xref: /netbsd-src/external/cddl/osnet/dist/common/ctf/ctf_open.c (revision 25f11de3b97bbdd9107156316f4cdfe683eb8fcc)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 
23 #ifdef HAVE_NBTOOL_CONFIG_H
24 #include "nbtool_config.h"
25 #endif
26 /*
27  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
28  * Use is subject to license terms.
29  */
30 /*
31  * Copyright (c) 2013, Joyent, Inc.  All rights reserved.
32  */
33 
34 #include <ctf_impl.h>
35 #include <sys/mman.h>
36 #include <sys/zmod.h>
37 
38 static const ctf_dmodel_t _libctf_models[] = {
39 	{ "ILP32", CTF_MODEL_ILP32, 4, 1, 2, 4, 4 },
40 	{ "LP64", CTF_MODEL_LP64, 8, 1, 2, 4, 8 },
41 	{ NULL, 0, 0, 0, 0, 0, 0 }
42 };
43 
44 const char _CTF_SECTION[] = ".SUNW_ctf";
45 const char _CTF_NULLSTR[] = "";
46 
47 int _libctf_version = CTF_VERSION;	/* library client version */
48 int _libctf_debug = 0;			/* debugging messages enabled */
49 
50 static ushort_t
get_kind_v1(ushort_t info)51 get_kind_v1(ushort_t info)
52 {
53 	return (CTF_INFO_KIND_V1(info));
54 }
55 
56 static ushort_t
get_kind_v2(ushort_t info)57 get_kind_v2(ushort_t info)
58 {
59 	return (CTF_INFO_KIND(info));
60 }
61 
62 static ushort_t
get_root_v1(ushort_t info)63 get_root_v1(ushort_t info)
64 {
65 	return (CTF_INFO_ISROOT_V1(info));
66 }
67 
68 static ushort_t
get_root_v2(ushort_t info)69 get_root_v2(ushort_t info)
70 {
71 	return (CTF_INFO_ISROOT(info));
72 }
73 
74 static ushort_t
get_vlen_v1(ushort_t info)75 get_vlen_v1(ushort_t info)
76 {
77 	return (CTF_INFO_VLEN_V1(info));
78 }
79 
80 static ushort_t
get_vlen_v2(ushort_t info)81 get_vlen_v2(ushort_t info)
82 {
83 	return (CTF_INFO_VLEN(info));
84 }
85 
86 static const ctf_fileops_t ctf_fileops[] = {
87 	{ NULL, NULL, NULL },
88 	{ get_kind_v1, get_root_v1, get_vlen_v1 },
89 	{ get_kind_v2, get_root_v2, get_vlen_v2 },
90 };
91 
92 /*
93  * Convert a 32-bit ELF symbol into GElf (Elf64) and return a pointer to it.
94  */
95 static Elf64_Sym *
sym_to_gelf(const Elf32_Sym * src,Elf64_Sym * dst)96 sym_to_gelf(const Elf32_Sym *src, Elf64_Sym *dst)
97 {
98 	dst->st_name = src->st_name;
99 	dst->st_value = src->st_value;
100 	dst->st_size = src->st_size;
101 	dst->st_info = src->st_info;
102 	dst->st_other = src->st_other;
103 	dst->st_shndx = src->st_shndx;
104 
105 	return (dst);
106 }
107 
108 /*
109  * Initialize the symtab translation table by filling each entry with the
110  * offset of the CTF type or function data corresponding to each STT_FUNC or
111  * STT_OBJECT entry in the symbol table.
112  */
113 static int
init_symtab(ctf_file_t * fp,const ctf_header_t * hp,const ctf_sect_t * sp,const ctf_sect_t * strp)114 init_symtab(ctf_file_t *fp, const ctf_header_t *hp,
115     const ctf_sect_t *sp, const ctf_sect_t *strp)
116 {
117 	const uchar_t *symp = sp->cts_data;
118 	uint_t *xp = fp->ctf_sxlate;
119 	uint_t *xend = xp + fp->ctf_nsyms;
120 
121 	uint_t objtoff = hp->cth_objtoff;
122 	uint_t funcoff = hp->cth_funcoff;
123 
124 	ushort_t info, vlen;
125 	Elf64_Sym sym, *gsp;
126 	const char *name;
127 
128 	/*
129 	 * The CTF data object and function type sections are ordered to match
130 	 * the relative order of the respective symbol types in the symtab.
131 	 * If no type information is available for a symbol table entry, a
132 	 * pad is inserted in the CTF section.  As a further optimization,
133 	 * anonymous or undefined symbols are omitted from the CTF data.
134 	 */
135 	for (; xp < xend; xp++, symp += sp->cts_entsize) {
136 		if (sp->cts_entsize == sizeof (Elf32_Sym))
137 			gsp = sym_to_gelf((Elf32_Sym *)(uintptr_t)symp, &sym);
138 		else
139 			gsp = (Elf64_Sym *)(uintptr_t)symp;
140 
141 		if (gsp->st_name < strp->cts_size)
142 			name = (const char *)strp->cts_data + gsp->st_name;
143 		else
144 			name = _CTF_NULLSTR;
145 
146 		if (gsp->st_name == 0 || gsp->st_shndx == SHN_UNDEF ||
147 		    strcmp(name, "_START_") == 0 ||
148 		    strcmp(name, "_END_") == 0) {
149 			*xp = -1u;
150 			continue;
151 		}
152 
153 		switch (ELF64_ST_TYPE(gsp->st_info)) {
154 		case STT_OBJECT:
155 			if (objtoff >= hp->cth_funcoff ||
156 			    (gsp->st_shndx == SHN_ABS && gsp->st_value == 0)) {
157 				*xp = -1u;
158 				break;
159 			}
160 
161 			*xp = objtoff;
162 			objtoff += sizeof (ushort_t);
163 			break;
164 
165 		case STT_FUNC:
166 			if (funcoff >= hp->cth_typeoff) {
167 				*xp = -1u;
168 				break;
169 			}
170 
171 			*xp = funcoff;
172 
173 			info = *(ushort_t *)((uintptr_t)fp->ctf_buf + funcoff);
174 			vlen = LCTF_INFO_VLEN(fp, info);
175 
176 			/*
177 			 * If we encounter a zero pad at the end, just skip it.
178 			 * Otherwise skip over the function and its return type
179 			 * (+2) and the argument list (vlen).
180 			 */
181 			if (LCTF_INFO_KIND(fp, info) == CTF_K_UNKNOWN &&
182 			    vlen == 0)
183 				funcoff += sizeof (ushort_t); /* skip pad */
184 			else
185 				funcoff += sizeof (ushort_t) * (vlen + 2);
186 			break;
187 
188 		default:
189 			*xp = -1u;
190 			break;
191 		}
192 	}
193 
194 	ctf_dprintf("loaded %lu symtab entries\n", fp->ctf_nsyms);
195 	return (0);
196 }
197 
198 /*
199  * Initialize the type ID translation table with the byte offset of each type,
200  * and initialize the hash tables of each named type.
201  */
202 static int
init_types(ctf_file_t * fp,const ctf_header_t * cth)203 init_types(ctf_file_t *fp, const ctf_header_t *cth)
204 {
205 	/* LINTED - pointer alignment */
206 	const ctf_type_t *tbuf = (const ctf_type_t *)(fp->ctf_buf + cth->cth_typeoff);
207 	/* LINTED - pointer alignment */
208 	const ctf_type_t *tend = (const ctf_type_t *)(fp->ctf_buf + cth->cth_stroff);
209 
210 	ulong_t pop[CTF_K_MAX + 1] = { 0 };
211 	const ctf_type_t *tp;
212 	ctf_hash_t *hp;
213 	ushort_t id, dst;
214 	uint_t *xp;
215 
216 	/*
217 	 * We initially determine whether the container is a child or a parent
218 	 * based on the value of cth_parname.  To support containers that pre-
219 	 * date cth_parname, we also scan the types themselves for references
220 	 * to values in the range reserved for child types in our first pass.
221 	 */
222 	int child = cth->cth_parname != 0;
223 	int nlstructs = 0, nlunions = 0;
224 	int err;
225 
226 	/*
227 	 * We make two passes through the entire type section.  In this first
228 	 * pass, we count the number of each type and the total number of types.
229 	 */
230 	for (tp = tbuf; tp < tend; fp->ctf_typemax++) {
231 		ushort_t kind = LCTF_INFO_KIND(fp, tp->ctt_info);
232 		ulong_t vlen = LCTF_INFO_VLEN(fp, tp->ctt_info);
233 		ssize_t size, increment;
234 
235 		size_t vbytes;
236 		uint_t n;
237 
238 		(void) ctf_get_ctt_size(fp, tp, &size, &increment);
239 
240 		switch (kind) {
241 		case CTF_K_INTEGER:
242 		case CTF_K_FLOAT:
243 			vbytes = sizeof (uint_t);
244 			break;
245 		case CTF_K_ARRAY:
246 			vbytes = sizeof (ctf_array_t);
247 			break;
248 		case CTF_K_FUNCTION:
249 			vbytes = sizeof (ushort_t) * (vlen + (vlen & 1));
250 			break;
251 		case CTF_K_STRUCT:
252 		case CTF_K_UNION:
253 			if (fp->ctf_version == CTF_VERSION_1 ||
254 			    size < CTF_LSTRUCT_THRESH) {
255 				ctf_member_t *mp = (ctf_member_t *)
256 				    ((uintptr_t)tp + increment);
257 
258 				vbytes = sizeof (ctf_member_t) * vlen;
259 				for (n = vlen; n != 0; n--, mp++)
260 					child |= CTF_TYPE_ISCHILD(mp->ctm_type);
261 			} else {
262 				ctf_lmember_t *lmp = (ctf_lmember_t *)
263 				    ((uintptr_t)tp + increment);
264 
265 				vbytes = sizeof (ctf_lmember_t) * vlen;
266 				for (n = vlen; n != 0; n--, lmp++)
267 					child |=
268 					    CTF_TYPE_ISCHILD(lmp->ctlm_type);
269 			}
270 			break;
271 		case CTF_K_ENUM:
272 			vbytes = sizeof (ctf_enum_t) * vlen;
273 			break;
274 		case CTF_K_FORWARD:
275 			/*
276 			 * For forward declarations, ctt_type is the CTF_K_*
277 			 * kind for the tag, so bump that population count too.
278 			 * If ctt_type is unknown, treat the tag as a struct.
279 			 */
280 			if (tp->ctt_type == CTF_K_UNKNOWN ||
281 			    tp->ctt_type >= CTF_K_MAX)
282 				pop[CTF_K_STRUCT]++;
283 			else
284 				pop[tp->ctt_type]++;
285 			/*FALLTHRU*/
286 		case CTF_K_UNKNOWN:
287 			vbytes = 0;
288 			break;
289 		case CTF_K_POINTER:
290 		case CTF_K_TYPEDEF:
291 		case CTF_K_VOLATILE:
292 		case CTF_K_CONST:
293 		case CTF_K_RESTRICT:
294 			child |= CTF_TYPE_ISCHILD(tp->ctt_type);
295 			vbytes = 0;
296 			break;
297 		default:
298 			ctf_dprintf("detected invalid CTF kind -- %u\n", kind);
299 			return (ECTF_CORRUPT);
300 		}
301 		tp = (ctf_type_t *)((uintptr_t)tp + increment + vbytes);
302 		pop[kind]++;
303 	}
304 
305 	/*
306 	 * If we detected a reference to a child type ID, then we know this
307 	 * container is a child and may have a parent's types imported later.
308 	 */
309 	if (child) {
310 		ctf_dprintf("CTF container %p is a child\n", (void *)fp);
311 		fp->ctf_flags |= LCTF_CHILD;
312 	} else
313 		ctf_dprintf("CTF container %p is a parent\n", (void *)fp);
314 
315 	/*
316 	 * Now that we've counted up the number of each type, we can allocate
317 	 * the hash tables, type translation table, and pointer table.
318 	 */
319 	if ((err = ctf_hash_create(&fp->ctf_structs, pop[CTF_K_STRUCT])) != 0)
320 		return (err);
321 
322 	if ((err = ctf_hash_create(&fp->ctf_unions, pop[CTF_K_UNION])) != 0)
323 		return (err);
324 
325 	if ((err = ctf_hash_create(&fp->ctf_enums, pop[CTF_K_ENUM])) != 0)
326 		return (err);
327 
328 	if ((err = ctf_hash_create(&fp->ctf_names,
329 	    pop[CTF_K_INTEGER] + pop[CTF_K_FLOAT] + pop[CTF_K_FUNCTION] +
330 	    pop[CTF_K_TYPEDEF] + pop[CTF_K_POINTER] + pop[CTF_K_VOLATILE] +
331 	    pop[CTF_K_CONST] + pop[CTF_K_RESTRICT])) != 0)
332 		return (err);
333 
334 	fp->ctf_txlate = ctf_alloc(sizeof (uint_t) * (fp->ctf_typemax + 1));
335 	fp->ctf_ptrtab = ctf_alloc(sizeof (ushort_t) * (fp->ctf_typemax + 1));
336 
337 	if (fp->ctf_txlate == NULL || fp->ctf_ptrtab == NULL)
338 		return (EAGAIN); /* memory allocation failed */
339 
340 	xp = fp->ctf_txlate;
341 	*xp++ = 0; /* type id 0 is used as a sentinel value */
342 
343 	bzero(fp->ctf_txlate, sizeof (uint_t) * (fp->ctf_typemax + 1));
344 	bzero(fp->ctf_ptrtab, sizeof (ushort_t) * (fp->ctf_typemax + 1));
345 
346 	/*
347 	 * In the second pass through the types, we fill in each entry of the
348 	 * type and pointer tables and add names to the appropriate hashes.
349 	 */
350 	for (id = 1, tp = tbuf; tp < tend; xp++, id++) {
351 		ushort_t kind = LCTF_INFO_KIND(fp, tp->ctt_info);
352 		ulong_t vlen = LCTF_INFO_VLEN(fp, tp->ctt_info);
353 		ssize_t size, increment;
354 
355 		const char *name;
356 		size_t vbytes;
357 		ctf_helem_t *hep;
358 		ctf_encoding_t cte;
359 
360 		(void) ctf_get_ctt_size(fp, tp, &size, &increment);
361 		name = ctf_strptr(fp, tp->ctt_name);
362 
363 		switch (kind) {
364 		case CTF_K_INTEGER:
365 		case CTF_K_FLOAT:
366 			/*
367 			 * Only insert a new integer base type definition if
368 			 * this type name has not been defined yet.  We re-use
369 			 * the names with different encodings for bit-fields.
370 			 */
371 			if ((hep = ctf_hash_lookup(&fp->ctf_names, fp,
372 			    name, strlen(name))) == NULL) {
373 				err = ctf_hash_insert(&fp->ctf_names, fp,
374 				    CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
375 				if (err != 0 && err != ECTF_STRTAB)
376 					return (err);
377 			} else if (ctf_type_encoding(fp, hep->h_type,
378 			    &cte) == 0 && cte.cte_bits == 0) {
379 				/*
380 				 * Work-around SOS8 stabs bug: replace existing
381 				 * intrinsic w/ same name if it was zero bits.
382 				 */
383 				hep->h_type = CTF_INDEX_TO_TYPE(id, child);
384 			}
385 			vbytes = sizeof (uint_t);
386 			break;
387 
388 		case CTF_K_ARRAY:
389 			vbytes = sizeof (ctf_array_t);
390 			break;
391 
392 		case CTF_K_FUNCTION:
393 			err = ctf_hash_insert(&fp->ctf_names, fp,
394 			    CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
395 			if (err != 0 && err != ECTF_STRTAB)
396 				return (err);
397 			vbytes = sizeof (ushort_t) * (vlen + (vlen & 1));
398 			break;
399 
400 		case CTF_K_STRUCT:
401 			err = ctf_hash_define(&fp->ctf_structs, fp,
402 			    CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
403 
404 			if (err != 0 && err != ECTF_STRTAB)
405 				return (err);
406 
407 			if (fp->ctf_version == CTF_VERSION_1 ||
408 			    size < CTF_LSTRUCT_THRESH)
409 				vbytes = sizeof (ctf_member_t) * vlen;
410 			else {
411 				vbytes = sizeof (ctf_lmember_t) * vlen;
412 				nlstructs++;
413 			}
414 			break;
415 
416 		case CTF_K_UNION:
417 			err = ctf_hash_define(&fp->ctf_unions, fp,
418 			    CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
419 
420 			if (err != 0 && err != ECTF_STRTAB)
421 				return (err);
422 
423 			if (fp->ctf_version == CTF_VERSION_1 ||
424 			    size < CTF_LSTRUCT_THRESH)
425 				vbytes = sizeof (ctf_member_t) * vlen;
426 			else {
427 				vbytes = sizeof (ctf_lmember_t) * vlen;
428 				nlunions++;
429 			}
430 			break;
431 
432 		case CTF_K_ENUM:
433 			err = ctf_hash_define(&fp->ctf_enums, fp,
434 			    CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
435 
436 			if (err != 0 && err != ECTF_STRTAB)
437 				return (err);
438 
439 			vbytes = sizeof (ctf_enum_t) * vlen;
440 			break;
441 
442 		case CTF_K_TYPEDEF:
443 			err = ctf_hash_insert(&fp->ctf_names, fp,
444 			    CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
445 			if (err != 0 && err != ECTF_STRTAB)
446 				return (err);
447 			vbytes = 0;
448 			break;
449 
450 		case CTF_K_FORWARD:
451 			/*
452 			 * Only insert forward tags into the given hash if the
453 			 * type or tag name is not already present.
454 			 */
455 			switch (tp->ctt_type) {
456 			case CTF_K_STRUCT:
457 				hp = &fp->ctf_structs;
458 				break;
459 			case CTF_K_UNION:
460 				hp = &fp->ctf_unions;
461 				break;
462 			case CTF_K_ENUM:
463 				hp = &fp->ctf_enums;
464 				break;
465 			default:
466 				hp = &fp->ctf_structs;
467 			}
468 
469 			if (ctf_hash_lookup(hp, fp,
470 			    name, strlen(name)) == NULL) {
471 				err = ctf_hash_insert(hp, fp,
472 				    CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
473 				if (err != 0 && err != ECTF_STRTAB)
474 					return (err);
475 			}
476 			vbytes = 0;
477 			break;
478 
479 		case CTF_K_POINTER:
480 			/*
481 			 * If the type referenced by the pointer is in this CTF
482 			 * container, then store the index of the pointer type
483 			 * in fp->ctf_ptrtab[ index of referenced type ].
484 			 */
485 			if (CTF_TYPE_ISCHILD(tp->ctt_type) == child &&
486 			    CTF_TYPE_TO_INDEX(tp->ctt_type) <= fp->ctf_typemax)
487 				fp->ctf_ptrtab[
488 				    CTF_TYPE_TO_INDEX(tp->ctt_type)] = id;
489 			/*FALLTHRU*/
490 
491 		case CTF_K_VOLATILE:
492 		case CTF_K_CONST:
493 		case CTF_K_RESTRICT:
494 			err = ctf_hash_insert(&fp->ctf_names, fp,
495 			    CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
496 			if (err != 0 && err != ECTF_STRTAB)
497 				return (err);
498 			/*FALLTHRU*/
499 
500 		default:
501 			vbytes = 0;
502 			break;
503 		}
504 
505 		*xp = (uint_t)((uintptr_t)tp - (uintptr_t)fp->ctf_buf);
506 		tp = (ctf_type_t *)((uintptr_t)tp + increment + vbytes);
507 	}
508 
509 	ctf_dprintf("%lu total types processed\n", fp->ctf_typemax);
510 	ctf_dprintf("%u enum names hashed\n", ctf_hash_size(&fp->ctf_enums));
511 	ctf_dprintf("%u struct names hashed (%d long)\n",
512 	    ctf_hash_size(&fp->ctf_structs), nlstructs);
513 	ctf_dprintf("%u union names hashed (%d long)\n",
514 	    ctf_hash_size(&fp->ctf_unions), nlunions);
515 	ctf_dprintf("%u base type names hashed\n",
516 	    ctf_hash_size(&fp->ctf_names));
517 
518 	/*
519 	 * Make an additional pass through the pointer table to find pointers
520 	 * that point to anonymous typedef nodes.  If we find one, modify the
521 	 * pointer table so that the pointer is also known to point to the
522 	 * node that is referenced by the anonymous typedef node.
523 	 */
524 	for (id = 1; id <= fp->ctf_typemax; id++) {
525 		if ((dst = fp->ctf_ptrtab[id]) != 0) {
526 			tp = LCTF_INDEX_TO_TYPEPTR(fp, id);
527 
528 			if (LCTF_INFO_KIND(fp, tp->ctt_info) == CTF_K_TYPEDEF &&
529 			    strcmp(ctf_strptr(fp, tp->ctt_name), "") == 0 &&
530 			    CTF_TYPE_ISCHILD(tp->ctt_type) == child &&
531 			    CTF_TYPE_TO_INDEX(tp->ctt_type) <= fp->ctf_typemax)
532 				fp->ctf_ptrtab[
533 				    CTF_TYPE_TO_INDEX(tp->ctt_type)] = dst;
534 		}
535 	}
536 
537 	return (0);
538 }
539 
540 /*
541  * Decode the specified CTF buffer and optional symbol table and create a new
542  * CTF container representing the symbolic debugging information.  This code
543  * can be used directly by the debugger, or it can be used as the engine for
544  * ctf_fdopen() or ctf_open(), below.
545  */
546 ctf_file_t *
ctf_bufopen(const ctf_sect_t * ctfsect,const ctf_sect_t * symsect,const ctf_sect_t * strsect,int * errp)547 ctf_bufopen(const ctf_sect_t *ctfsect, const ctf_sect_t *symsect,
548     const ctf_sect_t *strsect, int *errp)
549 {
550 	const ctf_preamble_t *pp;
551 	ctf_header_t hp;
552 	ctf_file_t *fp;
553 	void *buf, *base;
554 	size_t size, hdrsz;
555 	int err;
556 
557 	if (ctfsect == NULL || ((symsect == NULL) != (strsect == NULL)))
558 		return (ctf_set_open_errno(errp, EINVAL));
559 
560 	if (symsect != NULL && symsect->cts_entsize != sizeof (Elf32_Sym) &&
561 	    symsect->cts_entsize != sizeof (Elf64_Sym))
562 		return (ctf_set_open_errno(errp, ECTF_SYMTAB));
563 
564 	if (symsect != NULL && symsect->cts_data == NULL)
565 		return (ctf_set_open_errno(errp, ECTF_SYMBAD));
566 
567 	if (strsect != NULL && strsect->cts_data == NULL)
568 		return (ctf_set_open_errno(errp, ECTF_STRBAD));
569 
570 	if (ctfsect->cts_size < sizeof (ctf_preamble_t))
571 		return (ctf_set_open_errno(errp, ECTF_NOCTFBUF));
572 
573 	pp = (const ctf_preamble_t *)ctfsect->cts_data;
574 
575 	ctf_dprintf("ctf_bufopen: magic=0x%x version=%u\n",
576 	    pp->ctp_magic, pp->ctp_version);
577 
578 	/*
579 	 * Validate each part of the CTF header (either V1 or V2).
580 	 * First, we validate the preamble (common to all versions).  At that
581 	 * point, we know specific header version, and can validate the
582 	 * version-specific parts including section offsets and alignments.
583 	 */
584 	if (pp->ctp_magic != CTF_MAGIC)
585 		return (ctf_set_open_errno(errp, ECTF_NOCTFBUF));
586 
587 	if (pp->ctp_version == CTF_VERSION_2) {
588 		if (ctfsect->cts_size < sizeof (ctf_header_t))
589 			return (ctf_set_open_errno(errp, ECTF_NOCTFBUF));
590 
591 		bcopy(ctfsect->cts_data, &hp, sizeof (hp));
592 		hdrsz = sizeof (ctf_header_t);
593 
594 	} else if (pp->ctp_version == CTF_VERSION_1) {
595 		const ctf_header_v1_t *h1p =
596 		    (const ctf_header_v1_t *)ctfsect->cts_data;
597 
598 		if (ctfsect->cts_size < sizeof (ctf_header_v1_t))
599 			return (ctf_set_open_errno(errp, ECTF_NOCTFBUF));
600 
601 		bzero(&hp, sizeof (hp));
602 		hp.cth_preamble = h1p->cth_preamble;
603 		hp.cth_objtoff = h1p->cth_objtoff;
604 		hp.cth_funcoff = h1p->cth_funcoff;
605 		hp.cth_typeoff = h1p->cth_typeoff;
606 		hp.cth_stroff = h1p->cth_stroff;
607 		hp.cth_strlen = h1p->cth_strlen;
608 
609 		hdrsz = sizeof (ctf_header_v1_t);
610 	} else
611 		return (ctf_set_open_errno(errp, ECTF_CTFVERS));
612 
613 	size = hp.cth_stroff + hp.cth_strlen;
614 
615 	ctf_dprintf("ctf_bufopen: uncompressed size=%lu\n", (ulong_t)size);
616 
617 	if (hp.cth_lbloff > size || hp.cth_objtoff > size ||
618 	    hp.cth_funcoff > size || hp.cth_typeoff > size ||
619 	    hp.cth_stroff > size)
620 		return (ctf_set_open_errno(errp, ECTF_CORRUPT));
621 
622 	if (hp.cth_lbloff > hp.cth_objtoff ||
623 	    hp.cth_objtoff > hp.cth_funcoff ||
624 	    hp.cth_funcoff > hp.cth_typeoff ||
625 	    hp.cth_typeoff > hp.cth_stroff)
626 		return (ctf_set_open_errno(errp, ECTF_CORRUPT));
627 
628 	if ((hp.cth_lbloff & 3) || (hp.cth_objtoff & 1) ||
629 	    (hp.cth_funcoff & 1) || (hp.cth_typeoff & 3))
630 		return (ctf_set_open_errno(errp, ECTF_CORRUPT));
631 
632 	/*
633 	 * Once everything is determined to be valid, attempt to decompress
634 	 * the CTF data buffer if it is compressed.  Otherwise we just put
635 	 * the data section's buffer pointer into ctf_buf, below.
636 	 */
637 	if (hp.cth_flags & CTF_F_COMPRESS) {
638 		size_t srclen, dstlen;
639 		const void *src;
640 		int rc = Z_OK;
641 
642 		if (ctf_zopen(errp) == NULL)
643 			return (NULL); /* errp is set for us */
644 
645 		if ((base = ctf_data_alloc(size + hdrsz)) == MAP_FAILED)
646 			return (ctf_set_open_errno(errp, ECTF_ZALLOC));
647 
648 		bcopy(ctfsect->cts_data, base, hdrsz);
649 		((ctf_preamble_t *)base)->ctp_flags &= ~CTF_F_COMPRESS;
650 		buf = (uchar_t *)base + hdrsz;
651 
652 		src = (uchar_t *)ctfsect->cts_data + hdrsz;
653 		srclen = ctfsect->cts_size - hdrsz;
654 		dstlen = size;
655 
656 		if ((rc = z_uncompress(buf, &dstlen, src, srclen)) != Z_OK) {
657 			ctf_dprintf("zlib inflate err: %s\n", z_strerror(rc));
658 			ctf_data_free(base, size + hdrsz);
659 			return (ctf_set_open_errno(errp, ECTF_DECOMPRESS));
660 		}
661 
662 		if (dstlen != size) {
663 			ctf_dprintf("zlib inflate short -- got %lu of %lu "
664 			    "bytes\n", (ulong_t)dstlen, (ulong_t)size);
665 			ctf_data_free(base, size + hdrsz);
666 			return (ctf_set_open_errno(errp, ECTF_CORRUPT));
667 		}
668 
669 		ctf_data_protect(base, size + hdrsz);
670 
671 	} else {
672 		base = (void *)ctfsect->cts_data;
673 		buf = (uchar_t *)base + hdrsz;
674 	}
675 
676 	/*
677 	 * Once we have uncompressed and validated the CTF data buffer, we can
678 	 * proceed with allocating a ctf_file_t and initializing it.
679 	 */
680 	if ((fp = ctf_alloc(sizeof (ctf_file_t))) == NULL)
681 		return (ctf_set_open_errno(errp, EAGAIN));
682 
683 	bzero(fp, sizeof (ctf_file_t));
684 	fp->ctf_version = hp.cth_version;
685 	fp->ctf_fileops = &ctf_fileops[hp.cth_version];
686 	bcopy(ctfsect, &fp->ctf_data, sizeof (ctf_sect_t));
687 
688 	if (symsect != NULL) {
689 		bcopy(symsect, &fp->ctf_symtab, sizeof (ctf_sect_t));
690 		bcopy(strsect, &fp->ctf_strtab, sizeof (ctf_sect_t));
691 	}
692 
693 	if (fp->ctf_data.cts_name != NULL)
694 		fp->ctf_data.cts_name = ctf_strdup(fp->ctf_data.cts_name);
695 	if (fp->ctf_symtab.cts_name != NULL)
696 		fp->ctf_symtab.cts_name = ctf_strdup(fp->ctf_symtab.cts_name);
697 	if (fp->ctf_strtab.cts_name != NULL)
698 		fp->ctf_strtab.cts_name = ctf_strdup(fp->ctf_strtab.cts_name);
699 
700 	if (fp->ctf_data.cts_name == NULL)
701 		fp->ctf_data.cts_name = __UNCONST(_CTF_NULLSTR);
702 	if (fp->ctf_symtab.cts_name == NULL)
703 		fp->ctf_symtab.cts_name = __UNCONST(_CTF_NULLSTR);
704 	if (fp->ctf_strtab.cts_name == NULL)
705 		fp->ctf_strtab.cts_name = __UNCONST(_CTF_NULLSTR);
706 
707 	fp->ctf_str[CTF_STRTAB_0].cts_strs = (const char *)buf + hp.cth_stroff;
708 	fp->ctf_str[CTF_STRTAB_0].cts_len = hp.cth_strlen;
709 
710 	if (strsect != NULL) {
711 		fp->ctf_str[CTF_STRTAB_1].cts_strs = strsect->cts_data;
712 		fp->ctf_str[CTF_STRTAB_1].cts_len = strsect->cts_size;
713 	}
714 
715 	fp->ctf_base = base;
716 	fp->ctf_buf = buf;
717 	fp->ctf_size = size + hdrsz;
718 
719 	/*
720 	 * If we have a parent container name and label, store the relocated
721 	 * string pointers in the CTF container for easy access later.
722 	 */
723 	if (hp.cth_parlabel != 0)
724 		fp->ctf_parlabel = ctf_strptr(fp, hp.cth_parlabel);
725 	if (hp.cth_parname != 0)
726 		fp->ctf_parname = ctf_strptr(fp, hp.cth_parname);
727 
728 	ctf_dprintf("ctf_bufopen: parent name %s (label %s)\n",
729 	    fp->ctf_parname ? fp->ctf_parname : "<NULL>",
730 	    fp->ctf_parlabel ? fp->ctf_parlabel : "<NULL>");
731 
732 	/*
733 	 * If we have a symbol table section, allocate and initialize
734 	 * the symtab translation table, pointed to by ctf_sxlate.
735 	 */
736 	if (symsect != NULL) {
737 		fp->ctf_nsyms = symsect->cts_size / symsect->cts_entsize;
738 		fp->ctf_sxlate = ctf_alloc(fp->ctf_nsyms * sizeof (uint_t));
739 
740 		if (fp->ctf_sxlate == NULL) {
741 			(void) ctf_set_open_errno(errp, EAGAIN);
742 			goto bad;
743 		}
744 
745 		if ((err = init_symtab(fp, &hp, symsect, strsect)) != 0) {
746 			(void) ctf_set_open_errno(errp, err);
747 			goto bad;
748 		}
749 	}
750 
751 	if ((err = init_types(fp, &hp)) != 0) {
752 		(void) ctf_set_open_errno(errp, err);
753 		goto bad;
754 	}
755 
756 	/*
757 	 * Initialize the ctf_lookup_by_name top-level dictionary.  We keep an
758 	 * array of type name prefixes and the corresponding ctf_hash to use.
759 	 * NOTE: This code must be kept in sync with the code in ctf_update().
760 	 */
761 	fp->ctf_lookups[0].ctl_prefix = "struct";
762 	fp->ctf_lookups[0].ctl_len = strlen(fp->ctf_lookups[0].ctl_prefix);
763 	fp->ctf_lookups[0].ctl_hash = &fp->ctf_structs;
764 	fp->ctf_lookups[1].ctl_prefix = "union";
765 	fp->ctf_lookups[1].ctl_len = strlen(fp->ctf_lookups[1].ctl_prefix);
766 	fp->ctf_lookups[1].ctl_hash = &fp->ctf_unions;
767 	fp->ctf_lookups[2].ctl_prefix = "enum";
768 	fp->ctf_lookups[2].ctl_len = strlen(fp->ctf_lookups[2].ctl_prefix);
769 	fp->ctf_lookups[2].ctl_hash = &fp->ctf_enums;
770 	fp->ctf_lookups[3].ctl_prefix = _CTF_NULLSTR;
771 	fp->ctf_lookups[3].ctl_len = strlen(fp->ctf_lookups[3].ctl_prefix);
772 	fp->ctf_lookups[3].ctl_hash = &fp->ctf_names;
773 	fp->ctf_lookups[4].ctl_prefix = NULL;
774 	fp->ctf_lookups[4].ctl_len = 0;
775 	fp->ctf_lookups[4].ctl_hash = NULL;
776 
777 	if (symsect != NULL) {
778 		if (symsect->cts_entsize == sizeof (Elf64_Sym))
779 			(void) ctf_setmodel(fp, CTF_MODEL_LP64);
780 		else
781 			(void) ctf_setmodel(fp, CTF_MODEL_ILP32);
782 	} else
783 		(void) ctf_setmodel(fp, CTF_MODEL_NATIVE);
784 
785 	fp->ctf_refcnt = 1;
786 	return (fp);
787 
788 bad:
789 	ctf_close(fp);
790 	return (NULL);
791 }
792 
793 /*
794  * Dupliate a ctf_file_t and its underlying section information into a new
795  * container. This works by copying the three ctf_sect_t's of the original
796  * container if they exist and passing those into ctf_bufopen. To copy those, we
797  * mmap anonymous memory with ctf_data_alloc and bcopy the data across. It's not
798  * the cheapest thing, but it's what we've got.
799  */
800 ctf_file_t *
ctf_dup(ctf_file_t * ofp)801 ctf_dup(ctf_file_t *ofp)
802 {
803 	ctf_file_t *fp;
804 	ctf_sect_t ctfsect, symsect, strsect;
805 	ctf_sect_t *ctp, *symp, *strp;
806 	void *cbuf, *symbuf, *strbuf;
807 	int err;
808 
809 	cbuf = symbuf = strbuf = NULL;
810 	/*
811 	 * The ctfsect isn't allowed to not exist, but the symbol and string
812 	 * section might not. We only need to copy the data of the section, not
813 	 * the name, as ctf_bufopen will take care of that.
814 	 */
815 	bcopy(&ofp->ctf_data, &ctfsect, sizeof (ctf_sect_t));
816 	cbuf = ctf_data_alloc(ctfsect.cts_size);
817 	if (cbuf == MAP_FAILED) {
818 		(void) ctf_set_errno(ofp, ECTF_MMAP);
819 		return (NULL);
820 	}
821 
822 	bcopy(ctfsect.cts_data, cbuf, ctfsect.cts_size);
823 	ctf_data_protect(cbuf, ctfsect.cts_size);
824 	ctfsect.cts_data = cbuf;
825 	ctfsect.cts_offset = 0;
826 	ctp = &ctfsect;
827 
828 	if (ofp->ctf_symtab.cts_data != NULL) {
829 		bcopy(&ofp->ctf_symtab, &symsect, sizeof (ctf_sect_t));
830 		symbuf = ctf_data_alloc(symsect.cts_size);
831 		if (symbuf == MAP_FAILED) {
832 			(void) ctf_set_errno(ofp, ECTF_MMAP);
833 			goto err;
834 		}
835 		bcopy(symsect.cts_data, symbuf, symsect.cts_size);
836 		ctf_data_protect(symbuf, symsect.cts_size);
837 		symsect.cts_data = symbuf;
838 		symsect.cts_offset = 0;
839 		symp = &symsect;
840 	} else {
841 		symp = NULL;
842 	}
843 
844 	if (ofp->ctf_strtab.cts_data != NULL) {
845 		bcopy(&ofp->ctf_strtab, &strsect, sizeof (ctf_sect_t));
846 		strbuf = ctf_data_alloc(strsect.cts_size);
847 		if (strbuf == MAP_FAILED) {
848 			(void) ctf_set_errno(ofp, ECTF_MMAP);
849 			goto err;
850 		}
851 		bcopy(strsect.cts_data, strbuf, strsect.cts_size);
852 		ctf_data_protect(strbuf, strsect.cts_size);
853 		strsect.cts_data = strbuf;
854 		strsect.cts_offset = 0;
855 		strp = &strsect;
856 	} else {
857 		strp = NULL;
858 	}
859 
860 	fp = ctf_bufopen(ctp, symp, strp, &err);
861 	if (fp == NULL) {
862 		(void) ctf_set_errno(ofp, err);
863 		goto err;
864 	}
865 
866 	fp->ctf_flags |= LCTF_MMAP;
867 
868 	return (fp);
869 
870 err:
871 	ctf_data_free(cbuf, ctfsect.cts_size);
872 	if (symbuf != NULL)
873 		ctf_data_free(symbuf, symsect.cts_size);
874 	if (strbuf != NULL)
875 		ctf_data_free(strbuf, strsect.cts_size);
876 	return (NULL);
877 }
878 
879 /*
880  * Close the specified CTF container and free associated data structures.  Note
881  * that ctf_close() is a reference counted operation: if the specified file is
882  * the parent of other active containers, its reference count will be greater
883  * than one and it will be freed later when no active children exist.
884  */
885 void
ctf_close(ctf_file_t * fp)886 ctf_close(ctf_file_t *fp)
887 {
888 	ctf_dtdef_t *dtd, *ntd;
889 
890 	if (fp == NULL)
891 		return; /* allow ctf_close(NULL) to simplify caller code */
892 
893 	ctf_dprintf("ctf_close(%p) refcnt=%u\n", (void *)fp, fp->ctf_refcnt);
894 
895 	if (fp->ctf_refcnt > 1) {
896 		fp->ctf_refcnt--;
897 		return;
898 	}
899 
900 	if (fp->ctf_parent != NULL)
901 		ctf_close(fp->ctf_parent);
902 
903 	/*
904 	 * Note, to work properly with reference counting on the dynamic
905 	 * section, we must delete the list in reverse.
906 	 */
907 	for (dtd = ctf_list_prev(&fp->ctf_dtdefs); dtd != NULL; dtd = ntd) {
908 		ntd = ctf_list_prev(dtd);
909 		ctf_dtd_delete(fp, dtd);
910 	}
911 
912 	ctf_free(fp->ctf_dthash, fp->ctf_dthashlen * sizeof (ctf_dtdef_t *));
913 
914 	if (fp->ctf_flags & LCTF_MMAP) {
915 		if (fp->ctf_data.cts_data != NULL)
916 			ctf_sect_munmap(&fp->ctf_data);
917 		if (fp->ctf_symtab.cts_data != NULL)
918 			ctf_sect_munmap(&fp->ctf_symtab);
919 		if (fp->ctf_strtab.cts_data != NULL)
920 			ctf_sect_munmap(&fp->ctf_strtab);
921 	}
922 
923 	if (fp->ctf_data.cts_name != _CTF_NULLSTR &&
924 	    fp->ctf_data.cts_name != NULL) {
925 		ctf_free(__UNCONST(fp->ctf_data.cts_name),
926 		    strlen(fp->ctf_data.cts_name) + 1);
927 	}
928 
929 	if (fp->ctf_symtab.cts_name != _CTF_NULLSTR &&
930 	    fp->ctf_symtab.cts_name != NULL) {
931 		ctf_free(__UNCONST(fp->ctf_symtab.cts_name),
932 		    strlen(fp->ctf_symtab.cts_name) + 1);
933 	}
934 
935 	if (fp->ctf_strtab.cts_name != _CTF_NULLSTR &&
936 	    fp->ctf_strtab.cts_name != NULL) {
937 		ctf_free(__UNCONST(fp->ctf_strtab.cts_name),
938 		    strlen(fp->ctf_strtab.cts_name) + 1);
939 	}
940 
941 	if (fp->ctf_base != fp->ctf_data.cts_data && fp->ctf_base != NULL)
942 		ctf_data_free(__UNCONST(fp->ctf_base), fp->ctf_size);
943 
944 	if (fp->ctf_sxlate != NULL)
945 		ctf_free(fp->ctf_sxlate, sizeof (uint_t) * fp->ctf_nsyms);
946 
947 	if (fp->ctf_txlate != NULL) {
948 		ctf_free(fp->ctf_txlate,
949 		    sizeof (uint_t) * (fp->ctf_typemax + 1));
950 	}
951 
952 	if (fp->ctf_ptrtab != NULL) {
953 		ctf_free(fp->ctf_ptrtab,
954 		    sizeof (ushort_t) * (fp->ctf_typemax + 1));
955 	}
956 
957 	ctf_hash_destroy(&fp->ctf_structs);
958 	ctf_hash_destroy(&fp->ctf_unions);
959 	ctf_hash_destroy(&fp->ctf_enums);
960 	ctf_hash_destroy(&fp->ctf_names);
961 
962 	ctf_free(fp, sizeof (ctf_file_t));
963 }
964 
965 /*
966  * Return the CTF handle for the parent CTF container, if one exists.
967  * Otherwise return NULL to indicate this container has no imported parent.
968  */
969 ctf_file_t *
ctf_parent_file(ctf_file_t * fp)970 ctf_parent_file(ctf_file_t *fp)
971 {
972 	return (fp->ctf_parent);
973 }
974 
975 /*
976  * Return the name of the parent CTF container, if one exists.  Otherwise
977  * return NULL to indicate this container is a root container.
978  */
979 const char *
ctf_parent_name(ctf_file_t * fp)980 ctf_parent_name(ctf_file_t *fp)
981 {
982 	return (fp->ctf_parname);
983 }
984 
985 /*
986  * Import the types from the specified parent container by storing a pointer
987  * to it in ctf_parent and incrementing its reference count.  Only one parent
988  * is allowed: if a parent already exists, it is replaced by the new parent.
989  */
990 int
ctf_import(ctf_file_t * fp,ctf_file_t * pfp)991 ctf_import(ctf_file_t *fp, ctf_file_t *pfp)
992 {
993 	if (fp == NULL || fp == pfp || (pfp != NULL && pfp->ctf_refcnt == 0))
994 		return (ctf_set_errno(fp, EINVAL));
995 
996 	if (pfp != NULL && pfp->ctf_dmodel != fp->ctf_dmodel)
997 		return (ctf_set_errno(fp, ECTF_DMODEL));
998 
999 	if (fp->ctf_parent != NULL)
1000 		ctf_close(fp->ctf_parent);
1001 
1002 	if (pfp != NULL) {
1003 		fp->ctf_flags |= LCTF_CHILD;
1004 		pfp->ctf_refcnt++;
1005 	}
1006 
1007 	fp->ctf_parent = pfp;
1008 	return (0);
1009 }
1010 
1011 /*
1012  * Set the data model constant for the CTF container.
1013  */
1014 int
ctf_setmodel(ctf_file_t * fp,int model)1015 ctf_setmodel(ctf_file_t *fp, int model)
1016 {
1017 	const ctf_dmodel_t *dp;
1018 
1019 	for (dp = _libctf_models; dp->ctd_name != NULL; dp++) {
1020 		if (dp->ctd_code == model) {
1021 			fp->ctf_dmodel = dp;
1022 			return (0);
1023 		}
1024 	}
1025 
1026 	return (ctf_set_errno(fp, EINVAL));
1027 }
1028 
1029 /*
1030  * Return the data model constant for the CTF container.
1031  */
1032 int
ctf_getmodel(ctf_file_t * fp)1033 ctf_getmodel(ctf_file_t *fp)
1034 {
1035 	return (fp->ctf_dmodel->ctd_code);
1036 }
1037 
1038 void
ctf_setspecific(ctf_file_t * fp,void * data)1039 ctf_setspecific(ctf_file_t *fp, void *data)
1040 {
1041 	fp->ctf_specific = data;
1042 }
1043 
1044 void *
ctf_getspecific(ctf_file_t * fp)1045 ctf_getspecific(ctf_file_t *fp)
1046 {
1047 	return (fp->ctf_specific);
1048 }
1049