xref: /netbsd-src/external/apache2/llvm/dist/llvm/lib/IR/AsmWriter.cpp (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 //===- AsmWriter.cpp - Printing LLVM as an assembly file ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This library implements `print` family of functions in classes like
10 // Module, Function, Value, etc. In-memory representation of those classes is
11 // converted to IR strings.
12 //
13 // Note that these routines must be extremely tolerant of various errors in the
14 // LLVM code, because it can be used for debugging transformations.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/ADT/APFloat.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/None.h"
23 #include "llvm/ADT/Optional.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SetVector.h"
26 #include "llvm/ADT/SmallString.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/StringExtras.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/ADT/iterator_range.h"
31 #include "llvm/BinaryFormat/Dwarf.h"
32 #include "llvm/Config/llvm-config.h"
33 #include "llvm/IR/Argument.h"
34 #include "llvm/IR/AssemblyAnnotationWriter.h"
35 #include "llvm/IR/Attributes.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CFG.h"
38 #include "llvm/IR/CallingConv.h"
39 #include "llvm/IR/Comdat.h"
40 #include "llvm/IR/Constant.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DebugInfoMetadata.h"
43 #include "llvm/IR/DerivedTypes.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/GlobalAlias.h"
46 #include "llvm/IR/GlobalIFunc.h"
47 #include "llvm/IR/GlobalIndirectSymbol.h"
48 #include "llvm/IR/GlobalObject.h"
49 #include "llvm/IR/GlobalValue.h"
50 #include "llvm/IR/GlobalVariable.h"
51 #include "llvm/IR/IRPrintingPasses.h"
52 #include "llvm/IR/InlineAsm.h"
53 #include "llvm/IR/InstrTypes.h"
54 #include "llvm/IR/Instruction.h"
55 #include "llvm/IR/Instructions.h"
56 #include "llvm/IR/IntrinsicInst.h"
57 #include "llvm/IR/LLVMContext.h"
58 #include "llvm/IR/Metadata.h"
59 #include "llvm/IR/Module.h"
60 #include "llvm/IR/ModuleSlotTracker.h"
61 #include "llvm/IR/ModuleSummaryIndex.h"
62 #include "llvm/IR/Operator.h"
63 #include "llvm/IR/Type.h"
64 #include "llvm/IR/TypeFinder.h"
65 #include "llvm/IR/Use.h"
66 #include "llvm/IR/UseListOrder.h"
67 #include "llvm/IR/User.h"
68 #include "llvm/IR/Value.h"
69 #include "llvm/Support/AtomicOrdering.h"
70 #include "llvm/Support/Casting.h"
71 #include "llvm/Support/Compiler.h"
72 #include "llvm/Support/Debug.h"
73 #include "llvm/Support/ErrorHandling.h"
74 #include "llvm/Support/Format.h"
75 #include "llvm/Support/FormattedStream.h"
76 #include "llvm/Support/raw_ostream.h"
77 #include <algorithm>
78 #include <cassert>
79 #include <cctype>
80 #include <cstddef>
81 #include <cstdint>
82 #include <iterator>
83 #include <memory>
84 #include <string>
85 #include <tuple>
86 #include <utility>
87 #include <vector>
88 
89 using namespace llvm;
90 
91 // Make virtual table appear in this compilation unit.
92 AssemblyAnnotationWriter::~AssemblyAnnotationWriter() = default;
93 
94 //===----------------------------------------------------------------------===//
95 // Helper Functions
96 //===----------------------------------------------------------------------===//
97 
98 namespace {
99 
100 struct OrderMap {
101   DenseMap<const Value *, std::pair<unsigned, bool>> IDs;
102 
size__anonf93afd230111::OrderMap103   unsigned size() const { return IDs.size(); }
operator []__anonf93afd230111::OrderMap104   std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; }
105 
lookup__anonf93afd230111::OrderMap106   std::pair<unsigned, bool> lookup(const Value *V) const {
107     return IDs.lookup(V);
108   }
109 
index__anonf93afd230111::OrderMap110   void index(const Value *V) {
111     // Explicitly sequence get-size and insert-value operations to avoid UB.
112     unsigned ID = IDs.size() + 1;
113     IDs[V].first = ID;
114   }
115 };
116 
117 } // end anonymous namespace
118 
119 /// Look for a value that might be wrapped as metadata, e.g. a value in a
120 /// metadata operand. Returns the input value as-is if it is not wrapped.
skipMetadataWrapper(const Value * V)121 static const Value *skipMetadataWrapper(const Value *V) {
122   if (const auto *MAV = dyn_cast<MetadataAsValue>(V))
123     if (const auto *VAM = dyn_cast<ValueAsMetadata>(MAV->getMetadata()))
124       return VAM->getValue();
125   return V;
126 }
127 
orderValue(const Value * V,OrderMap & OM)128 static void orderValue(const Value *V, OrderMap &OM) {
129   if (OM.lookup(V).first)
130     return;
131 
132   if (const Constant *C = dyn_cast<Constant>(V))
133     if (C->getNumOperands() && !isa<GlobalValue>(C))
134       for (const Value *Op : C->operands())
135         if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
136           orderValue(Op, OM);
137 
138   // Note: we cannot cache this lookup above, since inserting into the map
139   // changes the map's size, and thus affects the other IDs.
140   OM.index(V);
141 }
142 
orderModule(const Module * M)143 static OrderMap orderModule(const Module *M) {
144   OrderMap OM;
145 
146   for (const GlobalVariable &G : M->globals()) {
147     if (G.hasInitializer())
148       if (!isa<GlobalValue>(G.getInitializer()))
149         orderValue(G.getInitializer(), OM);
150     orderValue(&G, OM);
151   }
152   for (const GlobalAlias &A : M->aliases()) {
153     if (!isa<GlobalValue>(A.getAliasee()))
154       orderValue(A.getAliasee(), OM);
155     orderValue(&A, OM);
156   }
157   for (const GlobalIFunc &I : M->ifuncs()) {
158     if (!isa<GlobalValue>(I.getResolver()))
159       orderValue(I.getResolver(), OM);
160     orderValue(&I, OM);
161   }
162   for (const Function &F : *M) {
163     for (const Use &U : F.operands())
164       if (!isa<GlobalValue>(U.get()))
165         orderValue(U.get(), OM);
166 
167     orderValue(&F, OM);
168 
169     if (F.isDeclaration())
170       continue;
171 
172     for (const Argument &A : F.args())
173       orderValue(&A, OM);
174     for (const BasicBlock &BB : F) {
175       orderValue(&BB, OM);
176       for (const Instruction &I : BB) {
177         for (const Value *Op : I.operands()) {
178           Op = skipMetadataWrapper(Op);
179           if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
180               isa<InlineAsm>(*Op))
181             orderValue(Op, OM);
182         }
183         orderValue(&I, OM);
184       }
185     }
186   }
187   return OM;
188 }
189 
predictValueUseListOrderImpl(const Value * V,const Function * F,unsigned ID,const OrderMap & OM,UseListOrderStack & Stack)190 static void predictValueUseListOrderImpl(const Value *V, const Function *F,
191                                          unsigned ID, const OrderMap &OM,
192                                          UseListOrderStack &Stack) {
193   // Predict use-list order for this one.
194   using Entry = std::pair<const Use *, unsigned>;
195   SmallVector<Entry, 64> List;
196   for (const Use &U : V->uses())
197     // Check if this user will be serialized.
198     if (OM.lookup(U.getUser()).first)
199       List.push_back(std::make_pair(&U, List.size()));
200 
201   if (List.size() < 2)
202     // We may have lost some users.
203     return;
204 
205   bool GetsReversed =
206       !isa<GlobalVariable>(V) && !isa<Function>(V) && !isa<BasicBlock>(V);
207   if (auto *BA = dyn_cast<BlockAddress>(V))
208     ID = OM.lookup(BA->getBasicBlock()).first;
209   llvm::sort(List, [&](const Entry &L, const Entry &R) {
210     const Use *LU = L.first;
211     const Use *RU = R.first;
212     if (LU == RU)
213       return false;
214 
215     auto LID = OM.lookup(LU->getUser()).first;
216     auto RID = OM.lookup(RU->getUser()).first;
217 
218     // If ID is 4, then expect: 7 6 5 1 2 3.
219     if (LID < RID) {
220       if (GetsReversed)
221         if (RID <= ID)
222           return true;
223       return false;
224     }
225     if (RID < LID) {
226       if (GetsReversed)
227         if (LID <= ID)
228           return false;
229       return true;
230     }
231 
232     // LID and RID are equal, so we have different operands of the same user.
233     // Assume operands are added in order for all instructions.
234     if (GetsReversed)
235       if (LID <= ID)
236         return LU->getOperandNo() < RU->getOperandNo();
237     return LU->getOperandNo() > RU->getOperandNo();
238   });
239 
240   if (llvm::is_sorted(List, [](const Entry &L, const Entry &R) {
241         return L.second < R.second;
242       }))
243     // Order is already correct.
244     return;
245 
246   // Store the shuffle.
247   Stack.emplace_back(V, F, List.size());
248   assert(List.size() == Stack.back().Shuffle.size() && "Wrong size");
249   for (size_t I = 0, E = List.size(); I != E; ++I)
250     Stack.back().Shuffle[I] = List[I].second;
251 }
252 
predictValueUseListOrder(const Value * V,const Function * F,OrderMap & OM,UseListOrderStack & Stack)253 static void predictValueUseListOrder(const Value *V, const Function *F,
254                                      OrderMap &OM, UseListOrderStack &Stack) {
255   auto &IDPair = OM[V];
256   assert(IDPair.first && "Unmapped value");
257   if (IDPair.second)
258     // Already predicted.
259     return;
260 
261   // Do the actual prediction.
262   IDPair.second = true;
263   if (!V->use_empty() && std::next(V->use_begin()) != V->use_end())
264     predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack);
265 
266   // Recursive descent into constants.
267   if (const Constant *C = dyn_cast<Constant>(V))
268     if (C->getNumOperands()) // Visit GlobalValues.
269       for (const Value *Op : C->operands())
270         if (isa<Constant>(Op)) // Visit GlobalValues.
271           predictValueUseListOrder(Op, F, OM, Stack);
272 }
273 
predictUseListOrder(const Module * M)274 static UseListOrderStack predictUseListOrder(const Module *M) {
275   OrderMap OM = orderModule(M);
276 
277   // Use-list orders need to be serialized after all the users have been added
278   // to a value, or else the shuffles will be incomplete.  Store them per
279   // function in a stack.
280   //
281   // Aside from function order, the order of values doesn't matter much here.
282   UseListOrderStack Stack;
283 
284   // We want to visit the functions backward now so we can list function-local
285   // constants in the last Function they're used in.  Module-level constants
286   // have already been visited above.
287   for (const Function &F : make_range(M->rbegin(), M->rend())) {
288     if (F.isDeclaration())
289       continue;
290     for (const BasicBlock &BB : F)
291       predictValueUseListOrder(&BB, &F, OM, Stack);
292     for (const Argument &A : F.args())
293       predictValueUseListOrder(&A, &F, OM, Stack);
294     for (const BasicBlock &BB : F)
295       for (const Instruction &I : BB)
296         for (const Value *Op : I.operands()) {
297           Op = skipMetadataWrapper(Op);
298           if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues.
299             predictValueUseListOrder(Op, &F, OM, Stack);
300         }
301     for (const BasicBlock &BB : F)
302       for (const Instruction &I : BB)
303         predictValueUseListOrder(&I, &F, OM, Stack);
304   }
305 
306   // Visit globals last.
307   for (const GlobalVariable &G : M->globals())
308     predictValueUseListOrder(&G, nullptr, OM, Stack);
309   for (const Function &F : *M)
310     predictValueUseListOrder(&F, nullptr, OM, Stack);
311   for (const GlobalAlias &A : M->aliases())
312     predictValueUseListOrder(&A, nullptr, OM, Stack);
313   for (const GlobalIFunc &I : M->ifuncs())
314     predictValueUseListOrder(&I, nullptr, OM, Stack);
315   for (const GlobalVariable &G : M->globals())
316     if (G.hasInitializer())
317       predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack);
318   for (const GlobalAlias &A : M->aliases())
319     predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack);
320   for (const GlobalIFunc &I : M->ifuncs())
321     predictValueUseListOrder(I.getResolver(), nullptr, OM, Stack);
322   for (const Function &F : *M)
323     for (const Use &U : F.operands())
324       predictValueUseListOrder(U.get(), nullptr, OM, Stack);
325 
326   return Stack;
327 }
328 
getModuleFromVal(const Value * V)329 static const Module *getModuleFromVal(const Value *V) {
330   if (const Argument *MA = dyn_cast<Argument>(V))
331     return MA->getParent() ? MA->getParent()->getParent() : nullptr;
332 
333   if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
334     return BB->getParent() ? BB->getParent()->getParent() : nullptr;
335 
336   if (const Instruction *I = dyn_cast<Instruction>(V)) {
337     const Function *M = I->getParent() ? I->getParent()->getParent() : nullptr;
338     return M ? M->getParent() : nullptr;
339   }
340 
341   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
342     return GV->getParent();
343 
344   if (const auto *MAV = dyn_cast<MetadataAsValue>(V)) {
345     for (const User *U : MAV->users())
346       if (isa<Instruction>(U))
347         if (const Module *M = getModuleFromVal(U))
348           return M;
349     return nullptr;
350   }
351 
352   return nullptr;
353 }
354 
PrintCallingConv(unsigned cc,raw_ostream & Out)355 static void PrintCallingConv(unsigned cc, raw_ostream &Out) {
356   switch (cc) {
357   default:                         Out << "cc" << cc; break;
358   case CallingConv::Fast:          Out << "fastcc"; break;
359   case CallingConv::Cold:          Out << "coldcc"; break;
360   case CallingConv::WebKit_JS:     Out << "webkit_jscc"; break;
361   case CallingConv::AnyReg:        Out << "anyregcc"; break;
362   case CallingConv::PreserveMost:  Out << "preserve_mostcc"; break;
363   case CallingConv::PreserveAll:   Out << "preserve_allcc"; break;
364   case CallingConv::CXX_FAST_TLS:  Out << "cxx_fast_tlscc"; break;
365   case CallingConv::GHC:           Out << "ghccc"; break;
366   case CallingConv::Tail:          Out << "tailcc"; break;
367   case CallingConv::CFGuard_Check: Out << "cfguard_checkcc"; break;
368   case CallingConv::X86_StdCall:   Out << "x86_stdcallcc"; break;
369   case CallingConv::X86_FastCall:  Out << "x86_fastcallcc"; break;
370   case CallingConv::X86_ThisCall:  Out << "x86_thiscallcc"; break;
371   case CallingConv::X86_RegCall:   Out << "x86_regcallcc"; break;
372   case CallingConv::X86_VectorCall:Out << "x86_vectorcallcc"; break;
373   case CallingConv::Intel_OCL_BI:  Out << "intel_ocl_bicc"; break;
374   case CallingConv::ARM_APCS:      Out << "arm_apcscc"; break;
375   case CallingConv::ARM_AAPCS:     Out << "arm_aapcscc"; break;
376   case CallingConv::ARM_AAPCS_VFP: Out << "arm_aapcs_vfpcc"; break;
377   case CallingConv::AArch64_VectorCall: Out << "aarch64_vector_pcs"; break;
378   case CallingConv::AArch64_SVE_VectorCall:
379     Out << "aarch64_sve_vector_pcs";
380     break;
381   case CallingConv::MSP430_INTR:   Out << "msp430_intrcc"; break;
382   case CallingConv::AVR_INTR:      Out << "avr_intrcc "; break;
383   case CallingConv::AVR_SIGNAL:    Out << "avr_signalcc "; break;
384   case CallingConv::PTX_Kernel:    Out << "ptx_kernel"; break;
385   case CallingConv::PTX_Device:    Out << "ptx_device"; break;
386   case CallingConv::X86_64_SysV:   Out << "x86_64_sysvcc"; break;
387   case CallingConv::Win64:         Out << "win64cc"; break;
388   case CallingConv::SPIR_FUNC:     Out << "spir_func"; break;
389   case CallingConv::SPIR_KERNEL:   Out << "spir_kernel"; break;
390   case CallingConv::Swift:         Out << "swiftcc"; break;
391   case CallingConv::SwiftTail:     Out << "swifttailcc"; break;
392   case CallingConv::X86_INTR:      Out << "x86_intrcc"; break;
393   case CallingConv::HHVM:          Out << "hhvmcc"; break;
394   case CallingConv::HHVM_C:        Out << "hhvm_ccc"; break;
395   case CallingConv::AMDGPU_VS:     Out << "amdgpu_vs"; break;
396   case CallingConv::AMDGPU_LS:     Out << "amdgpu_ls"; break;
397   case CallingConv::AMDGPU_HS:     Out << "amdgpu_hs"; break;
398   case CallingConv::AMDGPU_ES:     Out << "amdgpu_es"; break;
399   case CallingConv::AMDGPU_GS:     Out << "amdgpu_gs"; break;
400   case CallingConv::AMDGPU_PS:     Out << "amdgpu_ps"; break;
401   case CallingConv::AMDGPU_CS:     Out << "amdgpu_cs"; break;
402   case CallingConv::AMDGPU_KERNEL: Out << "amdgpu_kernel"; break;
403   case CallingConv::AMDGPU_Gfx:    Out << "amdgpu_gfx"; break;
404   }
405 }
406 
407 enum PrefixType {
408   GlobalPrefix,
409   ComdatPrefix,
410   LabelPrefix,
411   LocalPrefix,
412   NoPrefix
413 };
414 
printLLVMNameWithoutPrefix(raw_ostream & OS,StringRef Name)415 void llvm::printLLVMNameWithoutPrefix(raw_ostream &OS, StringRef Name) {
416   assert(!Name.empty() && "Cannot get empty name!");
417 
418   // Scan the name to see if it needs quotes first.
419   bool NeedsQuotes = isdigit(static_cast<unsigned char>(Name[0]));
420   if (!NeedsQuotes) {
421     for (unsigned i = 0, e = Name.size(); i != e; ++i) {
422       // By making this unsigned, the value passed in to isalnum will always be
423       // in the range 0-255.  This is important when building with MSVC because
424       // its implementation will assert.  This situation can arise when dealing
425       // with UTF-8 multibyte characters.
426       unsigned char C = Name[i];
427       if (!isalnum(static_cast<unsigned char>(C)) && C != '-' && C != '.' &&
428           C != '_') {
429         NeedsQuotes = true;
430         break;
431       }
432     }
433   }
434 
435   // If we didn't need any quotes, just write out the name in one blast.
436   if (!NeedsQuotes) {
437     OS << Name;
438     return;
439   }
440 
441   // Okay, we need quotes.  Output the quotes and escape any scary characters as
442   // needed.
443   OS << '"';
444   printEscapedString(Name, OS);
445   OS << '"';
446 }
447 
448 /// Turn the specified name into an 'LLVM name', which is either prefixed with %
449 /// (if the string only contains simple characters) or is surrounded with ""'s
450 /// (if it has special chars in it). Print it out.
PrintLLVMName(raw_ostream & OS,StringRef Name,PrefixType Prefix)451 static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix) {
452   switch (Prefix) {
453   case NoPrefix:
454     break;
455   case GlobalPrefix:
456     OS << '@';
457     break;
458   case ComdatPrefix:
459     OS << '$';
460     break;
461   case LabelPrefix:
462     break;
463   case LocalPrefix:
464     OS << '%';
465     break;
466   }
467   printLLVMNameWithoutPrefix(OS, Name);
468 }
469 
470 /// Turn the specified name into an 'LLVM name', which is either prefixed with %
471 /// (if the string only contains simple characters) or is surrounded with ""'s
472 /// (if it has special chars in it). Print it out.
PrintLLVMName(raw_ostream & OS,const Value * V)473 static void PrintLLVMName(raw_ostream &OS, const Value *V) {
474   PrintLLVMName(OS, V->getName(),
475                 isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
476 }
477 
PrintShuffleMask(raw_ostream & Out,Type * Ty,ArrayRef<int> Mask)478 static void PrintShuffleMask(raw_ostream &Out, Type *Ty, ArrayRef<int> Mask) {
479   Out << ", <";
480   if (isa<ScalableVectorType>(Ty))
481     Out << "vscale x ";
482   Out << Mask.size() << " x i32> ";
483   bool FirstElt = true;
484   if (all_of(Mask, [](int Elt) { return Elt == 0; })) {
485     Out << "zeroinitializer";
486   } else if (all_of(Mask, [](int Elt) { return Elt == UndefMaskElem; })) {
487     Out << "undef";
488   } else {
489     Out << "<";
490     for (int Elt : Mask) {
491       if (FirstElt)
492         FirstElt = false;
493       else
494         Out << ", ";
495       Out << "i32 ";
496       if (Elt == UndefMaskElem)
497         Out << "undef";
498       else
499         Out << Elt;
500     }
501     Out << ">";
502   }
503 }
504 
505 namespace {
506 
507 class TypePrinting {
508 public:
TypePrinting(const Module * M=nullptr)509   TypePrinting(const Module *M = nullptr) : DeferredM(M) {}
510 
511   TypePrinting(const TypePrinting &) = delete;
512   TypePrinting &operator=(const TypePrinting &) = delete;
513 
514   /// The named types that are used by the current module.
515   TypeFinder &getNamedTypes();
516 
517   /// The numbered types, number to type mapping.
518   std::vector<StructType *> &getNumberedTypes();
519 
520   bool empty();
521 
522   void print(Type *Ty, raw_ostream &OS);
523 
524   void printStructBody(StructType *Ty, raw_ostream &OS);
525 
526 private:
527   void incorporateTypes();
528 
529   /// A module to process lazily when needed. Set to nullptr as soon as used.
530   const Module *DeferredM;
531 
532   TypeFinder NamedTypes;
533 
534   // The numbered types, along with their value.
535   DenseMap<StructType *, unsigned> Type2Number;
536 
537   std::vector<StructType *> NumberedTypes;
538 };
539 
540 } // end anonymous namespace
541 
getNamedTypes()542 TypeFinder &TypePrinting::getNamedTypes() {
543   incorporateTypes();
544   return NamedTypes;
545 }
546 
getNumberedTypes()547 std::vector<StructType *> &TypePrinting::getNumberedTypes() {
548   incorporateTypes();
549 
550   // We know all the numbers that each type is used and we know that it is a
551   // dense assignment. Convert the map to an index table, if it's not done
552   // already (judging from the sizes):
553   if (NumberedTypes.size() == Type2Number.size())
554     return NumberedTypes;
555 
556   NumberedTypes.resize(Type2Number.size());
557   for (const auto &P : Type2Number) {
558     assert(P.second < NumberedTypes.size() && "Didn't get a dense numbering?");
559     assert(!NumberedTypes[P.second] && "Didn't get a unique numbering?");
560     NumberedTypes[P.second] = P.first;
561   }
562   return NumberedTypes;
563 }
564 
empty()565 bool TypePrinting::empty() {
566   incorporateTypes();
567   return NamedTypes.empty() && Type2Number.empty();
568 }
569 
incorporateTypes()570 void TypePrinting::incorporateTypes() {
571   if (!DeferredM)
572     return;
573 
574   NamedTypes.run(*DeferredM, false);
575   DeferredM = nullptr;
576 
577   // The list of struct types we got back includes all the struct types, split
578   // the unnamed ones out to a numbering and remove the anonymous structs.
579   unsigned NextNumber = 0;
580 
581   std::vector<StructType*>::iterator NextToUse = NamedTypes.begin(), I, E;
582   for (I = NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) {
583     StructType *STy = *I;
584 
585     // Ignore anonymous types.
586     if (STy->isLiteral())
587       continue;
588 
589     if (STy->getName().empty())
590       Type2Number[STy] = NextNumber++;
591     else
592       *NextToUse++ = STy;
593   }
594 
595   NamedTypes.erase(NextToUse, NamedTypes.end());
596 }
597 
598 /// Write the specified type to the specified raw_ostream, making use of type
599 /// names or up references to shorten the type name where possible.
print(Type * Ty,raw_ostream & OS)600 void TypePrinting::print(Type *Ty, raw_ostream &OS) {
601   switch (Ty->getTypeID()) {
602   case Type::VoidTyID:      OS << "void"; return;
603   case Type::HalfTyID:      OS << "half"; return;
604   case Type::BFloatTyID:    OS << "bfloat"; return;
605   case Type::FloatTyID:     OS << "float"; return;
606   case Type::DoubleTyID:    OS << "double"; return;
607   case Type::X86_FP80TyID:  OS << "x86_fp80"; return;
608   case Type::FP128TyID:     OS << "fp128"; return;
609   case Type::PPC_FP128TyID: OS << "ppc_fp128"; return;
610   case Type::LabelTyID:     OS << "label"; return;
611   case Type::MetadataTyID:  OS << "metadata"; return;
612   case Type::X86_MMXTyID:   OS << "x86_mmx"; return;
613   case Type::X86_AMXTyID:   OS << "x86_amx"; return;
614   case Type::TokenTyID:     OS << "token"; return;
615   case Type::IntegerTyID:
616     OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
617     return;
618 
619   case Type::FunctionTyID: {
620     FunctionType *FTy = cast<FunctionType>(Ty);
621     print(FTy->getReturnType(), OS);
622     OS << " (";
623     for (FunctionType::param_iterator I = FTy->param_begin(),
624          E = FTy->param_end(); I != E; ++I) {
625       if (I != FTy->param_begin())
626         OS << ", ";
627       print(*I, OS);
628     }
629     if (FTy->isVarArg()) {
630       if (FTy->getNumParams()) OS << ", ";
631       OS << "...";
632     }
633     OS << ')';
634     return;
635   }
636   case Type::StructTyID: {
637     StructType *STy = cast<StructType>(Ty);
638 
639     if (STy->isLiteral())
640       return printStructBody(STy, OS);
641 
642     if (!STy->getName().empty())
643       return PrintLLVMName(OS, STy->getName(), LocalPrefix);
644 
645     incorporateTypes();
646     const auto I = Type2Number.find(STy);
647     if (I != Type2Number.end())
648       OS << '%' << I->second;
649     else  // Not enumerated, print the hex address.
650       OS << "%\"type " << STy << '\"';
651     return;
652   }
653   case Type::PointerTyID: {
654     PointerType *PTy = cast<PointerType>(Ty);
655     if (PTy->isOpaque()) {
656       OS << "ptr";
657       if (unsigned AddressSpace = PTy->getAddressSpace())
658         OS << " addrspace(" << AddressSpace << ')';
659       return;
660     }
661     print(PTy->getElementType(), OS);
662     if (unsigned AddressSpace = PTy->getAddressSpace())
663       OS << " addrspace(" << AddressSpace << ')';
664     OS << '*';
665     return;
666   }
667   case Type::ArrayTyID: {
668     ArrayType *ATy = cast<ArrayType>(Ty);
669     OS << '[' << ATy->getNumElements() << " x ";
670     print(ATy->getElementType(), OS);
671     OS << ']';
672     return;
673   }
674   case Type::FixedVectorTyID:
675   case Type::ScalableVectorTyID: {
676     VectorType *PTy = cast<VectorType>(Ty);
677     ElementCount EC = PTy->getElementCount();
678     OS << "<";
679     if (EC.isScalable())
680       OS << "vscale x ";
681     OS << EC.getKnownMinValue() << " x ";
682     print(PTy->getElementType(), OS);
683     OS << '>';
684     return;
685   }
686   }
687   llvm_unreachable("Invalid TypeID");
688 }
689 
printStructBody(StructType * STy,raw_ostream & OS)690 void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) {
691   if (STy->isOpaque()) {
692     OS << "opaque";
693     return;
694   }
695 
696   if (STy->isPacked())
697     OS << '<';
698 
699   if (STy->getNumElements() == 0) {
700     OS << "{}";
701   } else {
702     StructType::element_iterator I = STy->element_begin();
703     OS << "{ ";
704     print(*I++, OS);
705     for (StructType::element_iterator E = STy->element_end(); I != E; ++I) {
706       OS << ", ";
707       print(*I, OS);
708     }
709 
710     OS << " }";
711   }
712   if (STy->isPacked())
713     OS << '>';
714 }
715 
716 namespace llvm {
717 
718 //===----------------------------------------------------------------------===//
719 // SlotTracker Class: Enumerate slot numbers for unnamed values
720 //===----------------------------------------------------------------------===//
721 /// This class provides computation of slot numbers for LLVM Assembly writing.
722 ///
723 class SlotTracker {
724 public:
725   /// ValueMap - A mapping of Values to slot numbers.
726   using ValueMap = DenseMap<const Value *, unsigned>;
727 
728 private:
729   /// TheModule - The module for which we are holding slot numbers.
730   const Module* TheModule;
731 
732   /// TheFunction - The function for which we are holding slot numbers.
733   const Function* TheFunction = nullptr;
734   bool FunctionProcessed = false;
735   bool ShouldInitializeAllMetadata;
736 
737   /// The summary index for which we are holding slot numbers.
738   const ModuleSummaryIndex *TheIndex = nullptr;
739 
740   /// mMap - The slot map for the module level data.
741   ValueMap mMap;
742   unsigned mNext = 0;
743 
744   /// fMap - The slot map for the function level data.
745   ValueMap fMap;
746   unsigned fNext = 0;
747 
748   /// mdnMap - Map for MDNodes.
749   DenseMap<const MDNode*, unsigned> mdnMap;
750   unsigned mdnNext = 0;
751 
752   /// asMap - The slot map for attribute sets.
753   DenseMap<AttributeSet, unsigned> asMap;
754   unsigned asNext = 0;
755 
756   /// ModulePathMap - The slot map for Module paths used in the summary index.
757   StringMap<unsigned> ModulePathMap;
758   unsigned ModulePathNext = 0;
759 
760   /// GUIDMap - The slot map for GUIDs used in the summary index.
761   DenseMap<GlobalValue::GUID, unsigned> GUIDMap;
762   unsigned GUIDNext = 0;
763 
764   /// TypeIdMap - The slot map for type ids used in the summary index.
765   StringMap<unsigned> TypeIdMap;
766   unsigned TypeIdNext = 0;
767 
768 public:
769   /// Construct from a module.
770   ///
771   /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
772   /// functions, giving correct numbering for metadata referenced only from
773   /// within a function (even if no functions have been initialized).
774   explicit SlotTracker(const Module *M,
775                        bool ShouldInitializeAllMetadata = false);
776 
777   /// Construct from a function, starting out in incorp state.
778   ///
779   /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
780   /// functions, giving correct numbering for metadata referenced only from
781   /// within a function (even if no functions have been initialized).
782   explicit SlotTracker(const Function *F,
783                        bool ShouldInitializeAllMetadata = false);
784 
785   /// Construct from a module summary index.
786   explicit SlotTracker(const ModuleSummaryIndex *Index);
787 
788   SlotTracker(const SlotTracker &) = delete;
789   SlotTracker &operator=(const SlotTracker &) = delete;
790 
791   /// Return the slot number of the specified value in it's type
792   /// plane.  If something is not in the SlotTracker, return -1.
793   int getLocalSlot(const Value *V);
794   int getGlobalSlot(const GlobalValue *V);
795   int getMetadataSlot(const MDNode *N);
796   int getAttributeGroupSlot(AttributeSet AS);
797   int getModulePathSlot(StringRef Path);
798   int getGUIDSlot(GlobalValue::GUID GUID);
799   int getTypeIdSlot(StringRef Id);
800 
801   /// If you'd like to deal with a function instead of just a module, use
802   /// this method to get its data into the SlotTracker.
incorporateFunction(const Function * F)803   void incorporateFunction(const Function *F) {
804     TheFunction = F;
805     FunctionProcessed = false;
806   }
807 
getFunction() const808   const Function *getFunction() const { return TheFunction; }
809 
810   /// After calling incorporateFunction, use this method to remove the
811   /// most recently incorporated function from the SlotTracker. This
812   /// will reset the state of the machine back to just the module contents.
813   void purgeFunction();
814 
815   /// MDNode map iterators.
816   using mdn_iterator = DenseMap<const MDNode*, unsigned>::iterator;
817 
mdn_begin()818   mdn_iterator mdn_begin() { return mdnMap.begin(); }
mdn_end()819   mdn_iterator mdn_end() { return mdnMap.end(); }
mdn_size() const820   unsigned mdn_size() const { return mdnMap.size(); }
mdn_empty() const821   bool mdn_empty() const { return mdnMap.empty(); }
822 
823   /// AttributeSet map iterators.
824   using as_iterator = DenseMap<AttributeSet, unsigned>::iterator;
825 
as_begin()826   as_iterator as_begin()   { return asMap.begin(); }
as_end()827   as_iterator as_end()     { return asMap.end(); }
as_size() const828   unsigned as_size() const { return asMap.size(); }
as_empty() const829   bool as_empty() const    { return asMap.empty(); }
830 
831   /// GUID map iterators.
832   using guid_iterator = DenseMap<GlobalValue::GUID, unsigned>::iterator;
833 
834   /// These functions do the actual initialization.
835   inline void initializeIfNeeded();
836   int initializeIndexIfNeeded();
837 
838   // Implementation Details
839 private:
840   /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
841   void CreateModuleSlot(const GlobalValue *V);
842 
843   /// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
844   void CreateMetadataSlot(const MDNode *N);
845 
846   /// CreateFunctionSlot - Insert the specified Value* into the slot table.
847   void CreateFunctionSlot(const Value *V);
848 
849   /// Insert the specified AttributeSet into the slot table.
850   void CreateAttributeSetSlot(AttributeSet AS);
851 
852   inline void CreateModulePathSlot(StringRef Path);
853   void CreateGUIDSlot(GlobalValue::GUID GUID);
854   void CreateTypeIdSlot(StringRef Id);
855 
856   /// Add all of the module level global variables (and their initializers)
857   /// and function declarations, but not the contents of those functions.
858   void processModule();
859   // Returns number of allocated slots
860   int processIndex();
861 
862   /// Add all of the functions arguments, basic blocks, and instructions.
863   void processFunction();
864 
865   /// Add the metadata directly attached to a GlobalObject.
866   void processGlobalObjectMetadata(const GlobalObject &GO);
867 
868   /// Add all of the metadata from a function.
869   void processFunctionMetadata(const Function &F);
870 
871   /// Add all of the metadata from an instruction.
872   void processInstructionMetadata(const Instruction &I);
873 };
874 
875 } // end namespace llvm
876 
ModuleSlotTracker(SlotTracker & Machine,const Module * M,const Function * F)877 ModuleSlotTracker::ModuleSlotTracker(SlotTracker &Machine, const Module *M,
878                                      const Function *F)
879     : M(M), F(F), Machine(&Machine) {}
880 
ModuleSlotTracker(const Module * M,bool ShouldInitializeAllMetadata)881 ModuleSlotTracker::ModuleSlotTracker(const Module *M,
882                                      bool ShouldInitializeAllMetadata)
883     : ShouldCreateStorage(M),
884       ShouldInitializeAllMetadata(ShouldInitializeAllMetadata), M(M) {}
885 
886 ModuleSlotTracker::~ModuleSlotTracker() = default;
887 
getMachine()888 SlotTracker *ModuleSlotTracker::getMachine() {
889   if (!ShouldCreateStorage)
890     return Machine;
891 
892   ShouldCreateStorage = false;
893   MachineStorage =
894       std::make_unique<SlotTracker>(M, ShouldInitializeAllMetadata);
895   Machine = MachineStorage.get();
896   return Machine;
897 }
898 
incorporateFunction(const Function & F)899 void ModuleSlotTracker::incorporateFunction(const Function &F) {
900   // Using getMachine() may lazily create the slot tracker.
901   if (!getMachine())
902     return;
903 
904   // Nothing to do if this is the right function already.
905   if (this->F == &F)
906     return;
907   if (this->F)
908     Machine->purgeFunction();
909   Machine->incorporateFunction(&F);
910   this->F = &F;
911 }
912 
getLocalSlot(const Value * V)913 int ModuleSlotTracker::getLocalSlot(const Value *V) {
914   assert(F && "No function incorporated");
915   return Machine->getLocalSlot(V);
916 }
917 
createSlotTracker(const Value * V)918 static SlotTracker *createSlotTracker(const Value *V) {
919   if (const Argument *FA = dyn_cast<Argument>(V))
920     return new SlotTracker(FA->getParent());
921 
922   if (const Instruction *I = dyn_cast<Instruction>(V))
923     if (I->getParent())
924       return new SlotTracker(I->getParent()->getParent());
925 
926   if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
927     return new SlotTracker(BB->getParent());
928 
929   if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
930     return new SlotTracker(GV->getParent());
931 
932   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
933     return new SlotTracker(GA->getParent());
934 
935   if (const GlobalIFunc *GIF = dyn_cast<GlobalIFunc>(V))
936     return new SlotTracker(GIF->getParent());
937 
938   if (const Function *Func = dyn_cast<Function>(V))
939     return new SlotTracker(Func);
940 
941   return nullptr;
942 }
943 
944 #if 0
945 #define ST_DEBUG(X) dbgs() << X
946 #else
947 #define ST_DEBUG(X)
948 #endif
949 
950 // Module level constructor. Causes the contents of the Module (sans functions)
951 // to be added to the slot table.
SlotTracker(const Module * M,bool ShouldInitializeAllMetadata)952 SlotTracker::SlotTracker(const Module *M, bool ShouldInitializeAllMetadata)
953     : TheModule(M), ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {}
954 
955 // Function level constructor. Causes the contents of the Module and the one
956 // function provided to be added to the slot table.
SlotTracker(const Function * F,bool ShouldInitializeAllMetadata)957 SlotTracker::SlotTracker(const Function *F, bool ShouldInitializeAllMetadata)
958     : TheModule(F ? F->getParent() : nullptr), TheFunction(F),
959       ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {}
960 
SlotTracker(const ModuleSummaryIndex * Index)961 SlotTracker::SlotTracker(const ModuleSummaryIndex *Index)
962     : TheModule(nullptr), ShouldInitializeAllMetadata(false), TheIndex(Index) {}
963 
initializeIfNeeded()964 inline void SlotTracker::initializeIfNeeded() {
965   if (TheModule) {
966     processModule();
967     TheModule = nullptr; ///< Prevent re-processing next time we're called.
968   }
969 
970   if (TheFunction && !FunctionProcessed)
971     processFunction();
972 }
973 
initializeIndexIfNeeded()974 int SlotTracker::initializeIndexIfNeeded() {
975   if (!TheIndex)
976     return 0;
977   int NumSlots = processIndex();
978   TheIndex = nullptr; ///< Prevent re-processing next time we're called.
979   return NumSlots;
980 }
981 
982 // Iterate through all the global variables, functions, and global
983 // variable initializers and create slots for them.
processModule()984 void SlotTracker::processModule() {
985   ST_DEBUG("begin processModule!\n");
986 
987   // Add all of the unnamed global variables to the value table.
988   for (const GlobalVariable &Var : TheModule->globals()) {
989     if (!Var.hasName())
990       CreateModuleSlot(&Var);
991     processGlobalObjectMetadata(Var);
992     auto Attrs = Var.getAttributes();
993     if (Attrs.hasAttributes())
994       CreateAttributeSetSlot(Attrs);
995   }
996 
997   for (const GlobalAlias &A : TheModule->aliases()) {
998     if (!A.hasName())
999       CreateModuleSlot(&A);
1000   }
1001 
1002   for (const GlobalIFunc &I : TheModule->ifuncs()) {
1003     if (!I.hasName())
1004       CreateModuleSlot(&I);
1005   }
1006 
1007   // Add metadata used by named metadata.
1008   for (const NamedMDNode &NMD : TheModule->named_metadata()) {
1009     for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i)
1010       CreateMetadataSlot(NMD.getOperand(i));
1011   }
1012 
1013   for (const Function &F : *TheModule) {
1014     if (!F.hasName())
1015       // Add all the unnamed functions to the table.
1016       CreateModuleSlot(&F);
1017 
1018     if (ShouldInitializeAllMetadata)
1019       processFunctionMetadata(F);
1020 
1021     // Add all the function attributes to the table.
1022     // FIXME: Add attributes of other objects?
1023     AttributeSet FnAttrs = F.getAttributes().getFnAttributes();
1024     if (FnAttrs.hasAttributes())
1025       CreateAttributeSetSlot(FnAttrs);
1026   }
1027 
1028   ST_DEBUG("end processModule!\n");
1029 }
1030 
1031 // Process the arguments, basic blocks, and instructions  of a function.
processFunction()1032 void SlotTracker::processFunction() {
1033   ST_DEBUG("begin processFunction!\n");
1034   fNext = 0;
1035 
1036   // Process function metadata if it wasn't hit at the module-level.
1037   if (!ShouldInitializeAllMetadata)
1038     processFunctionMetadata(*TheFunction);
1039 
1040   // Add all the function arguments with no names.
1041   for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
1042       AE = TheFunction->arg_end(); AI != AE; ++AI)
1043     if (!AI->hasName())
1044       CreateFunctionSlot(&*AI);
1045 
1046   ST_DEBUG("Inserting Instructions:\n");
1047 
1048   // Add all of the basic blocks and instructions with no names.
1049   for (auto &BB : *TheFunction) {
1050     if (!BB.hasName())
1051       CreateFunctionSlot(&BB);
1052 
1053     for (auto &I : BB) {
1054       if (!I.getType()->isVoidTy() && !I.hasName())
1055         CreateFunctionSlot(&I);
1056 
1057       // We allow direct calls to any llvm.foo function here, because the
1058       // target may not be linked into the optimizer.
1059       if (const auto *Call = dyn_cast<CallBase>(&I)) {
1060         // Add all the call attributes to the table.
1061         AttributeSet Attrs = Call->getAttributes().getFnAttributes();
1062         if (Attrs.hasAttributes())
1063           CreateAttributeSetSlot(Attrs);
1064       }
1065     }
1066   }
1067 
1068   FunctionProcessed = true;
1069 
1070   ST_DEBUG("end processFunction!\n");
1071 }
1072 
1073 // Iterate through all the GUID in the index and create slots for them.
processIndex()1074 int SlotTracker::processIndex() {
1075   ST_DEBUG("begin processIndex!\n");
1076   assert(TheIndex);
1077 
1078   // The first block of slots are just the module ids, which start at 0 and are
1079   // assigned consecutively. Since the StringMap iteration order isn't
1080   // guaranteed, use a std::map to order by module ID before assigning slots.
1081   std::map<uint64_t, StringRef> ModuleIdToPathMap;
1082   for (auto &ModPath : TheIndex->modulePaths())
1083     ModuleIdToPathMap[ModPath.second.first] = ModPath.first();
1084   for (auto &ModPair : ModuleIdToPathMap)
1085     CreateModulePathSlot(ModPair.second);
1086 
1087   // Start numbering the GUIDs after the module ids.
1088   GUIDNext = ModulePathNext;
1089 
1090   for (auto &GlobalList : *TheIndex)
1091     CreateGUIDSlot(GlobalList.first);
1092 
1093   for (auto &TId : TheIndex->typeIdCompatibleVtableMap())
1094     CreateGUIDSlot(GlobalValue::getGUID(TId.first));
1095 
1096   // Start numbering the TypeIds after the GUIDs.
1097   TypeIdNext = GUIDNext;
1098   for (const auto &TID : TheIndex->typeIds())
1099     CreateTypeIdSlot(TID.second.first);
1100 
1101   ST_DEBUG("end processIndex!\n");
1102   return TypeIdNext;
1103 }
1104 
processGlobalObjectMetadata(const GlobalObject & GO)1105 void SlotTracker::processGlobalObjectMetadata(const GlobalObject &GO) {
1106   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1107   GO.getAllMetadata(MDs);
1108   for (auto &MD : MDs)
1109     CreateMetadataSlot(MD.second);
1110 }
1111 
processFunctionMetadata(const Function & F)1112 void SlotTracker::processFunctionMetadata(const Function &F) {
1113   processGlobalObjectMetadata(F);
1114   for (auto &BB : F) {
1115     for (auto &I : BB)
1116       processInstructionMetadata(I);
1117   }
1118 }
1119 
processInstructionMetadata(const Instruction & I)1120 void SlotTracker::processInstructionMetadata(const Instruction &I) {
1121   // Process metadata used directly by intrinsics.
1122   if (const CallInst *CI = dyn_cast<CallInst>(&I))
1123     if (Function *F = CI->getCalledFunction())
1124       if (F->isIntrinsic())
1125         for (auto &Op : I.operands())
1126           if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
1127             if (MDNode *N = dyn_cast<MDNode>(V->getMetadata()))
1128               CreateMetadataSlot(N);
1129 
1130   // Process metadata attached to this instruction.
1131   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1132   I.getAllMetadata(MDs);
1133   for (auto &MD : MDs)
1134     CreateMetadataSlot(MD.second);
1135 }
1136 
1137 /// Clean up after incorporating a function. This is the only way to get out of
1138 /// the function incorporation state that affects get*Slot/Create*Slot. Function
1139 /// incorporation state is indicated by TheFunction != 0.
purgeFunction()1140 void SlotTracker::purgeFunction() {
1141   ST_DEBUG("begin purgeFunction!\n");
1142   fMap.clear(); // Simply discard the function level map
1143   TheFunction = nullptr;
1144   FunctionProcessed = false;
1145   ST_DEBUG("end purgeFunction!\n");
1146 }
1147 
1148 /// getGlobalSlot - Get the slot number of a global value.
getGlobalSlot(const GlobalValue * V)1149 int SlotTracker::getGlobalSlot(const GlobalValue *V) {
1150   // Check for uninitialized state and do lazy initialization.
1151   initializeIfNeeded();
1152 
1153   // Find the value in the module map
1154   ValueMap::iterator MI = mMap.find(V);
1155   return MI == mMap.end() ? -1 : (int)MI->second;
1156 }
1157 
1158 /// getMetadataSlot - Get the slot number of a MDNode.
getMetadataSlot(const MDNode * N)1159 int SlotTracker::getMetadataSlot(const MDNode *N) {
1160   // Check for uninitialized state and do lazy initialization.
1161   initializeIfNeeded();
1162 
1163   // Find the MDNode in the module map
1164   mdn_iterator MI = mdnMap.find(N);
1165   return MI == mdnMap.end() ? -1 : (int)MI->second;
1166 }
1167 
1168 /// getLocalSlot - Get the slot number for a value that is local to a function.
getLocalSlot(const Value * V)1169 int SlotTracker::getLocalSlot(const Value *V) {
1170   assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
1171 
1172   // Check for uninitialized state and do lazy initialization.
1173   initializeIfNeeded();
1174 
1175   ValueMap::iterator FI = fMap.find(V);
1176   return FI == fMap.end() ? -1 : (int)FI->second;
1177 }
1178 
getAttributeGroupSlot(AttributeSet AS)1179 int SlotTracker::getAttributeGroupSlot(AttributeSet AS) {
1180   // Check for uninitialized state and do lazy initialization.
1181   initializeIfNeeded();
1182 
1183   // Find the AttributeSet in the module map.
1184   as_iterator AI = asMap.find(AS);
1185   return AI == asMap.end() ? -1 : (int)AI->second;
1186 }
1187 
getModulePathSlot(StringRef Path)1188 int SlotTracker::getModulePathSlot(StringRef Path) {
1189   // Check for uninitialized state and do lazy initialization.
1190   initializeIndexIfNeeded();
1191 
1192   // Find the Module path in the map
1193   auto I = ModulePathMap.find(Path);
1194   return I == ModulePathMap.end() ? -1 : (int)I->second;
1195 }
1196 
getGUIDSlot(GlobalValue::GUID GUID)1197 int SlotTracker::getGUIDSlot(GlobalValue::GUID GUID) {
1198   // Check for uninitialized state and do lazy initialization.
1199   initializeIndexIfNeeded();
1200 
1201   // Find the GUID in the map
1202   guid_iterator I = GUIDMap.find(GUID);
1203   return I == GUIDMap.end() ? -1 : (int)I->second;
1204 }
1205 
getTypeIdSlot(StringRef Id)1206 int SlotTracker::getTypeIdSlot(StringRef Id) {
1207   // Check for uninitialized state and do lazy initialization.
1208   initializeIndexIfNeeded();
1209 
1210   // Find the TypeId string in the map
1211   auto I = TypeIdMap.find(Id);
1212   return I == TypeIdMap.end() ? -1 : (int)I->second;
1213 }
1214 
1215 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
CreateModuleSlot(const GlobalValue * V)1216 void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
1217   assert(V && "Can't insert a null Value into SlotTracker!");
1218   assert(!V->getType()->isVoidTy() && "Doesn't need a slot!");
1219   assert(!V->hasName() && "Doesn't need a slot!");
1220 
1221   unsigned DestSlot = mNext++;
1222   mMap[V] = DestSlot;
1223 
1224   ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
1225            DestSlot << " [");
1226   // G = Global, F = Function, A = Alias, I = IFunc, o = other
1227   ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
1228             (isa<Function>(V) ? 'F' :
1229              (isa<GlobalAlias>(V) ? 'A' :
1230               (isa<GlobalIFunc>(V) ? 'I' : 'o')))) << "]\n");
1231 }
1232 
1233 /// CreateSlot - Create a new slot for the specified value if it has no name.
CreateFunctionSlot(const Value * V)1234 void SlotTracker::CreateFunctionSlot(const Value *V) {
1235   assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!");
1236 
1237   unsigned DestSlot = fNext++;
1238   fMap[V] = DestSlot;
1239 
1240   // G = Global, F = Function, o = other
1241   ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
1242            DestSlot << " [o]\n");
1243 }
1244 
1245 /// CreateModuleSlot - Insert the specified MDNode* into the slot table.
CreateMetadataSlot(const MDNode * N)1246 void SlotTracker::CreateMetadataSlot(const MDNode *N) {
1247   assert(N && "Can't insert a null Value into SlotTracker!");
1248 
1249   // Don't make slots for DIExpressions or DIArgLists. We just print them inline
1250   // everywhere.
1251   if (isa<DIExpression>(N) || isa<DIArgList>(N))
1252     return;
1253 
1254   unsigned DestSlot = mdnNext;
1255   if (!mdnMap.insert(std::make_pair(N, DestSlot)).second)
1256     return;
1257   ++mdnNext;
1258 
1259   // Recursively add any MDNodes referenced by operands.
1260   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1261     if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i)))
1262       CreateMetadataSlot(Op);
1263 }
1264 
CreateAttributeSetSlot(AttributeSet AS)1265 void SlotTracker::CreateAttributeSetSlot(AttributeSet AS) {
1266   assert(AS.hasAttributes() && "Doesn't need a slot!");
1267 
1268   as_iterator I = asMap.find(AS);
1269   if (I != asMap.end())
1270     return;
1271 
1272   unsigned DestSlot = asNext++;
1273   asMap[AS] = DestSlot;
1274 }
1275 
1276 /// Create a new slot for the specified Module
CreateModulePathSlot(StringRef Path)1277 void SlotTracker::CreateModulePathSlot(StringRef Path) {
1278   ModulePathMap[Path] = ModulePathNext++;
1279 }
1280 
1281 /// Create a new slot for the specified GUID
CreateGUIDSlot(GlobalValue::GUID GUID)1282 void SlotTracker::CreateGUIDSlot(GlobalValue::GUID GUID) {
1283   GUIDMap[GUID] = GUIDNext++;
1284 }
1285 
1286 /// Create a new slot for the specified Id
CreateTypeIdSlot(StringRef Id)1287 void SlotTracker::CreateTypeIdSlot(StringRef Id) {
1288   TypeIdMap[Id] = TypeIdNext++;
1289 }
1290 
1291 //===----------------------------------------------------------------------===//
1292 // AsmWriter Implementation
1293 //===----------------------------------------------------------------------===//
1294 
1295 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
1296                                    TypePrinting *TypePrinter,
1297                                    SlotTracker *Machine,
1298                                    const Module *Context);
1299 
1300 static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
1301                                    TypePrinting *TypePrinter,
1302                                    SlotTracker *Machine, const Module *Context,
1303                                    bool FromValue = false);
1304 
WriteOptimizationInfo(raw_ostream & Out,const User * U)1305 static void WriteOptimizationInfo(raw_ostream &Out, const User *U) {
1306   if (const FPMathOperator *FPO = dyn_cast<const FPMathOperator>(U)) {
1307     // 'Fast' is an abbreviation for all fast-math-flags.
1308     if (FPO->isFast())
1309       Out << " fast";
1310     else {
1311       if (FPO->hasAllowReassoc())
1312         Out << " reassoc";
1313       if (FPO->hasNoNaNs())
1314         Out << " nnan";
1315       if (FPO->hasNoInfs())
1316         Out << " ninf";
1317       if (FPO->hasNoSignedZeros())
1318         Out << " nsz";
1319       if (FPO->hasAllowReciprocal())
1320         Out << " arcp";
1321       if (FPO->hasAllowContract())
1322         Out << " contract";
1323       if (FPO->hasApproxFunc())
1324         Out << " afn";
1325     }
1326   }
1327 
1328   if (const OverflowingBinaryOperator *OBO =
1329         dyn_cast<OverflowingBinaryOperator>(U)) {
1330     if (OBO->hasNoUnsignedWrap())
1331       Out << " nuw";
1332     if (OBO->hasNoSignedWrap())
1333       Out << " nsw";
1334   } else if (const PossiblyExactOperator *Div =
1335                dyn_cast<PossiblyExactOperator>(U)) {
1336     if (Div->isExact())
1337       Out << " exact";
1338   } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
1339     if (GEP->isInBounds())
1340       Out << " inbounds";
1341   }
1342 }
1343 
WriteConstantInternal(raw_ostream & Out,const Constant * CV,TypePrinting & TypePrinter,SlotTracker * Machine,const Module * Context)1344 static void WriteConstantInternal(raw_ostream &Out, const Constant *CV,
1345                                   TypePrinting &TypePrinter,
1346                                   SlotTracker *Machine,
1347                                   const Module *Context) {
1348   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1349     if (CI->getType()->isIntegerTy(1)) {
1350       Out << (CI->getZExtValue() ? "true" : "false");
1351       return;
1352     }
1353     Out << CI->getValue();
1354     return;
1355   }
1356 
1357   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
1358     const APFloat &APF = CFP->getValueAPF();
1359     if (&APF.getSemantics() == &APFloat::IEEEsingle() ||
1360         &APF.getSemantics() == &APFloat::IEEEdouble()) {
1361       // We would like to output the FP constant value in exponential notation,
1362       // but we cannot do this if doing so will lose precision.  Check here to
1363       // make sure that we only output it in exponential format if we can parse
1364       // the value back and get the same value.
1365       //
1366       bool ignored;
1367       bool isDouble = &APF.getSemantics() == &APFloat::IEEEdouble();
1368       bool isInf = APF.isInfinity();
1369       bool isNaN = APF.isNaN();
1370       if (!isInf && !isNaN) {
1371         double Val = APF.convertToDouble();
1372         SmallString<128> StrVal;
1373         APF.toString(StrVal, 6, 0, false);
1374         // Check to make sure that the stringized number is not some string like
1375         // "Inf" or NaN, that atof will accept, but the lexer will not.  Check
1376         // that the string matches the "[-+]?[0-9]" regex.
1377         //
1378         assert((isDigit(StrVal[0]) || ((StrVal[0] == '-' || StrVal[0] == '+') &&
1379                                        isDigit(StrVal[1]))) &&
1380                "[-+]?[0-9] regex does not match!");
1381         // Reparse stringized version!
1382         if (APFloat(APFloat::IEEEdouble(), StrVal).convertToDouble() == Val) {
1383           Out << StrVal;
1384           return;
1385         }
1386       }
1387       // Otherwise we could not reparse it to exactly the same value, so we must
1388       // output the string in hexadecimal format!  Note that loading and storing
1389       // floating point types changes the bits of NaNs on some hosts, notably
1390       // x86, so we must not use these types.
1391       static_assert(sizeof(double) == sizeof(uint64_t),
1392                     "assuming that double is 64 bits!");
1393       APFloat apf = APF;
1394       // Floats are represented in ASCII IR as double, convert.
1395       // FIXME: We should allow 32-bit hex float and remove this.
1396       if (!isDouble) {
1397         // A signaling NaN is quieted on conversion, so we need to recreate the
1398         // expected value after convert (quiet bit of the payload is clear).
1399         bool IsSNAN = apf.isSignaling();
1400         apf.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
1401                     &ignored);
1402         if (IsSNAN) {
1403           APInt Payload = apf.bitcastToAPInt();
1404           apf = APFloat::getSNaN(APFloat::IEEEdouble(), apf.isNegative(),
1405                                  &Payload);
1406         }
1407       }
1408       Out << format_hex(apf.bitcastToAPInt().getZExtValue(), 0, /*Upper=*/true);
1409       return;
1410     }
1411 
1412     // Either half, bfloat or some form of long double.
1413     // These appear as a magic letter identifying the type, then a
1414     // fixed number of hex digits.
1415     Out << "0x";
1416     APInt API = APF.bitcastToAPInt();
1417     if (&APF.getSemantics() == &APFloat::x87DoubleExtended()) {
1418       Out << 'K';
1419       Out << format_hex_no_prefix(API.getHiBits(16).getZExtValue(), 4,
1420                                   /*Upper=*/true);
1421       Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1422                                   /*Upper=*/true);
1423       return;
1424     } else if (&APF.getSemantics() == &APFloat::IEEEquad()) {
1425       Out << 'L';
1426       Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1427                                   /*Upper=*/true);
1428       Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16,
1429                                   /*Upper=*/true);
1430     } else if (&APF.getSemantics() == &APFloat::PPCDoubleDouble()) {
1431       Out << 'M';
1432       Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1433                                   /*Upper=*/true);
1434       Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16,
1435                                   /*Upper=*/true);
1436     } else if (&APF.getSemantics() == &APFloat::IEEEhalf()) {
1437       Out << 'H';
1438       Out << format_hex_no_prefix(API.getZExtValue(), 4,
1439                                   /*Upper=*/true);
1440     } else if (&APF.getSemantics() == &APFloat::BFloat()) {
1441       Out << 'R';
1442       Out << format_hex_no_prefix(API.getZExtValue(), 4,
1443                                   /*Upper=*/true);
1444     } else
1445       llvm_unreachable("Unsupported floating point type");
1446     return;
1447   }
1448 
1449   if (isa<ConstantAggregateZero>(CV)) {
1450     Out << "zeroinitializer";
1451     return;
1452   }
1453 
1454   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
1455     Out << "blockaddress(";
1456     WriteAsOperandInternal(Out, BA->getFunction(), &TypePrinter, Machine,
1457                            Context);
1458     Out << ", ";
1459     WriteAsOperandInternal(Out, BA->getBasicBlock(), &TypePrinter, Machine,
1460                            Context);
1461     Out << ")";
1462     return;
1463   }
1464 
1465   if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(CV)) {
1466     Out << "dso_local_equivalent ";
1467     WriteAsOperandInternal(Out, Equiv->getGlobalValue(), &TypePrinter, Machine,
1468                            Context);
1469     return;
1470   }
1471 
1472   if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
1473     Type *ETy = CA->getType()->getElementType();
1474     Out << '[';
1475     TypePrinter.print(ETy, Out);
1476     Out << ' ';
1477     WriteAsOperandInternal(Out, CA->getOperand(0),
1478                            &TypePrinter, Machine,
1479                            Context);
1480     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
1481       Out << ", ";
1482       TypePrinter.print(ETy, Out);
1483       Out << ' ';
1484       WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine,
1485                              Context);
1486     }
1487     Out << ']';
1488     return;
1489   }
1490 
1491   if (const ConstantDataArray *CA = dyn_cast<ConstantDataArray>(CV)) {
1492     // As a special case, print the array as a string if it is an array of
1493     // i8 with ConstantInt values.
1494     if (CA->isString()) {
1495       Out << "c\"";
1496       printEscapedString(CA->getAsString(), Out);
1497       Out << '"';
1498       return;
1499     }
1500 
1501     Type *ETy = CA->getType()->getElementType();
1502     Out << '[';
1503     TypePrinter.print(ETy, Out);
1504     Out << ' ';
1505     WriteAsOperandInternal(Out, CA->getElementAsConstant(0),
1506                            &TypePrinter, Machine,
1507                            Context);
1508     for (unsigned i = 1, e = CA->getNumElements(); i != e; ++i) {
1509       Out << ", ";
1510       TypePrinter.print(ETy, Out);
1511       Out << ' ';
1512       WriteAsOperandInternal(Out, CA->getElementAsConstant(i), &TypePrinter,
1513                              Machine, Context);
1514     }
1515     Out << ']';
1516     return;
1517   }
1518 
1519   if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
1520     if (CS->getType()->isPacked())
1521       Out << '<';
1522     Out << '{';
1523     unsigned N = CS->getNumOperands();
1524     if (N) {
1525       Out << ' ';
1526       TypePrinter.print(CS->getOperand(0)->getType(), Out);
1527       Out << ' ';
1528 
1529       WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine,
1530                              Context);
1531 
1532       for (unsigned i = 1; i < N; i++) {
1533         Out << ", ";
1534         TypePrinter.print(CS->getOperand(i)->getType(), Out);
1535         Out << ' ';
1536 
1537         WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine,
1538                                Context);
1539       }
1540       Out << ' ';
1541     }
1542 
1543     Out << '}';
1544     if (CS->getType()->isPacked())
1545       Out << '>';
1546     return;
1547   }
1548 
1549   if (isa<ConstantVector>(CV) || isa<ConstantDataVector>(CV)) {
1550     auto *CVVTy = cast<FixedVectorType>(CV->getType());
1551     Type *ETy = CVVTy->getElementType();
1552     Out << '<';
1553     TypePrinter.print(ETy, Out);
1554     Out << ' ';
1555     WriteAsOperandInternal(Out, CV->getAggregateElement(0U), &TypePrinter,
1556                            Machine, Context);
1557     for (unsigned i = 1, e = CVVTy->getNumElements(); i != e; ++i) {
1558       Out << ", ";
1559       TypePrinter.print(ETy, Out);
1560       Out << ' ';
1561       WriteAsOperandInternal(Out, CV->getAggregateElement(i), &TypePrinter,
1562                              Machine, Context);
1563     }
1564     Out << '>';
1565     return;
1566   }
1567 
1568   if (isa<ConstantPointerNull>(CV)) {
1569     Out << "null";
1570     return;
1571   }
1572 
1573   if (isa<ConstantTokenNone>(CV)) {
1574     Out << "none";
1575     return;
1576   }
1577 
1578   if (isa<PoisonValue>(CV)) {
1579     Out << "poison";
1580     return;
1581   }
1582 
1583   if (isa<UndefValue>(CV)) {
1584     Out << "undef";
1585     return;
1586   }
1587 
1588   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
1589     Out << CE->getOpcodeName();
1590     WriteOptimizationInfo(Out, CE);
1591     if (CE->isCompare())
1592       Out << ' ' << CmpInst::getPredicateName(
1593                         static_cast<CmpInst::Predicate>(CE->getPredicate()));
1594     Out << " (";
1595 
1596     Optional<unsigned> InRangeOp;
1597     if (const GEPOperator *GEP = dyn_cast<GEPOperator>(CE)) {
1598       TypePrinter.print(GEP->getSourceElementType(), Out);
1599       Out << ", ";
1600       InRangeOp = GEP->getInRangeIndex();
1601       if (InRangeOp)
1602         ++*InRangeOp;
1603     }
1604 
1605     for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
1606       if (InRangeOp && unsigned(OI - CE->op_begin()) == *InRangeOp)
1607         Out << "inrange ";
1608       TypePrinter.print((*OI)->getType(), Out);
1609       Out << ' ';
1610       WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine, Context);
1611       if (OI+1 != CE->op_end())
1612         Out << ", ";
1613     }
1614 
1615     if (CE->hasIndices()) {
1616       ArrayRef<unsigned> Indices = CE->getIndices();
1617       for (unsigned i = 0, e = Indices.size(); i != e; ++i)
1618         Out << ", " << Indices[i];
1619     }
1620 
1621     if (CE->isCast()) {
1622       Out << " to ";
1623       TypePrinter.print(CE->getType(), Out);
1624     }
1625 
1626     if (CE->getOpcode() == Instruction::ShuffleVector)
1627       PrintShuffleMask(Out, CE->getType(), CE->getShuffleMask());
1628 
1629     Out << ')';
1630     return;
1631   }
1632 
1633   Out << "<placeholder or erroneous Constant>";
1634 }
1635 
writeMDTuple(raw_ostream & Out,const MDTuple * Node,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1636 static void writeMDTuple(raw_ostream &Out, const MDTuple *Node,
1637                          TypePrinting *TypePrinter, SlotTracker *Machine,
1638                          const Module *Context) {
1639   Out << "!{";
1640   for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) {
1641     const Metadata *MD = Node->getOperand(mi);
1642     if (!MD)
1643       Out << "null";
1644     else if (auto *MDV = dyn_cast<ValueAsMetadata>(MD)) {
1645       Value *V = MDV->getValue();
1646       TypePrinter->print(V->getType(), Out);
1647       Out << ' ';
1648       WriteAsOperandInternal(Out, V, TypePrinter, Machine, Context);
1649     } else {
1650       WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context);
1651     }
1652     if (mi + 1 != me)
1653       Out << ", ";
1654   }
1655 
1656   Out << "}";
1657 }
1658 
1659 namespace {
1660 
1661 struct FieldSeparator {
1662   bool Skip = true;
1663   const char *Sep;
1664 
FieldSeparator__anonf93afd230711::FieldSeparator1665   FieldSeparator(const char *Sep = ", ") : Sep(Sep) {}
1666 };
1667 
operator <<(raw_ostream & OS,FieldSeparator & FS)1668 raw_ostream &operator<<(raw_ostream &OS, FieldSeparator &FS) {
1669   if (FS.Skip) {
1670     FS.Skip = false;
1671     return OS;
1672   }
1673   return OS << FS.Sep;
1674 }
1675 
1676 struct MDFieldPrinter {
1677   raw_ostream &Out;
1678   FieldSeparator FS;
1679   TypePrinting *TypePrinter = nullptr;
1680   SlotTracker *Machine = nullptr;
1681   const Module *Context = nullptr;
1682 
MDFieldPrinter__anonf93afd230711::MDFieldPrinter1683   explicit MDFieldPrinter(raw_ostream &Out) : Out(Out) {}
MDFieldPrinter__anonf93afd230711::MDFieldPrinter1684   MDFieldPrinter(raw_ostream &Out, TypePrinting *TypePrinter,
1685                  SlotTracker *Machine, const Module *Context)
1686       : Out(Out), TypePrinter(TypePrinter), Machine(Machine), Context(Context) {
1687   }
1688 
1689   void printTag(const DINode *N);
1690   void printMacinfoType(const DIMacroNode *N);
1691   void printChecksum(const DIFile::ChecksumInfo<StringRef> &N);
1692   void printString(StringRef Name, StringRef Value,
1693                    bool ShouldSkipEmpty = true);
1694   void printMetadata(StringRef Name, const Metadata *MD,
1695                      bool ShouldSkipNull = true);
1696   template <class IntTy>
1697   void printInt(StringRef Name, IntTy Int, bool ShouldSkipZero = true);
1698   void printAPInt(StringRef Name, const APInt &Int, bool IsUnsigned,
1699                   bool ShouldSkipZero);
1700   void printBool(StringRef Name, bool Value, Optional<bool> Default = None);
1701   void printDIFlags(StringRef Name, DINode::DIFlags Flags);
1702   void printDISPFlags(StringRef Name, DISubprogram::DISPFlags Flags);
1703   template <class IntTy, class Stringifier>
1704   void printDwarfEnum(StringRef Name, IntTy Value, Stringifier toString,
1705                       bool ShouldSkipZero = true);
1706   void printEmissionKind(StringRef Name, DICompileUnit::DebugEmissionKind EK);
1707   void printNameTableKind(StringRef Name,
1708                           DICompileUnit::DebugNameTableKind NTK);
1709 };
1710 
1711 } // end anonymous namespace
1712 
printTag(const DINode * N)1713 void MDFieldPrinter::printTag(const DINode *N) {
1714   Out << FS << "tag: ";
1715   auto Tag = dwarf::TagString(N->getTag());
1716   if (!Tag.empty())
1717     Out << Tag;
1718   else
1719     Out << N->getTag();
1720 }
1721 
printMacinfoType(const DIMacroNode * N)1722 void MDFieldPrinter::printMacinfoType(const DIMacroNode *N) {
1723   Out << FS << "type: ";
1724   auto Type = dwarf::MacinfoString(N->getMacinfoType());
1725   if (!Type.empty())
1726     Out << Type;
1727   else
1728     Out << N->getMacinfoType();
1729 }
1730 
printChecksum(const DIFile::ChecksumInfo<StringRef> & Checksum)1731 void MDFieldPrinter::printChecksum(
1732     const DIFile::ChecksumInfo<StringRef> &Checksum) {
1733   Out << FS << "checksumkind: " << Checksum.getKindAsString();
1734   printString("checksum", Checksum.Value, /* ShouldSkipEmpty */ false);
1735 }
1736 
printString(StringRef Name,StringRef Value,bool ShouldSkipEmpty)1737 void MDFieldPrinter::printString(StringRef Name, StringRef Value,
1738                                  bool ShouldSkipEmpty) {
1739   if (ShouldSkipEmpty && Value.empty())
1740     return;
1741 
1742   Out << FS << Name << ": \"";
1743   printEscapedString(Value, Out);
1744   Out << "\"";
1745 }
1746 
writeMetadataAsOperand(raw_ostream & Out,const Metadata * MD,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1747 static void writeMetadataAsOperand(raw_ostream &Out, const Metadata *MD,
1748                                    TypePrinting *TypePrinter,
1749                                    SlotTracker *Machine,
1750                                    const Module *Context) {
1751   if (!MD) {
1752     Out << "null";
1753     return;
1754   }
1755   WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context);
1756 }
1757 
printMetadata(StringRef Name,const Metadata * MD,bool ShouldSkipNull)1758 void MDFieldPrinter::printMetadata(StringRef Name, const Metadata *MD,
1759                                    bool ShouldSkipNull) {
1760   if (ShouldSkipNull && !MD)
1761     return;
1762 
1763   Out << FS << Name << ": ";
1764   writeMetadataAsOperand(Out, MD, TypePrinter, Machine, Context);
1765 }
1766 
1767 template <class IntTy>
printInt(StringRef Name,IntTy Int,bool ShouldSkipZero)1768 void MDFieldPrinter::printInt(StringRef Name, IntTy Int, bool ShouldSkipZero) {
1769   if (ShouldSkipZero && !Int)
1770     return;
1771 
1772   Out << FS << Name << ": " << Int;
1773 }
1774 
printAPInt(StringRef Name,const APInt & Int,bool IsUnsigned,bool ShouldSkipZero)1775 void MDFieldPrinter::printAPInt(StringRef Name, const APInt &Int,
1776                                 bool IsUnsigned, bool ShouldSkipZero) {
1777   if (ShouldSkipZero && Int.isNullValue())
1778     return;
1779 
1780   Out << FS << Name << ": ";
1781   Int.print(Out, !IsUnsigned);
1782 }
1783 
printBool(StringRef Name,bool Value,Optional<bool> Default)1784 void MDFieldPrinter::printBool(StringRef Name, bool Value,
1785                                Optional<bool> Default) {
1786   if (Default && Value == *Default)
1787     return;
1788   Out << FS << Name << ": " << (Value ? "true" : "false");
1789 }
1790 
printDIFlags(StringRef Name,DINode::DIFlags Flags)1791 void MDFieldPrinter::printDIFlags(StringRef Name, DINode::DIFlags Flags) {
1792   if (!Flags)
1793     return;
1794 
1795   Out << FS << Name << ": ";
1796 
1797   SmallVector<DINode::DIFlags, 8> SplitFlags;
1798   auto Extra = DINode::splitFlags(Flags, SplitFlags);
1799 
1800   FieldSeparator FlagsFS(" | ");
1801   for (auto F : SplitFlags) {
1802     auto StringF = DINode::getFlagString(F);
1803     assert(!StringF.empty() && "Expected valid flag");
1804     Out << FlagsFS << StringF;
1805   }
1806   if (Extra || SplitFlags.empty())
1807     Out << FlagsFS << Extra;
1808 }
1809 
printDISPFlags(StringRef Name,DISubprogram::DISPFlags Flags)1810 void MDFieldPrinter::printDISPFlags(StringRef Name,
1811                                     DISubprogram::DISPFlags Flags) {
1812   // Always print this field, because no flags in the IR at all will be
1813   // interpreted as old-style isDefinition: true.
1814   Out << FS << Name << ": ";
1815 
1816   if (!Flags) {
1817     Out << 0;
1818     return;
1819   }
1820 
1821   SmallVector<DISubprogram::DISPFlags, 8> SplitFlags;
1822   auto Extra = DISubprogram::splitFlags(Flags, SplitFlags);
1823 
1824   FieldSeparator FlagsFS(" | ");
1825   for (auto F : SplitFlags) {
1826     auto StringF = DISubprogram::getFlagString(F);
1827     assert(!StringF.empty() && "Expected valid flag");
1828     Out << FlagsFS << StringF;
1829   }
1830   if (Extra || SplitFlags.empty())
1831     Out << FlagsFS << Extra;
1832 }
1833 
printEmissionKind(StringRef Name,DICompileUnit::DebugEmissionKind EK)1834 void MDFieldPrinter::printEmissionKind(StringRef Name,
1835                                        DICompileUnit::DebugEmissionKind EK) {
1836   Out << FS << Name << ": " << DICompileUnit::emissionKindString(EK);
1837 }
1838 
printNameTableKind(StringRef Name,DICompileUnit::DebugNameTableKind NTK)1839 void MDFieldPrinter::printNameTableKind(StringRef Name,
1840                                         DICompileUnit::DebugNameTableKind NTK) {
1841   if (NTK == DICompileUnit::DebugNameTableKind::Default)
1842     return;
1843   Out << FS << Name << ": " << DICompileUnit::nameTableKindString(NTK);
1844 }
1845 
1846 template <class IntTy, class Stringifier>
printDwarfEnum(StringRef Name,IntTy Value,Stringifier toString,bool ShouldSkipZero)1847 void MDFieldPrinter::printDwarfEnum(StringRef Name, IntTy Value,
1848                                     Stringifier toString, bool ShouldSkipZero) {
1849   if (!Value)
1850     return;
1851 
1852   Out << FS << Name << ": ";
1853   auto S = toString(Value);
1854   if (!S.empty())
1855     Out << S;
1856   else
1857     Out << Value;
1858 }
1859 
writeGenericDINode(raw_ostream & Out,const GenericDINode * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1860 static void writeGenericDINode(raw_ostream &Out, const GenericDINode *N,
1861                                TypePrinting *TypePrinter, SlotTracker *Machine,
1862                                const Module *Context) {
1863   Out << "!GenericDINode(";
1864   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1865   Printer.printTag(N);
1866   Printer.printString("header", N->getHeader());
1867   if (N->getNumDwarfOperands()) {
1868     Out << Printer.FS << "operands: {";
1869     FieldSeparator IFS;
1870     for (auto &I : N->dwarf_operands()) {
1871       Out << IFS;
1872       writeMetadataAsOperand(Out, I, TypePrinter, Machine, Context);
1873     }
1874     Out << "}";
1875   }
1876   Out << ")";
1877 }
1878 
writeDILocation(raw_ostream & Out,const DILocation * DL,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1879 static void writeDILocation(raw_ostream &Out, const DILocation *DL,
1880                             TypePrinting *TypePrinter, SlotTracker *Machine,
1881                             const Module *Context) {
1882   Out << "!DILocation(";
1883   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1884   // Always output the line, since 0 is a relevant and important value for it.
1885   Printer.printInt("line", DL->getLine(), /* ShouldSkipZero */ false);
1886   Printer.printInt("column", DL->getColumn());
1887   Printer.printMetadata("scope", DL->getRawScope(), /* ShouldSkipNull */ false);
1888   Printer.printMetadata("inlinedAt", DL->getRawInlinedAt());
1889   Printer.printBool("isImplicitCode", DL->isImplicitCode(),
1890                     /* Default */ false);
1891   Out << ")";
1892 }
1893 
writeDISubrange(raw_ostream & Out,const DISubrange * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1894 static void writeDISubrange(raw_ostream &Out, const DISubrange *N,
1895                             TypePrinting *TypePrinter, SlotTracker *Machine,
1896                             const Module *Context) {
1897   Out << "!DISubrange(";
1898   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1899 
1900   auto *Count = N->getRawCountNode();
1901   if (auto *CE = dyn_cast_or_null<ConstantAsMetadata>(Count)) {
1902     auto *CV = cast<ConstantInt>(CE->getValue());
1903     Printer.printInt("count", CV->getSExtValue(),
1904                      /* ShouldSkipZero */ false);
1905   } else
1906     Printer.printMetadata("count", Count, /*ShouldSkipNull */ true);
1907 
1908   // A lowerBound of constant 0 should not be skipped, since it is different
1909   // from an unspecified lower bound (= nullptr).
1910   auto *LBound = N->getRawLowerBound();
1911   if (auto *LE = dyn_cast_or_null<ConstantAsMetadata>(LBound)) {
1912     auto *LV = cast<ConstantInt>(LE->getValue());
1913     Printer.printInt("lowerBound", LV->getSExtValue(),
1914                      /* ShouldSkipZero */ false);
1915   } else
1916     Printer.printMetadata("lowerBound", LBound, /*ShouldSkipNull */ true);
1917 
1918   auto *UBound = N->getRawUpperBound();
1919   if (auto *UE = dyn_cast_or_null<ConstantAsMetadata>(UBound)) {
1920     auto *UV = cast<ConstantInt>(UE->getValue());
1921     Printer.printInt("upperBound", UV->getSExtValue(),
1922                      /* ShouldSkipZero */ false);
1923   } else
1924     Printer.printMetadata("upperBound", UBound, /*ShouldSkipNull */ true);
1925 
1926   auto *Stride = N->getRawStride();
1927   if (auto *SE = dyn_cast_or_null<ConstantAsMetadata>(Stride)) {
1928     auto *SV = cast<ConstantInt>(SE->getValue());
1929     Printer.printInt("stride", SV->getSExtValue(), /* ShouldSkipZero */ false);
1930   } else
1931     Printer.printMetadata("stride", Stride, /*ShouldSkipNull */ true);
1932 
1933   Out << ")";
1934 }
1935 
writeDIGenericSubrange(raw_ostream & Out,const DIGenericSubrange * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)1936 static void writeDIGenericSubrange(raw_ostream &Out, const DIGenericSubrange *N,
1937                                    TypePrinting *TypePrinter,
1938                                    SlotTracker *Machine,
1939                                    const Module *Context) {
1940   Out << "!DIGenericSubrange(";
1941   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1942 
1943   auto IsConstant = [&](Metadata *Bound) -> bool {
1944     if (auto *BE = dyn_cast_or_null<DIExpression>(Bound)) {
1945       return BE->isConstant()
1946                  ? DIExpression::SignedOrUnsignedConstant::SignedConstant ==
1947                        *BE->isConstant()
1948                  : false;
1949     }
1950     return false;
1951   };
1952 
1953   auto GetConstant = [&](Metadata *Bound) -> int64_t {
1954     assert(IsConstant(Bound) && "Expected constant");
1955     auto *BE = dyn_cast_or_null<DIExpression>(Bound);
1956     return static_cast<int64_t>(BE->getElement(1));
1957   };
1958 
1959   auto *Count = N->getRawCountNode();
1960   if (IsConstant(Count))
1961     Printer.printInt("count", GetConstant(Count),
1962                      /* ShouldSkipZero */ false);
1963   else
1964     Printer.printMetadata("count", Count, /*ShouldSkipNull */ true);
1965 
1966   auto *LBound = N->getRawLowerBound();
1967   if (IsConstant(LBound))
1968     Printer.printInt("lowerBound", GetConstant(LBound),
1969                      /* ShouldSkipZero */ false);
1970   else
1971     Printer.printMetadata("lowerBound", LBound, /*ShouldSkipNull */ true);
1972 
1973   auto *UBound = N->getRawUpperBound();
1974   if (IsConstant(UBound))
1975     Printer.printInt("upperBound", GetConstant(UBound),
1976                      /* ShouldSkipZero */ false);
1977   else
1978     Printer.printMetadata("upperBound", UBound, /*ShouldSkipNull */ true);
1979 
1980   auto *Stride = N->getRawStride();
1981   if (IsConstant(Stride))
1982     Printer.printInt("stride", GetConstant(Stride),
1983                      /* ShouldSkipZero */ false);
1984   else
1985     Printer.printMetadata("stride", Stride, /*ShouldSkipNull */ true);
1986 
1987   Out << ")";
1988 }
1989 
writeDIEnumerator(raw_ostream & Out,const DIEnumerator * N,TypePrinting *,SlotTracker *,const Module *)1990 static void writeDIEnumerator(raw_ostream &Out, const DIEnumerator *N,
1991                               TypePrinting *, SlotTracker *, const Module *) {
1992   Out << "!DIEnumerator(";
1993   MDFieldPrinter Printer(Out);
1994   Printer.printString("name", N->getName(), /* ShouldSkipEmpty */ false);
1995   Printer.printAPInt("value", N->getValue(), N->isUnsigned(),
1996                      /*ShouldSkipZero=*/false);
1997   if (N->isUnsigned())
1998     Printer.printBool("isUnsigned", true);
1999   Out << ")";
2000 }
2001 
writeDIBasicType(raw_ostream & Out,const DIBasicType * N,TypePrinting *,SlotTracker *,const Module *)2002 static void writeDIBasicType(raw_ostream &Out, const DIBasicType *N,
2003                              TypePrinting *, SlotTracker *, const Module *) {
2004   Out << "!DIBasicType(";
2005   MDFieldPrinter Printer(Out);
2006   if (N->getTag() != dwarf::DW_TAG_base_type)
2007     Printer.printTag(N);
2008   Printer.printString("name", N->getName());
2009   Printer.printInt("size", N->getSizeInBits());
2010   Printer.printInt("align", N->getAlignInBits());
2011   Printer.printDwarfEnum("encoding", N->getEncoding(),
2012                          dwarf::AttributeEncodingString);
2013   Printer.printDIFlags("flags", N->getFlags());
2014   Out << ")";
2015 }
2016 
writeDIStringType(raw_ostream & Out,const DIStringType * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)2017 static void writeDIStringType(raw_ostream &Out, const DIStringType *N,
2018                               TypePrinting *TypePrinter, SlotTracker *Machine,
2019                               const Module *Context) {
2020   Out << "!DIStringType(";
2021   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2022   if (N->getTag() != dwarf::DW_TAG_string_type)
2023     Printer.printTag(N);
2024   Printer.printString("name", N->getName());
2025   Printer.printMetadata("stringLength", N->getRawStringLength());
2026   Printer.printMetadata("stringLengthExpression", N->getRawStringLengthExp());
2027   Printer.printInt("size", N->getSizeInBits());
2028   Printer.printInt("align", N->getAlignInBits());
2029   Printer.printDwarfEnum("encoding", N->getEncoding(),
2030                          dwarf::AttributeEncodingString);
2031   Out << ")";
2032 }
2033 
writeDIDerivedType(raw_ostream & Out,const DIDerivedType * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)2034 static void writeDIDerivedType(raw_ostream &Out, const DIDerivedType *N,
2035                                TypePrinting *TypePrinter, SlotTracker *Machine,
2036                                const Module *Context) {
2037   Out << "!DIDerivedType(";
2038   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2039   Printer.printTag(N);
2040   Printer.printString("name", N->getName());
2041   Printer.printMetadata("scope", N->getRawScope());
2042   Printer.printMetadata("file", N->getRawFile());
2043   Printer.printInt("line", N->getLine());
2044   Printer.printMetadata("baseType", N->getRawBaseType(),
2045                         /* ShouldSkipNull */ false);
2046   Printer.printInt("size", N->getSizeInBits());
2047   Printer.printInt("align", N->getAlignInBits());
2048   Printer.printInt("offset", N->getOffsetInBits());
2049   Printer.printDIFlags("flags", N->getFlags());
2050   Printer.printMetadata("extraData", N->getRawExtraData());
2051   if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace())
2052     Printer.printInt("dwarfAddressSpace", *DWARFAddressSpace,
2053                      /* ShouldSkipZero */ false);
2054   Out << ")";
2055 }
2056 
writeDICompositeType(raw_ostream & Out,const DICompositeType * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)2057 static void writeDICompositeType(raw_ostream &Out, const DICompositeType *N,
2058                                  TypePrinting *TypePrinter,
2059                                  SlotTracker *Machine, const Module *Context) {
2060   Out << "!DICompositeType(";
2061   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2062   Printer.printTag(N);
2063   Printer.printString("name", N->getName());
2064   Printer.printMetadata("scope", N->getRawScope());
2065   Printer.printMetadata("file", N->getRawFile());
2066   Printer.printInt("line", N->getLine());
2067   Printer.printMetadata("baseType", N->getRawBaseType());
2068   Printer.printInt("size", N->getSizeInBits());
2069   Printer.printInt("align", N->getAlignInBits());
2070   Printer.printInt("offset", N->getOffsetInBits());
2071   Printer.printDIFlags("flags", N->getFlags());
2072   Printer.printMetadata("elements", N->getRawElements());
2073   Printer.printDwarfEnum("runtimeLang", N->getRuntimeLang(),
2074                          dwarf::LanguageString);
2075   Printer.printMetadata("vtableHolder", N->getRawVTableHolder());
2076   Printer.printMetadata("templateParams", N->getRawTemplateParams());
2077   Printer.printString("identifier", N->getIdentifier());
2078   Printer.printMetadata("discriminator", N->getRawDiscriminator());
2079   Printer.printMetadata("dataLocation", N->getRawDataLocation());
2080   Printer.printMetadata("associated", N->getRawAssociated());
2081   Printer.printMetadata("allocated", N->getRawAllocated());
2082   if (auto *RankConst = N->getRankConst())
2083     Printer.printInt("rank", RankConst->getSExtValue(),
2084                      /* ShouldSkipZero */ false);
2085   else
2086     Printer.printMetadata("rank", N->getRawRank(), /*ShouldSkipNull */ true);
2087   Out << ")";
2088 }
2089 
writeDISubroutineType(raw_ostream & Out,const DISubroutineType * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)2090 static void writeDISubroutineType(raw_ostream &Out, const DISubroutineType *N,
2091                                   TypePrinting *TypePrinter,
2092                                   SlotTracker *Machine, const Module *Context) {
2093   Out << "!DISubroutineType(";
2094   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2095   Printer.printDIFlags("flags", N->getFlags());
2096   Printer.printDwarfEnum("cc", N->getCC(), dwarf::ConventionString);
2097   Printer.printMetadata("types", N->getRawTypeArray(),
2098                         /* ShouldSkipNull */ false);
2099   Out << ")";
2100 }
2101 
writeDIFile(raw_ostream & Out,const DIFile * N,TypePrinting *,SlotTracker *,const Module *)2102 static void writeDIFile(raw_ostream &Out, const DIFile *N, TypePrinting *,
2103                         SlotTracker *, const Module *) {
2104   Out << "!DIFile(";
2105   MDFieldPrinter Printer(Out);
2106   Printer.printString("filename", N->getFilename(),
2107                       /* ShouldSkipEmpty */ false);
2108   Printer.printString("directory", N->getDirectory(),
2109                       /* ShouldSkipEmpty */ false);
2110   // Print all values for checksum together, or not at all.
2111   if (N->getChecksum())
2112     Printer.printChecksum(*N->getChecksum());
2113   Printer.printString("source", N->getSource().getValueOr(StringRef()),
2114                       /* ShouldSkipEmpty */ true);
2115   Out << ")";
2116 }
2117 
writeDICompileUnit(raw_ostream & Out,const DICompileUnit * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)2118 static void writeDICompileUnit(raw_ostream &Out, const DICompileUnit *N,
2119                                TypePrinting *TypePrinter, SlotTracker *Machine,
2120                                const Module *Context) {
2121   Out << "!DICompileUnit(";
2122   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2123   Printer.printDwarfEnum("language", N->getSourceLanguage(),
2124                          dwarf::LanguageString, /* ShouldSkipZero */ false);
2125   Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
2126   Printer.printString("producer", N->getProducer());
2127   Printer.printBool("isOptimized", N->isOptimized());
2128   Printer.printString("flags", N->getFlags());
2129   Printer.printInt("runtimeVersion", N->getRuntimeVersion(),
2130                    /* ShouldSkipZero */ false);
2131   Printer.printString("splitDebugFilename", N->getSplitDebugFilename());
2132   Printer.printEmissionKind("emissionKind", N->getEmissionKind());
2133   Printer.printMetadata("enums", N->getRawEnumTypes());
2134   Printer.printMetadata("retainedTypes", N->getRawRetainedTypes());
2135   Printer.printMetadata("globals", N->getRawGlobalVariables());
2136   Printer.printMetadata("imports", N->getRawImportedEntities());
2137   Printer.printMetadata("macros", N->getRawMacros());
2138   Printer.printInt("dwoId", N->getDWOId());
2139   Printer.printBool("splitDebugInlining", N->getSplitDebugInlining(), true);
2140   Printer.printBool("debugInfoForProfiling", N->getDebugInfoForProfiling(),
2141                     false);
2142   Printer.printNameTableKind("nameTableKind", N->getNameTableKind());
2143   Printer.printBool("rangesBaseAddress", N->getRangesBaseAddress(), false);
2144   Printer.printString("sysroot", N->getSysRoot());
2145   Printer.printString("sdk", N->getSDK());
2146   Out << ")";
2147 }
2148 
writeDISubprogram(raw_ostream & Out,const DISubprogram * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)2149 static void writeDISubprogram(raw_ostream &Out, const DISubprogram *N,
2150                               TypePrinting *TypePrinter, SlotTracker *Machine,
2151                               const Module *Context) {
2152   Out << "!DISubprogram(";
2153   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2154   Printer.printString("name", N->getName());
2155   Printer.printString("linkageName", N->getLinkageName());
2156   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2157   Printer.printMetadata("file", N->getRawFile());
2158   Printer.printInt("line", N->getLine());
2159   Printer.printMetadata("type", N->getRawType());
2160   Printer.printInt("scopeLine", N->getScopeLine());
2161   Printer.printMetadata("containingType", N->getRawContainingType());
2162   if (N->getVirtuality() != dwarf::DW_VIRTUALITY_none ||
2163       N->getVirtualIndex() != 0)
2164     Printer.printInt("virtualIndex", N->getVirtualIndex(), false);
2165   Printer.printInt("thisAdjustment", N->getThisAdjustment());
2166   Printer.printDIFlags("flags", N->getFlags());
2167   Printer.printDISPFlags("spFlags", N->getSPFlags());
2168   Printer.printMetadata("unit", N->getRawUnit());
2169   Printer.printMetadata("templateParams", N->getRawTemplateParams());
2170   Printer.printMetadata("declaration", N->getRawDeclaration());
2171   Printer.printMetadata("retainedNodes", N->getRawRetainedNodes());
2172   Printer.printMetadata("thrownTypes", N->getRawThrownTypes());
2173   Out << ")";
2174 }
2175 
writeDILexicalBlock(raw_ostream & Out,const DILexicalBlock * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)2176 static void writeDILexicalBlock(raw_ostream &Out, const DILexicalBlock *N,
2177                                 TypePrinting *TypePrinter, SlotTracker *Machine,
2178                                 const Module *Context) {
2179   Out << "!DILexicalBlock(";
2180   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2181   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2182   Printer.printMetadata("file", N->getRawFile());
2183   Printer.printInt("line", N->getLine());
2184   Printer.printInt("column", N->getColumn());
2185   Out << ")";
2186 }
2187 
writeDILexicalBlockFile(raw_ostream & Out,const DILexicalBlockFile * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)2188 static void writeDILexicalBlockFile(raw_ostream &Out,
2189                                     const DILexicalBlockFile *N,
2190                                     TypePrinting *TypePrinter,
2191                                     SlotTracker *Machine,
2192                                     const Module *Context) {
2193   Out << "!DILexicalBlockFile(";
2194   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2195   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2196   Printer.printMetadata("file", N->getRawFile());
2197   Printer.printInt("discriminator", N->getDiscriminator(),
2198                    /* ShouldSkipZero */ false);
2199   Out << ")";
2200 }
2201 
writeDINamespace(raw_ostream & Out,const DINamespace * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)2202 static void writeDINamespace(raw_ostream &Out, const DINamespace *N,
2203                              TypePrinting *TypePrinter, SlotTracker *Machine,
2204                              const Module *Context) {
2205   Out << "!DINamespace(";
2206   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2207   Printer.printString("name", N->getName());
2208   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2209   Printer.printBool("exportSymbols", N->getExportSymbols(), false);
2210   Out << ")";
2211 }
2212 
writeDICommonBlock(raw_ostream & Out,const DICommonBlock * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)2213 static void writeDICommonBlock(raw_ostream &Out, const DICommonBlock *N,
2214                                TypePrinting *TypePrinter, SlotTracker *Machine,
2215                                const Module *Context) {
2216   Out << "!DICommonBlock(";
2217   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2218   Printer.printMetadata("scope", N->getRawScope(), false);
2219   Printer.printMetadata("declaration", N->getRawDecl(), false);
2220   Printer.printString("name", N->getName());
2221   Printer.printMetadata("file", N->getRawFile());
2222   Printer.printInt("line", N->getLineNo());
2223   Out << ")";
2224 }
2225 
writeDIMacro(raw_ostream & Out,const DIMacro * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)2226 static void writeDIMacro(raw_ostream &Out, const DIMacro *N,
2227                          TypePrinting *TypePrinter, SlotTracker *Machine,
2228                          const Module *Context) {
2229   Out << "!DIMacro(";
2230   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2231   Printer.printMacinfoType(N);
2232   Printer.printInt("line", N->getLine());
2233   Printer.printString("name", N->getName());
2234   Printer.printString("value", N->getValue());
2235   Out << ")";
2236 }
2237 
writeDIMacroFile(raw_ostream & Out,const DIMacroFile * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)2238 static void writeDIMacroFile(raw_ostream &Out, const DIMacroFile *N,
2239                              TypePrinting *TypePrinter, SlotTracker *Machine,
2240                              const Module *Context) {
2241   Out << "!DIMacroFile(";
2242   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2243   Printer.printInt("line", N->getLine());
2244   Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
2245   Printer.printMetadata("nodes", N->getRawElements());
2246   Out << ")";
2247 }
2248 
writeDIModule(raw_ostream & Out,const DIModule * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)2249 static void writeDIModule(raw_ostream &Out, const DIModule *N,
2250                           TypePrinting *TypePrinter, SlotTracker *Machine,
2251                           const Module *Context) {
2252   Out << "!DIModule(";
2253   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2254   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2255   Printer.printString("name", N->getName());
2256   Printer.printString("configMacros", N->getConfigurationMacros());
2257   Printer.printString("includePath", N->getIncludePath());
2258   Printer.printString("apinotes", N->getAPINotesFile());
2259   Printer.printMetadata("file", N->getRawFile());
2260   Printer.printInt("line", N->getLineNo());
2261   Printer.printBool("isDecl", N->getIsDecl(), /* Default */ false);
2262   Out << ")";
2263 }
2264 
2265 
writeDITemplateTypeParameter(raw_ostream & Out,const DITemplateTypeParameter * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)2266 static void writeDITemplateTypeParameter(raw_ostream &Out,
2267                                          const DITemplateTypeParameter *N,
2268                                          TypePrinting *TypePrinter,
2269                                          SlotTracker *Machine,
2270                                          const Module *Context) {
2271   Out << "!DITemplateTypeParameter(";
2272   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2273   Printer.printString("name", N->getName());
2274   Printer.printMetadata("type", N->getRawType(), /* ShouldSkipNull */ false);
2275   Printer.printBool("defaulted", N->isDefault(), /* Default= */ false);
2276   Out << ")";
2277 }
2278 
writeDITemplateValueParameter(raw_ostream & Out,const DITemplateValueParameter * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)2279 static void writeDITemplateValueParameter(raw_ostream &Out,
2280                                           const DITemplateValueParameter *N,
2281                                           TypePrinting *TypePrinter,
2282                                           SlotTracker *Machine,
2283                                           const Module *Context) {
2284   Out << "!DITemplateValueParameter(";
2285   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2286   if (N->getTag() != dwarf::DW_TAG_template_value_parameter)
2287     Printer.printTag(N);
2288   Printer.printString("name", N->getName());
2289   Printer.printMetadata("type", N->getRawType());
2290   Printer.printBool("defaulted", N->isDefault(), /* Default= */ false);
2291   Printer.printMetadata("value", N->getValue(), /* ShouldSkipNull */ false);
2292   Out << ")";
2293 }
2294 
writeDIGlobalVariable(raw_ostream & Out,const DIGlobalVariable * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)2295 static void writeDIGlobalVariable(raw_ostream &Out, const DIGlobalVariable *N,
2296                                   TypePrinting *TypePrinter,
2297                                   SlotTracker *Machine, const Module *Context) {
2298   Out << "!DIGlobalVariable(";
2299   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2300   Printer.printString("name", N->getName());
2301   Printer.printString("linkageName", N->getLinkageName());
2302   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2303   Printer.printMetadata("file", N->getRawFile());
2304   Printer.printInt("line", N->getLine());
2305   Printer.printMetadata("type", N->getRawType());
2306   Printer.printBool("isLocal", N->isLocalToUnit());
2307   Printer.printBool("isDefinition", N->isDefinition());
2308   Printer.printMetadata("declaration", N->getRawStaticDataMemberDeclaration());
2309   Printer.printMetadata("templateParams", N->getRawTemplateParams());
2310   Printer.printInt("align", N->getAlignInBits());
2311   Out << ")";
2312 }
2313 
writeDILocalVariable(raw_ostream & Out,const DILocalVariable * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)2314 static void writeDILocalVariable(raw_ostream &Out, const DILocalVariable *N,
2315                                  TypePrinting *TypePrinter,
2316                                  SlotTracker *Machine, const Module *Context) {
2317   Out << "!DILocalVariable(";
2318   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2319   Printer.printString("name", N->getName());
2320   Printer.printInt("arg", N->getArg());
2321   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2322   Printer.printMetadata("file", N->getRawFile());
2323   Printer.printInt("line", N->getLine());
2324   Printer.printMetadata("type", N->getRawType());
2325   Printer.printDIFlags("flags", N->getFlags());
2326   Printer.printInt("align", N->getAlignInBits());
2327   Out << ")";
2328 }
2329 
writeDILabel(raw_ostream & Out,const DILabel * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)2330 static void writeDILabel(raw_ostream &Out, const DILabel *N,
2331                          TypePrinting *TypePrinter,
2332                          SlotTracker *Machine, const Module *Context) {
2333   Out << "!DILabel(";
2334   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2335   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2336   Printer.printString("name", N->getName());
2337   Printer.printMetadata("file", N->getRawFile());
2338   Printer.printInt("line", N->getLine());
2339   Out << ")";
2340 }
2341 
writeDIExpression(raw_ostream & Out,const DIExpression * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)2342 static void writeDIExpression(raw_ostream &Out, const DIExpression *N,
2343                               TypePrinting *TypePrinter, SlotTracker *Machine,
2344                               const Module *Context) {
2345   Out << "!DIExpression(";
2346   FieldSeparator FS;
2347   if (N->isValid()) {
2348     for (const DIExpression::ExprOperand &Op : N->expr_ops()) {
2349       auto OpStr = dwarf::OperationEncodingString(Op.getOp());
2350       assert(!OpStr.empty() && "Expected valid opcode");
2351 
2352       Out << FS << OpStr;
2353       if (Op.getOp() == dwarf::DW_OP_LLVM_convert) {
2354         Out << FS << Op.getArg(0);
2355         Out << FS << dwarf::AttributeEncodingString(Op.getArg(1));
2356       } else {
2357         for (unsigned A = 0, AE = Op.getNumArgs(); A != AE; ++A)
2358           Out << FS << Op.getArg(A);
2359       }
2360     }
2361   } else {
2362     for (const auto &I : N->getElements())
2363       Out << FS << I;
2364   }
2365   Out << ")";
2366 }
2367 
writeDIArgList(raw_ostream & Out,const DIArgList * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context,bool FromValue=false)2368 static void writeDIArgList(raw_ostream &Out, const DIArgList *N,
2369                            TypePrinting *TypePrinter, SlotTracker *Machine,
2370                            const Module *Context, bool FromValue = false) {
2371   assert(FromValue &&
2372          "Unexpected DIArgList metadata outside of value argument");
2373   Out << "!DIArgList(";
2374   FieldSeparator FS;
2375   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2376   for (Metadata *Arg : N->getArgs()) {
2377     Out << FS;
2378     WriteAsOperandInternal(Out, Arg, TypePrinter, Machine, Context, true);
2379   }
2380   Out << ")";
2381 }
2382 
writeDIGlobalVariableExpression(raw_ostream & Out,const DIGlobalVariableExpression * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)2383 static void writeDIGlobalVariableExpression(raw_ostream &Out,
2384                                             const DIGlobalVariableExpression *N,
2385                                             TypePrinting *TypePrinter,
2386                                             SlotTracker *Machine,
2387                                             const Module *Context) {
2388   Out << "!DIGlobalVariableExpression(";
2389   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2390   Printer.printMetadata("var", N->getVariable());
2391   Printer.printMetadata("expr", N->getExpression());
2392   Out << ")";
2393 }
2394 
writeDIObjCProperty(raw_ostream & Out,const DIObjCProperty * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)2395 static void writeDIObjCProperty(raw_ostream &Out, const DIObjCProperty *N,
2396                                 TypePrinting *TypePrinter, SlotTracker *Machine,
2397                                 const Module *Context) {
2398   Out << "!DIObjCProperty(";
2399   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2400   Printer.printString("name", N->getName());
2401   Printer.printMetadata("file", N->getRawFile());
2402   Printer.printInt("line", N->getLine());
2403   Printer.printString("setter", N->getSetterName());
2404   Printer.printString("getter", N->getGetterName());
2405   Printer.printInt("attributes", N->getAttributes());
2406   Printer.printMetadata("type", N->getRawType());
2407   Out << ")";
2408 }
2409 
writeDIImportedEntity(raw_ostream & Out,const DIImportedEntity * N,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)2410 static void writeDIImportedEntity(raw_ostream &Out, const DIImportedEntity *N,
2411                                   TypePrinting *TypePrinter,
2412                                   SlotTracker *Machine, const Module *Context) {
2413   Out << "!DIImportedEntity(";
2414   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2415   Printer.printTag(N);
2416   Printer.printString("name", N->getName());
2417   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2418   Printer.printMetadata("entity", N->getRawEntity());
2419   Printer.printMetadata("file", N->getRawFile());
2420   Printer.printInt("line", N->getLine());
2421   Out << ")";
2422 }
2423 
WriteMDNodeBodyInternal(raw_ostream & Out,const MDNode * Node,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)2424 static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node,
2425                                     TypePrinting *TypePrinter,
2426                                     SlotTracker *Machine,
2427                                     const Module *Context) {
2428   if (Node->isDistinct())
2429     Out << "distinct ";
2430   else if (Node->isTemporary())
2431     Out << "<temporary!> "; // Handle broken code.
2432 
2433   switch (Node->getMetadataID()) {
2434   default:
2435     llvm_unreachable("Expected uniquable MDNode");
2436 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
2437   case Metadata::CLASS##Kind:                                                  \
2438     write##CLASS(Out, cast<CLASS>(Node), TypePrinter, Machine, Context);       \
2439     break;
2440 #include "llvm/IR/Metadata.def"
2441   }
2442 }
2443 
2444 // Full implementation of printing a Value as an operand with support for
2445 // TypePrinting, etc.
WriteAsOperandInternal(raw_ostream & Out,const Value * V,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context)2446 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
2447                                    TypePrinting *TypePrinter,
2448                                    SlotTracker *Machine,
2449                                    const Module *Context) {
2450   if (V->hasName()) {
2451     PrintLLVMName(Out, V);
2452     return;
2453   }
2454 
2455   const Constant *CV = dyn_cast<Constant>(V);
2456   if (CV && !isa<GlobalValue>(CV)) {
2457     assert(TypePrinter && "Constants require TypePrinting!");
2458     WriteConstantInternal(Out, CV, *TypePrinter, Machine, Context);
2459     return;
2460   }
2461 
2462   if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
2463     Out << "asm ";
2464     if (IA->hasSideEffects())
2465       Out << "sideeffect ";
2466     if (IA->isAlignStack())
2467       Out << "alignstack ";
2468     // We don't emit the AD_ATT dialect as it's the assumed default.
2469     if (IA->getDialect() == InlineAsm::AD_Intel)
2470       Out << "inteldialect ";
2471     if (IA->canThrow())
2472       Out << "unwind ";
2473     Out << '"';
2474     printEscapedString(IA->getAsmString(), Out);
2475     Out << "\", \"";
2476     printEscapedString(IA->getConstraintString(), Out);
2477     Out << '"';
2478     return;
2479   }
2480 
2481   if (auto *MD = dyn_cast<MetadataAsValue>(V)) {
2482     WriteAsOperandInternal(Out, MD->getMetadata(), TypePrinter, Machine,
2483                            Context, /* FromValue */ true);
2484     return;
2485   }
2486 
2487   char Prefix = '%';
2488   int Slot;
2489   // If we have a SlotTracker, use it.
2490   if (Machine) {
2491     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2492       Slot = Machine->getGlobalSlot(GV);
2493       Prefix = '@';
2494     } else {
2495       Slot = Machine->getLocalSlot(V);
2496 
2497       // If the local value didn't succeed, then we may be referring to a value
2498       // from a different function.  Translate it, as this can happen when using
2499       // address of blocks.
2500       if (Slot == -1)
2501         if ((Machine = createSlotTracker(V))) {
2502           Slot = Machine->getLocalSlot(V);
2503           delete Machine;
2504         }
2505     }
2506   } else if ((Machine = createSlotTracker(V))) {
2507     // Otherwise, create one to get the # and then destroy it.
2508     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2509       Slot = Machine->getGlobalSlot(GV);
2510       Prefix = '@';
2511     } else {
2512       Slot = Machine->getLocalSlot(V);
2513     }
2514     delete Machine;
2515     Machine = nullptr;
2516   } else {
2517     Slot = -1;
2518   }
2519 
2520   if (Slot != -1)
2521     Out << Prefix << Slot;
2522   else
2523     Out << "<badref>";
2524 }
2525 
WriteAsOperandInternal(raw_ostream & Out,const Metadata * MD,TypePrinting * TypePrinter,SlotTracker * Machine,const Module * Context,bool FromValue)2526 static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
2527                                    TypePrinting *TypePrinter,
2528                                    SlotTracker *Machine, const Module *Context,
2529                                    bool FromValue) {
2530   // Write DIExpressions and DIArgLists inline when used as a value. Improves
2531   // readability of debug info intrinsics.
2532   if (const DIExpression *Expr = dyn_cast<DIExpression>(MD)) {
2533     writeDIExpression(Out, Expr, TypePrinter, Machine, Context);
2534     return;
2535   }
2536   if (const DIArgList *ArgList = dyn_cast<DIArgList>(MD)) {
2537     writeDIArgList(Out, ArgList, TypePrinter, Machine, Context, FromValue);
2538     return;
2539   }
2540 
2541   if (const MDNode *N = dyn_cast<MDNode>(MD)) {
2542     std::unique_ptr<SlotTracker> MachineStorage;
2543     if (!Machine) {
2544       MachineStorage = std::make_unique<SlotTracker>(Context);
2545       Machine = MachineStorage.get();
2546     }
2547     int Slot = Machine->getMetadataSlot(N);
2548     if (Slot == -1) {
2549       if (const DILocation *Loc = dyn_cast<DILocation>(N)) {
2550         writeDILocation(Out, Loc, TypePrinter, Machine, Context);
2551         return;
2552       }
2553       // Give the pointer value instead of "badref", since this comes up all
2554       // the time when debugging.
2555       Out << "<" << N << ">";
2556     } else
2557       Out << '!' << Slot;
2558     return;
2559   }
2560 
2561   if (const MDString *MDS = dyn_cast<MDString>(MD)) {
2562     Out << "!\"";
2563     printEscapedString(MDS->getString(), Out);
2564     Out << '"';
2565     return;
2566   }
2567 
2568   auto *V = cast<ValueAsMetadata>(MD);
2569   assert(TypePrinter && "TypePrinter required for metadata values");
2570   assert((FromValue || !isa<LocalAsMetadata>(V)) &&
2571          "Unexpected function-local metadata outside of value argument");
2572 
2573   TypePrinter->print(V->getValue()->getType(), Out);
2574   Out << ' ';
2575   WriteAsOperandInternal(Out, V->getValue(), TypePrinter, Machine, Context);
2576 }
2577 
2578 namespace {
2579 
2580 class AssemblyWriter {
2581   formatted_raw_ostream &Out;
2582   const Module *TheModule = nullptr;
2583   const ModuleSummaryIndex *TheIndex = nullptr;
2584   std::unique_ptr<SlotTracker> SlotTrackerStorage;
2585   SlotTracker &Machine;
2586   TypePrinting TypePrinter;
2587   AssemblyAnnotationWriter *AnnotationWriter = nullptr;
2588   SetVector<const Comdat *> Comdats;
2589   bool IsForDebug;
2590   bool ShouldPreserveUseListOrder;
2591   UseListOrderStack UseListOrders;
2592   SmallVector<StringRef, 8> MDNames;
2593   /// Synchronization scope names registered with LLVMContext.
2594   SmallVector<StringRef, 8> SSNs;
2595   DenseMap<const GlobalValueSummary *, GlobalValue::GUID> SummaryToGUIDMap;
2596 
2597 public:
2598   /// Construct an AssemblyWriter with an external SlotTracker
2599   AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, const Module *M,
2600                  AssemblyAnnotationWriter *AAW, bool IsForDebug,
2601                  bool ShouldPreserveUseListOrder = false);
2602 
2603   AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2604                  const ModuleSummaryIndex *Index, bool IsForDebug);
2605 
2606   void printMDNodeBody(const MDNode *MD);
2607   void printNamedMDNode(const NamedMDNode *NMD);
2608 
2609   void printModule(const Module *M);
2610 
2611   void writeOperand(const Value *Op, bool PrintType);
2612   void writeParamOperand(const Value *Operand, AttributeSet Attrs);
2613   void writeOperandBundles(const CallBase *Call);
2614   void writeSyncScope(const LLVMContext &Context,
2615                       SyncScope::ID SSID);
2616   void writeAtomic(const LLVMContext &Context,
2617                    AtomicOrdering Ordering,
2618                    SyncScope::ID SSID);
2619   void writeAtomicCmpXchg(const LLVMContext &Context,
2620                           AtomicOrdering SuccessOrdering,
2621                           AtomicOrdering FailureOrdering,
2622                           SyncScope::ID SSID);
2623 
2624   void writeAllMDNodes();
2625   void writeMDNode(unsigned Slot, const MDNode *Node);
2626   void writeAttribute(const Attribute &Attr, bool InAttrGroup = false);
2627   void writeAttributeSet(const AttributeSet &AttrSet, bool InAttrGroup = false);
2628   void writeAllAttributeGroups();
2629 
2630   void printTypeIdentities();
2631   void printGlobal(const GlobalVariable *GV);
2632   void printIndirectSymbol(const GlobalIndirectSymbol *GIS);
2633   void printComdat(const Comdat *C);
2634   void printFunction(const Function *F);
2635   void printArgument(const Argument *FA, AttributeSet Attrs);
2636   void printBasicBlock(const BasicBlock *BB);
2637   void printInstructionLine(const Instruction &I);
2638   void printInstruction(const Instruction &I);
2639 
2640   void printUseListOrder(const UseListOrder &Order);
2641   void printUseLists(const Function *F);
2642 
2643   void printModuleSummaryIndex();
2644   void printSummaryInfo(unsigned Slot, const ValueInfo &VI);
2645   void printSummary(const GlobalValueSummary &Summary);
2646   void printAliasSummary(const AliasSummary *AS);
2647   void printGlobalVarSummary(const GlobalVarSummary *GS);
2648   void printFunctionSummary(const FunctionSummary *FS);
2649   void printTypeIdSummary(const TypeIdSummary &TIS);
2650   void printTypeIdCompatibleVtableSummary(const TypeIdCompatibleVtableInfo &TI);
2651   void printTypeTestResolution(const TypeTestResolution &TTRes);
2652   void printArgs(const std::vector<uint64_t> &Args);
2653   void printWPDRes(const WholeProgramDevirtResolution &WPDRes);
2654   void printTypeIdInfo(const FunctionSummary::TypeIdInfo &TIDInfo);
2655   void printVFuncId(const FunctionSummary::VFuncId VFId);
2656   void
2657   printNonConstVCalls(const std::vector<FunctionSummary::VFuncId> &VCallList,
2658                       const char *Tag);
2659   void
2660   printConstVCalls(const std::vector<FunctionSummary::ConstVCall> &VCallList,
2661                    const char *Tag);
2662 
2663 private:
2664   /// Print out metadata attachments.
2665   void printMetadataAttachments(
2666       const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
2667       StringRef Separator);
2668 
2669   // printInfoComment - Print a little comment after the instruction indicating
2670   // which slot it occupies.
2671   void printInfoComment(const Value &V);
2672 
2673   // printGCRelocateComment - print comment after call to the gc.relocate
2674   // intrinsic indicating base and derived pointer names.
2675   void printGCRelocateComment(const GCRelocateInst &Relocate);
2676 };
2677 
2678 } // end anonymous namespace
2679 
AssemblyWriter(formatted_raw_ostream & o,SlotTracker & Mac,const Module * M,AssemblyAnnotationWriter * AAW,bool IsForDebug,bool ShouldPreserveUseListOrder)2680 AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2681                                const Module *M, AssemblyAnnotationWriter *AAW,
2682                                bool IsForDebug, bool ShouldPreserveUseListOrder)
2683     : Out(o), TheModule(M), Machine(Mac), TypePrinter(M), AnnotationWriter(AAW),
2684       IsForDebug(IsForDebug),
2685       ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
2686   if (!TheModule)
2687     return;
2688   for (const GlobalObject &GO : TheModule->global_objects())
2689     if (const Comdat *C = GO.getComdat())
2690       Comdats.insert(C);
2691 }
2692 
AssemblyWriter(formatted_raw_ostream & o,SlotTracker & Mac,const ModuleSummaryIndex * Index,bool IsForDebug)2693 AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2694                                const ModuleSummaryIndex *Index, bool IsForDebug)
2695     : Out(o), TheIndex(Index), Machine(Mac), TypePrinter(/*Module=*/nullptr),
2696       IsForDebug(IsForDebug), ShouldPreserveUseListOrder(false) {}
2697 
writeOperand(const Value * Operand,bool PrintType)2698 void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
2699   if (!Operand) {
2700     Out << "<null operand!>";
2701     return;
2702   }
2703   if (PrintType) {
2704     TypePrinter.print(Operand->getType(), Out);
2705     Out << ' ';
2706   }
2707   WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
2708 }
2709 
writeSyncScope(const LLVMContext & Context,SyncScope::ID SSID)2710 void AssemblyWriter::writeSyncScope(const LLVMContext &Context,
2711                                     SyncScope::ID SSID) {
2712   switch (SSID) {
2713   case SyncScope::System: {
2714     break;
2715   }
2716   default: {
2717     if (SSNs.empty())
2718       Context.getSyncScopeNames(SSNs);
2719 
2720     Out << " syncscope(\"";
2721     printEscapedString(SSNs[SSID], Out);
2722     Out << "\")";
2723     break;
2724   }
2725   }
2726 }
2727 
writeAtomic(const LLVMContext & Context,AtomicOrdering Ordering,SyncScope::ID SSID)2728 void AssemblyWriter::writeAtomic(const LLVMContext &Context,
2729                                  AtomicOrdering Ordering,
2730                                  SyncScope::ID SSID) {
2731   if (Ordering == AtomicOrdering::NotAtomic)
2732     return;
2733 
2734   writeSyncScope(Context, SSID);
2735   Out << " " << toIRString(Ordering);
2736 }
2737 
writeAtomicCmpXchg(const LLVMContext & Context,AtomicOrdering SuccessOrdering,AtomicOrdering FailureOrdering,SyncScope::ID SSID)2738 void AssemblyWriter::writeAtomicCmpXchg(const LLVMContext &Context,
2739                                         AtomicOrdering SuccessOrdering,
2740                                         AtomicOrdering FailureOrdering,
2741                                         SyncScope::ID SSID) {
2742   assert(SuccessOrdering != AtomicOrdering::NotAtomic &&
2743          FailureOrdering != AtomicOrdering::NotAtomic);
2744 
2745   writeSyncScope(Context, SSID);
2746   Out << " " << toIRString(SuccessOrdering);
2747   Out << " " << toIRString(FailureOrdering);
2748 }
2749 
writeParamOperand(const Value * Operand,AttributeSet Attrs)2750 void AssemblyWriter::writeParamOperand(const Value *Operand,
2751                                        AttributeSet Attrs) {
2752   if (!Operand) {
2753     Out << "<null operand!>";
2754     return;
2755   }
2756 
2757   // Print the type
2758   TypePrinter.print(Operand->getType(), Out);
2759   // Print parameter attributes list
2760   if (Attrs.hasAttributes()) {
2761     Out << ' ';
2762     writeAttributeSet(Attrs);
2763   }
2764   Out << ' ';
2765   // Print the operand
2766   WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
2767 }
2768 
writeOperandBundles(const CallBase * Call)2769 void AssemblyWriter::writeOperandBundles(const CallBase *Call) {
2770   if (!Call->hasOperandBundles())
2771     return;
2772 
2773   Out << " [ ";
2774 
2775   bool FirstBundle = true;
2776   for (unsigned i = 0, e = Call->getNumOperandBundles(); i != e; ++i) {
2777     OperandBundleUse BU = Call->getOperandBundleAt(i);
2778 
2779     if (!FirstBundle)
2780       Out << ", ";
2781     FirstBundle = false;
2782 
2783     Out << '"';
2784     printEscapedString(BU.getTagName(), Out);
2785     Out << '"';
2786 
2787     Out << '(';
2788 
2789     bool FirstInput = true;
2790     for (const auto &Input : BU.Inputs) {
2791       if (!FirstInput)
2792         Out << ", ";
2793       FirstInput = false;
2794 
2795       TypePrinter.print(Input->getType(), Out);
2796       Out << " ";
2797       WriteAsOperandInternal(Out, Input, &TypePrinter, &Machine, TheModule);
2798     }
2799 
2800     Out << ')';
2801   }
2802 
2803   Out << " ]";
2804 }
2805 
printModule(const Module * M)2806 void AssemblyWriter::printModule(const Module *M) {
2807   Machine.initializeIfNeeded();
2808 
2809   if (ShouldPreserveUseListOrder)
2810     UseListOrders = predictUseListOrder(M);
2811 
2812   if (!M->getModuleIdentifier().empty() &&
2813       // Don't print the ID if it will start a new line (which would
2814       // require a comment char before it).
2815       M->getModuleIdentifier().find('\n') == std::string::npos)
2816     Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
2817 
2818   if (!M->getSourceFileName().empty()) {
2819     Out << "source_filename = \"";
2820     printEscapedString(M->getSourceFileName(), Out);
2821     Out << "\"\n";
2822   }
2823 
2824   const std::string &DL = M->getDataLayoutStr();
2825   if (!DL.empty())
2826     Out << "target datalayout = \"" << DL << "\"\n";
2827   if (!M->getTargetTriple().empty())
2828     Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
2829 
2830   if (!M->getModuleInlineAsm().empty()) {
2831     Out << '\n';
2832 
2833     // Split the string into lines, to make it easier to read the .ll file.
2834     StringRef Asm = M->getModuleInlineAsm();
2835     do {
2836       StringRef Front;
2837       std::tie(Front, Asm) = Asm.split('\n');
2838 
2839       // We found a newline, print the portion of the asm string from the
2840       // last newline up to this newline.
2841       Out << "module asm \"";
2842       printEscapedString(Front, Out);
2843       Out << "\"\n";
2844     } while (!Asm.empty());
2845   }
2846 
2847   printTypeIdentities();
2848 
2849   // Output all comdats.
2850   if (!Comdats.empty())
2851     Out << '\n';
2852   for (const Comdat *C : Comdats) {
2853     printComdat(C);
2854     if (C != Comdats.back())
2855       Out << '\n';
2856   }
2857 
2858   // Output all globals.
2859   if (!M->global_empty()) Out << '\n';
2860   for (const GlobalVariable &GV : M->globals()) {
2861     printGlobal(&GV); Out << '\n';
2862   }
2863 
2864   // Output all aliases.
2865   if (!M->alias_empty()) Out << "\n";
2866   for (const GlobalAlias &GA : M->aliases())
2867     printIndirectSymbol(&GA);
2868 
2869   // Output all ifuncs.
2870   if (!M->ifunc_empty()) Out << "\n";
2871   for (const GlobalIFunc &GI : M->ifuncs())
2872     printIndirectSymbol(&GI);
2873 
2874   // Output global use-lists.
2875   printUseLists(nullptr);
2876 
2877   // Output all of the functions.
2878   for (const Function &F : *M) {
2879     Out << '\n';
2880     printFunction(&F);
2881   }
2882   assert(UseListOrders.empty() && "All use-lists should have been consumed");
2883 
2884   // Output all attribute groups.
2885   if (!Machine.as_empty()) {
2886     Out << '\n';
2887     writeAllAttributeGroups();
2888   }
2889 
2890   // Output named metadata.
2891   if (!M->named_metadata_empty()) Out << '\n';
2892 
2893   for (const NamedMDNode &Node : M->named_metadata())
2894     printNamedMDNode(&Node);
2895 
2896   // Output metadata.
2897   if (!Machine.mdn_empty()) {
2898     Out << '\n';
2899     writeAllMDNodes();
2900   }
2901 }
2902 
printModuleSummaryIndex()2903 void AssemblyWriter::printModuleSummaryIndex() {
2904   assert(TheIndex);
2905   int NumSlots = Machine.initializeIndexIfNeeded();
2906 
2907   Out << "\n";
2908 
2909   // Print module path entries. To print in order, add paths to a vector
2910   // indexed by module slot.
2911   std::vector<std::pair<std::string, ModuleHash>> moduleVec;
2912   std::string RegularLTOModuleName =
2913       ModuleSummaryIndex::getRegularLTOModuleName();
2914   moduleVec.resize(TheIndex->modulePaths().size());
2915   for (auto &ModPath : TheIndex->modulePaths())
2916     moduleVec[Machine.getModulePathSlot(ModPath.first())] = std::make_pair(
2917         // A module id of -1 is a special entry for a regular LTO module created
2918         // during the thin link.
2919         ModPath.second.first == -1u ? RegularLTOModuleName
2920                                     : (std::string)std::string(ModPath.first()),
2921         ModPath.second.second);
2922 
2923   unsigned i = 0;
2924   for (auto &ModPair : moduleVec) {
2925     Out << "^" << i++ << " = module: (";
2926     Out << "path: \"";
2927     printEscapedString(ModPair.first, Out);
2928     Out << "\", hash: (";
2929     FieldSeparator FS;
2930     for (auto Hash : ModPair.second)
2931       Out << FS << Hash;
2932     Out << "))\n";
2933   }
2934 
2935   // FIXME: Change AliasSummary to hold a ValueInfo instead of summary pointer
2936   // for aliasee (then update BitcodeWriter.cpp and remove get/setAliaseeGUID).
2937   for (auto &GlobalList : *TheIndex) {
2938     auto GUID = GlobalList.first;
2939     for (auto &Summary : GlobalList.second.SummaryList)
2940       SummaryToGUIDMap[Summary.get()] = GUID;
2941   }
2942 
2943   // Print the global value summary entries.
2944   for (auto &GlobalList : *TheIndex) {
2945     auto GUID = GlobalList.first;
2946     auto VI = TheIndex->getValueInfo(GlobalList);
2947     printSummaryInfo(Machine.getGUIDSlot(GUID), VI);
2948   }
2949 
2950   // Print the TypeIdMap entries.
2951   for (const auto &TID : TheIndex->typeIds()) {
2952     Out << "^" << Machine.getTypeIdSlot(TID.second.first)
2953         << " = typeid: (name: \"" << TID.second.first << "\"";
2954     printTypeIdSummary(TID.second.second);
2955     Out << ") ; guid = " << TID.first << "\n";
2956   }
2957 
2958   // Print the TypeIdCompatibleVtableMap entries.
2959   for (auto &TId : TheIndex->typeIdCompatibleVtableMap()) {
2960     auto GUID = GlobalValue::getGUID(TId.first);
2961     Out << "^" << Machine.getGUIDSlot(GUID)
2962         << " = typeidCompatibleVTable: (name: \"" << TId.first << "\"";
2963     printTypeIdCompatibleVtableSummary(TId.second);
2964     Out << ") ; guid = " << GUID << "\n";
2965   }
2966 
2967   // Don't emit flags when it's not really needed (value is zero by default).
2968   if (TheIndex->getFlags()) {
2969     Out << "^" << NumSlots << " = flags: " << TheIndex->getFlags() << "\n";
2970     ++NumSlots;
2971   }
2972 
2973   Out << "^" << NumSlots << " = blockcount: " << TheIndex->getBlockCount()
2974       << "\n";
2975 }
2976 
2977 static const char *
getWholeProgDevirtResKindName(WholeProgramDevirtResolution::Kind K)2978 getWholeProgDevirtResKindName(WholeProgramDevirtResolution::Kind K) {
2979   switch (K) {
2980   case WholeProgramDevirtResolution::Indir:
2981     return "indir";
2982   case WholeProgramDevirtResolution::SingleImpl:
2983     return "singleImpl";
2984   case WholeProgramDevirtResolution::BranchFunnel:
2985     return "branchFunnel";
2986   }
2987   llvm_unreachable("invalid WholeProgramDevirtResolution kind");
2988 }
2989 
getWholeProgDevirtResByArgKindName(WholeProgramDevirtResolution::ByArg::Kind K)2990 static const char *getWholeProgDevirtResByArgKindName(
2991     WholeProgramDevirtResolution::ByArg::Kind K) {
2992   switch (K) {
2993   case WholeProgramDevirtResolution::ByArg::Indir:
2994     return "indir";
2995   case WholeProgramDevirtResolution::ByArg::UniformRetVal:
2996     return "uniformRetVal";
2997   case WholeProgramDevirtResolution::ByArg::UniqueRetVal:
2998     return "uniqueRetVal";
2999   case WholeProgramDevirtResolution::ByArg::VirtualConstProp:
3000     return "virtualConstProp";
3001   }
3002   llvm_unreachable("invalid WholeProgramDevirtResolution::ByArg kind");
3003 }
3004 
getTTResKindName(TypeTestResolution::Kind K)3005 static const char *getTTResKindName(TypeTestResolution::Kind K) {
3006   switch (K) {
3007   case TypeTestResolution::Unknown:
3008     return "unknown";
3009   case TypeTestResolution::Unsat:
3010     return "unsat";
3011   case TypeTestResolution::ByteArray:
3012     return "byteArray";
3013   case TypeTestResolution::Inline:
3014     return "inline";
3015   case TypeTestResolution::Single:
3016     return "single";
3017   case TypeTestResolution::AllOnes:
3018     return "allOnes";
3019   }
3020   llvm_unreachable("invalid TypeTestResolution kind");
3021 }
3022 
printTypeTestResolution(const TypeTestResolution & TTRes)3023 void AssemblyWriter::printTypeTestResolution(const TypeTestResolution &TTRes) {
3024   Out << "typeTestRes: (kind: " << getTTResKindName(TTRes.TheKind)
3025       << ", sizeM1BitWidth: " << TTRes.SizeM1BitWidth;
3026 
3027   // The following fields are only used if the target does not support the use
3028   // of absolute symbols to store constants. Print only if non-zero.
3029   if (TTRes.AlignLog2)
3030     Out << ", alignLog2: " << TTRes.AlignLog2;
3031   if (TTRes.SizeM1)
3032     Out << ", sizeM1: " << TTRes.SizeM1;
3033   if (TTRes.BitMask)
3034     // BitMask is uint8_t which causes it to print the corresponding char.
3035     Out << ", bitMask: " << (unsigned)TTRes.BitMask;
3036   if (TTRes.InlineBits)
3037     Out << ", inlineBits: " << TTRes.InlineBits;
3038 
3039   Out << ")";
3040 }
3041 
printTypeIdSummary(const TypeIdSummary & TIS)3042 void AssemblyWriter::printTypeIdSummary(const TypeIdSummary &TIS) {
3043   Out << ", summary: (";
3044   printTypeTestResolution(TIS.TTRes);
3045   if (!TIS.WPDRes.empty()) {
3046     Out << ", wpdResolutions: (";
3047     FieldSeparator FS;
3048     for (auto &WPDRes : TIS.WPDRes) {
3049       Out << FS;
3050       Out << "(offset: " << WPDRes.first << ", ";
3051       printWPDRes(WPDRes.second);
3052       Out << ")";
3053     }
3054     Out << ")";
3055   }
3056   Out << ")";
3057 }
3058 
printTypeIdCompatibleVtableSummary(const TypeIdCompatibleVtableInfo & TI)3059 void AssemblyWriter::printTypeIdCompatibleVtableSummary(
3060     const TypeIdCompatibleVtableInfo &TI) {
3061   Out << ", summary: (";
3062   FieldSeparator FS;
3063   for (auto &P : TI) {
3064     Out << FS;
3065     Out << "(offset: " << P.AddressPointOffset << ", ";
3066     Out << "^" << Machine.getGUIDSlot(P.VTableVI.getGUID());
3067     Out << ")";
3068   }
3069   Out << ")";
3070 }
3071 
printArgs(const std::vector<uint64_t> & Args)3072 void AssemblyWriter::printArgs(const std::vector<uint64_t> &Args) {
3073   Out << "args: (";
3074   FieldSeparator FS;
3075   for (auto arg : Args) {
3076     Out << FS;
3077     Out << arg;
3078   }
3079   Out << ")";
3080 }
3081 
printWPDRes(const WholeProgramDevirtResolution & WPDRes)3082 void AssemblyWriter::printWPDRes(const WholeProgramDevirtResolution &WPDRes) {
3083   Out << "wpdRes: (kind: ";
3084   Out << getWholeProgDevirtResKindName(WPDRes.TheKind);
3085 
3086   if (WPDRes.TheKind == WholeProgramDevirtResolution::SingleImpl)
3087     Out << ", singleImplName: \"" << WPDRes.SingleImplName << "\"";
3088 
3089   if (!WPDRes.ResByArg.empty()) {
3090     Out << ", resByArg: (";
3091     FieldSeparator FS;
3092     for (auto &ResByArg : WPDRes.ResByArg) {
3093       Out << FS;
3094       printArgs(ResByArg.first);
3095       Out << ", byArg: (kind: ";
3096       Out << getWholeProgDevirtResByArgKindName(ResByArg.second.TheKind);
3097       if (ResByArg.second.TheKind ==
3098               WholeProgramDevirtResolution::ByArg::UniformRetVal ||
3099           ResByArg.second.TheKind ==
3100               WholeProgramDevirtResolution::ByArg::UniqueRetVal)
3101         Out << ", info: " << ResByArg.second.Info;
3102 
3103       // The following fields are only used if the target does not support the
3104       // use of absolute symbols to store constants. Print only if non-zero.
3105       if (ResByArg.second.Byte || ResByArg.second.Bit)
3106         Out << ", byte: " << ResByArg.second.Byte
3107             << ", bit: " << ResByArg.second.Bit;
3108 
3109       Out << ")";
3110     }
3111     Out << ")";
3112   }
3113   Out << ")";
3114 }
3115 
getSummaryKindName(GlobalValueSummary::SummaryKind SK)3116 static const char *getSummaryKindName(GlobalValueSummary::SummaryKind SK) {
3117   switch (SK) {
3118   case GlobalValueSummary::AliasKind:
3119     return "alias";
3120   case GlobalValueSummary::FunctionKind:
3121     return "function";
3122   case GlobalValueSummary::GlobalVarKind:
3123     return "variable";
3124   }
3125   llvm_unreachable("invalid summary kind");
3126 }
3127 
printAliasSummary(const AliasSummary * AS)3128 void AssemblyWriter::printAliasSummary(const AliasSummary *AS) {
3129   Out << ", aliasee: ";
3130   // The indexes emitted for distributed backends may not include the
3131   // aliasee summary (only if it is being imported directly). Handle
3132   // that case by just emitting "null" as the aliasee.
3133   if (AS->hasAliasee())
3134     Out << "^" << Machine.getGUIDSlot(SummaryToGUIDMap[&AS->getAliasee()]);
3135   else
3136     Out << "null";
3137 }
3138 
printGlobalVarSummary(const GlobalVarSummary * GS)3139 void AssemblyWriter::printGlobalVarSummary(const GlobalVarSummary *GS) {
3140   auto VTableFuncs = GS->vTableFuncs();
3141   Out << ", varFlags: (readonly: " << GS->VarFlags.MaybeReadOnly << ", "
3142       << "writeonly: " << GS->VarFlags.MaybeWriteOnly << ", "
3143       << "constant: " << GS->VarFlags.Constant;
3144   if (!VTableFuncs.empty())
3145     Out << ", "
3146         << "vcall_visibility: " << GS->VarFlags.VCallVisibility;
3147   Out << ")";
3148 
3149   if (!VTableFuncs.empty()) {
3150     Out << ", vTableFuncs: (";
3151     FieldSeparator FS;
3152     for (auto &P : VTableFuncs) {
3153       Out << FS;
3154       Out << "(virtFunc: ^" << Machine.getGUIDSlot(P.FuncVI.getGUID())
3155           << ", offset: " << P.VTableOffset;
3156       Out << ")";
3157     }
3158     Out << ")";
3159   }
3160 }
3161 
getLinkageName(GlobalValue::LinkageTypes LT)3162 static std::string getLinkageName(GlobalValue::LinkageTypes LT) {
3163   switch (LT) {
3164   case GlobalValue::ExternalLinkage:
3165     return "external";
3166   case GlobalValue::PrivateLinkage:
3167     return "private";
3168   case GlobalValue::InternalLinkage:
3169     return "internal";
3170   case GlobalValue::LinkOnceAnyLinkage:
3171     return "linkonce";
3172   case GlobalValue::LinkOnceODRLinkage:
3173     return "linkonce_odr";
3174   case GlobalValue::WeakAnyLinkage:
3175     return "weak";
3176   case GlobalValue::WeakODRLinkage:
3177     return "weak_odr";
3178   case GlobalValue::CommonLinkage:
3179     return "common";
3180   case GlobalValue::AppendingLinkage:
3181     return "appending";
3182   case GlobalValue::ExternalWeakLinkage:
3183     return "extern_weak";
3184   case GlobalValue::AvailableExternallyLinkage:
3185     return "available_externally";
3186   }
3187   llvm_unreachable("invalid linkage");
3188 }
3189 
3190 // When printing the linkage types in IR where the ExternalLinkage is
3191 // not printed, and other linkage types are expected to be printed with
3192 // a space after the name.
getLinkageNameWithSpace(GlobalValue::LinkageTypes LT)3193 static std::string getLinkageNameWithSpace(GlobalValue::LinkageTypes LT) {
3194   if (LT == GlobalValue::ExternalLinkage)
3195     return "";
3196   return getLinkageName(LT) + " ";
3197 }
3198 
getVisibilityName(GlobalValue::VisibilityTypes Vis)3199 static const char *getVisibilityName(GlobalValue::VisibilityTypes Vis) {
3200   switch (Vis) {
3201   case GlobalValue::DefaultVisibility:
3202     return "default";
3203   case GlobalValue::HiddenVisibility:
3204     return "hidden";
3205   case GlobalValue::ProtectedVisibility:
3206     return "protected";
3207   }
3208   llvm_unreachable("invalid visibility");
3209 }
3210 
printFunctionSummary(const FunctionSummary * FS)3211 void AssemblyWriter::printFunctionSummary(const FunctionSummary *FS) {
3212   Out << ", insts: " << FS->instCount();
3213 
3214   FunctionSummary::FFlags FFlags = FS->fflags();
3215   if (FFlags.ReadNone | FFlags.ReadOnly | FFlags.NoRecurse |
3216       FFlags.ReturnDoesNotAlias | FFlags.NoInline | FFlags.AlwaysInline) {
3217     Out << ", funcFlags: (";
3218     Out << "readNone: " << FFlags.ReadNone;
3219     Out << ", readOnly: " << FFlags.ReadOnly;
3220     Out << ", noRecurse: " << FFlags.NoRecurse;
3221     Out << ", returnDoesNotAlias: " << FFlags.ReturnDoesNotAlias;
3222     Out << ", noInline: " << FFlags.NoInline;
3223     Out << ", alwaysInline: " << FFlags.AlwaysInline;
3224     Out << ")";
3225   }
3226   if (!FS->calls().empty()) {
3227     Out << ", calls: (";
3228     FieldSeparator IFS;
3229     for (auto &Call : FS->calls()) {
3230       Out << IFS;
3231       Out << "(callee: ^" << Machine.getGUIDSlot(Call.first.getGUID());
3232       if (Call.second.getHotness() != CalleeInfo::HotnessType::Unknown)
3233         Out << ", hotness: " << getHotnessName(Call.second.getHotness());
3234       else if (Call.second.RelBlockFreq)
3235         Out << ", relbf: " << Call.second.RelBlockFreq;
3236       Out << ")";
3237     }
3238     Out << ")";
3239   }
3240 
3241   if (const auto *TIdInfo = FS->getTypeIdInfo())
3242     printTypeIdInfo(*TIdInfo);
3243 
3244   auto PrintRange = [&](const ConstantRange &Range) {
3245     Out << "[" << Range.getSignedMin() << ", " << Range.getSignedMax() << "]";
3246   };
3247 
3248   if (!FS->paramAccesses().empty()) {
3249     Out << ", params: (";
3250     FieldSeparator IFS;
3251     for (auto &PS : FS->paramAccesses()) {
3252       Out << IFS;
3253       Out << "(param: " << PS.ParamNo;
3254       Out << ", offset: ";
3255       PrintRange(PS.Use);
3256       if (!PS.Calls.empty()) {
3257         Out << ", calls: (";
3258         FieldSeparator IFS;
3259         for (auto &Call : PS.Calls) {
3260           Out << IFS;
3261           Out << "(callee: ^" << Machine.getGUIDSlot(Call.Callee.getGUID());
3262           Out << ", param: " << Call.ParamNo;
3263           Out << ", offset: ";
3264           PrintRange(Call.Offsets);
3265           Out << ")";
3266         }
3267         Out << ")";
3268       }
3269       Out << ")";
3270     }
3271     Out << ")";
3272   }
3273 }
3274 
printTypeIdInfo(const FunctionSummary::TypeIdInfo & TIDInfo)3275 void AssemblyWriter::printTypeIdInfo(
3276     const FunctionSummary::TypeIdInfo &TIDInfo) {
3277   Out << ", typeIdInfo: (";
3278   FieldSeparator TIDFS;
3279   if (!TIDInfo.TypeTests.empty()) {
3280     Out << TIDFS;
3281     Out << "typeTests: (";
3282     FieldSeparator FS;
3283     for (auto &GUID : TIDInfo.TypeTests) {
3284       auto TidIter = TheIndex->typeIds().equal_range(GUID);
3285       if (TidIter.first == TidIter.second) {
3286         Out << FS;
3287         Out << GUID;
3288         continue;
3289       }
3290       // Print all type id that correspond to this GUID.
3291       for (auto It = TidIter.first; It != TidIter.second; ++It) {
3292         Out << FS;
3293         auto Slot = Machine.getTypeIdSlot(It->second.first);
3294         assert(Slot != -1);
3295         Out << "^" << Slot;
3296       }
3297     }
3298     Out << ")";
3299   }
3300   if (!TIDInfo.TypeTestAssumeVCalls.empty()) {
3301     Out << TIDFS;
3302     printNonConstVCalls(TIDInfo.TypeTestAssumeVCalls, "typeTestAssumeVCalls");
3303   }
3304   if (!TIDInfo.TypeCheckedLoadVCalls.empty()) {
3305     Out << TIDFS;
3306     printNonConstVCalls(TIDInfo.TypeCheckedLoadVCalls, "typeCheckedLoadVCalls");
3307   }
3308   if (!TIDInfo.TypeTestAssumeConstVCalls.empty()) {
3309     Out << TIDFS;
3310     printConstVCalls(TIDInfo.TypeTestAssumeConstVCalls,
3311                      "typeTestAssumeConstVCalls");
3312   }
3313   if (!TIDInfo.TypeCheckedLoadConstVCalls.empty()) {
3314     Out << TIDFS;
3315     printConstVCalls(TIDInfo.TypeCheckedLoadConstVCalls,
3316                      "typeCheckedLoadConstVCalls");
3317   }
3318   Out << ")";
3319 }
3320 
printVFuncId(const FunctionSummary::VFuncId VFId)3321 void AssemblyWriter::printVFuncId(const FunctionSummary::VFuncId VFId) {
3322   auto TidIter = TheIndex->typeIds().equal_range(VFId.GUID);
3323   if (TidIter.first == TidIter.second) {
3324     Out << "vFuncId: (";
3325     Out << "guid: " << VFId.GUID;
3326     Out << ", offset: " << VFId.Offset;
3327     Out << ")";
3328     return;
3329   }
3330   // Print all type id that correspond to this GUID.
3331   FieldSeparator FS;
3332   for (auto It = TidIter.first; It != TidIter.second; ++It) {
3333     Out << FS;
3334     Out << "vFuncId: (";
3335     auto Slot = Machine.getTypeIdSlot(It->second.first);
3336     assert(Slot != -1);
3337     Out << "^" << Slot;
3338     Out << ", offset: " << VFId.Offset;
3339     Out << ")";
3340   }
3341 }
3342 
printNonConstVCalls(const std::vector<FunctionSummary::VFuncId> & VCallList,const char * Tag)3343 void AssemblyWriter::printNonConstVCalls(
3344     const std::vector<FunctionSummary::VFuncId> &VCallList, const char *Tag) {
3345   Out << Tag << ": (";
3346   FieldSeparator FS;
3347   for (auto &VFuncId : VCallList) {
3348     Out << FS;
3349     printVFuncId(VFuncId);
3350   }
3351   Out << ")";
3352 }
3353 
printConstVCalls(const std::vector<FunctionSummary::ConstVCall> & VCallList,const char * Tag)3354 void AssemblyWriter::printConstVCalls(
3355     const std::vector<FunctionSummary::ConstVCall> &VCallList,
3356     const char *Tag) {
3357   Out << Tag << ": (";
3358   FieldSeparator FS;
3359   for (auto &ConstVCall : VCallList) {
3360     Out << FS;
3361     Out << "(";
3362     printVFuncId(ConstVCall.VFunc);
3363     if (!ConstVCall.Args.empty()) {
3364       Out << ", ";
3365       printArgs(ConstVCall.Args);
3366     }
3367     Out << ")";
3368   }
3369   Out << ")";
3370 }
3371 
printSummary(const GlobalValueSummary & Summary)3372 void AssemblyWriter::printSummary(const GlobalValueSummary &Summary) {
3373   GlobalValueSummary::GVFlags GVFlags = Summary.flags();
3374   GlobalValue::LinkageTypes LT = (GlobalValue::LinkageTypes)GVFlags.Linkage;
3375   Out << getSummaryKindName(Summary.getSummaryKind()) << ": ";
3376   Out << "(module: ^" << Machine.getModulePathSlot(Summary.modulePath())
3377       << ", flags: (";
3378   Out << "linkage: " << getLinkageName(LT);
3379   Out << ", visibility: "
3380       << getVisibilityName((GlobalValue::VisibilityTypes)GVFlags.Visibility);
3381   Out << ", notEligibleToImport: " << GVFlags.NotEligibleToImport;
3382   Out << ", live: " << GVFlags.Live;
3383   Out << ", dsoLocal: " << GVFlags.DSOLocal;
3384   Out << ", canAutoHide: " << GVFlags.CanAutoHide;
3385   Out << ")";
3386 
3387   if (Summary.getSummaryKind() == GlobalValueSummary::AliasKind)
3388     printAliasSummary(cast<AliasSummary>(&Summary));
3389   else if (Summary.getSummaryKind() == GlobalValueSummary::FunctionKind)
3390     printFunctionSummary(cast<FunctionSummary>(&Summary));
3391   else
3392     printGlobalVarSummary(cast<GlobalVarSummary>(&Summary));
3393 
3394   auto RefList = Summary.refs();
3395   if (!RefList.empty()) {
3396     Out << ", refs: (";
3397     FieldSeparator FS;
3398     for (auto &Ref : RefList) {
3399       Out << FS;
3400       if (Ref.isReadOnly())
3401         Out << "readonly ";
3402       else if (Ref.isWriteOnly())
3403         Out << "writeonly ";
3404       Out << "^" << Machine.getGUIDSlot(Ref.getGUID());
3405     }
3406     Out << ")";
3407   }
3408 
3409   Out << ")";
3410 }
3411 
printSummaryInfo(unsigned Slot,const ValueInfo & VI)3412 void AssemblyWriter::printSummaryInfo(unsigned Slot, const ValueInfo &VI) {
3413   Out << "^" << Slot << " = gv: (";
3414   if (!VI.name().empty())
3415     Out << "name: \"" << VI.name() << "\"";
3416   else
3417     Out << "guid: " << VI.getGUID();
3418   if (!VI.getSummaryList().empty()) {
3419     Out << ", summaries: (";
3420     FieldSeparator FS;
3421     for (auto &Summary : VI.getSummaryList()) {
3422       Out << FS;
3423       printSummary(*Summary);
3424     }
3425     Out << ")";
3426   }
3427   Out << ")";
3428   if (!VI.name().empty())
3429     Out << " ; guid = " << VI.getGUID();
3430   Out << "\n";
3431 }
3432 
printMetadataIdentifier(StringRef Name,formatted_raw_ostream & Out)3433 static void printMetadataIdentifier(StringRef Name,
3434                                     formatted_raw_ostream &Out) {
3435   if (Name.empty()) {
3436     Out << "<empty name> ";
3437   } else {
3438     if (isalpha(static_cast<unsigned char>(Name[0])) || Name[0] == '-' ||
3439         Name[0] == '$' || Name[0] == '.' || Name[0] == '_')
3440       Out << Name[0];
3441     else
3442       Out << '\\' << hexdigit(Name[0] >> 4) << hexdigit(Name[0] & 0x0F);
3443     for (unsigned i = 1, e = Name.size(); i != e; ++i) {
3444       unsigned char C = Name[i];
3445       if (isalnum(static_cast<unsigned char>(C)) || C == '-' || C == '$' ||
3446           C == '.' || C == '_')
3447         Out << C;
3448       else
3449         Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
3450     }
3451   }
3452 }
3453 
printNamedMDNode(const NamedMDNode * NMD)3454 void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) {
3455   Out << '!';
3456   printMetadataIdentifier(NMD->getName(), Out);
3457   Out << " = !{";
3458   for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
3459     if (i)
3460       Out << ", ";
3461 
3462     // Write DIExpressions inline.
3463     // FIXME: Ban DIExpressions in NamedMDNodes, they will serve no purpose.
3464     MDNode *Op = NMD->getOperand(i);
3465     assert(!isa<DIArgList>(Op) &&
3466            "DIArgLists should not appear in NamedMDNodes");
3467     if (auto *Expr = dyn_cast<DIExpression>(Op)) {
3468       writeDIExpression(Out, Expr, nullptr, nullptr, nullptr);
3469       continue;
3470     }
3471 
3472     int Slot = Machine.getMetadataSlot(Op);
3473     if (Slot == -1)
3474       Out << "<badref>";
3475     else
3476       Out << '!' << Slot;
3477   }
3478   Out << "}\n";
3479 }
3480 
PrintVisibility(GlobalValue::VisibilityTypes Vis,formatted_raw_ostream & Out)3481 static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
3482                             formatted_raw_ostream &Out) {
3483   switch (Vis) {
3484   case GlobalValue::DefaultVisibility: break;
3485   case GlobalValue::HiddenVisibility:    Out << "hidden "; break;
3486   case GlobalValue::ProtectedVisibility: Out << "protected "; break;
3487   }
3488 }
3489 
PrintDSOLocation(const GlobalValue & GV,formatted_raw_ostream & Out)3490 static void PrintDSOLocation(const GlobalValue &GV,
3491                              formatted_raw_ostream &Out) {
3492   if (GV.isDSOLocal() && !GV.isImplicitDSOLocal())
3493     Out << "dso_local ";
3494 }
3495 
PrintDLLStorageClass(GlobalValue::DLLStorageClassTypes SCT,formatted_raw_ostream & Out)3496 static void PrintDLLStorageClass(GlobalValue::DLLStorageClassTypes SCT,
3497                                  formatted_raw_ostream &Out) {
3498   switch (SCT) {
3499   case GlobalValue::DefaultStorageClass: break;
3500   case GlobalValue::DLLImportStorageClass: Out << "dllimport "; break;
3501   case GlobalValue::DLLExportStorageClass: Out << "dllexport "; break;
3502   }
3503 }
3504 
PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM,formatted_raw_ostream & Out)3505 static void PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM,
3506                                   formatted_raw_ostream &Out) {
3507   switch (TLM) {
3508     case GlobalVariable::NotThreadLocal:
3509       break;
3510     case GlobalVariable::GeneralDynamicTLSModel:
3511       Out << "thread_local ";
3512       break;
3513     case GlobalVariable::LocalDynamicTLSModel:
3514       Out << "thread_local(localdynamic) ";
3515       break;
3516     case GlobalVariable::InitialExecTLSModel:
3517       Out << "thread_local(initialexec) ";
3518       break;
3519     case GlobalVariable::LocalExecTLSModel:
3520       Out << "thread_local(localexec) ";
3521       break;
3522   }
3523 }
3524 
getUnnamedAddrEncoding(GlobalVariable::UnnamedAddr UA)3525 static StringRef getUnnamedAddrEncoding(GlobalVariable::UnnamedAddr UA) {
3526   switch (UA) {
3527   case GlobalVariable::UnnamedAddr::None:
3528     return "";
3529   case GlobalVariable::UnnamedAddr::Local:
3530     return "local_unnamed_addr";
3531   case GlobalVariable::UnnamedAddr::Global:
3532     return "unnamed_addr";
3533   }
3534   llvm_unreachable("Unknown UnnamedAddr");
3535 }
3536 
maybePrintComdat(formatted_raw_ostream & Out,const GlobalObject & GO)3537 static void maybePrintComdat(formatted_raw_ostream &Out,
3538                              const GlobalObject &GO) {
3539   const Comdat *C = GO.getComdat();
3540   if (!C)
3541     return;
3542 
3543   if (isa<GlobalVariable>(GO))
3544     Out << ',';
3545   Out << " comdat";
3546 
3547   if (GO.getName() == C->getName())
3548     return;
3549 
3550   Out << '(';
3551   PrintLLVMName(Out, C->getName(), ComdatPrefix);
3552   Out << ')';
3553 }
3554 
printGlobal(const GlobalVariable * GV)3555 void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
3556   if (GV->isMaterializable())
3557     Out << "; Materializable\n";
3558 
3559   WriteAsOperandInternal(Out, GV, &TypePrinter, &Machine, GV->getParent());
3560   Out << " = ";
3561 
3562   if (!GV->hasInitializer() && GV->hasExternalLinkage())
3563     Out << "external ";
3564 
3565   Out << getLinkageNameWithSpace(GV->getLinkage());
3566   PrintDSOLocation(*GV, Out);
3567   PrintVisibility(GV->getVisibility(), Out);
3568   PrintDLLStorageClass(GV->getDLLStorageClass(), Out);
3569   PrintThreadLocalModel(GV->getThreadLocalMode(), Out);
3570   StringRef UA = getUnnamedAddrEncoding(GV->getUnnamedAddr());
3571   if (!UA.empty())
3572       Out << UA << ' ';
3573 
3574   if (unsigned AddressSpace = GV->getType()->getAddressSpace())
3575     Out << "addrspace(" << AddressSpace << ") ";
3576   if (GV->isExternallyInitialized()) Out << "externally_initialized ";
3577   Out << (GV->isConstant() ? "constant " : "global ");
3578   TypePrinter.print(GV->getValueType(), Out);
3579 
3580   if (GV->hasInitializer()) {
3581     Out << ' ';
3582     writeOperand(GV->getInitializer(), false);
3583   }
3584 
3585   if (GV->hasSection()) {
3586     Out << ", section \"";
3587     printEscapedString(GV->getSection(), Out);
3588     Out << '"';
3589   }
3590   if (GV->hasPartition()) {
3591     Out << ", partition \"";
3592     printEscapedString(GV->getPartition(), Out);
3593     Out << '"';
3594   }
3595 
3596   maybePrintComdat(Out, *GV);
3597   if (GV->getAlignment())
3598     Out << ", align " << GV->getAlignment();
3599 
3600   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
3601   GV->getAllMetadata(MDs);
3602   printMetadataAttachments(MDs, ", ");
3603 
3604   auto Attrs = GV->getAttributes();
3605   if (Attrs.hasAttributes())
3606     Out << " #" << Machine.getAttributeGroupSlot(Attrs);
3607 
3608   printInfoComment(*GV);
3609 }
3610 
printIndirectSymbol(const GlobalIndirectSymbol * GIS)3611 void AssemblyWriter::printIndirectSymbol(const GlobalIndirectSymbol *GIS) {
3612   if (GIS->isMaterializable())
3613     Out << "; Materializable\n";
3614 
3615   WriteAsOperandInternal(Out, GIS, &TypePrinter, &Machine, GIS->getParent());
3616   Out << " = ";
3617 
3618   Out << getLinkageNameWithSpace(GIS->getLinkage());
3619   PrintDSOLocation(*GIS, Out);
3620   PrintVisibility(GIS->getVisibility(), Out);
3621   PrintDLLStorageClass(GIS->getDLLStorageClass(), Out);
3622   PrintThreadLocalModel(GIS->getThreadLocalMode(), Out);
3623   StringRef UA = getUnnamedAddrEncoding(GIS->getUnnamedAddr());
3624   if (!UA.empty())
3625       Out << UA << ' ';
3626 
3627   if (isa<GlobalAlias>(GIS))
3628     Out << "alias ";
3629   else if (isa<GlobalIFunc>(GIS))
3630     Out << "ifunc ";
3631   else
3632     llvm_unreachable("Not an alias or ifunc!");
3633 
3634   TypePrinter.print(GIS->getValueType(), Out);
3635 
3636   Out << ", ";
3637 
3638   const Constant *IS = GIS->getIndirectSymbol();
3639 
3640   if (!IS) {
3641     TypePrinter.print(GIS->getType(), Out);
3642     Out << " <<NULL ALIASEE>>";
3643   } else {
3644     writeOperand(IS, !isa<ConstantExpr>(IS));
3645   }
3646 
3647   if (GIS->hasPartition()) {
3648     Out << ", partition \"";
3649     printEscapedString(GIS->getPartition(), Out);
3650     Out << '"';
3651   }
3652 
3653   printInfoComment(*GIS);
3654   Out << '\n';
3655 }
3656 
printComdat(const Comdat * C)3657 void AssemblyWriter::printComdat(const Comdat *C) {
3658   C->print(Out);
3659 }
3660 
printTypeIdentities()3661 void AssemblyWriter::printTypeIdentities() {
3662   if (TypePrinter.empty())
3663     return;
3664 
3665   Out << '\n';
3666 
3667   // Emit all numbered types.
3668   auto &NumberedTypes = TypePrinter.getNumberedTypes();
3669   for (unsigned I = 0, E = NumberedTypes.size(); I != E; ++I) {
3670     Out << '%' << I << " = type ";
3671 
3672     // Make sure we print out at least one level of the type structure, so
3673     // that we do not get %2 = type %2
3674     TypePrinter.printStructBody(NumberedTypes[I], Out);
3675     Out << '\n';
3676   }
3677 
3678   auto &NamedTypes = TypePrinter.getNamedTypes();
3679   for (unsigned I = 0, E = NamedTypes.size(); I != E; ++I) {
3680     PrintLLVMName(Out, NamedTypes[I]->getName(), LocalPrefix);
3681     Out << " = type ";
3682 
3683     // Make sure we print out at least one level of the type structure, so
3684     // that we do not get %FILE = type %FILE
3685     TypePrinter.printStructBody(NamedTypes[I], Out);
3686     Out << '\n';
3687   }
3688 }
3689 
3690 /// printFunction - Print all aspects of a function.
printFunction(const Function * F)3691 void AssemblyWriter::printFunction(const Function *F) {
3692   if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
3693 
3694   if (F->isMaterializable())
3695     Out << "; Materializable\n";
3696 
3697   const AttributeList &Attrs = F->getAttributes();
3698   if (Attrs.hasAttributes(AttributeList::FunctionIndex)) {
3699     AttributeSet AS = Attrs.getFnAttributes();
3700     std::string AttrStr;
3701 
3702     for (const Attribute &Attr : AS) {
3703       if (!Attr.isStringAttribute()) {
3704         if (!AttrStr.empty()) AttrStr += ' ';
3705         AttrStr += Attr.getAsString();
3706       }
3707     }
3708 
3709     if (!AttrStr.empty())
3710       Out << "; Function Attrs: " << AttrStr << '\n';
3711   }
3712 
3713   Machine.incorporateFunction(F);
3714 
3715   if (F->isDeclaration()) {
3716     Out << "declare";
3717     SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
3718     F->getAllMetadata(MDs);
3719     printMetadataAttachments(MDs, " ");
3720     Out << ' ';
3721   } else
3722     Out << "define ";
3723 
3724   Out << getLinkageNameWithSpace(F->getLinkage());
3725   PrintDSOLocation(*F, Out);
3726   PrintVisibility(F->getVisibility(), Out);
3727   PrintDLLStorageClass(F->getDLLStorageClass(), Out);
3728 
3729   // Print the calling convention.
3730   if (F->getCallingConv() != CallingConv::C) {
3731     PrintCallingConv(F->getCallingConv(), Out);
3732     Out << " ";
3733   }
3734 
3735   FunctionType *FT = F->getFunctionType();
3736   if (Attrs.hasAttributes(AttributeList::ReturnIndex))
3737     Out << Attrs.getAsString(AttributeList::ReturnIndex) << ' ';
3738   TypePrinter.print(F->getReturnType(), Out);
3739   Out << ' ';
3740   WriteAsOperandInternal(Out, F, &TypePrinter, &Machine, F->getParent());
3741   Out << '(';
3742 
3743   // Loop over the arguments, printing them...
3744   if (F->isDeclaration() && !IsForDebug) {
3745     // We're only interested in the type here - don't print argument names.
3746     for (unsigned I = 0, E = FT->getNumParams(); I != E; ++I) {
3747       // Insert commas as we go... the first arg doesn't get a comma
3748       if (I)
3749         Out << ", ";
3750       // Output type...
3751       TypePrinter.print(FT->getParamType(I), Out);
3752 
3753       AttributeSet ArgAttrs = Attrs.getParamAttributes(I);
3754       if (ArgAttrs.hasAttributes()) {
3755         Out << ' ';
3756         writeAttributeSet(ArgAttrs);
3757       }
3758     }
3759   } else {
3760     // The arguments are meaningful here, print them in detail.
3761     for (const Argument &Arg : F->args()) {
3762       // Insert commas as we go... the first arg doesn't get a comma
3763       if (Arg.getArgNo() != 0)
3764         Out << ", ";
3765       printArgument(&Arg, Attrs.getParamAttributes(Arg.getArgNo()));
3766     }
3767   }
3768 
3769   // Finish printing arguments...
3770   if (FT->isVarArg()) {
3771     if (FT->getNumParams()) Out << ", ";
3772     Out << "...";  // Output varargs portion of signature!
3773   }
3774   Out << ')';
3775   StringRef UA = getUnnamedAddrEncoding(F->getUnnamedAddr());
3776   if (!UA.empty())
3777     Out << ' ' << UA;
3778   // We print the function address space if it is non-zero or if we are writing
3779   // a module with a non-zero program address space or if there is no valid
3780   // Module* so that the file can be parsed without the datalayout string.
3781   const Module *Mod = F->getParent();
3782   if (F->getAddressSpace() != 0 || !Mod ||
3783       Mod->getDataLayout().getProgramAddressSpace() != 0)
3784     Out << " addrspace(" << F->getAddressSpace() << ")";
3785   if (Attrs.hasAttributes(AttributeList::FunctionIndex))
3786     Out << " #" << Machine.getAttributeGroupSlot(Attrs.getFnAttributes());
3787   if (F->hasSection()) {
3788     Out << " section \"";
3789     printEscapedString(F->getSection(), Out);
3790     Out << '"';
3791   }
3792   if (F->hasPartition()) {
3793     Out << " partition \"";
3794     printEscapedString(F->getPartition(), Out);
3795     Out << '"';
3796   }
3797   maybePrintComdat(Out, *F);
3798   if (F->getAlignment())
3799     Out << " align " << F->getAlignment();
3800   if (F->hasGC())
3801     Out << " gc \"" << F->getGC() << '"';
3802   if (F->hasPrefixData()) {
3803     Out << " prefix ";
3804     writeOperand(F->getPrefixData(), true);
3805   }
3806   if (F->hasPrologueData()) {
3807     Out << " prologue ";
3808     writeOperand(F->getPrologueData(), true);
3809   }
3810   if (F->hasPersonalityFn()) {
3811     Out << " personality ";
3812     writeOperand(F->getPersonalityFn(), /*PrintType=*/true);
3813   }
3814 
3815   if (F->isDeclaration()) {
3816     Out << '\n';
3817   } else {
3818     SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
3819     F->getAllMetadata(MDs);
3820     printMetadataAttachments(MDs, " ");
3821 
3822     Out << " {";
3823     // Output all of the function's basic blocks.
3824     for (const BasicBlock &BB : *F)
3825       printBasicBlock(&BB);
3826 
3827     // Output the function's use-lists.
3828     printUseLists(F);
3829 
3830     Out << "}\n";
3831   }
3832 
3833   Machine.purgeFunction();
3834 }
3835 
3836 /// printArgument - This member is called for every argument that is passed into
3837 /// the function.  Simply print it out
printArgument(const Argument * Arg,AttributeSet Attrs)3838 void AssemblyWriter::printArgument(const Argument *Arg, AttributeSet Attrs) {
3839   // Output type...
3840   TypePrinter.print(Arg->getType(), Out);
3841 
3842   // Output parameter attributes list
3843   if (Attrs.hasAttributes()) {
3844     Out << ' ';
3845     writeAttributeSet(Attrs);
3846   }
3847 
3848   // Output name, if available...
3849   if (Arg->hasName()) {
3850     Out << ' ';
3851     PrintLLVMName(Out, Arg);
3852   } else {
3853     int Slot = Machine.getLocalSlot(Arg);
3854     assert(Slot != -1 && "expect argument in function here");
3855     Out << " %" << Slot;
3856   }
3857 }
3858 
3859 /// printBasicBlock - This member is called for each basic block in a method.
printBasicBlock(const BasicBlock * BB)3860 void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
3861   assert(BB && BB->getParent() && "block without parent!");
3862   bool IsEntryBlock = BB->isEntryBlock();
3863   if (BB->hasName()) {              // Print out the label if it exists...
3864     Out << "\n";
3865     PrintLLVMName(Out, BB->getName(), LabelPrefix);
3866     Out << ':';
3867   } else if (!IsEntryBlock) {
3868     Out << "\n";
3869     int Slot = Machine.getLocalSlot(BB);
3870     if (Slot != -1)
3871       Out << Slot << ":";
3872     else
3873       Out << "<badref>:";
3874   }
3875 
3876   if (!IsEntryBlock) {
3877     // Output predecessors for the block.
3878     Out.PadToColumn(50);
3879     Out << ";";
3880     const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
3881 
3882     if (PI == PE) {
3883       Out << " No predecessors!";
3884     } else {
3885       Out << " preds = ";
3886       writeOperand(*PI, false);
3887       for (++PI; PI != PE; ++PI) {
3888         Out << ", ";
3889         writeOperand(*PI, false);
3890       }
3891     }
3892   }
3893 
3894   Out << "\n";
3895 
3896   if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
3897 
3898   // Output all of the instructions in the basic block...
3899   for (const Instruction &I : *BB) {
3900     printInstructionLine(I);
3901   }
3902 
3903   if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
3904 }
3905 
3906 /// printInstructionLine - Print an instruction and a newline character.
printInstructionLine(const Instruction & I)3907 void AssemblyWriter::printInstructionLine(const Instruction &I) {
3908   printInstruction(I);
3909   Out << '\n';
3910 }
3911 
3912 /// printGCRelocateComment - print comment after call to the gc.relocate
3913 /// intrinsic indicating base and derived pointer names.
printGCRelocateComment(const GCRelocateInst & Relocate)3914 void AssemblyWriter::printGCRelocateComment(const GCRelocateInst &Relocate) {
3915   Out << " ; (";
3916   writeOperand(Relocate.getBasePtr(), false);
3917   Out << ", ";
3918   writeOperand(Relocate.getDerivedPtr(), false);
3919   Out << ")";
3920 }
3921 
3922 /// printInfoComment - Print a little comment after the instruction indicating
3923 /// which slot it occupies.
printInfoComment(const Value & V)3924 void AssemblyWriter::printInfoComment(const Value &V) {
3925   if (const auto *Relocate = dyn_cast<GCRelocateInst>(&V))
3926     printGCRelocateComment(*Relocate);
3927 
3928   if (AnnotationWriter)
3929     AnnotationWriter->printInfoComment(V, Out);
3930 }
3931 
maybePrintCallAddrSpace(const Value * Operand,const Instruction * I,raw_ostream & Out)3932 static void maybePrintCallAddrSpace(const Value *Operand, const Instruction *I,
3933                                     raw_ostream &Out) {
3934   // We print the address space of the call if it is non-zero.
3935   unsigned CallAddrSpace = Operand->getType()->getPointerAddressSpace();
3936   bool PrintAddrSpace = CallAddrSpace != 0;
3937   if (!PrintAddrSpace) {
3938     const Module *Mod = getModuleFromVal(I);
3939     // We also print it if it is zero but not equal to the program address space
3940     // or if we can't find a valid Module* to make it possible to parse
3941     // the resulting file even without a datalayout string.
3942     if (!Mod || Mod->getDataLayout().getProgramAddressSpace() != 0)
3943       PrintAddrSpace = true;
3944   }
3945   if (PrintAddrSpace)
3946     Out << " addrspace(" << CallAddrSpace << ")";
3947 }
3948 
3949 // This member is called for each Instruction in a function..
printInstruction(const Instruction & I)3950 void AssemblyWriter::printInstruction(const Instruction &I) {
3951   if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
3952 
3953   // Print out indentation for an instruction.
3954   Out << "  ";
3955 
3956   // Print out name if it exists...
3957   if (I.hasName()) {
3958     PrintLLVMName(Out, &I);
3959     Out << " = ";
3960   } else if (!I.getType()->isVoidTy()) {
3961     // Print out the def slot taken.
3962     int SlotNum = Machine.getLocalSlot(&I);
3963     if (SlotNum == -1)
3964       Out << "<badref> = ";
3965     else
3966       Out << '%' << SlotNum << " = ";
3967   }
3968 
3969   if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
3970     if (CI->isMustTailCall())
3971       Out << "musttail ";
3972     else if (CI->isTailCall())
3973       Out << "tail ";
3974     else if (CI->isNoTailCall())
3975       Out << "notail ";
3976   }
3977 
3978   // Print out the opcode...
3979   Out << I.getOpcodeName();
3980 
3981   // If this is an atomic load or store, print out the atomic marker.
3982   if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isAtomic()) ||
3983       (isa<StoreInst>(I) && cast<StoreInst>(I).isAtomic()))
3984     Out << " atomic";
3985 
3986   if (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isWeak())
3987     Out << " weak";
3988 
3989   // If this is a volatile operation, print out the volatile marker.
3990   if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isVolatile()) ||
3991       (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()) ||
3992       (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isVolatile()) ||
3993       (isa<AtomicRMWInst>(I) && cast<AtomicRMWInst>(I).isVolatile()))
3994     Out << " volatile";
3995 
3996   // Print out optimization information.
3997   WriteOptimizationInfo(Out, &I);
3998 
3999   // Print out the compare instruction predicates
4000   if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
4001     Out << ' ' << CmpInst::getPredicateName(CI->getPredicate());
4002 
4003   // Print out the atomicrmw operation
4004   if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I))
4005     Out << ' ' << AtomicRMWInst::getOperationName(RMWI->getOperation());
4006 
4007   // Print out the type of the operands...
4008   const Value *Operand = I.getNumOperands() ? I.getOperand(0) : nullptr;
4009 
4010   // Special case conditional branches to swizzle the condition out to the front
4011   if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
4012     const BranchInst &BI(cast<BranchInst>(I));
4013     Out << ' ';
4014     writeOperand(BI.getCondition(), true);
4015     Out << ", ";
4016     writeOperand(BI.getSuccessor(0), true);
4017     Out << ", ";
4018     writeOperand(BI.getSuccessor(1), true);
4019 
4020   } else if (isa<SwitchInst>(I)) {
4021     const SwitchInst& SI(cast<SwitchInst>(I));
4022     // Special case switch instruction to get formatting nice and correct.
4023     Out << ' ';
4024     writeOperand(SI.getCondition(), true);
4025     Out << ", ";
4026     writeOperand(SI.getDefaultDest(), true);
4027     Out << " [";
4028     for (auto Case : SI.cases()) {
4029       Out << "\n    ";
4030       writeOperand(Case.getCaseValue(), true);
4031       Out << ", ";
4032       writeOperand(Case.getCaseSuccessor(), true);
4033     }
4034     Out << "\n  ]";
4035   } else if (isa<IndirectBrInst>(I)) {
4036     // Special case indirectbr instruction to get formatting nice and correct.
4037     Out << ' ';
4038     writeOperand(Operand, true);
4039     Out << ", [";
4040 
4041     for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
4042       if (i != 1)
4043         Out << ", ";
4044       writeOperand(I.getOperand(i), true);
4045     }
4046     Out << ']';
4047   } else if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
4048     Out << ' ';
4049     TypePrinter.print(I.getType(), Out);
4050     Out << ' ';
4051 
4052     for (unsigned op = 0, Eop = PN->getNumIncomingValues(); op < Eop; ++op) {
4053       if (op) Out << ", ";
4054       Out << "[ ";
4055       writeOperand(PN->getIncomingValue(op), false); Out << ", ";
4056       writeOperand(PN->getIncomingBlock(op), false); Out << " ]";
4057     }
4058   } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
4059     Out << ' ';
4060     writeOperand(I.getOperand(0), true);
4061     for (unsigned i : EVI->indices())
4062       Out << ", " << i;
4063   } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
4064     Out << ' ';
4065     writeOperand(I.getOperand(0), true); Out << ", ";
4066     writeOperand(I.getOperand(1), true);
4067     for (unsigned i : IVI->indices())
4068       Out << ", " << i;
4069   } else if (const LandingPadInst *LPI = dyn_cast<LandingPadInst>(&I)) {
4070     Out << ' ';
4071     TypePrinter.print(I.getType(), Out);
4072     if (LPI->isCleanup() || LPI->getNumClauses() != 0)
4073       Out << '\n';
4074 
4075     if (LPI->isCleanup())
4076       Out << "          cleanup";
4077 
4078     for (unsigned i = 0, e = LPI->getNumClauses(); i != e; ++i) {
4079       if (i != 0 || LPI->isCleanup()) Out << "\n";
4080       if (LPI->isCatch(i))
4081         Out << "          catch ";
4082       else
4083         Out << "          filter ";
4084 
4085       writeOperand(LPI->getClause(i), true);
4086     }
4087   } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(&I)) {
4088     Out << " within ";
4089     writeOperand(CatchSwitch->getParentPad(), /*PrintType=*/false);
4090     Out << " [";
4091     unsigned Op = 0;
4092     for (const BasicBlock *PadBB : CatchSwitch->handlers()) {
4093       if (Op > 0)
4094         Out << ", ";
4095       writeOperand(PadBB, /*PrintType=*/true);
4096       ++Op;
4097     }
4098     Out << "] unwind ";
4099     if (const BasicBlock *UnwindDest = CatchSwitch->getUnwindDest())
4100       writeOperand(UnwindDest, /*PrintType=*/true);
4101     else
4102       Out << "to caller";
4103   } else if (const auto *FPI = dyn_cast<FuncletPadInst>(&I)) {
4104     Out << " within ";
4105     writeOperand(FPI->getParentPad(), /*PrintType=*/false);
4106     Out << " [";
4107     for (unsigned Op = 0, NumOps = FPI->getNumArgOperands(); Op < NumOps;
4108          ++Op) {
4109       if (Op > 0)
4110         Out << ", ";
4111       writeOperand(FPI->getArgOperand(Op), /*PrintType=*/true);
4112     }
4113     Out << ']';
4114   } else if (isa<ReturnInst>(I) && !Operand) {
4115     Out << " void";
4116   } else if (const auto *CRI = dyn_cast<CatchReturnInst>(&I)) {
4117     Out << " from ";
4118     writeOperand(CRI->getOperand(0), /*PrintType=*/false);
4119 
4120     Out << " to ";
4121     writeOperand(CRI->getOperand(1), /*PrintType=*/true);
4122   } else if (const auto *CRI = dyn_cast<CleanupReturnInst>(&I)) {
4123     Out << " from ";
4124     writeOperand(CRI->getOperand(0), /*PrintType=*/false);
4125 
4126     Out << " unwind ";
4127     if (CRI->hasUnwindDest())
4128       writeOperand(CRI->getOperand(1), /*PrintType=*/true);
4129     else
4130       Out << "to caller";
4131   } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
4132     // Print the calling convention being used.
4133     if (CI->getCallingConv() != CallingConv::C) {
4134       Out << " ";
4135       PrintCallingConv(CI->getCallingConv(), Out);
4136     }
4137 
4138     Operand = CI->getCalledOperand();
4139     FunctionType *FTy = CI->getFunctionType();
4140     Type *RetTy = FTy->getReturnType();
4141     const AttributeList &PAL = CI->getAttributes();
4142 
4143     if (PAL.hasAttributes(AttributeList::ReturnIndex))
4144       Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
4145 
4146     // Only print addrspace(N) if necessary:
4147     maybePrintCallAddrSpace(Operand, &I, Out);
4148 
4149     // If possible, print out the short form of the call instruction.  We can
4150     // only do this if the first argument is a pointer to a nonvararg function,
4151     // and if the return type is not a pointer to a function.
4152     //
4153     Out << ' ';
4154     TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
4155     Out << ' ';
4156     writeOperand(Operand, false);
4157     Out << '(';
4158     for (unsigned op = 0, Eop = CI->getNumArgOperands(); op < Eop; ++op) {
4159       if (op > 0)
4160         Out << ", ";
4161       writeParamOperand(CI->getArgOperand(op), PAL.getParamAttributes(op));
4162     }
4163 
4164     // Emit an ellipsis if this is a musttail call in a vararg function.  This
4165     // is only to aid readability, musttail calls forward varargs by default.
4166     if (CI->isMustTailCall() && CI->getParent() &&
4167         CI->getParent()->getParent() &&
4168         CI->getParent()->getParent()->isVarArg())
4169       Out << ", ...";
4170 
4171     Out << ')';
4172     if (PAL.hasAttributes(AttributeList::FunctionIndex))
4173       Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
4174 
4175     writeOperandBundles(CI);
4176   } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
4177     Operand = II->getCalledOperand();
4178     FunctionType *FTy = II->getFunctionType();
4179     Type *RetTy = FTy->getReturnType();
4180     const AttributeList &PAL = II->getAttributes();
4181 
4182     // Print the calling convention being used.
4183     if (II->getCallingConv() != CallingConv::C) {
4184       Out << " ";
4185       PrintCallingConv(II->getCallingConv(), Out);
4186     }
4187 
4188     if (PAL.hasAttributes(AttributeList::ReturnIndex))
4189       Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
4190 
4191     // Only print addrspace(N) if necessary:
4192     maybePrintCallAddrSpace(Operand, &I, Out);
4193 
4194     // If possible, print out the short form of the invoke instruction. We can
4195     // only do this if the first argument is a pointer to a nonvararg function,
4196     // and if the return type is not a pointer to a function.
4197     //
4198     Out << ' ';
4199     TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
4200     Out << ' ';
4201     writeOperand(Operand, false);
4202     Out << '(';
4203     for (unsigned op = 0, Eop = II->getNumArgOperands(); op < Eop; ++op) {
4204       if (op)
4205         Out << ", ";
4206       writeParamOperand(II->getArgOperand(op), PAL.getParamAttributes(op));
4207     }
4208 
4209     Out << ')';
4210     if (PAL.hasAttributes(AttributeList::FunctionIndex))
4211       Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
4212 
4213     writeOperandBundles(II);
4214 
4215     Out << "\n          to ";
4216     writeOperand(II->getNormalDest(), true);
4217     Out << " unwind ";
4218     writeOperand(II->getUnwindDest(), true);
4219   } else if (const CallBrInst *CBI = dyn_cast<CallBrInst>(&I)) {
4220     Operand = CBI->getCalledOperand();
4221     FunctionType *FTy = CBI->getFunctionType();
4222     Type *RetTy = FTy->getReturnType();
4223     const AttributeList &PAL = CBI->getAttributes();
4224 
4225     // Print the calling convention being used.
4226     if (CBI->getCallingConv() != CallingConv::C) {
4227       Out << " ";
4228       PrintCallingConv(CBI->getCallingConv(), Out);
4229     }
4230 
4231     if (PAL.hasAttributes(AttributeList::ReturnIndex))
4232       Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
4233 
4234     // If possible, print out the short form of the callbr instruction. We can
4235     // only do this if the first argument is a pointer to a nonvararg function,
4236     // and if the return type is not a pointer to a function.
4237     //
4238     Out << ' ';
4239     TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
4240     Out << ' ';
4241     writeOperand(Operand, false);
4242     Out << '(';
4243     for (unsigned op = 0, Eop = CBI->getNumArgOperands(); op < Eop; ++op) {
4244       if (op)
4245         Out << ", ";
4246       writeParamOperand(CBI->getArgOperand(op), PAL.getParamAttributes(op));
4247     }
4248 
4249     Out << ')';
4250     if (PAL.hasAttributes(AttributeList::FunctionIndex))
4251       Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
4252 
4253     writeOperandBundles(CBI);
4254 
4255     Out << "\n          to ";
4256     writeOperand(CBI->getDefaultDest(), true);
4257     Out << " [";
4258     for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) {
4259       if (i != 0)
4260         Out << ", ";
4261       writeOperand(CBI->getIndirectDest(i), true);
4262     }
4263     Out << ']';
4264   } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
4265     Out << ' ';
4266     if (AI->isUsedWithInAlloca())
4267       Out << "inalloca ";
4268     if (AI->isSwiftError())
4269       Out << "swifterror ";
4270     TypePrinter.print(AI->getAllocatedType(), Out);
4271 
4272     // Explicitly write the array size if the code is broken, if it's an array
4273     // allocation, or if the type is not canonical for scalar allocations.  The
4274     // latter case prevents the type from mutating when round-tripping through
4275     // assembly.
4276     if (!AI->getArraySize() || AI->isArrayAllocation() ||
4277         !AI->getArraySize()->getType()->isIntegerTy(32)) {
4278       Out << ", ";
4279       writeOperand(AI->getArraySize(), true);
4280     }
4281     if (AI->getAlignment()) {
4282       Out << ", align " << AI->getAlignment();
4283     }
4284 
4285     unsigned AddrSpace = AI->getType()->getAddressSpace();
4286     if (AddrSpace != 0) {
4287       Out << ", addrspace(" << AddrSpace << ')';
4288     }
4289   } else if (isa<CastInst>(I)) {
4290     if (Operand) {
4291       Out << ' ';
4292       writeOperand(Operand, true);   // Work with broken code
4293     }
4294     Out << " to ";
4295     TypePrinter.print(I.getType(), Out);
4296   } else if (isa<VAArgInst>(I)) {
4297     if (Operand) {
4298       Out << ' ';
4299       writeOperand(Operand, true);   // Work with broken code
4300     }
4301     Out << ", ";
4302     TypePrinter.print(I.getType(), Out);
4303   } else if (Operand) {   // Print the normal way.
4304     if (const auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
4305       Out << ' ';
4306       TypePrinter.print(GEP->getSourceElementType(), Out);
4307       Out << ',';
4308     } else if (const auto *LI = dyn_cast<LoadInst>(&I)) {
4309       Out << ' ';
4310       TypePrinter.print(LI->getType(), Out);
4311       Out << ',';
4312     }
4313 
4314     // PrintAllTypes - Instructions who have operands of all the same type
4315     // omit the type from all but the first operand.  If the instruction has
4316     // different type operands (for example br), then they are all printed.
4317     bool PrintAllTypes = false;
4318     Type *TheType = Operand->getType();
4319 
4320     // Select, Store and ShuffleVector always print all types.
4321     if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)
4322         || isa<ReturnInst>(I)) {
4323       PrintAllTypes = true;
4324     } else {
4325       for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
4326         Operand = I.getOperand(i);
4327         // note that Operand shouldn't be null, but the test helps make dump()
4328         // more tolerant of malformed IR
4329         if (Operand && Operand->getType() != TheType) {
4330           PrintAllTypes = true;    // We have differing types!  Print them all!
4331           break;
4332         }
4333       }
4334     }
4335 
4336     if (!PrintAllTypes) {
4337       Out << ' ';
4338       TypePrinter.print(TheType, Out);
4339     }
4340 
4341     Out << ' ';
4342     for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
4343       if (i) Out << ", ";
4344       writeOperand(I.getOperand(i), PrintAllTypes);
4345     }
4346   }
4347 
4348   // Print atomic ordering/alignment for memory operations
4349   if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
4350     if (LI->isAtomic())
4351       writeAtomic(LI->getContext(), LI->getOrdering(), LI->getSyncScopeID());
4352     if (LI->getAlignment())
4353       Out << ", align " << LI->getAlignment();
4354   } else if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
4355     if (SI->isAtomic())
4356       writeAtomic(SI->getContext(), SI->getOrdering(), SI->getSyncScopeID());
4357     if (SI->getAlignment())
4358       Out << ", align " << SI->getAlignment();
4359   } else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(&I)) {
4360     writeAtomicCmpXchg(CXI->getContext(), CXI->getSuccessOrdering(),
4361                        CXI->getFailureOrdering(), CXI->getSyncScopeID());
4362     Out << ", align " << CXI->getAlign().value();
4363   } else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) {
4364     writeAtomic(RMWI->getContext(), RMWI->getOrdering(),
4365                 RMWI->getSyncScopeID());
4366     Out << ", align " << RMWI->getAlign().value();
4367   } else if (const FenceInst *FI = dyn_cast<FenceInst>(&I)) {
4368     writeAtomic(FI->getContext(), FI->getOrdering(), FI->getSyncScopeID());
4369   } else if (const ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(&I)) {
4370     PrintShuffleMask(Out, SVI->getType(), SVI->getShuffleMask());
4371   }
4372 
4373   // Print Metadata info.
4374   SmallVector<std::pair<unsigned, MDNode *>, 4> InstMD;
4375   I.getAllMetadata(InstMD);
4376   printMetadataAttachments(InstMD, ", ");
4377 
4378   // Print a nice comment.
4379   printInfoComment(I);
4380 }
4381 
printMetadataAttachments(const SmallVectorImpl<std::pair<unsigned,MDNode * >> & MDs,StringRef Separator)4382 void AssemblyWriter::printMetadataAttachments(
4383     const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
4384     StringRef Separator) {
4385   if (MDs.empty())
4386     return;
4387 
4388   if (MDNames.empty())
4389     MDs[0].second->getContext().getMDKindNames(MDNames);
4390 
4391   for (const auto &I : MDs) {
4392     unsigned Kind = I.first;
4393     Out << Separator;
4394     if (Kind < MDNames.size()) {
4395       Out << "!";
4396       printMetadataIdentifier(MDNames[Kind], Out);
4397     } else
4398       Out << "!<unknown kind #" << Kind << ">";
4399     Out << ' ';
4400     WriteAsOperandInternal(Out, I.second, &TypePrinter, &Machine, TheModule);
4401   }
4402 }
4403 
writeMDNode(unsigned Slot,const MDNode * Node)4404 void AssemblyWriter::writeMDNode(unsigned Slot, const MDNode *Node) {
4405   Out << '!' << Slot << " = ";
4406   printMDNodeBody(Node);
4407   Out << "\n";
4408 }
4409 
writeAllMDNodes()4410 void AssemblyWriter::writeAllMDNodes() {
4411   SmallVector<const MDNode *, 16> Nodes;
4412   Nodes.resize(Machine.mdn_size());
4413   for (auto &I : llvm::make_range(Machine.mdn_begin(), Machine.mdn_end()))
4414     Nodes[I.second] = cast<MDNode>(I.first);
4415 
4416   for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
4417     writeMDNode(i, Nodes[i]);
4418   }
4419 }
4420 
printMDNodeBody(const MDNode * Node)4421 void AssemblyWriter::printMDNodeBody(const MDNode *Node) {
4422   WriteMDNodeBodyInternal(Out, Node, &TypePrinter, &Machine, TheModule);
4423 }
4424 
writeAttribute(const Attribute & Attr,bool InAttrGroup)4425 void AssemblyWriter::writeAttribute(const Attribute &Attr, bool InAttrGroup) {
4426   if (!Attr.isTypeAttribute()) {
4427     Out << Attr.getAsString(InAttrGroup);
4428     return;
4429   }
4430 
4431   if (Attr.hasAttribute(Attribute::ByVal)) {
4432     Out << "byval";
4433   } else if (Attr.hasAttribute(Attribute::StructRet)) {
4434     Out << "sret";
4435   } else if (Attr.hasAttribute(Attribute::ByRef)) {
4436     Out << "byref";
4437   } else if (Attr.hasAttribute(Attribute::Preallocated)) {
4438     Out << "preallocated";
4439   } else if (Attr.hasAttribute(Attribute::InAlloca)) {
4440     Out << "inalloca";
4441   } else {
4442     llvm_unreachable("unexpected type attr");
4443   }
4444 
4445   if (Type *Ty = Attr.getValueAsType()) {
4446     Out << '(';
4447     TypePrinter.print(Ty, Out);
4448     Out << ')';
4449   }
4450 }
4451 
writeAttributeSet(const AttributeSet & AttrSet,bool InAttrGroup)4452 void AssemblyWriter::writeAttributeSet(const AttributeSet &AttrSet,
4453                                        bool InAttrGroup) {
4454   bool FirstAttr = true;
4455   for (const auto &Attr : AttrSet) {
4456     if (!FirstAttr)
4457       Out << ' ';
4458     writeAttribute(Attr, InAttrGroup);
4459     FirstAttr = false;
4460   }
4461 }
4462 
writeAllAttributeGroups()4463 void AssemblyWriter::writeAllAttributeGroups() {
4464   std::vector<std::pair<AttributeSet, unsigned>> asVec;
4465   asVec.resize(Machine.as_size());
4466 
4467   for (auto &I : llvm::make_range(Machine.as_begin(), Machine.as_end()))
4468     asVec[I.second] = I;
4469 
4470   for (const auto &I : asVec)
4471     Out << "attributes #" << I.second << " = { "
4472         << I.first.getAsString(true) << " }\n";
4473 }
4474 
printUseListOrder(const UseListOrder & Order)4475 void AssemblyWriter::printUseListOrder(const UseListOrder &Order) {
4476   bool IsInFunction = Machine.getFunction();
4477   if (IsInFunction)
4478     Out << "  ";
4479 
4480   Out << "uselistorder";
4481   if (const BasicBlock *BB =
4482           IsInFunction ? nullptr : dyn_cast<BasicBlock>(Order.V)) {
4483     Out << "_bb ";
4484     writeOperand(BB->getParent(), false);
4485     Out << ", ";
4486     writeOperand(BB, false);
4487   } else {
4488     Out << " ";
4489     writeOperand(Order.V, true);
4490   }
4491   Out << ", { ";
4492 
4493   assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
4494   Out << Order.Shuffle[0];
4495   for (unsigned I = 1, E = Order.Shuffle.size(); I != E; ++I)
4496     Out << ", " << Order.Shuffle[I];
4497   Out << " }\n";
4498 }
4499 
printUseLists(const Function * F)4500 void AssemblyWriter::printUseLists(const Function *F) {
4501   auto hasMore =
4502       [&]() { return !UseListOrders.empty() && UseListOrders.back().F == F; };
4503   if (!hasMore())
4504     // Nothing to do.
4505     return;
4506 
4507   Out << "\n; uselistorder directives\n";
4508   while (hasMore()) {
4509     printUseListOrder(UseListOrders.back());
4510     UseListOrders.pop_back();
4511   }
4512 }
4513 
4514 //===----------------------------------------------------------------------===//
4515 //                       External Interface declarations
4516 //===----------------------------------------------------------------------===//
4517 
print(raw_ostream & ROS,AssemblyAnnotationWriter * AAW,bool ShouldPreserveUseListOrder,bool IsForDebug) const4518 void Function::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
4519                      bool ShouldPreserveUseListOrder,
4520                      bool IsForDebug) const {
4521   SlotTracker SlotTable(this->getParent());
4522   formatted_raw_ostream OS(ROS);
4523   AssemblyWriter W(OS, SlotTable, this->getParent(), AAW,
4524                    IsForDebug,
4525                    ShouldPreserveUseListOrder);
4526   W.printFunction(this);
4527 }
4528 
print(raw_ostream & ROS,AssemblyAnnotationWriter * AAW,bool ShouldPreserveUseListOrder,bool IsForDebug) const4529 void BasicBlock::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
4530                      bool ShouldPreserveUseListOrder,
4531                      bool IsForDebug) const {
4532   SlotTracker SlotTable(this->getParent());
4533   formatted_raw_ostream OS(ROS);
4534   AssemblyWriter W(OS, SlotTable, this->getModule(), AAW,
4535                    IsForDebug,
4536                    ShouldPreserveUseListOrder);
4537   W.printBasicBlock(this);
4538 }
4539 
print(raw_ostream & ROS,AssemblyAnnotationWriter * AAW,bool ShouldPreserveUseListOrder,bool IsForDebug) const4540 void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
4541                    bool ShouldPreserveUseListOrder, bool IsForDebug) const {
4542   SlotTracker SlotTable(this);
4543   formatted_raw_ostream OS(ROS);
4544   AssemblyWriter W(OS, SlotTable, this, AAW, IsForDebug,
4545                    ShouldPreserveUseListOrder);
4546   W.printModule(this);
4547 }
4548 
print(raw_ostream & ROS,bool IsForDebug) const4549 void NamedMDNode::print(raw_ostream &ROS, bool IsForDebug) const {
4550   SlotTracker SlotTable(getParent());
4551   formatted_raw_ostream OS(ROS);
4552   AssemblyWriter W(OS, SlotTable, getParent(), nullptr, IsForDebug);
4553   W.printNamedMDNode(this);
4554 }
4555 
print(raw_ostream & ROS,ModuleSlotTracker & MST,bool IsForDebug) const4556 void NamedMDNode::print(raw_ostream &ROS, ModuleSlotTracker &MST,
4557                         bool IsForDebug) const {
4558   Optional<SlotTracker> LocalST;
4559   SlotTracker *SlotTable;
4560   if (auto *ST = MST.getMachine())
4561     SlotTable = ST;
4562   else {
4563     LocalST.emplace(getParent());
4564     SlotTable = &*LocalST;
4565   }
4566 
4567   formatted_raw_ostream OS(ROS);
4568   AssemblyWriter W(OS, *SlotTable, getParent(), nullptr, IsForDebug);
4569   W.printNamedMDNode(this);
4570 }
4571 
print(raw_ostream & ROS,bool) const4572 void Comdat::print(raw_ostream &ROS, bool /*IsForDebug*/) const {
4573   PrintLLVMName(ROS, getName(), ComdatPrefix);
4574   ROS << " = comdat ";
4575 
4576   switch (getSelectionKind()) {
4577   case Comdat::Any:
4578     ROS << "any";
4579     break;
4580   case Comdat::ExactMatch:
4581     ROS << "exactmatch";
4582     break;
4583   case Comdat::Largest:
4584     ROS << "largest";
4585     break;
4586   case Comdat::NoDuplicates:
4587     ROS << "noduplicates";
4588     break;
4589   case Comdat::SameSize:
4590     ROS << "samesize";
4591     break;
4592   }
4593 
4594   ROS << '\n';
4595 }
4596 
print(raw_ostream & OS,bool,bool NoDetails) const4597 void Type::print(raw_ostream &OS, bool /*IsForDebug*/, bool NoDetails) const {
4598   TypePrinting TP;
4599   TP.print(const_cast<Type*>(this), OS);
4600 
4601   if (NoDetails)
4602     return;
4603 
4604   // If the type is a named struct type, print the body as well.
4605   if (StructType *STy = dyn_cast<StructType>(const_cast<Type*>(this)))
4606     if (!STy->isLiteral()) {
4607       OS << " = type ";
4608       TP.printStructBody(STy, OS);
4609     }
4610 }
4611 
isReferencingMDNode(const Instruction & I)4612 static bool isReferencingMDNode(const Instruction &I) {
4613   if (const auto *CI = dyn_cast<CallInst>(&I))
4614     if (Function *F = CI->getCalledFunction())
4615       if (F->isIntrinsic())
4616         for (auto &Op : I.operands())
4617           if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
4618             if (isa<MDNode>(V->getMetadata()))
4619               return true;
4620   return false;
4621 }
4622 
print(raw_ostream & ROS,bool IsForDebug) const4623 void Value::print(raw_ostream &ROS, bool IsForDebug) const {
4624   bool ShouldInitializeAllMetadata = false;
4625   if (auto *I = dyn_cast<Instruction>(this))
4626     ShouldInitializeAllMetadata = isReferencingMDNode(*I);
4627   else if (isa<Function>(this) || isa<MetadataAsValue>(this))
4628     ShouldInitializeAllMetadata = true;
4629 
4630   ModuleSlotTracker MST(getModuleFromVal(this), ShouldInitializeAllMetadata);
4631   print(ROS, MST, IsForDebug);
4632 }
4633 
print(raw_ostream & ROS,ModuleSlotTracker & MST,bool IsForDebug) const4634 void Value::print(raw_ostream &ROS, ModuleSlotTracker &MST,
4635                   bool IsForDebug) const {
4636   formatted_raw_ostream OS(ROS);
4637   SlotTracker EmptySlotTable(static_cast<const Module *>(nullptr));
4638   SlotTracker &SlotTable =
4639       MST.getMachine() ? *MST.getMachine() : EmptySlotTable;
4640   auto incorporateFunction = [&](const Function *F) {
4641     if (F)
4642       MST.incorporateFunction(*F);
4643   };
4644 
4645   if (const Instruction *I = dyn_cast<Instruction>(this)) {
4646     incorporateFunction(I->getParent() ? I->getParent()->getParent() : nullptr);
4647     AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), nullptr, IsForDebug);
4648     W.printInstruction(*I);
4649   } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
4650     incorporateFunction(BB->getParent());
4651     AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), nullptr, IsForDebug);
4652     W.printBasicBlock(BB);
4653   } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
4654     AssemblyWriter W(OS, SlotTable, GV->getParent(), nullptr, IsForDebug);
4655     if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV))
4656       W.printGlobal(V);
4657     else if (const Function *F = dyn_cast<Function>(GV))
4658       W.printFunction(F);
4659     else
4660       W.printIndirectSymbol(cast<GlobalIndirectSymbol>(GV));
4661   } else if (const MetadataAsValue *V = dyn_cast<MetadataAsValue>(this)) {
4662     V->getMetadata()->print(ROS, MST, getModuleFromVal(V));
4663   } else if (const Constant *C = dyn_cast<Constant>(this)) {
4664     TypePrinting TypePrinter;
4665     TypePrinter.print(C->getType(), OS);
4666     OS << ' ';
4667     WriteConstantInternal(OS, C, TypePrinter, MST.getMachine(), nullptr);
4668   } else if (isa<InlineAsm>(this) || isa<Argument>(this)) {
4669     this->printAsOperand(OS, /* PrintType */ true, MST);
4670   } else {
4671     llvm_unreachable("Unknown value to print out!");
4672   }
4673 }
4674 
4675 /// Print without a type, skipping the TypePrinting object.
4676 ///
4677 /// \return \c true iff printing was successful.
printWithoutType(const Value & V,raw_ostream & O,SlotTracker * Machine,const Module * M)4678 static bool printWithoutType(const Value &V, raw_ostream &O,
4679                              SlotTracker *Machine, const Module *M) {
4680   if (V.hasName() || isa<GlobalValue>(V) ||
4681       (!isa<Constant>(V) && !isa<MetadataAsValue>(V))) {
4682     WriteAsOperandInternal(O, &V, nullptr, Machine, M);
4683     return true;
4684   }
4685   return false;
4686 }
4687 
printAsOperandImpl(const Value & V,raw_ostream & O,bool PrintType,ModuleSlotTracker & MST)4688 static void printAsOperandImpl(const Value &V, raw_ostream &O, bool PrintType,
4689                                ModuleSlotTracker &MST) {
4690   TypePrinting TypePrinter(MST.getModule());
4691   if (PrintType) {
4692     TypePrinter.print(V.getType(), O);
4693     O << ' ';
4694   }
4695 
4696   WriteAsOperandInternal(O, &V, &TypePrinter, MST.getMachine(),
4697                          MST.getModule());
4698 }
4699 
printAsOperand(raw_ostream & O,bool PrintType,const Module * M) const4700 void Value::printAsOperand(raw_ostream &O, bool PrintType,
4701                            const Module *M) const {
4702   if (!M)
4703     M = getModuleFromVal(this);
4704 
4705   if (!PrintType)
4706     if (printWithoutType(*this, O, nullptr, M))
4707       return;
4708 
4709   SlotTracker Machine(
4710       M, /* ShouldInitializeAllMetadata */ isa<MetadataAsValue>(this));
4711   ModuleSlotTracker MST(Machine, M);
4712   printAsOperandImpl(*this, O, PrintType, MST);
4713 }
4714 
printAsOperand(raw_ostream & O,bool PrintType,ModuleSlotTracker & MST) const4715 void Value::printAsOperand(raw_ostream &O, bool PrintType,
4716                            ModuleSlotTracker &MST) const {
4717   if (!PrintType)
4718     if (printWithoutType(*this, O, MST.getMachine(), MST.getModule()))
4719       return;
4720 
4721   printAsOperandImpl(*this, O, PrintType, MST);
4722 }
4723 
printMetadataImpl(raw_ostream & ROS,const Metadata & MD,ModuleSlotTracker & MST,const Module * M,bool OnlyAsOperand)4724 static void printMetadataImpl(raw_ostream &ROS, const Metadata &MD,
4725                               ModuleSlotTracker &MST, const Module *M,
4726                               bool OnlyAsOperand) {
4727   formatted_raw_ostream OS(ROS);
4728 
4729   TypePrinting TypePrinter(M);
4730 
4731   WriteAsOperandInternal(OS, &MD, &TypePrinter, MST.getMachine(), M,
4732                          /* FromValue */ true);
4733 
4734   auto *N = dyn_cast<MDNode>(&MD);
4735   if (OnlyAsOperand || !N || isa<DIExpression>(MD) || isa<DIArgList>(MD))
4736     return;
4737 
4738   OS << " = ";
4739   WriteMDNodeBodyInternal(OS, N, &TypePrinter, MST.getMachine(), M);
4740 }
4741 
printAsOperand(raw_ostream & OS,const Module * M) const4742 void Metadata::printAsOperand(raw_ostream &OS, const Module *M) const {
4743   ModuleSlotTracker MST(M, isa<MDNode>(this));
4744   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
4745 }
4746 
printAsOperand(raw_ostream & OS,ModuleSlotTracker & MST,const Module * M) const4747 void Metadata::printAsOperand(raw_ostream &OS, ModuleSlotTracker &MST,
4748                               const Module *M) const {
4749   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
4750 }
4751 
print(raw_ostream & OS,const Module * M,bool) const4752 void Metadata::print(raw_ostream &OS, const Module *M,
4753                      bool /*IsForDebug*/) const {
4754   ModuleSlotTracker MST(M, isa<MDNode>(this));
4755   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
4756 }
4757 
print(raw_ostream & OS,ModuleSlotTracker & MST,const Module * M,bool) const4758 void Metadata::print(raw_ostream &OS, ModuleSlotTracker &MST,
4759                      const Module *M, bool /*IsForDebug*/) const {
4760   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
4761 }
4762 
print(raw_ostream & ROS,bool IsForDebug) const4763 void ModuleSummaryIndex::print(raw_ostream &ROS, bool IsForDebug) const {
4764   SlotTracker SlotTable(this);
4765   formatted_raw_ostream OS(ROS);
4766   AssemblyWriter W(OS, SlotTable, this, IsForDebug);
4767   W.printModuleSummaryIndex();
4768 }
4769 
4770 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4771 // Value::dump - allow easy printing of Values from the debugger.
4772 LLVM_DUMP_METHOD
dump() const4773 void Value::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
4774 
4775 // Type::dump - allow easy printing of Types from the debugger.
4776 LLVM_DUMP_METHOD
dump() const4777 void Type::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
4778 
4779 // Module::dump() - Allow printing of Modules from the debugger.
4780 LLVM_DUMP_METHOD
dump() const4781 void Module::dump() const {
4782   print(dbgs(), nullptr,
4783         /*ShouldPreserveUseListOrder=*/false, /*IsForDebug=*/true);
4784 }
4785 
4786 // Allow printing of Comdats from the debugger.
4787 LLVM_DUMP_METHOD
dump() const4788 void Comdat::dump() const { print(dbgs(), /*IsForDebug=*/true); }
4789 
4790 // NamedMDNode::dump() - Allow printing of NamedMDNodes from the debugger.
4791 LLVM_DUMP_METHOD
dump() const4792 void NamedMDNode::dump() const { print(dbgs(), /*IsForDebug=*/true); }
4793 
4794 LLVM_DUMP_METHOD
dump() const4795 void Metadata::dump() const { dump(nullptr); }
4796 
4797 LLVM_DUMP_METHOD
dump(const Module * M) const4798 void Metadata::dump(const Module *M) const {
4799   print(dbgs(), M, /*IsForDebug=*/true);
4800   dbgs() << '\n';
4801 }
4802 
4803 // Allow printing of ModuleSummaryIndex from the debugger.
4804 LLVM_DUMP_METHOD
dump() const4805 void ModuleSummaryIndex::dump() const { print(dbgs(), /*IsForDebug=*/true); }
4806 #endif
4807