || (*pm)->p_type == PT_INTERP))
12652 	    pm = &(*pm)->next;
12653 
12654 	  if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12655 	    {
12656 	      amt = sizeof (struct elf_segment_map);
12657 	      options_segment = bfd_zalloc (abfd, amt);
12658 	      options_segment->next = *pm;
12659 	      options_segment->p_type = PT_MIPS_OPTIONS;
12660 	      options_segment->p_flags = PF_R;
12661 	      options_segment->p_flags_valid = true;
12662 	      options_segment->count = 1;
12663 	      options_segment->sections[0] = s;
12664 	      *pm = options_segment;
12665 	    }
12666 	}
12667     }
12668   else
12669     {
12670       if (IRIX_COMPAT (abfd) == ict_irix5)
12671 	{
12672 	  /* If there are .dynamic and .mdebug sections, we make a room
12673 	     for the RTPROC header.  FIXME: Rewrite without section names.  */
12674 	  if (bfd_get_section_by_name (abfd, ".interp") == NULL
12675 	      && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12676 	      && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12677 	    {
12678 	      for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12679 		if (m->p_type == PT_MIPS_RTPROC)
12680 		  break;
12681 	      if (m == NULL)
12682 		{
12683 		  amt = sizeof *m;
12684 		  m = bfd_zalloc (abfd, amt);
12685 		  if (m == NULL)
12686 		    return false;
12687 
12688 		  m->p_type = PT_MIPS_RTPROC;
12689 
12690 		  s = bfd_get_section_by_name (abfd, ".rtproc");
12691 		  if (s == NULL)
12692 		    {
12693 		      m->count = 0;
12694 		      m->p_flags = 0;
12695 		      m->p_flags_valid = 1;
12696 		    }
12697 		  else
12698 		    {
12699 		      m->count = 1;
12700 		      m->sections[0] = s;
12701 		    }
12702 
12703 		  /* We want to put it after the DYNAMIC segment.  */
12704 		  pm = &elf_seg_map (abfd);
12705 		  while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12706 		    pm = &(*pm)->next;
12707 		  if (*pm != NULL)
12708 		    pm = &(*pm)->next;
12709 
12710 		  m->next = *pm;
12711 		  *pm = m;
12712 		}
12713 	    }
12714 	}
12715       /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
12716 	 .dynstr, .dynsym, and .hash sections, and everything in
12717 	 between.  */
12718       for (pm = &elf_seg_map (abfd); *pm != NULL;
12719 	   pm = &(*pm)->next)
12720 	if ((*pm)->p_type == PT_DYNAMIC)
12721 	  break;
12722       m = *pm;
12723       /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12724 	 glibc's dynamic linker has traditionally derived the number of
12725 	 tags from the p_filesz field, and sometimes allocates stack
12726 	 arrays of that size.  An overly-big PT_DYNAMIC segment can
12727 	 be actively harmful in such cases.  Making PT_DYNAMIC contain
12728 	 other sections can also make life hard for the prelinker,
12729 	 which might move one of the other sections to a different
12730 	 PT_LOAD segment.  */
12731       if (SGI_COMPAT (abfd)
12732 	  && m != NULL
12733 	  && m->count == 1
12734 	  && strcmp (m->sections[0]->name, ".dynamic") == 0)
12735 	{
12736 	  static const char *sec_names[] =
12737 	  {
12738 	    ".dynamic", ".dynstr", ".dynsym", ".hash"
12739 	  };
12740 	  bfd_vma low, high;
12741 	  unsigned int i, c;
12742 	  struct elf_segment_map *n;
12743 
12744 	  low = ~(bfd_vma) 0;
12745 	  high = 0;
12746 	  for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12747 	    {
12748 	      s = bfd_get_section_by_name (abfd, sec_names[i]);
12749 	      if (s != NULL && (s->flags & SEC_LOAD) != 0)
12750 		{
12751 		  bfd_size_type sz;
12752 
12753 		  if (low > s->vma)
12754 		    low = s->vma;
12755 		  sz = s->size;
12756 		  if (high < s->vma + sz)
12757 		    high = s->vma + sz;
12758 		}
12759 	    }
12760 
12761 	  c = 0;
12762 	  for (s = abfd->sections; s != NULL; s = s->next)
12763 	    if ((s->flags & SEC_LOAD) != 0
12764 		&& s->vma >= low
12765 		&& s->vma + s->size <= high)
12766 	      ++c;
12767 
12768 	  amt = sizeof *n - sizeof (asection *) + c * sizeof (asection *);
12769 	  n = bfd_zalloc (abfd, amt);
12770 	  if (n == NULL)
12771 	    return false;
12772 	  *n = *m;
12773 	  n->count = c;
12774 
12775 	  i = 0;
12776 	  for (s = abfd->sections; s != NULL; s = s->next)
12777 	    {
12778 	      if ((s->flags & SEC_LOAD) != 0
12779 		  && s->vma >= low
12780 		  && s->vma + s->size <= high)
12781 		{
12782 		  n->sections[i] = s;
12783 		  ++i;
12784 		}
12785 	    }
12786 
12787 	  *pm = n;
12788 	}
12789     }
12790 
12791   /* Allocate a spare program header in dynamic objects so that tools
12792      like the prelinker can add an extra PT_LOAD entry.
12793 
12794      If the prelinker needs to make room for a new PT_LOAD entry, its
12795      standard procedure is to move the first (read-only) sections into
12796      the new (writable) segment.  However, the MIPS ABI requires
12797      .dynamic to be in a read-only segment, and the section will often
12798      start within sizeof (ElfNN_Phdr) bytes of the last program header.
12799 
12800      Although the prelinker could in principle move .dynamic to a
12801      writable segment, it seems better to allocate a spare program
12802      header instead, and avoid the need to move any sections.
12803      There is a long tradition of allocating spare dynamic tags,
12804      so allocating a spare program header seems like a natural
12805      extension.
12806 
12807      If INFO is NULL, we may be copying an already prelinked binary
12808      with objcopy or strip, so do not add this header.  */
12809   if (info != NULL
12810       && !SGI_COMPAT (abfd)
12811       && bfd_get_section_by_name (abfd, ".dynamic"))
12812     {
12813       for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
12814 	if ((*pm)->p_type == PT_NULL)
12815 	  break;
12816       if (*pm == NULL)
12817 	{
12818 	  m = bfd_zalloc (abfd, sizeof (*m));
12819 	  if (m == NULL)
12820 	    return false;
12821 
12822 	  m->p_type = PT_NULL;
12823 	  *pm = m;
12824 	}
12825     }
12826 
12827   return true;
12828 }
12829 
12830 /* Return the section that should be marked against GC for a given
12831    relocation.  */
12832 
12833 asection *
_bfd_mips_elf_gc_mark_hook(asection * sec,struct bfd_link_info * info,Elf_Internal_Rela * rel,struct elf_link_hash_entry * h,Elf_Internal_Sym * sym)12834 _bfd_mips_elf_gc_mark_hook (asection *sec,
12835 			    struct bfd_link_info *info,
12836 			    Elf_Internal_Rela *rel,
12837 			    struct elf_link_hash_entry *h,
12838 			    Elf_Internal_Sym *sym)
12839 {
12840   /* ??? Do mips16 stub sections need to be handled special?  */
12841 
12842   if (h != NULL)
12843     switch (ELF_R_TYPE (sec->owner, rel->r_info))
12844       {
12845       case R_MIPS_GNU_VTINHERIT:
12846       case R_MIPS_GNU_VTENTRY:
12847 	return NULL;
12848       }
12849 
12850   return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12851 }
12852 
12853 /* Prevent .MIPS.abiflags from being discarded with --gc-sections.  */
12854 
12855 bool
_bfd_mips_elf_gc_mark_extra_sections(struct bfd_link_info * info,elf_gc_mark_hook_fn gc_mark_hook)12856 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12857 				      elf_gc_mark_hook_fn gc_mark_hook)
12858 {
12859   bfd *sub;
12860 
12861   _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12862 
12863   for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12864     {
12865       asection *o;
12866 
12867       if (! is_mips_elf (sub))
12868 	continue;
12869 
12870       for (o = sub->sections; o != NULL; o = o->next)
12871 	if (!o->gc_mark
12872 	    && MIPS_ELF_ABIFLAGS_SECTION_NAME_P (bfd_section_name (o)))
12873 	  {
12874 	    if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12875 	      return false;
12876 	  }
12877     }
12878 
12879   return true;
12880 }
12881 
12882 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12883    hiding the old indirect symbol.  Process additional relocation
12884    information.  Also called for weakdefs, in which case we just let
12885    _bfd_elf_link_hash_copy_indirect copy the flags for us.  */
12886 
12887 void
_bfd_mips_elf_copy_indirect_symbol(struct bfd_link_info * info,struct elf_link_hash_entry * dir,struct elf_link_hash_entry * ind)12888 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
12889 				    struct elf_link_hash_entry *dir,
12890 				    struct elf_link_hash_entry *ind)
12891 {
12892   struct mips_elf_link_hash_entry *dirmips, *indmips;
12893 
12894   _bfd_elf_link_hash_copy_indirect (info, dir, ind);
12895 
12896   dirmips = (struct mips_elf_link_hash_entry *) dir;
12897   indmips = (struct mips_elf_link_hash_entry *) ind;
12898   /* Any absolute non-dynamic relocations against an indirect or weak
12899      definition will be against the target symbol.  */
12900   if (indmips->has_static_relocs)
12901     dirmips->has_static_relocs = true;
12902 
12903   if (ind->root.type != bfd_link_hash_indirect)
12904     return;
12905 
12906   dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12907   if (indmips->readonly_reloc)
12908     dirmips->readonly_reloc = true;
12909   if (indmips->no_fn_stub)
12910     dirmips->no_fn_stub = true;
12911   if (indmips->fn_stub)
12912     {
12913       dirmips->fn_stub = indmips->fn_stub;
12914       indmips->fn_stub = NULL;
12915     }
12916   if (indmips->need_fn_stub)
12917     {
12918       dirmips->need_fn_stub = true;
12919       indmips->need_fn_stub = false;
12920     }
12921   if (indmips->call_stub)
12922     {
12923       dirmips->call_stub = indmips->call_stub;
12924       indmips->call_stub = NULL;
12925     }
12926   if (indmips->call_fp_stub)
12927     {
12928       dirmips->call_fp_stub = indmips->call_fp_stub;
12929       indmips->call_fp_stub = NULL;
12930     }
12931   if (indmips->global_got_area < dirmips->global_got_area)
12932     dirmips->global_got_area = indmips->global_got_area;
12933   if (indmips->global_got_area < GGA_NONE)
12934     indmips->global_got_area = GGA_NONE;
12935   if (indmips->has_nonpic_branches)
12936     dirmips->has_nonpic_branches = true;
12937 }
12938 
12939 /* Take care of the special `__gnu_absolute_zero' symbol and ignore attempts
12940    to hide it.  It has to remain global (it will also be protected) so as to
12941    be assigned a global GOT entry, which will then remain unchanged at load
12942    time.  */
12943 
12944 void
_bfd_mips_elf_hide_symbol(struct bfd_link_info * info,struct elf_link_hash_entry * entry,bool force_local)12945 _bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
12946 			   struct elf_link_hash_entry *entry,
12947 			   bool force_local)
12948 {
12949   struct mips_elf_link_hash_table *htab;
12950 
12951   htab = mips_elf_hash_table (info);
12952   BFD_ASSERT (htab != NULL);
12953   if (htab->use_absolute_zero
12954       && strcmp (entry->root.root.string, "__gnu_absolute_zero") == 0)
12955     return;
12956 
12957   _bfd_elf_link_hash_hide_symbol (info, entry, force_local);
12958 }
12959 
12960 #define PDR_SIZE 32
12961 
12962 bool
_bfd_mips_elf_discard_info(bfd * abfd,struct elf_reloc_cookie * cookie,struct bfd_link_info * info)12963 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12964 			    struct bfd_link_info *info)
12965 {
12966   asection *o;
12967   bool ret = false;
12968   unsigned char *tdata;
12969   size_t i, skip;
12970 
12971   o = bfd_get_section_by_name (abfd, ".pdr");
12972   if (! o)
12973     return false;
12974   if (o->size == 0)
12975     return false;
12976   if (o->size % PDR_SIZE != 0)
12977     return false;
12978   if (o->output_section != NULL
12979       && bfd_is_abs_section (o->output_section))
12980     return false;
12981 
12982   tdata = bfd_zmalloc (o->size / PDR_SIZE);
12983   if (! tdata)
12984     return false;
12985 
12986   cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
12987 					    info->keep_memory);
12988   if (!cookie->rels)
12989     {
12990       free (tdata);
12991       return false;
12992     }
12993 
12994   cookie->rel = cookie->rels;
12995   cookie->relend = cookie->rels + o->reloc_count;
12996 
12997   for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
12998     {
12999       if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
13000 	{
13001 	  tdata[i] = 1;
13002 	  skip ++;
13003 	}
13004     }
13005 
13006   if (skip != 0)
13007     {
13008       mips_elf_section_data (o)->u.tdata = tdata;
13009       if (o->rawsize == 0)
13010 	o->rawsize = o->size;
13011       o->size -= skip * PDR_SIZE;
13012       ret = true;
13013     }
13014   else
13015     free (tdata);
13016 
13017   if (! info->keep_memory)
13018     free (cookie->rels);
13019 
13020   return ret;
13021 }
13022 
13023 bool
_bfd_mips_elf_ignore_discarded_relocs(asection * sec)13024 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
13025 {
13026   if (strcmp (sec->name, ".pdr") == 0)
13027     return true;
13028   return false;
13029 }
13030 
13031 bool
_bfd_mips_elf_write_section(bfd * output_bfd,struct bfd_link_info * link_info ATTRIBUTE_UNUSED,asection * sec,bfd_byte * contents)13032 _bfd_mips_elf_write_section (bfd *output_bfd,
13033 			     struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
13034 			     asection *sec, bfd_byte *contents)
13035 {
13036   bfd_byte *to, *from, *end;
13037   int i;
13038 
13039   if (strcmp (sec->name, ".pdr") != 0)
13040     return false;
13041 
13042   if (mips_elf_section_data (sec)->u.tdata == NULL)
13043     return false;
13044 
13045   to = contents;
13046   end = contents + sec->size;
13047   for (from = contents, i = 0;
13048        from < end;
13049        from += PDR_SIZE, i++)
13050     {
13051       if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
13052 	continue;
13053       if (to != from)
13054 	memcpy (to, from, PDR_SIZE);
13055       to += PDR_SIZE;
13056     }
13057   bfd_set_section_contents (output_bfd, sec->output_section, contents,
13058 			    sec->output_offset, sec->size);
13059   return true;
13060 }
13061 
13062 /* microMIPS code retains local labels for linker relaxation.  Omit them
13063    from output by default for clarity.  */
13064 
13065 bool
_bfd_mips_elf_is_target_special_symbol(bfd * abfd,asymbol * sym)13066 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
13067 {
13068   return _bfd_elf_is_local_label_name (abfd, sym->name);
13069 }
13070 
13071 /* MIPS ELF uses a special find_nearest_line routine in order the
13072    handle the ECOFF debugging information.  */
13073 
13074 struct mips_elf_find_line
13075 {
13076   struct ecoff_debug_info d;
13077   struct ecoff_find_line i;
13078 };
13079 
13080 bool
_bfd_mips_elf_find_nearest_line(bfd * abfd,asymbol ** symbols,asection * section,bfd_vma offset,const char ** filename_ptr,const char ** functionname_ptr,unsigned int * line_ptr,unsigned int * discriminator_ptr)13081 _bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
13082 				 asection *section, bfd_vma offset,
13083 				 const char **filename_ptr,
13084 				 const char **functionname_ptr,
13085 				 unsigned int *line_ptr,
13086 				 unsigned int *discriminator_ptr)
13087 {
13088   asection *msec;
13089 
13090   if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
13091 				     filename_ptr, functionname_ptr,
13092 				     line_ptr, discriminator_ptr,
13093 				     dwarf_debug_sections,
13094 				     &elf_tdata (abfd)->dwarf2_find_line_info)
13095       == 1)
13096     return true;
13097 
13098   if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
13099 				     filename_ptr, functionname_ptr,
13100 				     line_ptr))
13101     {
13102       if (!*functionname_ptr)
13103 	_bfd_elf_find_function (abfd, symbols, section, offset,
13104 				*filename_ptr ? NULL : filename_ptr,
13105 				functionname_ptr);
13106       return true;
13107     }
13108 
13109   msec = bfd_get_section_by_name (abfd, ".mdebug");
13110   if (msec != NULL)
13111     {
13112       flagword origflags;
13113       struct mips_elf_find_line *fi;
13114       const struct ecoff_debug_swap * const swap =
13115 	get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
13116 
13117       /* If we are called during a link, mips_elf_final_link may have
13118 	 cleared the SEC_HAS_CONTENTS field.  We force it back on here
13119 	 if appropriate (which it normally will be).  */
13120       origflags = msec->flags;
13121       if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
13122 	msec->flags |= SEC_HAS_CONTENTS;
13123 
13124       fi = mips_elf_tdata (abfd)->find_line_info;
13125       if (fi == NULL)
13126 	{
13127 	  bfd_size_type external_fdr_size;
13128 	  char *fraw_src;
13129 	  char *fraw_end;
13130 	  struct fdr *fdr_ptr;
13131 	  bfd_size_type amt = sizeof (struct mips_elf_find_line);
13132 
13133 	  fi = bfd_zalloc (abfd, amt);
13134 	  if (fi == NULL)
13135 	    {
13136 	      msec->flags = origflags;
13137 	      return false;
13138 	    }
13139 
13140 	  if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
13141 	    {
13142 	      msec->flags = origflags;
13143 	      return false;
13144 	    }
13145 
13146 	  /* Swap in the FDR information.  */
13147 	  amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
13148 	  fi->d.fdr = bfd_alloc (abfd, amt);
13149 	  if (fi->d.fdr == NULL)
13150 	    {
13151 	      msec->flags = origflags;
13152 	      return false;
13153 	    }
13154 	  external_fdr_size = swap->external_fdr_size;
13155 	  fdr_ptr = fi->d.fdr;
13156 	  fraw_src = (char *) fi->d.external_fdr;
13157 	  fraw_end = (fraw_src
13158 		      + fi->d.symbolic_header.ifdMax * external_fdr_size);
13159 	  for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
13160 	    (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
13161 
13162 	  mips_elf_tdata (abfd)->find_line_info = fi;
13163 
13164 	  /* Note that we don't bother to ever free this information.
13165 	     find_nearest_line is either called all the time, as in
13166 	     objdump -l, so the information should be saved, or it is
13167 	     rarely called, as in ld error messages, so the memory
13168 	     wasted is unimportant.  Still, it would probably be a
13169 	     good idea for free_cached_info to throw it away.  */
13170 	}
13171 
13172       if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
13173 				  &fi->i, filename_ptr, functionname_ptr,
13174 				  line_ptr))
13175 	{
13176 	  msec->flags = origflags;
13177 	  return true;
13178 	}
13179 
13180       msec->flags = origflags;
13181     }
13182 
13183   /* Fall back on the generic ELF find_nearest_line routine.  */
13184 
13185   return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
13186 				     filename_ptr, functionname_ptr,
13187 				     line_ptr, discriminator_ptr);
13188 }
13189 
13190 bool
_bfd_mips_elf_find_inliner_info(bfd * abfd,const char ** filename_ptr,const char ** functionname_ptr,unsigned int * line_ptr)13191 _bfd_mips_elf_find_inliner_info (bfd *abfd,
13192 				 const char **filename_ptr,
13193 				 const char **functionname_ptr,
13194 				 unsigned int *line_ptr)
13195 {
13196   bool found;
13197   found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
13198 					 functionname_ptr, line_ptr,
13199 					 & elf_tdata (abfd)->dwarf2_find_line_info);
13200   return found;
13201 }
13202 
13203 
13204 /* When are writing out the .options or .MIPS.options section,
13205    remember the bytes we are writing out, so that we can install the
13206    GP value in the section_processing routine.  */
13207 
13208 bool
_bfd_mips_elf_set_section_contents(bfd * abfd,sec_ptr section,const void * location,file_ptr offset,bfd_size_type count)13209 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
13210 				    const void *location,
13211 				    file_ptr offset, bfd_size_type count)
13212 {
13213   if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
13214     {
13215       bfd_byte *c;
13216 
13217       if (elf_section_data (section) == NULL)
13218 	{
13219 	  size_t amt = sizeof (struct bfd_elf_section_data);
13220 	  section->used_by_bfd = bfd_zalloc (abfd, amt);
13221 	  if (elf_section_data (section) == NULL)
13222 	    return false;
13223 	}
13224       c = mips_elf_section_data (section)->u.tdata;
13225       if (c == NULL)
13226 	{
13227 	  c = bfd_zalloc (abfd, section->size);
13228 	  if (c == NULL)
13229 	    return false;
13230 	  mips_elf_section_data (section)->u.tdata = c;
13231 	}
13232 
13233       memcpy (c + offset, location, count);
13234     }
13235 
13236   return _bfd_elf_set_section_contents (abfd, section, location, offset,
13237 					count);
13238 }
13239 
13240 /* This is almost identical to bfd_generic_get_... except that some
13241    MIPS relocations need to be handled specially.  Sigh.  */
13242 
13243 bfd_byte *
_bfd_elf_mips_get_relocated_section_contents(bfd * abfd,struct bfd_link_info * link_info,struct bfd_link_order * link_order,bfd_byte * data,bool relocatable,asymbol ** symbols)13244 _bfd_elf_mips_get_relocated_section_contents
13245   (bfd *abfd,
13246    struct bfd_link_info *link_info,
13247    struct bfd_link_order *link_order,
13248    bfd_byte *data,
13249    bool relocatable,
13250    asymbol **symbols)
13251 {
13252   bfd *input_bfd = link_order->u.indirect.section->owner;
13253   asection *input_section = link_order->u.indirect.section;
13254   long reloc_size;
13255   arelent **reloc_vector;
13256   long reloc_count;
13257 
13258   reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
13259   if (reloc_size < 0)
13260     return NULL;
13261 
13262   /* Read in the section.  */
13263   if (!bfd_get_full_section_contents (input_bfd, input_section, &data))
13264     return NULL;
13265 
13266   if (data == NULL)
13267     return NULL;
13268 
13269   if (reloc_size == 0)
13270     return data;
13271 
13272   reloc_vector = (arelent **) bfd_malloc (reloc_size);
13273   if (reloc_vector == NULL)
13274     {
13275       struct mips_hi16 **hip, *hi;
13276     error_return:
13277       /* If we are going to return an error, remove entries on
13278 	 mips_hi16_list that point into this section's data.  Data
13279 	 will typically be freed on return from this function.  */
13280       hip = &mips_hi16_list;
13281       while ((hi = *hip) != NULL)
13282 	{
13283 	  if (hi->input_section == input_section)
13284 	    {
13285 	      *hip = hi->next;
13286 	      free (hi);
13287 	    }
13288 	  else
13289 	    hip = &hi->next;
13290 	}
13291       data = NULL;
13292       goto out;
13293     }
13294 
13295   reloc_count = bfd_canonicalize_reloc (input_bfd,
13296 					input_section,
13297 					reloc_vector,
13298 					symbols);
13299   if (reloc_count < 0)
13300     goto error_return;
13301 
13302   if (reloc_count > 0)
13303     {
13304       arelent **parent;
13305       /* for mips */
13306       int gp_found;
13307       bfd_vma gp = 0x12345678;	/* initialize just to shut gcc up */
13308 
13309       {
13310 	struct bfd_hash_entry *h;
13311 	struct bfd_link_hash_entry *lh;
13312 	/* Skip all this stuff if we aren't mixing formats.  */
13313 	if (abfd && input_bfd
13314 	    && abfd->xvec == input_bfd->xvec)
13315 	  lh = 0;
13316 	else
13317 	  {
13318 	    h = bfd_hash_lookup (&link_info->hash->table, "_gp", false, false);
13319 	    lh = (struct bfd_link_hash_entry *) h;
13320 	  }
13321       lookup:
13322 	if (lh)
13323 	  {
13324 	    switch (lh->type)
13325 	      {
13326 	      case bfd_link_hash_undefined:
13327 	      case bfd_link_hash_undefweak:
13328 	      case bfd_link_hash_common:
13329 		gp_found = 0;
13330 		break;
13331 	      case bfd_link_hash_defined:
13332 	      case bfd_link_hash_defweak:
13333 		gp_found = 1;
13334 		gp = lh->u.def.value;
13335 		break;
13336 	      case bfd_link_hash_indirect:
13337 	      case bfd_link_hash_warning:
13338 		lh = lh->u.i.link;
13339 		/* @@FIXME  ignoring warning for now */
13340 		goto lookup;
13341 	      case bfd_link_hash_new:
13342 	      default:
13343 		abort ();
13344 	      }
13345 	  }
13346 	else
13347 	  gp_found = 0;
13348       }
13349       /* end mips */
13350 
13351       for (parent = reloc_vector; *parent != NULL; parent++)
13352 	{
13353 	  char *error_message = NULL;
13354 	  asymbol *symbol;
13355 	  bfd_reloc_status_type r;
13356 
13357 	  symbol = *(*parent)->sym_ptr_ptr;
13358 	  /* PR ld/19628: A specially crafted input file
13359 	     can result in a NULL symbol pointer here.  */
13360 	  if (symbol == NULL)
13361 	    {
13362 	      link_info->callbacks->einfo
13363 		/* xgettext:c-format */
13364 		(_("%X%P: %pB(%pA): error: relocation for offset %V has no value\n"),
13365 		 abfd, input_section, (* parent)->address);
13366 	      goto error_return;
13367 	    }
13368 
13369 	  /* Zap reloc field when the symbol is from a discarded
13370 	     section, ignoring any addend.  Do the same when called
13371 	     from bfd_simple_get_relocated_section_contents for
13372 	     undefined symbols in debug sections.  This is to keep
13373 	     debug info reasonably sane, in particular so that
13374 	     DW_FORM_ref_addr to another file's .debug_info isn't
13375 	     confused with an offset into the current file's
13376 	     .debug_info.  */
13377 	  if ((symbol->section != NULL && discarded_section (symbol->section))
13378 	      || (symbol->section == bfd_und_section_ptr
13379 		  && (input_section->flags & SEC_DEBUGGING) != 0
13380 		  && link_info->input_bfds == link_info->output_bfd))
13381 	    {
13382 	      bfd_vma off;
13383 	      static reloc_howto_type none_howto
13384 		= HOWTO (0, 0, 0, 0, false, 0, complain_overflow_dont, NULL,
13385 			 "unused", false, 0, 0, false);
13386 
13387 	      off = ((*parent)->address
13388 		     * bfd_octets_per_byte (input_bfd, input_section));
13389 	      _bfd_clear_contents ((*parent)->howto, input_bfd,
13390 				   input_section, data, off);
13391 	      (*parent)->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
13392 	      (*parent)->addend = 0;
13393 	      (*parent)->howto = &none_howto;
13394 	      r = bfd_reloc_ok;
13395 	    }
13396 
13397 	  /* Specific to MIPS: Deal with relocation types that require
13398 	     knowing the gp of the output bfd.  */
13399 
13400 	  /* If we've managed to find the gp and have a special
13401 	     function for the relocation then go ahead, else default
13402 	     to the generic handling.  */
13403 	  else if (gp_found
13404 		   && ((*parent)->howto->special_function
13405 		       == _bfd_mips_elf32_gprel16_reloc))
13406 	    r = _bfd_mips_elf_gprel16_with_gp (input_bfd, symbol, *parent,
13407 					       input_section, relocatable,
13408 					       data, gp);
13409 	  else
13410 	    r = bfd_perform_relocation (input_bfd,
13411 					*parent,
13412 					data,
13413 					input_section,
13414 					relocatable ? abfd : NULL,
13415 					&error_message);
13416 
13417 	  if (relocatable)
13418 	    {
13419 	      asection *os = input_section->output_section;
13420 
13421 	      /* A partial link, so keep the relocs.  */
13422 	      os->orelocation[os->reloc_count] = *parent;
13423 	      os->reloc_count++;
13424 	    }
13425 
13426 	  if (r != bfd_reloc_ok)
13427 	    {
13428 	      switch (r)
13429 		{
13430 		case bfd_reloc_undefined:
13431 		  (*link_info->callbacks->undefined_symbol)
13432 		    (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13433 		     input_bfd, input_section, (*parent)->address, true);
13434 		  break;
13435 		case bfd_reloc_dangerous:
13436 		  BFD_ASSERT (error_message != NULL);
13437 		  (*link_info->callbacks->reloc_dangerous)
13438 		    (link_info, error_message,
13439 		     input_bfd, input_section, (*parent)->address);
13440 		  break;
13441 		case bfd_reloc_overflow:
13442 		  (*link_info->callbacks->reloc_overflow)
13443 		    (link_info, NULL,
13444 		     bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13445 		     (*parent)->howto->name, (*parent)->addend,
13446 		     input_bfd, input_section, (*parent)->address);
13447 		  break;
13448 		case bfd_reloc_outofrange:
13449 		  /* PR ld/13730:
13450 		     This error can result when processing some partially
13451 		     complete binaries.  Do not abort, but issue an error
13452 		     message instead.  */
13453 		  link_info->callbacks->einfo
13454 		    /* xgettext:c-format */
13455 		    (_("%X%P: %pB(%pA): relocation \"%pR\" goes out of range\n"),
13456 		     abfd, input_section, * parent);
13457 		  goto error_return;
13458 
13459 		case bfd_reloc_notsupported:
13460 		  /* PR ld/17512
13461 		     This error can result when processing a corrupt binary.
13462 		     Do not abort.  Issue an error message instead.  */
13463 		  link_info->callbacks->einfo
13464 		    /* xgettext:c-format */
13465 		    (_("%X%P: %pB(%pA): relocation \"%pR\" is not supported\n"),
13466 		     abfd, input_section, * parent);
13467 		  goto error_return;
13468 
13469 		default:
13470 		  /* PR 17512; file: 90c2a92e.
13471 		     Report unexpected results, without aborting.  */
13472 		  link_info->callbacks->einfo
13473 		    /* xgettext:c-format */
13474 		    (_("%X%P: %pB(%pA): relocation \"%pR\" returns an unrecognized value %x\n"),
13475 		     abfd, input_section, * parent, r);
13476 		  break;
13477 		}
13478 
13479 	    }
13480 	}
13481     }
13482 
13483  out:
13484   free (reloc_vector);
13485   return data;
13486 }
13487 
13488 static bool
mips_elf_relax_delete_bytes(bfd * abfd,asection * sec,bfd_vma addr,int count)13489 mips_elf_relax_delete_bytes (bfd *abfd,
13490 			     asection *sec, bfd_vma addr, int count)
13491 {
13492   Elf_Internal_Shdr *symtab_hdr;
13493   unsigned int sec_shndx;
13494   bfd_byte *contents;
13495   Elf_Internal_Rela *irel, *irelend;
13496   Elf_Internal_Sym *isym;
13497   Elf_Internal_Sym *isymend;
13498   struct elf_link_hash_entry **sym_hashes;
13499   struct elf_link_hash_entry **end_hashes;
13500   struct elf_link_hash_entry **start_hashes;
13501   unsigned int symcount;
13502 
13503   sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
13504   contents = elf_section_data (sec)->this_hdr.contents;
13505 
13506   irel = elf_section_data (sec)->relocs;
13507   irelend = irel + sec->reloc_count;
13508 
13509   /* Actually delete the bytes.  */
13510   memmove (contents + addr, contents + addr + count,
13511 	   (size_t) (sec->size - addr - count));
13512   sec->size -= count;
13513 
13514   /* Adjust all the relocs.  */
13515   for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
13516     {
13517       /* Get the new reloc address.  */
13518       if (irel->r_offset > addr)
13519 	irel->r_offset -= count;
13520     }
13521 
13522   BFD_ASSERT (addr % 2 == 0);
13523   BFD_ASSERT (count % 2 == 0);
13524 
13525   /* Adjust the local symbols defined in this section.  */
13526   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13527   isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13528   for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
13529     if (isym->st_shndx == sec_shndx && isym->st_value > addr)
13530       isym->st_value -= count;
13531 
13532   /* Now adjust the global symbols defined in this section.  */
13533   symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13534 	      - symtab_hdr->sh_info);
13535   sym_hashes = start_hashes = elf_sym_hashes (abfd);
13536   end_hashes = sym_hashes + symcount;
13537 
13538   for (; sym_hashes < end_hashes; sym_hashes++)
13539     {
13540       struct elf_link_hash_entry *sym_hash = *sym_hashes;
13541 
13542       if ((sym_hash->root.type == bfd_link_hash_defined
13543 	   || sym_hash->root.type == bfd_link_hash_defweak)
13544 	  && sym_hash->root.u.def.section == sec)
13545 	{
13546 	  bfd_vma value = sym_hash->root.u.def.value;
13547 
13548 	  if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13549 	    value &= MINUS_TWO;
13550 	  if (value > addr)
13551 	    sym_hash->root.u.def.value -= count;
13552 	}
13553     }
13554 
13555   return true;
13556 }
13557 
13558 
13559 /* Opcodes needed for microMIPS relaxation as found in
13560    opcodes/micromips-opc.c.  */
13561 
13562 struct opcode_descriptor {
13563   unsigned long match;
13564   unsigned long mask;
13565 };
13566 
13567 /* The $ra register aka $31.  */
13568 
13569 #define RA 31
13570 
13571 /* 32-bit instruction format register fields.  */
13572 
13573 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13574 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13575 
13576 /* Check if a 5-bit register index can be abbreviated to 3 bits.  */
13577 
13578 #define OP16_VALID_REG(r) \
13579   ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13580 
13581 
13582 /* 32-bit and 16-bit branches.  */
13583 
13584 static const struct opcode_descriptor b_insns_32[] = {
13585   { /* "b",	"p",		*/ 0x40400000, 0xffff0000 }, /* bgez 0 */
13586   { /* "b",	"p",		*/ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13587   { 0, 0 }  /* End marker for find_match().  */
13588 };
13589 
13590 static const struct opcode_descriptor bc_insn_32 =
13591   { /* "bc(1|2)(ft)", "N,p",	*/ 0x42800000, 0xfec30000 };
13592 
13593 static const struct opcode_descriptor bz_insn_32 =
13594   { /* "b(g|l)(e|t)z", "s,p",	*/ 0x40000000, 0xff200000 };
13595 
13596 static const struct opcode_descriptor bzal_insn_32 =
13597   { /* "b(ge|lt)zal", "s,p",	*/ 0x40200000, 0xffa00000 };
13598 
13599 static const struct opcode_descriptor beq_insn_32 =
13600   { /* "b(eq|ne)", "s,t,p",	*/ 0x94000000, 0xdc000000 };
13601 
13602 static const struct opcode_descriptor b_insn_16 =
13603   { /* "b",	"mD",		*/ 0xcc00,     0xfc00 };
13604 
13605 static const struct opcode_descriptor bz_insn_16 =
13606   { /* "b(eq|ne)z", "md,mE",	*/ 0x8c00,     0xdc00 };
13607 
13608 
13609 /* 32-bit and 16-bit branch EQ and NE zero.  */
13610 
13611 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13612    eq and second the ne.  This convention is used when replacing a
13613    32-bit BEQ/BNE with the 16-bit version.  */
13614 
13615 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13616 
13617 static const struct opcode_descriptor bz_rs_insns_32[] = {
13618   { /* "beqz",	"s,p",		*/ 0x94000000, 0xffe00000 },
13619   { /* "bnez",	"s,p",		*/ 0xb4000000, 0xffe00000 },
13620   { 0, 0 }  /* End marker for find_match().  */
13621 };
13622 
13623 static const struct opcode_descriptor bz_rt_insns_32[] = {
13624   { /* "beqz",	"t,p",		*/ 0x94000000, 0xfc01f000 },
13625   { /* "bnez",	"t,p",		*/ 0xb4000000, 0xfc01f000 },
13626   { 0, 0 }  /* End marker for find_match().  */
13627 };
13628 
13629 static const struct opcode_descriptor bzc_insns_32[] = {
13630   { /* "beqzc",	"s,p",		*/ 0x40e00000, 0xffe00000 },
13631   { /* "bnezc",	"s,p",		*/ 0x40a00000, 0xffe00000 },
13632   { 0, 0 }  /* End marker for find_match().  */
13633 };
13634 
13635 static const struct opcode_descriptor bz_insns_16[] = {
13636   { /* "beqz",	"md,mE",	*/ 0x8c00,     0xfc00 },
13637   { /* "bnez",	"md,mE",	*/ 0xac00,     0xfc00 },
13638   { 0, 0 }  /* End marker for find_match().  */
13639 };
13640 
13641 /* Switch between a 5-bit register index and its 3-bit shorthand.  */
13642 
13643 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
13644 #define BZ16_REG_FIELD(r) (((r) & 7) << 7)
13645 
13646 
13647 /* 32-bit instructions with a delay slot.  */
13648 
13649 static const struct opcode_descriptor jal_insn_32_bd16 =
13650   { /* "jals",	"a",		*/ 0x74000000, 0xfc000000 };
13651 
13652 static const struct opcode_descriptor jal_insn_32_bd32 =
13653   { /* "jal",	"a",		*/ 0xf4000000, 0xfc000000 };
13654 
13655 static const struct opcode_descriptor jal_x_insn_32_bd32 =
13656   { /* "jal[x]", "a",		*/ 0xf0000000, 0xf8000000 };
13657 
13658 static const struct opcode_descriptor j_insn_32 =
13659   { /* "j",	"a",		*/ 0xd4000000, 0xfc000000 };
13660 
13661 static const struct opcode_descriptor jalr_insn_32 =
13662   { /* "jalr[.hb]", "t,s",	*/ 0x00000f3c, 0xfc00efff };
13663 
13664 /* This table can be compacted, because no opcode replacement is made.  */
13665 
13666 static const struct opcode_descriptor ds_insns_32_bd16[] = {
13667   { /* "jals",	"a",		*/ 0x74000000, 0xfc000000 },
13668 
13669   { /* "jalrs[.hb]", "t,s",	*/ 0x00004f3c, 0xfc00efff },
13670   { /* "b(ge|lt)zals", "s,p",	*/ 0x42200000, 0xffa00000 },
13671 
13672   { /* "b(g|l)(e|t)z", "s,p",	*/ 0x40000000, 0xff200000 },
13673   { /* "b(eq|ne)", "s,t,p",	*/ 0x94000000, 0xdc000000 },
13674   { /* "j",	"a",		*/ 0xd4000000, 0xfc000000 },
13675   { 0, 0 }  /* End marker for find_match().  */
13676 };
13677 
13678 /* This table can be compacted, because no opcode replacement is made.  */
13679 
13680 static const struct opcode_descriptor ds_insns_32_bd32[] = {
13681   { /* "jal[x]", "a",		*/ 0xf0000000, 0xf8000000 },
13682 
13683   { /* "jalr[.hb]", "t,s",	*/ 0x00000f3c, 0xfc00efff },
13684   { /* "b(ge|lt)zal", "s,p",	*/ 0x40200000, 0xffa00000 },
13685   { 0, 0 }  /* End marker for find_match().  */
13686 };
13687 
13688 
13689 /* 16-bit instructions with a delay slot.  */
13690 
13691 static const struct opcode_descriptor jalr_insn_16_bd16 =
13692   { /* "jalrs",	"my,mj",	*/ 0x45e0,     0xffe0 };
13693 
13694 static const struct opcode_descriptor jalr_insn_16_bd32 =
13695   { /* "jalr",	"my,mj",	*/ 0x45c0,     0xffe0 };
13696 
13697 static const struct opcode_descriptor jr_insn_16 =
13698   { /* "jr",	"mj",		*/ 0x4580,     0xffe0 };
13699 
13700 #define JR16_REG(opcode) ((opcode) & 0x1f)
13701 
13702 /* This table can be compacted, because no opcode replacement is made.  */
13703 
13704 static const struct opcode_descriptor ds_insns_16_bd16[] = {
13705   { /* "jalrs",	"my,mj",	*/ 0x45e0,     0xffe0 },
13706 
13707   { /* "b",	"mD",		*/ 0xcc00,     0xfc00 },
13708   { /* "b(eq|ne)z", "md,mE",	*/ 0x8c00,     0xdc00 },
13709   { /* "jr",	"mj",		*/ 0x4580,     0xffe0 },
13710   { 0, 0 }  /* End marker for find_match().  */
13711 };
13712 
13713 
13714 /* LUI instruction.  */
13715 
13716 static const struct opcode_descriptor lui_insn =
13717  { /* "lui",	"s,u",		*/ 0x41a00000, 0xffe00000 };
13718 
13719 
13720 /* ADDIU instruction.  */
13721 
13722 static const struct opcode_descriptor addiu_insn =
13723   { /* "addiu",	"t,r,j",	*/ 0x30000000, 0xfc000000 };
13724 
13725 static const struct opcode_descriptor addiupc_insn =
13726   { /* "addiu",	"mb,$pc,mQ",	*/ 0x78000000, 0xfc000000 };
13727 
13728 #define ADDIUPC_REG_FIELD(r) \
13729   (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13730 
13731 
13732 /* Relaxable instructions in a JAL delay slot: MOVE.  */
13733 
13734 /* The 16-bit move has rd in 9:5 and rs in 4:0.  The 32-bit moves
13735    (ADDU, OR) have rd in 15:11 and rs in 10:16.  */
13736 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13737 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13738 
13739 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13740 #define MOVE16_RS_FIELD(r) (((r) & 0x1f)     )
13741 
13742 static const struct opcode_descriptor move_insns_32[] = {
13743   { /* "move",	"d,s",		*/ 0x00000290, 0xffe007ff }, /* or   d,s,$0 */
13744   { /* "move",	"d,s",		*/ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
13745   { 0, 0 }  /* End marker for find_match().  */
13746 };
13747 
13748 static const struct opcode_descriptor move_insn_16 =
13749   { /* "move",	"mp,mj",	*/ 0x0c00,     0xfc00 };
13750 
13751 
13752 /* NOP instructions.  */
13753 
13754 static const struct opcode_descriptor nop_insn_32 =
13755   { /* "nop",	"",		*/ 0x00000000, 0xffffffff };
13756 
13757 static const struct opcode_descriptor nop_insn_16 =
13758   { /* "nop",	"",		*/ 0x0c00,     0xffff };
13759 
13760 
13761 /* Instruction match support.  */
13762 
13763 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13764 
13765 static int
find_match(unsigned long opcode,const struct opcode_descriptor insn[])13766 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13767 {
13768   unsigned long indx;
13769 
13770   for (indx = 0; insn[indx].mask != 0; indx++)
13771     if (MATCH (opcode, insn[indx]))
13772       return indx;
13773 
13774   return -1;
13775 }
13776 
13777 
13778 /* Branch and delay slot decoding support.  */
13779 
13780 /* If PTR points to what *might* be a 16-bit branch or jump, then
13781    return the minimum length of its delay slot, otherwise return 0.
13782    Non-zero results are not definitive as we might be checking against
13783    the second half of another instruction.  */
13784 
13785 static int
check_br16_dslot(bfd * abfd,bfd_byte * ptr)13786 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13787 {
13788   unsigned long opcode;
13789   int bdsize;
13790 
13791   opcode = bfd_get_16 (abfd, ptr);
13792   if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13793     /* 16-bit branch/jump with a 32-bit delay slot.  */
13794     bdsize = 4;
13795   else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13796 	   || find_match (opcode, ds_insns_16_bd16) >= 0)
13797     /* 16-bit branch/jump with a 16-bit delay slot.  */
13798     bdsize = 2;
13799   else
13800     /* No delay slot.  */
13801     bdsize = 0;
13802 
13803   return bdsize;
13804 }
13805 
13806 /* If PTR points to what *might* be a 32-bit branch or jump, then
13807    return the minimum length of its delay slot, otherwise return 0.
13808    Non-zero results are not definitive as we might be checking against
13809    the second half of another instruction.  */
13810 
13811 static int
check_br32_dslot(bfd * abfd,bfd_byte * ptr)13812 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13813 {
13814   unsigned long opcode;
13815   int bdsize;
13816 
13817   opcode = bfd_get_micromips_32 (abfd, ptr);
13818   if (find_match (opcode, ds_insns_32_bd32) >= 0)
13819     /* 32-bit branch/jump with a 32-bit delay slot.  */
13820     bdsize = 4;
13821   else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13822     /* 32-bit branch/jump with a 16-bit delay slot.  */
13823     bdsize = 2;
13824   else
13825     /* No delay slot.  */
13826     bdsize = 0;
13827 
13828   return bdsize;
13829 }
13830 
13831 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13832    that doesn't fiddle with REG, then return TRUE, otherwise FALSE.  */
13833 
13834 static bool
check_br16(bfd * abfd,bfd_byte * ptr,unsigned long reg)13835 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13836 {
13837   unsigned long opcode;
13838 
13839   opcode = bfd_get_16 (abfd, ptr);
13840   if (MATCH (opcode, b_insn_16)
13841 						/* B16  */
13842       || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13843 						/* JR16  */
13844       || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13845 						/* BEQZ16, BNEZ16  */
13846       || (MATCH (opcode, jalr_insn_16_bd32)
13847 						/* JALR16  */
13848 	  && reg != JR16_REG (opcode) && reg != RA))
13849     return true;
13850 
13851   return false;
13852 }
13853 
13854 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13855    then return TRUE, otherwise FALSE.  */
13856 
13857 static bool
check_br32(bfd * abfd,bfd_byte * ptr,unsigned long reg)13858 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13859 {
13860   unsigned long opcode;
13861 
13862   opcode = bfd_get_micromips_32 (abfd, ptr);
13863   if (MATCH (opcode, j_insn_32)
13864 						/* J  */
13865       || MATCH (opcode, bc_insn_32)
13866 						/* BC1F, BC1T, BC2F, BC2T  */
13867       || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13868 						/* JAL, JALX  */
13869       || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13870 						/* BGEZ, BGTZ, BLEZ, BLTZ  */
13871       || (MATCH (opcode, bzal_insn_32)
13872 						/* BGEZAL, BLTZAL  */
13873 	  && reg != OP32_SREG (opcode) && reg != RA)
13874       || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13875 						/* JALR, JALR.HB, BEQ, BNE  */
13876 	  && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13877     return true;
13878 
13879   return false;
13880 }
13881 
13882 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13883    IRELEND) at OFFSET indicate that there must be a compact branch there,
13884    then return TRUE, otherwise FALSE.  */
13885 
13886 static bool
check_relocated_bzc(bfd * abfd,const bfd_byte * ptr,bfd_vma offset,const Elf_Internal_Rela * internal_relocs,const Elf_Internal_Rela * irelend)13887 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13888 		     const Elf_Internal_Rela *internal_relocs,
13889 		     const Elf_Internal_Rela *irelend)
13890 {
13891   const Elf_Internal_Rela *irel;
13892   unsigned long opcode;
13893 
13894   opcode = bfd_get_micromips_32 (abfd, ptr);
13895   if (find_match (opcode, bzc_insns_32) < 0)
13896     return false;
13897 
13898   for (irel = internal_relocs; irel < irelend; irel++)
13899     if (irel->r_offset == offset
13900 	&& ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13901       return true;
13902 
13903   return false;
13904 }
13905 
13906 /* Bitsize checking.  */
13907 #define IS_BITSIZE(val, N)						\
13908   (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1)))		\
13909     - (1ULL << ((N) - 1))) == (val))
13910 
13911 
13912 bool
_bfd_mips_elf_relax_section(bfd * abfd,asection * sec,struct bfd_link_info * link_info,bool * again)13913 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13914 			     struct bfd_link_info *link_info,
13915 			     bool *again)
13916 {
13917   bool insn32 = mips_elf_hash_table (link_info)->insn32;
13918   Elf_Internal_Shdr *symtab_hdr;
13919   Elf_Internal_Rela *internal_relocs;
13920   Elf_Internal_Rela *irel, *irelend;
13921   bfd_byte *contents = NULL;
13922   Elf_Internal_Sym *isymbuf = NULL;
13923 
13924   /* Assume nothing changes.  */
13925   *again = false;
13926 
13927   /* We don't have to do anything for a relocatable link, if
13928      this section does not have relocs, or if this is not a
13929      code section.  */
13930 
13931   if (bfd_link_relocatable (link_info)
13932       || (sec->flags & SEC_RELOC) == 0
13933       || sec->reloc_count == 0
13934       || (sec->flags & SEC_CODE) == 0)
13935     return true;
13936 
13937   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13938 
13939   /* Get a copy of the native relocations.  */
13940   internal_relocs = (_bfd_elf_link_read_relocs
13941 		     (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
13942 		      link_info->keep_memory));
13943   if (internal_relocs == NULL)
13944     goto error_return;
13945 
13946   /* Walk through them looking for relaxing opportunities.  */
13947   irelend = internal_relocs + sec->reloc_count;
13948   for (irel = internal_relocs; irel < irelend; irel++)
13949     {
13950       unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13951       unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13952       bool target_is_micromips_code_p;
13953       unsigned long opcode;
13954       bfd_vma symval;
13955       bfd_vma pcrval;
13956       bfd_byte *ptr;
13957       int fndopc;
13958 
13959       /* The number of bytes to delete for relaxation and from where
13960 	 to delete these bytes starting at irel->r_offset.  */
13961       int delcnt = 0;
13962       int deloff = 0;
13963 
13964       /* If this isn't something that can be relaxed, then ignore
13965 	 this reloc.  */
13966       if (r_type != R_MICROMIPS_HI16
13967 	  && r_type != R_MICROMIPS_PC16_S1
13968 	  && r_type != R_MICROMIPS_26_S1)
13969 	continue;
13970 
13971       /* Get the section contents if we haven't done so already.  */
13972       if (contents == NULL)
13973 	{
13974 	  /* Get cached copy if it exists.  */
13975 	  if (elf_section_data (sec)->this_hdr.contents != NULL)
13976 	    contents = elf_section_data (sec)->this_hdr.contents;
13977 	  /* Go get them off disk.  */
13978 	  else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13979 	    goto error_return;
13980 	}
13981       ptr = contents + irel->r_offset;
13982 
13983       /* Read this BFD's local symbols if we haven't done so already.  */
13984       if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13985 	{
13986 	  isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13987 	  if (isymbuf == NULL)
13988 	    isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13989 					    symtab_hdr->sh_info, 0,
13990 					    NULL, NULL, NULL);
13991 	  if (isymbuf == NULL)
13992 	    goto error_return;
13993 	}
13994 
13995       /* Get the value of the symbol referred to by the reloc.  */
13996       if (r_symndx < symtab_hdr->sh_info)
13997 	{
13998 	  /* A local symbol.  */
13999 	  Elf_Internal_Sym *isym;
14000 	  asection *sym_sec;
14001 
14002 	  isym = isymbuf + r_symndx;
14003 	  if (isym->st_shndx == SHN_UNDEF)
14004 	    sym_sec = bfd_und_section_ptr;
14005 	  else if (isym->st_shndx == SHN_ABS)
14006 	    sym_sec = bfd_abs_section_ptr;
14007 	  else if (isym->st_shndx == SHN_COMMON)
14008 	    sym_sec = bfd_com_section_ptr;
14009 	  else
14010 	    sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
14011 	  symval = (isym->st_value
14012 		    + sym_sec->output_section->vma
14013 		    + sym_sec->output_offset);
14014 	  target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
14015 	}
14016       else
14017 	{
14018 	  unsigned long indx;
14019 	  struct elf_link_hash_entry *h;
14020 
14021 	  /* An external symbol.  */
14022 	  indx = r_symndx - symtab_hdr->sh_info;
14023 	  h = elf_sym_hashes (abfd)[indx];
14024 	  BFD_ASSERT (h != NULL);
14025 
14026 	  if (h->root.type != bfd_link_hash_defined
14027 	      && h->root.type != bfd_link_hash_defweak)
14028 	    /* This appears to be a reference to an undefined
14029 	       symbol.  Just ignore it -- it will be caught by the
14030 	       regular reloc processing.  */
14031 	    continue;
14032 
14033 	  symval = (h->root.u.def.value
14034 		    + h->root.u.def.section->output_section->vma
14035 		    + h->root.u.def.section->output_offset);
14036 	  target_is_micromips_code_p = (!h->needs_plt
14037 					&& ELF_ST_IS_MICROMIPS (h->other));
14038 	}
14039 
14040 
14041       /* For simplicity of coding, we are going to modify the
14042 	 section contents, the section relocs, and the BFD symbol
14043 	 table.  We must tell the rest of the code not to free up this
14044 	 information.  It would be possible to instead create a table
14045 	 of changes which have to be made, as is done in coff-mips.c;
14046 	 that would be more work, but would require less memory when
14047 	 the linker is run.  */
14048 
14049       /* Only 32-bit instructions relaxed.  */
14050       if (irel->r_offset + 4 > sec->size)
14051 	continue;
14052 
14053       opcode = bfd_get_micromips_32 (abfd, ptr);
14054 
14055       /* This is the pc-relative distance from the instruction the
14056 	 relocation is applied to, to the symbol referred.  */
14057       pcrval = (symval
14058 		- (sec->output_section->vma + sec->output_offset)
14059 		- irel->r_offset);
14060 
14061       /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
14062 	 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
14063 	 R_MICROMIPS_PC23_S2.  The R_MICROMIPS_PC23_S2 condition is
14064 
14065 	   (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
14066 
14067 	 where pcrval has first to be adjusted to apply against the LO16
14068 	 location (we make the adjustment later on, when we have figured
14069 	 out the offset).  */
14070       if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
14071 	{
14072 	  bool bzc = false;
14073 	  unsigned long nextopc;
14074 	  unsigned long reg;
14075 	  bfd_vma offset;
14076 
14077 	  /* Give up if the previous reloc was a HI16 against this symbol
14078 	     too.  */
14079 	  if (irel > internal_relocs
14080 	      && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
14081 	      && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
14082 	    continue;
14083 
14084 	  /* Or if the next reloc is not a LO16 against this symbol.  */
14085 	  if (irel + 1 >= irelend
14086 	      || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
14087 	      || ELF32_R_SYM (irel[1].r_info) != r_symndx)
14088 	    continue;
14089 
14090 	  /* Or if the second next reloc is a LO16 against this symbol too.  */
14091 	  if (irel + 2 >= irelend
14092 	      && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
14093 	      && ELF32_R_SYM (irel[2].r_info) == r_symndx)
14094 	    continue;
14095 
14096 	  /* See if the LUI instruction *might* be in a branch delay slot.
14097 	     We check whether what looks like a 16-bit branch or jump is
14098 	     actually an immediate argument to a compact branch, and let
14099 	     it through if so.  */
14100 	  if (irel->r_offset >= 2
14101 	      && check_br16_dslot (abfd, ptr - 2)
14102 	      && !(irel->r_offset >= 4
14103 		   && (bzc = check_relocated_bzc (abfd,
14104 						  ptr - 4, irel->r_offset - 4,
14105 						  internal_relocs, irelend))))
14106 	    continue;
14107 	  if (irel->r_offset >= 4
14108 	      && !bzc
14109 	      && check_br32_dslot (abfd, ptr - 4))
14110 	    continue;
14111 
14112 	  reg = OP32_SREG (opcode);
14113 
14114 	  /* We only relax adjacent instructions or ones separated with
14115 	     a branch or jump that has a delay slot.  The branch or jump
14116 	     must not fiddle with the register used to hold the address.
14117 	     Subtract 4 for the LUI itself.  */
14118 	  offset = irel[1].r_offset - irel[0].r_offset;
14119 	  switch (offset - 4)
14120 	    {
14121 	    case 0:
14122 	      break;
14123 	    case 2:
14124 	      if (check_br16 (abfd, ptr + 4, reg))
14125 		break;
14126 	      continue;
14127 	    case 4:
14128 	      if (check_br32 (abfd, ptr + 4, reg))
14129 		break;
14130 	      continue;
14131 	    default:
14132 	      continue;
14133 	    }
14134 
14135 	  nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
14136 
14137 	  /* Give up unless the same register is used with both
14138 	     relocations.  */
14139 	  if (OP32_SREG (nextopc) != reg)
14140 	    continue;
14141 
14142 	  /* Now adjust pcrval, subtracting the offset to the LO16 reloc
14143 	     and rounding up to take masking of the two LSBs into account.  */
14144 	  pcrval = ((pcrval - offset + 3) | 3) ^ 3;
14145 
14146 	  /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16.  */
14147 	  if (IS_BITSIZE (symval, 16))
14148 	    {
14149 	      /* Fix the relocation's type.  */
14150 	      irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
14151 
14152 	      /* Instructions using R_MICROMIPS_LO16 have the base or
14153 		 source register in bits 20:16.  This register becomes $0
14154 		 (zero) as the result of the R_MICROMIPS_HI16 being 0.  */
14155 	      nextopc &= ~0x001f0000;
14156 	      bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
14157 			  contents + irel[1].r_offset);
14158 	    }
14159 
14160 	  /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
14161 	     We add 4 to take LUI deletion into account while checking
14162 	     the PC-relative distance.  */
14163 	  else if (symval % 4 == 0
14164 		   && IS_BITSIZE (pcrval + 4, 25)
14165 		   && MATCH (nextopc, addiu_insn)
14166 		   && OP32_TREG (nextopc) == OP32_SREG (nextopc)
14167 		   && OP16_VALID_REG (OP32_TREG (nextopc)))
14168 	    {
14169 	      /* Fix the relocation's type.  */
14170 	      irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
14171 
14172 	      /* Replace ADDIU with the ADDIUPC version.  */
14173 	      nextopc = (addiupc_insn.match
14174 			 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
14175 
14176 	      bfd_put_micromips_32 (abfd, nextopc,
14177 				    contents + irel[1].r_offset);
14178 	    }
14179 
14180 	  /* Can't do anything, give up, sigh...  */
14181 	  else
14182 	    continue;
14183 
14184 	  /* Fix the relocation's type.  */
14185 	  irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
14186 
14187 	  /* Delete the LUI instruction: 4 bytes at irel->r_offset.  */
14188 	  delcnt = 4;
14189 	  deloff = 0;
14190 	}
14191 
14192       /* Compact branch relaxation -- due to the multitude of macros
14193 	 employed by the compiler/assembler, compact branches are not
14194 	 always generated.  Obviously, this can/will be fixed elsewhere,
14195 	 but there is no drawback in double checking it here.  */
14196       else if (r_type == R_MICROMIPS_PC16_S1
14197 	       && irel->r_offset + 5 < sec->size
14198 	       && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
14199 		   || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
14200 	       && ((!insn32
14201 		    && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
14202 					nop_insn_16) ? 2 : 0))
14203 		   || (irel->r_offset + 7 < sec->size
14204 		       && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
14205 								 ptr + 4),
14206 					   nop_insn_32) ? 4 : 0))))
14207 	{
14208 	  unsigned long reg;
14209 
14210 	  reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
14211 
14212 	  /* Replace BEQZ/BNEZ with the compact version.  */
14213 	  opcode = (bzc_insns_32[fndopc].match
14214 		    | BZC32_REG_FIELD (reg)
14215 		    | (opcode & 0xffff));		/* Addend value.  */
14216 
14217 	  bfd_put_micromips_32 (abfd, opcode, ptr);
14218 
14219 	  /* Delete the delay slot NOP: two or four bytes from
14220 	     irel->offset + 4; delcnt has already been set above.  */
14221 	  deloff = 4;
14222 	}
14223 
14224       /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1.  We need
14225 	 to check the distance from the next instruction, so subtract 2.  */
14226       else if (!insn32
14227 	       && r_type == R_MICROMIPS_PC16_S1
14228 	       && IS_BITSIZE (pcrval - 2, 11)
14229 	       && find_match (opcode, b_insns_32) >= 0)
14230 	{
14231 	  /* Fix the relocation's type.  */
14232 	  irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
14233 
14234 	  /* Replace the 32-bit opcode with a 16-bit opcode.  */
14235 	  bfd_put_16 (abfd,
14236 		      (b_insn_16.match
14237 		       | (opcode & 0x3ff)),		/* Addend value.  */
14238 		      ptr);
14239 
14240 	  /* Delete 2 bytes from irel->r_offset + 2.  */
14241 	  delcnt = 2;
14242 	  deloff = 2;
14243 	}
14244 
14245       /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1.  We need
14246 	 to check the distance from the next instruction, so subtract 2.  */
14247       else if (!insn32
14248 	       && r_type == R_MICROMIPS_PC16_S1
14249 	       && IS_BITSIZE (pcrval - 2, 8)
14250 	       && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
14251 		    && OP16_VALID_REG (OP32_SREG (opcode)))
14252 		   || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
14253 		       && OP16_VALID_REG (OP32_TREG (opcode)))))
14254 	{
14255 	  unsigned long reg;
14256 
14257 	  reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
14258 
14259 	  /* Fix the relocation's type.  */
14260 	  irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
14261 
14262 	  /* Replace the 32-bit opcode with a 16-bit opcode.  */
14263 	  bfd_put_16 (abfd,
14264 		      (bz_insns_16[fndopc].match
14265 		       | BZ16_REG_FIELD (reg)
14266 		       | (opcode & 0x7f)),		/* Addend value.  */
14267 		      ptr);
14268 
14269 	  /* Delete 2 bytes from irel->r_offset + 2.  */
14270 	  delcnt = 2;
14271 	  deloff = 2;
14272 	}
14273 
14274       /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets.  */
14275       else if (!insn32
14276 	       && r_type == R_MICROMIPS_26_S1
14277 	       && target_is_micromips_code_p
14278 	       && irel->r_offset + 7 < sec->size
14279 	       && MATCH (opcode, jal_insn_32_bd32))
14280 	{
14281 	  unsigned long n32opc;
14282 	  bool relaxed = false;
14283 
14284 	  n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
14285 
14286 	  if (MATCH (n32opc, nop_insn_32))
14287 	    {
14288 	      /* Replace delay slot 32-bit NOP with a 16-bit NOP.  */
14289 	      bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
14290 
14291 	      relaxed = true;
14292 	    }
14293 	  else if (find_match (n32opc, move_insns_32) >= 0)
14294 	    {
14295 	      /* Replace delay slot 32-bit MOVE with 16-bit MOVE.  */
14296 	      bfd_put_16 (abfd,
14297 			  (move_insn_16.match
14298 			   | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
14299 			   | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
14300 			  ptr + 4);
14301 
14302 	      relaxed = true;
14303 	    }
14304 	  /* Other 32-bit instructions relaxable to 16-bit
14305 	     instructions will be handled here later.  */
14306 
14307 	  if (relaxed)
14308 	    {
14309 	      /* JAL with 32-bit delay slot that is changed to a JALS
14310 		 with 16-bit delay slot.  */
14311 	      bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
14312 
14313 	      /* Delete 2 bytes from irel->r_offset + 6.  */
14314 	      delcnt = 2;
14315 	      deloff = 6;
14316 	    }
14317 	}
14318 
14319       if (delcnt != 0)
14320 	{
14321 	  /* Note that we've changed the relocs, section contents, etc.  */
14322 	  elf_section_data (sec)->relocs = internal_relocs;
14323 	  elf_section_data (sec)->this_hdr.contents = contents;
14324 	  symtab_hdr->contents = (unsigned char *) isymbuf;
14325 
14326 	  /* Delete bytes depending on the delcnt and deloff.  */
14327 	  if (!mips_elf_relax_delete_bytes (abfd, sec,
14328 					    irel->r_offset + deloff, delcnt))
14329 	    goto error_return;
14330 
14331 	  /* That will change things, so we should relax again.
14332 	     Note that this is not required, and it may be slow.  */
14333 	  *again = true;
14334 	}
14335     }
14336 
14337   if (isymbuf != NULL
14338       && symtab_hdr->contents != (unsigned char *) isymbuf)
14339     {
14340       if (! link_info->keep_memory)
14341 	free (isymbuf);
14342       else
14343 	{
14344 	  /* Cache the symbols for elf_link_input_bfd.  */
14345 	  symtab_hdr->contents = (unsigned char *) isymbuf;
14346 	}
14347     }
14348 
14349   if (contents != NULL
14350       && elf_section_data (sec)->this_hdr.contents != contents)
14351     {
14352       if (! link_info->keep_memory)
14353 	free (contents);
14354       else
14355 	{
14356 	  /* Cache the section contents for elf_link_input_bfd.  */
14357 	  elf_section_data (sec)->this_hdr.contents = contents;
14358 	}
14359     }
14360 
14361   if (elf_section_data (sec)->relocs != internal_relocs)
14362     free (internal_relocs);
14363 
14364   return true;
14365 
14366  error_return:
14367   if (symtab_hdr->contents != (unsigned char *) isymbuf)
14368     free (isymbuf);
14369   if (elf_section_data (sec)->this_hdr.contents != contents)
14370     free (contents);
14371   if (elf_section_data (sec)->relocs != internal_relocs)
14372     free (internal_relocs);
14373 
14374   return false;
14375 }
14376 
14377 /* Create a MIPS ELF linker hash table.  */
14378 
14379 struct bfd_link_hash_table *
_bfd_mips_elf_link_hash_table_create(bfd * abfd)14380 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
14381 {
14382   struct mips_elf_link_hash_table *ret;
14383   size_t amt = sizeof (struct mips_elf_link_hash_table);
14384 
14385   ret = bfd_zmalloc (amt);
14386   if (ret == NULL)
14387     return NULL;
14388 
14389   if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
14390 				      mips_elf_link_hash_newfunc,
14391 				      sizeof (struct mips_elf_link_hash_entry),
14392 				      MIPS_ELF_DATA))
14393     {
14394       free (ret);
14395       return NULL;
14396     }
14397   ret->root.init_plt_refcount.plist = NULL;
14398   ret->root.init_plt_offset.plist = NULL;
14399 
14400   return &ret->root.root;
14401 }
14402 
14403 /* Likewise, but indicate that the target is VxWorks.  */
14404 
14405 struct bfd_link_hash_table *
_bfd_mips_vxworks_link_hash_table_create(bfd * abfd)14406 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
14407 {
14408   struct bfd_link_hash_table *ret;
14409 
14410   ret = _bfd_mips_elf_link_hash_table_create (abfd);
14411   if (ret)
14412     {
14413       struct mips_elf_link_hash_table *htab;
14414 
14415       htab = (struct mips_elf_link_hash_table *) ret;
14416       htab->use_plts_and_copy_relocs = true;
14417     }
14418   return ret;
14419 }
14420 
14421 /* A function that the linker calls if we are allowed to use PLTs
14422    and copy relocs.  */
14423 
14424 void
_bfd_mips_elf_use_plts_and_copy_relocs(struct bfd_link_info * info)14425 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
14426 {
14427   mips_elf_hash_table (info)->use_plts_and_copy_relocs = true;
14428 }
14429 
14430 /* A function that the linker calls to select between all or only
14431    32-bit microMIPS instructions, and between making or ignoring
14432    branch relocation checks for invalid transitions between ISA modes.
14433    Also record whether we have been configured for a GNU target.  */
14434 
14435 void
_bfd_mips_elf_linker_flags(struct bfd_link_info * info,bool insn32,bool ignore_branch_isa,bool gnu_target)14436 _bfd_mips_elf_linker_flags (struct bfd_link_info *info, bool insn32,
14437 			    bool ignore_branch_isa,
14438 			    bool gnu_target)
14439 {
14440   mips_elf_hash_table (info)->insn32 = insn32;
14441   mips_elf_hash_table (info)->ignore_branch_isa = ignore_branch_isa;
14442   mips_elf_hash_table (info)->gnu_target = gnu_target;
14443 }
14444 
14445 /* A function that the linker calls to enable use of compact branches in
14446    linker generated code for MIPSR6.  */
14447 
14448 void
_bfd_mips_elf_compact_branches(struct bfd_link_info * info,bool on)14449 _bfd_mips_elf_compact_branches (struct bfd_link_info *info, bool on)
14450 {
14451   mips_elf_hash_table (info)->compact_branches = on;
14452 }
14453 
14454 
14455 /* Structure for saying that BFD machine EXTENSION extends BASE.  */
14456 
14457 struct mips_mach_extension
14458 {
14459   unsigned long extension, base;
14460 };
14461 
14462 
14463 /* An array describing how BFD machines relate to one another.  The entries
14464    are ordered topologically with MIPS I extensions listed last.  */
14465 
14466 static const struct mips_mach_extension mips_mach_extensions[] =
14467 {
14468   /* MIPS64r2 extensions.  */
14469   { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
14470   { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
14471   { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
14472   { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
14473   { bfd_mach_mips_gs264e, bfd_mach_mips_gs464e },
14474   { bfd_mach_mips_gs464e, bfd_mach_mips_gs464 },
14475   { bfd_mach_mips_gs464, bfd_mach_mipsisa64r2 },
14476 
14477   /* MIPS64 extensions.  */
14478   { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
14479   { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
14480   { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
14481 
14482   /* MIPS V extensions.  */
14483   { bfd_mach_mipsisa64, bfd_mach_mips5 },
14484 
14485   /* R10000 extensions.  */
14486   { bfd_mach_mips12000, bfd_mach_mips10000 },
14487   { bfd_mach_mips14000, bfd_mach_mips10000 },
14488   { bfd_mach_mips16000, bfd_mach_mips10000 },
14489 
14490   /* R5000 extensions.  Note: the vr5500 ISA is an extension of the core
14491      vr5400 ISA, but doesn't include the multimedia stuff.  It seems
14492      better to allow vr5400 and vr5500 code to be merged anyway, since
14493      many libraries will just use the core ISA.  Perhaps we could add
14494      some sort of ASE flag if this ever proves a problem.  */
14495   { bfd_mach_mips5500, bfd_mach_mips5400 },
14496   { bfd_mach_mips5400, bfd_mach_mips5000 },
14497 
14498   /* MIPS IV extensions.  */
14499   { bfd_mach_mips5, bfd_mach_mips8000 },
14500   { bfd_mach_mips10000, bfd_mach_mips8000 },
14501   { bfd_mach_mips5000, bfd_mach_mips8000 },
14502   { bfd_mach_mips7000, bfd_mach_mips8000 },
14503   { bfd_mach_mips9000, bfd_mach_mips8000 },
14504 
14505   /* VR4100 extensions.  */
14506   { bfd_mach_mips4120, bfd_mach_mips4100 },
14507   { bfd_mach_mips4111, bfd_mach_mips4100 },
14508 
14509   /* MIPS III extensions.  */
14510   { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
14511   { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
14512   { bfd_mach_mips8000, bfd_mach_mips4000 },
14513   { bfd_mach_mips4650, bfd_mach_mips4000 },
14514   { bfd_mach_mips4600, bfd_mach_mips4000 },
14515   { bfd_mach_mips4400, bfd_mach_mips4000 },
14516   { bfd_mach_mips4300, bfd_mach_mips4000 },
14517   { bfd_mach_mips4100, bfd_mach_mips4000 },
14518   { bfd_mach_mips5900, bfd_mach_mips4000 },
14519 
14520   /* MIPS32r3 extensions.  */
14521   { bfd_mach_mips_interaptiv_mr2, bfd_mach_mipsisa32r3 },
14522 
14523   /* MIPS32r2 extensions.  */
14524   { bfd_mach_mipsisa32r3, bfd_mach_mipsisa32r2 },
14525 
14526   /* MIPS32 extensions.  */
14527   { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14528 
14529   /* MIPS II extensions.  */
14530   { bfd_mach_mips4000, bfd_mach_mips6000 },
14531   { bfd_mach_mipsisa32, bfd_mach_mips6000 },
14532   { bfd_mach_mips4010, bfd_mach_mips6000 },
14533 
14534   /* MIPS I extensions.  */
14535   { bfd_mach_mips6000, bfd_mach_mips3000 },
14536   { bfd_mach_mips3900, bfd_mach_mips3000 }
14537 };
14538 
14539 /* Return true if bfd machine EXTENSION is an extension of machine BASE.  */
14540 
14541 static bool
mips_mach_extends_p(unsigned long base,unsigned long extension)14542 mips_mach_extends_p (unsigned long base, unsigned long extension)
14543 {
14544   size_t i;
14545 
14546   if (extension == base)
14547     return true;
14548 
14549   if (base == bfd_mach_mipsisa32
14550       && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14551     return true;
14552 
14553   if (base == bfd_mach_mipsisa32r2
14554       && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14555     return true;
14556 
14557   for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14558     if (extension == mips_mach_extensions[i].extension)
14559       {
14560 	extension = mips_mach_extensions[i].base;
14561 	if (extension == base)
14562 	  return true;
14563       }
14564 
14565   return false;
14566 }
14567 
14568 /* Return the BFD mach for each .MIPS.abiflags ISA Extension.  */
14569 
14570 static unsigned long
bfd_mips_isa_ext_mach(unsigned int isa_ext)14571 bfd_mips_isa_ext_mach (unsigned int isa_ext)
14572 {
14573   switch (isa_ext)
14574     {
14575     case AFL_EXT_3900:	      return bfd_mach_mips3900;
14576     case AFL_EXT_4010:	      return bfd_mach_mips4010;
14577     case AFL_EXT_4100:	      return bfd_mach_mips4100;
14578     case AFL_EXT_4111:	      return bfd_mach_mips4111;
14579     case AFL_EXT_4120:	      return bfd_mach_mips4120;
14580     case AFL_EXT_4650:	      return bfd_mach_mips4650;
14581     case AFL_EXT_5400:	      return bfd_mach_mips5400;
14582     case AFL_EXT_5500:	      return bfd_mach_mips5500;
14583     case AFL_EXT_5900:	      return bfd_mach_mips5900;
14584     case AFL_EXT_10000:	      return bfd_mach_mips10000;
14585     case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14586     case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
14587     case AFL_EXT_SB1:	      return bfd_mach_mips_sb1;
14588     case AFL_EXT_OCTEON:      return bfd_mach_mips_octeon;
14589     case AFL_EXT_OCTEONP:     return bfd_mach_mips_octeonp;
14590     case AFL_EXT_OCTEON2:     return bfd_mach_mips_octeon2;
14591     case AFL_EXT_XLR:	      return bfd_mach_mips_xlr;
14592     default:		      return bfd_mach_mips3000;
14593     }
14594 }
14595 
14596 /* Return the .MIPS.abiflags value representing each ISA Extension.  */
14597 
14598 unsigned int
bfd_mips_isa_ext(bfd * abfd)14599 bfd_mips_isa_ext (bfd *abfd)
14600 {
14601   switch (bfd_get_mach (abfd))
14602     {
14603     case bfd_mach_mips3900:	    return AFL_EXT_3900;
14604     case bfd_mach_mips4010:	    return AFL_EXT_4010;
14605     case bfd_mach_mips4100:	    return AFL_EXT_4100;
14606     case bfd_mach_mips4111:	    return AFL_EXT_4111;
14607     case bfd_mach_mips4120:	    return AFL_EXT_4120;
14608     case bfd_mach_mips4650:	    return AFL_EXT_4650;
14609     case bfd_mach_mips5400:	    return AFL_EXT_5400;
14610     case bfd_mach_mips5500:	    return AFL_EXT_5500;
14611     case bfd_mach_mips5900:	    return AFL_EXT_5900;
14612     case bfd_mach_mips10000:	    return AFL_EXT_10000;
14613     case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14614     case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
14615     case bfd_mach_mips_sb1:	    return AFL_EXT_SB1;
14616     case bfd_mach_mips_octeon:	    return AFL_EXT_OCTEON;
14617     case bfd_mach_mips_octeonp:	    return AFL_EXT_OCTEONP;
14618     case bfd_mach_mips_octeon3:	    return AFL_EXT_OCTEON3;
14619     case bfd_mach_mips_octeon2:	    return AFL_EXT_OCTEON2;
14620     case bfd_mach_mips_xlr:	    return AFL_EXT_XLR;
14621     case bfd_mach_mips_interaptiv_mr2:
14622       return AFL_EXT_INTERAPTIV_MR2;
14623     default:			    return 0;
14624     }
14625 }
14626 
14627 /* Encode ISA level and revision as a single value.  */
14628 #define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14629 
14630 /* Decode a single value into level and revision.  */
14631 #define ISA_LEVEL(LEVREV)  ((LEVREV) >> 3)
14632 #define ISA_REV(LEVREV)    ((LEVREV) & 0x7)
14633 
14634 /* Update the isa_level, isa_rev, isa_ext fields of abiflags.  */
14635 
14636 static void
update_mips_abiflags_isa(bfd * abfd,Elf_Internal_ABIFlags_v0 * abiflags)14637 update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14638 {
14639   int new_isa = 0;
14640   switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14641     {
14642     case E_MIPS_ARCH_1:    new_isa = LEVEL_REV (1, 0); break;
14643     case E_MIPS_ARCH_2:    new_isa = LEVEL_REV (2, 0); break;
14644     case E_MIPS_ARCH_3:    new_isa = LEVEL_REV (3, 0); break;
14645     case E_MIPS_ARCH_4:    new_isa = LEVEL_REV (4, 0); break;
14646     case E_MIPS_ARCH_5:    new_isa = LEVEL_REV (5, 0); break;
14647     case E_MIPS_ARCH_32:   new_isa = LEVEL_REV (32, 1); break;
14648     case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14649     case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14650     case E_MIPS_ARCH_64:   new_isa = LEVEL_REV (64, 1); break;
14651     case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14652     case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
14653     default:
14654       _bfd_error_handler
14655 	/* xgettext:c-format */
14656 	(_("%pB: unknown architecture %s"),
14657 	 abfd, bfd_printable_name (abfd));
14658     }
14659 
14660   if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14661     {
14662       abiflags->isa_level = ISA_LEVEL (new_isa);
14663       abiflags->isa_rev = ISA_REV (new_isa);
14664     }
14665 
14666   /* Update the isa_ext if ABFD describes a further extension.  */
14667   if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14668 			   bfd_get_mach (abfd)))
14669     abiflags->isa_ext = bfd_mips_isa_ext (abfd);
14670 }
14671 
14672 /* Return true if the given ELF header flags describe a 32-bit binary.  */
14673 
14674 static bool
mips_32bit_flags_p(flagword flags)14675 mips_32bit_flags_p (flagword flags)
14676 {
14677   return ((flags & EF_MIPS_32BITMODE) != 0
14678 	  || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14679 	  || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14680 	  || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14681 	  || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14682 	  || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
14683 	  || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14684 	  || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
14685 }
14686 
14687 /* Infer the content of the ABI flags based on the elf header.  */
14688 
14689 static void
infer_mips_abiflags(bfd * abfd,Elf_Internal_ABIFlags_v0 * abiflags)14690 infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14691 {
14692   obj_attribute *in_attr;
14693 
14694   memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14695   update_mips_abiflags_isa (abfd, abiflags);
14696 
14697   if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14698     abiflags->gpr_size = AFL_REG_32;
14699   else
14700     abiflags->gpr_size = AFL_REG_64;
14701 
14702   abiflags->cpr1_size = AFL_REG_NONE;
14703 
14704   in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14705   abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14706 
14707   if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14708       || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14709       || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14710 	  && abiflags->gpr_size == AFL_REG_32))
14711     abiflags->cpr1_size = AFL_REG_32;
14712   else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14713 	   || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14714 	   || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14715     abiflags->cpr1_size = AFL_REG_64;
14716 
14717   abiflags->cpr2_size = AFL_REG_NONE;
14718 
14719   if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14720     abiflags->ases |= AFL_ASE_MDMX;
14721   if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14722     abiflags->ases |= AFL_ASE_MIPS16;
14723   if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14724     abiflags->ases |= AFL_ASE_MICROMIPS;
14725 
14726   if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14727       && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14728       && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14729       && abiflags->isa_level >= 32
14730       && abiflags->ases != AFL_ASE_LOONGSON_EXT)
14731     abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14732 }
14733 
14734 /* We need to use a special link routine to handle the .reginfo and
14735    the .mdebug sections.  We need to merge all instances of these
14736    sections together, not write them all out sequentially.  */
14737 
14738 bool
_bfd_mips_elf_final_link(bfd * abfd,struct bfd_link_info * info)14739 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
14740 {
14741   asection *o;
14742   struct bfd_link_order *p;
14743   asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
14744   asection *rtproc_sec, *abiflags_sec;
14745   Elf32_RegInfo reginfo;
14746   struct ecoff_debug_info debug;
14747   struct mips_htab_traverse_info hti;
14748   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14749   const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
14750   HDRR *symhdr = &debug.symbolic_header;
14751   void *mdebug_handle = NULL;
14752   asection *s;
14753   EXTR esym;
14754   unsigned int i;
14755   bfd_size_type amt;
14756   struct mips_elf_link_hash_table *htab;
14757 
14758   static const char * const secname[] =
14759   {
14760     ".text", ".init", ".fini", ".data",
14761     ".rodata", ".sdata", ".sbss", ".bss"
14762   };
14763   static const int sc[] =
14764   {
14765     scText, scInit, scFini, scData,
14766     scRData, scSData, scSBss, scBss
14767   };
14768 
14769   htab = mips_elf_hash_table (info);
14770   BFD_ASSERT (htab != NULL);
14771 
14772   /* Sort the dynamic symbols so that those with GOT entries come after
14773      those without.  */
14774   if (!mips_elf_sort_hash_table (abfd, info))
14775     return false;
14776 
14777   /* Create any scheduled LA25 stubs.  */
14778   hti.info = info;
14779   hti.output_bfd = abfd;
14780   hti.error = false;
14781   htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14782   if (hti.error)
14783     return false;
14784 
14785   /* Get a value for the GP register.  */
14786   if (elf_gp (abfd) == 0)
14787     {
14788       struct bfd_link_hash_entry *h;
14789 
14790       h = bfd_link_hash_lookup (info->hash, "_gp", false, false, true);
14791       if (h != NULL && h->type == bfd_link_hash_defined)
14792 	elf_gp (abfd) = (h->u.def.value
14793 			 + h->u.def.section->output_section->vma
14794 			 + h->u.def.section->output_offset);
14795       else if (htab->root.target_os == is_vxworks
14796 	       && (h = bfd_link_hash_lookup (info->hash,
14797 					     "_GLOBAL_OFFSET_TABLE_",
14798 					     false, false, true))
14799 	       && h->type == bfd_link_hash_defined)
14800 	elf_gp (abfd) = (h->u.def.section->output_section->vma
14801 			 + h->u.def.section->output_offset
14802 			 + h->u.def.value);
14803       else if (bfd_link_relocatable (info))
14804 	{
14805 	  bfd_vma lo = MINUS_ONE;
14806 
14807 	  /* Find the GP-relative section with the lowest offset.  */
14808 	  for (o = abfd->sections; o != NULL; o = o->next)
14809 	    if (o->vma < lo
14810 		&& (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14811 	      lo = o->vma;
14812 
14813 	  /* And calculate GP relative to that.  */
14814 	  elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
14815 	}
14816       else
14817 	{
14818 	  /* If the relocate_section function needs to do a reloc
14819 	     involving the GP value, it should make a reloc_dangerous
14820 	     callback to warn that GP is not defined.  */
14821 	}
14822     }
14823 
14824   /* Go through the sections and collect the .reginfo and .mdebug
14825      information.  */
14826   abiflags_sec = NULL;
14827   reginfo_sec = NULL;
14828   mdebug_sec = NULL;
14829   gptab_data_sec = NULL;
14830   gptab_bss_sec = NULL;
14831   for (o = abfd->sections; o != NULL; o = o->next)
14832     {
14833       if (strcmp (o->name, ".MIPS.abiflags") == 0)
14834 	{
14835 	  /* We have found the .MIPS.abiflags section in the output file.
14836 	     Look through all the link_orders comprising it and remove them.
14837 	     The data is merged in _bfd_mips_elf_merge_private_bfd_data.  */
14838 	  for (p = o->map_head.link_order; p != NULL; p = p->next)
14839 	    {
14840 	      asection *input_section;
14841 
14842 	      if (p->type != bfd_indirect_link_order)
14843 		{
14844 		  if (p->type == bfd_data_link_order)
14845 		    continue;
14846 		  abort ();
14847 		}
14848 
14849 	      input_section = p->u.indirect.section;
14850 
14851 	      /* Hack: reset the SEC_HAS_CONTENTS flag so that
14852 		 elf_link_input_bfd ignores this section.  */
14853 	      input_section->flags &= ~SEC_HAS_CONTENTS;
14854 	    }
14855 
14856 	  /* Size has been set in _bfd_mips_elf_always_size_sections.  */
14857 	  BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14858 
14859 	  /* Skip this section later on (I don't think this currently
14860 	     matters, but someday it might).  */
14861 	  o->map_head.link_order = NULL;
14862 
14863 	  abiflags_sec = o;
14864 	}
14865 
14866       if (strcmp (o->name, ".reginfo") == 0)
14867 	{
14868 	  memset (&reginfo, 0, sizeof reginfo);
14869 
14870 	  /* We have found the .reginfo section in the output file.
14871 	     Look through all the link_orders comprising it and merge
14872 	     the information together.  */
14873 	  for (p = o->map_head.link_order; p != NULL; p = p->next)
14874 	    {
14875 	      asection *input_section;
14876 	      bfd *input_bfd;
14877 	      Elf32_External_RegInfo ext;
14878 	      Elf32_RegInfo sub;
14879 	      bfd_size_type sz;
14880 
14881 	      if (p->type != bfd_indirect_link_order)
14882 		{
14883 		  if (p->type == bfd_data_link_order)
14884 		    continue;
14885 		  abort ();
14886 		}
14887 
14888 	      input_section = p->u.indirect.section;
14889 	      input_bfd = input_section->owner;
14890 
14891 	      sz = (input_section->size < sizeof (ext)
14892 		    ? input_section->size : sizeof (ext));
14893 	      memset (&ext, 0, sizeof (ext));
14894 	      if (! bfd_get_section_contents (input_bfd, input_section,
14895 					      &ext, 0, sz))
14896 		return false;
14897 
14898 	      bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14899 
14900 	      reginfo.ri_gprmask |= sub.ri_gprmask;
14901 	      reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14902 	      reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14903 	      reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14904 	      reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14905 
14906 	      /* ri_gp_value is set by the function
14907 		 `_bfd_mips_elf_section_processing' when the section is
14908 		 finally written out.  */
14909 
14910 	      /* Hack: reset the SEC_HAS_CONTENTS flag so that
14911 		 elf_link_input_bfd ignores this section.  */
14912 	      input_section->flags &= ~SEC_HAS_CONTENTS;
14913 	    }
14914 
14915 	  /* Size has been set in _bfd_mips_elf_always_size_sections.  */
14916 	  BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
14917 
14918 	  /* Skip this section later on (I don't think this currently
14919 	     matters, but someday it might).  */
14920 	  o->map_head.link_order = NULL;
14921 
14922 	  reginfo_sec = o;
14923 	}
14924 
14925       if (strcmp (o->name, ".mdebug") == 0)
14926 	{
14927 	  struct extsym_info einfo;
14928 	  bfd_vma last;
14929 
14930 	  /* We have found the .mdebug section in the output file.
14931 	     Look through all the link_orders comprising it and merge
14932 	     the information together.  */
14933 	  symhdr->magic = swap->sym_magic;
14934 	  /* FIXME: What should the version stamp be?  */
14935 	  symhdr->vstamp = 0;
14936 	  symhdr->ilineMax = 0;
14937 	  symhdr->cbLine = 0;
14938 	  symhdr->idnMax = 0;
14939 	  symhdr->ipdMax = 0;
14940 	  symhdr->isymMax = 0;
14941 	  symhdr->ioptMax = 0;
14942 	  symhdr->iauxMax = 0;
14943 	  symhdr->issMax = 0;
14944 	  symhdr->issExtMax = 0;
14945 	  symhdr->ifdMax = 0;
14946 	  symhdr->crfd = 0;
14947 	  symhdr->iextMax = 0;
14948 
14949 	  /* We accumulate the debugging information itself in the
14950 	     debug_info structure.  */
14951 	  debug.line = NULL;
14952 	  debug.external_dnr = NULL;
14953 	  debug.external_pdr = NULL;
14954 	  debug.external_sym = NULL;
14955 	  debug.external_opt = NULL;
14956 	  debug.external_aux = NULL;
14957 	  debug.ss = NULL;
14958 	  debug.ssext = debug.ssext_end = NULL;
14959 	  debug.external_fdr = NULL;
14960 	  debug.external_rfd = NULL;
14961 	  debug.external_ext = debug.external_ext_end = NULL;
14962 
14963 	  mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
14964 	  if (mdebug_handle == NULL)
14965 	    return false;
14966 
14967 	  esym.jmptbl = 0;
14968 	  esym.cobol_main = 0;
14969 	  esym.weakext = 0;
14970 	  esym.reserved = 0;
14971 	  esym.ifd = ifdNil;
14972 	  esym.asym.iss = issNil;
14973 	  esym.asym.st = stLocal;
14974 	  esym.asym.reserved = 0;
14975 	  esym.asym.index = indexNil;
14976 	  last = 0;
14977 	  for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14978 	    {
14979 	      esym.asym.sc = sc[i];
14980 	      s = bfd_get_section_by_name (abfd, secname[i]);
14981 	      if (s != NULL)
14982 		{
14983 		  esym.asym.value = s->vma;
14984 		  last = s->vma + s->size;
14985 		}
14986 	      else
14987 		esym.asym.value = last;
14988 	      if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14989 						 secname[i], &esym))
14990 		return false;
14991 	    }
14992 
14993 	  for (p = o->map_head.link_order; p != NULL; p = p->next)
14994 	    {
14995 	      asection *input_section;
14996 	      bfd *input_bfd;
14997 	      const struct ecoff_debug_swap *input_swap;
14998 	      struct ecoff_debug_info input_debug;
14999 	      char *eraw_src;
15000 	      char *eraw_end;
15001 
15002 	      if (p->type != bfd_indirect_link_order)
15003 		{
15004 		  if (p->type == bfd_data_link_order)
15005 		    continue;
15006 		  abort ();
15007 		}
15008 
15009 	      input_section = p->u.indirect.section;
15010 	      input_bfd = input_section->owner;
15011 
15012 	      if (!is_mips_elf (input_bfd))
15013 		{
15014 		  /* I don't know what a non MIPS ELF bfd would be
15015 		     doing with a .mdebug section, but I don't really
15016 		     want to deal with it.  */
15017 		  continue;
15018 		}
15019 
15020 	      input_swap = (get_elf_backend_data (input_bfd)
15021 			    ->elf_backend_ecoff_debug_swap);
15022 
15023 	      BFD_ASSERT (p->size == input_section->size);
15024 
15025 	      /* The ECOFF linking code expects that we have already
15026 		 read in the debugging information and set up an
15027 		 ecoff_debug_info structure, so we do that now.  */
15028 	      if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
15029 						   &input_debug))
15030 		return false;
15031 
15032 	      if (! (bfd_ecoff_debug_accumulate
15033 		     (mdebug_handle, abfd, &debug, swap, input_bfd,
15034 		      &input_debug, input_swap, info)))
15035 		return false;
15036 
15037 	      /* Loop through the external symbols.  For each one with
15038 		 interesting information, try to find the symbol in
15039 		 the linker global hash table and save the information
15040 		 for the output external symbols.  */
15041 	      eraw_src = input_debug.external_ext;
15042 	      eraw_end = (eraw_src
15043 			  + (input_debug.symbolic_header.iextMax
15044 			     * input_swap->external_ext_size));
15045 	      for (;
15046 		   eraw_src < eraw_end;
15047 		   eraw_src += input_swap->external_ext_size)
15048 		{
15049 		  EXTR ext;
15050 		  const char *name;
15051 		  struct mips_elf_link_hash_entry *h;
15052 
15053 		  (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
15054 		  if (ext.asym.sc == scNil
15055 		      || ext.asym.sc == scUndefined
15056 		      || ext.asym.sc == scSUndefined)
15057 		    continue;
15058 
15059 		  name = input_debug.ssext + ext.asym.iss;
15060 		  h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
15061 						 name, false, false, true);
15062 		  if (h == NULL || h->esym.ifd != -2)
15063 		    continue;
15064 
15065 		  if (ext.ifd != -1)
15066 		    {
15067 		      BFD_ASSERT (ext.ifd
15068 				  < input_debug.symbolic_header.ifdMax);
15069 		      ext.ifd = input_debug.ifdmap[ext.ifd];
15070 		    }
15071 
15072 		  h->esym = ext;
15073 		}
15074 
15075 	      /* Free up the information we just read.  */
15076 	      free (input_debug.line);
15077 	      free (input_debug.external_dnr);
15078 	      free (input_debug.external_pdr);
15079 	      free (input_debug.external_sym);
15080 	      free (input_debug.external_opt);
15081 	      free (input_debug.external_aux);
15082 	      free (input_debug.ss);
15083 	      free (input_debug.ssext);
15084 	      free (input_debug.external_fdr);
15085 	      free (input_debug.external_rfd);
15086 	      free (input_debug.external_ext);
15087 
15088 	      /* Hack: reset the SEC_HAS_CONTENTS flag so that
15089 		 elf_link_input_bfd ignores this section.  */
15090 	      input_section->flags &= ~SEC_HAS_CONTENTS;
15091 	    }
15092 
15093 	  if (SGI_COMPAT (abfd) && bfd_link_pic (info))
15094 	    {
15095 	      /* Create .rtproc section.  */
15096 	      rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
15097 	      if (rtproc_sec == NULL)
15098 		{
15099 		  flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
15100 				    | SEC_LINKER_CREATED | SEC_READONLY);
15101 
15102 		  rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
15103 								   ".rtproc",
15104 								   flags);
15105 		  if (rtproc_sec == NULL
15106 		      || !bfd_set_section_alignment (rtproc_sec, 4))
15107 		    return false;
15108 		}
15109 
15110 	      if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
15111 						     info, rtproc_sec,
15112 						     &debug))
15113 		return false;
15114 	    }
15115 
15116 	  /* Build the external symbol information.  */
15117 	  einfo.abfd = abfd;
15118 	  einfo.info = info;
15119 	  einfo.debug = &debug;
15120 	  einfo.swap = swap;
15121 	  einfo.failed = false;
15122 	  mips_elf_link_hash_traverse (mips_elf_hash_table (info),
15123 				       mips_elf_output_extsym, &einfo);
15124 	  if (einfo.failed)
15125 	    return false;
15126 
15127 	  /* Set the size of the .mdebug section.  */
15128 	  o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
15129 
15130 	  /* Skip this section later on (I don't think this currently
15131 	     matters, but someday it might).  */
15132 	  o->map_head.link_order = NULL;
15133 
15134 	  mdebug_sec = o;
15135 	}
15136 
15137       if (startswith (o->name, ".gptab."))
15138 	{
15139 	  const char *subname;
15140 	  unsigned int c;
15141 	  Elf32_gptab *tab;
15142 	  Elf32_External_gptab *ext_tab;
15143 	  unsigned int j;
15144 
15145 	  /* The .gptab.sdata and .gptab.sbss sections hold
15146 	     information describing how the small data area would
15147 	     change depending upon the -G switch.  These sections
15148 	     not used in executables files.  */
15149 	  if (! bfd_link_relocatable (info))
15150 	    {
15151 	      for (p = o->map_head.link_order; p != NULL; p = p->next)
15152 		{
15153 		  asection *input_section;
15154 
15155 		  if (p->type != bfd_indirect_link_order)
15156 		    {
15157 		      if (p->type == bfd_data_link_order)
15158 			continue;
15159 		      abort ();
15160 		    }
15161 
15162 		  input_section = p->u.indirect.section;
15163 
15164 		  /* Hack: reset the SEC_HAS_CONTENTS flag so that
15165 		     elf_link_input_bfd ignores this section.  */
15166 		  input_section->flags &= ~SEC_HAS_CONTENTS;
15167 		}
15168 
15169 	      /* Skip this section later on (I don't think this
15170 		 currently matters, but someday it might).  */
15171 	      o->map_head.link_order = NULL;
15172 
15173 	      /* Really remove the section.  */
15174 	      bfd_section_list_remove (abfd, o);
15175 	      --abfd->section_count;
15176 
15177 	      continue;
15178 	    }
15179 
15180 	  /* There is one gptab for initialized data, and one for
15181 	     uninitialized data.  */
15182 	  if (strcmp (o->name, ".gptab.sdata") == 0)
15183 	    gptab_data_sec = o;
15184 	  else if (strcmp (o->name, ".gptab.sbss") == 0)
15185 	    gptab_bss_sec = o;
15186 	  else
15187 	    {
15188 	      _bfd_error_handler
15189 		/* xgettext:c-format */
15190 		(_("%pB: illegal section name `%pA'"), abfd, o);
15191 	      bfd_set_error (bfd_error_nonrepresentable_section);
15192 	      return false;
15193 	    }
15194 
15195 	  /* The linker script always combines .gptab.data and
15196 	     .gptab.sdata into .gptab.sdata, and likewise for
15197 	     .gptab.bss and .gptab.sbss.  It is possible that there is
15198 	     no .sdata or .sbss section in the output file, in which
15199 	     case we must change the name of the output section.  */
15200 	  subname = o->name + sizeof ".gptab" - 1;
15201 	  if (bfd_get_section_by_name (abfd, subname) == NULL)
15202 	    {
15203 	      if (o == gptab_data_sec)
15204 		o->name = ".gptab.data";
15205 	      else
15206 		o->name = ".gptab.bss";
15207 	      subname = o->name + sizeof ".gptab" - 1;
15208 	      BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
15209 	    }
15210 
15211 	  /* Set up the first entry.  */
15212 	  c = 1;
15213 	  amt = c * sizeof (Elf32_gptab);
15214 	  tab = bfd_malloc (amt);
15215 	  if (tab == NULL)
15216 	    return false;
15217 	  tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
15218 	  tab[0].gt_header.gt_unused = 0;
15219 
15220 	  /* Combine the input sections.  */
15221 	  for (p = o->map_head.link_order; p != NULL; p = p->next)
15222 	    {
15223 	      asection *input_section;
15224 	      bfd *input_bfd;
15225 	      bfd_size_type size;
15226 	      unsigned long last;
15227 	      bfd_size_type gpentry;
15228 
15229 	      if (p->type != bfd_indirect_link_order)
15230 		{
15231 		  if (p->type == bfd_data_link_order)
15232 		    continue;
15233 		  abort ();
15234 		}
15235 
15236 	      input_section = p->u.indirect.section;
15237 	      input_bfd = input_section->owner;
15238 
15239 	      /* Combine the gptab entries for this input section one
15240 		 by one.  We know that the input gptab entries are
15241 		 sorted by ascending -G value.  */
15242 	      size = input_section->size;
15243 	      last = 0;
15244 	      for (gpentry = sizeof (Elf32_External_gptab);
15245 		   gpentry < size;
15246 		   gpentry += sizeof (Elf32_External_gptab))
15247 		{
15248 		  Elf32_External_gptab ext_gptab;
15249 		  Elf32_gptab int_gptab;
15250 		  unsigned long val;
15251 		  unsigned long add;
15252 		  bool exact;
15253 		  unsigned int look;
15254 
15255 		  if (! (bfd_get_section_contents
15256 			 (input_bfd, input_section, &ext_gptab, gpentry,
15257 			  sizeof (Elf32_External_gptab))))
15258 		    {
15259 		      free (tab);
15260 		      return false;
15261 		    }
15262 
15263 		  bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
15264 						&int_gptab);
15265 		  val = int_gptab.gt_entry.gt_g_value;
15266 		  add = int_gptab.gt_entry.gt_bytes - last;
15267 
15268 		  exact = false;
15269 		  for (look = 1; look < c; look++)
15270 		    {
15271 		      if (tab[look].gt_entry.gt_g_value >= val)
15272 			tab[look].gt_entry.gt_bytes += add;
15273 
15274 		      if (tab[look].gt_entry.gt_g_value == val)
15275 			exact = true;
15276 		    }
15277 
15278 		  if (! exact)
15279 		    {
15280 		      Elf32_gptab *new_tab;
15281 		      unsigned int max;
15282 
15283 		      /* We need a new table entry.  */
15284 		      amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
15285 		      new_tab = bfd_realloc (tab, amt);
15286 		      if (new_tab == NULL)
15287 			{
15288 			  free (tab);
15289 			  return false;
15290 			}
15291 		      tab = new_tab;
15292 		      tab[c].gt_entry.gt_g_value = val;
15293 		      tab[c].gt_entry.gt_bytes = add;
15294 
15295 		      /* Merge in the size for the next smallest -G
15296 			 value, since that will be implied by this new
15297 			 value.  */
15298 		      max = 0;
15299 		      for (look = 1; look < c; look++)
15300 			{
15301 			  if (tab[look].gt_entry.gt_g_value < val
15302 			      && (max == 0
15303 				  || (tab[look].gt_entry.gt_g_value
15304 				      > tab[max].gt_entry.gt_g_value)))
15305 			    max = look;
15306 			}
15307 		      if (max != 0)
15308 			tab[c].gt_entry.gt_bytes +=
15309 			  tab[max].gt_entry.gt_bytes;
15310 
15311 		      ++c;
15312 		    }
15313 
15314 		  last = int_gptab.gt_entry.gt_bytes;
15315 		}
15316 
15317 	      /* Hack: reset the SEC_HAS_CONTENTS flag so that
15318 		 elf_link_input_bfd ignores this section.  */
15319 	      input_section->flags &= ~SEC_HAS_CONTENTS;
15320 	    }
15321 
15322 	  /* The table must be sorted by -G value.  */
15323 	  if (c > 2)
15324 	    qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
15325 
15326 	  /* Swap out the table.  */
15327 	  amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
15328 	  ext_tab = bfd_alloc (abfd, amt);
15329 	  if (ext_tab == NULL)
15330 	    {
15331 	      free (tab);
15332 	      return false;
15333 	    }
15334 
15335 	  for (j = 0; j < c; j++)
15336 	    bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
15337 	  free (tab);
15338 
15339 	  o->size = c * sizeof (Elf32_External_gptab);
15340 	  o->contents = (bfd_byte *) ext_tab;
15341 
15342 	  /* Skip this section later on (I don't think this currently
15343 	     matters, but someday it might).  */
15344 	  o->map_head.link_order = NULL;
15345 	}
15346     }
15347 
15348   /* Invoke the regular ELF backend linker to do all the work.  */
15349   if (!bfd_elf_final_link (abfd, info))
15350     return false;
15351 
15352   /* Now write out the computed sections.  */
15353 
15354   if (abiflags_sec != NULL)
15355     {
15356       Elf_External_ABIFlags_v0 ext;
15357       Elf_Internal_ABIFlags_v0 *abiflags;
15358 
15359       abiflags = &mips_elf_tdata (abfd)->abiflags;
15360 
15361       /* Set up the abiflags if no valid input sections were found.  */
15362       if (!mips_elf_tdata (abfd)->abiflags_valid)
15363 	{
15364 	  infer_mips_abiflags (abfd, abiflags);
15365 	  mips_elf_tdata (abfd)->abiflags_valid = true;
15366 	}
15367       bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
15368       if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
15369 	return false;
15370     }
15371 
15372   if (reginfo_sec != NULL)
15373     {
15374       Elf32_External_RegInfo ext;
15375 
15376       bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
15377       if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
15378 	return false;
15379     }
15380 
15381   if (mdebug_sec != NULL)
15382     {
15383       BFD_ASSERT (abfd->output_has_begun);
15384       if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
15385 					       swap, info,
15386 					       mdebug_sec->filepos))
15387 	return false;
15388 
15389       bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
15390     }
15391 
15392   if (gptab_data_sec != NULL)
15393     {
15394       if (! bfd_set_section_contents (abfd, gptab_data_sec,
15395 				      gptab_data_sec->contents,
15396 				      0, gptab_data_sec->size))
15397 	return false;
15398     }
15399 
15400   if (gptab_bss_sec != NULL)
15401     {
15402       if (! bfd_set_section_contents (abfd, gptab_bss_sec,
15403 				      gptab_bss_sec->contents,
15404 				      0, gptab_bss_sec->size))
15405 	return false;
15406     }
15407 
15408   if (SGI_COMPAT (abfd))
15409     {
15410       rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
15411       if (rtproc_sec != NULL)
15412 	{
15413 	  if (! bfd_set_section_contents (abfd, rtproc_sec,
15414 					  rtproc_sec->contents,
15415 					  0, rtproc_sec->size))
15416 	    return false;
15417 	}
15418     }
15419 
15420   return true;
15421 }
15422 
15423 /* Merge object file header flags from IBFD into OBFD.  Raise an error
15424    if there are conflicting settings.  */
15425 
15426 static bool
mips_elf_merge_obj_e_flags(bfd * ibfd,struct bfd_link_info * info)15427 mips_elf_merge_obj_e_flags (bfd *ibfd, struct bfd_link_info *info)
15428 {
15429   bfd *obfd = info->output_bfd;
15430   struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15431   flagword old_flags;
15432   flagword new_flags;
15433   bool ok;
15434 
15435   new_flags = elf_elfheader (ibfd)->e_flags;
15436   elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
15437   old_flags = elf_elfheader (obfd)->e_flags;
15438 
15439   /* Check flag compatibility.  */
15440 
15441   new_flags &= ~EF_MIPS_NOREORDER;
15442   old_flags &= ~EF_MIPS_NOREORDER;
15443 
15444   /* Some IRIX 6 BSD-compatibility objects have this bit set.  It
15445      doesn't seem to matter.  */
15446   new_flags &= ~EF_MIPS_XGOT;
15447   old_flags &= ~EF_MIPS_XGOT;
15448 
15449   /* MIPSpro generates ucode info in n64 objects.  Again, we should
15450      just be able to ignore this.  */
15451   new_flags &= ~EF_MIPS_UCODE;
15452   old_flags &= ~EF_MIPS_UCODE;
15453 
15454   /* DSOs should only be linked with CPIC code.  */
15455   if ((ibfd->flags & DYNAMIC) != 0)
15456     new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
15457 
15458   if (new_flags == old_flags)
15459     return true;
15460 
15461   ok = true;
15462 
15463   if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
15464       != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
15465     {
15466       _bfd_error_handler
15467 	(_("%pB: warning: linking abicalls files with non-abicalls files"),
15468 	 ibfd);
15469       ok = true;
15470     }
15471 
15472   if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
15473     elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
15474   if (! (new_flags & EF_MIPS_PIC))
15475     elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
15476 
15477   new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15478   old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15479 
15480   /* Compare the ISAs.  */
15481   if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
15482     {
15483       _bfd_error_handler
15484 	(_("%pB: linking 32-bit code with 64-bit code"),
15485 	 ibfd);
15486       ok = false;
15487     }
15488   else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
15489     {
15490       /* OBFD's ISA isn't the same as, or an extension of, IBFD's.  */
15491       if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
15492 	{
15493 	  /* Copy the architecture info from IBFD to OBFD.  Also copy
15494 	     the 32-bit flag (if set) so that we continue to recognise
15495 	     OBFD as a 32-bit binary.  */
15496 	  bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
15497 	  elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
15498 	  elf_elfheader (obfd)->e_flags
15499 	    |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15500 
15501 	  /* Update the ABI flags isa_level, isa_rev, isa_ext fields.  */
15502 	  update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15503 
15504 	  /* Copy across the ABI flags if OBFD doesn't use them
15505 	     and if that was what caused us to treat IBFD as 32-bit.  */
15506 	  if ((old_flags & EF_MIPS_ABI) == 0
15507 	      && mips_32bit_flags_p (new_flags)
15508 	      && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15509 	    elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
15510 	}
15511       else
15512 	{
15513 	  /* The ISAs aren't compatible.  */
15514 	  _bfd_error_handler
15515 	    /* xgettext:c-format */
15516 	    (_("%pB: linking %s module with previous %s modules"),
15517 	     ibfd,
15518 	     bfd_printable_name (ibfd),
15519 	     bfd_printable_name (obfd));
15520 	  ok = false;
15521 	}
15522     }
15523 
15524   new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15525   old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15526 
15527   /* Compare ABIs.  The 64-bit ABI does not use EF_MIPS_ABI.  But, it
15528      does set EI_CLASS differently from any 32-bit ABI.  */
15529   if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15530       || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15531 	  != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15532     {
15533       /* Only error if both are set (to different values).  */
15534       if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15535 	  || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15536 	      != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15537 	{
15538 	  _bfd_error_handler
15539 	    /* xgettext:c-format */
15540 	    (_("%pB: ABI mismatch: linking %s module with previous %s modules"),
15541 	     ibfd,
15542 	     elf_mips_abi_name (ibfd),
15543 	     elf_mips_abi_name (obfd));
15544 	  ok = false;
15545 	}
15546       new_flags &= ~EF_MIPS_ABI;
15547       old_flags &= ~EF_MIPS_ABI;
15548     }
15549 
15550   /* Compare ASEs.  Forbid linking MIPS16 and microMIPS ASE modules together
15551      and allow arbitrary mixing of the remaining ASEs (retain the union).  */
15552   if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15553     {
15554       int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15555       int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15556       int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15557       int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15558       int micro_mis = old_m16 && new_micro;
15559       int m16_mis = old_micro && new_m16;
15560 
15561       if (m16_mis || micro_mis)
15562 	{
15563 	  _bfd_error_handler
15564 	    /* xgettext:c-format */
15565 	    (_("%pB: ASE mismatch: linking %s module with previous %s modules"),
15566 	     ibfd,
15567 	     m16_mis ? "MIPS16" : "microMIPS",
15568 	     m16_mis ? "microMIPS" : "MIPS16");
15569 	  ok = false;
15570 	}
15571 
15572       elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15573 
15574       new_flags &= ~ EF_MIPS_ARCH_ASE;
15575       old_flags &= ~ EF_MIPS_ARCH_ASE;
15576     }
15577 
15578   /* Compare NaN encodings.  */
15579   if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15580     {
15581       /* xgettext:c-format */
15582       _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
15583 			  ibfd,
15584 			  (new_flags & EF_MIPS_NAN2008
15585 			   ? "-mnan=2008" : "-mnan=legacy"),
15586 			  (old_flags & EF_MIPS_NAN2008
15587 			   ? "-mnan=2008" : "-mnan=legacy"));
15588       ok = false;
15589       new_flags &= ~EF_MIPS_NAN2008;
15590       old_flags &= ~EF_MIPS_NAN2008;
15591     }
15592 
15593   /* Compare FP64 state.  */
15594   if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15595     {
15596       /* xgettext:c-format */
15597       _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
15598 			  ibfd,
15599 			  (new_flags & EF_MIPS_FP64
15600 			   ? "-mfp64" : "-mfp32"),
15601 			  (old_flags & EF_MIPS_FP64
15602 			   ? "-mfp64" : "-mfp32"));
15603       ok = false;
15604       new_flags &= ~EF_MIPS_FP64;
15605       old_flags &= ~EF_MIPS_FP64;
15606     }
15607 
15608   /* Warn about any other mismatches */
15609   if (new_flags != old_flags)
15610     {
15611       /* xgettext:c-format */
15612       _bfd_error_handler
15613 	(_("%pB: uses different e_flags (%#x) fields than previous modules "
15614 	   "(%#x)"),
15615 	 ibfd, new_flags, old_flags);
15616       ok = false;
15617     }
15618 
15619   return ok;
15620 }
15621 
15622 /* Merge object attributes from IBFD into OBFD.  Raise an error if
15623    there are conflicting attributes.  */
15624 static bool
mips_elf_merge_obj_attributes(bfd * ibfd,struct bfd_link_info * info)15625 mips_elf_merge_obj_attributes (bfd *ibfd, struct bfd_link_info *info)
15626 {
15627   bfd *obfd = info->output_bfd;
15628   obj_attribute *in_attr;
15629   obj_attribute *out_attr;
15630   bfd *abi_fp_bfd;
15631   bfd *abi_msa_bfd;
15632 
15633   abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
15634   in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15635   if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
15636     mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15637 
15638   abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
15639   if (!abi_msa_bfd
15640       && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15641     mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
15642 
15643   if (!elf_known_obj_attributes_proc (obfd)[0].i)
15644     {
15645       /* This is the first object.  Copy the attributes.  */
15646       _bfd_elf_copy_obj_attributes (ibfd, obfd);
15647 
15648       /* Use the Tag_null value to indicate the attributes have been
15649 	 initialized.  */
15650       elf_known_obj_attributes_proc (obfd)[0].i = 1;
15651 
15652       return true;
15653     }
15654 
15655   /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15656      non-conflicting ones.  */
15657   out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15658   if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
15659     {
15660       int out_fp, in_fp;
15661 
15662       out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15663       in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15664       out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
15665       if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
15666 	out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
15667       else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
15668 	       && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15669 		   || in_fp == Val_GNU_MIPS_ABI_FP_64
15670 		   || in_fp == Val_GNU_MIPS_ABI_FP_64A))
15671 	{
15672 	  mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15673 	  out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15674 	}
15675       else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
15676 	       && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15677 		   || out_fp == Val_GNU_MIPS_ABI_FP_64
15678 		   || out_fp == Val_GNU_MIPS_ABI_FP_64A))
15679 	/* Keep the current setting.  */;
15680       else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
15681 	       && in_fp == Val_GNU_MIPS_ABI_FP_64)
15682 	{
15683 	  mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15684 	  out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15685 	}
15686       else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
15687 	       && out_fp == Val_GNU_MIPS_ABI_FP_64)
15688 	/* Keep the current setting.  */;
15689       else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
15690 	{
15691 	  const char *out_string, *in_string;
15692 
15693 	  out_string = _bfd_mips_fp_abi_string (out_fp);
15694 	  in_string = _bfd_mips_fp_abi_string (in_fp);
15695 	  /* First warn about cases involving unrecognised ABIs.  */
15696 	  if (!out_string && !in_string)
15697 	    /* xgettext:c-format */
15698 	    _bfd_error_handler
15699 	      (_("warning: %pB uses unknown floating point ABI %d "
15700 		 "(set by %pB), %pB uses unknown floating point ABI %d"),
15701 	       obfd, out_fp, abi_fp_bfd, ibfd, in_fp);
15702 	  else if (!out_string)
15703 	    _bfd_error_handler
15704 	      /* xgettext:c-format */
15705 	      (_("warning: %pB uses unknown floating point ABI %d "
15706 		 "(set by %pB), %pB uses %s"),
15707 	       obfd, out_fp, abi_fp_bfd, ibfd, in_string);
15708 	  else if (!in_string)
15709 	    _bfd_error_handler
15710 	      /* xgettext:c-format */
15711 	      (_("warning: %pB uses %s (set by %pB), "
15712 		 "%pB uses unknown floating point ABI %d"),
15713 	       obfd, out_string, abi_fp_bfd, ibfd, in_fp);
15714 	  else
15715 	    {
15716 	      /* If one of the bfds is soft-float, the other must be
15717 		 hard-float.  The exact choice of hard-float ABI isn't
15718 		 really relevant to the error message.  */
15719 	      if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15720 		out_string = "-mhard-float";
15721 	      else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15722 		in_string = "-mhard-float";
15723 	      _bfd_error_handler
15724 		/* xgettext:c-format */
15725 		(_("warning: %pB uses %s (set by %pB), %pB uses %s"),
15726 		 obfd, out_string, abi_fp_bfd, ibfd, in_string);
15727 	    }
15728 	}
15729     }
15730 
15731   /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15732      non-conflicting ones.  */
15733   if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15734     {
15735       out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
15736       if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
15737 	out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
15738       else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15739 	switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15740 	  {
15741 	  case Val_GNU_MIPS_ABI_MSA_128:
15742 	    _bfd_error_handler
15743 	      /* xgettext:c-format */
15744 	      (_("warning: %pB uses %s (set by %pB), "
15745 		 "%pB uses unknown MSA ABI %d"),
15746 	       obfd, "-mmsa", abi_msa_bfd,
15747 	       ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15748 	    break;
15749 
15750 	  default:
15751 	    switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15752 	      {
15753 	      case Val_GNU_MIPS_ABI_MSA_128:
15754 		_bfd_error_handler
15755 		  /* xgettext:c-format */
15756 		  (_("warning: %pB uses unknown MSA ABI %d "
15757 		     "(set by %pB), %pB uses %s"),
15758 		     obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15759 		   abi_msa_bfd, ibfd, "-mmsa");
15760 		  break;
15761 
15762 	      default:
15763 		_bfd_error_handler
15764 		  /* xgettext:c-format */
15765 		  (_("warning: %pB uses unknown MSA ABI %d "
15766 		     "(set by %pB), %pB uses unknown MSA ABI %d"),
15767 		   obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15768 		   abi_msa_bfd, ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15769 		break;
15770 	      }
15771 	  }
15772     }
15773 
15774   /* Merge Tag_compatibility attributes and any common GNU ones.  */
15775   return _bfd_elf_merge_object_attributes (ibfd, info);
15776 }
15777 
15778 /* Merge object ABI flags from IBFD into OBFD.  Raise an error if
15779    there are conflicting settings.  */
15780 
15781 static bool
mips_elf_merge_obj_abiflags(bfd * ibfd,bfd * obfd)15782 mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd)
15783 {
15784   obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15785   struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15786   struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd);
15787 
15788   /* Update the output abiflags fp_abi using the computed fp_abi.  */
15789   out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15790 
15791 #define max(a, b) ((a) > (b) ? (a) : (b))
15792   /* Merge abiflags.  */
15793   out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level,
15794 				       in_tdata->abiflags.isa_level);
15795   out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev,
15796 				     in_tdata->abiflags.isa_rev);
15797   out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size,
15798 				      in_tdata->abiflags.gpr_size);
15799   out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size,
15800 				       in_tdata->abiflags.cpr1_size);
15801   out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size,
15802 				       in_tdata->abiflags.cpr2_size);
15803 #undef max
15804   out_tdata->abiflags.ases |= in_tdata->abiflags.ases;
15805   out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1;
15806 
15807   return true;
15808 }
15809 
15810 /* Merge backend specific data from an object file to the output
15811    object file when linking.  */
15812 
15813 bool
_bfd_mips_elf_merge_private_bfd_data(bfd * ibfd,struct bfd_link_info * info)15814 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
15815 {
15816   bfd *obfd = info->output_bfd;
15817   struct mips_elf_obj_tdata *out_tdata;
15818   struct mips_elf_obj_tdata *in_tdata;
15819   bool null_input_bfd = true;
15820   asection *sec;
15821   bool ok;
15822 
15823   /* Check if we have the same endianness.  */
15824   if (! _bfd_generic_verify_endian_match (ibfd, info))
15825     {
15826       _bfd_error_handler
15827 	(_("%pB: endianness incompatible with that of the selected emulation"),
15828 	 ibfd);
15829       return false;
15830     }
15831 
15832   if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
15833     return true;
15834 
15835   in_tdata = mips_elf_tdata (ibfd);
15836   out_tdata = mips_elf_tdata (obfd);
15837 
15838   if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15839     {
15840       _bfd_error_handler
15841 	(_("%pB: ABI is incompatible with that of the selected emulation"),
15842 	 ibfd);
15843       return false;
15844     }
15845 
15846   /* Check to see if the input BFD actually contains any sections.  If not,
15847      then it has no attributes, and its flags may not have been initialized
15848      either, but it cannot actually cause any incompatibility.  */
15849   /* FIXME: This excludes any input shared library from consideration.  */
15850   for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15851     {
15852       /* Ignore synthetic sections and empty .text, .data and .bss sections
15853 	 which are automatically generated by gas.  Also ignore fake
15854 	 (s)common sections, since merely defining a common symbol does
15855 	 not affect compatibility.  */
15856       if ((sec->flags & SEC_IS_COMMON) == 0
15857 	  && strcmp (sec->name, ".reginfo")
15858 	  && strcmp (sec->name, ".mdebug")
15859 	  && (sec->size != 0
15860 	      || (strcmp (sec->name, ".text")
15861 		  && strcmp (sec->name, ".data")
15862 		  && strcmp (sec->name, ".bss"))))
15863 	{
15864 	  null_input_bfd = false;
15865 	  break;
15866 	}
15867     }
15868   if (null_input_bfd)
15869     return true;
15870 
15871   /* Populate abiflags using existing information.  */
15872   if (in_tdata->abiflags_valid)
15873     {
15874       obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15875       Elf_Internal_ABIFlags_v0 in_abiflags;
15876       Elf_Internal_ABIFlags_v0 abiflags;
15877 
15878       /* Set up the FP ABI attribute from the abiflags if it is not already
15879 	 set.  */
15880       if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
15881 	in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi;
15882 
15883       infer_mips_abiflags (ibfd, &abiflags);
15884       in_abiflags = in_tdata->abiflags;
15885 
15886       /* It is not possible to infer the correct ISA revision
15887 	 for R3 or R5 so drop down to R2 for the checks.  */
15888       if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15889 	in_abiflags.isa_rev = 2;
15890 
15891       if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15892 	  < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
15893 	_bfd_error_handler
15894 	  (_("%pB: warning: inconsistent ISA between e_flags and "
15895 	     ".MIPS.abiflags"), ibfd);
15896       if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15897 	  && in_abiflags.fp_abi != abiflags.fp_abi)
15898 	_bfd_error_handler
15899 	  (_("%pB: warning: inconsistent FP ABI between .gnu.attributes and "
15900 	     ".MIPS.abiflags"), ibfd);
15901       if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
15902 	_bfd_error_handler
15903 	  (_("%pB: warning: inconsistent ASEs between e_flags and "
15904 	     ".MIPS.abiflags"), ibfd);
15905       /* The isa_ext is allowed to be an extension of what can be inferred
15906 	 from e_flags.  */
15907       if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15908 				bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
15909 	_bfd_error_handler
15910 	  (_("%pB: warning: inconsistent ISA extensions between e_flags and "
15911 	     ".MIPS.abiflags"), ibfd);
15912       if (in_abiflags.flags2 != 0)
15913 	_bfd_error_handler
15914 	  (_("%pB: warning: unexpected flag in the flags2 field of "
15915 	     ".MIPS.abiflags (0x%lx)"), ibfd,
15916 	   in_abiflags.flags2);
15917     }
15918   else
15919     {
15920       infer_mips_abiflags (ibfd, &in_tdata->abiflags);
15921       in_tdata->abiflags_valid = true;
15922     }
15923 
15924   if (!out_tdata->abiflags_valid)
15925     {
15926       /* Copy input abiflags if output abiflags are not already valid.  */
15927       out_tdata->abiflags = in_tdata->abiflags;
15928       out_tdata->abiflags_valid = true;
15929     }
15930 
15931   if (! elf_flags_init (obfd))
15932     {
15933       elf_flags_init (obfd) = true;
15934       elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
15935       elf_elfheader (obfd)->e_ident[EI_CLASS]
15936 	= elf_elfheader (ibfd)->e_ident[EI_CLASS];
15937 
15938       if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15939 	  && (bfd_get_arch_info (obfd)->the_default
15940 	      || mips_mach_extends_p (bfd_get_mach (obfd),
15941 				      bfd_get_mach (ibfd))))
15942 	{
15943 	  if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15944 				   bfd_get_mach (ibfd)))
15945 	    return false;
15946 
15947 	  /* Update the ABI flags isa_level, isa_rev and isa_ext fields.  */
15948 	  update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15949 	}
15950 
15951       ok = true;
15952     }
15953   else
15954     ok = mips_elf_merge_obj_e_flags (ibfd, info);
15955 
15956   ok = mips_elf_merge_obj_attributes (ibfd, info) && ok;
15957 
15958   ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok;
15959 
15960   if (!ok)
15961     {
15962       bfd_set_error (bfd_error_bad_value);
15963       return false;
15964     }
15965 
15966   return true;
15967 }
15968 
15969 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC.  */
15970 
15971 bool
_bfd_mips_elf_set_private_flags(bfd * abfd,flagword flags)15972 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
15973 {
15974   BFD_ASSERT (!elf_flags_init (abfd)
15975 	      || elf_elfheader (abfd)->e_flags == flags);
15976 
15977   elf_elfheader (abfd)->e_flags = flags;
15978   elf_flags_init (abfd) = true;
15979   return true;
15980 }
15981 
15982 char *
_bfd_mips_elf_get_target_dtag(bfd_vma dtag)15983 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15984 {
15985   switch (dtag)
15986     {
15987     default: return "";
15988     case DT_MIPS_RLD_VERSION:
15989       return "MIPS_RLD_VERSION";
15990     case DT_MIPS_TIME_STAMP:
15991       return "MIPS_TIME_STAMP";
15992     case DT_MIPS_ICHECKSUM:
15993       return "MIPS_ICHECKSUM";
15994     case DT_MIPS_IVERSION:
15995       return "MIPS_IVERSION";
15996     case DT_MIPS_FLAGS:
15997       return "MIPS_FLAGS";
15998     case DT_MIPS_BASE_ADDRESS:
15999       return "MIPS_BASE_ADDRESS";
16000     case DT_MIPS_MSYM:
16001       return "MIPS_MSYM";
16002     case DT_MIPS_CONFLICT:
16003       return "MIPS_CONFLICT";
16004     case DT_MIPS_LIBLIST:
16005       return "MIPS_LIBLIST";
16006     case DT_MIPS_LOCAL_GOTNO:
16007       return "MIPS_LOCAL_GOTNO";
16008     case DT_MIPS_CONFLICTNO:
16009       return "MIPS_CONFLICTNO";
16010     case DT_MIPS_LIBLISTNO:
16011       return "MIPS_LIBLISTNO";
16012     case DT_MIPS_SYMTABNO:
16013       return "MIPS_SYMTABNO";
16014     case DT_MIPS_UNREFEXTNO:
16015       return "MIPS_UNREFEXTNO";
16016     case DT_MIPS_GOTSYM:
16017       return "MIPS_GOTSYM";
16018     case DT_MIPS_HIPAGENO:
16019       return "MIPS_HIPAGENO";
16020     case DT_MIPS_RLD_MAP:
16021       return "MIPS_RLD_MAP";
16022     case DT_MIPS_RLD_MAP_REL:
16023       return "MIPS_RLD_MAP_REL";
16024     case DT_MIPS_DELTA_CLASS:
16025       return "MIPS_DELTA_CLASS";
16026     case DT_MIPS_DELTA_CLASS_NO:
16027       return "MIPS_DELTA_CLASS_NO";
16028     case DT_MIPS_DELTA_INSTANCE:
16029       return "MIPS_DELTA_INSTANCE";
16030     case DT_MIPS_DELTA_INSTANCE_NO:
16031       return "MIPS_DELTA_INSTANCE_NO";
16032     case DT_MIPS_DELTA_RELOC:
16033       return "MIPS_DELTA_RELOC";
16034     case DT_MIPS_DELTA_RELOC_NO:
16035       return "MIPS_DELTA_RELOC_NO";
16036     case DT_MIPS_DELTA_SYM:
16037       return "MIPS_DELTA_SYM";
16038     case DT_MIPS_DELTA_SYM_NO:
16039       return "MIPS_DELTA_SYM_NO";
16040     case DT_MIPS_DELTA_CLASSSYM:
16041       return "MIPS_DELTA_CLASSSYM";
16042     case DT_MIPS_DELTA_CLASSSYM_NO:
16043       return "MIPS_DELTA_CLASSSYM_NO";
16044     case DT_MIPS_CXX_FLAGS:
16045       return "MIPS_CXX_FLAGS";
16046     case DT_MIPS_PIXIE_INIT:
16047       return "MIPS_PIXIE_INIT";
16048     case DT_MIPS_SYMBOL_LIB:
16049       return "MIPS_SYMBOL_LIB";
16050     case DT_MIPS_LOCALPAGE_GOTIDX:
16051       return "MIPS_LOCALPAGE_GOTIDX";
16052     case DT_MIPS_LOCAL_GOTIDX:
16053       return "MIPS_LOCAL_GOTIDX";
16054     case DT_MIPS_HIDDEN_GOTIDX:
16055       return "MIPS_HIDDEN_GOTIDX";
16056     case DT_MIPS_PROTECTED_GOTIDX:
16057       return "MIPS_PROTECTED_GOT_IDX";
16058     case DT_MIPS_OPTIONS:
16059       return "MIPS_OPTIONS";
16060     case DT_MIPS_INTERFACE:
16061       return "MIPS_INTERFACE";
16062     case DT_MIPS_DYNSTR_ALIGN:
16063       return "DT_MIPS_DYNSTR_ALIGN";
16064     case DT_MIPS_INTERFACE_SIZE:
16065       return "DT_MIPS_INTERFACE_SIZE";
16066     case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
16067       return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
16068     case DT_MIPS_PERF_SUFFIX:
16069       return "DT_MIPS_PERF_SUFFIX";
16070     case DT_MIPS_COMPACT_SIZE:
16071       return "DT_MIPS_COMPACT_SIZE";
16072     case DT_MIPS_GP_VALUE:
16073       return "DT_MIPS_GP_VALUE";
16074     case DT_MIPS_AUX_DYNAMIC:
16075       return "DT_MIPS_AUX_DYNAMIC";
16076     case DT_MIPS_PLTGOT:
16077       return "DT_MIPS_PLTGOT";
16078     case DT_MIPS_RWPLT:
16079       return "DT_MIPS_RWPLT";
16080     case DT_MIPS_XHASH:
16081       return "DT_MIPS_XHASH";
16082     }
16083 }
16084 
16085 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
16086    not known.  */
16087 
16088 const char *
_bfd_mips_fp_abi_string(int fp)16089 _bfd_mips_fp_abi_string (int fp)
16090 {
16091   switch (fp)
16092     {
16093       /* These strings aren't translated because they're simply
16094 	 option lists.  */
16095     case Val_GNU_MIPS_ABI_FP_DOUBLE:
16096       return "-mdouble-float";
16097 
16098     case Val_GNU_MIPS_ABI_FP_SINGLE:
16099       return "-msingle-float";
16100 
16101     case Val_GNU_MIPS_ABI_FP_SOFT:
16102       return "-msoft-float";
16103 
16104     case Val_GNU_MIPS_ABI_FP_OLD_64:
16105       return _("-mips32r2 -mfp64 (12 callee-saved)");
16106 
16107     case Val_GNU_MIPS_ABI_FP_XX:
16108       return "-mfpxx";
16109 
16110     case Val_GNU_MIPS_ABI_FP_64:
16111       return "-mgp32 -mfp64";
16112 
16113     case Val_GNU_MIPS_ABI_FP_64A:
16114       return "-mgp32 -mfp64 -mno-odd-spreg";
16115 
16116     default:
16117       return 0;
16118     }
16119 }
16120 
16121 static void
print_mips_ases(FILE * file,unsigned int mask)16122 print_mips_ases (FILE *file, unsigned int mask)
16123 {
16124   if (mask & AFL_ASE_DSP)
16125     fputs ("\n\tDSP ASE", file);
16126   if (mask & AFL_ASE_DSPR2)
16127     fputs ("\n\tDSP R2 ASE", file);
16128   if (mask & AFL_ASE_DSPR3)
16129     fputs ("\n\tDSP R3 ASE", file);
16130   if (mask & AFL_ASE_EVA)
16131     fputs ("\n\tEnhanced VA Scheme", file);
16132   if (mask & AFL_ASE_MCU)
16133     fputs ("\n\tMCU (MicroController) ASE", file);
16134   if (mask & AFL_ASE_MDMX)
16135     fputs ("\n\tMDMX ASE", file);
16136   if (mask & AFL_ASE_MIPS3D)
16137     fputs ("\n\tMIPS-3D ASE", file);
16138   if (mask & AFL_ASE_MT)
16139     fputs ("\n\tMT ASE", file);
16140   if (mask & AFL_ASE_SMARTMIPS)
16141     fputs ("\n\tSmartMIPS ASE", file);
16142   if (mask & AFL_ASE_VIRT)
16143     fputs ("\n\tVZ ASE", file);
16144   if (mask & AFL_ASE_MSA)
16145     fputs ("\n\tMSA ASE", file);
16146   if (mask & AFL_ASE_MIPS16)
16147     fputs ("\n\tMIPS16 ASE", file);
16148   if (mask & AFL_ASE_MICROMIPS)
16149     fputs ("\n\tMICROMIPS ASE", file);
16150   if (mask & AFL_ASE_XPA)
16151     fputs ("\n\tXPA ASE", file);
16152   if (mask & AFL_ASE_MIPS16E2)
16153     fputs ("\n\tMIPS16e2 ASE", file);
16154   if (mask & AFL_ASE_CRC)
16155     fputs ("\n\tCRC ASE", file);
16156   if (mask & AFL_ASE_GINV)
16157     fputs ("\n\tGINV ASE", file);
16158   if (mask & AFL_ASE_LOONGSON_MMI)
16159     fputs ("\n\tLoongson MMI ASE", file);
16160   if (mask & AFL_ASE_LOONGSON_CAM)
16161     fputs ("\n\tLoongson CAM ASE", file);
16162   if (mask & AFL_ASE_LOONGSON_EXT)
16163     fputs ("\n\tLoongson EXT ASE", file);
16164   if (mask & AFL_ASE_LOONGSON_EXT2)
16165     fputs ("\n\tLoongson EXT2 ASE", file);
16166   if (mask == 0)
16167     fprintf (file, "\n\t%s", _("None"));
16168   else if ((mask & ~AFL_ASE_MASK) != 0)
16169     fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
16170 }
16171 
16172 static void
print_mips_isa_ext(FILE * file,unsigned int isa_ext)16173 print_mips_isa_ext (FILE *file, unsigned int isa_ext)
16174 {
16175   switch (isa_ext)
16176     {
16177     case 0:
16178       fputs (_("None"), file);
16179       break;
16180     case AFL_EXT_XLR:
16181       fputs ("RMI XLR", file);
16182       break;
16183     case AFL_EXT_OCTEON3:
16184       fputs ("Cavium Networks Octeon3", file);
16185       break;
16186     case AFL_EXT_OCTEON2:
16187       fputs ("Cavium Networks Octeon2", file);
16188       break;
16189     case AFL_EXT_OCTEONP:
16190       fputs ("Cavium Networks OcteonP", file);
16191       break;
16192     case AFL_EXT_OCTEON:
16193       fputs ("Cavium Networks Octeon", file);
16194       break;
16195     case AFL_EXT_5900:
16196       fputs ("Toshiba R5900", file);
16197       break;
16198     case AFL_EXT_4650:
16199       fputs ("MIPS R4650", file);
16200       break;
16201     case AFL_EXT_4010:
16202       fputs ("LSI R4010", file);
16203       break;
16204     case AFL_EXT_4100:
16205       fputs ("NEC VR4100", file);
16206       break;
16207     case AFL_EXT_3900:
16208       fputs ("Toshiba R3900", file);
16209       break;
16210     case AFL_EXT_10000:
16211       fputs ("MIPS R10000", file);
16212       break;
16213     case AFL_EXT_SB1:
16214       fputs ("Broadcom SB-1", file);
16215       break;
16216     case AFL_EXT_4111:
16217       fputs ("NEC VR4111/VR4181", file);
16218       break;
16219     case AFL_EXT_4120:
16220       fputs ("NEC VR4120", file);
16221       break;
16222     case AFL_EXT_5400:
16223       fputs ("NEC VR5400", file);
16224       break;
16225     case AFL_EXT_5500:
16226       fputs ("NEC VR5500", file);
16227       break;
16228     case AFL_EXT_LOONGSON_2E:
16229       fputs ("ST Microelectronics Loongson 2E", file);
16230       break;
16231     case AFL_EXT_LOONGSON_2F:
16232       fputs ("ST Microelectronics Loongson 2F", file);
16233       break;
16234     case AFL_EXT_INTERAPTIV_MR2:
16235       fputs ("Imagination interAptiv MR2", file);
16236       break;
16237     default:
16238       fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
16239       break;
16240     }
16241 }
16242 
16243 static void
print_mips_fp_abi_value(FILE * file,int val)16244 print_mips_fp_abi_value (FILE *file, int val)
16245 {
16246   switch (val)
16247     {
16248     case Val_GNU_MIPS_ABI_FP_ANY:
16249       fprintf (file, _("Hard or soft float\n"));
16250       break;
16251     case Val_GNU_MIPS_ABI_FP_DOUBLE:
16252       fprintf (file, _("Hard float (double precision)\n"));
16253       break;
16254     case Val_GNU_MIPS_ABI_FP_SINGLE:
16255       fprintf (file, _("Hard float (single precision)\n"));
16256       break;
16257     case Val_GNU_MIPS_ABI_FP_SOFT:
16258       fprintf (file, _("Soft float\n"));
16259       break;
16260     case Val_GNU_MIPS_ABI_FP_OLD_64:
16261       fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
16262       break;
16263     case Val_GNU_MIPS_ABI_FP_XX:
16264       fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
16265       break;
16266     case Val_GNU_MIPS_ABI_FP_64:
16267       fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
16268       break;
16269     case Val_GNU_MIPS_ABI_FP_64A:
16270       fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
16271       break;
16272     default:
16273       fprintf (file, "??? (%d)\n", val);
16274       break;
16275     }
16276 }
16277 
16278 static int
get_mips_reg_size(int reg_size)16279 get_mips_reg_size (int reg_size)
16280 {
16281   return (reg_size == AFL_REG_NONE) ? 0
16282 	 : (reg_size == AFL_REG_32) ? 32
16283 	 : (reg_size == AFL_REG_64) ? 64
16284 	 : (reg_size == AFL_REG_128) ? 128
16285 	 : -1;
16286 }
16287 
16288 bool
_bfd_mips_elf_print_private_bfd_data(bfd * abfd,void * ptr)16289 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
16290 {
16291   FILE *file = ptr;
16292 
16293   BFD_ASSERT (abfd != NULL && ptr != NULL);
16294 
16295   /* Print normal ELF private data.  */
16296   _bfd_elf_print_private_bfd_data (abfd, ptr);
16297 
16298   /* xgettext:c-format */
16299   fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
16300 
16301   if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
16302     fprintf (file, _(" [abi=O32]"));
16303   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
16304     fprintf (file, _(" [abi=O64]"));
16305   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
16306     fprintf (file, _(" [abi=EABI32]"));
16307   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
16308     fprintf (file, _(" [abi=EABI64]"));
16309   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
16310     fprintf (file, _(" [abi unknown]"));
16311   else if (ABI_N32_P (abfd))
16312     fprintf (file, _(" [abi=N32]"));
16313   else if (ABI_64_P (abfd))
16314     fprintf (file, _(" [abi=64]"));
16315   else
16316     fprintf (file, _(" [no abi set]"));
16317 
16318   if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
16319     fprintf (file, " [mips1]");
16320   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
16321     fprintf (file, " [mips2]");
16322   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
16323     fprintf (file, " [mips3]");
16324   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
16325     fprintf (file, " [mips4]");
16326   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
16327     fprintf (file, " [mips5]");
16328   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
16329     fprintf (file, " [mips32]");
16330   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
16331     fprintf (file, " [mips64]");
16332   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
16333     fprintf (file, " [mips32r2]");
16334   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
16335     fprintf (file, " [mips64r2]");
16336   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
16337     fprintf (file, " [mips32r6]");
16338   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
16339     fprintf (file, " [mips64r6]");
16340   else
16341     fprintf (file, _(" [unknown ISA]"));
16342 
16343   if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
16344     fprintf (file, " [mdmx]");
16345 
16346   if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
16347     fprintf (file, " [mips16]");
16348 
16349   if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
16350     fprintf (file, " [micromips]");
16351 
16352   if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
16353     fprintf (file, " [nan2008]");
16354 
16355   if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
16356     fprintf (file, " [old fp64]");
16357 
16358   if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
16359     fprintf (file, " [32bitmode]");
16360   else
16361     fprintf (file, _(" [not 32bitmode]"));
16362 
16363   if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
16364     fprintf (file, " [noreorder]");
16365 
16366   if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
16367     fprintf (file, " [PIC]");
16368 
16369   if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
16370     fprintf (file, " [CPIC]");
16371 
16372   if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
16373     fprintf (file, " [XGOT]");
16374 
16375   if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
16376     fprintf (file, " [UCODE]");
16377 
16378   fputc ('\n', file);
16379 
16380   if (mips_elf_tdata (abfd)->abiflags_valid)
16381     {
16382       Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
16383       fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
16384       fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
16385       if (abiflags->isa_rev > 1)
16386 	fprintf (file, "r%d", abiflags->isa_rev);
16387       fprintf (file, "\nGPR size: %d",
16388 	       get_mips_reg_size (abiflags->gpr_size));
16389       fprintf (file, "\nCPR1 size: %d",
16390 	       get_mips_reg_size (abiflags->cpr1_size));
16391       fprintf (file, "\nCPR2 size: %d",
16392 	       get_mips_reg_size (abiflags->cpr2_size));
16393       fputs ("\nFP ABI: ", file);
16394       print_mips_fp_abi_value (file, abiflags->fp_abi);
16395       fputs ("ISA Extension: ", file);
16396       print_mips_isa_ext (file, abiflags->isa_ext);
16397       fputs ("\nASEs:", file);
16398       print_mips_ases (file, abiflags->ases);
16399       fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
16400       fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
16401       fputc ('\n', file);
16402     }
16403 
16404   return true;
16405 }
16406 
16407 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
16408 {
16409   { STRING_COMMA_LEN (".lit4"),	  0, SHT_PROGBITS,   SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16410   { STRING_COMMA_LEN (".lit8"),	  0, SHT_PROGBITS,   SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16411   { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
16412   { STRING_COMMA_LEN (".sbss"),	 -2, SHT_NOBITS,     SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16413   { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS,   SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16414   { STRING_COMMA_LEN (".ucode"),  0, SHT_MIPS_UCODE, 0 },
16415   { STRING_COMMA_LEN (".MIPS.xhash"),  0, SHT_MIPS_XHASH,   SHF_ALLOC },
16416   { NULL,		      0,  0, 0,		     0 }
16417 };
16418 
16419 /* Merge non visibility st_other attributes.  Ensure that the
16420    STO_OPTIONAL flag is copied into h->other, even if this is not a
16421    definiton of the symbol.  */
16422 void
_bfd_mips_elf_merge_symbol_attribute(struct elf_link_hash_entry * h,unsigned int st_other,bool definition,bool dynamic ATTRIBUTE_UNUSED)16423 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
16424 				      unsigned int st_other,
16425 				      bool definition,
16426 				      bool dynamic ATTRIBUTE_UNUSED)
16427 {
16428   if ((st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
16429     {
16430       unsigned char other;
16431 
16432       other = (definition ? st_other : h->other);
16433       other &= ~ELF_ST_VISIBILITY (-1);
16434       h->other = other | ELF_ST_VISIBILITY (h->other);
16435     }
16436 
16437   if (!definition
16438       && ELF_MIPS_IS_OPTIONAL (st_other))
16439     h->other |= STO_OPTIONAL;
16440 }
16441 
16442 /* Decide whether an undefined symbol is special and can be ignored.
16443    This is the case for OPTIONAL symbols on IRIX.  */
16444 bool
_bfd_mips_elf_ignore_undef_symbol(struct elf_link_hash_entry * h)16445 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
16446 {
16447   return ELF_MIPS_IS_OPTIONAL (h->other) != 0;
16448 }
16449 
16450 bool
_bfd_mips_elf_common_definition(Elf_Internal_Sym * sym)16451 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
16452 {
16453   return (sym->st_shndx == SHN_COMMON
16454 	  || sym->st_shndx == SHN_MIPS_ACOMMON
16455 	  || sym->st_shndx == SHN_MIPS_SCOMMON);
16456 }
16457 
16458 /* Return address for Ith PLT stub in section PLT, for relocation REL
16459    or (bfd_vma) -1 if it should not be included.  */
16460 
16461 bfd_vma
_bfd_mips_elf_plt_sym_val(bfd_vma i,const asection * plt,const arelent * rel ATTRIBUTE_UNUSED)16462 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
16463 			   const arelent *rel ATTRIBUTE_UNUSED)
16464 {
16465   return (plt->vma
16466 	  + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
16467 	  + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
16468 }
16469 
16470 /* Build a table of synthetic symbols to represent the PLT.  As with MIPS16
16471    and microMIPS PLT slots we may have a many-to-one mapping between .plt
16472    and .got.plt and also the slots may be of a different size each we walk
16473    the PLT manually fetching instructions and matching them against known
16474    patterns.  To make things easier standard MIPS slots, if any, always come
16475    first.  As we don't create proper ELF symbols we use the UDATA.I member
16476    of ASYMBOL to carry ISA annotation.  The encoding used is the same as
16477    with the ST_OTHER member of the ELF symbol.  */
16478 
16479 long
_bfd_mips_elf_get_synthetic_symtab(bfd * abfd,long symcount ATTRIBUTE_UNUSED,asymbol ** syms ATTRIBUTE_UNUSED,long dynsymcount,asymbol ** dynsyms,asymbol ** ret)16480 _bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
16481 				    long symcount ATTRIBUTE_UNUSED,
16482 				    asymbol **syms ATTRIBUTE_UNUSED,
16483 				    long dynsymcount, asymbol **dynsyms,
16484 				    asymbol **ret)
16485 {
16486   static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
16487   static const char microsuffix[] = "@micromipsplt";
16488   static const char m16suffix[] = "@mips16plt";
16489   static const char mipssuffix[] = "@plt";
16490 
16491   bool (*slurp_relocs) (bfd *, asection *, asymbol **, bool);
16492   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
16493   bool micromips_p = MICROMIPS_P (abfd);
16494   Elf_Internal_Shdr *hdr;
16495   bfd_byte *plt_data;
16496   bfd_vma plt_offset;
16497   unsigned int other;
16498   bfd_vma entry_size;
16499   bfd_vma plt0_size;
16500   asection *relplt;
16501   bfd_vma opcode;
16502   asection *plt;
16503   asymbol *send;
16504   size_t size;
16505   char *names;
16506   long counti;
16507   arelent *p;
16508   asymbol *s;
16509   char *nend;
16510   long count;
16511   long pi;
16512   long i;
16513   long n;
16514 
16515   *ret = NULL;
16516 
16517   if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
16518     return 0;
16519 
16520   relplt = bfd_get_section_by_name (abfd, ".rel.plt");
16521   if (relplt == NULL)
16522     return 0;
16523 
16524   hdr = &elf_section_data (relplt)->this_hdr;
16525   if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
16526     return 0;
16527 
16528   plt = bfd_get_section_by_name (abfd, ".plt");
16529   if (plt == NULL)
16530     return 0;
16531 
16532   slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
16533   if (!(*slurp_relocs) (abfd, relplt, dynsyms, true))
16534     return -1;
16535   p = relplt->relocation;
16536 
16537   /* Calculating the exact amount of space required for symbols would
16538      require two passes over the PLT, so just pessimise assuming two
16539      PLT slots per relocation.  */
16540   count = relplt->size / hdr->sh_entsize;
16541   counti = count * bed->s->int_rels_per_ext_rel;
16542   size = 2 * count * sizeof (asymbol);
16543   size += count * (sizeof (mipssuffix) +
16544 		   (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
16545   for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
16546     size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
16547 
16548   /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too.  */
16549   size += sizeof (asymbol) + sizeof (pltname);
16550 
16551   if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
16552     return -1;
16553 
16554   if (plt->size < 16)
16555     return -1;
16556 
16557   s = *ret = bfd_malloc (size);
16558   if (s == NULL)
16559     return -1;
16560   send = s + 2 * count + 1;
16561 
16562   names = (char *) send;
16563   nend = (char *) s + size;
16564   n = 0;
16565 
16566   opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
16567   if (opcode == 0x3302fffe)
16568     {
16569       if (!micromips_p)
16570 	return -1;
16571       plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
16572       other = STO_MICROMIPS;
16573     }
16574   else if (opcode == 0x0398c1d0)
16575     {
16576       if (!micromips_p)
16577 	return -1;
16578       plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
16579       other = STO_MICROMIPS;
16580     }
16581   else
16582     {
16583       plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
16584       other = 0;
16585     }
16586 
16587   s->the_bfd = abfd;
16588   s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
16589   s->section = plt;
16590   s->value = 0;
16591   s->name = names;
16592   s->udata.i = other;
16593   memcpy (names, pltname, sizeof (pltname));
16594   names += sizeof (pltname);
16595   ++s, ++n;
16596 
16597   pi = 0;
16598   for (plt_offset = plt0_size;
16599        plt_offset + 8 <= plt->size && s < send;
16600        plt_offset += entry_size)
16601     {
16602       bfd_vma gotplt_addr;
16603       const char *suffix;
16604       bfd_vma gotplt_hi;
16605       bfd_vma gotplt_lo;
16606       size_t suffixlen;
16607 
16608       opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16609 
16610       /* Check if the second word matches the expected MIPS16 instruction.  */
16611       if (opcode == 0x651aeb00)
16612 	{
16613 	  if (micromips_p)
16614 	    return -1;
16615 	  /* Truncated table???  */
16616 	  if (plt_offset + 16 > plt->size)
16617 	    break;
16618 	  gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16619 	  entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16620 	  suffixlen = sizeof (m16suffix);
16621 	  suffix = m16suffix;
16622 	  other = STO_MIPS16;
16623 	}
16624       /* Likewise the expected microMIPS instruction (no insn32 mode).  */
16625       else if (opcode == 0xff220000)
16626 	{
16627 	  if (!micromips_p)
16628 	    return -1;
16629 	  gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16630 	  gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16631 	  gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16632 	  gotplt_lo <<= 2;
16633 	  gotplt_addr = gotplt_hi + gotplt_lo;
16634 	  gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16635 	  entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16636 	  suffixlen = sizeof (microsuffix);
16637 	  suffix = microsuffix;
16638 	  other = STO_MICROMIPS;
16639 	}
16640       /* Likewise the expected microMIPS instruction (insn32 mode).  */
16641       else if ((opcode & 0xffff0000) == 0xff2f0000)
16642 	{
16643 	  gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16644 	  gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16645 	  gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16646 	  gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16647 	  gotplt_addr = gotplt_hi + gotplt_lo;
16648 	  entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16649 	  suffixlen = sizeof (microsuffix);
16650 	  suffix = microsuffix;
16651 	  other = STO_MICROMIPS;
16652 	}
16653       /* Otherwise assume standard MIPS code.  */
16654       else
16655 	{
16656 	  gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16657 	  gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16658 	  gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16659 	  gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16660 	  gotplt_addr = gotplt_hi + gotplt_lo;
16661 	  entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16662 	  suffixlen = sizeof (mipssuffix);
16663 	  suffix = mipssuffix;
16664 	  other = 0;
16665 	}
16666       /* Truncated table???  */
16667       if (plt_offset + entry_size > plt->size)
16668 	break;
16669 
16670       for (i = 0;
16671 	   i < count && p[pi].address != gotplt_addr;
16672 	   i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16673 
16674       if (i < count)
16675 	{
16676 	  size_t namelen;
16677 	  size_t len;
16678 
16679 	  *s = **p[pi].sym_ptr_ptr;
16680 	  /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set.  Since
16681 	     we are defining a symbol, ensure one of them is set.  */
16682 	  if ((s->flags & BSF_LOCAL) == 0)
16683 	    s->flags |= BSF_GLOBAL;
16684 	  s->flags |= BSF_SYNTHETIC;
16685 	  s->section = plt;
16686 	  s->value = plt_offset;
16687 	  s->name = names;
16688 	  s->udata.i = other;
16689 
16690 	  len = strlen ((*p[pi].sym_ptr_ptr)->name);
16691 	  namelen = len + suffixlen;
16692 	  if (names + namelen > nend)
16693 	    break;
16694 
16695 	  memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16696 	  names += len;
16697 	  memcpy (names, suffix, suffixlen);
16698 	  names += suffixlen;
16699 
16700 	  ++s, ++n;
16701 	  pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16702 	}
16703     }
16704 
16705   free (plt_data);
16706 
16707   return n;
16708 }
16709 
16710 /* Return the ABI flags associated with ABFD if available.  */
16711 
16712 Elf_Internal_ABIFlags_v0 *
bfd_mips_elf_get_abiflags(bfd * abfd)16713 bfd_mips_elf_get_abiflags (bfd *abfd)
16714 {
16715   struct mips_elf_obj_tdata *tdata = mips_elf_tdata (abfd);
16716 
16717   return tdata->abiflags_valid ? &tdata->abiflags : NULL;
16718 }
16719 
16720 /* MIPS libc ABI versions, used with the EI_ABIVERSION ELF file header
16721    field.  Taken from `libc-abis.h' generated at GNU libc build time.
16722    Using a MIPS_ prefix as other libc targets use different values.  */
16723 enum
16724 {
16725   MIPS_LIBC_ABI_DEFAULT = 0,
16726   MIPS_LIBC_ABI_MIPS_PLT,
16727   MIPS_LIBC_ABI_UNIQUE,
16728   MIPS_LIBC_ABI_MIPS_O32_FP64,
16729   MIPS_LIBC_ABI_ABSOLUTE,
16730   MIPS_LIBC_ABI_XHASH,
16731   MIPS_LIBC_ABI_MAX
16732 };
16733 
16734 bool
_bfd_mips_init_file_header(bfd * abfd,struct bfd_link_info * link_info)16735 _bfd_mips_init_file_header (bfd *abfd, struct bfd_link_info *link_info)
16736 {
16737   struct mips_elf_link_hash_table *htab = NULL;
16738   Elf_Internal_Ehdr *i_ehdrp;
16739 
16740   if (!_bfd_elf_init_file_header (abfd, link_info))
16741     return false;
16742 
16743   i_ehdrp = elf_elfheader (abfd);
16744   if (link_info)
16745     {
16746       htab = mips_elf_hash_table (link_info);
16747       BFD_ASSERT (htab != NULL);
16748     }
16749 
16750   if (htab != NULL
16751       && htab->use_plts_and_copy_relocs
16752       && htab->root.target_os != is_vxworks)
16753     i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_MIPS_PLT;
16754 
16755   if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16756       || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16757     i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_MIPS_O32_FP64;
16758 
16759   /* Mark that we need support for absolute symbols in the dynamic loader.  */
16760   if (htab != NULL && htab->use_absolute_zero && htab->gnu_target)
16761     i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_ABSOLUTE;
16762 
16763   /* Mark that we need support for .MIPS.xhash in the dynamic linker,
16764      if it is the only hash section that will be created.  */
16765   if (link_info && link_info->emit_gnu_hash && !link_info->emit_hash)
16766     i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_XHASH;
16767   return true;
16768 }
16769 
16770 int
_bfd_mips_elf_compact_eh_encoding(struct bfd_link_info * link_info ATTRIBUTE_UNUSED)16771 _bfd_mips_elf_compact_eh_encoding
16772   (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16773 {
16774   return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16775 }
16776 
16777 /* Return the opcode for can't unwind.  */
16778 
16779 int
_bfd_mips_elf_cant_unwind_opcode(struct bfd_link_info * link_info ATTRIBUTE_UNUSED)16780 _bfd_mips_elf_cant_unwind_opcode
16781   (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16782 {
16783   return COMPACT_EH_CANT_UNWIND_OPCODE;
16784 }
16785 
16786 /* Record a position XLAT_LOC in the xlat translation table, associated with
16787    the hash entry H.  The entry in the translation table will later be
16788    populated with the real symbol dynindx.  */
16789 
16790 void
_bfd_mips_elf_record_xhash_symbol(struct elf_link_hash_entry * h,bfd_vma xlat_loc)16791 _bfd_mips_elf_record_xhash_symbol (struct elf_link_hash_entry *h,
16792 				   bfd_vma xlat_loc)
16793 {
16794   struct mips_elf_link_hash_entry *hmips;
16795 
16796   hmips = (struct mips_elf_link_hash_entry *) h;
16797   hmips->mipsxhash_loc = xlat_loc;
16798 }
16799