1 //===- AsmWriter.cpp - Printing LLVM as an assembly file ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This library implements `print` family of functions in classes like 10 // Module, Function, Value, etc. In-memory representation of those classes is 11 // converted to IR strings. 12 // 13 // Note that these routines must be extremely tolerant of various errors in the 14 // LLVM code, because it can be used for debugging transformations. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/APFloat.h" 19 #include "llvm/ADT/APInt.h" 20 #include "llvm/ADT/ArrayRef.h" 21 #include "llvm/ADT/DenseMap.h" 22 #include "llvm/ADT/None.h" 23 #include "llvm/ADT/Optional.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SetVector.h" 26 #include "llvm/ADT/SmallString.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/StringExtras.h" 29 #include "llvm/ADT/StringRef.h" 30 #include "llvm/ADT/iterator_range.h" 31 #include "llvm/BinaryFormat/Dwarf.h" 32 #include "llvm/Config/llvm-config.h" 33 #include "llvm/IR/Argument.h" 34 #include "llvm/IR/AssemblyAnnotationWriter.h" 35 #include "llvm/IR/Attributes.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CFG.h" 38 #include "llvm/IR/CallingConv.h" 39 #include "llvm/IR/Comdat.h" 40 #include "llvm/IR/Constant.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/DebugInfoMetadata.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalAlias.h" 46 #include "llvm/IR/GlobalIFunc.h" 47 #include "llvm/IR/GlobalIndirectSymbol.h" 48 #include "llvm/IR/GlobalObject.h" 49 #include "llvm/IR/GlobalValue.h" 50 #include "llvm/IR/GlobalVariable.h" 51 #include "llvm/IR/IRPrintingPasses.h" 52 #include "llvm/IR/InlineAsm.h" 53 #include "llvm/IR/InstrTypes.h" 54 #include "llvm/IR/Instruction.h" 55 #include "llvm/IR/Instructions.h" 56 #include "llvm/IR/IntrinsicInst.h" 57 #include "llvm/IR/LLVMContext.h" 58 #include "llvm/IR/Metadata.h" 59 #include "llvm/IR/Module.h" 60 #include "llvm/IR/ModuleSlotTracker.h" 61 #include "llvm/IR/ModuleSummaryIndex.h" 62 #include "llvm/IR/Operator.h" 63 #include "llvm/IR/Type.h" 64 #include "llvm/IR/TypeFinder.h" 65 #include "llvm/IR/Use.h" 66 #include "llvm/IR/UseListOrder.h" 67 #include "llvm/IR/User.h" 68 #include "llvm/IR/Value.h" 69 #include "llvm/Support/AtomicOrdering.h" 70 #include "llvm/Support/Casting.h" 71 #include "llvm/Support/Compiler.h" 72 #include "llvm/Support/Debug.h" 73 #include "llvm/Support/ErrorHandling.h" 74 #include "llvm/Support/Format.h" 75 #include "llvm/Support/FormattedStream.h" 76 #include "llvm/Support/raw_ostream.h" 77 #include <algorithm> 78 #include <cassert> 79 #include <cctype> 80 #include <cstddef> 81 #include <cstdint> 82 #include <iterator> 83 #include <memory> 84 #include <string> 85 #include <tuple> 86 #include <utility> 87 #include <vector> 88 89 using namespace llvm; 90 91 // Make virtual table appear in this compilation unit. 92 AssemblyAnnotationWriter::~AssemblyAnnotationWriter() = default; 93 94 //===----------------------------------------------------------------------===// 95 // Helper Functions 96 //===----------------------------------------------------------------------===// 97 98 namespace { 99 100 struct OrderMap { 101 DenseMap<const Value *, std::pair<unsigned, bool>> IDs; 102 103 unsigned size() const { return IDs.size(); } 104 std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; } 105 106 std::pair<unsigned, bool> lookup(const Value *V) const { 107 return IDs.lookup(V); 108 } 109 110 void index(const Value *V) { 111 // Explicitly sequence get-size and insert-value operations to avoid UB. 112 unsigned ID = IDs.size() + 1; 113 IDs[V].first = ID; 114 } 115 }; 116 117 } // end anonymous namespace 118 119 /// Look for a value that might be wrapped as metadata, e.g. a value in a 120 /// metadata operand. Returns the input value as-is if it is not wrapped. 121 static const Value *skipMetadataWrapper(const Value *V) { 122 if (const auto *MAV = dyn_cast<MetadataAsValue>(V)) 123 if (const auto *VAM = dyn_cast<ValueAsMetadata>(MAV->getMetadata())) 124 return VAM->getValue(); 125 return V; 126 } 127 128 static void orderValue(const Value *V, OrderMap &OM) { 129 if (OM.lookup(V).first) 130 return; 131 132 if (const Constant *C = dyn_cast<Constant>(V)) 133 if (C->getNumOperands() && !isa<GlobalValue>(C)) 134 for (const Value *Op : C->operands()) 135 if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op)) 136 orderValue(Op, OM); 137 138 // Note: we cannot cache this lookup above, since inserting into the map 139 // changes the map's size, and thus affects the other IDs. 140 OM.index(V); 141 } 142 143 static OrderMap orderModule(const Module *M) { 144 OrderMap OM; 145 146 for (const GlobalVariable &G : M->globals()) { 147 if (G.hasInitializer()) 148 if (!isa<GlobalValue>(G.getInitializer())) 149 orderValue(G.getInitializer(), OM); 150 orderValue(&G, OM); 151 } 152 for (const GlobalAlias &A : M->aliases()) { 153 if (!isa<GlobalValue>(A.getAliasee())) 154 orderValue(A.getAliasee(), OM); 155 orderValue(&A, OM); 156 } 157 for (const GlobalIFunc &I : M->ifuncs()) { 158 if (!isa<GlobalValue>(I.getResolver())) 159 orderValue(I.getResolver(), OM); 160 orderValue(&I, OM); 161 } 162 for (const Function &F : *M) { 163 for (const Use &U : F.operands()) 164 if (!isa<GlobalValue>(U.get())) 165 orderValue(U.get(), OM); 166 167 orderValue(&F, OM); 168 169 if (F.isDeclaration()) 170 continue; 171 172 for (const Argument &A : F.args()) 173 orderValue(&A, OM); 174 for (const BasicBlock &BB : F) { 175 orderValue(&BB, OM); 176 for (const Instruction &I : BB) { 177 for (const Value *Op : I.operands()) { 178 Op = skipMetadataWrapper(Op); 179 if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) || 180 isa<InlineAsm>(*Op)) 181 orderValue(Op, OM); 182 } 183 orderValue(&I, OM); 184 } 185 } 186 } 187 return OM; 188 } 189 190 static void predictValueUseListOrderImpl(const Value *V, const Function *F, 191 unsigned ID, const OrderMap &OM, 192 UseListOrderStack &Stack) { 193 // Predict use-list order for this one. 194 using Entry = std::pair<const Use *, unsigned>; 195 SmallVector<Entry, 64> List; 196 for (const Use &U : V->uses()) 197 // Check if this user will be serialized. 198 if (OM.lookup(U.getUser()).first) 199 List.push_back(std::make_pair(&U, List.size())); 200 201 if (List.size() < 2) 202 // We may have lost some users. 203 return; 204 205 bool GetsReversed = 206 !isa<GlobalVariable>(V) && !isa<Function>(V) && !isa<BasicBlock>(V); 207 if (auto *BA = dyn_cast<BlockAddress>(V)) 208 ID = OM.lookup(BA->getBasicBlock()).first; 209 llvm::sort(List, [&](const Entry &L, const Entry &R) { 210 const Use *LU = L.first; 211 const Use *RU = R.first; 212 if (LU == RU) 213 return false; 214 215 auto LID = OM.lookup(LU->getUser()).first; 216 auto RID = OM.lookup(RU->getUser()).first; 217 218 // If ID is 4, then expect: 7 6 5 1 2 3. 219 if (LID < RID) { 220 if (GetsReversed) 221 if (RID <= ID) 222 return true; 223 return false; 224 } 225 if (RID < LID) { 226 if (GetsReversed) 227 if (LID <= ID) 228 return false; 229 return true; 230 } 231 232 // LID and RID are equal, so we have different operands of the same user. 233 // Assume operands are added in order for all instructions. 234 if (GetsReversed) 235 if (LID <= ID) 236 return LU->getOperandNo() < RU->getOperandNo(); 237 return LU->getOperandNo() > RU->getOperandNo(); 238 }); 239 240 if (llvm::is_sorted(List, [](const Entry &L, const Entry &R) { 241 return L.second < R.second; 242 })) 243 // Order is already correct. 244 return; 245 246 // Store the shuffle. 247 Stack.emplace_back(V, F, List.size()); 248 assert(List.size() == Stack.back().Shuffle.size() && "Wrong size"); 249 for (size_t I = 0, E = List.size(); I != E; ++I) 250 Stack.back().Shuffle[I] = List[I].second; 251 } 252 253 static void predictValueUseListOrder(const Value *V, const Function *F, 254 OrderMap &OM, UseListOrderStack &Stack) { 255 auto &IDPair = OM[V]; 256 assert(IDPair.first && "Unmapped value"); 257 if (IDPair.second) 258 // Already predicted. 259 return; 260 261 // Do the actual prediction. 262 IDPair.second = true; 263 if (!V->use_empty() && std::next(V->use_begin()) != V->use_end()) 264 predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack); 265 266 // Recursive descent into constants. 267 if (const Constant *C = dyn_cast<Constant>(V)) 268 if (C->getNumOperands()) // Visit GlobalValues. 269 for (const Value *Op : C->operands()) 270 if (isa<Constant>(Op)) // Visit GlobalValues. 271 predictValueUseListOrder(Op, F, OM, Stack); 272 } 273 274 static UseListOrderStack predictUseListOrder(const Module *M) { 275 OrderMap OM = orderModule(M); 276 277 // Use-list orders need to be serialized after all the users have been added 278 // to a value, or else the shuffles will be incomplete. Store them per 279 // function in a stack. 280 // 281 // Aside from function order, the order of values doesn't matter much here. 282 UseListOrderStack Stack; 283 284 // We want to visit the functions backward now so we can list function-local 285 // constants in the last Function they're used in. Module-level constants 286 // have already been visited above. 287 for (const Function &F : make_range(M->rbegin(), M->rend())) { 288 if (F.isDeclaration()) 289 continue; 290 for (const BasicBlock &BB : F) 291 predictValueUseListOrder(&BB, &F, OM, Stack); 292 for (const Argument &A : F.args()) 293 predictValueUseListOrder(&A, &F, OM, Stack); 294 for (const BasicBlock &BB : F) 295 for (const Instruction &I : BB) 296 for (const Value *Op : I.operands()) { 297 Op = skipMetadataWrapper(Op); 298 if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues. 299 predictValueUseListOrder(Op, &F, OM, Stack); 300 } 301 for (const BasicBlock &BB : F) 302 for (const Instruction &I : BB) 303 predictValueUseListOrder(&I, &F, OM, Stack); 304 } 305 306 // Visit globals last. 307 for (const GlobalVariable &G : M->globals()) 308 predictValueUseListOrder(&G, nullptr, OM, Stack); 309 for (const Function &F : *M) 310 predictValueUseListOrder(&F, nullptr, OM, Stack); 311 for (const GlobalAlias &A : M->aliases()) 312 predictValueUseListOrder(&A, nullptr, OM, Stack); 313 for (const GlobalIFunc &I : M->ifuncs()) 314 predictValueUseListOrder(&I, nullptr, OM, Stack); 315 for (const GlobalVariable &G : M->globals()) 316 if (G.hasInitializer()) 317 predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack); 318 for (const GlobalAlias &A : M->aliases()) 319 predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack); 320 for (const GlobalIFunc &I : M->ifuncs()) 321 predictValueUseListOrder(I.getResolver(), nullptr, OM, Stack); 322 for (const Function &F : *M) 323 for (const Use &U : F.operands()) 324 predictValueUseListOrder(U.get(), nullptr, OM, Stack); 325 326 return Stack; 327 } 328 329 static const Module *getModuleFromVal(const Value *V) { 330 if (const Argument *MA = dyn_cast<Argument>(V)) 331 return MA->getParent() ? MA->getParent()->getParent() : nullptr; 332 333 if (const BasicBlock *BB = dyn_cast<BasicBlock>(V)) 334 return BB->getParent() ? BB->getParent()->getParent() : nullptr; 335 336 if (const Instruction *I = dyn_cast<Instruction>(V)) { 337 const Function *M = I->getParent() ? I->getParent()->getParent() : nullptr; 338 return M ? M->getParent() : nullptr; 339 } 340 341 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 342 return GV->getParent(); 343 344 if (const auto *MAV = dyn_cast<MetadataAsValue>(V)) { 345 for (const User *U : MAV->users()) 346 if (isa<Instruction>(U)) 347 if (const Module *M = getModuleFromVal(U)) 348 return M; 349 return nullptr; 350 } 351 352 return nullptr; 353 } 354 355 static void PrintCallingConv(unsigned cc, raw_ostream &Out) { 356 switch (cc) { 357 default: Out << "cc" << cc; break; 358 case CallingConv::Fast: Out << "fastcc"; break; 359 case CallingConv::Cold: Out << "coldcc"; break; 360 case CallingConv::WebKit_JS: Out << "webkit_jscc"; break; 361 case CallingConv::AnyReg: Out << "anyregcc"; break; 362 case CallingConv::PreserveMost: Out << "preserve_mostcc"; break; 363 case CallingConv::PreserveAll: Out << "preserve_allcc"; break; 364 case CallingConv::CXX_FAST_TLS: Out << "cxx_fast_tlscc"; break; 365 case CallingConv::GHC: Out << "ghccc"; break; 366 case CallingConv::Tail: Out << "tailcc"; break; 367 case CallingConv::CFGuard_Check: Out << "cfguard_checkcc"; break; 368 case CallingConv::X86_StdCall: Out << "x86_stdcallcc"; break; 369 case CallingConv::X86_FastCall: Out << "x86_fastcallcc"; break; 370 case CallingConv::X86_ThisCall: Out << "x86_thiscallcc"; break; 371 case CallingConv::X86_RegCall: Out << "x86_regcallcc"; break; 372 case CallingConv::X86_VectorCall:Out << "x86_vectorcallcc"; break; 373 case CallingConv::Intel_OCL_BI: Out << "intel_ocl_bicc"; break; 374 case CallingConv::ARM_APCS: Out << "arm_apcscc"; break; 375 case CallingConv::ARM_AAPCS: Out << "arm_aapcscc"; break; 376 case CallingConv::ARM_AAPCS_VFP: Out << "arm_aapcs_vfpcc"; break; 377 case CallingConv::AArch64_VectorCall: Out << "aarch64_vector_pcs"; break; 378 case CallingConv::AArch64_SVE_VectorCall: 379 Out << "aarch64_sve_vector_pcs"; 380 break; 381 case CallingConv::MSP430_INTR: Out << "msp430_intrcc"; break; 382 case CallingConv::AVR_INTR: Out << "avr_intrcc "; break; 383 case CallingConv::AVR_SIGNAL: Out << "avr_signalcc "; break; 384 case CallingConv::PTX_Kernel: Out << "ptx_kernel"; break; 385 case CallingConv::PTX_Device: Out << "ptx_device"; break; 386 case CallingConv::X86_64_SysV: Out << "x86_64_sysvcc"; break; 387 case CallingConv::Win64: Out << "win64cc"; break; 388 case CallingConv::SPIR_FUNC: Out << "spir_func"; break; 389 case CallingConv::SPIR_KERNEL: Out << "spir_kernel"; break; 390 case CallingConv::Swift: Out << "swiftcc"; break; 391 case CallingConv::SwiftTail: Out << "swifttailcc"; break; 392 case CallingConv::X86_INTR: Out << "x86_intrcc"; break; 393 case CallingConv::HHVM: Out << "hhvmcc"; break; 394 case CallingConv::HHVM_C: Out << "hhvm_ccc"; break; 395 case CallingConv::AMDGPU_VS: Out << "amdgpu_vs"; break; 396 case CallingConv::AMDGPU_LS: Out << "amdgpu_ls"; break; 397 case CallingConv::AMDGPU_HS: Out << "amdgpu_hs"; break; 398 case CallingConv::AMDGPU_ES: Out << "amdgpu_es"; break; 399 case CallingConv::AMDGPU_GS: Out << "amdgpu_gs"; break; 400 case CallingConv::AMDGPU_PS: Out << "amdgpu_ps"; break; 401 case CallingConv::AMDGPU_CS: Out << "amdgpu_cs"; break; 402 case CallingConv::AMDGPU_KERNEL: Out << "amdgpu_kernel"; break; 403 case CallingConv::AMDGPU_Gfx: Out << "amdgpu_gfx"; break; 404 } 405 } 406 407 enum PrefixType { 408 GlobalPrefix, 409 ComdatPrefix, 410 LabelPrefix, 411 LocalPrefix, 412 NoPrefix 413 }; 414 415 void llvm::printLLVMNameWithoutPrefix(raw_ostream &OS, StringRef Name) { 416 assert(!Name.empty() && "Cannot get empty name!"); 417 418 // Scan the name to see if it needs quotes first. 419 bool NeedsQuotes = isdigit(static_cast<unsigned char>(Name[0])); 420 if (!NeedsQuotes) { 421 for (unsigned i = 0, e = Name.size(); i != e; ++i) { 422 // By making this unsigned, the value passed in to isalnum will always be 423 // in the range 0-255. This is important when building with MSVC because 424 // its implementation will assert. This situation can arise when dealing 425 // with UTF-8 multibyte characters. 426 unsigned char C = Name[i]; 427 if (!isalnum(static_cast<unsigned char>(C)) && C != '-' && C != '.' && 428 C != '_') { 429 NeedsQuotes = true; 430 break; 431 } 432 } 433 } 434 435 // If we didn't need any quotes, just write out the name in one blast. 436 if (!NeedsQuotes) { 437 OS << Name; 438 return; 439 } 440 441 // Okay, we need quotes. Output the quotes and escape any scary characters as 442 // needed. 443 OS << '"'; 444 printEscapedString(Name, OS); 445 OS << '"'; 446 } 447 448 /// Turn the specified name into an 'LLVM name', which is either prefixed with % 449 /// (if the string only contains simple characters) or is surrounded with ""'s 450 /// (if it has special chars in it). Print it out. 451 static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix) { 452 switch (Prefix) { 453 case NoPrefix: 454 break; 455 case GlobalPrefix: 456 OS << '@'; 457 break; 458 case ComdatPrefix: 459 OS << '$'; 460 break; 461 case LabelPrefix: 462 break; 463 case LocalPrefix: 464 OS << '%'; 465 break; 466 } 467 printLLVMNameWithoutPrefix(OS, Name); 468 } 469 470 /// Turn the specified name into an 'LLVM name', which is either prefixed with % 471 /// (if the string only contains simple characters) or is surrounded with ""'s 472 /// (if it has special chars in it). Print it out. 473 static void PrintLLVMName(raw_ostream &OS, const Value *V) { 474 PrintLLVMName(OS, V->getName(), 475 isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix); 476 } 477 478 static void PrintShuffleMask(raw_ostream &Out, Type *Ty, ArrayRef<int> Mask) { 479 Out << ", <"; 480 if (isa<ScalableVectorType>(Ty)) 481 Out << "vscale x "; 482 Out << Mask.size() << " x i32> "; 483 bool FirstElt = true; 484 if (all_of(Mask, [](int Elt) { return Elt == 0; })) { 485 Out << "zeroinitializer"; 486 } else if (all_of(Mask, [](int Elt) { return Elt == UndefMaskElem; })) { 487 Out << "undef"; 488 } else { 489 Out << "<"; 490 for (int Elt : Mask) { 491 if (FirstElt) 492 FirstElt = false; 493 else 494 Out << ", "; 495 Out << "i32 "; 496 if (Elt == UndefMaskElem) 497 Out << "undef"; 498 else 499 Out << Elt; 500 } 501 Out << ">"; 502 } 503 } 504 505 namespace { 506 507 class TypePrinting { 508 public: 509 TypePrinting(const Module *M = nullptr) : DeferredM(M) {} 510 511 TypePrinting(const TypePrinting &) = delete; 512 TypePrinting &operator=(const TypePrinting &) = delete; 513 514 /// The named types that are used by the current module. 515 TypeFinder &getNamedTypes(); 516 517 /// The numbered types, number to type mapping. 518 std::vector<StructType *> &getNumberedTypes(); 519 520 bool empty(); 521 522 void print(Type *Ty, raw_ostream &OS); 523 524 void printStructBody(StructType *Ty, raw_ostream &OS); 525 526 private: 527 void incorporateTypes(); 528 529 /// A module to process lazily when needed. Set to nullptr as soon as used. 530 const Module *DeferredM; 531 532 TypeFinder NamedTypes; 533 534 // The numbered types, along with their value. 535 DenseMap<StructType *, unsigned> Type2Number; 536 537 std::vector<StructType *> NumberedTypes; 538 }; 539 540 } // end anonymous namespace 541 542 TypeFinder &TypePrinting::getNamedTypes() { 543 incorporateTypes(); 544 return NamedTypes; 545 } 546 547 std::vector<StructType *> &TypePrinting::getNumberedTypes() { 548 incorporateTypes(); 549 550 // We know all the numbers that each type is used and we know that it is a 551 // dense assignment. Convert the map to an index table, if it's not done 552 // already (judging from the sizes): 553 if (NumberedTypes.size() == Type2Number.size()) 554 return NumberedTypes; 555 556 NumberedTypes.resize(Type2Number.size()); 557 for (const auto &P : Type2Number) { 558 assert(P.second < NumberedTypes.size() && "Didn't get a dense numbering?"); 559 assert(!NumberedTypes[P.second] && "Didn't get a unique numbering?"); 560 NumberedTypes[P.second] = P.first; 561 } 562 return NumberedTypes; 563 } 564 565 bool TypePrinting::empty() { 566 incorporateTypes(); 567 return NamedTypes.empty() && Type2Number.empty(); 568 } 569 570 void TypePrinting::incorporateTypes() { 571 if (!DeferredM) 572 return; 573 574 NamedTypes.run(*DeferredM, false); 575 DeferredM = nullptr; 576 577 // The list of struct types we got back includes all the struct types, split 578 // the unnamed ones out to a numbering and remove the anonymous structs. 579 unsigned NextNumber = 0; 580 581 std::vector<StructType*>::iterator NextToUse = NamedTypes.begin(), I, E; 582 for (I = NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) { 583 StructType *STy = *I; 584 585 // Ignore anonymous types. 586 if (STy->isLiteral()) 587 continue; 588 589 if (STy->getName().empty()) 590 Type2Number[STy] = NextNumber++; 591 else 592 *NextToUse++ = STy; 593 } 594 595 NamedTypes.erase(NextToUse, NamedTypes.end()); 596 } 597 598 /// Write the specified type to the specified raw_ostream, making use of type 599 /// names or up references to shorten the type name where possible. 600 void TypePrinting::print(Type *Ty, raw_ostream &OS) { 601 switch (Ty->getTypeID()) { 602 case Type::VoidTyID: OS << "void"; return; 603 case Type::HalfTyID: OS << "half"; return; 604 case Type::BFloatTyID: OS << "bfloat"; return; 605 case Type::FloatTyID: OS << "float"; return; 606 case Type::DoubleTyID: OS << "double"; return; 607 case Type::X86_FP80TyID: OS << "x86_fp80"; return; 608 case Type::FP128TyID: OS << "fp128"; return; 609 case Type::PPC_FP128TyID: OS << "ppc_fp128"; return; 610 case Type::LabelTyID: OS << "label"; return; 611 case Type::MetadataTyID: OS << "metadata"; return; 612 case Type::X86_MMXTyID: OS << "x86_mmx"; return; 613 case Type::X86_AMXTyID: OS << "x86_amx"; return; 614 case Type::TokenTyID: OS << "token"; return; 615 case Type::IntegerTyID: 616 OS << 'i' << cast<IntegerType>(Ty)->getBitWidth(); 617 return; 618 619 case Type::FunctionTyID: { 620 FunctionType *FTy = cast<FunctionType>(Ty); 621 print(FTy->getReturnType(), OS); 622 OS << " ("; 623 for (FunctionType::param_iterator I = FTy->param_begin(), 624 E = FTy->param_end(); I != E; ++I) { 625 if (I != FTy->param_begin()) 626 OS << ", "; 627 print(*I, OS); 628 } 629 if (FTy->isVarArg()) { 630 if (FTy->getNumParams()) OS << ", "; 631 OS << "..."; 632 } 633 OS << ')'; 634 return; 635 } 636 case Type::StructTyID: { 637 StructType *STy = cast<StructType>(Ty); 638 639 if (STy->isLiteral()) 640 return printStructBody(STy, OS); 641 642 if (!STy->getName().empty()) 643 return PrintLLVMName(OS, STy->getName(), LocalPrefix); 644 645 incorporateTypes(); 646 const auto I = Type2Number.find(STy); 647 if (I != Type2Number.end()) 648 OS << '%' << I->second; 649 else // Not enumerated, print the hex address. 650 OS << "%\"type " << STy << '\"'; 651 return; 652 } 653 case Type::PointerTyID: { 654 PointerType *PTy = cast<PointerType>(Ty); 655 if (PTy->isOpaque()) { 656 OS << "ptr"; 657 if (unsigned AddressSpace = PTy->getAddressSpace()) 658 OS << " addrspace(" << AddressSpace << ')'; 659 return; 660 } 661 print(PTy->getElementType(), OS); 662 if (unsigned AddressSpace = PTy->getAddressSpace()) 663 OS << " addrspace(" << AddressSpace << ')'; 664 OS << '*'; 665 return; 666 } 667 case Type::ArrayTyID: { 668 ArrayType *ATy = cast<ArrayType>(Ty); 669 OS << '[' << ATy->getNumElements() << " x "; 670 print(ATy->getElementType(), OS); 671 OS << ']'; 672 return; 673 } 674 case Type::FixedVectorTyID: 675 case Type::ScalableVectorTyID: { 676 VectorType *PTy = cast<VectorType>(Ty); 677 ElementCount EC = PTy->getElementCount(); 678 OS << "<"; 679 if (EC.isScalable()) 680 OS << "vscale x "; 681 OS << EC.getKnownMinValue() << " x "; 682 print(PTy->getElementType(), OS); 683 OS << '>'; 684 return; 685 } 686 } 687 llvm_unreachable("Invalid TypeID"); 688 } 689 690 void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) { 691 if (STy->isOpaque()) { 692 OS << "opaque"; 693 return; 694 } 695 696 if (STy->isPacked()) 697 OS << '<'; 698 699 if (STy->getNumElements() == 0) { 700 OS << "{}"; 701 } else { 702 StructType::element_iterator I = STy->element_begin(); 703 OS << "{ "; 704 print(*I++, OS); 705 for (StructType::element_iterator E = STy->element_end(); I != E; ++I) { 706 OS << ", "; 707 print(*I, OS); 708 } 709 710 OS << " }"; 711 } 712 if (STy->isPacked()) 713 OS << '>'; 714 } 715 716 namespace llvm { 717 718 //===----------------------------------------------------------------------===// 719 // SlotTracker Class: Enumerate slot numbers for unnamed values 720 //===----------------------------------------------------------------------===// 721 /// This class provides computation of slot numbers for LLVM Assembly writing. 722 /// 723 class SlotTracker { 724 public: 725 /// ValueMap - A mapping of Values to slot numbers. 726 using ValueMap = DenseMap<const Value *, unsigned>; 727 728 private: 729 /// TheModule - The module for which we are holding slot numbers. 730 const Module* TheModule; 731 732 /// TheFunction - The function for which we are holding slot numbers. 733 const Function* TheFunction = nullptr; 734 bool FunctionProcessed = false; 735 bool ShouldInitializeAllMetadata; 736 737 /// The summary index for which we are holding slot numbers. 738 const ModuleSummaryIndex *TheIndex = nullptr; 739 740 /// mMap - The slot map for the module level data. 741 ValueMap mMap; 742 unsigned mNext = 0; 743 744 /// fMap - The slot map for the function level data. 745 ValueMap fMap; 746 unsigned fNext = 0; 747 748 /// mdnMap - Map for MDNodes. 749 DenseMap<const MDNode*, unsigned> mdnMap; 750 unsigned mdnNext = 0; 751 752 /// asMap - The slot map for attribute sets. 753 DenseMap<AttributeSet, unsigned> asMap; 754 unsigned asNext = 0; 755 756 /// ModulePathMap - The slot map for Module paths used in the summary index. 757 StringMap<unsigned> ModulePathMap; 758 unsigned ModulePathNext = 0; 759 760 /// GUIDMap - The slot map for GUIDs used in the summary index. 761 DenseMap<GlobalValue::GUID, unsigned> GUIDMap; 762 unsigned GUIDNext = 0; 763 764 /// TypeIdMap - The slot map for type ids used in the summary index. 765 StringMap<unsigned> TypeIdMap; 766 unsigned TypeIdNext = 0; 767 768 public: 769 /// Construct from a module. 770 /// 771 /// If \c ShouldInitializeAllMetadata, initializes all metadata in all 772 /// functions, giving correct numbering for metadata referenced only from 773 /// within a function (even if no functions have been initialized). 774 explicit SlotTracker(const Module *M, 775 bool ShouldInitializeAllMetadata = false); 776 777 /// Construct from a function, starting out in incorp state. 778 /// 779 /// If \c ShouldInitializeAllMetadata, initializes all metadata in all 780 /// functions, giving correct numbering for metadata referenced only from 781 /// within a function (even if no functions have been initialized). 782 explicit SlotTracker(const Function *F, 783 bool ShouldInitializeAllMetadata = false); 784 785 /// Construct from a module summary index. 786 explicit SlotTracker(const ModuleSummaryIndex *Index); 787 788 SlotTracker(const SlotTracker &) = delete; 789 SlotTracker &operator=(const SlotTracker &) = delete; 790 791 /// Return the slot number of the specified value in it's type 792 /// plane. If something is not in the SlotTracker, return -1. 793 int getLocalSlot(const Value *V); 794 int getGlobalSlot(const GlobalValue *V); 795 int getMetadataSlot(const MDNode *N); 796 int getAttributeGroupSlot(AttributeSet AS); 797 int getModulePathSlot(StringRef Path); 798 int getGUIDSlot(GlobalValue::GUID GUID); 799 int getTypeIdSlot(StringRef Id); 800 801 /// If you'd like to deal with a function instead of just a module, use 802 /// this method to get its data into the SlotTracker. 803 void incorporateFunction(const Function *F) { 804 TheFunction = F; 805 FunctionProcessed = false; 806 } 807 808 const Function *getFunction() const { return TheFunction; } 809 810 /// After calling incorporateFunction, use this method to remove the 811 /// most recently incorporated function from the SlotTracker. This 812 /// will reset the state of the machine back to just the module contents. 813 void purgeFunction(); 814 815 /// MDNode map iterators. 816 using mdn_iterator = DenseMap<const MDNode*, unsigned>::iterator; 817 818 mdn_iterator mdn_begin() { return mdnMap.begin(); } 819 mdn_iterator mdn_end() { return mdnMap.end(); } 820 unsigned mdn_size() const { return mdnMap.size(); } 821 bool mdn_empty() const { return mdnMap.empty(); } 822 823 /// AttributeSet map iterators. 824 using as_iterator = DenseMap<AttributeSet, unsigned>::iterator; 825 826 as_iterator as_begin() { return asMap.begin(); } 827 as_iterator as_end() { return asMap.end(); } 828 unsigned as_size() const { return asMap.size(); } 829 bool as_empty() const { return asMap.empty(); } 830 831 /// GUID map iterators. 832 using guid_iterator = DenseMap<GlobalValue::GUID, unsigned>::iterator; 833 834 /// These functions do the actual initialization. 835 inline void initializeIfNeeded(); 836 int initializeIndexIfNeeded(); 837 838 // Implementation Details 839 private: 840 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table. 841 void CreateModuleSlot(const GlobalValue *V); 842 843 /// CreateMetadataSlot - Insert the specified MDNode* into the slot table. 844 void CreateMetadataSlot(const MDNode *N); 845 846 /// CreateFunctionSlot - Insert the specified Value* into the slot table. 847 void CreateFunctionSlot(const Value *V); 848 849 /// Insert the specified AttributeSet into the slot table. 850 void CreateAttributeSetSlot(AttributeSet AS); 851 852 inline void CreateModulePathSlot(StringRef Path); 853 void CreateGUIDSlot(GlobalValue::GUID GUID); 854 void CreateTypeIdSlot(StringRef Id); 855 856 /// Add all of the module level global variables (and their initializers) 857 /// and function declarations, but not the contents of those functions. 858 void processModule(); 859 // Returns number of allocated slots 860 int processIndex(); 861 862 /// Add all of the functions arguments, basic blocks, and instructions. 863 void processFunction(); 864 865 /// Add the metadata directly attached to a GlobalObject. 866 void processGlobalObjectMetadata(const GlobalObject &GO); 867 868 /// Add all of the metadata from a function. 869 void processFunctionMetadata(const Function &F); 870 871 /// Add all of the metadata from an instruction. 872 void processInstructionMetadata(const Instruction &I); 873 }; 874 875 } // end namespace llvm 876 877 ModuleSlotTracker::ModuleSlotTracker(SlotTracker &Machine, const Module *M, 878 const Function *F) 879 : M(M), F(F), Machine(&Machine) {} 880 881 ModuleSlotTracker::ModuleSlotTracker(const Module *M, 882 bool ShouldInitializeAllMetadata) 883 : ShouldCreateStorage(M), 884 ShouldInitializeAllMetadata(ShouldInitializeAllMetadata), M(M) {} 885 886 ModuleSlotTracker::~ModuleSlotTracker() = default; 887 888 SlotTracker *ModuleSlotTracker::getMachine() { 889 if (!ShouldCreateStorage) 890 return Machine; 891 892 ShouldCreateStorage = false; 893 MachineStorage = 894 std::make_unique<SlotTracker>(M, ShouldInitializeAllMetadata); 895 Machine = MachineStorage.get(); 896 return Machine; 897 } 898 899 void ModuleSlotTracker::incorporateFunction(const Function &F) { 900 // Using getMachine() may lazily create the slot tracker. 901 if (!getMachine()) 902 return; 903 904 // Nothing to do if this is the right function already. 905 if (this->F == &F) 906 return; 907 if (this->F) 908 Machine->purgeFunction(); 909 Machine->incorporateFunction(&F); 910 this->F = &F; 911 } 912 913 int ModuleSlotTracker::getLocalSlot(const Value *V) { 914 assert(F && "No function incorporated"); 915 return Machine->getLocalSlot(V); 916 } 917 918 static SlotTracker *createSlotTracker(const Value *V) { 919 if (const Argument *FA = dyn_cast<Argument>(V)) 920 return new SlotTracker(FA->getParent()); 921 922 if (const Instruction *I = dyn_cast<Instruction>(V)) 923 if (I->getParent()) 924 return new SlotTracker(I->getParent()->getParent()); 925 926 if (const BasicBlock *BB = dyn_cast<BasicBlock>(V)) 927 return new SlotTracker(BB->getParent()); 928 929 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 930 return new SlotTracker(GV->getParent()); 931 932 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 933 return new SlotTracker(GA->getParent()); 934 935 if (const GlobalIFunc *GIF = dyn_cast<GlobalIFunc>(V)) 936 return new SlotTracker(GIF->getParent()); 937 938 if (const Function *Func = dyn_cast<Function>(V)) 939 return new SlotTracker(Func); 940 941 return nullptr; 942 } 943 944 #if 0 945 #define ST_DEBUG(X) dbgs() << X 946 #else 947 #define ST_DEBUG(X) 948 #endif 949 950 // Module level constructor. Causes the contents of the Module (sans functions) 951 // to be added to the slot table. 952 SlotTracker::SlotTracker(const Module *M, bool ShouldInitializeAllMetadata) 953 : TheModule(M), ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {} 954 955 // Function level constructor. Causes the contents of the Module and the one 956 // function provided to be added to the slot table. 957 SlotTracker::SlotTracker(const Function *F, bool ShouldInitializeAllMetadata) 958 : TheModule(F ? F->getParent() : nullptr), TheFunction(F), 959 ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {} 960 961 SlotTracker::SlotTracker(const ModuleSummaryIndex *Index) 962 : TheModule(nullptr), ShouldInitializeAllMetadata(false), TheIndex(Index) {} 963 964 inline void SlotTracker::initializeIfNeeded() { 965 if (TheModule) { 966 processModule(); 967 TheModule = nullptr; ///< Prevent re-processing next time we're called. 968 } 969 970 if (TheFunction && !FunctionProcessed) 971 processFunction(); 972 } 973 974 int SlotTracker::initializeIndexIfNeeded() { 975 if (!TheIndex) 976 return 0; 977 int NumSlots = processIndex(); 978 TheIndex = nullptr; ///< Prevent re-processing next time we're called. 979 return NumSlots; 980 } 981 982 // Iterate through all the global variables, functions, and global 983 // variable initializers and create slots for them. 984 void SlotTracker::processModule() { 985 ST_DEBUG("begin processModule!\n"); 986 987 // Add all of the unnamed global variables to the value table. 988 for (const GlobalVariable &Var : TheModule->globals()) { 989 if (!Var.hasName()) 990 CreateModuleSlot(&Var); 991 processGlobalObjectMetadata(Var); 992 auto Attrs = Var.getAttributes(); 993 if (Attrs.hasAttributes()) 994 CreateAttributeSetSlot(Attrs); 995 } 996 997 for (const GlobalAlias &A : TheModule->aliases()) { 998 if (!A.hasName()) 999 CreateModuleSlot(&A); 1000 } 1001 1002 for (const GlobalIFunc &I : TheModule->ifuncs()) { 1003 if (!I.hasName()) 1004 CreateModuleSlot(&I); 1005 } 1006 1007 // Add metadata used by named metadata. 1008 for (const NamedMDNode &NMD : TheModule->named_metadata()) { 1009 for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i) 1010 CreateMetadataSlot(NMD.getOperand(i)); 1011 } 1012 1013 for (const Function &F : *TheModule) { 1014 if (!F.hasName()) 1015 // Add all the unnamed functions to the table. 1016 CreateModuleSlot(&F); 1017 1018 if (ShouldInitializeAllMetadata) 1019 processFunctionMetadata(F); 1020 1021 // Add all the function attributes to the table. 1022 // FIXME: Add attributes of other objects? 1023 AttributeSet FnAttrs = F.getAttributes().getFnAttributes(); 1024 if (FnAttrs.hasAttributes()) 1025 CreateAttributeSetSlot(FnAttrs); 1026 } 1027 1028 ST_DEBUG("end processModule!\n"); 1029 } 1030 1031 // Process the arguments, basic blocks, and instructions of a function. 1032 void SlotTracker::processFunction() { 1033 ST_DEBUG("begin processFunction!\n"); 1034 fNext = 0; 1035 1036 // Process function metadata if it wasn't hit at the module-level. 1037 if (!ShouldInitializeAllMetadata) 1038 processFunctionMetadata(*TheFunction); 1039 1040 // Add all the function arguments with no names. 1041 for(Function::const_arg_iterator AI = TheFunction->arg_begin(), 1042 AE = TheFunction->arg_end(); AI != AE; ++AI) 1043 if (!AI->hasName()) 1044 CreateFunctionSlot(&*AI); 1045 1046 ST_DEBUG("Inserting Instructions:\n"); 1047 1048 // Add all of the basic blocks and instructions with no names. 1049 for (auto &BB : *TheFunction) { 1050 if (!BB.hasName()) 1051 CreateFunctionSlot(&BB); 1052 1053 for (auto &I : BB) { 1054 if (!I.getType()->isVoidTy() && !I.hasName()) 1055 CreateFunctionSlot(&I); 1056 1057 // We allow direct calls to any llvm.foo function here, because the 1058 // target may not be linked into the optimizer. 1059 if (const auto *Call = dyn_cast<CallBase>(&I)) { 1060 // Add all the call attributes to the table. 1061 AttributeSet Attrs = Call->getAttributes().getFnAttributes(); 1062 if (Attrs.hasAttributes()) 1063 CreateAttributeSetSlot(Attrs); 1064 } 1065 } 1066 } 1067 1068 FunctionProcessed = true; 1069 1070 ST_DEBUG("end processFunction!\n"); 1071 } 1072 1073 // Iterate through all the GUID in the index and create slots for them. 1074 int SlotTracker::processIndex() { 1075 ST_DEBUG("begin processIndex!\n"); 1076 assert(TheIndex); 1077 1078 // The first block of slots are just the module ids, which start at 0 and are 1079 // assigned consecutively. Since the StringMap iteration order isn't 1080 // guaranteed, use a std::map to order by module ID before assigning slots. 1081 std::map<uint64_t, StringRef> ModuleIdToPathMap; 1082 for (auto &ModPath : TheIndex->modulePaths()) 1083 ModuleIdToPathMap[ModPath.second.first] = ModPath.first(); 1084 for (auto &ModPair : ModuleIdToPathMap) 1085 CreateModulePathSlot(ModPair.second); 1086 1087 // Start numbering the GUIDs after the module ids. 1088 GUIDNext = ModulePathNext; 1089 1090 for (auto &GlobalList : *TheIndex) 1091 CreateGUIDSlot(GlobalList.first); 1092 1093 for (auto &TId : TheIndex->typeIdCompatibleVtableMap()) 1094 CreateGUIDSlot(GlobalValue::getGUID(TId.first)); 1095 1096 // Start numbering the TypeIds after the GUIDs. 1097 TypeIdNext = GUIDNext; 1098 for (const auto &TID : TheIndex->typeIds()) 1099 CreateTypeIdSlot(TID.second.first); 1100 1101 ST_DEBUG("end processIndex!\n"); 1102 return TypeIdNext; 1103 } 1104 1105 void SlotTracker::processGlobalObjectMetadata(const GlobalObject &GO) { 1106 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1107 GO.getAllMetadata(MDs); 1108 for (auto &MD : MDs) 1109 CreateMetadataSlot(MD.second); 1110 } 1111 1112 void SlotTracker::processFunctionMetadata(const Function &F) { 1113 processGlobalObjectMetadata(F); 1114 for (auto &BB : F) { 1115 for (auto &I : BB) 1116 processInstructionMetadata(I); 1117 } 1118 } 1119 1120 void SlotTracker::processInstructionMetadata(const Instruction &I) { 1121 // Process metadata used directly by intrinsics. 1122 if (const CallInst *CI = dyn_cast<CallInst>(&I)) 1123 if (Function *F = CI->getCalledFunction()) 1124 if (F->isIntrinsic()) 1125 for (auto &Op : I.operands()) 1126 if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op)) 1127 if (MDNode *N = dyn_cast<MDNode>(V->getMetadata())) 1128 CreateMetadataSlot(N); 1129 1130 // Process metadata attached to this instruction. 1131 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1132 I.getAllMetadata(MDs); 1133 for (auto &MD : MDs) 1134 CreateMetadataSlot(MD.second); 1135 } 1136 1137 /// Clean up after incorporating a function. This is the only way to get out of 1138 /// the function incorporation state that affects get*Slot/Create*Slot. Function 1139 /// incorporation state is indicated by TheFunction != 0. 1140 void SlotTracker::purgeFunction() { 1141 ST_DEBUG("begin purgeFunction!\n"); 1142 fMap.clear(); // Simply discard the function level map 1143 TheFunction = nullptr; 1144 FunctionProcessed = false; 1145 ST_DEBUG("end purgeFunction!\n"); 1146 } 1147 1148 /// getGlobalSlot - Get the slot number of a global value. 1149 int SlotTracker::getGlobalSlot(const GlobalValue *V) { 1150 // Check for uninitialized state and do lazy initialization. 1151 initializeIfNeeded(); 1152 1153 // Find the value in the module map 1154 ValueMap::iterator MI = mMap.find(V); 1155 return MI == mMap.end() ? -1 : (int)MI->second; 1156 } 1157 1158 /// getMetadataSlot - Get the slot number of a MDNode. 1159 int SlotTracker::getMetadataSlot(const MDNode *N) { 1160 // Check for uninitialized state and do lazy initialization. 1161 initializeIfNeeded(); 1162 1163 // Find the MDNode in the module map 1164 mdn_iterator MI = mdnMap.find(N); 1165 return MI == mdnMap.end() ? -1 : (int)MI->second; 1166 } 1167 1168 /// getLocalSlot - Get the slot number for a value that is local to a function. 1169 int SlotTracker::getLocalSlot(const Value *V) { 1170 assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!"); 1171 1172 // Check for uninitialized state and do lazy initialization. 1173 initializeIfNeeded(); 1174 1175 ValueMap::iterator FI = fMap.find(V); 1176 return FI == fMap.end() ? -1 : (int)FI->second; 1177 } 1178 1179 int SlotTracker::getAttributeGroupSlot(AttributeSet AS) { 1180 // Check for uninitialized state and do lazy initialization. 1181 initializeIfNeeded(); 1182 1183 // Find the AttributeSet in the module map. 1184 as_iterator AI = asMap.find(AS); 1185 return AI == asMap.end() ? -1 : (int)AI->second; 1186 } 1187 1188 int SlotTracker::getModulePathSlot(StringRef Path) { 1189 // Check for uninitialized state and do lazy initialization. 1190 initializeIndexIfNeeded(); 1191 1192 // Find the Module path in the map 1193 auto I = ModulePathMap.find(Path); 1194 return I == ModulePathMap.end() ? -1 : (int)I->second; 1195 } 1196 1197 int SlotTracker::getGUIDSlot(GlobalValue::GUID GUID) { 1198 // Check for uninitialized state and do lazy initialization. 1199 initializeIndexIfNeeded(); 1200 1201 // Find the GUID in the map 1202 guid_iterator I = GUIDMap.find(GUID); 1203 return I == GUIDMap.end() ? -1 : (int)I->second; 1204 } 1205 1206 int SlotTracker::getTypeIdSlot(StringRef Id) { 1207 // Check for uninitialized state and do lazy initialization. 1208 initializeIndexIfNeeded(); 1209 1210 // Find the TypeId string in the map 1211 auto I = TypeIdMap.find(Id); 1212 return I == TypeIdMap.end() ? -1 : (int)I->second; 1213 } 1214 1215 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table. 1216 void SlotTracker::CreateModuleSlot(const GlobalValue *V) { 1217 assert(V && "Can't insert a null Value into SlotTracker!"); 1218 assert(!V->getType()->isVoidTy() && "Doesn't need a slot!"); 1219 assert(!V->hasName() && "Doesn't need a slot!"); 1220 1221 unsigned DestSlot = mNext++; 1222 mMap[V] = DestSlot; 1223 1224 ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" << 1225 DestSlot << " ["); 1226 // G = Global, F = Function, A = Alias, I = IFunc, o = other 1227 ST_DEBUG((isa<GlobalVariable>(V) ? 'G' : 1228 (isa<Function>(V) ? 'F' : 1229 (isa<GlobalAlias>(V) ? 'A' : 1230 (isa<GlobalIFunc>(V) ? 'I' : 'o')))) << "]\n"); 1231 } 1232 1233 /// CreateSlot - Create a new slot for the specified value if it has no name. 1234 void SlotTracker::CreateFunctionSlot(const Value *V) { 1235 assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!"); 1236 1237 unsigned DestSlot = fNext++; 1238 fMap[V] = DestSlot; 1239 1240 // G = Global, F = Function, o = other 1241 ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" << 1242 DestSlot << " [o]\n"); 1243 } 1244 1245 /// CreateModuleSlot - Insert the specified MDNode* into the slot table. 1246 void SlotTracker::CreateMetadataSlot(const MDNode *N) { 1247 assert(N && "Can't insert a null Value into SlotTracker!"); 1248 1249 // Don't make slots for DIExpressions or DIArgLists. We just print them inline 1250 // everywhere. 1251 if (isa<DIExpression>(N) || isa<DIArgList>(N)) 1252 return; 1253 1254 unsigned DestSlot = mdnNext; 1255 if (!mdnMap.insert(std::make_pair(N, DestSlot)).second) 1256 return; 1257 ++mdnNext; 1258 1259 // Recursively add any MDNodes referenced by operands. 1260 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) 1261 if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i))) 1262 CreateMetadataSlot(Op); 1263 } 1264 1265 void SlotTracker::CreateAttributeSetSlot(AttributeSet AS) { 1266 assert(AS.hasAttributes() && "Doesn't need a slot!"); 1267 1268 as_iterator I = asMap.find(AS); 1269 if (I != asMap.end()) 1270 return; 1271 1272 unsigned DestSlot = asNext++; 1273 asMap[AS] = DestSlot; 1274 } 1275 1276 /// Create a new slot for the specified Module 1277 void SlotTracker::CreateModulePathSlot(StringRef Path) { 1278 ModulePathMap[Path] = ModulePathNext++; 1279 } 1280 1281 /// Create a new slot for the specified GUID 1282 void SlotTracker::CreateGUIDSlot(GlobalValue::GUID GUID) { 1283 GUIDMap[GUID] = GUIDNext++; 1284 } 1285 1286 /// Create a new slot for the specified Id 1287 void SlotTracker::CreateTypeIdSlot(StringRef Id) { 1288 TypeIdMap[Id] = TypeIdNext++; 1289 } 1290 1291 //===----------------------------------------------------------------------===// 1292 // AsmWriter Implementation 1293 //===----------------------------------------------------------------------===// 1294 1295 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V, 1296 TypePrinting *TypePrinter, 1297 SlotTracker *Machine, 1298 const Module *Context); 1299 1300 static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD, 1301 TypePrinting *TypePrinter, 1302 SlotTracker *Machine, const Module *Context, 1303 bool FromValue = false); 1304 1305 static void WriteOptimizationInfo(raw_ostream &Out, const User *U) { 1306 if (const FPMathOperator *FPO = dyn_cast<const FPMathOperator>(U)) { 1307 // 'Fast' is an abbreviation for all fast-math-flags. 1308 if (FPO->isFast()) 1309 Out << " fast"; 1310 else { 1311 if (FPO->hasAllowReassoc()) 1312 Out << " reassoc"; 1313 if (FPO->hasNoNaNs()) 1314 Out << " nnan"; 1315 if (FPO->hasNoInfs()) 1316 Out << " ninf"; 1317 if (FPO->hasNoSignedZeros()) 1318 Out << " nsz"; 1319 if (FPO->hasAllowReciprocal()) 1320 Out << " arcp"; 1321 if (FPO->hasAllowContract()) 1322 Out << " contract"; 1323 if (FPO->hasApproxFunc()) 1324 Out << " afn"; 1325 } 1326 } 1327 1328 if (const OverflowingBinaryOperator *OBO = 1329 dyn_cast<OverflowingBinaryOperator>(U)) { 1330 if (OBO->hasNoUnsignedWrap()) 1331 Out << " nuw"; 1332 if (OBO->hasNoSignedWrap()) 1333 Out << " nsw"; 1334 } else if (const PossiblyExactOperator *Div = 1335 dyn_cast<PossiblyExactOperator>(U)) { 1336 if (Div->isExact()) 1337 Out << " exact"; 1338 } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) { 1339 if (GEP->isInBounds()) 1340 Out << " inbounds"; 1341 } 1342 } 1343 1344 static void WriteConstantInternal(raw_ostream &Out, const Constant *CV, 1345 TypePrinting &TypePrinter, 1346 SlotTracker *Machine, 1347 const Module *Context) { 1348 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 1349 if (CI->getType()->isIntegerTy(1)) { 1350 Out << (CI->getZExtValue() ? "true" : "false"); 1351 return; 1352 } 1353 Out << CI->getValue(); 1354 return; 1355 } 1356 1357 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) { 1358 const APFloat &APF = CFP->getValueAPF(); 1359 if (&APF.getSemantics() == &APFloat::IEEEsingle() || 1360 &APF.getSemantics() == &APFloat::IEEEdouble()) { 1361 // We would like to output the FP constant value in exponential notation, 1362 // but we cannot do this if doing so will lose precision. Check here to 1363 // make sure that we only output it in exponential format if we can parse 1364 // the value back and get the same value. 1365 // 1366 bool ignored; 1367 bool isDouble = &APF.getSemantics() == &APFloat::IEEEdouble(); 1368 bool isInf = APF.isInfinity(); 1369 bool isNaN = APF.isNaN(); 1370 if (!isInf && !isNaN) { 1371 double Val = APF.convertToDouble(); 1372 SmallString<128> StrVal; 1373 APF.toString(StrVal, 6, 0, false); 1374 // Check to make sure that the stringized number is not some string like 1375 // "Inf" or NaN, that atof will accept, but the lexer will not. Check 1376 // that the string matches the "[-+]?[0-9]" regex. 1377 // 1378 assert((isDigit(StrVal[0]) || ((StrVal[0] == '-' || StrVal[0] == '+') && 1379 isDigit(StrVal[1]))) && 1380 "[-+]?[0-9] regex does not match!"); 1381 // Reparse stringized version! 1382 if (APFloat(APFloat::IEEEdouble(), StrVal).convertToDouble() == Val) { 1383 Out << StrVal; 1384 return; 1385 } 1386 } 1387 // Otherwise we could not reparse it to exactly the same value, so we must 1388 // output the string in hexadecimal format! Note that loading and storing 1389 // floating point types changes the bits of NaNs on some hosts, notably 1390 // x86, so we must not use these types. 1391 static_assert(sizeof(double) == sizeof(uint64_t), 1392 "assuming that double is 64 bits!"); 1393 APFloat apf = APF; 1394 // Floats are represented in ASCII IR as double, convert. 1395 // FIXME: We should allow 32-bit hex float and remove this. 1396 if (!isDouble) { 1397 // A signaling NaN is quieted on conversion, so we need to recreate the 1398 // expected value after convert (quiet bit of the payload is clear). 1399 bool IsSNAN = apf.isSignaling(); 1400 apf.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 1401 &ignored); 1402 if (IsSNAN) { 1403 APInt Payload = apf.bitcastToAPInt(); 1404 apf = APFloat::getSNaN(APFloat::IEEEdouble(), apf.isNegative(), 1405 &Payload); 1406 } 1407 } 1408 Out << format_hex(apf.bitcastToAPInt().getZExtValue(), 0, /*Upper=*/true); 1409 return; 1410 } 1411 1412 // Either half, bfloat or some form of long double. 1413 // These appear as a magic letter identifying the type, then a 1414 // fixed number of hex digits. 1415 Out << "0x"; 1416 APInt API = APF.bitcastToAPInt(); 1417 if (&APF.getSemantics() == &APFloat::x87DoubleExtended()) { 1418 Out << 'K'; 1419 Out << format_hex_no_prefix(API.getHiBits(16).getZExtValue(), 4, 1420 /*Upper=*/true); 1421 Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16, 1422 /*Upper=*/true); 1423 return; 1424 } else if (&APF.getSemantics() == &APFloat::IEEEquad()) { 1425 Out << 'L'; 1426 Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16, 1427 /*Upper=*/true); 1428 Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16, 1429 /*Upper=*/true); 1430 } else if (&APF.getSemantics() == &APFloat::PPCDoubleDouble()) { 1431 Out << 'M'; 1432 Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16, 1433 /*Upper=*/true); 1434 Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16, 1435 /*Upper=*/true); 1436 } else if (&APF.getSemantics() == &APFloat::IEEEhalf()) { 1437 Out << 'H'; 1438 Out << format_hex_no_prefix(API.getZExtValue(), 4, 1439 /*Upper=*/true); 1440 } else if (&APF.getSemantics() == &APFloat::BFloat()) { 1441 Out << 'R'; 1442 Out << format_hex_no_prefix(API.getZExtValue(), 4, 1443 /*Upper=*/true); 1444 } else 1445 llvm_unreachable("Unsupported floating point type"); 1446 return; 1447 } 1448 1449 if (isa<ConstantAggregateZero>(CV)) { 1450 Out << "zeroinitializer"; 1451 return; 1452 } 1453 1454 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) { 1455 Out << "blockaddress("; 1456 WriteAsOperandInternal(Out, BA->getFunction(), &TypePrinter, Machine, 1457 Context); 1458 Out << ", "; 1459 WriteAsOperandInternal(Out, BA->getBasicBlock(), &TypePrinter, Machine, 1460 Context); 1461 Out << ")"; 1462 return; 1463 } 1464 1465 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(CV)) { 1466 Out << "dso_local_equivalent "; 1467 WriteAsOperandInternal(Out, Equiv->getGlobalValue(), &TypePrinter, Machine, 1468 Context); 1469 return; 1470 } 1471 1472 if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) { 1473 Type *ETy = CA->getType()->getElementType(); 1474 Out << '['; 1475 TypePrinter.print(ETy, Out); 1476 Out << ' '; 1477 WriteAsOperandInternal(Out, CA->getOperand(0), 1478 &TypePrinter, Machine, 1479 Context); 1480 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) { 1481 Out << ", "; 1482 TypePrinter.print(ETy, Out); 1483 Out << ' '; 1484 WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine, 1485 Context); 1486 } 1487 Out << ']'; 1488 return; 1489 } 1490 1491 if (const ConstantDataArray *CA = dyn_cast<ConstantDataArray>(CV)) { 1492 // As a special case, print the array as a string if it is an array of 1493 // i8 with ConstantInt values. 1494 if (CA->isString()) { 1495 Out << "c\""; 1496 printEscapedString(CA->getAsString(), Out); 1497 Out << '"'; 1498 return; 1499 } 1500 1501 Type *ETy = CA->getType()->getElementType(); 1502 Out << '['; 1503 TypePrinter.print(ETy, Out); 1504 Out << ' '; 1505 WriteAsOperandInternal(Out, CA->getElementAsConstant(0), 1506 &TypePrinter, Machine, 1507 Context); 1508 for (unsigned i = 1, e = CA->getNumElements(); i != e; ++i) { 1509 Out << ", "; 1510 TypePrinter.print(ETy, Out); 1511 Out << ' '; 1512 WriteAsOperandInternal(Out, CA->getElementAsConstant(i), &TypePrinter, 1513 Machine, Context); 1514 } 1515 Out << ']'; 1516 return; 1517 } 1518 1519 if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) { 1520 if (CS->getType()->isPacked()) 1521 Out << '<'; 1522 Out << '{'; 1523 unsigned N = CS->getNumOperands(); 1524 if (N) { 1525 Out << ' '; 1526 TypePrinter.print(CS->getOperand(0)->getType(), Out); 1527 Out << ' '; 1528 1529 WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine, 1530 Context); 1531 1532 for (unsigned i = 1; i < N; i++) { 1533 Out << ", "; 1534 TypePrinter.print(CS->getOperand(i)->getType(), Out); 1535 Out << ' '; 1536 1537 WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine, 1538 Context); 1539 } 1540 Out << ' '; 1541 } 1542 1543 Out << '}'; 1544 if (CS->getType()->isPacked()) 1545 Out << '>'; 1546 return; 1547 } 1548 1549 if (isa<ConstantVector>(CV) || isa<ConstantDataVector>(CV)) { 1550 auto *CVVTy = cast<FixedVectorType>(CV->getType()); 1551 Type *ETy = CVVTy->getElementType(); 1552 Out << '<'; 1553 TypePrinter.print(ETy, Out); 1554 Out << ' '; 1555 WriteAsOperandInternal(Out, CV->getAggregateElement(0U), &TypePrinter, 1556 Machine, Context); 1557 for (unsigned i = 1, e = CVVTy->getNumElements(); i != e; ++i) { 1558 Out << ", "; 1559 TypePrinter.print(ETy, Out); 1560 Out << ' '; 1561 WriteAsOperandInternal(Out, CV->getAggregateElement(i), &TypePrinter, 1562 Machine, Context); 1563 } 1564 Out << '>'; 1565 return; 1566 } 1567 1568 if (isa<ConstantPointerNull>(CV)) { 1569 Out << "null"; 1570 return; 1571 } 1572 1573 if (isa<ConstantTokenNone>(CV)) { 1574 Out << "none"; 1575 return; 1576 } 1577 1578 if (isa<PoisonValue>(CV)) { 1579 Out << "poison"; 1580 return; 1581 } 1582 1583 if (isa<UndefValue>(CV)) { 1584 Out << "undef"; 1585 return; 1586 } 1587 1588 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 1589 Out << CE->getOpcodeName(); 1590 WriteOptimizationInfo(Out, CE); 1591 if (CE->isCompare()) 1592 Out << ' ' << CmpInst::getPredicateName( 1593 static_cast<CmpInst::Predicate>(CE->getPredicate())); 1594 Out << " ("; 1595 1596 Optional<unsigned> InRangeOp; 1597 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(CE)) { 1598 TypePrinter.print(GEP->getSourceElementType(), Out); 1599 Out << ", "; 1600 InRangeOp = GEP->getInRangeIndex(); 1601 if (InRangeOp) 1602 ++*InRangeOp; 1603 } 1604 1605 for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) { 1606 if (InRangeOp && unsigned(OI - CE->op_begin()) == *InRangeOp) 1607 Out << "inrange "; 1608 TypePrinter.print((*OI)->getType(), Out); 1609 Out << ' '; 1610 WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine, Context); 1611 if (OI+1 != CE->op_end()) 1612 Out << ", "; 1613 } 1614 1615 if (CE->hasIndices()) { 1616 ArrayRef<unsigned> Indices = CE->getIndices(); 1617 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 1618 Out << ", " << Indices[i]; 1619 } 1620 1621 if (CE->isCast()) { 1622 Out << " to "; 1623 TypePrinter.print(CE->getType(), Out); 1624 } 1625 1626 if (CE->getOpcode() == Instruction::ShuffleVector) 1627 PrintShuffleMask(Out, CE->getType(), CE->getShuffleMask()); 1628 1629 Out << ')'; 1630 return; 1631 } 1632 1633 Out << "<placeholder or erroneous Constant>"; 1634 } 1635 1636 static void writeMDTuple(raw_ostream &Out, const MDTuple *Node, 1637 TypePrinting *TypePrinter, SlotTracker *Machine, 1638 const Module *Context) { 1639 Out << "!{"; 1640 for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) { 1641 const Metadata *MD = Node->getOperand(mi); 1642 if (!MD) 1643 Out << "null"; 1644 else if (auto *MDV = dyn_cast<ValueAsMetadata>(MD)) { 1645 Value *V = MDV->getValue(); 1646 TypePrinter->print(V->getType(), Out); 1647 Out << ' '; 1648 WriteAsOperandInternal(Out, V, TypePrinter, Machine, Context); 1649 } else { 1650 WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context); 1651 } 1652 if (mi + 1 != me) 1653 Out << ", "; 1654 } 1655 1656 Out << "}"; 1657 } 1658 1659 namespace { 1660 1661 struct FieldSeparator { 1662 bool Skip = true; 1663 const char *Sep; 1664 1665 FieldSeparator(const char *Sep = ", ") : Sep(Sep) {} 1666 }; 1667 1668 raw_ostream &operator<<(raw_ostream &OS, FieldSeparator &FS) { 1669 if (FS.Skip) { 1670 FS.Skip = false; 1671 return OS; 1672 } 1673 return OS << FS.Sep; 1674 } 1675 1676 struct MDFieldPrinter { 1677 raw_ostream &Out; 1678 FieldSeparator FS; 1679 TypePrinting *TypePrinter = nullptr; 1680 SlotTracker *Machine = nullptr; 1681 const Module *Context = nullptr; 1682 1683 explicit MDFieldPrinter(raw_ostream &Out) : Out(Out) {} 1684 MDFieldPrinter(raw_ostream &Out, TypePrinting *TypePrinter, 1685 SlotTracker *Machine, const Module *Context) 1686 : Out(Out), TypePrinter(TypePrinter), Machine(Machine), Context(Context) { 1687 } 1688 1689 void printTag(const DINode *N); 1690 void printMacinfoType(const DIMacroNode *N); 1691 void printChecksum(const DIFile::ChecksumInfo<StringRef> &N); 1692 void printString(StringRef Name, StringRef Value, 1693 bool ShouldSkipEmpty = true); 1694 void printMetadata(StringRef Name, const Metadata *MD, 1695 bool ShouldSkipNull = true); 1696 template <class IntTy> 1697 void printInt(StringRef Name, IntTy Int, bool ShouldSkipZero = true); 1698 void printAPInt(StringRef Name, const APInt &Int, bool IsUnsigned, 1699 bool ShouldSkipZero); 1700 void printBool(StringRef Name, bool Value, Optional<bool> Default = None); 1701 void printDIFlags(StringRef Name, DINode::DIFlags Flags); 1702 void printDISPFlags(StringRef Name, DISubprogram::DISPFlags Flags); 1703 template <class IntTy, class Stringifier> 1704 void printDwarfEnum(StringRef Name, IntTy Value, Stringifier toString, 1705 bool ShouldSkipZero = true); 1706 void printEmissionKind(StringRef Name, DICompileUnit::DebugEmissionKind EK); 1707 void printNameTableKind(StringRef Name, 1708 DICompileUnit::DebugNameTableKind NTK); 1709 }; 1710 1711 } // end anonymous namespace 1712 1713 void MDFieldPrinter::printTag(const DINode *N) { 1714 Out << FS << "tag: "; 1715 auto Tag = dwarf::TagString(N->getTag()); 1716 if (!Tag.empty()) 1717 Out << Tag; 1718 else 1719 Out << N->getTag(); 1720 } 1721 1722 void MDFieldPrinter::printMacinfoType(const DIMacroNode *N) { 1723 Out << FS << "type: "; 1724 auto Type = dwarf::MacinfoString(N->getMacinfoType()); 1725 if (!Type.empty()) 1726 Out << Type; 1727 else 1728 Out << N->getMacinfoType(); 1729 } 1730 1731 void MDFieldPrinter::printChecksum( 1732 const DIFile::ChecksumInfo<StringRef> &Checksum) { 1733 Out << FS << "checksumkind: " << Checksum.getKindAsString(); 1734 printString("checksum", Checksum.Value, /* ShouldSkipEmpty */ false); 1735 } 1736 1737 void MDFieldPrinter::printString(StringRef Name, StringRef Value, 1738 bool ShouldSkipEmpty) { 1739 if (ShouldSkipEmpty && Value.empty()) 1740 return; 1741 1742 Out << FS << Name << ": \""; 1743 printEscapedString(Value, Out); 1744 Out << "\""; 1745 } 1746 1747 static void writeMetadataAsOperand(raw_ostream &Out, const Metadata *MD, 1748 TypePrinting *TypePrinter, 1749 SlotTracker *Machine, 1750 const Module *Context) { 1751 if (!MD) { 1752 Out << "null"; 1753 return; 1754 } 1755 WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context); 1756 } 1757 1758 void MDFieldPrinter::printMetadata(StringRef Name, const Metadata *MD, 1759 bool ShouldSkipNull) { 1760 if (ShouldSkipNull && !MD) 1761 return; 1762 1763 Out << FS << Name << ": "; 1764 writeMetadataAsOperand(Out, MD, TypePrinter, Machine, Context); 1765 } 1766 1767 template <class IntTy> 1768 void MDFieldPrinter::printInt(StringRef Name, IntTy Int, bool ShouldSkipZero) { 1769 if (ShouldSkipZero && !Int) 1770 return; 1771 1772 Out << FS << Name << ": " << Int; 1773 } 1774 1775 void MDFieldPrinter::printAPInt(StringRef Name, const APInt &Int, 1776 bool IsUnsigned, bool ShouldSkipZero) { 1777 if (ShouldSkipZero && Int.isNullValue()) 1778 return; 1779 1780 Out << FS << Name << ": "; 1781 Int.print(Out, !IsUnsigned); 1782 } 1783 1784 void MDFieldPrinter::printBool(StringRef Name, bool Value, 1785 Optional<bool> Default) { 1786 if (Default && Value == *Default) 1787 return; 1788 Out << FS << Name << ": " << (Value ? "true" : "false"); 1789 } 1790 1791 void MDFieldPrinter::printDIFlags(StringRef Name, DINode::DIFlags Flags) { 1792 if (!Flags) 1793 return; 1794 1795 Out << FS << Name << ": "; 1796 1797 SmallVector<DINode::DIFlags, 8> SplitFlags; 1798 auto Extra = DINode::splitFlags(Flags, SplitFlags); 1799 1800 FieldSeparator FlagsFS(" | "); 1801 for (auto F : SplitFlags) { 1802 auto StringF = DINode::getFlagString(F); 1803 assert(!StringF.empty() && "Expected valid flag"); 1804 Out << FlagsFS << StringF; 1805 } 1806 if (Extra || SplitFlags.empty()) 1807 Out << FlagsFS << Extra; 1808 } 1809 1810 void MDFieldPrinter::printDISPFlags(StringRef Name, 1811 DISubprogram::DISPFlags Flags) { 1812 // Always print this field, because no flags in the IR at all will be 1813 // interpreted as old-style isDefinition: true. 1814 Out << FS << Name << ": "; 1815 1816 if (!Flags) { 1817 Out << 0; 1818 return; 1819 } 1820 1821 SmallVector<DISubprogram::DISPFlags, 8> SplitFlags; 1822 auto Extra = DISubprogram::splitFlags(Flags, SplitFlags); 1823 1824 FieldSeparator FlagsFS(" | "); 1825 for (auto F : SplitFlags) { 1826 auto StringF = DISubprogram::getFlagString(F); 1827 assert(!StringF.empty() && "Expected valid flag"); 1828 Out << FlagsFS << StringF; 1829 } 1830 if (Extra || SplitFlags.empty()) 1831 Out << FlagsFS << Extra; 1832 } 1833 1834 void MDFieldPrinter::printEmissionKind(StringRef Name, 1835 DICompileUnit::DebugEmissionKind EK) { 1836 Out << FS << Name << ": " << DICompileUnit::emissionKindString(EK); 1837 } 1838 1839 void MDFieldPrinter::printNameTableKind(StringRef Name, 1840 DICompileUnit::DebugNameTableKind NTK) { 1841 if (NTK == DICompileUnit::DebugNameTableKind::Default) 1842 return; 1843 Out << FS << Name << ": " << DICompileUnit::nameTableKindString(NTK); 1844 } 1845 1846 template <class IntTy, class Stringifier> 1847 void MDFieldPrinter::printDwarfEnum(StringRef Name, IntTy Value, 1848 Stringifier toString, bool ShouldSkipZero) { 1849 if (!Value) 1850 return; 1851 1852 Out << FS << Name << ": "; 1853 auto S = toString(Value); 1854 if (!S.empty()) 1855 Out << S; 1856 else 1857 Out << Value; 1858 } 1859 1860 static void writeGenericDINode(raw_ostream &Out, const GenericDINode *N, 1861 TypePrinting *TypePrinter, SlotTracker *Machine, 1862 const Module *Context) { 1863 Out << "!GenericDINode("; 1864 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 1865 Printer.printTag(N); 1866 Printer.printString("header", N->getHeader()); 1867 if (N->getNumDwarfOperands()) { 1868 Out << Printer.FS << "operands: {"; 1869 FieldSeparator IFS; 1870 for (auto &I : N->dwarf_operands()) { 1871 Out << IFS; 1872 writeMetadataAsOperand(Out, I, TypePrinter, Machine, Context); 1873 } 1874 Out << "}"; 1875 } 1876 Out << ")"; 1877 } 1878 1879 static void writeDILocation(raw_ostream &Out, const DILocation *DL, 1880 TypePrinting *TypePrinter, SlotTracker *Machine, 1881 const Module *Context) { 1882 Out << "!DILocation("; 1883 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 1884 // Always output the line, since 0 is a relevant and important value for it. 1885 Printer.printInt("line", DL->getLine(), /* ShouldSkipZero */ false); 1886 Printer.printInt("column", DL->getColumn()); 1887 Printer.printMetadata("scope", DL->getRawScope(), /* ShouldSkipNull */ false); 1888 Printer.printMetadata("inlinedAt", DL->getRawInlinedAt()); 1889 Printer.printBool("isImplicitCode", DL->isImplicitCode(), 1890 /* Default */ false); 1891 Out << ")"; 1892 } 1893 1894 static void writeDISubrange(raw_ostream &Out, const DISubrange *N, 1895 TypePrinting *TypePrinter, SlotTracker *Machine, 1896 const Module *Context) { 1897 Out << "!DISubrange("; 1898 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 1899 1900 auto *Count = N->getRawCountNode(); 1901 if (auto *CE = dyn_cast_or_null<ConstantAsMetadata>(Count)) { 1902 auto *CV = cast<ConstantInt>(CE->getValue()); 1903 Printer.printInt("count", CV->getSExtValue(), 1904 /* ShouldSkipZero */ false); 1905 } else 1906 Printer.printMetadata("count", Count, /*ShouldSkipNull */ true); 1907 1908 // A lowerBound of constant 0 should not be skipped, since it is different 1909 // from an unspecified lower bound (= nullptr). 1910 auto *LBound = N->getRawLowerBound(); 1911 if (auto *LE = dyn_cast_or_null<ConstantAsMetadata>(LBound)) { 1912 auto *LV = cast<ConstantInt>(LE->getValue()); 1913 Printer.printInt("lowerBound", LV->getSExtValue(), 1914 /* ShouldSkipZero */ false); 1915 } else 1916 Printer.printMetadata("lowerBound", LBound, /*ShouldSkipNull */ true); 1917 1918 auto *UBound = N->getRawUpperBound(); 1919 if (auto *UE = dyn_cast_or_null<ConstantAsMetadata>(UBound)) { 1920 auto *UV = cast<ConstantInt>(UE->getValue()); 1921 Printer.printInt("upperBound", UV->getSExtValue(), 1922 /* ShouldSkipZero */ false); 1923 } else 1924 Printer.printMetadata("upperBound", UBound, /*ShouldSkipNull */ true); 1925 1926 auto *Stride = N->getRawStride(); 1927 if (auto *SE = dyn_cast_or_null<ConstantAsMetadata>(Stride)) { 1928 auto *SV = cast<ConstantInt>(SE->getValue()); 1929 Printer.printInt("stride", SV->getSExtValue(), /* ShouldSkipZero */ false); 1930 } else 1931 Printer.printMetadata("stride", Stride, /*ShouldSkipNull */ true); 1932 1933 Out << ")"; 1934 } 1935 1936 static void writeDIGenericSubrange(raw_ostream &Out, const DIGenericSubrange *N, 1937 TypePrinting *TypePrinter, 1938 SlotTracker *Machine, 1939 const Module *Context) { 1940 Out << "!DIGenericSubrange("; 1941 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 1942 1943 auto IsConstant = [&](Metadata *Bound) -> bool { 1944 if (auto *BE = dyn_cast_or_null<DIExpression>(Bound)) { 1945 return BE->isConstant() 1946 ? DIExpression::SignedOrUnsignedConstant::SignedConstant == 1947 *BE->isConstant() 1948 : false; 1949 } 1950 return false; 1951 }; 1952 1953 auto GetConstant = [&](Metadata *Bound) -> int64_t { 1954 assert(IsConstant(Bound) && "Expected constant"); 1955 auto *BE = dyn_cast_or_null<DIExpression>(Bound); 1956 return static_cast<int64_t>(BE->getElement(1)); 1957 }; 1958 1959 auto *Count = N->getRawCountNode(); 1960 if (IsConstant(Count)) 1961 Printer.printInt("count", GetConstant(Count), 1962 /* ShouldSkipZero */ false); 1963 else 1964 Printer.printMetadata("count", Count, /*ShouldSkipNull */ true); 1965 1966 auto *LBound = N->getRawLowerBound(); 1967 if (IsConstant(LBound)) 1968 Printer.printInt("lowerBound", GetConstant(LBound), 1969 /* ShouldSkipZero */ false); 1970 else 1971 Printer.printMetadata("lowerBound", LBound, /*ShouldSkipNull */ true); 1972 1973 auto *UBound = N->getRawUpperBound(); 1974 if (IsConstant(UBound)) 1975 Printer.printInt("upperBound", GetConstant(UBound), 1976 /* ShouldSkipZero */ false); 1977 else 1978 Printer.printMetadata("upperBound", UBound, /*ShouldSkipNull */ true); 1979 1980 auto *Stride = N->getRawStride(); 1981 if (IsConstant(Stride)) 1982 Printer.printInt("stride", GetConstant(Stride), 1983 /* ShouldSkipZero */ false); 1984 else 1985 Printer.printMetadata("stride", Stride, /*ShouldSkipNull */ true); 1986 1987 Out << ")"; 1988 } 1989 1990 static void writeDIEnumerator(raw_ostream &Out, const DIEnumerator *N, 1991 TypePrinting *, SlotTracker *, const Module *) { 1992 Out << "!DIEnumerator("; 1993 MDFieldPrinter Printer(Out); 1994 Printer.printString("name", N->getName(), /* ShouldSkipEmpty */ false); 1995 Printer.printAPInt("value", N->getValue(), N->isUnsigned(), 1996 /*ShouldSkipZero=*/false); 1997 if (N->isUnsigned()) 1998 Printer.printBool("isUnsigned", true); 1999 Out << ")"; 2000 } 2001 2002 static void writeDIBasicType(raw_ostream &Out, const DIBasicType *N, 2003 TypePrinting *, SlotTracker *, const Module *) { 2004 Out << "!DIBasicType("; 2005 MDFieldPrinter Printer(Out); 2006 if (N->getTag() != dwarf::DW_TAG_base_type) 2007 Printer.printTag(N); 2008 Printer.printString("name", N->getName()); 2009 Printer.printInt("size", N->getSizeInBits()); 2010 Printer.printInt("align", N->getAlignInBits()); 2011 Printer.printDwarfEnum("encoding", N->getEncoding(), 2012 dwarf::AttributeEncodingString); 2013 Printer.printDIFlags("flags", N->getFlags()); 2014 Out << ")"; 2015 } 2016 2017 static void writeDIStringType(raw_ostream &Out, const DIStringType *N, 2018 TypePrinting *TypePrinter, SlotTracker *Machine, 2019 const Module *Context) { 2020 Out << "!DIStringType("; 2021 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 2022 if (N->getTag() != dwarf::DW_TAG_string_type) 2023 Printer.printTag(N); 2024 Printer.printString("name", N->getName()); 2025 Printer.printMetadata("stringLength", N->getRawStringLength()); 2026 Printer.printMetadata("stringLengthExpression", N->getRawStringLengthExp()); 2027 Printer.printInt("size", N->getSizeInBits()); 2028 Printer.printInt("align", N->getAlignInBits()); 2029 Printer.printDwarfEnum("encoding", N->getEncoding(), 2030 dwarf::AttributeEncodingString); 2031 Out << ")"; 2032 } 2033 2034 static void writeDIDerivedType(raw_ostream &Out, const DIDerivedType *N, 2035 TypePrinting *TypePrinter, SlotTracker *Machine, 2036 const Module *Context) { 2037 Out << "!DIDerivedType("; 2038 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 2039 Printer.printTag(N); 2040 Printer.printString("name", N->getName()); 2041 Printer.printMetadata("scope", N->getRawScope()); 2042 Printer.printMetadata("file", N->getRawFile()); 2043 Printer.printInt("line", N->getLine()); 2044 Printer.printMetadata("baseType", N->getRawBaseType(), 2045 /* ShouldSkipNull */ false); 2046 Printer.printInt("size", N->getSizeInBits()); 2047 Printer.printInt("align", N->getAlignInBits()); 2048 Printer.printInt("offset", N->getOffsetInBits()); 2049 Printer.printDIFlags("flags", N->getFlags()); 2050 Printer.printMetadata("extraData", N->getRawExtraData()); 2051 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 2052 Printer.printInt("dwarfAddressSpace", *DWARFAddressSpace, 2053 /* ShouldSkipZero */ false); 2054 Out << ")"; 2055 } 2056 2057 static void writeDICompositeType(raw_ostream &Out, const DICompositeType *N, 2058 TypePrinting *TypePrinter, 2059 SlotTracker *Machine, const Module *Context) { 2060 Out << "!DICompositeType("; 2061 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 2062 Printer.printTag(N); 2063 Printer.printString("name", N->getName()); 2064 Printer.printMetadata("scope", N->getRawScope()); 2065 Printer.printMetadata("file", N->getRawFile()); 2066 Printer.printInt("line", N->getLine()); 2067 Printer.printMetadata("baseType", N->getRawBaseType()); 2068 Printer.printInt("size", N->getSizeInBits()); 2069 Printer.printInt("align", N->getAlignInBits()); 2070 Printer.printInt("offset", N->getOffsetInBits()); 2071 Printer.printDIFlags("flags", N->getFlags()); 2072 Printer.printMetadata("elements", N->getRawElements()); 2073 Printer.printDwarfEnum("runtimeLang", N->getRuntimeLang(), 2074 dwarf::LanguageString); 2075 Printer.printMetadata("vtableHolder", N->getRawVTableHolder()); 2076 Printer.printMetadata("templateParams", N->getRawTemplateParams()); 2077 Printer.printString("identifier", N->getIdentifier()); 2078 Printer.printMetadata("discriminator", N->getRawDiscriminator()); 2079 Printer.printMetadata("dataLocation", N->getRawDataLocation()); 2080 Printer.printMetadata("associated", N->getRawAssociated()); 2081 Printer.printMetadata("allocated", N->getRawAllocated()); 2082 if (auto *RankConst = N->getRankConst()) 2083 Printer.printInt("rank", RankConst->getSExtValue(), 2084 /* ShouldSkipZero */ false); 2085 else 2086 Printer.printMetadata("rank", N->getRawRank(), /*ShouldSkipNull */ true); 2087 Out << ")"; 2088 } 2089 2090 static void writeDISubroutineType(raw_ostream &Out, const DISubroutineType *N, 2091 TypePrinting *TypePrinter, 2092 SlotTracker *Machine, const Module *Context) { 2093 Out << "!DISubroutineType("; 2094 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 2095 Printer.printDIFlags("flags", N->getFlags()); 2096 Printer.printDwarfEnum("cc", N->getCC(), dwarf::ConventionString); 2097 Printer.printMetadata("types", N->getRawTypeArray(), 2098 /* ShouldSkipNull */ false); 2099 Out << ")"; 2100 } 2101 2102 static void writeDIFile(raw_ostream &Out, const DIFile *N, TypePrinting *, 2103 SlotTracker *, const Module *) { 2104 Out << "!DIFile("; 2105 MDFieldPrinter Printer(Out); 2106 Printer.printString("filename", N->getFilename(), 2107 /* ShouldSkipEmpty */ false); 2108 Printer.printString("directory", N->getDirectory(), 2109 /* ShouldSkipEmpty */ false); 2110 // Print all values for checksum together, or not at all. 2111 if (N->getChecksum()) 2112 Printer.printChecksum(*N->getChecksum()); 2113 Printer.printString("source", N->getSource().getValueOr(StringRef()), 2114 /* ShouldSkipEmpty */ true); 2115 Out << ")"; 2116 } 2117 2118 static void writeDICompileUnit(raw_ostream &Out, const DICompileUnit *N, 2119 TypePrinting *TypePrinter, SlotTracker *Machine, 2120 const Module *Context) { 2121 Out << "!DICompileUnit("; 2122 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 2123 Printer.printDwarfEnum("language", N->getSourceLanguage(), 2124 dwarf::LanguageString, /* ShouldSkipZero */ false); 2125 Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false); 2126 Printer.printString("producer", N->getProducer()); 2127 Printer.printBool("isOptimized", N->isOptimized()); 2128 Printer.printString("flags", N->getFlags()); 2129 Printer.printInt("runtimeVersion", N->getRuntimeVersion(), 2130 /* ShouldSkipZero */ false); 2131 Printer.printString("splitDebugFilename", N->getSplitDebugFilename()); 2132 Printer.printEmissionKind("emissionKind", N->getEmissionKind()); 2133 Printer.printMetadata("enums", N->getRawEnumTypes()); 2134 Printer.printMetadata("retainedTypes", N->getRawRetainedTypes()); 2135 Printer.printMetadata("globals", N->getRawGlobalVariables()); 2136 Printer.printMetadata("imports", N->getRawImportedEntities()); 2137 Printer.printMetadata("macros", N->getRawMacros()); 2138 Printer.printInt("dwoId", N->getDWOId()); 2139 Printer.printBool("splitDebugInlining", N->getSplitDebugInlining(), true); 2140 Printer.printBool("debugInfoForProfiling", N->getDebugInfoForProfiling(), 2141 false); 2142 Printer.printNameTableKind("nameTableKind", N->getNameTableKind()); 2143 Printer.printBool("rangesBaseAddress", N->getRangesBaseAddress(), false); 2144 Printer.printString("sysroot", N->getSysRoot()); 2145 Printer.printString("sdk", N->getSDK()); 2146 Out << ")"; 2147 } 2148 2149 static void writeDISubprogram(raw_ostream &Out, const DISubprogram *N, 2150 TypePrinting *TypePrinter, SlotTracker *Machine, 2151 const Module *Context) { 2152 Out << "!DISubprogram("; 2153 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 2154 Printer.printString("name", N->getName()); 2155 Printer.printString("linkageName", N->getLinkageName()); 2156 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); 2157 Printer.printMetadata("file", N->getRawFile()); 2158 Printer.printInt("line", N->getLine()); 2159 Printer.printMetadata("type", N->getRawType()); 2160 Printer.printInt("scopeLine", N->getScopeLine()); 2161 Printer.printMetadata("containingType", N->getRawContainingType()); 2162 if (N->getVirtuality() != dwarf::DW_VIRTUALITY_none || 2163 N->getVirtualIndex() != 0) 2164 Printer.printInt("virtualIndex", N->getVirtualIndex(), false); 2165 Printer.printInt("thisAdjustment", N->getThisAdjustment()); 2166 Printer.printDIFlags("flags", N->getFlags()); 2167 Printer.printDISPFlags("spFlags", N->getSPFlags()); 2168 Printer.printMetadata("unit", N->getRawUnit()); 2169 Printer.printMetadata("templateParams", N->getRawTemplateParams()); 2170 Printer.printMetadata("declaration", N->getRawDeclaration()); 2171 Printer.printMetadata("retainedNodes", N->getRawRetainedNodes()); 2172 Printer.printMetadata("thrownTypes", N->getRawThrownTypes()); 2173 Out << ")"; 2174 } 2175 2176 static void writeDILexicalBlock(raw_ostream &Out, const DILexicalBlock *N, 2177 TypePrinting *TypePrinter, SlotTracker *Machine, 2178 const Module *Context) { 2179 Out << "!DILexicalBlock("; 2180 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 2181 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); 2182 Printer.printMetadata("file", N->getRawFile()); 2183 Printer.printInt("line", N->getLine()); 2184 Printer.printInt("column", N->getColumn()); 2185 Out << ")"; 2186 } 2187 2188 static void writeDILexicalBlockFile(raw_ostream &Out, 2189 const DILexicalBlockFile *N, 2190 TypePrinting *TypePrinter, 2191 SlotTracker *Machine, 2192 const Module *Context) { 2193 Out << "!DILexicalBlockFile("; 2194 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 2195 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); 2196 Printer.printMetadata("file", N->getRawFile()); 2197 Printer.printInt("discriminator", N->getDiscriminator(), 2198 /* ShouldSkipZero */ false); 2199 Out << ")"; 2200 } 2201 2202 static void writeDINamespace(raw_ostream &Out, const DINamespace *N, 2203 TypePrinting *TypePrinter, SlotTracker *Machine, 2204 const Module *Context) { 2205 Out << "!DINamespace("; 2206 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 2207 Printer.printString("name", N->getName()); 2208 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); 2209 Printer.printBool("exportSymbols", N->getExportSymbols(), false); 2210 Out << ")"; 2211 } 2212 2213 static void writeDICommonBlock(raw_ostream &Out, const DICommonBlock *N, 2214 TypePrinting *TypePrinter, SlotTracker *Machine, 2215 const Module *Context) { 2216 Out << "!DICommonBlock("; 2217 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 2218 Printer.printMetadata("scope", N->getRawScope(), false); 2219 Printer.printMetadata("declaration", N->getRawDecl(), false); 2220 Printer.printString("name", N->getName()); 2221 Printer.printMetadata("file", N->getRawFile()); 2222 Printer.printInt("line", N->getLineNo()); 2223 Out << ")"; 2224 } 2225 2226 static void writeDIMacro(raw_ostream &Out, const DIMacro *N, 2227 TypePrinting *TypePrinter, SlotTracker *Machine, 2228 const Module *Context) { 2229 Out << "!DIMacro("; 2230 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 2231 Printer.printMacinfoType(N); 2232 Printer.printInt("line", N->getLine()); 2233 Printer.printString("name", N->getName()); 2234 Printer.printString("value", N->getValue()); 2235 Out << ")"; 2236 } 2237 2238 static void writeDIMacroFile(raw_ostream &Out, const DIMacroFile *N, 2239 TypePrinting *TypePrinter, SlotTracker *Machine, 2240 const Module *Context) { 2241 Out << "!DIMacroFile("; 2242 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 2243 Printer.printInt("line", N->getLine()); 2244 Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false); 2245 Printer.printMetadata("nodes", N->getRawElements()); 2246 Out << ")"; 2247 } 2248 2249 static void writeDIModule(raw_ostream &Out, const DIModule *N, 2250 TypePrinting *TypePrinter, SlotTracker *Machine, 2251 const Module *Context) { 2252 Out << "!DIModule("; 2253 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 2254 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); 2255 Printer.printString("name", N->getName()); 2256 Printer.printString("configMacros", N->getConfigurationMacros()); 2257 Printer.printString("includePath", N->getIncludePath()); 2258 Printer.printString("apinotes", N->getAPINotesFile()); 2259 Printer.printMetadata("file", N->getRawFile()); 2260 Printer.printInt("line", N->getLineNo()); 2261 Printer.printBool("isDecl", N->getIsDecl(), /* Default */ false); 2262 Out << ")"; 2263 } 2264 2265 2266 static void writeDITemplateTypeParameter(raw_ostream &Out, 2267 const DITemplateTypeParameter *N, 2268 TypePrinting *TypePrinter, 2269 SlotTracker *Machine, 2270 const Module *Context) { 2271 Out << "!DITemplateTypeParameter("; 2272 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 2273 Printer.printString("name", N->getName()); 2274 Printer.printMetadata("type", N->getRawType(), /* ShouldSkipNull */ false); 2275 Printer.printBool("defaulted", N->isDefault(), /* Default= */ false); 2276 Out << ")"; 2277 } 2278 2279 static void writeDITemplateValueParameter(raw_ostream &Out, 2280 const DITemplateValueParameter *N, 2281 TypePrinting *TypePrinter, 2282 SlotTracker *Machine, 2283 const Module *Context) { 2284 Out << "!DITemplateValueParameter("; 2285 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 2286 if (N->getTag() != dwarf::DW_TAG_template_value_parameter) 2287 Printer.printTag(N); 2288 Printer.printString("name", N->getName()); 2289 Printer.printMetadata("type", N->getRawType()); 2290 Printer.printBool("defaulted", N->isDefault(), /* Default= */ false); 2291 Printer.printMetadata("value", N->getValue(), /* ShouldSkipNull */ false); 2292 Out << ")"; 2293 } 2294 2295 static void writeDIGlobalVariable(raw_ostream &Out, const DIGlobalVariable *N, 2296 TypePrinting *TypePrinter, 2297 SlotTracker *Machine, const Module *Context) { 2298 Out << "!DIGlobalVariable("; 2299 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 2300 Printer.printString("name", N->getName()); 2301 Printer.printString("linkageName", N->getLinkageName()); 2302 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); 2303 Printer.printMetadata("file", N->getRawFile()); 2304 Printer.printInt("line", N->getLine()); 2305 Printer.printMetadata("type", N->getRawType()); 2306 Printer.printBool("isLocal", N->isLocalToUnit()); 2307 Printer.printBool("isDefinition", N->isDefinition()); 2308 Printer.printMetadata("declaration", N->getRawStaticDataMemberDeclaration()); 2309 Printer.printMetadata("templateParams", N->getRawTemplateParams()); 2310 Printer.printInt("align", N->getAlignInBits()); 2311 Out << ")"; 2312 } 2313 2314 static void writeDILocalVariable(raw_ostream &Out, const DILocalVariable *N, 2315 TypePrinting *TypePrinter, 2316 SlotTracker *Machine, const Module *Context) { 2317 Out << "!DILocalVariable("; 2318 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 2319 Printer.printString("name", N->getName()); 2320 Printer.printInt("arg", N->getArg()); 2321 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); 2322 Printer.printMetadata("file", N->getRawFile()); 2323 Printer.printInt("line", N->getLine()); 2324 Printer.printMetadata("type", N->getRawType()); 2325 Printer.printDIFlags("flags", N->getFlags()); 2326 Printer.printInt("align", N->getAlignInBits()); 2327 Out << ")"; 2328 } 2329 2330 static void writeDILabel(raw_ostream &Out, const DILabel *N, 2331 TypePrinting *TypePrinter, 2332 SlotTracker *Machine, const Module *Context) { 2333 Out << "!DILabel("; 2334 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 2335 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); 2336 Printer.printString("name", N->getName()); 2337 Printer.printMetadata("file", N->getRawFile()); 2338 Printer.printInt("line", N->getLine()); 2339 Out << ")"; 2340 } 2341 2342 static void writeDIExpression(raw_ostream &Out, const DIExpression *N, 2343 TypePrinting *TypePrinter, SlotTracker *Machine, 2344 const Module *Context) { 2345 Out << "!DIExpression("; 2346 FieldSeparator FS; 2347 if (N->isValid()) { 2348 for (const DIExpression::ExprOperand &Op : N->expr_ops()) { 2349 auto OpStr = dwarf::OperationEncodingString(Op.getOp()); 2350 assert(!OpStr.empty() && "Expected valid opcode"); 2351 2352 Out << FS << OpStr; 2353 if (Op.getOp() == dwarf::DW_OP_LLVM_convert) { 2354 Out << FS << Op.getArg(0); 2355 Out << FS << dwarf::AttributeEncodingString(Op.getArg(1)); 2356 } else { 2357 for (unsigned A = 0, AE = Op.getNumArgs(); A != AE; ++A) 2358 Out << FS << Op.getArg(A); 2359 } 2360 } 2361 } else { 2362 for (const auto &I : N->getElements()) 2363 Out << FS << I; 2364 } 2365 Out << ")"; 2366 } 2367 2368 static void writeDIArgList(raw_ostream &Out, const DIArgList *N, 2369 TypePrinting *TypePrinter, SlotTracker *Machine, 2370 const Module *Context, bool FromValue = false) { 2371 assert(FromValue && 2372 "Unexpected DIArgList metadata outside of value argument"); 2373 Out << "!DIArgList("; 2374 FieldSeparator FS; 2375 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 2376 for (Metadata *Arg : N->getArgs()) { 2377 Out << FS; 2378 WriteAsOperandInternal(Out, Arg, TypePrinter, Machine, Context, true); 2379 } 2380 Out << ")"; 2381 } 2382 2383 static void writeDIGlobalVariableExpression(raw_ostream &Out, 2384 const DIGlobalVariableExpression *N, 2385 TypePrinting *TypePrinter, 2386 SlotTracker *Machine, 2387 const Module *Context) { 2388 Out << "!DIGlobalVariableExpression("; 2389 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 2390 Printer.printMetadata("var", N->getVariable()); 2391 Printer.printMetadata("expr", N->getExpression()); 2392 Out << ")"; 2393 } 2394 2395 static void writeDIObjCProperty(raw_ostream &Out, const DIObjCProperty *N, 2396 TypePrinting *TypePrinter, SlotTracker *Machine, 2397 const Module *Context) { 2398 Out << "!DIObjCProperty("; 2399 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 2400 Printer.printString("name", N->getName()); 2401 Printer.printMetadata("file", N->getRawFile()); 2402 Printer.printInt("line", N->getLine()); 2403 Printer.printString("setter", N->getSetterName()); 2404 Printer.printString("getter", N->getGetterName()); 2405 Printer.printInt("attributes", N->getAttributes()); 2406 Printer.printMetadata("type", N->getRawType()); 2407 Out << ")"; 2408 } 2409 2410 static void writeDIImportedEntity(raw_ostream &Out, const DIImportedEntity *N, 2411 TypePrinting *TypePrinter, 2412 SlotTracker *Machine, const Module *Context) { 2413 Out << "!DIImportedEntity("; 2414 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context); 2415 Printer.printTag(N); 2416 Printer.printString("name", N->getName()); 2417 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false); 2418 Printer.printMetadata("entity", N->getRawEntity()); 2419 Printer.printMetadata("file", N->getRawFile()); 2420 Printer.printInt("line", N->getLine()); 2421 Out << ")"; 2422 } 2423 2424 static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node, 2425 TypePrinting *TypePrinter, 2426 SlotTracker *Machine, 2427 const Module *Context) { 2428 if (Node->isDistinct()) 2429 Out << "distinct "; 2430 else if (Node->isTemporary()) 2431 Out << "<temporary!> "; // Handle broken code. 2432 2433 switch (Node->getMetadataID()) { 2434 default: 2435 llvm_unreachable("Expected uniquable MDNode"); 2436 #define HANDLE_MDNODE_LEAF(CLASS) \ 2437 case Metadata::CLASS##Kind: \ 2438 write##CLASS(Out, cast<CLASS>(Node), TypePrinter, Machine, Context); \ 2439 break; 2440 #include "llvm/IR/Metadata.def" 2441 } 2442 } 2443 2444 // Full implementation of printing a Value as an operand with support for 2445 // TypePrinting, etc. 2446 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V, 2447 TypePrinting *TypePrinter, 2448 SlotTracker *Machine, 2449 const Module *Context) { 2450 if (V->hasName()) { 2451 PrintLLVMName(Out, V); 2452 return; 2453 } 2454 2455 const Constant *CV = dyn_cast<Constant>(V); 2456 if (CV && !isa<GlobalValue>(CV)) { 2457 assert(TypePrinter && "Constants require TypePrinting!"); 2458 WriteConstantInternal(Out, CV, *TypePrinter, Machine, Context); 2459 return; 2460 } 2461 2462 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2463 Out << "asm "; 2464 if (IA->hasSideEffects()) 2465 Out << "sideeffect "; 2466 if (IA->isAlignStack()) 2467 Out << "alignstack "; 2468 // We don't emit the AD_ATT dialect as it's the assumed default. 2469 if (IA->getDialect() == InlineAsm::AD_Intel) 2470 Out << "inteldialect "; 2471 if (IA->canThrow()) 2472 Out << "unwind "; 2473 Out << '"'; 2474 printEscapedString(IA->getAsmString(), Out); 2475 Out << "\", \""; 2476 printEscapedString(IA->getConstraintString(), Out); 2477 Out << '"'; 2478 return; 2479 } 2480 2481 if (auto *MD = dyn_cast<MetadataAsValue>(V)) { 2482 WriteAsOperandInternal(Out, MD->getMetadata(), TypePrinter, Machine, 2483 Context, /* FromValue */ true); 2484 return; 2485 } 2486 2487 char Prefix = '%'; 2488 int Slot; 2489 // If we have a SlotTracker, use it. 2490 if (Machine) { 2491 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2492 Slot = Machine->getGlobalSlot(GV); 2493 Prefix = '@'; 2494 } else { 2495 Slot = Machine->getLocalSlot(V); 2496 2497 // If the local value didn't succeed, then we may be referring to a value 2498 // from a different function. Translate it, as this can happen when using 2499 // address of blocks. 2500 if (Slot == -1) 2501 if ((Machine = createSlotTracker(V))) { 2502 Slot = Machine->getLocalSlot(V); 2503 delete Machine; 2504 } 2505 } 2506 } else if ((Machine = createSlotTracker(V))) { 2507 // Otherwise, create one to get the # and then destroy it. 2508 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2509 Slot = Machine->getGlobalSlot(GV); 2510 Prefix = '@'; 2511 } else { 2512 Slot = Machine->getLocalSlot(V); 2513 } 2514 delete Machine; 2515 Machine = nullptr; 2516 } else { 2517 Slot = -1; 2518 } 2519 2520 if (Slot != -1) 2521 Out << Prefix << Slot; 2522 else 2523 Out << "<badref>"; 2524 } 2525 2526 static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD, 2527 TypePrinting *TypePrinter, 2528 SlotTracker *Machine, const Module *Context, 2529 bool FromValue) { 2530 // Write DIExpressions and DIArgLists inline when used as a value. Improves 2531 // readability of debug info intrinsics. 2532 if (const DIExpression *Expr = dyn_cast<DIExpression>(MD)) { 2533 writeDIExpression(Out, Expr, TypePrinter, Machine, Context); 2534 return; 2535 } 2536 if (const DIArgList *ArgList = dyn_cast<DIArgList>(MD)) { 2537 writeDIArgList(Out, ArgList, TypePrinter, Machine, Context, FromValue); 2538 return; 2539 } 2540 2541 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2542 std::unique_ptr<SlotTracker> MachineStorage; 2543 if (!Machine) { 2544 MachineStorage = std::make_unique<SlotTracker>(Context); 2545 Machine = MachineStorage.get(); 2546 } 2547 int Slot = Machine->getMetadataSlot(N); 2548 if (Slot == -1) { 2549 if (const DILocation *Loc = dyn_cast<DILocation>(N)) { 2550 writeDILocation(Out, Loc, TypePrinter, Machine, Context); 2551 return; 2552 } 2553 // Give the pointer value instead of "badref", since this comes up all 2554 // the time when debugging. 2555 Out << "<" << N << ">"; 2556 } else 2557 Out << '!' << Slot; 2558 return; 2559 } 2560 2561 if (const MDString *MDS = dyn_cast<MDString>(MD)) { 2562 Out << "!\""; 2563 printEscapedString(MDS->getString(), Out); 2564 Out << '"'; 2565 return; 2566 } 2567 2568 auto *V = cast<ValueAsMetadata>(MD); 2569 assert(TypePrinter && "TypePrinter required for metadata values"); 2570 assert((FromValue || !isa<LocalAsMetadata>(V)) && 2571 "Unexpected function-local metadata outside of value argument"); 2572 2573 TypePrinter->print(V->getValue()->getType(), Out); 2574 Out << ' '; 2575 WriteAsOperandInternal(Out, V->getValue(), TypePrinter, Machine, Context); 2576 } 2577 2578 namespace { 2579 2580 class AssemblyWriter { 2581 formatted_raw_ostream &Out; 2582 const Module *TheModule = nullptr; 2583 const ModuleSummaryIndex *TheIndex = nullptr; 2584 std::unique_ptr<SlotTracker> SlotTrackerStorage; 2585 SlotTracker &Machine; 2586 TypePrinting TypePrinter; 2587 AssemblyAnnotationWriter *AnnotationWriter = nullptr; 2588 SetVector<const Comdat *> Comdats; 2589 bool IsForDebug; 2590 bool ShouldPreserveUseListOrder; 2591 UseListOrderStack UseListOrders; 2592 SmallVector<StringRef, 8> MDNames; 2593 /// Synchronization scope names registered with LLVMContext. 2594 SmallVector<StringRef, 8> SSNs; 2595 DenseMap<const GlobalValueSummary *, GlobalValue::GUID> SummaryToGUIDMap; 2596 2597 public: 2598 /// Construct an AssemblyWriter with an external SlotTracker 2599 AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, const Module *M, 2600 AssemblyAnnotationWriter *AAW, bool IsForDebug, 2601 bool ShouldPreserveUseListOrder = false); 2602 2603 AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, 2604 const ModuleSummaryIndex *Index, bool IsForDebug); 2605 2606 void printMDNodeBody(const MDNode *MD); 2607 void printNamedMDNode(const NamedMDNode *NMD); 2608 2609 void printModule(const Module *M); 2610 2611 void writeOperand(const Value *Op, bool PrintType); 2612 void writeParamOperand(const Value *Operand, AttributeSet Attrs); 2613 void writeOperandBundles(const CallBase *Call); 2614 void writeSyncScope(const LLVMContext &Context, 2615 SyncScope::ID SSID); 2616 void writeAtomic(const LLVMContext &Context, 2617 AtomicOrdering Ordering, 2618 SyncScope::ID SSID); 2619 void writeAtomicCmpXchg(const LLVMContext &Context, 2620 AtomicOrdering SuccessOrdering, 2621 AtomicOrdering FailureOrdering, 2622 SyncScope::ID SSID); 2623 2624 void writeAllMDNodes(); 2625 void writeMDNode(unsigned Slot, const MDNode *Node); 2626 void writeAttribute(const Attribute &Attr, bool InAttrGroup = false); 2627 void writeAttributeSet(const AttributeSet &AttrSet, bool InAttrGroup = false); 2628 void writeAllAttributeGroups(); 2629 2630 void printTypeIdentities(); 2631 void printGlobal(const GlobalVariable *GV); 2632 void printIndirectSymbol(const GlobalIndirectSymbol *GIS); 2633 void printComdat(const Comdat *C); 2634 void printFunction(const Function *F); 2635 void printArgument(const Argument *FA, AttributeSet Attrs); 2636 void printBasicBlock(const BasicBlock *BB); 2637 void printInstructionLine(const Instruction &I); 2638 void printInstruction(const Instruction &I); 2639 2640 void printUseListOrder(const UseListOrder &Order); 2641 void printUseLists(const Function *F); 2642 2643 void printModuleSummaryIndex(); 2644 void printSummaryInfo(unsigned Slot, const ValueInfo &VI); 2645 void printSummary(const GlobalValueSummary &Summary); 2646 void printAliasSummary(const AliasSummary *AS); 2647 void printGlobalVarSummary(const GlobalVarSummary *GS); 2648 void printFunctionSummary(const FunctionSummary *FS); 2649 void printTypeIdSummary(const TypeIdSummary &TIS); 2650 void printTypeIdCompatibleVtableSummary(const TypeIdCompatibleVtableInfo &TI); 2651 void printTypeTestResolution(const TypeTestResolution &TTRes); 2652 void printArgs(const std::vector<uint64_t> &Args); 2653 void printWPDRes(const WholeProgramDevirtResolution &WPDRes); 2654 void printTypeIdInfo(const FunctionSummary::TypeIdInfo &TIDInfo); 2655 void printVFuncId(const FunctionSummary::VFuncId VFId); 2656 void 2657 printNonConstVCalls(const std::vector<FunctionSummary::VFuncId> &VCallList, 2658 const char *Tag); 2659 void 2660 printConstVCalls(const std::vector<FunctionSummary::ConstVCall> &VCallList, 2661 const char *Tag); 2662 2663 private: 2664 /// Print out metadata attachments. 2665 void printMetadataAttachments( 2666 const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs, 2667 StringRef Separator); 2668 2669 // printInfoComment - Print a little comment after the instruction indicating 2670 // which slot it occupies. 2671 void printInfoComment(const Value &V); 2672 2673 // printGCRelocateComment - print comment after call to the gc.relocate 2674 // intrinsic indicating base and derived pointer names. 2675 void printGCRelocateComment(const GCRelocateInst &Relocate); 2676 }; 2677 2678 } // end anonymous namespace 2679 2680 AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, 2681 const Module *M, AssemblyAnnotationWriter *AAW, 2682 bool IsForDebug, bool ShouldPreserveUseListOrder) 2683 : Out(o), TheModule(M), Machine(Mac), TypePrinter(M), AnnotationWriter(AAW), 2684 IsForDebug(IsForDebug), 2685 ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) { 2686 if (!TheModule) 2687 return; 2688 for (const GlobalObject &GO : TheModule->global_objects()) 2689 if (const Comdat *C = GO.getComdat()) 2690 Comdats.insert(C); 2691 } 2692 2693 AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, 2694 const ModuleSummaryIndex *Index, bool IsForDebug) 2695 : Out(o), TheIndex(Index), Machine(Mac), TypePrinter(/*Module=*/nullptr), 2696 IsForDebug(IsForDebug), ShouldPreserveUseListOrder(false) {} 2697 2698 void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) { 2699 if (!Operand) { 2700 Out << "<null operand!>"; 2701 return; 2702 } 2703 if (PrintType) { 2704 TypePrinter.print(Operand->getType(), Out); 2705 Out << ' '; 2706 } 2707 WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule); 2708 } 2709 2710 void AssemblyWriter::writeSyncScope(const LLVMContext &Context, 2711 SyncScope::ID SSID) { 2712 switch (SSID) { 2713 case SyncScope::System: { 2714 break; 2715 } 2716 default: { 2717 if (SSNs.empty()) 2718 Context.getSyncScopeNames(SSNs); 2719 2720 Out << " syncscope(\""; 2721 printEscapedString(SSNs[SSID], Out); 2722 Out << "\")"; 2723 break; 2724 } 2725 } 2726 } 2727 2728 void AssemblyWriter::writeAtomic(const LLVMContext &Context, 2729 AtomicOrdering Ordering, 2730 SyncScope::ID SSID) { 2731 if (Ordering == AtomicOrdering::NotAtomic) 2732 return; 2733 2734 writeSyncScope(Context, SSID); 2735 Out << " " << toIRString(Ordering); 2736 } 2737 2738 void AssemblyWriter::writeAtomicCmpXchg(const LLVMContext &Context, 2739 AtomicOrdering SuccessOrdering, 2740 AtomicOrdering FailureOrdering, 2741 SyncScope::ID SSID) { 2742 assert(SuccessOrdering != AtomicOrdering::NotAtomic && 2743 FailureOrdering != AtomicOrdering::NotAtomic); 2744 2745 writeSyncScope(Context, SSID); 2746 Out << " " << toIRString(SuccessOrdering); 2747 Out << " " << toIRString(FailureOrdering); 2748 } 2749 2750 void AssemblyWriter::writeParamOperand(const Value *Operand, 2751 AttributeSet Attrs) { 2752 if (!Operand) { 2753 Out << "<null operand!>"; 2754 return; 2755 } 2756 2757 // Print the type 2758 TypePrinter.print(Operand->getType(), Out); 2759 // Print parameter attributes list 2760 if (Attrs.hasAttributes()) { 2761 Out << ' '; 2762 writeAttributeSet(Attrs); 2763 } 2764 Out << ' '; 2765 // Print the operand 2766 WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule); 2767 } 2768 2769 void AssemblyWriter::writeOperandBundles(const CallBase *Call) { 2770 if (!Call->hasOperandBundles()) 2771 return; 2772 2773 Out << " [ "; 2774 2775 bool FirstBundle = true; 2776 for (unsigned i = 0, e = Call->getNumOperandBundles(); i != e; ++i) { 2777 OperandBundleUse BU = Call->getOperandBundleAt(i); 2778 2779 if (!FirstBundle) 2780 Out << ", "; 2781 FirstBundle = false; 2782 2783 Out << '"'; 2784 printEscapedString(BU.getTagName(), Out); 2785 Out << '"'; 2786 2787 Out << '('; 2788 2789 bool FirstInput = true; 2790 for (const auto &Input : BU.Inputs) { 2791 if (!FirstInput) 2792 Out << ", "; 2793 FirstInput = false; 2794 2795 TypePrinter.print(Input->getType(), Out); 2796 Out << " "; 2797 WriteAsOperandInternal(Out, Input, &TypePrinter, &Machine, TheModule); 2798 } 2799 2800 Out << ')'; 2801 } 2802 2803 Out << " ]"; 2804 } 2805 2806 void AssemblyWriter::printModule(const Module *M) { 2807 Machine.initializeIfNeeded(); 2808 2809 if (ShouldPreserveUseListOrder) 2810 UseListOrders = predictUseListOrder(M); 2811 2812 if (!M->getModuleIdentifier().empty() && 2813 // Don't print the ID if it will start a new line (which would 2814 // require a comment char before it). 2815 M->getModuleIdentifier().find('\n') == std::string::npos) 2816 Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n"; 2817 2818 if (!M->getSourceFileName().empty()) { 2819 Out << "source_filename = \""; 2820 printEscapedString(M->getSourceFileName(), Out); 2821 Out << "\"\n"; 2822 } 2823 2824 const std::string &DL = M->getDataLayoutStr(); 2825 if (!DL.empty()) 2826 Out << "target datalayout = \"" << DL << "\"\n"; 2827 if (!M->getTargetTriple().empty()) 2828 Out << "target triple = \"" << M->getTargetTriple() << "\"\n"; 2829 2830 if (!M->getModuleInlineAsm().empty()) { 2831 Out << '\n'; 2832 2833 // Split the string into lines, to make it easier to read the .ll file. 2834 StringRef Asm = M->getModuleInlineAsm(); 2835 do { 2836 StringRef Front; 2837 std::tie(Front, Asm) = Asm.split('\n'); 2838 2839 // We found a newline, print the portion of the asm string from the 2840 // last newline up to this newline. 2841 Out << "module asm \""; 2842 printEscapedString(Front, Out); 2843 Out << "\"\n"; 2844 } while (!Asm.empty()); 2845 } 2846 2847 printTypeIdentities(); 2848 2849 // Output all comdats. 2850 if (!Comdats.empty()) 2851 Out << '\n'; 2852 for (const Comdat *C : Comdats) { 2853 printComdat(C); 2854 if (C != Comdats.back()) 2855 Out << '\n'; 2856 } 2857 2858 // Output all globals. 2859 if (!M->global_empty()) Out << '\n'; 2860 for (const GlobalVariable &GV : M->globals()) { 2861 printGlobal(&GV); Out << '\n'; 2862 } 2863 2864 // Output all aliases. 2865 if (!M->alias_empty()) Out << "\n"; 2866 for (const GlobalAlias &GA : M->aliases()) 2867 printIndirectSymbol(&GA); 2868 2869 // Output all ifuncs. 2870 if (!M->ifunc_empty()) Out << "\n"; 2871 for (const GlobalIFunc &GI : M->ifuncs()) 2872 printIndirectSymbol(&GI); 2873 2874 // Output global use-lists. 2875 printUseLists(nullptr); 2876 2877 // Output all of the functions. 2878 for (const Function &F : *M) { 2879 Out << '\n'; 2880 printFunction(&F); 2881 } 2882 assert(UseListOrders.empty() && "All use-lists should have been consumed"); 2883 2884 // Output all attribute groups. 2885 if (!Machine.as_empty()) { 2886 Out << '\n'; 2887 writeAllAttributeGroups(); 2888 } 2889 2890 // Output named metadata. 2891 if (!M->named_metadata_empty()) Out << '\n'; 2892 2893 for (const NamedMDNode &Node : M->named_metadata()) 2894 printNamedMDNode(&Node); 2895 2896 // Output metadata. 2897 if (!Machine.mdn_empty()) { 2898 Out << '\n'; 2899 writeAllMDNodes(); 2900 } 2901 } 2902 2903 void AssemblyWriter::printModuleSummaryIndex() { 2904 assert(TheIndex); 2905 int NumSlots = Machine.initializeIndexIfNeeded(); 2906 2907 Out << "\n"; 2908 2909 // Print module path entries. To print in order, add paths to a vector 2910 // indexed by module slot. 2911 std::vector<std::pair<std::string, ModuleHash>> moduleVec; 2912 std::string RegularLTOModuleName = 2913 ModuleSummaryIndex::getRegularLTOModuleName(); 2914 moduleVec.resize(TheIndex->modulePaths().size()); 2915 for (auto &ModPath : TheIndex->modulePaths()) 2916 moduleVec[Machine.getModulePathSlot(ModPath.first())] = std::make_pair( 2917 // A module id of -1 is a special entry for a regular LTO module created 2918 // during the thin link. 2919 ModPath.second.first == -1u ? RegularLTOModuleName 2920 : (std::string)std::string(ModPath.first()), 2921 ModPath.second.second); 2922 2923 unsigned i = 0; 2924 for (auto &ModPair : moduleVec) { 2925 Out << "^" << i++ << " = module: ("; 2926 Out << "path: \""; 2927 printEscapedString(ModPair.first, Out); 2928 Out << "\", hash: ("; 2929 FieldSeparator FS; 2930 for (auto Hash : ModPair.second) 2931 Out << FS << Hash; 2932 Out << "))\n"; 2933 } 2934 2935 // FIXME: Change AliasSummary to hold a ValueInfo instead of summary pointer 2936 // for aliasee (then update BitcodeWriter.cpp and remove get/setAliaseeGUID). 2937 for (auto &GlobalList : *TheIndex) { 2938 auto GUID = GlobalList.first; 2939 for (auto &Summary : GlobalList.second.SummaryList) 2940 SummaryToGUIDMap[Summary.get()] = GUID; 2941 } 2942 2943 // Print the global value summary entries. 2944 for (auto &GlobalList : *TheIndex) { 2945 auto GUID = GlobalList.first; 2946 auto VI = TheIndex->getValueInfo(GlobalList); 2947 printSummaryInfo(Machine.getGUIDSlot(GUID), VI); 2948 } 2949 2950 // Print the TypeIdMap entries. 2951 for (const auto &TID : TheIndex->typeIds()) { 2952 Out << "^" << Machine.getTypeIdSlot(TID.second.first) 2953 << " = typeid: (name: \"" << TID.second.first << "\""; 2954 printTypeIdSummary(TID.second.second); 2955 Out << ") ; guid = " << TID.first << "\n"; 2956 } 2957 2958 // Print the TypeIdCompatibleVtableMap entries. 2959 for (auto &TId : TheIndex->typeIdCompatibleVtableMap()) { 2960 auto GUID = GlobalValue::getGUID(TId.first); 2961 Out << "^" << Machine.getGUIDSlot(GUID) 2962 << " = typeidCompatibleVTable: (name: \"" << TId.first << "\""; 2963 printTypeIdCompatibleVtableSummary(TId.second); 2964 Out << ") ; guid = " << GUID << "\n"; 2965 } 2966 2967 // Don't emit flags when it's not really needed (value is zero by default). 2968 if (TheIndex->getFlags()) { 2969 Out << "^" << NumSlots << " = flags: " << TheIndex->getFlags() << "\n"; 2970 ++NumSlots; 2971 } 2972 2973 Out << "^" << NumSlots << " = blockcount: " << TheIndex->getBlockCount() 2974 << "\n"; 2975 } 2976 2977 static const char * 2978 getWholeProgDevirtResKindName(WholeProgramDevirtResolution::Kind K) { 2979 switch (K) { 2980 case WholeProgramDevirtResolution::Indir: 2981 return "indir"; 2982 case WholeProgramDevirtResolution::SingleImpl: 2983 return "singleImpl"; 2984 case WholeProgramDevirtResolution::BranchFunnel: 2985 return "branchFunnel"; 2986 } 2987 llvm_unreachable("invalid WholeProgramDevirtResolution kind"); 2988 } 2989 2990 static const char *getWholeProgDevirtResByArgKindName( 2991 WholeProgramDevirtResolution::ByArg::Kind K) { 2992 switch (K) { 2993 case WholeProgramDevirtResolution::ByArg::Indir: 2994 return "indir"; 2995 case WholeProgramDevirtResolution::ByArg::UniformRetVal: 2996 return "uniformRetVal"; 2997 case WholeProgramDevirtResolution::ByArg::UniqueRetVal: 2998 return "uniqueRetVal"; 2999 case WholeProgramDevirtResolution::ByArg::VirtualConstProp: 3000 return "virtualConstProp"; 3001 } 3002 llvm_unreachable("invalid WholeProgramDevirtResolution::ByArg kind"); 3003 } 3004 3005 static const char *getTTResKindName(TypeTestResolution::Kind K) { 3006 switch (K) { 3007 case TypeTestResolution::Unknown: 3008 return "unknown"; 3009 case TypeTestResolution::Unsat: 3010 return "unsat"; 3011 case TypeTestResolution::ByteArray: 3012 return "byteArray"; 3013 case TypeTestResolution::Inline: 3014 return "inline"; 3015 case TypeTestResolution::Single: 3016 return "single"; 3017 case TypeTestResolution::AllOnes: 3018 return "allOnes"; 3019 } 3020 llvm_unreachable("invalid TypeTestResolution kind"); 3021 } 3022 3023 void AssemblyWriter::printTypeTestResolution(const TypeTestResolution &TTRes) { 3024 Out << "typeTestRes: (kind: " << getTTResKindName(TTRes.TheKind) 3025 << ", sizeM1BitWidth: " << TTRes.SizeM1BitWidth; 3026 3027 // The following fields are only used if the target does not support the use 3028 // of absolute symbols to store constants. Print only if non-zero. 3029 if (TTRes.AlignLog2) 3030 Out << ", alignLog2: " << TTRes.AlignLog2; 3031 if (TTRes.SizeM1) 3032 Out << ", sizeM1: " << TTRes.SizeM1; 3033 if (TTRes.BitMask) 3034 // BitMask is uint8_t which causes it to print the corresponding char. 3035 Out << ", bitMask: " << (unsigned)TTRes.BitMask; 3036 if (TTRes.InlineBits) 3037 Out << ", inlineBits: " << TTRes.InlineBits; 3038 3039 Out << ")"; 3040 } 3041 3042 void AssemblyWriter::printTypeIdSummary(const TypeIdSummary &TIS) { 3043 Out << ", summary: ("; 3044 printTypeTestResolution(TIS.TTRes); 3045 if (!TIS.WPDRes.empty()) { 3046 Out << ", wpdResolutions: ("; 3047 FieldSeparator FS; 3048 for (auto &WPDRes : TIS.WPDRes) { 3049 Out << FS; 3050 Out << "(offset: " << WPDRes.first << ", "; 3051 printWPDRes(WPDRes.second); 3052 Out << ")"; 3053 } 3054 Out << ")"; 3055 } 3056 Out << ")"; 3057 } 3058 3059 void AssemblyWriter::printTypeIdCompatibleVtableSummary( 3060 const TypeIdCompatibleVtableInfo &TI) { 3061 Out << ", summary: ("; 3062 FieldSeparator FS; 3063 for (auto &P : TI) { 3064 Out << FS; 3065 Out << "(offset: " << P.AddressPointOffset << ", "; 3066 Out << "^" << Machine.getGUIDSlot(P.VTableVI.getGUID()); 3067 Out << ")"; 3068 } 3069 Out << ")"; 3070 } 3071 3072 void AssemblyWriter::printArgs(const std::vector<uint64_t> &Args) { 3073 Out << "args: ("; 3074 FieldSeparator FS; 3075 for (auto arg : Args) { 3076 Out << FS; 3077 Out << arg; 3078 } 3079 Out << ")"; 3080 } 3081 3082 void AssemblyWriter::printWPDRes(const WholeProgramDevirtResolution &WPDRes) { 3083 Out << "wpdRes: (kind: "; 3084 Out << getWholeProgDevirtResKindName(WPDRes.TheKind); 3085 3086 if (WPDRes.TheKind == WholeProgramDevirtResolution::SingleImpl) 3087 Out << ", singleImplName: \"" << WPDRes.SingleImplName << "\""; 3088 3089 if (!WPDRes.ResByArg.empty()) { 3090 Out << ", resByArg: ("; 3091 FieldSeparator FS; 3092 for (auto &ResByArg : WPDRes.ResByArg) { 3093 Out << FS; 3094 printArgs(ResByArg.first); 3095 Out << ", byArg: (kind: "; 3096 Out << getWholeProgDevirtResByArgKindName(ResByArg.second.TheKind); 3097 if (ResByArg.second.TheKind == 3098 WholeProgramDevirtResolution::ByArg::UniformRetVal || 3099 ResByArg.second.TheKind == 3100 WholeProgramDevirtResolution::ByArg::UniqueRetVal) 3101 Out << ", info: " << ResByArg.second.Info; 3102 3103 // The following fields are only used if the target does not support the 3104 // use of absolute symbols to store constants. Print only if non-zero. 3105 if (ResByArg.second.Byte || ResByArg.second.Bit) 3106 Out << ", byte: " << ResByArg.second.Byte 3107 << ", bit: " << ResByArg.second.Bit; 3108 3109 Out << ")"; 3110 } 3111 Out << ")"; 3112 } 3113 Out << ")"; 3114 } 3115 3116 static const char *getSummaryKindName(GlobalValueSummary::SummaryKind SK) { 3117 switch (SK) { 3118 case GlobalValueSummary::AliasKind: 3119 return "alias"; 3120 case GlobalValueSummary::FunctionKind: 3121 return "function"; 3122 case GlobalValueSummary::GlobalVarKind: 3123 return "variable"; 3124 } 3125 llvm_unreachable("invalid summary kind"); 3126 } 3127 3128 void AssemblyWriter::printAliasSummary(const AliasSummary *AS) { 3129 Out << ", aliasee: "; 3130 // The indexes emitted for distributed backends may not include the 3131 // aliasee summary (only if it is being imported directly). Handle 3132 // that case by just emitting "null" as the aliasee. 3133 if (AS->hasAliasee()) 3134 Out << "^" << Machine.getGUIDSlot(SummaryToGUIDMap[&AS->getAliasee()]); 3135 else 3136 Out << "null"; 3137 } 3138 3139 void AssemblyWriter::printGlobalVarSummary(const GlobalVarSummary *GS) { 3140 auto VTableFuncs = GS->vTableFuncs(); 3141 Out << ", varFlags: (readonly: " << GS->VarFlags.MaybeReadOnly << ", " 3142 << "writeonly: " << GS->VarFlags.MaybeWriteOnly << ", " 3143 << "constant: " << GS->VarFlags.Constant; 3144 if (!VTableFuncs.empty()) 3145 Out << ", " 3146 << "vcall_visibility: " << GS->VarFlags.VCallVisibility; 3147 Out << ")"; 3148 3149 if (!VTableFuncs.empty()) { 3150 Out << ", vTableFuncs: ("; 3151 FieldSeparator FS; 3152 for (auto &P : VTableFuncs) { 3153 Out << FS; 3154 Out << "(virtFunc: ^" << Machine.getGUIDSlot(P.FuncVI.getGUID()) 3155 << ", offset: " << P.VTableOffset; 3156 Out << ")"; 3157 } 3158 Out << ")"; 3159 } 3160 } 3161 3162 static std::string getLinkageName(GlobalValue::LinkageTypes LT) { 3163 switch (LT) { 3164 case GlobalValue::ExternalLinkage: 3165 return "external"; 3166 case GlobalValue::PrivateLinkage: 3167 return "private"; 3168 case GlobalValue::InternalLinkage: 3169 return "internal"; 3170 case GlobalValue::LinkOnceAnyLinkage: 3171 return "linkonce"; 3172 case GlobalValue::LinkOnceODRLinkage: 3173 return "linkonce_odr"; 3174 case GlobalValue::WeakAnyLinkage: 3175 return "weak"; 3176 case GlobalValue::WeakODRLinkage: 3177 return "weak_odr"; 3178 case GlobalValue::CommonLinkage: 3179 return "common"; 3180 case GlobalValue::AppendingLinkage: 3181 return "appending"; 3182 case GlobalValue::ExternalWeakLinkage: 3183 return "extern_weak"; 3184 case GlobalValue::AvailableExternallyLinkage: 3185 return "available_externally"; 3186 } 3187 llvm_unreachable("invalid linkage"); 3188 } 3189 3190 // When printing the linkage types in IR where the ExternalLinkage is 3191 // not printed, and other linkage types are expected to be printed with 3192 // a space after the name. 3193 static std::string getLinkageNameWithSpace(GlobalValue::LinkageTypes LT) { 3194 if (LT == GlobalValue::ExternalLinkage) 3195 return ""; 3196 return getLinkageName(LT) + " "; 3197 } 3198 3199 static const char *getVisibilityName(GlobalValue::VisibilityTypes Vis) { 3200 switch (Vis) { 3201 case GlobalValue::DefaultVisibility: 3202 return "default"; 3203 case GlobalValue::HiddenVisibility: 3204 return "hidden"; 3205 case GlobalValue::ProtectedVisibility: 3206 return "protected"; 3207 } 3208 llvm_unreachable("invalid visibility"); 3209 } 3210 3211 void AssemblyWriter::printFunctionSummary(const FunctionSummary *FS) { 3212 Out << ", insts: " << FS->instCount(); 3213 3214 FunctionSummary::FFlags FFlags = FS->fflags(); 3215 if (FFlags.ReadNone | FFlags.ReadOnly | FFlags.NoRecurse | 3216 FFlags.ReturnDoesNotAlias | FFlags.NoInline | FFlags.AlwaysInline) { 3217 Out << ", funcFlags: ("; 3218 Out << "readNone: " << FFlags.ReadNone; 3219 Out << ", readOnly: " << FFlags.ReadOnly; 3220 Out << ", noRecurse: " << FFlags.NoRecurse; 3221 Out << ", returnDoesNotAlias: " << FFlags.ReturnDoesNotAlias; 3222 Out << ", noInline: " << FFlags.NoInline; 3223 Out << ", alwaysInline: " << FFlags.AlwaysInline; 3224 Out << ")"; 3225 } 3226 if (!FS->calls().empty()) { 3227 Out << ", calls: ("; 3228 FieldSeparator IFS; 3229 for (auto &Call : FS->calls()) { 3230 Out << IFS; 3231 Out << "(callee: ^" << Machine.getGUIDSlot(Call.first.getGUID()); 3232 if (Call.second.getHotness() != CalleeInfo::HotnessType::Unknown) 3233 Out << ", hotness: " << getHotnessName(Call.second.getHotness()); 3234 else if (Call.second.RelBlockFreq) 3235 Out << ", relbf: " << Call.second.RelBlockFreq; 3236 Out << ")"; 3237 } 3238 Out << ")"; 3239 } 3240 3241 if (const auto *TIdInfo = FS->getTypeIdInfo()) 3242 printTypeIdInfo(*TIdInfo); 3243 3244 auto PrintRange = [&](const ConstantRange &Range) { 3245 Out << "[" << Range.getSignedMin() << ", " << Range.getSignedMax() << "]"; 3246 }; 3247 3248 if (!FS->paramAccesses().empty()) { 3249 Out << ", params: ("; 3250 FieldSeparator IFS; 3251 for (auto &PS : FS->paramAccesses()) { 3252 Out << IFS; 3253 Out << "(param: " << PS.ParamNo; 3254 Out << ", offset: "; 3255 PrintRange(PS.Use); 3256 if (!PS.Calls.empty()) { 3257 Out << ", calls: ("; 3258 FieldSeparator IFS; 3259 for (auto &Call : PS.Calls) { 3260 Out << IFS; 3261 Out << "(callee: ^" << Machine.getGUIDSlot(Call.Callee.getGUID()); 3262 Out << ", param: " << Call.ParamNo; 3263 Out << ", offset: "; 3264 PrintRange(Call.Offsets); 3265 Out << ")"; 3266 } 3267 Out << ")"; 3268 } 3269 Out << ")"; 3270 } 3271 Out << ")"; 3272 } 3273 } 3274 3275 void AssemblyWriter::printTypeIdInfo( 3276 const FunctionSummary::TypeIdInfo &TIDInfo) { 3277 Out << ", typeIdInfo: ("; 3278 FieldSeparator TIDFS; 3279 if (!TIDInfo.TypeTests.empty()) { 3280 Out << TIDFS; 3281 Out << "typeTests: ("; 3282 FieldSeparator FS; 3283 for (auto &GUID : TIDInfo.TypeTests) { 3284 auto TidIter = TheIndex->typeIds().equal_range(GUID); 3285 if (TidIter.first == TidIter.second) { 3286 Out << FS; 3287 Out << GUID; 3288 continue; 3289 } 3290 // Print all type id that correspond to this GUID. 3291 for (auto It = TidIter.first; It != TidIter.second; ++It) { 3292 Out << FS; 3293 auto Slot = Machine.getTypeIdSlot(It->second.first); 3294 assert(Slot != -1); 3295 Out << "^" << Slot; 3296 } 3297 } 3298 Out << ")"; 3299 } 3300 if (!TIDInfo.TypeTestAssumeVCalls.empty()) { 3301 Out << TIDFS; 3302 printNonConstVCalls(TIDInfo.TypeTestAssumeVCalls, "typeTestAssumeVCalls"); 3303 } 3304 if (!TIDInfo.TypeCheckedLoadVCalls.empty()) { 3305 Out << TIDFS; 3306 printNonConstVCalls(TIDInfo.TypeCheckedLoadVCalls, "typeCheckedLoadVCalls"); 3307 } 3308 if (!TIDInfo.TypeTestAssumeConstVCalls.empty()) { 3309 Out << TIDFS; 3310 printConstVCalls(TIDInfo.TypeTestAssumeConstVCalls, 3311 "typeTestAssumeConstVCalls"); 3312 } 3313 if (!TIDInfo.TypeCheckedLoadConstVCalls.empty()) { 3314 Out << TIDFS; 3315 printConstVCalls(TIDInfo.TypeCheckedLoadConstVCalls, 3316 "typeCheckedLoadConstVCalls"); 3317 } 3318 Out << ")"; 3319 } 3320 3321 void AssemblyWriter::printVFuncId(const FunctionSummary::VFuncId VFId) { 3322 auto TidIter = TheIndex->typeIds().equal_range(VFId.GUID); 3323 if (TidIter.first == TidIter.second) { 3324 Out << "vFuncId: ("; 3325 Out << "guid: " << VFId.GUID; 3326 Out << ", offset: " << VFId.Offset; 3327 Out << ")"; 3328 return; 3329 } 3330 // Print all type id that correspond to this GUID. 3331 FieldSeparator FS; 3332 for (auto It = TidIter.first; It != TidIter.second; ++It) { 3333 Out << FS; 3334 Out << "vFuncId: ("; 3335 auto Slot = Machine.getTypeIdSlot(It->second.first); 3336 assert(Slot != -1); 3337 Out << "^" << Slot; 3338 Out << ", offset: " << VFId.Offset; 3339 Out << ")"; 3340 } 3341 } 3342 3343 void AssemblyWriter::printNonConstVCalls( 3344 const std::vector<FunctionSummary::VFuncId> &VCallList, const char *Tag) { 3345 Out << Tag << ": ("; 3346 FieldSeparator FS; 3347 for (auto &VFuncId : VCallList) { 3348 Out << FS; 3349 printVFuncId(VFuncId); 3350 } 3351 Out << ")"; 3352 } 3353 3354 void AssemblyWriter::printConstVCalls( 3355 const std::vector<FunctionSummary::ConstVCall> &VCallList, 3356 const char *Tag) { 3357 Out << Tag << ": ("; 3358 FieldSeparator FS; 3359 for (auto &ConstVCall : VCallList) { 3360 Out << FS; 3361 Out << "("; 3362 printVFuncId(ConstVCall.VFunc); 3363 if (!ConstVCall.Args.empty()) { 3364 Out << ", "; 3365 printArgs(ConstVCall.Args); 3366 } 3367 Out << ")"; 3368 } 3369 Out << ")"; 3370 } 3371 3372 void AssemblyWriter::printSummary(const GlobalValueSummary &Summary) { 3373 GlobalValueSummary::GVFlags GVFlags = Summary.flags(); 3374 GlobalValue::LinkageTypes LT = (GlobalValue::LinkageTypes)GVFlags.Linkage; 3375 Out << getSummaryKindName(Summary.getSummaryKind()) << ": "; 3376 Out << "(module: ^" << Machine.getModulePathSlot(Summary.modulePath()) 3377 << ", flags: ("; 3378 Out << "linkage: " << getLinkageName(LT); 3379 Out << ", visibility: " 3380 << getVisibilityName((GlobalValue::VisibilityTypes)GVFlags.Visibility); 3381 Out << ", notEligibleToImport: " << GVFlags.NotEligibleToImport; 3382 Out << ", live: " << GVFlags.Live; 3383 Out << ", dsoLocal: " << GVFlags.DSOLocal; 3384 Out << ", canAutoHide: " << GVFlags.CanAutoHide; 3385 Out << ")"; 3386 3387 if (Summary.getSummaryKind() == GlobalValueSummary::AliasKind) 3388 printAliasSummary(cast<AliasSummary>(&Summary)); 3389 else if (Summary.getSummaryKind() == GlobalValueSummary::FunctionKind) 3390 printFunctionSummary(cast<FunctionSummary>(&Summary)); 3391 else 3392 printGlobalVarSummary(cast<GlobalVarSummary>(&Summary)); 3393 3394 auto RefList = Summary.refs(); 3395 if (!RefList.empty()) { 3396 Out << ", refs: ("; 3397 FieldSeparator FS; 3398 for (auto &Ref : RefList) { 3399 Out << FS; 3400 if (Ref.isReadOnly()) 3401 Out << "readonly "; 3402 else if (Ref.isWriteOnly()) 3403 Out << "writeonly "; 3404 Out << "^" << Machine.getGUIDSlot(Ref.getGUID()); 3405 } 3406 Out << ")"; 3407 } 3408 3409 Out << ")"; 3410 } 3411 3412 void AssemblyWriter::printSummaryInfo(unsigned Slot, const ValueInfo &VI) { 3413 Out << "^" << Slot << " = gv: ("; 3414 if (!VI.name().empty()) 3415 Out << "name: \"" << VI.name() << "\""; 3416 else 3417 Out << "guid: " << VI.getGUID(); 3418 if (!VI.getSummaryList().empty()) { 3419 Out << ", summaries: ("; 3420 FieldSeparator FS; 3421 for (auto &Summary : VI.getSummaryList()) { 3422 Out << FS; 3423 printSummary(*Summary); 3424 } 3425 Out << ")"; 3426 } 3427 Out << ")"; 3428 if (!VI.name().empty()) 3429 Out << " ; guid = " << VI.getGUID(); 3430 Out << "\n"; 3431 } 3432 3433 static void printMetadataIdentifier(StringRef Name, 3434 formatted_raw_ostream &Out) { 3435 if (Name.empty()) { 3436 Out << "<empty name> "; 3437 } else { 3438 if (isalpha(static_cast<unsigned char>(Name[0])) || Name[0] == '-' || 3439 Name[0] == '$' || Name[0] == '.' || Name[0] == '_') 3440 Out << Name[0]; 3441 else 3442 Out << '\\' << hexdigit(Name[0] >> 4) << hexdigit(Name[0] & 0x0F); 3443 for (unsigned i = 1, e = Name.size(); i != e; ++i) { 3444 unsigned char C = Name[i]; 3445 if (isalnum(static_cast<unsigned char>(C)) || C == '-' || C == '$' || 3446 C == '.' || C == '_') 3447 Out << C; 3448 else 3449 Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F); 3450 } 3451 } 3452 } 3453 3454 void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) { 3455 Out << '!'; 3456 printMetadataIdentifier(NMD->getName(), Out); 3457 Out << " = !{"; 3458 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 3459 if (i) 3460 Out << ", "; 3461 3462 // Write DIExpressions inline. 3463 // FIXME: Ban DIExpressions in NamedMDNodes, they will serve no purpose. 3464 MDNode *Op = NMD->getOperand(i); 3465 assert(!isa<DIArgList>(Op) && 3466 "DIArgLists should not appear in NamedMDNodes"); 3467 if (auto *Expr = dyn_cast<DIExpression>(Op)) { 3468 writeDIExpression(Out, Expr, nullptr, nullptr, nullptr); 3469 continue; 3470 } 3471 3472 int Slot = Machine.getMetadataSlot(Op); 3473 if (Slot == -1) 3474 Out << "<badref>"; 3475 else 3476 Out << '!' << Slot; 3477 } 3478 Out << "}\n"; 3479 } 3480 3481 static void PrintVisibility(GlobalValue::VisibilityTypes Vis, 3482 formatted_raw_ostream &Out) { 3483 switch (Vis) { 3484 case GlobalValue::DefaultVisibility: break; 3485 case GlobalValue::HiddenVisibility: Out << "hidden "; break; 3486 case GlobalValue::ProtectedVisibility: Out << "protected "; break; 3487 } 3488 } 3489 3490 static void PrintDSOLocation(const GlobalValue &GV, 3491 formatted_raw_ostream &Out) { 3492 if (GV.isDSOLocal() && !GV.isImplicitDSOLocal()) 3493 Out << "dso_local "; 3494 } 3495 3496 static void PrintDLLStorageClass(GlobalValue::DLLStorageClassTypes SCT, 3497 formatted_raw_ostream &Out) { 3498 switch (SCT) { 3499 case GlobalValue::DefaultStorageClass: break; 3500 case GlobalValue::DLLImportStorageClass: Out << "dllimport "; break; 3501 case GlobalValue::DLLExportStorageClass: Out << "dllexport "; break; 3502 } 3503 } 3504 3505 static void PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM, 3506 formatted_raw_ostream &Out) { 3507 switch (TLM) { 3508 case GlobalVariable::NotThreadLocal: 3509 break; 3510 case GlobalVariable::GeneralDynamicTLSModel: 3511 Out << "thread_local "; 3512 break; 3513 case GlobalVariable::LocalDynamicTLSModel: 3514 Out << "thread_local(localdynamic) "; 3515 break; 3516 case GlobalVariable::InitialExecTLSModel: 3517 Out << "thread_local(initialexec) "; 3518 break; 3519 case GlobalVariable::LocalExecTLSModel: 3520 Out << "thread_local(localexec) "; 3521 break; 3522 } 3523 } 3524 3525 static StringRef getUnnamedAddrEncoding(GlobalVariable::UnnamedAddr UA) { 3526 switch (UA) { 3527 case GlobalVariable::UnnamedAddr::None: 3528 return ""; 3529 case GlobalVariable::UnnamedAddr::Local: 3530 return "local_unnamed_addr"; 3531 case GlobalVariable::UnnamedAddr::Global: 3532 return "unnamed_addr"; 3533 } 3534 llvm_unreachable("Unknown UnnamedAddr"); 3535 } 3536 3537 static void maybePrintComdat(formatted_raw_ostream &Out, 3538 const GlobalObject &GO) { 3539 const Comdat *C = GO.getComdat(); 3540 if (!C) 3541 return; 3542 3543 if (isa<GlobalVariable>(GO)) 3544 Out << ','; 3545 Out << " comdat"; 3546 3547 if (GO.getName() == C->getName()) 3548 return; 3549 3550 Out << '('; 3551 PrintLLVMName(Out, C->getName(), ComdatPrefix); 3552 Out << ')'; 3553 } 3554 3555 void AssemblyWriter::printGlobal(const GlobalVariable *GV) { 3556 if (GV->isMaterializable()) 3557 Out << "; Materializable\n"; 3558 3559 WriteAsOperandInternal(Out, GV, &TypePrinter, &Machine, GV->getParent()); 3560 Out << " = "; 3561 3562 if (!GV->hasInitializer() && GV->hasExternalLinkage()) 3563 Out << "external "; 3564 3565 Out << getLinkageNameWithSpace(GV->getLinkage()); 3566 PrintDSOLocation(*GV, Out); 3567 PrintVisibility(GV->getVisibility(), Out); 3568 PrintDLLStorageClass(GV->getDLLStorageClass(), Out); 3569 PrintThreadLocalModel(GV->getThreadLocalMode(), Out); 3570 StringRef UA = getUnnamedAddrEncoding(GV->getUnnamedAddr()); 3571 if (!UA.empty()) 3572 Out << UA << ' '; 3573 3574 if (unsigned AddressSpace = GV->getType()->getAddressSpace()) 3575 Out << "addrspace(" << AddressSpace << ") "; 3576 if (GV->isExternallyInitialized()) Out << "externally_initialized "; 3577 Out << (GV->isConstant() ? "constant " : "global "); 3578 TypePrinter.print(GV->getValueType(), Out); 3579 3580 if (GV->hasInitializer()) { 3581 Out << ' '; 3582 writeOperand(GV->getInitializer(), false); 3583 } 3584 3585 if (GV->hasSection()) { 3586 Out << ", section \""; 3587 printEscapedString(GV->getSection(), Out); 3588 Out << '"'; 3589 } 3590 if (GV->hasPartition()) { 3591 Out << ", partition \""; 3592 printEscapedString(GV->getPartition(), Out); 3593 Out << '"'; 3594 } 3595 3596 maybePrintComdat(Out, *GV); 3597 if (GV->getAlignment()) 3598 Out << ", align " << GV->getAlignment(); 3599 3600 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 3601 GV->getAllMetadata(MDs); 3602 printMetadataAttachments(MDs, ", "); 3603 3604 auto Attrs = GV->getAttributes(); 3605 if (Attrs.hasAttributes()) 3606 Out << " #" << Machine.getAttributeGroupSlot(Attrs); 3607 3608 printInfoComment(*GV); 3609 } 3610 3611 void AssemblyWriter::printIndirectSymbol(const GlobalIndirectSymbol *GIS) { 3612 if (GIS->isMaterializable()) 3613 Out << "; Materializable\n"; 3614 3615 WriteAsOperandInternal(Out, GIS, &TypePrinter, &Machine, GIS->getParent()); 3616 Out << " = "; 3617 3618 Out << getLinkageNameWithSpace(GIS->getLinkage()); 3619 PrintDSOLocation(*GIS, Out); 3620 PrintVisibility(GIS->getVisibility(), Out); 3621 PrintDLLStorageClass(GIS->getDLLStorageClass(), Out); 3622 PrintThreadLocalModel(GIS->getThreadLocalMode(), Out); 3623 StringRef UA = getUnnamedAddrEncoding(GIS->getUnnamedAddr()); 3624 if (!UA.empty()) 3625 Out << UA << ' '; 3626 3627 if (isa<GlobalAlias>(GIS)) 3628 Out << "alias "; 3629 else if (isa<GlobalIFunc>(GIS)) 3630 Out << "ifunc "; 3631 else 3632 llvm_unreachable("Not an alias or ifunc!"); 3633 3634 TypePrinter.print(GIS->getValueType(), Out); 3635 3636 Out << ", "; 3637 3638 const Constant *IS = GIS->getIndirectSymbol(); 3639 3640 if (!IS) { 3641 TypePrinter.print(GIS->getType(), Out); 3642 Out << " <<NULL ALIASEE>>"; 3643 } else { 3644 writeOperand(IS, !isa<ConstantExpr>(IS)); 3645 } 3646 3647 if (GIS->hasPartition()) { 3648 Out << ", partition \""; 3649 printEscapedString(GIS->getPartition(), Out); 3650 Out << '"'; 3651 } 3652 3653 printInfoComment(*GIS); 3654 Out << '\n'; 3655 } 3656 3657 void AssemblyWriter::printComdat(const Comdat *C) { 3658 C->print(Out); 3659 } 3660 3661 void AssemblyWriter::printTypeIdentities() { 3662 if (TypePrinter.empty()) 3663 return; 3664 3665 Out << '\n'; 3666 3667 // Emit all numbered types. 3668 auto &NumberedTypes = TypePrinter.getNumberedTypes(); 3669 for (unsigned I = 0, E = NumberedTypes.size(); I != E; ++I) { 3670 Out << '%' << I << " = type "; 3671 3672 // Make sure we print out at least one level of the type structure, so 3673 // that we do not get %2 = type %2 3674 TypePrinter.printStructBody(NumberedTypes[I], Out); 3675 Out << '\n'; 3676 } 3677 3678 auto &NamedTypes = TypePrinter.getNamedTypes(); 3679 for (unsigned I = 0, E = NamedTypes.size(); I != E; ++I) { 3680 PrintLLVMName(Out, NamedTypes[I]->getName(), LocalPrefix); 3681 Out << " = type "; 3682 3683 // Make sure we print out at least one level of the type structure, so 3684 // that we do not get %FILE = type %FILE 3685 TypePrinter.printStructBody(NamedTypes[I], Out); 3686 Out << '\n'; 3687 } 3688 } 3689 3690 /// printFunction - Print all aspects of a function. 3691 void AssemblyWriter::printFunction(const Function *F) { 3692 if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out); 3693 3694 if (F->isMaterializable()) 3695 Out << "; Materializable\n"; 3696 3697 const AttributeList &Attrs = F->getAttributes(); 3698 if (Attrs.hasAttributes(AttributeList::FunctionIndex)) { 3699 AttributeSet AS = Attrs.getFnAttributes(); 3700 std::string AttrStr; 3701 3702 for (const Attribute &Attr : AS) { 3703 if (!Attr.isStringAttribute()) { 3704 if (!AttrStr.empty()) AttrStr += ' '; 3705 AttrStr += Attr.getAsString(); 3706 } 3707 } 3708 3709 if (!AttrStr.empty()) 3710 Out << "; Function Attrs: " << AttrStr << '\n'; 3711 } 3712 3713 Machine.incorporateFunction(F); 3714 3715 if (F->isDeclaration()) { 3716 Out << "declare"; 3717 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 3718 F->getAllMetadata(MDs); 3719 printMetadataAttachments(MDs, " "); 3720 Out << ' '; 3721 } else 3722 Out << "define "; 3723 3724 Out << getLinkageNameWithSpace(F->getLinkage()); 3725 PrintDSOLocation(*F, Out); 3726 PrintVisibility(F->getVisibility(), Out); 3727 PrintDLLStorageClass(F->getDLLStorageClass(), Out); 3728 3729 // Print the calling convention. 3730 if (F->getCallingConv() != CallingConv::C) { 3731 PrintCallingConv(F->getCallingConv(), Out); 3732 Out << " "; 3733 } 3734 3735 FunctionType *FT = F->getFunctionType(); 3736 if (Attrs.hasAttributes(AttributeList::ReturnIndex)) 3737 Out << Attrs.getAsString(AttributeList::ReturnIndex) << ' '; 3738 TypePrinter.print(F->getReturnType(), Out); 3739 Out << ' '; 3740 WriteAsOperandInternal(Out, F, &TypePrinter, &Machine, F->getParent()); 3741 Out << '('; 3742 3743 // Loop over the arguments, printing them... 3744 if (F->isDeclaration() && !IsForDebug) { 3745 // We're only interested in the type here - don't print argument names. 3746 for (unsigned I = 0, E = FT->getNumParams(); I != E; ++I) { 3747 // Insert commas as we go... the first arg doesn't get a comma 3748 if (I) 3749 Out << ", "; 3750 // Output type... 3751 TypePrinter.print(FT->getParamType(I), Out); 3752 3753 AttributeSet ArgAttrs = Attrs.getParamAttributes(I); 3754 if (ArgAttrs.hasAttributes()) { 3755 Out << ' '; 3756 writeAttributeSet(ArgAttrs); 3757 } 3758 } 3759 } else { 3760 // The arguments are meaningful here, print them in detail. 3761 for (const Argument &Arg : F->args()) { 3762 // Insert commas as we go... the first arg doesn't get a comma 3763 if (Arg.getArgNo() != 0) 3764 Out << ", "; 3765 printArgument(&Arg, Attrs.getParamAttributes(Arg.getArgNo())); 3766 } 3767 } 3768 3769 // Finish printing arguments... 3770 if (FT->isVarArg()) { 3771 if (FT->getNumParams()) Out << ", "; 3772 Out << "..."; // Output varargs portion of signature! 3773 } 3774 Out << ')'; 3775 StringRef UA = getUnnamedAddrEncoding(F->getUnnamedAddr()); 3776 if (!UA.empty()) 3777 Out << ' ' << UA; 3778 // We print the function address space if it is non-zero or if we are writing 3779 // a module with a non-zero program address space or if there is no valid 3780 // Module* so that the file can be parsed without the datalayout string. 3781 const Module *Mod = F->getParent(); 3782 if (F->getAddressSpace() != 0 || !Mod || 3783 Mod->getDataLayout().getProgramAddressSpace() != 0) 3784 Out << " addrspace(" << F->getAddressSpace() << ")"; 3785 if (Attrs.hasAttributes(AttributeList::FunctionIndex)) 3786 Out << " #" << Machine.getAttributeGroupSlot(Attrs.getFnAttributes()); 3787 if (F->hasSection()) { 3788 Out << " section \""; 3789 printEscapedString(F->getSection(), Out); 3790 Out << '"'; 3791 } 3792 if (F->hasPartition()) { 3793 Out << " partition \""; 3794 printEscapedString(F->getPartition(), Out); 3795 Out << '"'; 3796 } 3797 maybePrintComdat(Out, *F); 3798 if (F->getAlignment()) 3799 Out << " align " << F->getAlignment(); 3800 if (F->hasGC()) 3801 Out << " gc \"" << F->getGC() << '"'; 3802 if (F->hasPrefixData()) { 3803 Out << " prefix "; 3804 writeOperand(F->getPrefixData(), true); 3805 } 3806 if (F->hasPrologueData()) { 3807 Out << " prologue "; 3808 writeOperand(F->getPrologueData(), true); 3809 } 3810 if (F->hasPersonalityFn()) { 3811 Out << " personality "; 3812 writeOperand(F->getPersonalityFn(), /*PrintType=*/true); 3813 } 3814 3815 if (F->isDeclaration()) { 3816 Out << '\n'; 3817 } else { 3818 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 3819 F->getAllMetadata(MDs); 3820 printMetadataAttachments(MDs, " "); 3821 3822 Out << " {"; 3823 // Output all of the function's basic blocks. 3824 for (const BasicBlock &BB : *F) 3825 printBasicBlock(&BB); 3826 3827 // Output the function's use-lists. 3828 printUseLists(F); 3829 3830 Out << "}\n"; 3831 } 3832 3833 Machine.purgeFunction(); 3834 } 3835 3836 /// printArgument - This member is called for every argument that is passed into 3837 /// the function. Simply print it out 3838 void AssemblyWriter::printArgument(const Argument *Arg, AttributeSet Attrs) { 3839 // Output type... 3840 TypePrinter.print(Arg->getType(), Out); 3841 3842 // Output parameter attributes list 3843 if (Attrs.hasAttributes()) { 3844 Out << ' '; 3845 writeAttributeSet(Attrs); 3846 } 3847 3848 // Output name, if available... 3849 if (Arg->hasName()) { 3850 Out << ' '; 3851 PrintLLVMName(Out, Arg); 3852 } else { 3853 int Slot = Machine.getLocalSlot(Arg); 3854 assert(Slot != -1 && "expect argument in function here"); 3855 Out << " %" << Slot; 3856 } 3857 } 3858 3859 /// printBasicBlock - This member is called for each basic block in a method. 3860 void AssemblyWriter::printBasicBlock(const BasicBlock *BB) { 3861 assert(BB && BB->getParent() && "block without parent!"); 3862 bool IsEntryBlock = BB->isEntryBlock(); 3863 if (BB->hasName()) { // Print out the label if it exists... 3864 Out << "\n"; 3865 PrintLLVMName(Out, BB->getName(), LabelPrefix); 3866 Out << ':'; 3867 } else if (!IsEntryBlock) { 3868 Out << "\n"; 3869 int Slot = Machine.getLocalSlot(BB); 3870 if (Slot != -1) 3871 Out << Slot << ":"; 3872 else 3873 Out << "<badref>:"; 3874 } 3875 3876 if (!IsEntryBlock) { 3877 // Output predecessors for the block. 3878 Out.PadToColumn(50); 3879 Out << ";"; 3880 const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB); 3881 3882 if (PI == PE) { 3883 Out << " No predecessors!"; 3884 } else { 3885 Out << " preds = "; 3886 writeOperand(*PI, false); 3887 for (++PI; PI != PE; ++PI) { 3888 Out << ", "; 3889 writeOperand(*PI, false); 3890 } 3891 } 3892 } 3893 3894 Out << "\n"; 3895 3896 if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out); 3897 3898 // Output all of the instructions in the basic block... 3899 for (const Instruction &I : *BB) { 3900 printInstructionLine(I); 3901 } 3902 3903 if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out); 3904 } 3905 3906 /// printInstructionLine - Print an instruction and a newline character. 3907 void AssemblyWriter::printInstructionLine(const Instruction &I) { 3908 printInstruction(I); 3909 Out << '\n'; 3910 } 3911 3912 /// printGCRelocateComment - print comment after call to the gc.relocate 3913 /// intrinsic indicating base and derived pointer names. 3914 void AssemblyWriter::printGCRelocateComment(const GCRelocateInst &Relocate) { 3915 Out << " ; ("; 3916 writeOperand(Relocate.getBasePtr(), false); 3917 Out << ", "; 3918 writeOperand(Relocate.getDerivedPtr(), false); 3919 Out << ")"; 3920 } 3921 3922 /// printInfoComment - Print a little comment after the instruction indicating 3923 /// which slot it occupies. 3924 void AssemblyWriter::printInfoComment(const Value &V) { 3925 if (const auto *Relocate = dyn_cast<GCRelocateInst>(&V)) 3926 printGCRelocateComment(*Relocate); 3927 3928 if (AnnotationWriter) 3929 AnnotationWriter->printInfoComment(V, Out); 3930 } 3931 3932 static void maybePrintCallAddrSpace(const Value *Operand, const Instruction *I, 3933 raw_ostream &Out) { 3934 // We print the address space of the call if it is non-zero. 3935 unsigned CallAddrSpace = Operand->getType()->getPointerAddressSpace(); 3936 bool PrintAddrSpace = CallAddrSpace != 0; 3937 if (!PrintAddrSpace) { 3938 const Module *Mod = getModuleFromVal(I); 3939 // We also print it if it is zero but not equal to the program address space 3940 // or if we can't find a valid Module* to make it possible to parse 3941 // the resulting file even without a datalayout string. 3942 if (!Mod || Mod->getDataLayout().getProgramAddressSpace() != 0) 3943 PrintAddrSpace = true; 3944 } 3945 if (PrintAddrSpace) 3946 Out << " addrspace(" << CallAddrSpace << ")"; 3947 } 3948 3949 // This member is called for each Instruction in a function.. 3950 void AssemblyWriter::printInstruction(const Instruction &I) { 3951 if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out); 3952 3953 // Print out indentation for an instruction. 3954 Out << " "; 3955 3956 // Print out name if it exists... 3957 if (I.hasName()) { 3958 PrintLLVMName(Out, &I); 3959 Out << " = "; 3960 } else if (!I.getType()->isVoidTy()) { 3961 // Print out the def slot taken. 3962 int SlotNum = Machine.getLocalSlot(&I); 3963 if (SlotNum == -1) 3964 Out << "<badref> = "; 3965 else 3966 Out << '%' << SlotNum << " = "; 3967 } 3968 3969 if (const CallInst *CI = dyn_cast<CallInst>(&I)) { 3970 if (CI->isMustTailCall()) 3971 Out << "musttail "; 3972 else if (CI->isTailCall()) 3973 Out << "tail "; 3974 else if (CI->isNoTailCall()) 3975 Out << "notail "; 3976 } 3977 3978 // Print out the opcode... 3979 Out << I.getOpcodeName(); 3980 3981 // If this is an atomic load or store, print out the atomic marker. 3982 if ((isa<LoadInst>(I) && cast<LoadInst>(I).isAtomic()) || 3983 (isa<StoreInst>(I) && cast<StoreInst>(I).isAtomic())) 3984 Out << " atomic"; 3985 3986 if (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isWeak()) 3987 Out << " weak"; 3988 3989 // If this is a volatile operation, print out the volatile marker. 3990 if ((isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile()) || 3991 (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()) || 3992 (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isVolatile()) || 3993 (isa<AtomicRMWInst>(I) && cast<AtomicRMWInst>(I).isVolatile())) 3994 Out << " volatile"; 3995 3996 // Print out optimization information. 3997 WriteOptimizationInfo(Out, &I); 3998 3999 // Print out the compare instruction predicates 4000 if (const CmpInst *CI = dyn_cast<CmpInst>(&I)) 4001 Out << ' ' << CmpInst::getPredicateName(CI->getPredicate()); 4002 4003 // Print out the atomicrmw operation 4004 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) 4005 Out << ' ' << AtomicRMWInst::getOperationName(RMWI->getOperation()); 4006 4007 // Print out the type of the operands... 4008 const Value *Operand = I.getNumOperands() ? I.getOperand(0) : nullptr; 4009 4010 // Special case conditional branches to swizzle the condition out to the front 4011 if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) { 4012 const BranchInst &BI(cast<BranchInst>(I)); 4013 Out << ' '; 4014 writeOperand(BI.getCondition(), true); 4015 Out << ", "; 4016 writeOperand(BI.getSuccessor(0), true); 4017 Out << ", "; 4018 writeOperand(BI.getSuccessor(1), true); 4019 4020 } else if (isa<SwitchInst>(I)) { 4021 const SwitchInst& SI(cast<SwitchInst>(I)); 4022 // Special case switch instruction to get formatting nice and correct. 4023 Out << ' '; 4024 writeOperand(SI.getCondition(), true); 4025 Out << ", "; 4026 writeOperand(SI.getDefaultDest(), true); 4027 Out << " ["; 4028 for (auto Case : SI.cases()) { 4029 Out << "\n "; 4030 writeOperand(Case.getCaseValue(), true); 4031 Out << ", "; 4032 writeOperand(Case.getCaseSuccessor(), true); 4033 } 4034 Out << "\n ]"; 4035 } else if (isa<IndirectBrInst>(I)) { 4036 // Special case indirectbr instruction to get formatting nice and correct. 4037 Out << ' '; 4038 writeOperand(Operand, true); 4039 Out << ", ["; 4040 4041 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) { 4042 if (i != 1) 4043 Out << ", "; 4044 writeOperand(I.getOperand(i), true); 4045 } 4046 Out << ']'; 4047 } else if (const PHINode *PN = dyn_cast<PHINode>(&I)) { 4048 Out << ' '; 4049 TypePrinter.print(I.getType(), Out); 4050 Out << ' '; 4051 4052 for (unsigned op = 0, Eop = PN->getNumIncomingValues(); op < Eop; ++op) { 4053 if (op) Out << ", "; 4054 Out << "[ "; 4055 writeOperand(PN->getIncomingValue(op), false); Out << ", "; 4056 writeOperand(PN->getIncomingBlock(op), false); Out << " ]"; 4057 } 4058 } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) { 4059 Out << ' '; 4060 writeOperand(I.getOperand(0), true); 4061 for (unsigned i : EVI->indices()) 4062 Out << ", " << i; 4063 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) { 4064 Out << ' '; 4065 writeOperand(I.getOperand(0), true); Out << ", "; 4066 writeOperand(I.getOperand(1), true); 4067 for (unsigned i : IVI->indices()) 4068 Out << ", " << i; 4069 } else if (const LandingPadInst *LPI = dyn_cast<LandingPadInst>(&I)) { 4070 Out << ' '; 4071 TypePrinter.print(I.getType(), Out); 4072 if (LPI->isCleanup() || LPI->getNumClauses() != 0) 4073 Out << '\n'; 4074 4075 if (LPI->isCleanup()) 4076 Out << " cleanup"; 4077 4078 for (unsigned i = 0, e = LPI->getNumClauses(); i != e; ++i) { 4079 if (i != 0 || LPI->isCleanup()) Out << "\n"; 4080 if (LPI->isCatch(i)) 4081 Out << " catch "; 4082 else 4083 Out << " filter "; 4084 4085 writeOperand(LPI->getClause(i), true); 4086 } 4087 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(&I)) { 4088 Out << " within "; 4089 writeOperand(CatchSwitch->getParentPad(), /*PrintType=*/false); 4090 Out << " ["; 4091 unsigned Op = 0; 4092 for (const BasicBlock *PadBB : CatchSwitch->handlers()) { 4093 if (Op > 0) 4094 Out << ", "; 4095 writeOperand(PadBB, /*PrintType=*/true); 4096 ++Op; 4097 } 4098 Out << "] unwind "; 4099 if (const BasicBlock *UnwindDest = CatchSwitch->getUnwindDest()) 4100 writeOperand(UnwindDest, /*PrintType=*/true); 4101 else 4102 Out << "to caller"; 4103 } else if (const auto *FPI = dyn_cast<FuncletPadInst>(&I)) { 4104 Out << " within "; 4105 writeOperand(FPI->getParentPad(), /*PrintType=*/false); 4106 Out << " ["; 4107 for (unsigned Op = 0, NumOps = FPI->getNumArgOperands(); Op < NumOps; 4108 ++Op) { 4109 if (Op > 0) 4110 Out << ", "; 4111 writeOperand(FPI->getArgOperand(Op), /*PrintType=*/true); 4112 } 4113 Out << ']'; 4114 } else if (isa<ReturnInst>(I) && !Operand) { 4115 Out << " void"; 4116 } else if (const auto *CRI = dyn_cast<CatchReturnInst>(&I)) { 4117 Out << " from "; 4118 writeOperand(CRI->getOperand(0), /*PrintType=*/false); 4119 4120 Out << " to "; 4121 writeOperand(CRI->getOperand(1), /*PrintType=*/true); 4122 } else if (const auto *CRI = dyn_cast<CleanupReturnInst>(&I)) { 4123 Out << " from "; 4124 writeOperand(CRI->getOperand(0), /*PrintType=*/false); 4125 4126 Out << " unwind "; 4127 if (CRI->hasUnwindDest()) 4128 writeOperand(CRI->getOperand(1), /*PrintType=*/true); 4129 else 4130 Out << "to caller"; 4131 } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) { 4132 // Print the calling convention being used. 4133 if (CI->getCallingConv() != CallingConv::C) { 4134 Out << " "; 4135 PrintCallingConv(CI->getCallingConv(), Out); 4136 } 4137 4138 Operand = CI->getCalledOperand(); 4139 FunctionType *FTy = CI->getFunctionType(); 4140 Type *RetTy = FTy->getReturnType(); 4141 const AttributeList &PAL = CI->getAttributes(); 4142 4143 if (PAL.hasAttributes(AttributeList::ReturnIndex)) 4144 Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex); 4145 4146 // Only print addrspace(N) if necessary: 4147 maybePrintCallAddrSpace(Operand, &I, Out); 4148 4149 // If possible, print out the short form of the call instruction. We can 4150 // only do this if the first argument is a pointer to a nonvararg function, 4151 // and if the return type is not a pointer to a function. 4152 // 4153 Out << ' '; 4154 TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out); 4155 Out << ' '; 4156 writeOperand(Operand, false); 4157 Out << '('; 4158 for (unsigned op = 0, Eop = CI->getNumArgOperands(); op < Eop; ++op) { 4159 if (op > 0) 4160 Out << ", "; 4161 writeParamOperand(CI->getArgOperand(op), PAL.getParamAttributes(op)); 4162 } 4163 4164 // Emit an ellipsis if this is a musttail call in a vararg function. This 4165 // is only to aid readability, musttail calls forward varargs by default. 4166 if (CI->isMustTailCall() && CI->getParent() && 4167 CI->getParent()->getParent() && 4168 CI->getParent()->getParent()->isVarArg()) 4169 Out << ", ..."; 4170 4171 Out << ')'; 4172 if (PAL.hasAttributes(AttributeList::FunctionIndex)) 4173 Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes()); 4174 4175 writeOperandBundles(CI); 4176 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) { 4177 Operand = II->getCalledOperand(); 4178 FunctionType *FTy = II->getFunctionType(); 4179 Type *RetTy = FTy->getReturnType(); 4180 const AttributeList &PAL = II->getAttributes(); 4181 4182 // Print the calling convention being used. 4183 if (II->getCallingConv() != CallingConv::C) { 4184 Out << " "; 4185 PrintCallingConv(II->getCallingConv(), Out); 4186 } 4187 4188 if (PAL.hasAttributes(AttributeList::ReturnIndex)) 4189 Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex); 4190 4191 // Only print addrspace(N) if necessary: 4192 maybePrintCallAddrSpace(Operand, &I, Out); 4193 4194 // If possible, print out the short form of the invoke instruction. We can 4195 // only do this if the first argument is a pointer to a nonvararg function, 4196 // and if the return type is not a pointer to a function. 4197 // 4198 Out << ' '; 4199 TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out); 4200 Out << ' '; 4201 writeOperand(Operand, false); 4202 Out << '('; 4203 for (unsigned op = 0, Eop = II->getNumArgOperands(); op < Eop; ++op) { 4204 if (op) 4205 Out << ", "; 4206 writeParamOperand(II->getArgOperand(op), PAL.getParamAttributes(op)); 4207 } 4208 4209 Out << ')'; 4210 if (PAL.hasAttributes(AttributeList::FunctionIndex)) 4211 Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes()); 4212 4213 writeOperandBundles(II); 4214 4215 Out << "\n to "; 4216 writeOperand(II->getNormalDest(), true); 4217 Out << " unwind "; 4218 writeOperand(II->getUnwindDest(), true); 4219 } else if (const CallBrInst *CBI = dyn_cast<CallBrInst>(&I)) { 4220 Operand = CBI->getCalledOperand(); 4221 FunctionType *FTy = CBI->getFunctionType(); 4222 Type *RetTy = FTy->getReturnType(); 4223 const AttributeList &PAL = CBI->getAttributes(); 4224 4225 // Print the calling convention being used. 4226 if (CBI->getCallingConv() != CallingConv::C) { 4227 Out << " "; 4228 PrintCallingConv(CBI->getCallingConv(), Out); 4229 } 4230 4231 if (PAL.hasAttributes(AttributeList::ReturnIndex)) 4232 Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex); 4233 4234 // If possible, print out the short form of the callbr instruction. We can 4235 // only do this if the first argument is a pointer to a nonvararg function, 4236 // and if the return type is not a pointer to a function. 4237 // 4238 Out << ' '; 4239 TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out); 4240 Out << ' '; 4241 writeOperand(Operand, false); 4242 Out << '('; 4243 for (unsigned op = 0, Eop = CBI->getNumArgOperands(); op < Eop; ++op) { 4244 if (op) 4245 Out << ", "; 4246 writeParamOperand(CBI->getArgOperand(op), PAL.getParamAttributes(op)); 4247 } 4248 4249 Out << ')'; 4250 if (PAL.hasAttributes(AttributeList::FunctionIndex)) 4251 Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes()); 4252 4253 writeOperandBundles(CBI); 4254 4255 Out << "\n to "; 4256 writeOperand(CBI->getDefaultDest(), true); 4257 Out << " ["; 4258 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) { 4259 if (i != 0) 4260 Out << ", "; 4261 writeOperand(CBI->getIndirectDest(i), true); 4262 } 4263 Out << ']'; 4264 } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) { 4265 Out << ' '; 4266 if (AI->isUsedWithInAlloca()) 4267 Out << "inalloca "; 4268 if (AI->isSwiftError()) 4269 Out << "swifterror "; 4270 TypePrinter.print(AI->getAllocatedType(), Out); 4271 4272 // Explicitly write the array size if the code is broken, if it's an array 4273 // allocation, or if the type is not canonical for scalar allocations. The 4274 // latter case prevents the type from mutating when round-tripping through 4275 // assembly. 4276 if (!AI->getArraySize() || AI->isArrayAllocation() || 4277 !AI->getArraySize()->getType()->isIntegerTy(32)) { 4278 Out << ", "; 4279 writeOperand(AI->getArraySize(), true); 4280 } 4281 if (AI->getAlignment()) { 4282 Out << ", align " << AI->getAlignment(); 4283 } 4284 4285 unsigned AddrSpace = AI->getType()->getAddressSpace(); 4286 if (AddrSpace != 0) { 4287 Out << ", addrspace(" << AddrSpace << ')'; 4288 } 4289 } else if (isa<CastInst>(I)) { 4290 if (Operand) { 4291 Out << ' '; 4292 writeOperand(Operand, true); // Work with broken code 4293 } 4294 Out << " to "; 4295 TypePrinter.print(I.getType(), Out); 4296 } else if (isa<VAArgInst>(I)) { 4297 if (Operand) { 4298 Out << ' '; 4299 writeOperand(Operand, true); // Work with broken code 4300 } 4301 Out << ", "; 4302 TypePrinter.print(I.getType(), Out); 4303 } else if (Operand) { // Print the normal way. 4304 if (const auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 4305 Out << ' '; 4306 TypePrinter.print(GEP->getSourceElementType(), Out); 4307 Out << ','; 4308 } else if (const auto *LI = dyn_cast<LoadInst>(&I)) { 4309 Out << ' '; 4310 TypePrinter.print(LI->getType(), Out); 4311 Out << ','; 4312 } 4313 4314 // PrintAllTypes - Instructions who have operands of all the same type 4315 // omit the type from all but the first operand. If the instruction has 4316 // different type operands (for example br), then they are all printed. 4317 bool PrintAllTypes = false; 4318 Type *TheType = Operand->getType(); 4319 4320 // Select, Store and ShuffleVector always print all types. 4321 if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I) 4322 || isa<ReturnInst>(I)) { 4323 PrintAllTypes = true; 4324 } else { 4325 for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) { 4326 Operand = I.getOperand(i); 4327 // note that Operand shouldn't be null, but the test helps make dump() 4328 // more tolerant of malformed IR 4329 if (Operand && Operand->getType() != TheType) { 4330 PrintAllTypes = true; // We have differing types! Print them all! 4331 break; 4332 } 4333 } 4334 } 4335 4336 if (!PrintAllTypes) { 4337 Out << ' '; 4338 TypePrinter.print(TheType, Out); 4339 } 4340 4341 Out << ' '; 4342 for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) { 4343 if (i) Out << ", "; 4344 writeOperand(I.getOperand(i), PrintAllTypes); 4345 } 4346 } 4347 4348 // Print atomic ordering/alignment for memory operations 4349 if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) { 4350 if (LI->isAtomic()) 4351 writeAtomic(LI->getContext(), LI->getOrdering(), LI->getSyncScopeID()); 4352 if (LI->getAlignment()) 4353 Out << ", align " << LI->getAlignment(); 4354 } else if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) { 4355 if (SI->isAtomic()) 4356 writeAtomic(SI->getContext(), SI->getOrdering(), SI->getSyncScopeID()); 4357 if (SI->getAlignment()) 4358 Out << ", align " << SI->getAlignment(); 4359 } else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(&I)) { 4360 writeAtomicCmpXchg(CXI->getContext(), CXI->getSuccessOrdering(), 4361 CXI->getFailureOrdering(), CXI->getSyncScopeID()); 4362 Out << ", align " << CXI->getAlign().value(); 4363 } else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) { 4364 writeAtomic(RMWI->getContext(), RMWI->getOrdering(), 4365 RMWI->getSyncScopeID()); 4366 Out << ", align " << RMWI->getAlign().value(); 4367 } else if (const FenceInst *FI = dyn_cast<FenceInst>(&I)) { 4368 writeAtomic(FI->getContext(), FI->getOrdering(), FI->getSyncScopeID()); 4369 } else if (const ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(&I)) { 4370 PrintShuffleMask(Out, SVI->getType(), SVI->getShuffleMask()); 4371 } 4372 4373 // Print Metadata info. 4374 SmallVector<std::pair<unsigned, MDNode *>, 4> InstMD; 4375 I.getAllMetadata(InstMD); 4376 printMetadataAttachments(InstMD, ", "); 4377 4378 // Print a nice comment. 4379 printInfoComment(I); 4380 } 4381 4382 void AssemblyWriter::printMetadataAttachments( 4383 const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs, 4384 StringRef Separator) { 4385 if (MDs.empty()) 4386 return; 4387 4388 if (MDNames.empty()) 4389 MDs[0].second->getContext().getMDKindNames(MDNames); 4390 4391 for (const auto &I : MDs) { 4392 unsigned Kind = I.first; 4393 Out << Separator; 4394 if (Kind < MDNames.size()) { 4395 Out << "!"; 4396 printMetadataIdentifier(MDNames[Kind], Out); 4397 } else 4398 Out << "!<unknown kind #" << Kind << ">"; 4399 Out << ' '; 4400 WriteAsOperandInternal(Out, I.second, &TypePrinter, &Machine, TheModule); 4401 } 4402 } 4403 4404 void AssemblyWriter::writeMDNode(unsigned Slot, const MDNode *Node) { 4405 Out << '!' << Slot << " = "; 4406 printMDNodeBody(Node); 4407 Out << "\n"; 4408 } 4409 4410 void AssemblyWriter::writeAllMDNodes() { 4411 SmallVector<const MDNode *, 16> Nodes; 4412 Nodes.resize(Machine.mdn_size()); 4413 for (auto &I : llvm::make_range(Machine.mdn_begin(), Machine.mdn_end())) 4414 Nodes[I.second] = cast<MDNode>(I.first); 4415 4416 for (unsigned i = 0, e = Nodes.size(); i != e; ++i) { 4417 writeMDNode(i, Nodes[i]); 4418 } 4419 } 4420 4421 void AssemblyWriter::printMDNodeBody(const MDNode *Node) { 4422 WriteMDNodeBodyInternal(Out, Node, &TypePrinter, &Machine, TheModule); 4423 } 4424 4425 void AssemblyWriter::writeAttribute(const Attribute &Attr, bool InAttrGroup) { 4426 if (!Attr.isTypeAttribute()) { 4427 Out << Attr.getAsString(InAttrGroup); 4428 return; 4429 } 4430 4431 if (Attr.hasAttribute(Attribute::ByVal)) { 4432 Out << "byval"; 4433 } else if (Attr.hasAttribute(Attribute::StructRet)) { 4434 Out << "sret"; 4435 } else if (Attr.hasAttribute(Attribute::ByRef)) { 4436 Out << "byref"; 4437 } else if (Attr.hasAttribute(Attribute::Preallocated)) { 4438 Out << "preallocated"; 4439 } else if (Attr.hasAttribute(Attribute::InAlloca)) { 4440 Out << "inalloca"; 4441 } else { 4442 llvm_unreachable("unexpected type attr"); 4443 } 4444 4445 if (Type *Ty = Attr.getValueAsType()) { 4446 Out << '('; 4447 TypePrinter.print(Ty, Out); 4448 Out << ')'; 4449 } 4450 } 4451 4452 void AssemblyWriter::writeAttributeSet(const AttributeSet &AttrSet, 4453 bool InAttrGroup) { 4454 bool FirstAttr = true; 4455 for (const auto &Attr : AttrSet) { 4456 if (!FirstAttr) 4457 Out << ' '; 4458 writeAttribute(Attr, InAttrGroup); 4459 FirstAttr = false; 4460 } 4461 } 4462 4463 void AssemblyWriter::writeAllAttributeGroups() { 4464 std::vector<std::pair<AttributeSet, unsigned>> asVec; 4465 asVec.resize(Machine.as_size()); 4466 4467 for (auto &I : llvm::make_range(Machine.as_begin(), Machine.as_end())) 4468 asVec[I.second] = I; 4469 4470 for (const auto &I : asVec) 4471 Out << "attributes #" << I.second << " = { " 4472 << I.first.getAsString(true) << " }\n"; 4473 } 4474 4475 void AssemblyWriter::printUseListOrder(const UseListOrder &Order) { 4476 bool IsInFunction = Machine.getFunction(); 4477 if (IsInFunction) 4478 Out << " "; 4479 4480 Out << "uselistorder"; 4481 if (const BasicBlock *BB = 4482 IsInFunction ? nullptr : dyn_cast<BasicBlock>(Order.V)) { 4483 Out << "_bb "; 4484 writeOperand(BB->getParent(), false); 4485 Out << ", "; 4486 writeOperand(BB, false); 4487 } else { 4488 Out << " "; 4489 writeOperand(Order.V, true); 4490 } 4491 Out << ", { "; 4492 4493 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 4494 Out << Order.Shuffle[0]; 4495 for (unsigned I = 1, E = Order.Shuffle.size(); I != E; ++I) 4496 Out << ", " << Order.Shuffle[I]; 4497 Out << " }\n"; 4498 } 4499 4500 void AssemblyWriter::printUseLists(const Function *F) { 4501 auto hasMore = 4502 [&]() { return !UseListOrders.empty() && UseListOrders.back().F == F; }; 4503 if (!hasMore()) 4504 // Nothing to do. 4505 return; 4506 4507 Out << "\n; uselistorder directives\n"; 4508 while (hasMore()) { 4509 printUseListOrder(UseListOrders.back()); 4510 UseListOrders.pop_back(); 4511 } 4512 } 4513 4514 //===----------------------------------------------------------------------===// 4515 // External Interface declarations 4516 //===----------------------------------------------------------------------===// 4517 4518 void Function::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW, 4519 bool ShouldPreserveUseListOrder, 4520 bool IsForDebug) const { 4521 SlotTracker SlotTable(this->getParent()); 4522 formatted_raw_ostream OS(ROS); 4523 AssemblyWriter W(OS, SlotTable, this->getParent(), AAW, 4524 IsForDebug, 4525 ShouldPreserveUseListOrder); 4526 W.printFunction(this); 4527 } 4528 4529 void BasicBlock::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW, 4530 bool ShouldPreserveUseListOrder, 4531 bool IsForDebug) const { 4532 SlotTracker SlotTable(this->getParent()); 4533 formatted_raw_ostream OS(ROS); 4534 AssemblyWriter W(OS, SlotTable, this->getModule(), AAW, 4535 IsForDebug, 4536 ShouldPreserveUseListOrder); 4537 W.printBasicBlock(this); 4538 } 4539 4540 void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW, 4541 bool ShouldPreserveUseListOrder, bool IsForDebug) const { 4542 SlotTracker SlotTable(this); 4543 formatted_raw_ostream OS(ROS); 4544 AssemblyWriter W(OS, SlotTable, this, AAW, IsForDebug, 4545 ShouldPreserveUseListOrder); 4546 W.printModule(this); 4547 } 4548 4549 void NamedMDNode::print(raw_ostream &ROS, bool IsForDebug) const { 4550 SlotTracker SlotTable(getParent()); 4551 formatted_raw_ostream OS(ROS); 4552 AssemblyWriter W(OS, SlotTable, getParent(), nullptr, IsForDebug); 4553 W.printNamedMDNode(this); 4554 } 4555 4556 void NamedMDNode::print(raw_ostream &ROS, ModuleSlotTracker &MST, 4557 bool IsForDebug) const { 4558 Optional<SlotTracker> LocalST; 4559 SlotTracker *SlotTable; 4560 if (auto *ST = MST.getMachine()) 4561 SlotTable = ST; 4562 else { 4563 LocalST.emplace(getParent()); 4564 SlotTable = &*LocalST; 4565 } 4566 4567 formatted_raw_ostream OS(ROS); 4568 AssemblyWriter W(OS, *SlotTable, getParent(), nullptr, IsForDebug); 4569 W.printNamedMDNode(this); 4570 } 4571 4572 void Comdat::print(raw_ostream &ROS, bool /*IsForDebug*/) const { 4573 PrintLLVMName(ROS, getName(), ComdatPrefix); 4574 ROS << " = comdat "; 4575 4576 switch (getSelectionKind()) { 4577 case Comdat::Any: 4578 ROS << "any"; 4579 break; 4580 case Comdat::ExactMatch: 4581 ROS << "exactmatch"; 4582 break; 4583 case Comdat::Largest: 4584 ROS << "largest"; 4585 break; 4586 case Comdat::NoDuplicates: 4587 ROS << "noduplicates"; 4588 break; 4589 case Comdat::SameSize: 4590 ROS << "samesize"; 4591 break; 4592 } 4593 4594 ROS << '\n'; 4595 } 4596 4597 void Type::print(raw_ostream &OS, bool /*IsForDebug*/, bool NoDetails) const { 4598 TypePrinting TP; 4599 TP.print(const_cast<Type*>(this), OS); 4600 4601 if (NoDetails) 4602 return; 4603 4604 // If the type is a named struct type, print the body as well. 4605 if (StructType *STy = dyn_cast<StructType>(const_cast<Type*>(this))) 4606 if (!STy->isLiteral()) { 4607 OS << " = type "; 4608 TP.printStructBody(STy, OS); 4609 } 4610 } 4611 4612 static bool isReferencingMDNode(const Instruction &I) { 4613 if (const auto *CI = dyn_cast<CallInst>(&I)) 4614 if (Function *F = CI->getCalledFunction()) 4615 if (F->isIntrinsic()) 4616 for (auto &Op : I.operands()) 4617 if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op)) 4618 if (isa<MDNode>(V->getMetadata())) 4619 return true; 4620 return false; 4621 } 4622 4623 void Value::print(raw_ostream &ROS, bool IsForDebug) const { 4624 bool ShouldInitializeAllMetadata = false; 4625 if (auto *I = dyn_cast<Instruction>(this)) 4626 ShouldInitializeAllMetadata = isReferencingMDNode(*I); 4627 else if (isa<Function>(this) || isa<MetadataAsValue>(this)) 4628 ShouldInitializeAllMetadata = true; 4629 4630 ModuleSlotTracker MST(getModuleFromVal(this), ShouldInitializeAllMetadata); 4631 print(ROS, MST, IsForDebug); 4632 } 4633 4634 void Value::print(raw_ostream &ROS, ModuleSlotTracker &MST, 4635 bool IsForDebug) const { 4636 formatted_raw_ostream OS(ROS); 4637 SlotTracker EmptySlotTable(static_cast<const Module *>(nullptr)); 4638 SlotTracker &SlotTable = 4639 MST.getMachine() ? *MST.getMachine() : EmptySlotTable; 4640 auto incorporateFunction = [&](const Function *F) { 4641 if (F) 4642 MST.incorporateFunction(*F); 4643 }; 4644 4645 if (const Instruction *I = dyn_cast<Instruction>(this)) { 4646 incorporateFunction(I->getParent() ? I->getParent()->getParent() : nullptr); 4647 AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), nullptr, IsForDebug); 4648 W.printInstruction(*I); 4649 } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) { 4650 incorporateFunction(BB->getParent()); 4651 AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), nullptr, IsForDebug); 4652 W.printBasicBlock(BB); 4653 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) { 4654 AssemblyWriter W(OS, SlotTable, GV->getParent(), nullptr, IsForDebug); 4655 if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV)) 4656 W.printGlobal(V); 4657 else if (const Function *F = dyn_cast<Function>(GV)) 4658 W.printFunction(F); 4659 else 4660 W.printIndirectSymbol(cast<GlobalIndirectSymbol>(GV)); 4661 } else if (const MetadataAsValue *V = dyn_cast<MetadataAsValue>(this)) { 4662 V->getMetadata()->print(ROS, MST, getModuleFromVal(V)); 4663 } else if (const Constant *C = dyn_cast<Constant>(this)) { 4664 TypePrinting TypePrinter; 4665 TypePrinter.print(C->getType(), OS); 4666 OS << ' '; 4667 WriteConstantInternal(OS, C, TypePrinter, MST.getMachine(), nullptr); 4668 } else if (isa<InlineAsm>(this) || isa<Argument>(this)) { 4669 this->printAsOperand(OS, /* PrintType */ true, MST); 4670 } else { 4671 llvm_unreachable("Unknown value to print out!"); 4672 } 4673 } 4674 4675 /// Print without a type, skipping the TypePrinting object. 4676 /// 4677 /// \return \c true iff printing was successful. 4678 static bool printWithoutType(const Value &V, raw_ostream &O, 4679 SlotTracker *Machine, const Module *M) { 4680 if (V.hasName() || isa<GlobalValue>(V) || 4681 (!isa<Constant>(V) && !isa<MetadataAsValue>(V))) { 4682 WriteAsOperandInternal(O, &V, nullptr, Machine, M); 4683 return true; 4684 } 4685 return false; 4686 } 4687 4688 static void printAsOperandImpl(const Value &V, raw_ostream &O, bool PrintType, 4689 ModuleSlotTracker &MST) { 4690 TypePrinting TypePrinter(MST.getModule()); 4691 if (PrintType) { 4692 TypePrinter.print(V.getType(), O); 4693 O << ' '; 4694 } 4695 4696 WriteAsOperandInternal(O, &V, &TypePrinter, MST.getMachine(), 4697 MST.getModule()); 4698 } 4699 4700 void Value::printAsOperand(raw_ostream &O, bool PrintType, 4701 const Module *M) const { 4702 if (!M) 4703 M = getModuleFromVal(this); 4704 4705 if (!PrintType) 4706 if (printWithoutType(*this, O, nullptr, M)) 4707 return; 4708 4709 SlotTracker Machine( 4710 M, /* ShouldInitializeAllMetadata */ isa<MetadataAsValue>(this)); 4711 ModuleSlotTracker MST(Machine, M); 4712 printAsOperandImpl(*this, O, PrintType, MST); 4713 } 4714 4715 void Value::printAsOperand(raw_ostream &O, bool PrintType, 4716 ModuleSlotTracker &MST) const { 4717 if (!PrintType) 4718 if (printWithoutType(*this, O, MST.getMachine(), MST.getModule())) 4719 return; 4720 4721 printAsOperandImpl(*this, O, PrintType, MST); 4722 } 4723 4724 static void printMetadataImpl(raw_ostream &ROS, const Metadata &MD, 4725 ModuleSlotTracker &MST, const Module *M, 4726 bool OnlyAsOperand) { 4727 formatted_raw_ostream OS(ROS); 4728 4729 TypePrinting TypePrinter(M); 4730 4731 WriteAsOperandInternal(OS, &MD, &TypePrinter, MST.getMachine(), M, 4732 /* FromValue */ true); 4733 4734 auto *N = dyn_cast<MDNode>(&MD); 4735 if (OnlyAsOperand || !N || isa<DIExpression>(MD) || isa<DIArgList>(MD)) 4736 return; 4737 4738 OS << " = "; 4739 WriteMDNodeBodyInternal(OS, N, &TypePrinter, MST.getMachine(), M); 4740 } 4741 4742 void Metadata::printAsOperand(raw_ostream &OS, const Module *M) const { 4743 ModuleSlotTracker MST(M, isa<MDNode>(this)); 4744 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true); 4745 } 4746 4747 void Metadata::printAsOperand(raw_ostream &OS, ModuleSlotTracker &MST, 4748 const Module *M) const { 4749 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true); 4750 } 4751 4752 void Metadata::print(raw_ostream &OS, const Module *M, 4753 bool /*IsForDebug*/) const { 4754 ModuleSlotTracker MST(M, isa<MDNode>(this)); 4755 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false); 4756 } 4757 4758 void Metadata::print(raw_ostream &OS, ModuleSlotTracker &MST, 4759 const Module *M, bool /*IsForDebug*/) const { 4760 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false); 4761 } 4762 4763 void ModuleSummaryIndex::print(raw_ostream &ROS, bool IsForDebug) const { 4764 SlotTracker SlotTable(this); 4765 formatted_raw_ostream OS(ROS); 4766 AssemblyWriter W(OS, SlotTable, this, IsForDebug); 4767 W.printModuleSummaryIndex(); 4768 } 4769 4770 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 4771 // Value::dump - allow easy printing of Values from the debugger. 4772 LLVM_DUMP_METHOD 4773 void Value::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; } 4774 4775 // Type::dump - allow easy printing of Types from the debugger. 4776 LLVM_DUMP_METHOD 4777 void Type::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; } 4778 4779 // Module::dump() - Allow printing of Modules from the debugger. 4780 LLVM_DUMP_METHOD 4781 void Module::dump() const { 4782 print(dbgs(), nullptr, 4783 /*ShouldPreserveUseListOrder=*/false, /*IsForDebug=*/true); 4784 } 4785 4786 // Allow printing of Comdats from the debugger. 4787 LLVM_DUMP_METHOD 4788 void Comdat::dump() const { print(dbgs(), /*IsForDebug=*/true); } 4789 4790 // NamedMDNode::dump() - Allow printing of NamedMDNodes from the debugger. 4791 LLVM_DUMP_METHOD 4792 void NamedMDNode::dump() const { print(dbgs(), /*IsForDebug=*/true); } 4793 4794 LLVM_DUMP_METHOD 4795 void Metadata::dump() const { dump(nullptr); } 4796 4797 LLVM_DUMP_METHOD 4798 void Metadata::dump(const Module *M) const { 4799 print(dbgs(), M, /*IsForDebug=*/true); 4800 dbgs() << '\n'; 4801 } 4802 4803 // Allow printing of ModuleSummaryIndex from the debugger. 4804 LLVM_DUMP_METHOD 4805 void ModuleSummaryIndex::dump() const { print(dbgs(), /*IsForDebug=*/true); } 4806 #endif 4807