1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License, Version 1.0 only
6 * (the "License"). You may not use this file except in compliance
7 * with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or http://www.opensolaris.org/os/licensing.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22
23 #ifdef HAVE_NBTOOL_CONFIG_H
24 #include "nbtool_config.h"
25 #endif
26 /*
27 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
28 * Use is subject to license terms.
29 */
30 /*
31 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
32 */
33
34 #include <ctf_impl.h>
35 #include <sys/mman.h>
36 #include <sys/zmod.h>
37
38 static const ctf_dmodel_t _libctf_models[] = {
39 { "ILP32", CTF_MODEL_ILP32, 4, 1, 2, 4, 4 },
40 { "LP64", CTF_MODEL_LP64, 8, 1, 2, 4, 8 },
41 { NULL, 0, 0, 0, 0, 0, 0 }
42 };
43
44 const char _CTF_SECTION[] = ".SUNW_ctf";
45 const char _CTF_NULLSTR[] = "";
46
47 int _libctf_version = CTF_VERSION; /* library client version */
48 int _libctf_debug = 0; /* debugging messages enabled */
49
50 static ushort_t
get_kind_v1(ushort_t info)51 get_kind_v1(ushort_t info)
52 {
53 return (CTF_INFO_KIND_V1(info));
54 }
55
56 static ushort_t
get_kind_v2(ushort_t info)57 get_kind_v2(ushort_t info)
58 {
59 return (CTF_INFO_KIND(info));
60 }
61
62 static ushort_t
get_root_v1(ushort_t info)63 get_root_v1(ushort_t info)
64 {
65 return (CTF_INFO_ISROOT_V1(info));
66 }
67
68 static ushort_t
get_root_v2(ushort_t info)69 get_root_v2(ushort_t info)
70 {
71 return (CTF_INFO_ISROOT(info));
72 }
73
74 static ushort_t
get_vlen_v1(ushort_t info)75 get_vlen_v1(ushort_t info)
76 {
77 return (CTF_INFO_VLEN_V1(info));
78 }
79
80 static ushort_t
get_vlen_v2(ushort_t info)81 get_vlen_v2(ushort_t info)
82 {
83 return (CTF_INFO_VLEN(info));
84 }
85
86 static const ctf_fileops_t ctf_fileops[] = {
87 { NULL, NULL, NULL },
88 { get_kind_v1, get_root_v1, get_vlen_v1 },
89 { get_kind_v2, get_root_v2, get_vlen_v2 },
90 };
91
92 /*
93 * Convert a 32-bit ELF symbol into GElf (Elf64) and return a pointer to it.
94 */
95 static Elf64_Sym *
sym_to_gelf(const Elf32_Sym * src,Elf64_Sym * dst)96 sym_to_gelf(const Elf32_Sym *src, Elf64_Sym *dst)
97 {
98 dst->st_name = src->st_name;
99 dst->st_value = src->st_value;
100 dst->st_size = src->st_size;
101 dst->st_info = src->st_info;
102 dst->st_other = src->st_other;
103 dst->st_shndx = src->st_shndx;
104
105 return (dst);
106 }
107
108 /*
109 * Initialize the symtab translation table by filling each entry with the
110 * offset of the CTF type or function data corresponding to each STT_FUNC or
111 * STT_OBJECT entry in the symbol table.
112 */
113 static int
init_symtab(ctf_file_t * fp,const ctf_header_t * hp,const ctf_sect_t * sp,const ctf_sect_t * strp)114 init_symtab(ctf_file_t *fp, const ctf_header_t *hp,
115 const ctf_sect_t *sp, const ctf_sect_t *strp)
116 {
117 const uchar_t *symp = sp->cts_data;
118 uint_t *xp = fp->ctf_sxlate;
119 uint_t *xend = xp + fp->ctf_nsyms;
120
121 uint_t objtoff = hp->cth_objtoff;
122 uint_t funcoff = hp->cth_funcoff;
123
124 ushort_t info, vlen;
125 Elf64_Sym sym, *gsp;
126 const char *name;
127
128 /*
129 * The CTF data object and function type sections are ordered to match
130 * the relative order of the respective symbol types in the symtab.
131 * If no type information is available for a symbol table entry, a
132 * pad is inserted in the CTF section. As a further optimization,
133 * anonymous or undefined symbols are omitted from the CTF data.
134 */
135 for (; xp < xend; xp++, symp += sp->cts_entsize) {
136 if (sp->cts_entsize == sizeof (Elf32_Sym))
137 gsp = sym_to_gelf((Elf32_Sym *)(uintptr_t)symp, &sym);
138 else
139 gsp = (Elf64_Sym *)(uintptr_t)symp;
140
141 if (gsp->st_name < strp->cts_size)
142 name = (const char *)strp->cts_data + gsp->st_name;
143 else
144 name = _CTF_NULLSTR;
145
146 if (gsp->st_name == 0 || gsp->st_shndx == SHN_UNDEF ||
147 strcmp(name, "_START_") == 0 ||
148 strcmp(name, "_END_") == 0) {
149 *xp = -1u;
150 continue;
151 }
152
153 switch (ELF64_ST_TYPE(gsp->st_info)) {
154 case STT_OBJECT:
155 if (objtoff >= hp->cth_funcoff ||
156 (gsp->st_shndx == SHN_ABS && gsp->st_value == 0)) {
157 *xp = -1u;
158 break;
159 }
160
161 *xp = objtoff;
162 objtoff += sizeof (ushort_t);
163 break;
164
165 case STT_FUNC:
166 if (funcoff >= hp->cth_typeoff) {
167 *xp = -1u;
168 break;
169 }
170
171 *xp = funcoff;
172
173 info = *(ushort_t *)((uintptr_t)fp->ctf_buf + funcoff);
174 vlen = LCTF_INFO_VLEN(fp, info);
175
176 /*
177 * If we encounter a zero pad at the end, just skip it.
178 * Otherwise skip over the function and its return type
179 * (+2) and the argument list (vlen).
180 */
181 if (LCTF_INFO_KIND(fp, info) == CTF_K_UNKNOWN &&
182 vlen == 0)
183 funcoff += sizeof (ushort_t); /* skip pad */
184 else
185 funcoff += sizeof (ushort_t) * (vlen + 2);
186 break;
187
188 default:
189 *xp = -1u;
190 break;
191 }
192 }
193
194 ctf_dprintf("loaded %lu symtab entries\n", fp->ctf_nsyms);
195 return (0);
196 }
197
198 /*
199 * Initialize the type ID translation table with the byte offset of each type,
200 * and initialize the hash tables of each named type.
201 */
202 static int
init_types(ctf_file_t * fp,const ctf_header_t * cth)203 init_types(ctf_file_t *fp, const ctf_header_t *cth)
204 {
205 /* LINTED - pointer alignment */
206 const ctf_type_t *tbuf = (const ctf_type_t *)(fp->ctf_buf + cth->cth_typeoff);
207 /* LINTED - pointer alignment */
208 const ctf_type_t *tend = (const ctf_type_t *)(fp->ctf_buf + cth->cth_stroff);
209
210 ulong_t pop[CTF_K_MAX + 1] = { 0 };
211 const ctf_type_t *tp;
212 ctf_hash_t *hp;
213 ushort_t id, dst;
214 uint_t *xp;
215
216 /*
217 * We initially determine whether the container is a child or a parent
218 * based on the value of cth_parname. To support containers that pre-
219 * date cth_parname, we also scan the types themselves for references
220 * to values in the range reserved for child types in our first pass.
221 */
222 int child = cth->cth_parname != 0;
223 int nlstructs = 0, nlunions = 0;
224 int err;
225
226 /*
227 * We make two passes through the entire type section. In this first
228 * pass, we count the number of each type and the total number of types.
229 */
230 for (tp = tbuf; tp < tend; fp->ctf_typemax++) {
231 ushort_t kind = LCTF_INFO_KIND(fp, tp->ctt_info);
232 ulong_t vlen = LCTF_INFO_VLEN(fp, tp->ctt_info);
233 ssize_t size, increment;
234
235 size_t vbytes;
236 uint_t n;
237
238 (void) ctf_get_ctt_size(fp, tp, &size, &increment);
239
240 switch (kind) {
241 case CTF_K_INTEGER:
242 case CTF_K_FLOAT:
243 vbytes = sizeof (uint_t);
244 break;
245 case CTF_K_ARRAY:
246 vbytes = sizeof (ctf_array_t);
247 break;
248 case CTF_K_FUNCTION:
249 vbytes = sizeof (ushort_t) * (vlen + (vlen & 1));
250 break;
251 case CTF_K_STRUCT:
252 case CTF_K_UNION:
253 if (fp->ctf_version == CTF_VERSION_1 ||
254 size < CTF_LSTRUCT_THRESH) {
255 ctf_member_t *mp = (ctf_member_t *)
256 ((uintptr_t)tp + increment);
257
258 vbytes = sizeof (ctf_member_t) * vlen;
259 for (n = vlen; n != 0; n--, mp++)
260 child |= CTF_TYPE_ISCHILD(mp->ctm_type);
261 } else {
262 ctf_lmember_t *lmp = (ctf_lmember_t *)
263 ((uintptr_t)tp + increment);
264
265 vbytes = sizeof (ctf_lmember_t) * vlen;
266 for (n = vlen; n != 0; n--, lmp++)
267 child |=
268 CTF_TYPE_ISCHILD(lmp->ctlm_type);
269 }
270 break;
271 case CTF_K_ENUM:
272 vbytes = sizeof (ctf_enum_t) * vlen;
273 break;
274 case CTF_K_FORWARD:
275 /*
276 * For forward declarations, ctt_type is the CTF_K_*
277 * kind for the tag, so bump that population count too.
278 * If ctt_type is unknown, treat the tag as a struct.
279 */
280 if (tp->ctt_type == CTF_K_UNKNOWN ||
281 tp->ctt_type >= CTF_K_MAX)
282 pop[CTF_K_STRUCT]++;
283 else
284 pop[tp->ctt_type]++;
285 /*FALLTHRU*/
286 case CTF_K_UNKNOWN:
287 vbytes = 0;
288 break;
289 case CTF_K_POINTER:
290 case CTF_K_TYPEDEF:
291 case CTF_K_VOLATILE:
292 case CTF_K_CONST:
293 case CTF_K_RESTRICT:
294 child |= CTF_TYPE_ISCHILD(tp->ctt_type);
295 vbytes = 0;
296 break;
297 default:
298 ctf_dprintf("detected invalid CTF kind -- %u\n", kind);
299 return (ECTF_CORRUPT);
300 }
301 tp = (ctf_type_t *)((uintptr_t)tp + increment + vbytes);
302 pop[kind]++;
303 }
304
305 /*
306 * If we detected a reference to a child type ID, then we know this
307 * container is a child and may have a parent's types imported later.
308 */
309 if (child) {
310 ctf_dprintf("CTF container %p is a child\n", (void *)fp);
311 fp->ctf_flags |= LCTF_CHILD;
312 } else
313 ctf_dprintf("CTF container %p is a parent\n", (void *)fp);
314
315 /*
316 * Now that we've counted up the number of each type, we can allocate
317 * the hash tables, type translation table, and pointer table.
318 */
319 if ((err = ctf_hash_create(&fp->ctf_structs, pop[CTF_K_STRUCT])) != 0)
320 return (err);
321
322 if ((err = ctf_hash_create(&fp->ctf_unions, pop[CTF_K_UNION])) != 0)
323 return (err);
324
325 if ((err = ctf_hash_create(&fp->ctf_enums, pop[CTF_K_ENUM])) != 0)
326 return (err);
327
328 if ((err = ctf_hash_create(&fp->ctf_names,
329 pop[CTF_K_INTEGER] + pop[CTF_K_FLOAT] + pop[CTF_K_FUNCTION] +
330 pop[CTF_K_TYPEDEF] + pop[CTF_K_POINTER] + pop[CTF_K_VOLATILE] +
331 pop[CTF_K_CONST] + pop[CTF_K_RESTRICT])) != 0)
332 return (err);
333
334 fp->ctf_txlate = ctf_alloc(sizeof (uint_t) * (fp->ctf_typemax + 1));
335 fp->ctf_ptrtab = ctf_alloc(sizeof (ushort_t) * (fp->ctf_typemax + 1));
336
337 if (fp->ctf_txlate == NULL || fp->ctf_ptrtab == NULL)
338 return (EAGAIN); /* memory allocation failed */
339
340 xp = fp->ctf_txlate;
341 *xp++ = 0; /* type id 0 is used as a sentinel value */
342
343 bzero(fp->ctf_txlate, sizeof (uint_t) * (fp->ctf_typemax + 1));
344 bzero(fp->ctf_ptrtab, sizeof (ushort_t) * (fp->ctf_typemax + 1));
345
346 /*
347 * In the second pass through the types, we fill in each entry of the
348 * type and pointer tables and add names to the appropriate hashes.
349 */
350 for (id = 1, tp = tbuf; tp < tend; xp++, id++) {
351 ushort_t kind = LCTF_INFO_KIND(fp, tp->ctt_info);
352 ulong_t vlen = LCTF_INFO_VLEN(fp, tp->ctt_info);
353 ssize_t size, increment;
354
355 const char *name;
356 size_t vbytes;
357 ctf_helem_t *hep;
358 ctf_encoding_t cte;
359
360 (void) ctf_get_ctt_size(fp, tp, &size, &increment);
361 name = ctf_strptr(fp, tp->ctt_name);
362
363 switch (kind) {
364 case CTF_K_INTEGER:
365 case CTF_K_FLOAT:
366 /*
367 * Only insert a new integer base type definition if
368 * this type name has not been defined yet. We re-use
369 * the names with different encodings for bit-fields.
370 */
371 if ((hep = ctf_hash_lookup(&fp->ctf_names, fp,
372 name, strlen(name))) == NULL) {
373 err = ctf_hash_insert(&fp->ctf_names, fp,
374 CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
375 if (err != 0 && err != ECTF_STRTAB)
376 return (err);
377 } else if (ctf_type_encoding(fp, hep->h_type,
378 &cte) == 0 && cte.cte_bits == 0) {
379 /*
380 * Work-around SOS8 stabs bug: replace existing
381 * intrinsic w/ same name if it was zero bits.
382 */
383 hep->h_type = CTF_INDEX_TO_TYPE(id, child);
384 }
385 vbytes = sizeof (uint_t);
386 break;
387
388 case CTF_K_ARRAY:
389 vbytes = sizeof (ctf_array_t);
390 break;
391
392 case CTF_K_FUNCTION:
393 err = ctf_hash_insert(&fp->ctf_names, fp,
394 CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
395 if (err != 0 && err != ECTF_STRTAB)
396 return (err);
397 vbytes = sizeof (ushort_t) * (vlen + (vlen & 1));
398 break;
399
400 case CTF_K_STRUCT:
401 err = ctf_hash_define(&fp->ctf_structs, fp,
402 CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
403
404 if (err != 0 && err != ECTF_STRTAB)
405 return (err);
406
407 if (fp->ctf_version == CTF_VERSION_1 ||
408 size < CTF_LSTRUCT_THRESH)
409 vbytes = sizeof (ctf_member_t) * vlen;
410 else {
411 vbytes = sizeof (ctf_lmember_t) * vlen;
412 nlstructs++;
413 }
414 break;
415
416 case CTF_K_UNION:
417 err = ctf_hash_define(&fp->ctf_unions, fp,
418 CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
419
420 if (err != 0 && err != ECTF_STRTAB)
421 return (err);
422
423 if (fp->ctf_version == CTF_VERSION_1 ||
424 size < CTF_LSTRUCT_THRESH)
425 vbytes = sizeof (ctf_member_t) * vlen;
426 else {
427 vbytes = sizeof (ctf_lmember_t) * vlen;
428 nlunions++;
429 }
430 break;
431
432 case CTF_K_ENUM:
433 err = ctf_hash_define(&fp->ctf_enums, fp,
434 CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
435
436 if (err != 0 && err != ECTF_STRTAB)
437 return (err);
438
439 vbytes = sizeof (ctf_enum_t) * vlen;
440 break;
441
442 case CTF_K_TYPEDEF:
443 err = ctf_hash_insert(&fp->ctf_names, fp,
444 CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
445 if (err != 0 && err != ECTF_STRTAB)
446 return (err);
447 vbytes = 0;
448 break;
449
450 case CTF_K_FORWARD:
451 /*
452 * Only insert forward tags into the given hash if the
453 * type or tag name is not already present.
454 */
455 switch (tp->ctt_type) {
456 case CTF_K_STRUCT:
457 hp = &fp->ctf_structs;
458 break;
459 case CTF_K_UNION:
460 hp = &fp->ctf_unions;
461 break;
462 case CTF_K_ENUM:
463 hp = &fp->ctf_enums;
464 break;
465 default:
466 hp = &fp->ctf_structs;
467 }
468
469 if (ctf_hash_lookup(hp, fp,
470 name, strlen(name)) == NULL) {
471 err = ctf_hash_insert(hp, fp,
472 CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
473 if (err != 0 && err != ECTF_STRTAB)
474 return (err);
475 }
476 vbytes = 0;
477 break;
478
479 case CTF_K_POINTER:
480 /*
481 * If the type referenced by the pointer is in this CTF
482 * container, then store the index of the pointer type
483 * in fp->ctf_ptrtab[ index of referenced type ].
484 */
485 if (CTF_TYPE_ISCHILD(tp->ctt_type) == child &&
486 CTF_TYPE_TO_INDEX(tp->ctt_type) <= fp->ctf_typemax)
487 fp->ctf_ptrtab[
488 CTF_TYPE_TO_INDEX(tp->ctt_type)] = id;
489 /*FALLTHRU*/
490
491 case CTF_K_VOLATILE:
492 case CTF_K_CONST:
493 case CTF_K_RESTRICT:
494 err = ctf_hash_insert(&fp->ctf_names, fp,
495 CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
496 if (err != 0 && err != ECTF_STRTAB)
497 return (err);
498 /*FALLTHRU*/
499
500 default:
501 vbytes = 0;
502 break;
503 }
504
505 *xp = (uint_t)((uintptr_t)tp - (uintptr_t)fp->ctf_buf);
506 tp = (ctf_type_t *)((uintptr_t)tp + increment + vbytes);
507 }
508
509 ctf_dprintf("%lu total types processed\n", fp->ctf_typemax);
510 ctf_dprintf("%u enum names hashed\n", ctf_hash_size(&fp->ctf_enums));
511 ctf_dprintf("%u struct names hashed (%d long)\n",
512 ctf_hash_size(&fp->ctf_structs), nlstructs);
513 ctf_dprintf("%u union names hashed (%d long)\n",
514 ctf_hash_size(&fp->ctf_unions), nlunions);
515 ctf_dprintf("%u base type names hashed\n",
516 ctf_hash_size(&fp->ctf_names));
517
518 /*
519 * Make an additional pass through the pointer table to find pointers
520 * that point to anonymous typedef nodes. If we find one, modify the
521 * pointer table so that the pointer is also known to point to the
522 * node that is referenced by the anonymous typedef node.
523 */
524 for (id = 1; id <= fp->ctf_typemax; id++) {
525 if ((dst = fp->ctf_ptrtab[id]) != 0) {
526 tp = LCTF_INDEX_TO_TYPEPTR(fp, id);
527
528 if (LCTF_INFO_KIND(fp, tp->ctt_info) == CTF_K_TYPEDEF &&
529 strcmp(ctf_strptr(fp, tp->ctt_name), "") == 0 &&
530 CTF_TYPE_ISCHILD(tp->ctt_type) == child &&
531 CTF_TYPE_TO_INDEX(tp->ctt_type) <= fp->ctf_typemax)
532 fp->ctf_ptrtab[
533 CTF_TYPE_TO_INDEX(tp->ctt_type)] = dst;
534 }
535 }
536
537 return (0);
538 }
539
540 /*
541 * Decode the specified CTF buffer and optional symbol table and create a new
542 * CTF container representing the symbolic debugging information. This code
543 * can be used directly by the debugger, or it can be used as the engine for
544 * ctf_fdopen() or ctf_open(), below.
545 */
546 ctf_file_t *
ctf_bufopen(const ctf_sect_t * ctfsect,const ctf_sect_t * symsect,const ctf_sect_t * strsect,int * errp)547 ctf_bufopen(const ctf_sect_t *ctfsect, const ctf_sect_t *symsect,
548 const ctf_sect_t *strsect, int *errp)
549 {
550 const ctf_preamble_t *pp;
551 ctf_header_t hp;
552 ctf_file_t *fp;
553 void *buf, *base;
554 size_t size, hdrsz;
555 int err;
556
557 if (ctfsect == NULL || ((symsect == NULL) != (strsect == NULL)))
558 return (ctf_set_open_errno(errp, EINVAL));
559
560 if (symsect != NULL && symsect->cts_entsize != sizeof (Elf32_Sym) &&
561 symsect->cts_entsize != sizeof (Elf64_Sym))
562 return (ctf_set_open_errno(errp, ECTF_SYMTAB));
563
564 if (symsect != NULL && symsect->cts_data == NULL)
565 return (ctf_set_open_errno(errp, ECTF_SYMBAD));
566
567 if (strsect != NULL && strsect->cts_data == NULL)
568 return (ctf_set_open_errno(errp, ECTF_STRBAD));
569
570 if (ctfsect->cts_size < sizeof (ctf_preamble_t))
571 return (ctf_set_open_errno(errp, ECTF_NOCTFBUF));
572
573 pp = (const ctf_preamble_t *)ctfsect->cts_data;
574
575 ctf_dprintf("ctf_bufopen: magic=0x%x version=%u\n",
576 pp->ctp_magic, pp->ctp_version);
577
578 /*
579 * Validate each part of the CTF header (either V1 or V2).
580 * First, we validate the preamble (common to all versions). At that
581 * point, we know specific header version, and can validate the
582 * version-specific parts including section offsets and alignments.
583 */
584 if (pp->ctp_magic != CTF_MAGIC)
585 return (ctf_set_open_errno(errp, ECTF_NOCTFBUF));
586
587 if (pp->ctp_version == CTF_VERSION_2) {
588 if (ctfsect->cts_size < sizeof (ctf_header_t))
589 return (ctf_set_open_errno(errp, ECTF_NOCTFBUF));
590
591 bcopy(ctfsect->cts_data, &hp, sizeof (hp));
592 hdrsz = sizeof (ctf_header_t);
593
594 } else if (pp->ctp_version == CTF_VERSION_1) {
595 const ctf_header_v1_t *h1p =
596 (const ctf_header_v1_t *)ctfsect->cts_data;
597
598 if (ctfsect->cts_size < sizeof (ctf_header_v1_t))
599 return (ctf_set_open_errno(errp, ECTF_NOCTFBUF));
600
601 bzero(&hp, sizeof (hp));
602 hp.cth_preamble = h1p->cth_preamble;
603 hp.cth_objtoff = h1p->cth_objtoff;
604 hp.cth_funcoff = h1p->cth_funcoff;
605 hp.cth_typeoff = h1p->cth_typeoff;
606 hp.cth_stroff = h1p->cth_stroff;
607 hp.cth_strlen = h1p->cth_strlen;
608
609 hdrsz = sizeof (ctf_header_v1_t);
610 } else
611 return (ctf_set_open_errno(errp, ECTF_CTFVERS));
612
613 size = hp.cth_stroff + hp.cth_strlen;
614
615 ctf_dprintf("ctf_bufopen: uncompressed size=%lu\n", (ulong_t)size);
616
617 if (hp.cth_lbloff > size || hp.cth_objtoff > size ||
618 hp.cth_funcoff > size || hp.cth_typeoff > size ||
619 hp.cth_stroff > size)
620 return (ctf_set_open_errno(errp, ECTF_CORRUPT));
621
622 if (hp.cth_lbloff > hp.cth_objtoff ||
623 hp.cth_objtoff > hp.cth_funcoff ||
624 hp.cth_funcoff > hp.cth_typeoff ||
625 hp.cth_typeoff > hp.cth_stroff)
626 return (ctf_set_open_errno(errp, ECTF_CORRUPT));
627
628 if ((hp.cth_lbloff & 3) || (hp.cth_objtoff & 1) ||
629 (hp.cth_funcoff & 1) || (hp.cth_typeoff & 3))
630 return (ctf_set_open_errno(errp, ECTF_CORRUPT));
631
632 /*
633 * Once everything is determined to be valid, attempt to decompress
634 * the CTF data buffer if it is compressed. Otherwise we just put
635 * the data section's buffer pointer into ctf_buf, below.
636 */
637 if (hp.cth_flags & CTF_F_COMPRESS) {
638 size_t srclen, dstlen;
639 const void *src;
640 int rc = Z_OK;
641
642 if (ctf_zopen(errp) == NULL)
643 return (NULL); /* errp is set for us */
644
645 if ((base = ctf_data_alloc(size + hdrsz)) == MAP_FAILED)
646 return (ctf_set_open_errno(errp, ECTF_ZALLOC));
647
648 bcopy(ctfsect->cts_data, base, hdrsz);
649 ((ctf_preamble_t *)base)->ctp_flags &= ~CTF_F_COMPRESS;
650 buf = (uchar_t *)base + hdrsz;
651
652 src = (uchar_t *)ctfsect->cts_data + hdrsz;
653 srclen = ctfsect->cts_size - hdrsz;
654 dstlen = size;
655
656 if ((rc = z_uncompress(buf, &dstlen, src, srclen)) != Z_OK) {
657 ctf_dprintf("zlib inflate err: %s\n", z_strerror(rc));
658 ctf_data_free(base, size + hdrsz);
659 return (ctf_set_open_errno(errp, ECTF_DECOMPRESS));
660 }
661
662 if (dstlen != size) {
663 ctf_dprintf("zlib inflate short -- got %lu of %lu "
664 "bytes\n", (ulong_t)dstlen, (ulong_t)size);
665 ctf_data_free(base, size + hdrsz);
666 return (ctf_set_open_errno(errp, ECTF_CORRUPT));
667 }
668
669 ctf_data_protect(base, size + hdrsz);
670
671 } else {
672 base = (void *)ctfsect->cts_data;
673 buf = (uchar_t *)base + hdrsz;
674 }
675
676 /*
677 * Once we have uncompressed and validated the CTF data buffer, we can
678 * proceed with allocating a ctf_file_t and initializing it.
679 */
680 if ((fp = ctf_alloc(sizeof (ctf_file_t))) == NULL)
681 return (ctf_set_open_errno(errp, EAGAIN));
682
683 bzero(fp, sizeof (ctf_file_t));
684 fp->ctf_version = hp.cth_version;
685 fp->ctf_fileops = &ctf_fileops[hp.cth_version];
686 bcopy(ctfsect, &fp->ctf_data, sizeof (ctf_sect_t));
687
688 if (symsect != NULL) {
689 bcopy(symsect, &fp->ctf_symtab, sizeof (ctf_sect_t));
690 bcopy(strsect, &fp->ctf_strtab, sizeof (ctf_sect_t));
691 }
692
693 if (fp->ctf_data.cts_name != NULL)
694 fp->ctf_data.cts_name = ctf_strdup(fp->ctf_data.cts_name);
695 if (fp->ctf_symtab.cts_name != NULL)
696 fp->ctf_symtab.cts_name = ctf_strdup(fp->ctf_symtab.cts_name);
697 if (fp->ctf_strtab.cts_name != NULL)
698 fp->ctf_strtab.cts_name = ctf_strdup(fp->ctf_strtab.cts_name);
699
700 if (fp->ctf_data.cts_name == NULL)
701 fp->ctf_data.cts_name = __UNCONST(_CTF_NULLSTR);
702 if (fp->ctf_symtab.cts_name == NULL)
703 fp->ctf_symtab.cts_name = __UNCONST(_CTF_NULLSTR);
704 if (fp->ctf_strtab.cts_name == NULL)
705 fp->ctf_strtab.cts_name = __UNCONST(_CTF_NULLSTR);
706
707 fp->ctf_str[CTF_STRTAB_0].cts_strs = (const char *)buf + hp.cth_stroff;
708 fp->ctf_str[CTF_STRTAB_0].cts_len = hp.cth_strlen;
709
710 if (strsect != NULL) {
711 fp->ctf_str[CTF_STRTAB_1].cts_strs = strsect->cts_data;
712 fp->ctf_str[CTF_STRTAB_1].cts_len = strsect->cts_size;
713 }
714
715 fp->ctf_base = base;
716 fp->ctf_buf = buf;
717 fp->ctf_size = size + hdrsz;
718
719 /*
720 * If we have a parent container name and label, store the relocated
721 * string pointers in the CTF container for easy access later.
722 */
723 if (hp.cth_parlabel != 0)
724 fp->ctf_parlabel = ctf_strptr(fp, hp.cth_parlabel);
725 if (hp.cth_parname != 0)
726 fp->ctf_parname = ctf_strptr(fp, hp.cth_parname);
727
728 ctf_dprintf("ctf_bufopen: parent name %s (label %s)\n",
729 fp->ctf_parname ? fp->ctf_parname : "<NULL>",
730 fp->ctf_parlabel ? fp->ctf_parlabel : "<NULL>");
731
732 /*
733 * If we have a symbol table section, allocate and initialize
734 * the symtab translation table, pointed to by ctf_sxlate.
735 */
736 if (symsect != NULL) {
737 fp->ctf_nsyms = symsect->cts_size / symsect->cts_entsize;
738 fp->ctf_sxlate = ctf_alloc(fp->ctf_nsyms * sizeof (uint_t));
739
740 if (fp->ctf_sxlate == NULL) {
741 (void) ctf_set_open_errno(errp, EAGAIN);
742 goto bad;
743 }
744
745 if ((err = init_symtab(fp, &hp, symsect, strsect)) != 0) {
746 (void) ctf_set_open_errno(errp, err);
747 goto bad;
748 }
749 }
750
751 if ((err = init_types(fp, &hp)) != 0) {
752 (void) ctf_set_open_errno(errp, err);
753 goto bad;
754 }
755
756 /*
757 * Initialize the ctf_lookup_by_name top-level dictionary. We keep an
758 * array of type name prefixes and the corresponding ctf_hash to use.
759 * NOTE: This code must be kept in sync with the code in ctf_update().
760 */
761 fp->ctf_lookups[0].ctl_prefix = "struct";
762 fp->ctf_lookups[0].ctl_len = strlen(fp->ctf_lookups[0].ctl_prefix);
763 fp->ctf_lookups[0].ctl_hash = &fp->ctf_structs;
764 fp->ctf_lookups[1].ctl_prefix = "union";
765 fp->ctf_lookups[1].ctl_len = strlen(fp->ctf_lookups[1].ctl_prefix);
766 fp->ctf_lookups[1].ctl_hash = &fp->ctf_unions;
767 fp->ctf_lookups[2].ctl_prefix = "enum";
768 fp->ctf_lookups[2].ctl_len = strlen(fp->ctf_lookups[2].ctl_prefix);
769 fp->ctf_lookups[2].ctl_hash = &fp->ctf_enums;
770 fp->ctf_lookups[3].ctl_prefix = _CTF_NULLSTR;
771 fp->ctf_lookups[3].ctl_len = strlen(fp->ctf_lookups[3].ctl_prefix);
772 fp->ctf_lookups[3].ctl_hash = &fp->ctf_names;
773 fp->ctf_lookups[4].ctl_prefix = NULL;
774 fp->ctf_lookups[4].ctl_len = 0;
775 fp->ctf_lookups[4].ctl_hash = NULL;
776
777 if (symsect != NULL) {
778 if (symsect->cts_entsize == sizeof (Elf64_Sym))
779 (void) ctf_setmodel(fp, CTF_MODEL_LP64);
780 else
781 (void) ctf_setmodel(fp, CTF_MODEL_ILP32);
782 } else
783 (void) ctf_setmodel(fp, CTF_MODEL_NATIVE);
784
785 fp->ctf_refcnt = 1;
786 return (fp);
787
788 bad:
789 ctf_close(fp);
790 return (NULL);
791 }
792
793 /*
794 * Dupliate a ctf_file_t and its underlying section information into a new
795 * container. This works by copying the three ctf_sect_t's of the original
796 * container if they exist and passing those into ctf_bufopen. To copy those, we
797 * mmap anonymous memory with ctf_data_alloc and bcopy the data across. It's not
798 * the cheapest thing, but it's what we've got.
799 */
800 ctf_file_t *
ctf_dup(ctf_file_t * ofp)801 ctf_dup(ctf_file_t *ofp)
802 {
803 ctf_file_t *fp;
804 ctf_sect_t ctfsect, symsect, strsect;
805 ctf_sect_t *ctp, *symp, *strp;
806 void *cbuf, *symbuf, *strbuf;
807 int err;
808
809 cbuf = symbuf = strbuf = NULL;
810 /*
811 * The ctfsect isn't allowed to not exist, but the symbol and string
812 * section might not. We only need to copy the data of the section, not
813 * the name, as ctf_bufopen will take care of that.
814 */
815 bcopy(&ofp->ctf_data, &ctfsect, sizeof (ctf_sect_t));
816 cbuf = ctf_data_alloc(ctfsect.cts_size);
817 if (cbuf == MAP_FAILED) {
818 (void) ctf_set_errno(ofp, ECTF_MMAP);
819 return (NULL);
820 }
821
822 bcopy(ctfsect.cts_data, cbuf, ctfsect.cts_size);
823 ctf_data_protect(cbuf, ctfsect.cts_size);
824 ctfsect.cts_data = cbuf;
825 ctfsect.cts_offset = 0;
826 ctp = &ctfsect;
827
828 if (ofp->ctf_symtab.cts_data != NULL) {
829 bcopy(&ofp->ctf_symtab, &symsect, sizeof (ctf_sect_t));
830 symbuf = ctf_data_alloc(symsect.cts_size);
831 if (symbuf == MAP_FAILED) {
832 (void) ctf_set_errno(ofp, ECTF_MMAP);
833 goto err;
834 }
835 bcopy(symsect.cts_data, symbuf, symsect.cts_size);
836 ctf_data_protect(symbuf, symsect.cts_size);
837 symsect.cts_data = symbuf;
838 symsect.cts_offset = 0;
839 symp = &symsect;
840 } else {
841 symp = NULL;
842 }
843
844 if (ofp->ctf_strtab.cts_data != NULL) {
845 bcopy(&ofp->ctf_strtab, &strsect, sizeof (ctf_sect_t));
846 strbuf = ctf_data_alloc(strsect.cts_size);
847 if (strbuf == MAP_FAILED) {
848 (void) ctf_set_errno(ofp, ECTF_MMAP);
849 goto err;
850 }
851 bcopy(strsect.cts_data, strbuf, strsect.cts_size);
852 ctf_data_protect(strbuf, strsect.cts_size);
853 strsect.cts_data = strbuf;
854 strsect.cts_offset = 0;
855 strp = &strsect;
856 } else {
857 strp = NULL;
858 }
859
860 fp = ctf_bufopen(ctp, symp, strp, &err);
861 if (fp == NULL) {
862 (void) ctf_set_errno(ofp, err);
863 goto err;
864 }
865
866 fp->ctf_flags |= LCTF_MMAP;
867
868 return (fp);
869
870 err:
871 ctf_data_free(cbuf, ctfsect.cts_size);
872 if (symbuf != NULL)
873 ctf_data_free(symbuf, symsect.cts_size);
874 if (strbuf != NULL)
875 ctf_data_free(strbuf, strsect.cts_size);
876 return (NULL);
877 }
878
879 /*
880 * Close the specified CTF container and free associated data structures. Note
881 * that ctf_close() is a reference counted operation: if the specified file is
882 * the parent of other active containers, its reference count will be greater
883 * than one and it will be freed later when no active children exist.
884 */
885 void
ctf_close(ctf_file_t * fp)886 ctf_close(ctf_file_t *fp)
887 {
888 ctf_dtdef_t *dtd, *ntd;
889
890 if (fp == NULL)
891 return; /* allow ctf_close(NULL) to simplify caller code */
892
893 ctf_dprintf("ctf_close(%p) refcnt=%u\n", (void *)fp, fp->ctf_refcnt);
894
895 if (fp->ctf_refcnt > 1) {
896 fp->ctf_refcnt--;
897 return;
898 }
899
900 if (fp->ctf_parent != NULL)
901 ctf_close(fp->ctf_parent);
902
903 /*
904 * Note, to work properly with reference counting on the dynamic
905 * section, we must delete the list in reverse.
906 */
907 for (dtd = ctf_list_prev(&fp->ctf_dtdefs); dtd != NULL; dtd = ntd) {
908 ntd = ctf_list_prev(dtd);
909 ctf_dtd_delete(fp, dtd);
910 }
911
912 ctf_free(fp->ctf_dthash, fp->ctf_dthashlen * sizeof (ctf_dtdef_t *));
913
914 if (fp->ctf_flags & LCTF_MMAP) {
915 if (fp->ctf_data.cts_data != NULL)
916 ctf_sect_munmap(&fp->ctf_data);
917 if (fp->ctf_symtab.cts_data != NULL)
918 ctf_sect_munmap(&fp->ctf_symtab);
919 if (fp->ctf_strtab.cts_data != NULL)
920 ctf_sect_munmap(&fp->ctf_strtab);
921 }
922
923 if (fp->ctf_data.cts_name != _CTF_NULLSTR &&
924 fp->ctf_data.cts_name != NULL) {
925 ctf_free(__UNCONST(fp->ctf_data.cts_name),
926 strlen(fp->ctf_data.cts_name) + 1);
927 }
928
929 if (fp->ctf_symtab.cts_name != _CTF_NULLSTR &&
930 fp->ctf_symtab.cts_name != NULL) {
931 ctf_free(__UNCONST(fp->ctf_symtab.cts_name),
932 strlen(fp->ctf_symtab.cts_name) + 1);
933 }
934
935 if (fp->ctf_strtab.cts_name != _CTF_NULLSTR &&
936 fp->ctf_strtab.cts_name != NULL) {
937 ctf_free(__UNCONST(fp->ctf_strtab.cts_name),
938 strlen(fp->ctf_strtab.cts_name) + 1);
939 }
940
941 if (fp->ctf_base != fp->ctf_data.cts_data && fp->ctf_base != NULL)
942 ctf_data_free(__UNCONST(fp->ctf_base), fp->ctf_size);
943
944 if (fp->ctf_sxlate != NULL)
945 ctf_free(fp->ctf_sxlate, sizeof (uint_t) * fp->ctf_nsyms);
946
947 if (fp->ctf_txlate != NULL) {
948 ctf_free(fp->ctf_txlate,
949 sizeof (uint_t) * (fp->ctf_typemax + 1));
950 }
951
952 if (fp->ctf_ptrtab != NULL) {
953 ctf_free(fp->ctf_ptrtab,
954 sizeof (ushort_t) * (fp->ctf_typemax + 1));
955 }
956
957 ctf_hash_destroy(&fp->ctf_structs);
958 ctf_hash_destroy(&fp->ctf_unions);
959 ctf_hash_destroy(&fp->ctf_enums);
960 ctf_hash_destroy(&fp->ctf_names);
961
962 ctf_free(fp, sizeof (ctf_file_t));
963 }
964
965 /*
966 * Return the CTF handle for the parent CTF container, if one exists.
967 * Otherwise return NULL to indicate this container has no imported parent.
968 */
969 ctf_file_t *
ctf_parent_file(ctf_file_t * fp)970 ctf_parent_file(ctf_file_t *fp)
971 {
972 return (fp->ctf_parent);
973 }
974
975 /*
976 * Return the name of the parent CTF container, if one exists. Otherwise
977 * return NULL to indicate this container is a root container.
978 */
979 const char *
ctf_parent_name(ctf_file_t * fp)980 ctf_parent_name(ctf_file_t *fp)
981 {
982 return (fp->ctf_parname);
983 }
984
985 /*
986 * Import the types from the specified parent container by storing a pointer
987 * to it in ctf_parent and incrementing its reference count. Only one parent
988 * is allowed: if a parent already exists, it is replaced by the new parent.
989 */
990 int
ctf_import(ctf_file_t * fp,ctf_file_t * pfp)991 ctf_import(ctf_file_t *fp, ctf_file_t *pfp)
992 {
993 if (fp == NULL || fp == pfp || (pfp != NULL && pfp->ctf_refcnt == 0))
994 return (ctf_set_errno(fp, EINVAL));
995
996 if (pfp != NULL && pfp->ctf_dmodel != fp->ctf_dmodel)
997 return (ctf_set_errno(fp, ECTF_DMODEL));
998
999 if (fp->ctf_parent != NULL)
1000 ctf_close(fp->ctf_parent);
1001
1002 if (pfp != NULL) {
1003 fp->ctf_flags |= LCTF_CHILD;
1004 pfp->ctf_refcnt++;
1005 }
1006
1007 fp->ctf_parent = pfp;
1008 return (0);
1009 }
1010
1011 /*
1012 * Set the data model constant for the CTF container.
1013 */
1014 int
ctf_setmodel(ctf_file_t * fp,int model)1015 ctf_setmodel(ctf_file_t *fp, int model)
1016 {
1017 const ctf_dmodel_t *dp;
1018
1019 for (dp = _libctf_models; dp->ctd_name != NULL; dp++) {
1020 if (dp->ctd_code == model) {
1021 fp->ctf_dmodel = dp;
1022 return (0);
1023 }
1024 }
1025
1026 return (ctf_set_errno(fp, EINVAL));
1027 }
1028
1029 /*
1030 * Return the data model constant for the CTF container.
1031 */
1032 int
ctf_getmodel(ctf_file_t * fp)1033 ctf_getmodel(ctf_file_t *fp)
1034 {
1035 return (fp->ctf_dmodel->ctd_code);
1036 }
1037
1038 void
ctf_setspecific(ctf_file_t * fp,void * data)1039 ctf_setspecific(ctf_file_t *fp, void *data)
1040 {
1041 fp->ctf_specific = data;
1042 }
1043
1044 void *
ctf_getspecific(ctf_file_t * fp)1045 ctf_getspecific(ctf_file_t *fp)
1046 {
1047 return (fp->ctf_specific);
1048 }
1049