xref: /netbsd-src/external/apache2/llvm/dist/llvm/lib/IR/AsmWriter.cpp (revision 181254a7b1bdde6873432bffef2d2decc4b5c22f)
1 //===- AsmWriter.cpp - Printing LLVM as an assembly file ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This library implements `print` family of functions in classes like
10 // Module, Function, Value, etc. In-memory representation of those classes is
11 // converted to IR strings.
12 //
13 // Note that these routines must be extremely tolerant of various errors in the
14 // LLVM code, because it can be used for debugging transformations.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/ADT/APFloat.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/None.h"
23 #include "llvm/ADT/Optional.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SetVector.h"
26 #include "llvm/ADT/SmallString.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/StringExtras.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/ADT/iterator_range.h"
31 #include "llvm/BinaryFormat/Dwarf.h"
32 #include "llvm/Config/llvm-config.h"
33 #include "llvm/IR/Argument.h"
34 #include "llvm/IR/AssemblyAnnotationWriter.h"
35 #include "llvm/IR/Attributes.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CFG.h"
38 #include "llvm/IR/CallingConv.h"
39 #include "llvm/IR/Comdat.h"
40 #include "llvm/IR/Constant.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DebugInfoMetadata.h"
43 #include "llvm/IR/DerivedTypes.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/GlobalAlias.h"
46 #include "llvm/IR/GlobalIFunc.h"
47 #include "llvm/IR/GlobalIndirectSymbol.h"
48 #include "llvm/IR/GlobalObject.h"
49 #include "llvm/IR/GlobalValue.h"
50 #include "llvm/IR/GlobalVariable.h"
51 #include "llvm/IR/IRPrintingPasses.h"
52 #include "llvm/IR/InlineAsm.h"
53 #include "llvm/IR/InstrTypes.h"
54 #include "llvm/IR/Instruction.h"
55 #include "llvm/IR/Instructions.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Metadata.h"
58 #include "llvm/IR/Module.h"
59 #include "llvm/IR/ModuleSlotTracker.h"
60 #include "llvm/IR/ModuleSummaryIndex.h"
61 #include "llvm/IR/Operator.h"
62 #include "llvm/IR/Statepoint.h"
63 #include "llvm/IR/Type.h"
64 #include "llvm/IR/TypeFinder.h"
65 #include "llvm/IR/Use.h"
66 #include "llvm/IR/UseListOrder.h"
67 #include "llvm/IR/User.h"
68 #include "llvm/IR/Value.h"
69 #include "llvm/Support/AtomicOrdering.h"
70 #include "llvm/Support/Casting.h"
71 #include "llvm/Support/Compiler.h"
72 #include "llvm/Support/Debug.h"
73 #include "llvm/Support/ErrorHandling.h"
74 #include "llvm/Support/Format.h"
75 #include "llvm/Support/FormattedStream.h"
76 #include "llvm/Support/raw_ostream.h"
77 #include <algorithm>
78 #include <cassert>
79 #include <cctype>
80 #include <cstddef>
81 #include <cstdint>
82 #include <iterator>
83 #include <memory>
84 #include <string>
85 #include <tuple>
86 #include <utility>
87 #include <vector>
88 
89 using namespace llvm;
90 
91 // Make virtual table appear in this compilation unit.
92 AssemblyAnnotationWriter::~AssemblyAnnotationWriter() = default;
93 
94 //===----------------------------------------------------------------------===//
95 // Helper Functions
96 //===----------------------------------------------------------------------===//
97 
98 namespace {
99 
100 struct OrderMap {
101   DenseMap<const Value *, std::pair<unsigned, bool>> IDs;
102 
103   unsigned size() const { return IDs.size(); }
104   std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; }
105 
106   std::pair<unsigned, bool> lookup(const Value *V) const {
107     return IDs.lookup(V);
108   }
109 
110   void index(const Value *V) {
111     // Explicitly sequence get-size and insert-value operations to avoid UB.
112     unsigned ID = IDs.size() + 1;
113     IDs[V].first = ID;
114   }
115 };
116 
117 } // end anonymous namespace
118 
119 static void orderValue(const Value *V, OrderMap &OM) {
120   if (OM.lookup(V).first)
121     return;
122 
123   if (const Constant *C = dyn_cast<Constant>(V))
124     if (C->getNumOperands() && !isa<GlobalValue>(C))
125       for (const Value *Op : C->operands())
126         if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
127           orderValue(Op, OM);
128 
129   // Note: we cannot cache this lookup above, since inserting into the map
130   // changes the map's size, and thus affects the other IDs.
131   OM.index(V);
132 }
133 
134 static OrderMap orderModule(const Module *M) {
135   // This needs to match the order used by ValueEnumerator::ValueEnumerator()
136   // and ValueEnumerator::incorporateFunction().
137   OrderMap OM;
138 
139   for (const GlobalVariable &G : M->globals()) {
140     if (G.hasInitializer())
141       if (!isa<GlobalValue>(G.getInitializer()))
142         orderValue(G.getInitializer(), OM);
143     orderValue(&G, OM);
144   }
145   for (const GlobalAlias &A : M->aliases()) {
146     if (!isa<GlobalValue>(A.getAliasee()))
147       orderValue(A.getAliasee(), OM);
148     orderValue(&A, OM);
149   }
150   for (const GlobalIFunc &I : M->ifuncs()) {
151     if (!isa<GlobalValue>(I.getResolver()))
152       orderValue(I.getResolver(), OM);
153     orderValue(&I, OM);
154   }
155   for (const Function &F : *M) {
156     for (const Use &U : F.operands())
157       if (!isa<GlobalValue>(U.get()))
158         orderValue(U.get(), OM);
159 
160     orderValue(&F, OM);
161 
162     if (F.isDeclaration())
163       continue;
164 
165     for (const Argument &A : F.args())
166       orderValue(&A, OM);
167     for (const BasicBlock &BB : F) {
168       orderValue(&BB, OM);
169       for (const Instruction &I : BB) {
170         for (const Value *Op : I.operands())
171           if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
172               isa<InlineAsm>(*Op))
173             orderValue(Op, OM);
174         orderValue(&I, OM);
175       }
176     }
177   }
178   return OM;
179 }
180 
181 static void predictValueUseListOrderImpl(const Value *V, const Function *F,
182                                          unsigned ID, const OrderMap &OM,
183                                          UseListOrderStack &Stack) {
184   // Predict use-list order for this one.
185   using Entry = std::pair<const Use *, unsigned>;
186   SmallVector<Entry, 64> List;
187   for (const Use &U : V->uses())
188     // Check if this user will be serialized.
189     if (OM.lookup(U.getUser()).first)
190       List.push_back(std::make_pair(&U, List.size()));
191 
192   if (List.size() < 2)
193     // We may have lost some users.
194     return;
195 
196   bool GetsReversed =
197       !isa<GlobalVariable>(V) && !isa<Function>(V) && !isa<BasicBlock>(V);
198   if (auto *BA = dyn_cast<BlockAddress>(V))
199     ID = OM.lookup(BA->getBasicBlock()).first;
200   llvm::sort(List, [&](const Entry &L, const Entry &R) {
201     const Use *LU = L.first;
202     const Use *RU = R.first;
203     if (LU == RU)
204       return false;
205 
206     auto LID = OM.lookup(LU->getUser()).first;
207     auto RID = OM.lookup(RU->getUser()).first;
208 
209     // If ID is 4, then expect: 7 6 5 1 2 3.
210     if (LID < RID) {
211       if (GetsReversed)
212         if (RID <= ID)
213           return true;
214       return false;
215     }
216     if (RID < LID) {
217       if (GetsReversed)
218         if (LID <= ID)
219           return false;
220       return true;
221     }
222 
223     // LID and RID are equal, so we have different operands of the same user.
224     // Assume operands are added in order for all instructions.
225     if (GetsReversed)
226       if (LID <= ID)
227         return LU->getOperandNo() < RU->getOperandNo();
228     return LU->getOperandNo() > RU->getOperandNo();
229   });
230 
231   if (std::is_sorted(
232           List.begin(), List.end(),
233           [](const Entry &L, const Entry &R) { return L.second < R.second; }))
234     // Order is already correct.
235     return;
236 
237   // Store the shuffle.
238   Stack.emplace_back(V, F, List.size());
239   assert(List.size() == Stack.back().Shuffle.size() && "Wrong size");
240   for (size_t I = 0, E = List.size(); I != E; ++I)
241     Stack.back().Shuffle[I] = List[I].second;
242 }
243 
244 static void predictValueUseListOrder(const Value *V, const Function *F,
245                                      OrderMap &OM, UseListOrderStack &Stack) {
246   auto &IDPair = OM[V];
247   assert(IDPair.first && "Unmapped value");
248   if (IDPair.second)
249     // Already predicted.
250     return;
251 
252   // Do the actual prediction.
253   IDPair.second = true;
254   if (!V->use_empty() && std::next(V->use_begin()) != V->use_end())
255     predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack);
256 
257   // Recursive descent into constants.
258   if (const Constant *C = dyn_cast<Constant>(V))
259     if (C->getNumOperands()) // Visit GlobalValues.
260       for (const Value *Op : C->operands())
261         if (isa<Constant>(Op)) // Visit GlobalValues.
262           predictValueUseListOrder(Op, F, OM, Stack);
263 }
264 
265 static UseListOrderStack predictUseListOrder(const Module *M) {
266   OrderMap OM = orderModule(M);
267 
268   // Use-list orders need to be serialized after all the users have been added
269   // to a value, or else the shuffles will be incomplete.  Store them per
270   // function in a stack.
271   //
272   // Aside from function order, the order of values doesn't matter much here.
273   UseListOrderStack Stack;
274 
275   // We want to visit the functions backward now so we can list function-local
276   // constants in the last Function they're used in.  Module-level constants
277   // have already been visited above.
278   for (const Function &F : make_range(M->rbegin(), M->rend())) {
279     if (F.isDeclaration())
280       continue;
281     for (const BasicBlock &BB : F)
282       predictValueUseListOrder(&BB, &F, OM, Stack);
283     for (const Argument &A : F.args())
284       predictValueUseListOrder(&A, &F, OM, Stack);
285     for (const BasicBlock &BB : F)
286       for (const Instruction &I : BB)
287         for (const Value *Op : I.operands())
288           if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues.
289             predictValueUseListOrder(Op, &F, OM, Stack);
290     for (const BasicBlock &BB : F)
291       for (const Instruction &I : BB)
292         predictValueUseListOrder(&I, &F, OM, Stack);
293   }
294 
295   // Visit globals last.
296   for (const GlobalVariable &G : M->globals())
297     predictValueUseListOrder(&G, nullptr, OM, Stack);
298   for (const Function &F : *M)
299     predictValueUseListOrder(&F, nullptr, OM, Stack);
300   for (const GlobalAlias &A : M->aliases())
301     predictValueUseListOrder(&A, nullptr, OM, Stack);
302   for (const GlobalIFunc &I : M->ifuncs())
303     predictValueUseListOrder(&I, nullptr, OM, Stack);
304   for (const GlobalVariable &G : M->globals())
305     if (G.hasInitializer())
306       predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack);
307   for (const GlobalAlias &A : M->aliases())
308     predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack);
309   for (const GlobalIFunc &I : M->ifuncs())
310     predictValueUseListOrder(I.getResolver(), nullptr, OM, Stack);
311   for (const Function &F : *M)
312     for (const Use &U : F.operands())
313       predictValueUseListOrder(U.get(), nullptr, OM, Stack);
314 
315   return Stack;
316 }
317 
318 static const Module *getModuleFromVal(const Value *V) {
319   if (const Argument *MA = dyn_cast<Argument>(V))
320     return MA->getParent() ? MA->getParent()->getParent() : nullptr;
321 
322   if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
323     return BB->getParent() ? BB->getParent()->getParent() : nullptr;
324 
325   if (const Instruction *I = dyn_cast<Instruction>(V)) {
326     const Function *M = I->getParent() ? I->getParent()->getParent() : nullptr;
327     return M ? M->getParent() : nullptr;
328   }
329 
330   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
331     return GV->getParent();
332 
333   if (const auto *MAV = dyn_cast<MetadataAsValue>(V)) {
334     for (const User *U : MAV->users())
335       if (isa<Instruction>(U))
336         if (const Module *M = getModuleFromVal(U))
337           return M;
338     return nullptr;
339   }
340 
341   return nullptr;
342 }
343 
344 static void PrintCallingConv(unsigned cc, raw_ostream &Out) {
345   switch (cc) {
346   default:                         Out << "cc" << cc; break;
347   case CallingConv::Fast:          Out << "fastcc"; break;
348   case CallingConv::Cold:          Out << "coldcc"; break;
349   case CallingConv::WebKit_JS:     Out << "webkit_jscc"; break;
350   case CallingConv::AnyReg:        Out << "anyregcc"; break;
351   case CallingConv::PreserveMost:  Out << "preserve_mostcc"; break;
352   case CallingConv::PreserveAll:   Out << "preserve_allcc"; break;
353   case CallingConv::CXX_FAST_TLS:  Out << "cxx_fast_tlscc"; break;
354   case CallingConv::GHC:           Out << "ghccc"; break;
355   case CallingConv::Tail:          Out << "tailcc"; break;
356   case CallingConv::CFGuard_Check: Out << "cfguard_checkcc"; break;
357   case CallingConv::X86_StdCall:   Out << "x86_stdcallcc"; break;
358   case CallingConv::X86_FastCall:  Out << "x86_fastcallcc"; break;
359   case CallingConv::X86_ThisCall:  Out << "x86_thiscallcc"; break;
360   case CallingConv::X86_RegCall:   Out << "x86_regcallcc"; break;
361   case CallingConv::X86_VectorCall:Out << "x86_vectorcallcc"; break;
362   case CallingConv::Intel_OCL_BI:  Out << "intel_ocl_bicc"; break;
363   case CallingConv::ARM_APCS:      Out << "arm_apcscc"; break;
364   case CallingConv::ARM_AAPCS:     Out << "arm_aapcscc"; break;
365   case CallingConv::ARM_AAPCS_VFP: Out << "arm_aapcs_vfpcc"; break;
366   case CallingConv::AArch64_VectorCall: Out << "aarch64_vector_pcs"; break;
367   case CallingConv::MSP430_INTR:   Out << "msp430_intrcc"; break;
368   case CallingConv::AVR_INTR:      Out << "avr_intrcc "; break;
369   case CallingConv::AVR_SIGNAL:    Out << "avr_signalcc "; break;
370   case CallingConv::PTX_Kernel:    Out << "ptx_kernel"; break;
371   case CallingConv::PTX_Device:    Out << "ptx_device"; break;
372   case CallingConv::X86_64_SysV:   Out << "x86_64_sysvcc"; break;
373   case CallingConv::Win64:         Out << "win64cc"; break;
374   case CallingConv::SPIR_FUNC:     Out << "spir_func"; break;
375   case CallingConv::SPIR_KERNEL:   Out << "spir_kernel"; break;
376   case CallingConv::Swift:         Out << "swiftcc"; break;
377   case CallingConv::X86_INTR:      Out << "x86_intrcc"; break;
378   case CallingConv::HHVM:          Out << "hhvmcc"; break;
379   case CallingConv::HHVM_C:        Out << "hhvm_ccc"; break;
380   case CallingConv::AMDGPU_VS:     Out << "amdgpu_vs"; break;
381   case CallingConv::AMDGPU_LS:     Out << "amdgpu_ls"; break;
382   case CallingConv::AMDGPU_HS:     Out << "amdgpu_hs"; break;
383   case CallingConv::AMDGPU_ES:     Out << "amdgpu_es"; break;
384   case CallingConv::AMDGPU_GS:     Out << "amdgpu_gs"; break;
385   case CallingConv::AMDGPU_PS:     Out << "amdgpu_ps"; break;
386   case CallingConv::AMDGPU_CS:     Out << "amdgpu_cs"; break;
387   case CallingConv::AMDGPU_KERNEL: Out << "amdgpu_kernel"; break;
388   }
389 }
390 
391 enum PrefixType {
392   GlobalPrefix,
393   ComdatPrefix,
394   LabelPrefix,
395   LocalPrefix,
396   NoPrefix
397 };
398 
399 void llvm::printLLVMNameWithoutPrefix(raw_ostream &OS, StringRef Name) {
400   assert(!Name.empty() && "Cannot get empty name!");
401 
402   // Scan the name to see if it needs quotes first.
403   bool NeedsQuotes = isdigit(static_cast<unsigned char>(Name[0]));
404   if (!NeedsQuotes) {
405     for (unsigned i = 0, e = Name.size(); i != e; ++i) {
406       // By making this unsigned, the value passed in to isalnum will always be
407       // in the range 0-255.  This is important when building with MSVC because
408       // its implementation will assert.  This situation can arise when dealing
409       // with UTF-8 multibyte characters.
410       unsigned char C = Name[i];
411       if (!isalnum(static_cast<unsigned char>(C)) && C != '-' && C != '.' &&
412           C != '_') {
413         NeedsQuotes = true;
414         break;
415       }
416     }
417   }
418 
419   // If we didn't need any quotes, just write out the name in one blast.
420   if (!NeedsQuotes) {
421     OS << Name;
422     return;
423   }
424 
425   // Okay, we need quotes.  Output the quotes and escape any scary characters as
426   // needed.
427   OS << '"';
428   printEscapedString(Name, OS);
429   OS << '"';
430 }
431 
432 /// Turn the specified name into an 'LLVM name', which is either prefixed with %
433 /// (if the string only contains simple characters) or is surrounded with ""'s
434 /// (if it has special chars in it). Print it out.
435 static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix) {
436   switch (Prefix) {
437   case NoPrefix:
438     break;
439   case GlobalPrefix:
440     OS << '@';
441     break;
442   case ComdatPrefix:
443     OS << '$';
444     break;
445   case LabelPrefix:
446     break;
447   case LocalPrefix:
448     OS << '%';
449     break;
450   }
451   printLLVMNameWithoutPrefix(OS, Name);
452 }
453 
454 /// Turn the specified name into an 'LLVM name', which is either prefixed with %
455 /// (if the string only contains simple characters) or is surrounded with ""'s
456 /// (if it has special chars in it). Print it out.
457 static void PrintLLVMName(raw_ostream &OS, const Value *V) {
458   PrintLLVMName(OS, V->getName(),
459                 isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
460 }
461 
462 namespace {
463 
464 class TypePrinting {
465 public:
466   TypePrinting(const Module *M = nullptr) : DeferredM(M) {}
467 
468   TypePrinting(const TypePrinting &) = delete;
469   TypePrinting &operator=(const TypePrinting &) = delete;
470 
471   /// The named types that are used by the current module.
472   TypeFinder &getNamedTypes();
473 
474   /// The numbered types, number to type mapping.
475   std::vector<StructType *> &getNumberedTypes();
476 
477   bool empty();
478 
479   void print(Type *Ty, raw_ostream &OS);
480 
481   void printStructBody(StructType *Ty, raw_ostream &OS);
482 
483 private:
484   void incorporateTypes();
485 
486   /// A module to process lazily when needed. Set to nullptr as soon as used.
487   const Module *DeferredM;
488 
489   TypeFinder NamedTypes;
490 
491   // The numbered types, along with their value.
492   DenseMap<StructType *, unsigned> Type2Number;
493 
494   std::vector<StructType *> NumberedTypes;
495 };
496 
497 } // end anonymous namespace
498 
499 TypeFinder &TypePrinting::getNamedTypes() {
500   incorporateTypes();
501   return NamedTypes;
502 }
503 
504 std::vector<StructType *> &TypePrinting::getNumberedTypes() {
505   incorporateTypes();
506 
507   // We know all the numbers that each type is used and we know that it is a
508   // dense assignment. Convert the map to an index table, if it's not done
509   // already (judging from the sizes):
510   if (NumberedTypes.size() == Type2Number.size())
511     return NumberedTypes;
512 
513   NumberedTypes.resize(Type2Number.size());
514   for (const auto &P : Type2Number) {
515     assert(P.second < NumberedTypes.size() && "Didn't get a dense numbering?");
516     assert(!NumberedTypes[P.second] && "Didn't get a unique numbering?");
517     NumberedTypes[P.second] = P.first;
518   }
519   return NumberedTypes;
520 }
521 
522 bool TypePrinting::empty() {
523   incorporateTypes();
524   return NamedTypes.empty() && Type2Number.empty();
525 }
526 
527 void TypePrinting::incorporateTypes() {
528   if (!DeferredM)
529     return;
530 
531   NamedTypes.run(*DeferredM, false);
532   DeferredM = nullptr;
533 
534   // The list of struct types we got back includes all the struct types, split
535   // the unnamed ones out to a numbering and remove the anonymous structs.
536   unsigned NextNumber = 0;
537 
538   std::vector<StructType*>::iterator NextToUse = NamedTypes.begin(), I, E;
539   for (I = NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) {
540     StructType *STy = *I;
541 
542     // Ignore anonymous types.
543     if (STy->isLiteral())
544       continue;
545 
546     if (STy->getName().empty())
547       Type2Number[STy] = NextNumber++;
548     else
549       *NextToUse++ = STy;
550   }
551 
552   NamedTypes.erase(NextToUse, NamedTypes.end());
553 }
554 
555 /// Write the specified type to the specified raw_ostream, making use of type
556 /// names or up references to shorten the type name where possible.
557 void TypePrinting::print(Type *Ty, raw_ostream &OS) {
558   switch (Ty->getTypeID()) {
559   case Type::VoidTyID:      OS << "void"; return;
560   case Type::HalfTyID:      OS << "half"; return;
561   case Type::FloatTyID:     OS << "float"; return;
562   case Type::DoubleTyID:    OS << "double"; return;
563   case Type::X86_FP80TyID:  OS << "x86_fp80"; return;
564   case Type::FP128TyID:     OS << "fp128"; return;
565   case Type::PPC_FP128TyID: OS << "ppc_fp128"; return;
566   case Type::LabelTyID:     OS << "label"; return;
567   case Type::MetadataTyID:  OS << "metadata"; return;
568   case Type::X86_MMXTyID:   OS << "x86_mmx"; return;
569   case Type::TokenTyID:     OS << "token"; return;
570   case Type::IntegerTyID:
571     OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
572     return;
573 
574   case Type::FunctionTyID: {
575     FunctionType *FTy = cast<FunctionType>(Ty);
576     print(FTy->getReturnType(), OS);
577     OS << " (";
578     for (FunctionType::param_iterator I = FTy->param_begin(),
579          E = FTy->param_end(); I != E; ++I) {
580       if (I != FTy->param_begin())
581         OS << ", ";
582       print(*I, OS);
583     }
584     if (FTy->isVarArg()) {
585       if (FTy->getNumParams()) OS << ", ";
586       OS << "...";
587     }
588     OS << ')';
589     return;
590   }
591   case Type::StructTyID: {
592     StructType *STy = cast<StructType>(Ty);
593 
594     if (STy->isLiteral())
595       return printStructBody(STy, OS);
596 
597     if (!STy->getName().empty())
598       return PrintLLVMName(OS, STy->getName(), LocalPrefix);
599 
600     incorporateTypes();
601     const auto I = Type2Number.find(STy);
602     if (I != Type2Number.end())
603       OS << '%' << I->second;
604     else  // Not enumerated, print the hex address.
605       OS << "%\"type " << STy << '\"';
606     return;
607   }
608   case Type::PointerTyID: {
609     PointerType *PTy = cast<PointerType>(Ty);
610     print(PTy->getElementType(), OS);
611     if (unsigned AddressSpace = PTy->getAddressSpace())
612       OS << " addrspace(" << AddressSpace << ')';
613     OS << '*';
614     return;
615   }
616   case Type::ArrayTyID: {
617     ArrayType *ATy = cast<ArrayType>(Ty);
618     OS << '[' << ATy->getNumElements() << " x ";
619     print(ATy->getElementType(), OS);
620     OS << ']';
621     return;
622   }
623   case Type::VectorTyID: {
624     VectorType *PTy = cast<VectorType>(Ty);
625     OS << "<";
626     if (PTy->isScalable())
627       OS << "vscale x ";
628     OS << PTy->getNumElements() << " x ";
629     print(PTy->getElementType(), OS);
630     OS << '>';
631     return;
632   }
633   }
634   llvm_unreachable("Invalid TypeID");
635 }
636 
637 void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) {
638   if (STy->isOpaque()) {
639     OS << "opaque";
640     return;
641   }
642 
643   if (STy->isPacked())
644     OS << '<';
645 
646   if (STy->getNumElements() == 0) {
647     OS << "{}";
648   } else {
649     StructType::element_iterator I = STy->element_begin();
650     OS << "{ ";
651     print(*I++, OS);
652     for (StructType::element_iterator E = STy->element_end(); I != E; ++I) {
653       OS << ", ";
654       print(*I, OS);
655     }
656 
657     OS << " }";
658   }
659   if (STy->isPacked())
660     OS << '>';
661 }
662 
663 namespace llvm {
664 
665 //===----------------------------------------------------------------------===//
666 // SlotTracker Class: Enumerate slot numbers for unnamed values
667 //===----------------------------------------------------------------------===//
668 /// This class provides computation of slot numbers for LLVM Assembly writing.
669 ///
670 class SlotTracker {
671 public:
672   /// ValueMap - A mapping of Values to slot numbers.
673   using ValueMap = DenseMap<const Value *, unsigned>;
674 
675 private:
676   /// TheModule - The module for which we are holding slot numbers.
677   const Module* TheModule;
678 
679   /// TheFunction - The function for which we are holding slot numbers.
680   const Function* TheFunction = nullptr;
681   bool FunctionProcessed = false;
682   bool ShouldInitializeAllMetadata;
683 
684   /// The summary index for which we are holding slot numbers.
685   const ModuleSummaryIndex *TheIndex = nullptr;
686 
687   /// mMap - The slot map for the module level data.
688   ValueMap mMap;
689   unsigned mNext = 0;
690 
691   /// fMap - The slot map for the function level data.
692   ValueMap fMap;
693   unsigned fNext = 0;
694 
695   /// mdnMap - Map for MDNodes.
696   DenseMap<const MDNode*, unsigned> mdnMap;
697   unsigned mdnNext = 0;
698 
699   /// asMap - The slot map for attribute sets.
700   DenseMap<AttributeSet, unsigned> asMap;
701   unsigned asNext = 0;
702 
703   /// ModulePathMap - The slot map for Module paths used in the summary index.
704   StringMap<unsigned> ModulePathMap;
705   unsigned ModulePathNext = 0;
706 
707   /// GUIDMap - The slot map for GUIDs used in the summary index.
708   DenseMap<GlobalValue::GUID, unsigned> GUIDMap;
709   unsigned GUIDNext = 0;
710 
711   /// TypeIdMap - The slot map for type ids used in the summary index.
712   StringMap<unsigned> TypeIdMap;
713   unsigned TypeIdNext = 0;
714 
715 public:
716   /// Construct from a module.
717   ///
718   /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
719   /// functions, giving correct numbering for metadata referenced only from
720   /// within a function (even if no functions have been initialized).
721   explicit SlotTracker(const Module *M,
722                        bool ShouldInitializeAllMetadata = false);
723 
724   /// Construct from a function, starting out in incorp state.
725   ///
726   /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
727   /// functions, giving correct numbering for metadata referenced only from
728   /// within a function (even if no functions have been initialized).
729   explicit SlotTracker(const Function *F,
730                        bool ShouldInitializeAllMetadata = false);
731 
732   /// Construct from a module summary index.
733   explicit SlotTracker(const ModuleSummaryIndex *Index);
734 
735   SlotTracker(const SlotTracker &) = delete;
736   SlotTracker &operator=(const SlotTracker &) = delete;
737 
738   /// Return the slot number of the specified value in it's type
739   /// plane.  If something is not in the SlotTracker, return -1.
740   int getLocalSlot(const Value *V);
741   int getGlobalSlot(const GlobalValue *V);
742   int getMetadataSlot(const MDNode *N);
743   int getAttributeGroupSlot(AttributeSet AS);
744   int getModulePathSlot(StringRef Path);
745   int getGUIDSlot(GlobalValue::GUID GUID);
746   int getTypeIdSlot(StringRef Id);
747 
748   /// If you'd like to deal with a function instead of just a module, use
749   /// this method to get its data into the SlotTracker.
750   void incorporateFunction(const Function *F) {
751     TheFunction = F;
752     FunctionProcessed = false;
753   }
754 
755   const Function *getFunction() const { return TheFunction; }
756 
757   /// After calling incorporateFunction, use this method to remove the
758   /// most recently incorporated function from the SlotTracker. This
759   /// will reset the state of the machine back to just the module contents.
760   void purgeFunction();
761 
762   /// MDNode map iterators.
763   using mdn_iterator = DenseMap<const MDNode*, unsigned>::iterator;
764 
765   mdn_iterator mdn_begin() { return mdnMap.begin(); }
766   mdn_iterator mdn_end() { return mdnMap.end(); }
767   unsigned mdn_size() const { return mdnMap.size(); }
768   bool mdn_empty() const { return mdnMap.empty(); }
769 
770   /// AttributeSet map iterators.
771   using as_iterator = DenseMap<AttributeSet, unsigned>::iterator;
772 
773   as_iterator as_begin()   { return asMap.begin(); }
774   as_iterator as_end()     { return asMap.end(); }
775   unsigned as_size() const { return asMap.size(); }
776   bool as_empty() const    { return asMap.empty(); }
777 
778   /// GUID map iterators.
779   using guid_iterator = DenseMap<GlobalValue::GUID, unsigned>::iterator;
780 
781   /// These functions do the actual initialization.
782   inline void initializeIfNeeded();
783   void initializeIndexIfNeeded();
784 
785   // Implementation Details
786 private:
787   /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
788   void CreateModuleSlot(const GlobalValue *V);
789 
790   /// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
791   void CreateMetadataSlot(const MDNode *N);
792 
793   /// CreateFunctionSlot - Insert the specified Value* into the slot table.
794   void CreateFunctionSlot(const Value *V);
795 
796   /// Insert the specified AttributeSet into the slot table.
797   void CreateAttributeSetSlot(AttributeSet AS);
798 
799   inline void CreateModulePathSlot(StringRef Path);
800   void CreateGUIDSlot(GlobalValue::GUID GUID);
801   void CreateTypeIdSlot(StringRef Id);
802 
803   /// Add all of the module level global variables (and their initializers)
804   /// and function declarations, but not the contents of those functions.
805   void processModule();
806   void processIndex();
807 
808   /// Add all of the functions arguments, basic blocks, and instructions.
809   void processFunction();
810 
811   /// Add the metadata directly attached to a GlobalObject.
812   void processGlobalObjectMetadata(const GlobalObject &GO);
813 
814   /// Add all of the metadata from a function.
815   void processFunctionMetadata(const Function &F);
816 
817   /// Add all of the metadata from an instruction.
818   void processInstructionMetadata(const Instruction &I);
819 };
820 
821 } // end namespace llvm
822 
823 ModuleSlotTracker::ModuleSlotTracker(SlotTracker &Machine, const Module *M,
824                                      const Function *F)
825     : M(M), F(F), Machine(&Machine) {}
826 
827 ModuleSlotTracker::ModuleSlotTracker(const Module *M,
828                                      bool ShouldInitializeAllMetadata)
829     : ShouldCreateStorage(M),
830       ShouldInitializeAllMetadata(ShouldInitializeAllMetadata), M(M) {}
831 
832 ModuleSlotTracker::~ModuleSlotTracker() = default;
833 
834 SlotTracker *ModuleSlotTracker::getMachine() {
835   if (!ShouldCreateStorage)
836     return Machine;
837 
838   ShouldCreateStorage = false;
839   MachineStorage =
840       std::make_unique<SlotTracker>(M, ShouldInitializeAllMetadata);
841   Machine = MachineStorage.get();
842   return Machine;
843 }
844 
845 void ModuleSlotTracker::incorporateFunction(const Function &F) {
846   // Using getMachine() may lazily create the slot tracker.
847   if (!getMachine())
848     return;
849 
850   // Nothing to do if this is the right function already.
851   if (this->F == &F)
852     return;
853   if (this->F)
854     Machine->purgeFunction();
855   Machine->incorporateFunction(&F);
856   this->F = &F;
857 }
858 
859 int ModuleSlotTracker::getLocalSlot(const Value *V) {
860   assert(F && "No function incorporated");
861   return Machine->getLocalSlot(V);
862 }
863 
864 static SlotTracker *createSlotTracker(const Value *V) {
865   if (const Argument *FA = dyn_cast<Argument>(V))
866     return new SlotTracker(FA->getParent());
867 
868   if (const Instruction *I = dyn_cast<Instruction>(V))
869     if (I->getParent())
870       return new SlotTracker(I->getParent()->getParent());
871 
872   if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
873     return new SlotTracker(BB->getParent());
874 
875   if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
876     return new SlotTracker(GV->getParent());
877 
878   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
879     return new SlotTracker(GA->getParent());
880 
881   if (const GlobalIFunc *GIF = dyn_cast<GlobalIFunc>(V))
882     return new SlotTracker(GIF->getParent());
883 
884   if (const Function *Func = dyn_cast<Function>(V))
885     return new SlotTracker(Func);
886 
887   return nullptr;
888 }
889 
890 #if 0
891 #define ST_DEBUG(X) dbgs() << X
892 #else
893 #define ST_DEBUG(X)
894 #endif
895 
896 // Module level constructor. Causes the contents of the Module (sans functions)
897 // to be added to the slot table.
898 SlotTracker::SlotTracker(const Module *M, bool ShouldInitializeAllMetadata)
899     : TheModule(M), ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {}
900 
901 // Function level constructor. Causes the contents of the Module and the one
902 // function provided to be added to the slot table.
903 SlotTracker::SlotTracker(const Function *F, bool ShouldInitializeAllMetadata)
904     : TheModule(F ? F->getParent() : nullptr), TheFunction(F),
905       ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {}
906 
907 SlotTracker::SlotTracker(const ModuleSummaryIndex *Index)
908     : TheModule(nullptr), ShouldInitializeAllMetadata(false), TheIndex(Index) {}
909 
910 inline void SlotTracker::initializeIfNeeded() {
911   if (TheModule) {
912     processModule();
913     TheModule = nullptr; ///< Prevent re-processing next time we're called.
914   }
915 
916   if (TheFunction && !FunctionProcessed)
917     processFunction();
918 }
919 
920 void SlotTracker::initializeIndexIfNeeded() {
921   if (!TheIndex)
922     return;
923   processIndex();
924   TheIndex = nullptr; ///< Prevent re-processing next time we're called.
925 }
926 
927 // Iterate through all the global variables, functions, and global
928 // variable initializers and create slots for them.
929 void SlotTracker::processModule() {
930   ST_DEBUG("begin processModule!\n");
931 
932   // Add all of the unnamed global variables to the value table.
933   for (const GlobalVariable &Var : TheModule->globals()) {
934     if (!Var.hasName())
935       CreateModuleSlot(&Var);
936     processGlobalObjectMetadata(Var);
937     auto Attrs = Var.getAttributes();
938     if (Attrs.hasAttributes())
939       CreateAttributeSetSlot(Attrs);
940   }
941 
942   for (const GlobalAlias &A : TheModule->aliases()) {
943     if (!A.hasName())
944       CreateModuleSlot(&A);
945   }
946 
947   for (const GlobalIFunc &I : TheModule->ifuncs()) {
948     if (!I.hasName())
949       CreateModuleSlot(&I);
950   }
951 
952   // Add metadata used by named metadata.
953   for (const NamedMDNode &NMD : TheModule->named_metadata()) {
954     for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i)
955       CreateMetadataSlot(NMD.getOperand(i));
956   }
957 
958   for (const Function &F : *TheModule) {
959     if (!F.hasName())
960       // Add all the unnamed functions to the table.
961       CreateModuleSlot(&F);
962 
963     if (ShouldInitializeAllMetadata)
964       processFunctionMetadata(F);
965 
966     // Add all the function attributes to the table.
967     // FIXME: Add attributes of other objects?
968     AttributeSet FnAttrs = F.getAttributes().getFnAttributes();
969     if (FnAttrs.hasAttributes())
970       CreateAttributeSetSlot(FnAttrs);
971   }
972 
973   ST_DEBUG("end processModule!\n");
974 }
975 
976 // Process the arguments, basic blocks, and instructions  of a function.
977 void SlotTracker::processFunction() {
978   ST_DEBUG("begin processFunction!\n");
979   fNext = 0;
980 
981   // Process function metadata if it wasn't hit at the module-level.
982   if (!ShouldInitializeAllMetadata)
983     processFunctionMetadata(*TheFunction);
984 
985   // Add all the function arguments with no names.
986   for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
987       AE = TheFunction->arg_end(); AI != AE; ++AI)
988     if (!AI->hasName())
989       CreateFunctionSlot(&*AI);
990 
991   ST_DEBUG("Inserting Instructions:\n");
992 
993   // Add all of the basic blocks and instructions with no names.
994   for (auto &BB : *TheFunction) {
995     if (!BB.hasName())
996       CreateFunctionSlot(&BB);
997 
998     for (auto &I : BB) {
999       if (!I.getType()->isVoidTy() && !I.hasName())
1000         CreateFunctionSlot(&I);
1001 
1002       // We allow direct calls to any llvm.foo function here, because the
1003       // target may not be linked into the optimizer.
1004       if (const auto *Call = dyn_cast<CallBase>(&I)) {
1005         // Add all the call attributes to the table.
1006         AttributeSet Attrs = Call->getAttributes().getFnAttributes();
1007         if (Attrs.hasAttributes())
1008           CreateAttributeSetSlot(Attrs);
1009       }
1010     }
1011   }
1012 
1013   FunctionProcessed = true;
1014 
1015   ST_DEBUG("end processFunction!\n");
1016 }
1017 
1018 // Iterate through all the GUID in the index and create slots for them.
1019 void SlotTracker::processIndex() {
1020   ST_DEBUG("begin processIndex!\n");
1021   assert(TheIndex);
1022 
1023   // The first block of slots are just the module ids, which start at 0 and are
1024   // assigned consecutively. Since the StringMap iteration order isn't
1025   // guaranteed, use a std::map to order by module ID before assigning slots.
1026   std::map<uint64_t, StringRef> ModuleIdToPathMap;
1027   for (auto &ModPath : TheIndex->modulePaths())
1028     ModuleIdToPathMap[ModPath.second.first] = ModPath.first();
1029   for (auto &ModPair : ModuleIdToPathMap)
1030     CreateModulePathSlot(ModPair.second);
1031 
1032   // Start numbering the GUIDs after the module ids.
1033   GUIDNext = ModulePathNext;
1034 
1035   for (auto &GlobalList : *TheIndex)
1036     CreateGUIDSlot(GlobalList.first);
1037 
1038   // Start numbering the TypeIds after the GUIDs.
1039   TypeIdNext = GUIDNext;
1040 
1041   for (auto TidIter = TheIndex->typeIds().begin();
1042        TidIter != TheIndex->typeIds().end(); TidIter++)
1043     CreateTypeIdSlot(TidIter->second.first);
1044 
1045   for (auto &TId : TheIndex->typeIdCompatibleVtableMap())
1046     CreateGUIDSlot(GlobalValue::getGUID(TId.first));
1047 
1048   ST_DEBUG("end processIndex!\n");
1049 }
1050 
1051 void SlotTracker::processGlobalObjectMetadata(const GlobalObject &GO) {
1052   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1053   GO.getAllMetadata(MDs);
1054   for (auto &MD : MDs)
1055     CreateMetadataSlot(MD.second);
1056 }
1057 
1058 void SlotTracker::processFunctionMetadata(const Function &F) {
1059   processGlobalObjectMetadata(F);
1060   for (auto &BB : F) {
1061     for (auto &I : BB)
1062       processInstructionMetadata(I);
1063   }
1064 }
1065 
1066 void SlotTracker::processInstructionMetadata(const Instruction &I) {
1067   // Process metadata used directly by intrinsics.
1068   if (const CallInst *CI = dyn_cast<CallInst>(&I))
1069     if (Function *F = CI->getCalledFunction())
1070       if (F->isIntrinsic())
1071         for (auto &Op : I.operands())
1072           if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
1073             if (MDNode *N = dyn_cast<MDNode>(V->getMetadata()))
1074               CreateMetadataSlot(N);
1075 
1076   // Process metadata attached to this instruction.
1077   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1078   I.getAllMetadata(MDs);
1079   for (auto &MD : MDs)
1080     CreateMetadataSlot(MD.second);
1081 }
1082 
1083 /// Clean up after incorporating a function. This is the only way to get out of
1084 /// the function incorporation state that affects get*Slot/Create*Slot. Function
1085 /// incorporation state is indicated by TheFunction != 0.
1086 void SlotTracker::purgeFunction() {
1087   ST_DEBUG("begin purgeFunction!\n");
1088   fMap.clear(); // Simply discard the function level map
1089   TheFunction = nullptr;
1090   FunctionProcessed = false;
1091   ST_DEBUG("end purgeFunction!\n");
1092 }
1093 
1094 /// getGlobalSlot - Get the slot number of a global value.
1095 int SlotTracker::getGlobalSlot(const GlobalValue *V) {
1096   // Check for uninitialized state and do lazy initialization.
1097   initializeIfNeeded();
1098 
1099   // Find the value in the module map
1100   ValueMap::iterator MI = mMap.find(V);
1101   return MI == mMap.end() ? -1 : (int)MI->second;
1102 }
1103 
1104 /// getMetadataSlot - Get the slot number of a MDNode.
1105 int SlotTracker::getMetadataSlot(const MDNode *N) {
1106   // Check for uninitialized state and do lazy initialization.
1107   initializeIfNeeded();
1108 
1109   // Find the MDNode in the module map
1110   mdn_iterator MI = mdnMap.find(N);
1111   return MI == mdnMap.end() ? -1 : (int)MI->second;
1112 }
1113 
1114 /// getLocalSlot - Get the slot number for a value that is local to a function.
1115 int SlotTracker::getLocalSlot(const Value *V) {
1116   assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
1117 
1118   // Check for uninitialized state and do lazy initialization.
1119   initializeIfNeeded();
1120 
1121   ValueMap::iterator FI = fMap.find(V);
1122   return FI == fMap.end() ? -1 : (int)FI->second;
1123 }
1124 
1125 int SlotTracker::getAttributeGroupSlot(AttributeSet AS) {
1126   // Check for uninitialized state and do lazy initialization.
1127   initializeIfNeeded();
1128 
1129   // Find the AttributeSet in the module map.
1130   as_iterator AI = asMap.find(AS);
1131   return AI == asMap.end() ? -1 : (int)AI->second;
1132 }
1133 
1134 int SlotTracker::getModulePathSlot(StringRef Path) {
1135   // Check for uninitialized state and do lazy initialization.
1136   initializeIndexIfNeeded();
1137 
1138   // Find the Module path in the map
1139   auto I = ModulePathMap.find(Path);
1140   return I == ModulePathMap.end() ? -1 : (int)I->second;
1141 }
1142 
1143 int SlotTracker::getGUIDSlot(GlobalValue::GUID GUID) {
1144   // Check for uninitialized state and do lazy initialization.
1145   initializeIndexIfNeeded();
1146 
1147   // Find the GUID in the map
1148   guid_iterator I = GUIDMap.find(GUID);
1149   return I == GUIDMap.end() ? -1 : (int)I->second;
1150 }
1151 
1152 int SlotTracker::getTypeIdSlot(StringRef Id) {
1153   // Check for uninitialized state and do lazy initialization.
1154   initializeIndexIfNeeded();
1155 
1156   // Find the TypeId string in the map
1157   auto I = TypeIdMap.find(Id);
1158   return I == TypeIdMap.end() ? -1 : (int)I->second;
1159 }
1160 
1161 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
1162 void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
1163   assert(V && "Can't insert a null Value into SlotTracker!");
1164   assert(!V->getType()->isVoidTy() && "Doesn't need a slot!");
1165   assert(!V->hasName() && "Doesn't need a slot!");
1166 
1167   unsigned DestSlot = mNext++;
1168   mMap[V] = DestSlot;
1169 
1170   ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
1171            DestSlot << " [");
1172   // G = Global, F = Function, A = Alias, I = IFunc, o = other
1173   ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
1174             (isa<Function>(V) ? 'F' :
1175              (isa<GlobalAlias>(V) ? 'A' :
1176               (isa<GlobalIFunc>(V) ? 'I' : 'o')))) << "]\n");
1177 }
1178 
1179 /// CreateSlot - Create a new slot for the specified value if it has no name.
1180 void SlotTracker::CreateFunctionSlot(const Value *V) {
1181   assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!");
1182 
1183   unsigned DestSlot = fNext++;
1184   fMap[V] = DestSlot;
1185 
1186   // G = Global, F = Function, o = other
1187   ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
1188            DestSlot << " [o]\n");
1189 }
1190 
1191 /// CreateModuleSlot - Insert the specified MDNode* into the slot table.
1192 void SlotTracker::CreateMetadataSlot(const MDNode *N) {
1193   assert(N && "Can't insert a null Value into SlotTracker!");
1194 
1195   // Don't make slots for DIExpressions. We just print them inline everywhere.
1196   if (isa<DIExpression>(N))
1197     return;
1198 
1199   unsigned DestSlot = mdnNext;
1200   if (!mdnMap.insert(std::make_pair(N, DestSlot)).second)
1201     return;
1202   ++mdnNext;
1203 
1204   // Recursively add any MDNodes referenced by operands.
1205   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1206     if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i)))
1207       CreateMetadataSlot(Op);
1208 }
1209 
1210 void SlotTracker::CreateAttributeSetSlot(AttributeSet AS) {
1211   assert(AS.hasAttributes() && "Doesn't need a slot!");
1212 
1213   as_iterator I = asMap.find(AS);
1214   if (I != asMap.end())
1215     return;
1216 
1217   unsigned DestSlot = asNext++;
1218   asMap[AS] = DestSlot;
1219 }
1220 
1221 /// Create a new slot for the specified Module
1222 void SlotTracker::CreateModulePathSlot(StringRef Path) {
1223   ModulePathMap[Path] = ModulePathNext++;
1224 }
1225 
1226 /// Create a new slot for the specified GUID
1227 void SlotTracker::CreateGUIDSlot(GlobalValue::GUID GUID) {
1228   GUIDMap[GUID] = GUIDNext++;
1229 }
1230 
1231 /// Create a new slot for the specified Id
1232 void SlotTracker::CreateTypeIdSlot(StringRef Id) {
1233   TypeIdMap[Id] = TypeIdNext++;
1234 }
1235 
1236 //===----------------------------------------------------------------------===//
1237 // AsmWriter Implementation
1238 //===----------------------------------------------------------------------===//
1239 
1240 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
1241                                    TypePrinting *TypePrinter,
1242                                    SlotTracker *Machine,
1243                                    const Module *Context);
1244 
1245 static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
1246                                    TypePrinting *TypePrinter,
1247                                    SlotTracker *Machine, const Module *Context,
1248                                    bool FromValue = false);
1249 
1250 static void WriteOptimizationInfo(raw_ostream &Out, const User *U) {
1251   if (const FPMathOperator *FPO = dyn_cast<const FPMathOperator>(U)) {
1252     // 'Fast' is an abbreviation for all fast-math-flags.
1253     if (FPO->isFast())
1254       Out << " fast";
1255     else {
1256       if (FPO->hasAllowReassoc())
1257         Out << " reassoc";
1258       if (FPO->hasNoNaNs())
1259         Out << " nnan";
1260       if (FPO->hasNoInfs())
1261         Out << " ninf";
1262       if (FPO->hasNoSignedZeros())
1263         Out << " nsz";
1264       if (FPO->hasAllowReciprocal())
1265         Out << " arcp";
1266       if (FPO->hasAllowContract())
1267         Out << " contract";
1268       if (FPO->hasApproxFunc())
1269         Out << " afn";
1270     }
1271   }
1272 
1273   if (const OverflowingBinaryOperator *OBO =
1274         dyn_cast<OverflowingBinaryOperator>(U)) {
1275     if (OBO->hasNoUnsignedWrap())
1276       Out << " nuw";
1277     if (OBO->hasNoSignedWrap())
1278       Out << " nsw";
1279   } else if (const PossiblyExactOperator *Div =
1280                dyn_cast<PossiblyExactOperator>(U)) {
1281     if (Div->isExact())
1282       Out << " exact";
1283   } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
1284     if (GEP->isInBounds())
1285       Out << " inbounds";
1286   }
1287 }
1288 
1289 static void WriteConstantInternal(raw_ostream &Out, const Constant *CV,
1290                                   TypePrinting &TypePrinter,
1291                                   SlotTracker *Machine,
1292                                   const Module *Context) {
1293   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1294     if (CI->getType()->isIntegerTy(1)) {
1295       Out << (CI->getZExtValue() ? "true" : "false");
1296       return;
1297     }
1298     Out << CI->getValue();
1299     return;
1300   }
1301 
1302   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
1303     const APFloat &APF = CFP->getValueAPF();
1304     if (&APF.getSemantics() == &APFloat::IEEEsingle() ||
1305         &APF.getSemantics() == &APFloat::IEEEdouble()) {
1306       // We would like to output the FP constant value in exponential notation,
1307       // but we cannot do this if doing so will lose precision.  Check here to
1308       // make sure that we only output it in exponential format if we can parse
1309       // the value back and get the same value.
1310       //
1311       bool ignored;
1312       bool isDouble = &APF.getSemantics() == &APFloat::IEEEdouble();
1313       bool isInf = APF.isInfinity();
1314       bool isNaN = APF.isNaN();
1315       if (!isInf && !isNaN) {
1316         double Val = isDouble ? APF.convertToDouble() : APF.convertToFloat();
1317         SmallString<128> StrVal;
1318         APF.toString(StrVal, 6, 0, false);
1319         // Check to make sure that the stringized number is not some string like
1320         // "Inf" or NaN, that atof will accept, but the lexer will not.  Check
1321         // that the string matches the "[-+]?[0-9]" regex.
1322         //
1323         assert(((StrVal[0] >= '0' && StrVal[0] <= '9') ||
1324                 ((StrVal[0] == '-' || StrVal[0] == '+') &&
1325                  (StrVal[1] >= '0' && StrVal[1] <= '9'))) &&
1326                "[-+]?[0-9] regex does not match!");
1327         // Reparse stringized version!
1328         if (APFloat(APFloat::IEEEdouble(), StrVal).convertToDouble() == Val) {
1329           Out << StrVal;
1330           return;
1331         }
1332       }
1333       // Otherwise we could not reparse it to exactly the same value, so we must
1334       // output the string in hexadecimal format!  Note that loading and storing
1335       // floating point types changes the bits of NaNs on some hosts, notably
1336       // x86, so we must not use these types.
1337       static_assert(sizeof(double) == sizeof(uint64_t),
1338                     "assuming that double is 64 bits!");
1339       APFloat apf = APF;
1340       // Floats are represented in ASCII IR as double, convert.
1341       if (!isDouble)
1342         apf.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
1343                           &ignored);
1344       Out << format_hex(apf.bitcastToAPInt().getZExtValue(), 0, /*Upper=*/true);
1345       return;
1346     }
1347 
1348     // Either half, or some form of long double.
1349     // These appear as a magic letter identifying the type, then a
1350     // fixed number of hex digits.
1351     Out << "0x";
1352     APInt API = APF.bitcastToAPInt();
1353     if (&APF.getSemantics() == &APFloat::x87DoubleExtended()) {
1354       Out << 'K';
1355       Out << format_hex_no_prefix(API.getHiBits(16).getZExtValue(), 4,
1356                                   /*Upper=*/true);
1357       Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1358                                   /*Upper=*/true);
1359       return;
1360     } else if (&APF.getSemantics() == &APFloat::IEEEquad()) {
1361       Out << 'L';
1362       Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1363                                   /*Upper=*/true);
1364       Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16,
1365                                   /*Upper=*/true);
1366     } else if (&APF.getSemantics() == &APFloat::PPCDoubleDouble()) {
1367       Out << 'M';
1368       Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1369                                   /*Upper=*/true);
1370       Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16,
1371                                   /*Upper=*/true);
1372     } else if (&APF.getSemantics() == &APFloat::IEEEhalf()) {
1373       Out << 'H';
1374       Out << format_hex_no_prefix(API.getZExtValue(), 4,
1375                                   /*Upper=*/true);
1376     } else
1377       llvm_unreachable("Unsupported floating point type");
1378     return;
1379   }
1380 
1381   if (isa<ConstantAggregateZero>(CV)) {
1382     Out << "zeroinitializer";
1383     return;
1384   }
1385 
1386   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
1387     Out << "blockaddress(";
1388     WriteAsOperandInternal(Out, BA->getFunction(), &TypePrinter, Machine,
1389                            Context);
1390     Out << ", ";
1391     WriteAsOperandInternal(Out, BA->getBasicBlock(), &TypePrinter, Machine,
1392                            Context);
1393     Out << ")";
1394     return;
1395   }
1396 
1397   if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
1398     Type *ETy = CA->getType()->getElementType();
1399     Out << '[';
1400     TypePrinter.print(ETy, Out);
1401     Out << ' ';
1402     WriteAsOperandInternal(Out, CA->getOperand(0),
1403                            &TypePrinter, Machine,
1404                            Context);
1405     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
1406       Out << ", ";
1407       TypePrinter.print(ETy, Out);
1408       Out << ' ';
1409       WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine,
1410                              Context);
1411     }
1412     Out << ']';
1413     return;
1414   }
1415 
1416   if (const ConstantDataArray *CA = dyn_cast<ConstantDataArray>(CV)) {
1417     // As a special case, print the array as a string if it is an array of
1418     // i8 with ConstantInt values.
1419     if (CA->isString()) {
1420       Out << "c\"";
1421       printEscapedString(CA->getAsString(), Out);
1422       Out << '"';
1423       return;
1424     }
1425 
1426     Type *ETy = CA->getType()->getElementType();
1427     Out << '[';
1428     TypePrinter.print(ETy, Out);
1429     Out << ' ';
1430     WriteAsOperandInternal(Out, CA->getElementAsConstant(0),
1431                            &TypePrinter, Machine,
1432                            Context);
1433     for (unsigned i = 1, e = CA->getNumElements(); i != e; ++i) {
1434       Out << ", ";
1435       TypePrinter.print(ETy, Out);
1436       Out << ' ';
1437       WriteAsOperandInternal(Out, CA->getElementAsConstant(i), &TypePrinter,
1438                              Machine, Context);
1439     }
1440     Out << ']';
1441     return;
1442   }
1443 
1444   if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
1445     if (CS->getType()->isPacked())
1446       Out << '<';
1447     Out << '{';
1448     unsigned N = CS->getNumOperands();
1449     if (N) {
1450       Out << ' ';
1451       TypePrinter.print(CS->getOperand(0)->getType(), Out);
1452       Out << ' ';
1453 
1454       WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine,
1455                              Context);
1456 
1457       for (unsigned i = 1; i < N; i++) {
1458         Out << ", ";
1459         TypePrinter.print(CS->getOperand(i)->getType(), Out);
1460         Out << ' ';
1461 
1462         WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine,
1463                                Context);
1464       }
1465       Out << ' ';
1466     }
1467 
1468     Out << '}';
1469     if (CS->getType()->isPacked())
1470       Out << '>';
1471     return;
1472   }
1473 
1474   if (isa<ConstantVector>(CV) || isa<ConstantDataVector>(CV)) {
1475     Type *ETy = CV->getType()->getVectorElementType();
1476     Out << '<';
1477     TypePrinter.print(ETy, Out);
1478     Out << ' ';
1479     WriteAsOperandInternal(Out, CV->getAggregateElement(0U), &TypePrinter,
1480                            Machine, Context);
1481     for (unsigned i = 1, e = CV->getType()->getVectorNumElements(); i != e;++i){
1482       Out << ", ";
1483       TypePrinter.print(ETy, Out);
1484       Out << ' ';
1485       WriteAsOperandInternal(Out, CV->getAggregateElement(i), &TypePrinter,
1486                              Machine, Context);
1487     }
1488     Out << '>';
1489     return;
1490   }
1491 
1492   if (isa<ConstantPointerNull>(CV)) {
1493     Out << "null";
1494     return;
1495   }
1496 
1497   if (isa<ConstantTokenNone>(CV)) {
1498     Out << "none";
1499     return;
1500   }
1501 
1502   if (isa<UndefValue>(CV)) {
1503     Out << "undef";
1504     return;
1505   }
1506 
1507   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
1508     Out << CE->getOpcodeName();
1509     WriteOptimizationInfo(Out, CE);
1510     if (CE->isCompare())
1511       Out << ' ' << CmpInst::getPredicateName(
1512                         static_cast<CmpInst::Predicate>(CE->getPredicate()));
1513     Out << " (";
1514 
1515     Optional<unsigned> InRangeOp;
1516     if (const GEPOperator *GEP = dyn_cast<GEPOperator>(CE)) {
1517       TypePrinter.print(GEP->getSourceElementType(), Out);
1518       Out << ", ";
1519       InRangeOp = GEP->getInRangeIndex();
1520       if (InRangeOp)
1521         ++*InRangeOp;
1522     }
1523 
1524     for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
1525       if (InRangeOp && unsigned(OI - CE->op_begin()) == *InRangeOp)
1526         Out << "inrange ";
1527       TypePrinter.print((*OI)->getType(), Out);
1528       Out << ' ';
1529       WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine, Context);
1530       if (OI+1 != CE->op_end())
1531         Out << ", ";
1532     }
1533 
1534     if (CE->hasIndices()) {
1535       ArrayRef<unsigned> Indices = CE->getIndices();
1536       for (unsigned i = 0, e = Indices.size(); i != e; ++i)
1537         Out << ", " << Indices[i];
1538     }
1539 
1540     if (CE->isCast()) {
1541       Out << " to ";
1542       TypePrinter.print(CE->getType(), Out);
1543     }
1544 
1545     Out << ')';
1546     return;
1547   }
1548 
1549   Out << "<placeholder or erroneous Constant>";
1550 }
1551 
1552 static void writeMDTuple(raw_ostream &Out, const MDTuple *Node,
1553                          TypePrinting *TypePrinter, SlotTracker *Machine,
1554                          const Module *Context) {
1555   Out << "!{";
1556   for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) {
1557     const Metadata *MD = Node->getOperand(mi);
1558     if (!MD)
1559       Out << "null";
1560     else if (auto *MDV = dyn_cast<ValueAsMetadata>(MD)) {
1561       Value *V = MDV->getValue();
1562       TypePrinter->print(V->getType(), Out);
1563       Out << ' ';
1564       WriteAsOperandInternal(Out, V, TypePrinter, Machine, Context);
1565     } else {
1566       WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context);
1567     }
1568     if (mi + 1 != me)
1569       Out << ", ";
1570   }
1571 
1572   Out << "}";
1573 }
1574 
1575 namespace {
1576 
1577 struct FieldSeparator {
1578   bool Skip = true;
1579   const char *Sep;
1580 
1581   FieldSeparator(const char *Sep = ", ") : Sep(Sep) {}
1582 };
1583 
1584 raw_ostream &operator<<(raw_ostream &OS, FieldSeparator &FS) {
1585   if (FS.Skip) {
1586     FS.Skip = false;
1587     return OS;
1588   }
1589   return OS << FS.Sep;
1590 }
1591 
1592 struct MDFieldPrinter {
1593   raw_ostream &Out;
1594   FieldSeparator FS;
1595   TypePrinting *TypePrinter = nullptr;
1596   SlotTracker *Machine = nullptr;
1597   const Module *Context = nullptr;
1598 
1599   explicit MDFieldPrinter(raw_ostream &Out) : Out(Out) {}
1600   MDFieldPrinter(raw_ostream &Out, TypePrinting *TypePrinter,
1601                  SlotTracker *Machine, const Module *Context)
1602       : Out(Out), TypePrinter(TypePrinter), Machine(Machine), Context(Context) {
1603   }
1604 
1605   void printTag(const DINode *N);
1606   void printMacinfoType(const DIMacroNode *N);
1607   void printChecksum(const DIFile::ChecksumInfo<StringRef> &N);
1608   void printString(StringRef Name, StringRef Value,
1609                    bool ShouldSkipEmpty = true);
1610   void printMetadata(StringRef Name, const Metadata *MD,
1611                      bool ShouldSkipNull = true);
1612   template <class IntTy>
1613   void printInt(StringRef Name, IntTy Int, bool ShouldSkipZero = true);
1614   void printBool(StringRef Name, bool Value, Optional<bool> Default = None);
1615   void printDIFlags(StringRef Name, DINode::DIFlags Flags);
1616   void printDISPFlags(StringRef Name, DISubprogram::DISPFlags Flags);
1617   template <class IntTy, class Stringifier>
1618   void printDwarfEnum(StringRef Name, IntTy Value, Stringifier toString,
1619                       bool ShouldSkipZero = true);
1620   void printEmissionKind(StringRef Name, DICompileUnit::DebugEmissionKind EK);
1621   void printNameTableKind(StringRef Name,
1622                           DICompileUnit::DebugNameTableKind NTK);
1623 };
1624 
1625 } // end anonymous namespace
1626 
1627 void MDFieldPrinter::printTag(const DINode *N) {
1628   Out << FS << "tag: ";
1629   auto Tag = dwarf::TagString(N->getTag());
1630   if (!Tag.empty())
1631     Out << Tag;
1632   else
1633     Out << N->getTag();
1634 }
1635 
1636 void MDFieldPrinter::printMacinfoType(const DIMacroNode *N) {
1637   Out << FS << "type: ";
1638   auto Type = dwarf::MacinfoString(N->getMacinfoType());
1639   if (!Type.empty())
1640     Out << Type;
1641   else
1642     Out << N->getMacinfoType();
1643 }
1644 
1645 void MDFieldPrinter::printChecksum(
1646     const DIFile::ChecksumInfo<StringRef> &Checksum) {
1647   Out << FS << "checksumkind: " << Checksum.getKindAsString();
1648   printString("checksum", Checksum.Value, /* ShouldSkipEmpty */ false);
1649 }
1650 
1651 void MDFieldPrinter::printString(StringRef Name, StringRef Value,
1652                                  bool ShouldSkipEmpty) {
1653   if (ShouldSkipEmpty && Value.empty())
1654     return;
1655 
1656   Out << FS << Name << ": \"";
1657   printEscapedString(Value, Out);
1658   Out << "\"";
1659 }
1660 
1661 static void writeMetadataAsOperand(raw_ostream &Out, const Metadata *MD,
1662                                    TypePrinting *TypePrinter,
1663                                    SlotTracker *Machine,
1664                                    const Module *Context) {
1665   if (!MD) {
1666     Out << "null";
1667     return;
1668   }
1669   WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context);
1670 }
1671 
1672 void MDFieldPrinter::printMetadata(StringRef Name, const Metadata *MD,
1673                                    bool ShouldSkipNull) {
1674   if (ShouldSkipNull && !MD)
1675     return;
1676 
1677   Out << FS << Name << ": ";
1678   writeMetadataAsOperand(Out, MD, TypePrinter, Machine, Context);
1679 }
1680 
1681 template <class IntTy>
1682 void MDFieldPrinter::printInt(StringRef Name, IntTy Int, bool ShouldSkipZero) {
1683   if (ShouldSkipZero && !Int)
1684     return;
1685 
1686   Out << FS << Name << ": " << Int;
1687 }
1688 
1689 void MDFieldPrinter::printBool(StringRef Name, bool Value,
1690                                Optional<bool> Default) {
1691   if (Default && Value == *Default)
1692     return;
1693   Out << FS << Name << ": " << (Value ? "true" : "false");
1694 }
1695 
1696 void MDFieldPrinter::printDIFlags(StringRef Name, DINode::DIFlags Flags) {
1697   if (!Flags)
1698     return;
1699 
1700   Out << FS << Name << ": ";
1701 
1702   SmallVector<DINode::DIFlags, 8> SplitFlags;
1703   auto Extra = DINode::splitFlags(Flags, SplitFlags);
1704 
1705   FieldSeparator FlagsFS(" | ");
1706   for (auto F : SplitFlags) {
1707     auto StringF = DINode::getFlagString(F);
1708     assert(!StringF.empty() && "Expected valid flag");
1709     Out << FlagsFS << StringF;
1710   }
1711   if (Extra || SplitFlags.empty())
1712     Out << FlagsFS << Extra;
1713 }
1714 
1715 void MDFieldPrinter::printDISPFlags(StringRef Name,
1716                                     DISubprogram::DISPFlags Flags) {
1717   // Always print this field, because no flags in the IR at all will be
1718   // interpreted as old-style isDefinition: true.
1719   Out << FS << Name << ": ";
1720 
1721   if (!Flags) {
1722     Out << 0;
1723     return;
1724   }
1725 
1726   SmallVector<DISubprogram::DISPFlags, 8> SplitFlags;
1727   auto Extra = DISubprogram::splitFlags(Flags, SplitFlags);
1728 
1729   FieldSeparator FlagsFS(" | ");
1730   for (auto F : SplitFlags) {
1731     auto StringF = DISubprogram::getFlagString(F);
1732     assert(!StringF.empty() && "Expected valid flag");
1733     Out << FlagsFS << StringF;
1734   }
1735   if (Extra || SplitFlags.empty())
1736     Out << FlagsFS << Extra;
1737 }
1738 
1739 void MDFieldPrinter::printEmissionKind(StringRef Name,
1740                                        DICompileUnit::DebugEmissionKind EK) {
1741   Out << FS << Name << ": " << DICompileUnit::emissionKindString(EK);
1742 }
1743 
1744 void MDFieldPrinter::printNameTableKind(StringRef Name,
1745                                         DICompileUnit::DebugNameTableKind NTK) {
1746   if (NTK == DICompileUnit::DebugNameTableKind::Default)
1747     return;
1748   Out << FS << Name << ": " << DICompileUnit::nameTableKindString(NTK);
1749 }
1750 
1751 template <class IntTy, class Stringifier>
1752 void MDFieldPrinter::printDwarfEnum(StringRef Name, IntTy Value,
1753                                     Stringifier toString, bool ShouldSkipZero) {
1754   if (!Value)
1755     return;
1756 
1757   Out << FS << Name << ": ";
1758   auto S = toString(Value);
1759   if (!S.empty())
1760     Out << S;
1761   else
1762     Out << Value;
1763 }
1764 
1765 static void writeGenericDINode(raw_ostream &Out, const GenericDINode *N,
1766                                TypePrinting *TypePrinter, SlotTracker *Machine,
1767                                const Module *Context) {
1768   Out << "!GenericDINode(";
1769   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1770   Printer.printTag(N);
1771   Printer.printString("header", N->getHeader());
1772   if (N->getNumDwarfOperands()) {
1773     Out << Printer.FS << "operands: {";
1774     FieldSeparator IFS;
1775     for (auto &I : N->dwarf_operands()) {
1776       Out << IFS;
1777       writeMetadataAsOperand(Out, I, TypePrinter, Machine, Context);
1778     }
1779     Out << "}";
1780   }
1781   Out << ")";
1782 }
1783 
1784 static void writeDILocation(raw_ostream &Out, const DILocation *DL,
1785                             TypePrinting *TypePrinter, SlotTracker *Machine,
1786                             const Module *Context) {
1787   Out << "!DILocation(";
1788   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1789   // Always output the line, since 0 is a relevant and important value for it.
1790   Printer.printInt("line", DL->getLine(), /* ShouldSkipZero */ false);
1791   Printer.printInt("column", DL->getColumn());
1792   Printer.printMetadata("scope", DL->getRawScope(), /* ShouldSkipNull */ false);
1793   Printer.printMetadata("inlinedAt", DL->getRawInlinedAt());
1794   Printer.printBool("isImplicitCode", DL->isImplicitCode(),
1795                     /* Default */ false);
1796   Out << ")";
1797 }
1798 
1799 static void writeDISubrange(raw_ostream &Out, const DISubrange *N,
1800                             TypePrinting *TypePrinter, SlotTracker *Machine,
1801                             const Module *Context) {
1802   Out << "!DISubrange(";
1803   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1804   if (auto *CE = N->getCount().dyn_cast<ConstantInt*>())
1805     Printer.printInt("count", CE->getSExtValue(), /* ShouldSkipZero */ false);
1806   else
1807     Printer.printMetadata("count", N->getCount().dyn_cast<DIVariable*>(),
1808                           /*ShouldSkipNull */ false);
1809   Printer.printInt("lowerBound", N->getLowerBound());
1810   Out << ")";
1811 }
1812 
1813 static void writeDIEnumerator(raw_ostream &Out, const DIEnumerator *N,
1814                               TypePrinting *, SlotTracker *, const Module *) {
1815   Out << "!DIEnumerator(";
1816   MDFieldPrinter Printer(Out);
1817   Printer.printString("name", N->getName(), /* ShouldSkipEmpty */ false);
1818   if (N->isUnsigned()) {
1819     auto Value = static_cast<uint64_t>(N->getValue());
1820     Printer.printInt("value", Value, /* ShouldSkipZero */ false);
1821     Printer.printBool("isUnsigned", true);
1822   } else {
1823     Printer.printInt("value", N->getValue(), /* ShouldSkipZero */ false);
1824   }
1825   Out << ")";
1826 }
1827 
1828 static void writeDIBasicType(raw_ostream &Out, const DIBasicType *N,
1829                              TypePrinting *, SlotTracker *, const Module *) {
1830   Out << "!DIBasicType(";
1831   MDFieldPrinter Printer(Out);
1832   if (N->getTag() != dwarf::DW_TAG_base_type)
1833     Printer.printTag(N);
1834   Printer.printString("name", N->getName());
1835   Printer.printInt("size", N->getSizeInBits());
1836   Printer.printInt("align", N->getAlignInBits());
1837   Printer.printDwarfEnum("encoding", N->getEncoding(),
1838                          dwarf::AttributeEncodingString);
1839   Printer.printDIFlags("flags", N->getFlags());
1840   Out << ")";
1841 }
1842 
1843 static void writeDIDerivedType(raw_ostream &Out, const DIDerivedType *N,
1844                                TypePrinting *TypePrinter, SlotTracker *Machine,
1845                                const Module *Context) {
1846   Out << "!DIDerivedType(";
1847   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1848   Printer.printTag(N);
1849   Printer.printString("name", N->getName());
1850   Printer.printMetadata("scope", N->getRawScope());
1851   Printer.printMetadata("file", N->getRawFile());
1852   Printer.printInt("line", N->getLine());
1853   Printer.printMetadata("baseType", N->getRawBaseType(),
1854                         /* ShouldSkipNull */ false);
1855   Printer.printInt("size", N->getSizeInBits());
1856   Printer.printInt("align", N->getAlignInBits());
1857   Printer.printInt("offset", N->getOffsetInBits());
1858   Printer.printDIFlags("flags", N->getFlags());
1859   Printer.printMetadata("extraData", N->getRawExtraData());
1860   if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace())
1861     Printer.printInt("dwarfAddressSpace", *DWARFAddressSpace,
1862                      /* ShouldSkipZero */ false);
1863   Out << ")";
1864 }
1865 
1866 static void writeDICompositeType(raw_ostream &Out, const DICompositeType *N,
1867                                  TypePrinting *TypePrinter,
1868                                  SlotTracker *Machine, const Module *Context) {
1869   Out << "!DICompositeType(";
1870   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1871   Printer.printTag(N);
1872   Printer.printString("name", N->getName());
1873   Printer.printMetadata("scope", N->getRawScope());
1874   Printer.printMetadata("file", N->getRawFile());
1875   Printer.printInt("line", N->getLine());
1876   Printer.printMetadata("baseType", N->getRawBaseType());
1877   Printer.printInt("size", N->getSizeInBits());
1878   Printer.printInt("align", N->getAlignInBits());
1879   Printer.printInt("offset", N->getOffsetInBits());
1880   Printer.printDIFlags("flags", N->getFlags());
1881   Printer.printMetadata("elements", N->getRawElements());
1882   Printer.printDwarfEnum("runtimeLang", N->getRuntimeLang(),
1883                          dwarf::LanguageString);
1884   Printer.printMetadata("vtableHolder", N->getRawVTableHolder());
1885   Printer.printMetadata("templateParams", N->getRawTemplateParams());
1886   Printer.printString("identifier", N->getIdentifier());
1887   Printer.printMetadata("discriminator", N->getRawDiscriminator());
1888   Out << ")";
1889 }
1890 
1891 static void writeDISubroutineType(raw_ostream &Out, const DISubroutineType *N,
1892                                   TypePrinting *TypePrinter,
1893                                   SlotTracker *Machine, const Module *Context) {
1894   Out << "!DISubroutineType(";
1895   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1896   Printer.printDIFlags("flags", N->getFlags());
1897   Printer.printDwarfEnum("cc", N->getCC(), dwarf::ConventionString);
1898   Printer.printMetadata("types", N->getRawTypeArray(),
1899                         /* ShouldSkipNull */ false);
1900   Out << ")";
1901 }
1902 
1903 static void writeDIFile(raw_ostream &Out, const DIFile *N, TypePrinting *,
1904                         SlotTracker *, const Module *) {
1905   Out << "!DIFile(";
1906   MDFieldPrinter Printer(Out);
1907   Printer.printString("filename", N->getFilename(),
1908                       /* ShouldSkipEmpty */ false);
1909   Printer.printString("directory", N->getDirectory(),
1910                       /* ShouldSkipEmpty */ false);
1911   // Print all values for checksum together, or not at all.
1912   if (N->getChecksum())
1913     Printer.printChecksum(*N->getChecksum());
1914   Printer.printString("source", N->getSource().getValueOr(StringRef()),
1915                       /* ShouldSkipEmpty */ true);
1916   Out << ")";
1917 }
1918 
1919 static void writeDICompileUnit(raw_ostream &Out, const DICompileUnit *N,
1920                                TypePrinting *TypePrinter, SlotTracker *Machine,
1921                                const Module *Context) {
1922   Out << "!DICompileUnit(";
1923   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1924   Printer.printDwarfEnum("language", N->getSourceLanguage(),
1925                          dwarf::LanguageString, /* ShouldSkipZero */ false);
1926   Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
1927   Printer.printString("producer", N->getProducer());
1928   Printer.printBool("isOptimized", N->isOptimized());
1929   Printer.printString("flags", N->getFlags());
1930   Printer.printInt("runtimeVersion", N->getRuntimeVersion(),
1931                    /* ShouldSkipZero */ false);
1932   Printer.printString("splitDebugFilename", N->getSplitDebugFilename());
1933   Printer.printEmissionKind("emissionKind", N->getEmissionKind());
1934   Printer.printMetadata("enums", N->getRawEnumTypes());
1935   Printer.printMetadata("retainedTypes", N->getRawRetainedTypes());
1936   Printer.printMetadata("globals", N->getRawGlobalVariables());
1937   Printer.printMetadata("imports", N->getRawImportedEntities());
1938   Printer.printMetadata("macros", N->getRawMacros());
1939   Printer.printInt("dwoId", N->getDWOId());
1940   Printer.printBool("splitDebugInlining", N->getSplitDebugInlining(), true);
1941   Printer.printBool("debugInfoForProfiling", N->getDebugInfoForProfiling(),
1942                     false);
1943   Printer.printNameTableKind("nameTableKind", N->getNameTableKind());
1944   Printer.printBool("rangesBaseAddress", N->getRangesBaseAddress(), false);
1945   Out << ")";
1946 }
1947 
1948 static void writeDISubprogram(raw_ostream &Out, const DISubprogram *N,
1949                               TypePrinting *TypePrinter, SlotTracker *Machine,
1950                               const Module *Context) {
1951   Out << "!DISubprogram(";
1952   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1953   Printer.printString("name", N->getName());
1954   Printer.printString("linkageName", N->getLinkageName());
1955   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1956   Printer.printMetadata("file", N->getRawFile());
1957   Printer.printInt("line", N->getLine());
1958   Printer.printMetadata("type", N->getRawType());
1959   Printer.printInt("scopeLine", N->getScopeLine());
1960   Printer.printMetadata("containingType", N->getRawContainingType());
1961   if (N->getVirtuality() != dwarf::DW_VIRTUALITY_none ||
1962       N->getVirtualIndex() != 0)
1963     Printer.printInt("virtualIndex", N->getVirtualIndex(), false);
1964   Printer.printInt("thisAdjustment", N->getThisAdjustment());
1965   Printer.printDIFlags("flags", N->getFlags());
1966   Printer.printDISPFlags("spFlags", N->getSPFlags());
1967   Printer.printMetadata("unit", N->getRawUnit());
1968   Printer.printMetadata("templateParams", N->getRawTemplateParams());
1969   Printer.printMetadata("declaration", N->getRawDeclaration());
1970   Printer.printMetadata("retainedNodes", N->getRawRetainedNodes());
1971   Printer.printMetadata("thrownTypes", N->getRawThrownTypes());
1972   Out << ")";
1973 }
1974 
1975 static void writeDILexicalBlock(raw_ostream &Out, const DILexicalBlock *N,
1976                                 TypePrinting *TypePrinter, SlotTracker *Machine,
1977                                 const Module *Context) {
1978   Out << "!DILexicalBlock(";
1979   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1980   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1981   Printer.printMetadata("file", N->getRawFile());
1982   Printer.printInt("line", N->getLine());
1983   Printer.printInt("column", N->getColumn());
1984   Out << ")";
1985 }
1986 
1987 static void writeDILexicalBlockFile(raw_ostream &Out,
1988                                     const DILexicalBlockFile *N,
1989                                     TypePrinting *TypePrinter,
1990                                     SlotTracker *Machine,
1991                                     const Module *Context) {
1992   Out << "!DILexicalBlockFile(";
1993   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1994   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1995   Printer.printMetadata("file", N->getRawFile());
1996   Printer.printInt("discriminator", N->getDiscriminator(),
1997                    /* ShouldSkipZero */ false);
1998   Out << ")";
1999 }
2000 
2001 static void writeDINamespace(raw_ostream &Out, const DINamespace *N,
2002                              TypePrinting *TypePrinter, SlotTracker *Machine,
2003                              const Module *Context) {
2004   Out << "!DINamespace(";
2005   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2006   Printer.printString("name", N->getName());
2007   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2008   Printer.printBool("exportSymbols", N->getExportSymbols(), false);
2009   Out << ")";
2010 }
2011 
2012 static void writeDICommonBlock(raw_ostream &Out, const DICommonBlock *N,
2013                                TypePrinting *TypePrinter, SlotTracker *Machine,
2014                                const Module *Context) {
2015   Out << "!DICommonBlock(";
2016   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2017   Printer.printMetadata("scope", N->getRawScope(), false);
2018   Printer.printMetadata("declaration", N->getRawDecl(), false);
2019   Printer.printString("name", N->getName());
2020   Printer.printMetadata("file", N->getRawFile());
2021   Printer.printInt("line", N->getLineNo());
2022   Out << ")";
2023 }
2024 
2025 static void writeDIMacro(raw_ostream &Out, const DIMacro *N,
2026                          TypePrinting *TypePrinter, SlotTracker *Machine,
2027                          const Module *Context) {
2028   Out << "!DIMacro(";
2029   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2030   Printer.printMacinfoType(N);
2031   Printer.printInt("line", N->getLine());
2032   Printer.printString("name", N->getName());
2033   Printer.printString("value", N->getValue());
2034   Out << ")";
2035 }
2036 
2037 static void writeDIMacroFile(raw_ostream &Out, const DIMacroFile *N,
2038                              TypePrinting *TypePrinter, SlotTracker *Machine,
2039                              const Module *Context) {
2040   Out << "!DIMacroFile(";
2041   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2042   Printer.printInt("line", N->getLine());
2043   Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
2044   Printer.printMetadata("nodes", N->getRawElements());
2045   Out << ")";
2046 }
2047 
2048 static void writeDIModule(raw_ostream &Out, const DIModule *N,
2049                           TypePrinting *TypePrinter, SlotTracker *Machine,
2050                           const Module *Context) {
2051   Out << "!DIModule(";
2052   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2053   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2054   Printer.printString("name", N->getName());
2055   Printer.printString("configMacros", N->getConfigurationMacros());
2056   Printer.printString("includePath", N->getIncludePath());
2057   Printer.printString("isysroot", N->getISysRoot());
2058   Out << ")";
2059 }
2060 
2061 
2062 static void writeDITemplateTypeParameter(raw_ostream &Out,
2063                                          const DITemplateTypeParameter *N,
2064                                          TypePrinting *TypePrinter,
2065                                          SlotTracker *Machine,
2066                                          const Module *Context) {
2067   Out << "!DITemplateTypeParameter(";
2068   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2069   Printer.printString("name", N->getName());
2070   Printer.printMetadata("type", N->getRawType(), /* ShouldSkipNull */ false);
2071   Out << ")";
2072 }
2073 
2074 static void writeDITemplateValueParameter(raw_ostream &Out,
2075                                           const DITemplateValueParameter *N,
2076                                           TypePrinting *TypePrinter,
2077                                           SlotTracker *Machine,
2078                                           const Module *Context) {
2079   Out << "!DITemplateValueParameter(";
2080   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2081   if (N->getTag() != dwarf::DW_TAG_template_value_parameter)
2082     Printer.printTag(N);
2083   Printer.printString("name", N->getName());
2084   Printer.printMetadata("type", N->getRawType());
2085   Printer.printMetadata("value", N->getValue(), /* ShouldSkipNull */ false);
2086   Out << ")";
2087 }
2088 
2089 static void writeDIGlobalVariable(raw_ostream &Out, const DIGlobalVariable *N,
2090                                   TypePrinting *TypePrinter,
2091                                   SlotTracker *Machine, const Module *Context) {
2092   Out << "!DIGlobalVariable(";
2093   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2094   Printer.printString("name", N->getName());
2095   Printer.printString("linkageName", N->getLinkageName());
2096   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2097   Printer.printMetadata("file", N->getRawFile());
2098   Printer.printInt("line", N->getLine());
2099   Printer.printMetadata("type", N->getRawType());
2100   Printer.printBool("isLocal", N->isLocalToUnit());
2101   Printer.printBool("isDefinition", N->isDefinition());
2102   Printer.printMetadata("declaration", N->getRawStaticDataMemberDeclaration());
2103   Printer.printMetadata("templateParams", N->getRawTemplateParams());
2104   Printer.printInt("align", N->getAlignInBits());
2105   Out << ")";
2106 }
2107 
2108 static void writeDILocalVariable(raw_ostream &Out, const DILocalVariable *N,
2109                                  TypePrinting *TypePrinter,
2110                                  SlotTracker *Machine, const Module *Context) {
2111   Out << "!DILocalVariable(";
2112   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2113   Printer.printString("name", N->getName());
2114   Printer.printInt("arg", N->getArg());
2115   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2116   Printer.printMetadata("file", N->getRawFile());
2117   Printer.printInt("line", N->getLine());
2118   Printer.printMetadata("type", N->getRawType());
2119   Printer.printDIFlags("flags", N->getFlags());
2120   Printer.printInt("align", N->getAlignInBits());
2121   Out << ")";
2122 }
2123 
2124 static void writeDILabel(raw_ostream &Out, const DILabel *N,
2125                          TypePrinting *TypePrinter,
2126                          SlotTracker *Machine, const Module *Context) {
2127   Out << "!DILabel(";
2128   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2129   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2130   Printer.printString("name", N->getName());
2131   Printer.printMetadata("file", N->getRawFile());
2132   Printer.printInt("line", N->getLine());
2133   Out << ")";
2134 }
2135 
2136 static void writeDIExpression(raw_ostream &Out, const DIExpression *N,
2137                               TypePrinting *TypePrinter, SlotTracker *Machine,
2138                               const Module *Context) {
2139   Out << "!DIExpression(";
2140   FieldSeparator FS;
2141   if (N->isValid()) {
2142     for (auto I = N->expr_op_begin(), E = N->expr_op_end(); I != E; ++I) {
2143       auto OpStr = dwarf::OperationEncodingString(I->getOp());
2144       assert(!OpStr.empty() && "Expected valid opcode");
2145 
2146       Out << FS << OpStr;
2147       if (I->getOp() == dwarf::DW_OP_LLVM_convert) {
2148         Out << FS << I->getArg(0);
2149         Out << FS << dwarf::AttributeEncodingString(I->getArg(1));
2150       } else {
2151         for (unsigned A = 0, AE = I->getNumArgs(); A != AE; ++A)
2152           Out << FS << I->getArg(A);
2153       }
2154     }
2155   } else {
2156     for (const auto &I : N->getElements())
2157       Out << FS << I;
2158   }
2159   Out << ")";
2160 }
2161 
2162 static void writeDIGlobalVariableExpression(raw_ostream &Out,
2163                                             const DIGlobalVariableExpression *N,
2164                                             TypePrinting *TypePrinter,
2165                                             SlotTracker *Machine,
2166                                             const Module *Context) {
2167   Out << "!DIGlobalVariableExpression(";
2168   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2169   Printer.printMetadata("var", N->getVariable());
2170   Printer.printMetadata("expr", N->getExpression());
2171   Out << ")";
2172 }
2173 
2174 static void writeDIObjCProperty(raw_ostream &Out, const DIObjCProperty *N,
2175                                 TypePrinting *TypePrinter, SlotTracker *Machine,
2176                                 const Module *Context) {
2177   Out << "!DIObjCProperty(";
2178   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2179   Printer.printString("name", N->getName());
2180   Printer.printMetadata("file", N->getRawFile());
2181   Printer.printInt("line", N->getLine());
2182   Printer.printString("setter", N->getSetterName());
2183   Printer.printString("getter", N->getGetterName());
2184   Printer.printInt("attributes", N->getAttributes());
2185   Printer.printMetadata("type", N->getRawType());
2186   Out << ")";
2187 }
2188 
2189 static void writeDIImportedEntity(raw_ostream &Out, const DIImportedEntity *N,
2190                                   TypePrinting *TypePrinter,
2191                                   SlotTracker *Machine, const Module *Context) {
2192   Out << "!DIImportedEntity(";
2193   MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2194   Printer.printTag(N);
2195   Printer.printString("name", N->getName());
2196   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2197   Printer.printMetadata("entity", N->getRawEntity());
2198   Printer.printMetadata("file", N->getRawFile());
2199   Printer.printInt("line", N->getLine());
2200   Out << ")";
2201 }
2202 
2203 static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node,
2204                                     TypePrinting *TypePrinter,
2205                                     SlotTracker *Machine,
2206                                     const Module *Context) {
2207   if (Node->isDistinct())
2208     Out << "distinct ";
2209   else if (Node->isTemporary())
2210     Out << "<temporary!> "; // Handle broken code.
2211 
2212   switch (Node->getMetadataID()) {
2213   default:
2214     llvm_unreachable("Expected uniquable MDNode");
2215 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
2216   case Metadata::CLASS##Kind:                                                  \
2217     write##CLASS(Out, cast<CLASS>(Node), TypePrinter, Machine, Context);       \
2218     break;
2219 #include "llvm/IR/Metadata.def"
2220   }
2221 }
2222 
2223 // Full implementation of printing a Value as an operand with support for
2224 // TypePrinting, etc.
2225 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
2226                                    TypePrinting *TypePrinter,
2227                                    SlotTracker *Machine,
2228                                    const Module *Context) {
2229   if (V->hasName()) {
2230     PrintLLVMName(Out, V);
2231     return;
2232   }
2233 
2234   const Constant *CV = dyn_cast<Constant>(V);
2235   if (CV && !isa<GlobalValue>(CV)) {
2236     assert(TypePrinter && "Constants require TypePrinting!");
2237     WriteConstantInternal(Out, CV, *TypePrinter, Machine, Context);
2238     return;
2239   }
2240 
2241   if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
2242     Out << "asm ";
2243     if (IA->hasSideEffects())
2244       Out << "sideeffect ";
2245     if (IA->isAlignStack())
2246       Out << "alignstack ";
2247     // We don't emit the AD_ATT dialect as it's the assumed default.
2248     if (IA->getDialect() == InlineAsm::AD_Intel)
2249       Out << "inteldialect ";
2250     Out << '"';
2251     printEscapedString(IA->getAsmString(), Out);
2252     Out << "\", \"";
2253     printEscapedString(IA->getConstraintString(), Out);
2254     Out << '"';
2255     return;
2256   }
2257 
2258   if (auto *MD = dyn_cast<MetadataAsValue>(V)) {
2259     WriteAsOperandInternal(Out, MD->getMetadata(), TypePrinter, Machine,
2260                            Context, /* FromValue */ true);
2261     return;
2262   }
2263 
2264   char Prefix = '%';
2265   int Slot;
2266   // If we have a SlotTracker, use it.
2267   if (Machine) {
2268     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2269       Slot = Machine->getGlobalSlot(GV);
2270       Prefix = '@';
2271     } else {
2272       Slot = Machine->getLocalSlot(V);
2273 
2274       // If the local value didn't succeed, then we may be referring to a value
2275       // from a different function.  Translate it, as this can happen when using
2276       // address of blocks.
2277       if (Slot == -1)
2278         if ((Machine = createSlotTracker(V))) {
2279           Slot = Machine->getLocalSlot(V);
2280           delete Machine;
2281         }
2282     }
2283   } else if ((Machine = createSlotTracker(V))) {
2284     // Otherwise, create one to get the # and then destroy it.
2285     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2286       Slot = Machine->getGlobalSlot(GV);
2287       Prefix = '@';
2288     } else {
2289       Slot = Machine->getLocalSlot(V);
2290     }
2291     delete Machine;
2292     Machine = nullptr;
2293   } else {
2294     Slot = -1;
2295   }
2296 
2297   if (Slot != -1)
2298     Out << Prefix << Slot;
2299   else
2300     Out << "<badref>";
2301 }
2302 
2303 static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
2304                                    TypePrinting *TypePrinter,
2305                                    SlotTracker *Machine, const Module *Context,
2306                                    bool FromValue) {
2307   // Write DIExpressions inline when used as a value. Improves readability of
2308   // debug info intrinsics.
2309   if (const DIExpression *Expr = dyn_cast<DIExpression>(MD)) {
2310     writeDIExpression(Out, Expr, TypePrinter, Machine, Context);
2311     return;
2312   }
2313 
2314   if (const MDNode *N = dyn_cast<MDNode>(MD)) {
2315     std::unique_ptr<SlotTracker> MachineStorage;
2316     if (!Machine) {
2317       MachineStorage = std::make_unique<SlotTracker>(Context);
2318       Machine = MachineStorage.get();
2319     }
2320     int Slot = Machine->getMetadataSlot(N);
2321     if (Slot == -1) {
2322       if (const DILocation *Loc = dyn_cast<DILocation>(N)) {
2323         writeDILocation(Out, Loc, TypePrinter, Machine, Context);
2324         return;
2325       }
2326       // Give the pointer value instead of "badref", since this comes up all
2327       // the time when debugging.
2328       Out << "<" << N << ">";
2329     } else
2330       Out << '!' << Slot;
2331     return;
2332   }
2333 
2334   if (const MDString *MDS = dyn_cast<MDString>(MD)) {
2335     Out << "!\"";
2336     printEscapedString(MDS->getString(), Out);
2337     Out << '"';
2338     return;
2339   }
2340 
2341   auto *V = cast<ValueAsMetadata>(MD);
2342   assert(TypePrinter && "TypePrinter required for metadata values");
2343   assert((FromValue || !isa<LocalAsMetadata>(V)) &&
2344          "Unexpected function-local metadata outside of value argument");
2345 
2346   TypePrinter->print(V->getValue()->getType(), Out);
2347   Out << ' ';
2348   WriteAsOperandInternal(Out, V->getValue(), TypePrinter, Machine, Context);
2349 }
2350 
2351 namespace {
2352 
2353 class AssemblyWriter {
2354   formatted_raw_ostream &Out;
2355   const Module *TheModule = nullptr;
2356   const ModuleSummaryIndex *TheIndex = nullptr;
2357   std::unique_ptr<SlotTracker> SlotTrackerStorage;
2358   SlotTracker &Machine;
2359   TypePrinting TypePrinter;
2360   AssemblyAnnotationWriter *AnnotationWriter = nullptr;
2361   SetVector<const Comdat *> Comdats;
2362   bool IsForDebug;
2363   bool ShouldPreserveUseListOrder;
2364   UseListOrderStack UseListOrders;
2365   SmallVector<StringRef, 8> MDNames;
2366   /// Synchronization scope names registered with LLVMContext.
2367   SmallVector<StringRef, 8> SSNs;
2368   DenseMap<const GlobalValueSummary *, GlobalValue::GUID> SummaryToGUIDMap;
2369 
2370 public:
2371   /// Construct an AssemblyWriter with an external SlotTracker
2372   AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, const Module *M,
2373                  AssemblyAnnotationWriter *AAW, bool IsForDebug,
2374                  bool ShouldPreserveUseListOrder = false);
2375 
2376   AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2377                  const ModuleSummaryIndex *Index, bool IsForDebug);
2378 
2379   void printMDNodeBody(const MDNode *MD);
2380   void printNamedMDNode(const NamedMDNode *NMD);
2381 
2382   void printModule(const Module *M);
2383 
2384   void writeOperand(const Value *Op, bool PrintType);
2385   void writeParamOperand(const Value *Operand, AttributeSet Attrs);
2386   void writeOperandBundles(const CallBase *Call);
2387   void writeSyncScope(const LLVMContext &Context,
2388                       SyncScope::ID SSID);
2389   void writeAtomic(const LLVMContext &Context,
2390                    AtomicOrdering Ordering,
2391                    SyncScope::ID SSID);
2392   void writeAtomicCmpXchg(const LLVMContext &Context,
2393                           AtomicOrdering SuccessOrdering,
2394                           AtomicOrdering FailureOrdering,
2395                           SyncScope::ID SSID);
2396 
2397   void writeAllMDNodes();
2398   void writeMDNode(unsigned Slot, const MDNode *Node);
2399   void writeAllAttributeGroups();
2400 
2401   void printTypeIdentities();
2402   void printGlobal(const GlobalVariable *GV);
2403   void printIndirectSymbol(const GlobalIndirectSymbol *GIS);
2404   void printComdat(const Comdat *C);
2405   void printFunction(const Function *F);
2406   void printArgument(const Argument *FA, AttributeSet Attrs);
2407   void printBasicBlock(const BasicBlock *BB);
2408   void printInstructionLine(const Instruction &I);
2409   void printInstruction(const Instruction &I);
2410 
2411   void printUseListOrder(const UseListOrder &Order);
2412   void printUseLists(const Function *F);
2413 
2414   void printModuleSummaryIndex();
2415   void printSummaryInfo(unsigned Slot, const ValueInfo &VI);
2416   void printSummary(const GlobalValueSummary &Summary);
2417   void printAliasSummary(const AliasSummary *AS);
2418   void printGlobalVarSummary(const GlobalVarSummary *GS);
2419   void printFunctionSummary(const FunctionSummary *FS);
2420   void printTypeIdSummary(const TypeIdSummary &TIS);
2421   void printTypeIdCompatibleVtableSummary(const TypeIdCompatibleVtableInfo &TI);
2422   void printTypeTestResolution(const TypeTestResolution &TTRes);
2423   void printArgs(const std::vector<uint64_t> &Args);
2424   void printWPDRes(const WholeProgramDevirtResolution &WPDRes);
2425   void printTypeIdInfo(const FunctionSummary::TypeIdInfo &TIDInfo);
2426   void printVFuncId(const FunctionSummary::VFuncId VFId);
2427   void
2428   printNonConstVCalls(const std::vector<FunctionSummary::VFuncId> VCallList,
2429                       const char *Tag);
2430   void
2431   printConstVCalls(const std::vector<FunctionSummary::ConstVCall> VCallList,
2432                    const char *Tag);
2433 
2434 private:
2435   /// Print out metadata attachments.
2436   void printMetadataAttachments(
2437       const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
2438       StringRef Separator);
2439 
2440   // printInfoComment - Print a little comment after the instruction indicating
2441   // which slot it occupies.
2442   void printInfoComment(const Value &V);
2443 
2444   // printGCRelocateComment - print comment after call to the gc.relocate
2445   // intrinsic indicating base and derived pointer names.
2446   void printGCRelocateComment(const GCRelocateInst &Relocate);
2447 };
2448 
2449 } // end anonymous namespace
2450 
2451 AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2452                                const Module *M, AssemblyAnnotationWriter *AAW,
2453                                bool IsForDebug, bool ShouldPreserveUseListOrder)
2454     : Out(o), TheModule(M), Machine(Mac), TypePrinter(M), AnnotationWriter(AAW),
2455       IsForDebug(IsForDebug),
2456       ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
2457   if (!TheModule)
2458     return;
2459   for (const GlobalObject &GO : TheModule->global_objects())
2460     if (const Comdat *C = GO.getComdat())
2461       Comdats.insert(C);
2462 }
2463 
2464 AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2465                                const ModuleSummaryIndex *Index, bool IsForDebug)
2466     : Out(o), TheIndex(Index), Machine(Mac), TypePrinter(/*Module=*/nullptr),
2467       IsForDebug(IsForDebug), ShouldPreserveUseListOrder(false) {}
2468 
2469 void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
2470   if (!Operand) {
2471     Out << "<null operand!>";
2472     return;
2473   }
2474   if (PrintType) {
2475     TypePrinter.print(Operand->getType(), Out);
2476     Out << ' ';
2477   }
2478   WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
2479 }
2480 
2481 void AssemblyWriter::writeSyncScope(const LLVMContext &Context,
2482                                     SyncScope::ID SSID) {
2483   switch (SSID) {
2484   case SyncScope::System: {
2485     break;
2486   }
2487   default: {
2488     if (SSNs.empty())
2489       Context.getSyncScopeNames(SSNs);
2490 
2491     Out << " syncscope(\"";
2492     printEscapedString(SSNs[SSID], Out);
2493     Out << "\")";
2494     break;
2495   }
2496   }
2497 }
2498 
2499 void AssemblyWriter::writeAtomic(const LLVMContext &Context,
2500                                  AtomicOrdering Ordering,
2501                                  SyncScope::ID SSID) {
2502   if (Ordering == AtomicOrdering::NotAtomic)
2503     return;
2504 
2505   writeSyncScope(Context, SSID);
2506   Out << " " << toIRString(Ordering);
2507 }
2508 
2509 void AssemblyWriter::writeAtomicCmpXchg(const LLVMContext &Context,
2510                                         AtomicOrdering SuccessOrdering,
2511                                         AtomicOrdering FailureOrdering,
2512                                         SyncScope::ID SSID) {
2513   assert(SuccessOrdering != AtomicOrdering::NotAtomic &&
2514          FailureOrdering != AtomicOrdering::NotAtomic);
2515 
2516   writeSyncScope(Context, SSID);
2517   Out << " " << toIRString(SuccessOrdering);
2518   Out << " " << toIRString(FailureOrdering);
2519 }
2520 
2521 void AssemblyWriter::writeParamOperand(const Value *Operand,
2522                                        AttributeSet Attrs) {
2523   if (!Operand) {
2524     Out << "<null operand!>";
2525     return;
2526   }
2527 
2528   // Print the type
2529   TypePrinter.print(Operand->getType(), Out);
2530   // Print parameter attributes list
2531   if (Attrs.hasAttributes())
2532     Out << ' ' << Attrs.getAsString();
2533   Out << ' ';
2534   // Print the operand
2535   WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
2536 }
2537 
2538 void AssemblyWriter::writeOperandBundles(const CallBase *Call) {
2539   if (!Call->hasOperandBundles())
2540     return;
2541 
2542   Out << " [ ";
2543 
2544   bool FirstBundle = true;
2545   for (unsigned i = 0, e = Call->getNumOperandBundles(); i != e; ++i) {
2546     OperandBundleUse BU = Call->getOperandBundleAt(i);
2547 
2548     if (!FirstBundle)
2549       Out << ", ";
2550     FirstBundle = false;
2551 
2552     Out << '"';
2553     printEscapedString(BU.getTagName(), Out);
2554     Out << '"';
2555 
2556     Out << '(';
2557 
2558     bool FirstInput = true;
2559     for (const auto &Input : BU.Inputs) {
2560       if (!FirstInput)
2561         Out << ", ";
2562       FirstInput = false;
2563 
2564       TypePrinter.print(Input->getType(), Out);
2565       Out << " ";
2566       WriteAsOperandInternal(Out, Input, &TypePrinter, &Machine, TheModule);
2567     }
2568 
2569     Out << ')';
2570   }
2571 
2572   Out << " ]";
2573 }
2574 
2575 void AssemblyWriter::printModule(const Module *M) {
2576   Machine.initializeIfNeeded();
2577 
2578   if (ShouldPreserveUseListOrder)
2579     UseListOrders = predictUseListOrder(M);
2580 
2581   if (!M->getModuleIdentifier().empty() &&
2582       // Don't print the ID if it will start a new line (which would
2583       // require a comment char before it).
2584       M->getModuleIdentifier().find('\n') == std::string::npos)
2585     Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
2586 
2587   if (!M->getSourceFileName().empty()) {
2588     Out << "source_filename = \"";
2589     printEscapedString(M->getSourceFileName(), Out);
2590     Out << "\"\n";
2591   }
2592 
2593   const std::string &DL = M->getDataLayoutStr();
2594   if (!DL.empty())
2595     Out << "target datalayout = \"" << DL << "\"\n";
2596   if (!M->getTargetTriple().empty())
2597     Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
2598 
2599   if (!M->getModuleInlineAsm().empty()) {
2600     Out << '\n';
2601 
2602     // Split the string into lines, to make it easier to read the .ll file.
2603     StringRef Asm = M->getModuleInlineAsm();
2604     do {
2605       StringRef Front;
2606       std::tie(Front, Asm) = Asm.split('\n');
2607 
2608       // We found a newline, print the portion of the asm string from the
2609       // last newline up to this newline.
2610       Out << "module asm \"";
2611       printEscapedString(Front, Out);
2612       Out << "\"\n";
2613     } while (!Asm.empty());
2614   }
2615 
2616   printTypeIdentities();
2617 
2618   // Output all comdats.
2619   if (!Comdats.empty())
2620     Out << '\n';
2621   for (const Comdat *C : Comdats) {
2622     printComdat(C);
2623     if (C != Comdats.back())
2624       Out << '\n';
2625   }
2626 
2627   // Output all globals.
2628   if (!M->global_empty()) Out << '\n';
2629   for (const GlobalVariable &GV : M->globals()) {
2630     printGlobal(&GV); Out << '\n';
2631   }
2632 
2633   // Output all aliases.
2634   if (!M->alias_empty()) Out << "\n";
2635   for (const GlobalAlias &GA : M->aliases())
2636     printIndirectSymbol(&GA);
2637 
2638   // Output all ifuncs.
2639   if (!M->ifunc_empty()) Out << "\n";
2640   for (const GlobalIFunc &GI : M->ifuncs())
2641     printIndirectSymbol(&GI);
2642 
2643   // Output global use-lists.
2644   printUseLists(nullptr);
2645 
2646   // Output all of the functions.
2647   for (const Function &F : *M)
2648     printFunction(&F);
2649   assert(UseListOrders.empty() && "All use-lists should have been consumed");
2650 
2651   // Output all attribute groups.
2652   if (!Machine.as_empty()) {
2653     Out << '\n';
2654     writeAllAttributeGroups();
2655   }
2656 
2657   // Output named metadata.
2658   if (!M->named_metadata_empty()) Out << '\n';
2659 
2660   for (const NamedMDNode &Node : M->named_metadata())
2661     printNamedMDNode(&Node);
2662 
2663   // Output metadata.
2664   if (!Machine.mdn_empty()) {
2665     Out << '\n';
2666     writeAllMDNodes();
2667   }
2668 }
2669 
2670 void AssemblyWriter::printModuleSummaryIndex() {
2671   assert(TheIndex);
2672   Machine.initializeIndexIfNeeded();
2673 
2674   Out << "\n";
2675 
2676   // Print module path entries. To print in order, add paths to a vector
2677   // indexed by module slot.
2678   std::vector<std::pair<std::string, ModuleHash>> moduleVec;
2679   std::string RegularLTOModuleName = "[Regular LTO]";
2680   moduleVec.resize(TheIndex->modulePaths().size());
2681   for (auto &ModPath : TheIndex->modulePaths())
2682     moduleVec[Machine.getModulePathSlot(ModPath.first())] = std::make_pair(
2683         // A module id of -1 is a special entry for a regular LTO module created
2684         // during the thin link.
2685         ModPath.second.first == -1u ? RegularLTOModuleName
2686                                     : (std::string)ModPath.first(),
2687         ModPath.second.second);
2688 
2689   unsigned i = 0;
2690   for (auto &ModPair : moduleVec) {
2691     Out << "^" << i++ << " = module: (";
2692     Out << "path: \"";
2693     printEscapedString(ModPair.first, Out);
2694     Out << "\", hash: (";
2695     FieldSeparator FS;
2696     for (auto Hash : ModPair.second)
2697       Out << FS << Hash;
2698     Out << "))\n";
2699   }
2700 
2701   // FIXME: Change AliasSummary to hold a ValueInfo instead of summary pointer
2702   // for aliasee (then update BitcodeWriter.cpp and remove get/setAliaseeGUID).
2703   for (auto &GlobalList : *TheIndex) {
2704     auto GUID = GlobalList.first;
2705     for (auto &Summary : GlobalList.second.SummaryList)
2706       SummaryToGUIDMap[Summary.get()] = GUID;
2707   }
2708 
2709   // Print the global value summary entries.
2710   for (auto &GlobalList : *TheIndex) {
2711     auto GUID = GlobalList.first;
2712     auto VI = TheIndex->getValueInfo(GlobalList);
2713     printSummaryInfo(Machine.getGUIDSlot(GUID), VI);
2714   }
2715 
2716   // Print the TypeIdMap entries.
2717   for (auto TidIter = TheIndex->typeIds().begin();
2718        TidIter != TheIndex->typeIds().end(); TidIter++) {
2719     Out << "^" << Machine.getTypeIdSlot(TidIter->second.first)
2720         << " = typeid: (name: \"" << TidIter->second.first << "\"";
2721     printTypeIdSummary(TidIter->second.second);
2722     Out << ") ; guid = " << TidIter->first << "\n";
2723   }
2724 
2725   // Print the TypeIdCompatibleVtableMap entries.
2726   for (auto &TId : TheIndex->typeIdCompatibleVtableMap()) {
2727     auto GUID = GlobalValue::getGUID(TId.first);
2728     Out << "^" << Machine.getGUIDSlot(GUID)
2729         << " = typeidCompatibleVTable: (name: \"" << TId.first << "\"";
2730     printTypeIdCompatibleVtableSummary(TId.second);
2731     Out << ") ; guid = " << GUID << "\n";
2732   }
2733 }
2734 
2735 static const char *
2736 getWholeProgDevirtResKindName(WholeProgramDevirtResolution::Kind K) {
2737   switch (K) {
2738   case WholeProgramDevirtResolution::Indir:
2739     return "indir";
2740   case WholeProgramDevirtResolution::SingleImpl:
2741     return "singleImpl";
2742   case WholeProgramDevirtResolution::BranchFunnel:
2743     return "branchFunnel";
2744   }
2745   llvm_unreachable("invalid WholeProgramDevirtResolution kind");
2746 }
2747 
2748 static const char *getWholeProgDevirtResByArgKindName(
2749     WholeProgramDevirtResolution::ByArg::Kind K) {
2750   switch (K) {
2751   case WholeProgramDevirtResolution::ByArg::Indir:
2752     return "indir";
2753   case WholeProgramDevirtResolution::ByArg::UniformRetVal:
2754     return "uniformRetVal";
2755   case WholeProgramDevirtResolution::ByArg::UniqueRetVal:
2756     return "uniqueRetVal";
2757   case WholeProgramDevirtResolution::ByArg::VirtualConstProp:
2758     return "virtualConstProp";
2759   }
2760   llvm_unreachable("invalid WholeProgramDevirtResolution::ByArg kind");
2761 }
2762 
2763 static const char *getTTResKindName(TypeTestResolution::Kind K) {
2764   switch (K) {
2765   case TypeTestResolution::Unsat:
2766     return "unsat";
2767   case TypeTestResolution::ByteArray:
2768     return "byteArray";
2769   case TypeTestResolution::Inline:
2770     return "inline";
2771   case TypeTestResolution::Single:
2772     return "single";
2773   case TypeTestResolution::AllOnes:
2774     return "allOnes";
2775   }
2776   llvm_unreachable("invalid TypeTestResolution kind");
2777 }
2778 
2779 void AssemblyWriter::printTypeTestResolution(const TypeTestResolution &TTRes) {
2780   Out << "typeTestRes: (kind: " << getTTResKindName(TTRes.TheKind)
2781       << ", sizeM1BitWidth: " << TTRes.SizeM1BitWidth;
2782 
2783   // The following fields are only used if the target does not support the use
2784   // of absolute symbols to store constants. Print only if non-zero.
2785   if (TTRes.AlignLog2)
2786     Out << ", alignLog2: " << TTRes.AlignLog2;
2787   if (TTRes.SizeM1)
2788     Out << ", sizeM1: " << TTRes.SizeM1;
2789   if (TTRes.BitMask)
2790     // BitMask is uint8_t which causes it to print the corresponding char.
2791     Out << ", bitMask: " << (unsigned)TTRes.BitMask;
2792   if (TTRes.InlineBits)
2793     Out << ", inlineBits: " << TTRes.InlineBits;
2794 
2795   Out << ")";
2796 }
2797 
2798 void AssemblyWriter::printTypeIdSummary(const TypeIdSummary &TIS) {
2799   Out << ", summary: (";
2800   printTypeTestResolution(TIS.TTRes);
2801   if (!TIS.WPDRes.empty()) {
2802     Out << ", wpdResolutions: (";
2803     FieldSeparator FS;
2804     for (auto &WPDRes : TIS.WPDRes) {
2805       Out << FS;
2806       Out << "(offset: " << WPDRes.first << ", ";
2807       printWPDRes(WPDRes.second);
2808       Out << ")";
2809     }
2810     Out << ")";
2811   }
2812   Out << ")";
2813 }
2814 
2815 void AssemblyWriter::printTypeIdCompatibleVtableSummary(
2816     const TypeIdCompatibleVtableInfo &TI) {
2817   Out << ", summary: (";
2818   FieldSeparator FS;
2819   for (auto &P : TI) {
2820     Out << FS;
2821     Out << "(offset: " << P.AddressPointOffset << ", ";
2822     Out << "^" << Machine.getGUIDSlot(P.VTableVI.getGUID());
2823     Out << ")";
2824   }
2825   Out << ")";
2826 }
2827 
2828 void AssemblyWriter::printArgs(const std::vector<uint64_t> &Args) {
2829   Out << "args: (";
2830   FieldSeparator FS;
2831   for (auto arg : Args) {
2832     Out << FS;
2833     Out << arg;
2834   }
2835   Out << ")";
2836 }
2837 
2838 void AssemblyWriter::printWPDRes(const WholeProgramDevirtResolution &WPDRes) {
2839   Out << "wpdRes: (kind: ";
2840   Out << getWholeProgDevirtResKindName(WPDRes.TheKind);
2841 
2842   if (WPDRes.TheKind == WholeProgramDevirtResolution::SingleImpl)
2843     Out << ", singleImplName: \"" << WPDRes.SingleImplName << "\"";
2844 
2845   if (!WPDRes.ResByArg.empty()) {
2846     Out << ", resByArg: (";
2847     FieldSeparator FS;
2848     for (auto &ResByArg : WPDRes.ResByArg) {
2849       Out << FS;
2850       printArgs(ResByArg.first);
2851       Out << ", byArg: (kind: ";
2852       Out << getWholeProgDevirtResByArgKindName(ResByArg.second.TheKind);
2853       if (ResByArg.second.TheKind ==
2854               WholeProgramDevirtResolution::ByArg::UniformRetVal ||
2855           ResByArg.second.TheKind ==
2856               WholeProgramDevirtResolution::ByArg::UniqueRetVal)
2857         Out << ", info: " << ResByArg.second.Info;
2858 
2859       // The following fields are only used if the target does not support the
2860       // use of absolute symbols to store constants. Print only if non-zero.
2861       if (ResByArg.second.Byte || ResByArg.second.Bit)
2862         Out << ", byte: " << ResByArg.second.Byte
2863             << ", bit: " << ResByArg.second.Bit;
2864 
2865       Out << ")";
2866     }
2867     Out << ")";
2868   }
2869   Out << ")";
2870 }
2871 
2872 static const char *getSummaryKindName(GlobalValueSummary::SummaryKind SK) {
2873   switch (SK) {
2874   case GlobalValueSummary::AliasKind:
2875     return "alias";
2876   case GlobalValueSummary::FunctionKind:
2877     return "function";
2878   case GlobalValueSummary::GlobalVarKind:
2879     return "variable";
2880   }
2881   llvm_unreachable("invalid summary kind");
2882 }
2883 
2884 void AssemblyWriter::printAliasSummary(const AliasSummary *AS) {
2885   Out << ", aliasee: ";
2886   // The indexes emitted for distributed backends may not include the
2887   // aliasee summary (only if it is being imported directly). Handle
2888   // that case by just emitting "null" as the aliasee.
2889   if (AS->hasAliasee())
2890     Out << "^" << Machine.getGUIDSlot(SummaryToGUIDMap[&AS->getAliasee()]);
2891   else
2892     Out << "null";
2893 }
2894 
2895 void AssemblyWriter::printGlobalVarSummary(const GlobalVarSummary *GS) {
2896   Out << ", varFlags: (readonly: " << GS->VarFlags.MaybeReadOnly << ", "
2897       << "writeonly: " << GS->VarFlags.MaybeWriteOnly << ")";
2898 
2899   auto VTableFuncs = GS->vTableFuncs();
2900   if (!VTableFuncs.empty()) {
2901     Out << ", vTableFuncs: (";
2902     FieldSeparator FS;
2903     for (auto &P : VTableFuncs) {
2904       Out << FS;
2905       Out << "(virtFunc: ^" << Machine.getGUIDSlot(P.FuncVI.getGUID())
2906           << ", offset: " << P.VTableOffset;
2907       Out << ")";
2908     }
2909     Out << ")";
2910   }
2911 }
2912 
2913 static std::string getLinkageName(GlobalValue::LinkageTypes LT) {
2914   switch (LT) {
2915   case GlobalValue::ExternalLinkage:
2916     return "external";
2917   case GlobalValue::PrivateLinkage:
2918     return "private";
2919   case GlobalValue::InternalLinkage:
2920     return "internal";
2921   case GlobalValue::LinkOnceAnyLinkage:
2922     return "linkonce";
2923   case GlobalValue::LinkOnceODRLinkage:
2924     return "linkonce_odr";
2925   case GlobalValue::WeakAnyLinkage:
2926     return "weak";
2927   case GlobalValue::WeakODRLinkage:
2928     return "weak_odr";
2929   case GlobalValue::CommonLinkage:
2930     return "common";
2931   case GlobalValue::AppendingLinkage:
2932     return "appending";
2933   case GlobalValue::ExternalWeakLinkage:
2934     return "extern_weak";
2935   case GlobalValue::AvailableExternallyLinkage:
2936     return "available_externally";
2937   }
2938   llvm_unreachable("invalid linkage");
2939 }
2940 
2941 // When printing the linkage types in IR where the ExternalLinkage is
2942 // not printed, and other linkage types are expected to be printed with
2943 // a space after the name.
2944 static std::string getLinkageNameWithSpace(GlobalValue::LinkageTypes LT) {
2945   if (LT == GlobalValue::ExternalLinkage)
2946     return "";
2947   return getLinkageName(LT) + " ";
2948 }
2949 
2950 void AssemblyWriter::printFunctionSummary(const FunctionSummary *FS) {
2951   Out << ", insts: " << FS->instCount();
2952 
2953   FunctionSummary::FFlags FFlags = FS->fflags();
2954   if (FFlags.ReadNone | FFlags.ReadOnly | FFlags.NoRecurse |
2955       FFlags.ReturnDoesNotAlias | FFlags.NoInline) {
2956     Out << ", funcFlags: (";
2957     Out << "readNone: " << FFlags.ReadNone;
2958     Out << ", readOnly: " << FFlags.ReadOnly;
2959     Out << ", noRecurse: " << FFlags.NoRecurse;
2960     Out << ", returnDoesNotAlias: " << FFlags.ReturnDoesNotAlias;
2961     Out << ", noInline: " << FFlags.NoInline;
2962     Out << ")";
2963   }
2964   if (!FS->calls().empty()) {
2965     Out << ", calls: (";
2966     FieldSeparator IFS;
2967     for (auto &Call : FS->calls()) {
2968       Out << IFS;
2969       Out << "(callee: ^" << Machine.getGUIDSlot(Call.first.getGUID());
2970       if (Call.second.getHotness() != CalleeInfo::HotnessType::Unknown)
2971         Out << ", hotness: " << getHotnessName(Call.second.getHotness());
2972       else if (Call.second.RelBlockFreq)
2973         Out << ", relbf: " << Call.second.RelBlockFreq;
2974       Out << ")";
2975     }
2976     Out << ")";
2977   }
2978 
2979   if (const auto *TIdInfo = FS->getTypeIdInfo())
2980     printTypeIdInfo(*TIdInfo);
2981 }
2982 
2983 void AssemblyWriter::printTypeIdInfo(
2984     const FunctionSummary::TypeIdInfo &TIDInfo) {
2985   Out << ", typeIdInfo: (";
2986   FieldSeparator TIDFS;
2987   if (!TIDInfo.TypeTests.empty()) {
2988     Out << TIDFS;
2989     Out << "typeTests: (";
2990     FieldSeparator FS;
2991     for (auto &GUID : TIDInfo.TypeTests) {
2992       auto TidIter = TheIndex->typeIds().equal_range(GUID);
2993       if (TidIter.first == TidIter.second) {
2994         Out << FS;
2995         Out << GUID;
2996         continue;
2997       }
2998       // Print all type id that correspond to this GUID.
2999       for (auto It = TidIter.first; It != TidIter.second; ++It) {
3000         Out << FS;
3001         auto Slot = Machine.getTypeIdSlot(It->second.first);
3002         assert(Slot != -1);
3003         Out << "^" << Slot;
3004       }
3005     }
3006     Out << ")";
3007   }
3008   if (!TIDInfo.TypeTestAssumeVCalls.empty()) {
3009     Out << TIDFS;
3010     printNonConstVCalls(TIDInfo.TypeTestAssumeVCalls, "typeTestAssumeVCalls");
3011   }
3012   if (!TIDInfo.TypeCheckedLoadVCalls.empty()) {
3013     Out << TIDFS;
3014     printNonConstVCalls(TIDInfo.TypeCheckedLoadVCalls, "typeCheckedLoadVCalls");
3015   }
3016   if (!TIDInfo.TypeTestAssumeConstVCalls.empty()) {
3017     Out << TIDFS;
3018     printConstVCalls(TIDInfo.TypeTestAssumeConstVCalls,
3019                      "typeTestAssumeConstVCalls");
3020   }
3021   if (!TIDInfo.TypeCheckedLoadConstVCalls.empty()) {
3022     Out << TIDFS;
3023     printConstVCalls(TIDInfo.TypeCheckedLoadConstVCalls,
3024                      "typeCheckedLoadConstVCalls");
3025   }
3026   Out << ")";
3027 }
3028 
3029 void AssemblyWriter::printVFuncId(const FunctionSummary::VFuncId VFId) {
3030   auto TidIter = TheIndex->typeIds().equal_range(VFId.GUID);
3031   if (TidIter.first == TidIter.second) {
3032     Out << "vFuncId: (";
3033     Out << "guid: " << VFId.GUID;
3034     Out << ", offset: " << VFId.Offset;
3035     Out << ")";
3036     return;
3037   }
3038   // Print all type id that correspond to this GUID.
3039   FieldSeparator FS;
3040   for (auto It = TidIter.first; It != TidIter.second; ++It) {
3041     Out << FS;
3042     Out << "vFuncId: (";
3043     auto Slot = Machine.getTypeIdSlot(It->second.first);
3044     assert(Slot != -1);
3045     Out << "^" << Slot;
3046     Out << ", offset: " << VFId.Offset;
3047     Out << ")";
3048   }
3049 }
3050 
3051 void AssemblyWriter::printNonConstVCalls(
3052     const std::vector<FunctionSummary::VFuncId> VCallList, const char *Tag) {
3053   Out << Tag << ": (";
3054   FieldSeparator FS;
3055   for (auto &VFuncId : VCallList) {
3056     Out << FS;
3057     printVFuncId(VFuncId);
3058   }
3059   Out << ")";
3060 }
3061 
3062 void AssemblyWriter::printConstVCalls(
3063     const std::vector<FunctionSummary::ConstVCall> VCallList, const char *Tag) {
3064   Out << Tag << ": (";
3065   FieldSeparator FS;
3066   for (auto &ConstVCall : VCallList) {
3067     Out << FS;
3068     Out << "(";
3069     printVFuncId(ConstVCall.VFunc);
3070     if (!ConstVCall.Args.empty()) {
3071       Out << ", ";
3072       printArgs(ConstVCall.Args);
3073     }
3074     Out << ")";
3075   }
3076   Out << ")";
3077 }
3078 
3079 void AssemblyWriter::printSummary(const GlobalValueSummary &Summary) {
3080   GlobalValueSummary::GVFlags GVFlags = Summary.flags();
3081   GlobalValue::LinkageTypes LT = (GlobalValue::LinkageTypes)GVFlags.Linkage;
3082   Out << getSummaryKindName(Summary.getSummaryKind()) << ": ";
3083   Out << "(module: ^" << Machine.getModulePathSlot(Summary.modulePath())
3084       << ", flags: (";
3085   Out << "linkage: " << getLinkageName(LT);
3086   Out << ", notEligibleToImport: " << GVFlags.NotEligibleToImport;
3087   Out << ", live: " << GVFlags.Live;
3088   Out << ", dsoLocal: " << GVFlags.DSOLocal;
3089   Out << ", canAutoHide: " << GVFlags.CanAutoHide;
3090   Out << ")";
3091 
3092   if (Summary.getSummaryKind() == GlobalValueSummary::AliasKind)
3093     printAliasSummary(cast<AliasSummary>(&Summary));
3094   else if (Summary.getSummaryKind() == GlobalValueSummary::FunctionKind)
3095     printFunctionSummary(cast<FunctionSummary>(&Summary));
3096   else
3097     printGlobalVarSummary(cast<GlobalVarSummary>(&Summary));
3098 
3099   auto RefList = Summary.refs();
3100   if (!RefList.empty()) {
3101     Out << ", refs: (";
3102     FieldSeparator FS;
3103     for (auto &Ref : RefList) {
3104       Out << FS;
3105       if (Ref.isReadOnly())
3106         Out << "readonly ";
3107       else if (Ref.isWriteOnly())
3108         Out << "writeonly ";
3109       Out << "^" << Machine.getGUIDSlot(Ref.getGUID());
3110     }
3111     Out << ")";
3112   }
3113 
3114   Out << ")";
3115 }
3116 
3117 void AssemblyWriter::printSummaryInfo(unsigned Slot, const ValueInfo &VI) {
3118   Out << "^" << Slot << " = gv: (";
3119   if (!VI.name().empty())
3120     Out << "name: \"" << VI.name() << "\"";
3121   else
3122     Out << "guid: " << VI.getGUID();
3123   if (!VI.getSummaryList().empty()) {
3124     Out << ", summaries: (";
3125     FieldSeparator FS;
3126     for (auto &Summary : VI.getSummaryList()) {
3127       Out << FS;
3128       printSummary(*Summary);
3129     }
3130     Out << ")";
3131   }
3132   Out << ")";
3133   if (!VI.name().empty())
3134     Out << " ; guid = " << VI.getGUID();
3135   Out << "\n";
3136 }
3137 
3138 static void printMetadataIdentifier(StringRef Name,
3139                                     formatted_raw_ostream &Out) {
3140   if (Name.empty()) {
3141     Out << "<empty name> ";
3142   } else {
3143     if (isalpha(static_cast<unsigned char>(Name[0])) || Name[0] == '-' ||
3144         Name[0] == '$' || Name[0] == '.' || Name[0] == '_')
3145       Out << Name[0];
3146     else
3147       Out << '\\' << hexdigit(Name[0] >> 4) << hexdigit(Name[0] & 0x0F);
3148     for (unsigned i = 1, e = Name.size(); i != e; ++i) {
3149       unsigned char C = Name[i];
3150       if (isalnum(static_cast<unsigned char>(C)) || C == '-' || C == '$' ||
3151           C == '.' || C == '_')
3152         Out << C;
3153       else
3154         Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
3155     }
3156   }
3157 }
3158 
3159 void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) {
3160   Out << '!';
3161   printMetadataIdentifier(NMD->getName(), Out);
3162   Out << " = !{";
3163   for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
3164     if (i)
3165       Out << ", ";
3166 
3167     // Write DIExpressions inline.
3168     // FIXME: Ban DIExpressions in NamedMDNodes, they will serve no purpose.
3169     MDNode *Op = NMD->getOperand(i);
3170     if (auto *Expr = dyn_cast<DIExpression>(Op)) {
3171       writeDIExpression(Out, Expr, nullptr, nullptr, nullptr);
3172       continue;
3173     }
3174 
3175     int Slot = Machine.getMetadataSlot(Op);
3176     if (Slot == -1)
3177       Out << "<badref>";
3178     else
3179       Out << '!' << Slot;
3180   }
3181   Out << "}\n";
3182 }
3183 
3184 static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
3185                             formatted_raw_ostream &Out) {
3186   switch (Vis) {
3187   case GlobalValue::DefaultVisibility: break;
3188   case GlobalValue::HiddenVisibility:    Out << "hidden "; break;
3189   case GlobalValue::ProtectedVisibility: Out << "protected "; break;
3190   }
3191 }
3192 
3193 static void PrintDSOLocation(const GlobalValue &GV,
3194                              formatted_raw_ostream &Out) {
3195   // GVs with local linkage or non default visibility are implicitly dso_local,
3196   // so we don't print it.
3197   bool Implicit = GV.hasLocalLinkage() ||
3198                   (!GV.hasExternalWeakLinkage() && !GV.hasDefaultVisibility());
3199   if (GV.isDSOLocal() && !Implicit)
3200     Out << "dso_local ";
3201 }
3202 
3203 static void PrintDLLStorageClass(GlobalValue::DLLStorageClassTypes SCT,
3204                                  formatted_raw_ostream &Out) {
3205   switch (SCT) {
3206   case GlobalValue::DefaultStorageClass: break;
3207   case GlobalValue::DLLImportStorageClass: Out << "dllimport "; break;
3208   case GlobalValue::DLLExportStorageClass: Out << "dllexport "; break;
3209   }
3210 }
3211 
3212 static void PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM,
3213                                   formatted_raw_ostream &Out) {
3214   switch (TLM) {
3215     case GlobalVariable::NotThreadLocal:
3216       break;
3217     case GlobalVariable::GeneralDynamicTLSModel:
3218       Out << "thread_local ";
3219       break;
3220     case GlobalVariable::LocalDynamicTLSModel:
3221       Out << "thread_local(localdynamic) ";
3222       break;
3223     case GlobalVariable::InitialExecTLSModel:
3224       Out << "thread_local(initialexec) ";
3225       break;
3226     case GlobalVariable::LocalExecTLSModel:
3227       Out << "thread_local(localexec) ";
3228       break;
3229   }
3230 }
3231 
3232 static StringRef getUnnamedAddrEncoding(GlobalVariable::UnnamedAddr UA) {
3233   switch (UA) {
3234   case GlobalVariable::UnnamedAddr::None:
3235     return "";
3236   case GlobalVariable::UnnamedAddr::Local:
3237     return "local_unnamed_addr";
3238   case GlobalVariable::UnnamedAddr::Global:
3239     return "unnamed_addr";
3240   }
3241   llvm_unreachable("Unknown UnnamedAddr");
3242 }
3243 
3244 static void maybePrintComdat(formatted_raw_ostream &Out,
3245                              const GlobalObject &GO) {
3246   const Comdat *C = GO.getComdat();
3247   if (!C)
3248     return;
3249 
3250   if (isa<GlobalVariable>(GO))
3251     Out << ',';
3252   Out << " comdat";
3253 
3254   if (GO.getName() == C->getName())
3255     return;
3256 
3257   Out << '(';
3258   PrintLLVMName(Out, C->getName(), ComdatPrefix);
3259   Out << ')';
3260 }
3261 
3262 void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
3263   if (GV->isMaterializable())
3264     Out << "; Materializable\n";
3265 
3266   WriteAsOperandInternal(Out, GV, &TypePrinter, &Machine, GV->getParent());
3267   Out << " = ";
3268 
3269   if (!GV->hasInitializer() && GV->hasExternalLinkage())
3270     Out << "external ";
3271 
3272   Out << getLinkageNameWithSpace(GV->getLinkage());
3273   PrintDSOLocation(*GV, Out);
3274   PrintVisibility(GV->getVisibility(), Out);
3275   PrintDLLStorageClass(GV->getDLLStorageClass(), Out);
3276   PrintThreadLocalModel(GV->getThreadLocalMode(), Out);
3277   StringRef UA = getUnnamedAddrEncoding(GV->getUnnamedAddr());
3278   if (!UA.empty())
3279       Out << UA << ' ';
3280 
3281   if (unsigned AddressSpace = GV->getType()->getAddressSpace())
3282     Out << "addrspace(" << AddressSpace << ") ";
3283   if (GV->isExternallyInitialized()) Out << "externally_initialized ";
3284   Out << (GV->isConstant() ? "constant " : "global ");
3285   TypePrinter.print(GV->getValueType(), Out);
3286 
3287   if (GV->hasInitializer()) {
3288     Out << ' ';
3289     writeOperand(GV->getInitializer(), false);
3290   }
3291 
3292   if (GV->hasSection()) {
3293     Out << ", section \"";
3294     printEscapedString(GV->getSection(), Out);
3295     Out << '"';
3296   }
3297   if (GV->hasPartition()) {
3298     Out << ", partition \"";
3299     printEscapedString(GV->getPartition(), Out);
3300     Out << '"';
3301   }
3302 
3303   maybePrintComdat(Out, *GV);
3304   if (GV->getAlignment())
3305     Out << ", align " << GV->getAlignment();
3306 
3307   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
3308   GV->getAllMetadata(MDs);
3309   printMetadataAttachments(MDs, ", ");
3310 
3311   auto Attrs = GV->getAttributes();
3312   if (Attrs.hasAttributes())
3313     Out << " #" << Machine.getAttributeGroupSlot(Attrs);
3314 
3315   printInfoComment(*GV);
3316 }
3317 
3318 void AssemblyWriter::printIndirectSymbol(const GlobalIndirectSymbol *GIS) {
3319   if (GIS->isMaterializable())
3320     Out << "; Materializable\n";
3321 
3322   WriteAsOperandInternal(Out, GIS, &TypePrinter, &Machine, GIS->getParent());
3323   Out << " = ";
3324 
3325   Out << getLinkageNameWithSpace(GIS->getLinkage());
3326   PrintDSOLocation(*GIS, Out);
3327   PrintVisibility(GIS->getVisibility(), Out);
3328   PrintDLLStorageClass(GIS->getDLLStorageClass(), Out);
3329   PrintThreadLocalModel(GIS->getThreadLocalMode(), Out);
3330   StringRef UA = getUnnamedAddrEncoding(GIS->getUnnamedAddr());
3331   if (!UA.empty())
3332       Out << UA << ' ';
3333 
3334   if (isa<GlobalAlias>(GIS))
3335     Out << "alias ";
3336   else if (isa<GlobalIFunc>(GIS))
3337     Out << "ifunc ";
3338   else
3339     llvm_unreachable("Not an alias or ifunc!");
3340 
3341   TypePrinter.print(GIS->getValueType(), Out);
3342 
3343   Out << ", ";
3344 
3345   const Constant *IS = GIS->getIndirectSymbol();
3346 
3347   if (!IS) {
3348     TypePrinter.print(GIS->getType(), Out);
3349     Out << " <<NULL ALIASEE>>";
3350   } else {
3351     writeOperand(IS, !isa<ConstantExpr>(IS));
3352   }
3353 
3354   if (GIS->hasPartition()) {
3355     Out << ", partition \"";
3356     printEscapedString(GIS->getPartition(), Out);
3357     Out << '"';
3358   }
3359 
3360   printInfoComment(*GIS);
3361   Out << '\n';
3362 }
3363 
3364 void AssemblyWriter::printComdat(const Comdat *C) {
3365   C->print(Out);
3366 }
3367 
3368 void AssemblyWriter::printTypeIdentities() {
3369   if (TypePrinter.empty())
3370     return;
3371 
3372   Out << '\n';
3373 
3374   // Emit all numbered types.
3375   auto &NumberedTypes = TypePrinter.getNumberedTypes();
3376   for (unsigned I = 0, E = NumberedTypes.size(); I != E; ++I) {
3377     Out << '%' << I << " = type ";
3378 
3379     // Make sure we print out at least one level of the type structure, so
3380     // that we do not get %2 = type %2
3381     TypePrinter.printStructBody(NumberedTypes[I], Out);
3382     Out << '\n';
3383   }
3384 
3385   auto &NamedTypes = TypePrinter.getNamedTypes();
3386   for (unsigned I = 0, E = NamedTypes.size(); I != E; ++I) {
3387     PrintLLVMName(Out, NamedTypes[I]->getName(), LocalPrefix);
3388     Out << " = type ";
3389 
3390     // Make sure we print out at least one level of the type structure, so
3391     // that we do not get %FILE = type %FILE
3392     TypePrinter.printStructBody(NamedTypes[I], Out);
3393     Out << '\n';
3394   }
3395 }
3396 
3397 /// printFunction - Print all aspects of a function.
3398 void AssemblyWriter::printFunction(const Function *F) {
3399   // Print out the return type and name.
3400   Out << '\n';
3401 
3402   if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
3403 
3404   if (F->isMaterializable())
3405     Out << "; Materializable\n";
3406 
3407   const AttributeList &Attrs = F->getAttributes();
3408   if (Attrs.hasAttributes(AttributeList::FunctionIndex)) {
3409     AttributeSet AS = Attrs.getFnAttributes();
3410     std::string AttrStr;
3411 
3412     for (const Attribute &Attr : AS) {
3413       if (!Attr.isStringAttribute()) {
3414         if (!AttrStr.empty()) AttrStr += ' ';
3415         AttrStr += Attr.getAsString();
3416       }
3417     }
3418 
3419     if (!AttrStr.empty())
3420       Out << "; Function Attrs: " << AttrStr << '\n';
3421   }
3422 
3423   Machine.incorporateFunction(F);
3424 
3425   if (F->isDeclaration()) {
3426     Out << "declare";
3427     SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
3428     F->getAllMetadata(MDs);
3429     printMetadataAttachments(MDs, " ");
3430     Out << ' ';
3431   } else
3432     Out << "define ";
3433 
3434   Out << getLinkageNameWithSpace(F->getLinkage());
3435   PrintDSOLocation(*F, Out);
3436   PrintVisibility(F->getVisibility(), Out);
3437   PrintDLLStorageClass(F->getDLLStorageClass(), Out);
3438 
3439   // Print the calling convention.
3440   if (F->getCallingConv() != CallingConv::C) {
3441     PrintCallingConv(F->getCallingConv(), Out);
3442     Out << " ";
3443   }
3444 
3445   FunctionType *FT = F->getFunctionType();
3446   if (Attrs.hasAttributes(AttributeList::ReturnIndex))
3447     Out << Attrs.getAsString(AttributeList::ReturnIndex) << ' ';
3448   TypePrinter.print(F->getReturnType(), Out);
3449   Out << ' ';
3450   WriteAsOperandInternal(Out, F, &TypePrinter, &Machine, F->getParent());
3451   Out << '(';
3452 
3453   // Loop over the arguments, printing them...
3454   if (F->isDeclaration() && !IsForDebug) {
3455     // We're only interested in the type here - don't print argument names.
3456     for (unsigned I = 0, E = FT->getNumParams(); I != E; ++I) {
3457       // Insert commas as we go... the first arg doesn't get a comma
3458       if (I)
3459         Out << ", ";
3460       // Output type...
3461       TypePrinter.print(FT->getParamType(I), Out);
3462 
3463       AttributeSet ArgAttrs = Attrs.getParamAttributes(I);
3464       if (ArgAttrs.hasAttributes())
3465         Out << ' ' << ArgAttrs.getAsString();
3466     }
3467   } else {
3468     // The arguments are meaningful here, print them in detail.
3469     for (const Argument &Arg : F->args()) {
3470       // Insert commas as we go... the first arg doesn't get a comma
3471       if (Arg.getArgNo() != 0)
3472         Out << ", ";
3473       printArgument(&Arg, Attrs.getParamAttributes(Arg.getArgNo()));
3474     }
3475   }
3476 
3477   // Finish printing arguments...
3478   if (FT->isVarArg()) {
3479     if (FT->getNumParams()) Out << ", ";
3480     Out << "...";  // Output varargs portion of signature!
3481   }
3482   Out << ')';
3483   StringRef UA = getUnnamedAddrEncoding(F->getUnnamedAddr());
3484   if (!UA.empty())
3485     Out << ' ' << UA;
3486   // We print the function address space if it is non-zero or if we are writing
3487   // a module with a non-zero program address space or if there is no valid
3488   // Module* so that the file can be parsed without the datalayout string.
3489   const Module *Mod = F->getParent();
3490   if (F->getAddressSpace() != 0 || !Mod ||
3491       Mod->getDataLayout().getProgramAddressSpace() != 0)
3492     Out << " addrspace(" << F->getAddressSpace() << ")";
3493   if (Attrs.hasAttributes(AttributeList::FunctionIndex))
3494     Out << " #" << Machine.getAttributeGroupSlot(Attrs.getFnAttributes());
3495   if (F->hasSection()) {
3496     Out << " section \"";
3497     printEscapedString(F->getSection(), Out);
3498     Out << '"';
3499   }
3500   if (F->hasPartition()) {
3501     Out << " partition \"";
3502     printEscapedString(F->getPartition(), Out);
3503     Out << '"';
3504   }
3505   maybePrintComdat(Out, *F);
3506   if (F->getAlignment())
3507     Out << " align " << F->getAlignment();
3508   if (F->hasGC())
3509     Out << " gc \"" << F->getGC() << '"';
3510   if (F->hasPrefixData()) {
3511     Out << " prefix ";
3512     writeOperand(F->getPrefixData(), true);
3513   }
3514   if (F->hasPrologueData()) {
3515     Out << " prologue ";
3516     writeOperand(F->getPrologueData(), true);
3517   }
3518   if (F->hasPersonalityFn()) {
3519     Out << " personality ";
3520     writeOperand(F->getPersonalityFn(), /*PrintType=*/true);
3521   }
3522 
3523   if (F->isDeclaration()) {
3524     Out << '\n';
3525   } else {
3526     SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
3527     F->getAllMetadata(MDs);
3528     printMetadataAttachments(MDs, " ");
3529 
3530     Out << " {";
3531     // Output all of the function's basic blocks.
3532     for (const BasicBlock &BB : *F)
3533       printBasicBlock(&BB);
3534 
3535     // Output the function's use-lists.
3536     printUseLists(F);
3537 
3538     Out << "}\n";
3539   }
3540 
3541   Machine.purgeFunction();
3542 }
3543 
3544 /// printArgument - This member is called for every argument that is passed into
3545 /// the function.  Simply print it out
3546 void AssemblyWriter::printArgument(const Argument *Arg, AttributeSet Attrs) {
3547   // Output type...
3548   TypePrinter.print(Arg->getType(), Out);
3549 
3550   // Output parameter attributes list
3551   if (Attrs.hasAttributes())
3552     Out << ' ' << Attrs.getAsString();
3553 
3554   // Output name, if available...
3555   if (Arg->hasName()) {
3556     Out << ' ';
3557     PrintLLVMName(Out, Arg);
3558   } else {
3559     int Slot = Machine.getLocalSlot(Arg);
3560     assert(Slot != -1 && "expect argument in function here");
3561     Out << " %" << Slot;
3562   }
3563 }
3564 
3565 /// printBasicBlock - This member is called for each basic block in a method.
3566 void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
3567   bool IsEntryBlock = BB == &BB->getParent()->getEntryBlock();
3568   if (BB->hasName()) {              // Print out the label if it exists...
3569     Out << "\n";
3570     PrintLLVMName(Out, BB->getName(), LabelPrefix);
3571     Out << ':';
3572   } else if (!IsEntryBlock) {
3573     Out << "\n";
3574     int Slot = Machine.getLocalSlot(BB);
3575     if (Slot != -1)
3576       Out << Slot << ":";
3577     else
3578       Out << "<badref>:";
3579   }
3580 
3581   if (!BB->getParent()) {
3582     Out.PadToColumn(50);
3583     Out << "; Error: Block without parent!";
3584   } else if (!IsEntryBlock) {
3585     // Output predecessors for the block.
3586     Out.PadToColumn(50);
3587     Out << ";";
3588     const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
3589 
3590     if (PI == PE) {
3591       Out << " No predecessors!";
3592     } else {
3593       Out << " preds = ";
3594       writeOperand(*PI, false);
3595       for (++PI; PI != PE; ++PI) {
3596         Out << ", ";
3597         writeOperand(*PI, false);
3598       }
3599     }
3600   }
3601 
3602   Out << "\n";
3603 
3604   if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
3605 
3606   // Output all of the instructions in the basic block...
3607   for (const Instruction &I : *BB) {
3608     printInstructionLine(I);
3609   }
3610 
3611   if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
3612 }
3613 
3614 /// printInstructionLine - Print an instruction and a newline character.
3615 void AssemblyWriter::printInstructionLine(const Instruction &I) {
3616   printInstruction(I);
3617   Out << '\n';
3618 }
3619 
3620 /// printGCRelocateComment - print comment after call to the gc.relocate
3621 /// intrinsic indicating base and derived pointer names.
3622 void AssemblyWriter::printGCRelocateComment(const GCRelocateInst &Relocate) {
3623   Out << " ; (";
3624   writeOperand(Relocate.getBasePtr(), false);
3625   Out << ", ";
3626   writeOperand(Relocate.getDerivedPtr(), false);
3627   Out << ")";
3628 }
3629 
3630 /// printInfoComment - Print a little comment after the instruction indicating
3631 /// which slot it occupies.
3632 void AssemblyWriter::printInfoComment(const Value &V) {
3633   if (const auto *Relocate = dyn_cast<GCRelocateInst>(&V))
3634     printGCRelocateComment(*Relocate);
3635 
3636   if (AnnotationWriter)
3637     AnnotationWriter->printInfoComment(V, Out);
3638 }
3639 
3640 static void maybePrintCallAddrSpace(const Value *Operand, const Instruction *I,
3641                                     raw_ostream &Out) {
3642   // We print the address space of the call if it is non-zero.
3643   unsigned CallAddrSpace = Operand->getType()->getPointerAddressSpace();
3644   bool PrintAddrSpace = CallAddrSpace != 0;
3645   if (!PrintAddrSpace) {
3646     const Module *Mod = getModuleFromVal(I);
3647     // We also print it if it is zero but not equal to the program address space
3648     // or if we can't find a valid Module* to make it possible to parse
3649     // the resulting file even without a datalayout string.
3650     if (!Mod || Mod->getDataLayout().getProgramAddressSpace() != 0)
3651       PrintAddrSpace = true;
3652   }
3653   if (PrintAddrSpace)
3654     Out << " addrspace(" << CallAddrSpace << ")";
3655 }
3656 
3657 // This member is called for each Instruction in a function..
3658 void AssemblyWriter::printInstruction(const Instruction &I) {
3659   if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
3660 
3661   // Print out indentation for an instruction.
3662   Out << "  ";
3663 
3664   // Print out name if it exists...
3665   if (I.hasName()) {
3666     PrintLLVMName(Out, &I);
3667     Out << " = ";
3668   } else if (!I.getType()->isVoidTy()) {
3669     // Print out the def slot taken.
3670     int SlotNum = Machine.getLocalSlot(&I);
3671     if (SlotNum == -1)
3672       Out << "<badref> = ";
3673     else
3674       Out << '%' << SlotNum << " = ";
3675   }
3676 
3677   if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
3678     if (CI->isMustTailCall())
3679       Out << "musttail ";
3680     else if (CI->isTailCall())
3681       Out << "tail ";
3682     else if (CI->isNoTailCall())
3683       Out << "notail ";
3684   }
3685 
3686   // Print out the opcode...
3687   Out << I.getOpcodeName();
3688 
3689   // If this is an atomic load or store, print out the atomic marker.
3690   if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isAtomic()) ||
3691       (isa<StoreInst>(I) && cast<StoreInst>(I).isAtomic()))
3692     Out << " atomic";
3693 
3694   if (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isWeak())
3695     Out << " weak";
3696 
3697   // If this is a volatile operation, print out the volatile marker.
3698   if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isVolatile()) ||
3699       (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()) ||
3700       (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isVolatile()) ||
3701       (isa<AtomicRMWInst>(I) && cast<AtomicRMWInst>(I).isVolatile()))
3702     Out << " volatile";
3703 
3704   // Print out optimization information.
3705   WriteOptimizationInfo(Out, &I);
3706 
3707   // Print out the compare instruction predicates
3708   if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
3709     Out << ' ' << CmpInst::getPredicateName(CI->getPredicate());
3710 
3711   // Print out the atomicrmw operation
3712   if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I))
3713     Out << ' ' << AtomicRMWInst::getOperationName(RMWI->getOperation());
3714 
3715   // Print out the type of the operands...
3716   const Value *Operand = I.getNumOperands() ? I.getOperand(0) : nullptr;
3717 
3718   // Special case conditional branches to swizzle the condition out to the front
3719   if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
3720     const BranchInst &BI(cast<BranchInst>(I));
3721     Out << ' ';
3722     writeOperand(BI.getCondition(), true);
3723     Out << ", ";
3724     writeOperand(BI.getSuccessor(0), true);
3725     Out << ", ";
3726     writeOperand(BI.getSuccessor(1), true);
3727 
3728   } else if (isa<SwitchInst>(I)) {
3729     const SwitchInst& SI(cast<SwitchInst>(I));
3730     // Special case switch instruction to get formatting nice and correct.
3731     Out << ' ';
3732     writeOperand(SI.getCondition(), true);
3733     Out << ", ";
3734     writeOperand(SI.getDefaultDest(), true);
3735     Out << " [";
3736     for (auto Case : SI.cases()) {
3737       Out << "\n    ";
3738       writeOperand(Case.getCaseValue(), true);
3739       Out << ", ";
3740       writeOperand(Case.getCaseSuccessor(), true);
3741     }
3742     Out << "\n  ]";
3743   } else if (isa<IndirectBrInst>(I)) {
3744     // Special case indirectbr instruction to get formatting nice and correct.
3745     Out << ' ';
3746     writeOperand(Operand, true);
3747     Out << ", [";
3748 
3749     for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
3750       if (i != 1)
3751         Out << ", ";
3752       writeOperand(I.getOperand(i), true);
3753     }
3754     Out << ']';
3755   } else if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
3756     Out << ' ';
3757     TypePrinter.print(I.getType(), Out);
3758     Out << ' ';
3759 
3760     for (unsigned op = 0, Eop = PN->getNumIncomingValues(); op < Eop; ++op) {
3761       if (op) Out << ", ";
3762       Out << "[ ";
3763       writeOperand(PN->getIncomingValue(op), false); Out << ", ";
3764       writeOperand(PN->getIncomingBlock(op), false); Out << " ]";
3765     }
3766   } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
3767     Out << ' ';
3768     writeOperand(I.getOperand(0), true);
3769     for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
3770       Out << ", " << *i;
3771   } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
3772     Out << ' ';
3773     writeOperand(I.getOperand(0), true); Out << ", ";
3774     writeOperand(I.getOperand(1), true);
3775     for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
3776       Out << ", " << *i;
3777   } else if (const LandingPadInst *LPI = dyn_cast<LandingPadInst>(&I)) {
3778     Out << ' ';
3779     TypePrinter.print(I.getType(), Out);
3780     if (LPI->isCleanup() || LPI->getNumClauses() != 0)
3781       Out << '\n';
3782 
3783     if (LPI->isCleanup())
3784       Out << "          cleanup";
3785 
3786     for (unsigned i = 0, e = LPI->getNumClauses(); i != e; ++i) {
3787       if (i != 0 || LPI->isCleanup()) Out << "\n";
3788       if (LPI->isCatch(i))
3789         Out << "          catch ";
3790       else
3791         Out << "          filter ";
3792 
3793       writeOperand(LPI->getClause(i), true);
3794     }
3795   } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(&I)) {
3796     Out << " within ";
3797     writeOperand(CatchSwitch->getParentPad(), /*PrintType=*/false);
3798     Out << " [";
3799     unsigned Op = 0;
3800     for (const BasicBlock *PadBB : CatchSwitch->handlers()) {
3801       if (Op > 0)
3802         Out << ", ";
3803       writeOperand(PadBB, /*PrintType=*/true);
3804       ++Op;
3805     }
3806     Out << "] unwind ";
3807     if (const BasicBlock *UnwindDest = CatchSwitch->getUnwindDest())
3808       writeOperand(UnwindDest, /*PrintType=*/true);
3809     else
3810       Out << "to caller";
3811   } else if (const auto *FPI = dyn_cast<FuncletPadInst>(&I)) {
3812     Out << " within ";
3813     writeOperand(FPI->getParentPad(), /*PrintType=*/false);
3814     Out << " [";
3815     for (unsigned Op = 0, NumOps = FPI->getNumArgOperands(); Op < NumOps;
3816          ++Op) {
3817       if (Op > 0)
3818         Out << ", ";
3819       writeOperand(FPI->getArgOperand(Op), /*PrintType=*/true);
3820     }
3821     Out << ']';
3822   } else if (isa<ReturnInst>(I) && !Operand) {
3823     Out << " void";
3824   } else if (const auto *CRI = dyn_cast<CatchReturnInst>(&I)) {
3825     Out << " from ";
3826     writeOperand(CRI->getOperand(0), /*PrintType=*/false);
3827 
3828     Out << " to ";
3829     writeOperand(CRI->getOperand(1), /*PrintType=*/true);
3830   } else if (const auto *CRI = dyn_cast<CleanupReturnInst>(&I)) {
3831     Out << " from ";
3832     writeOperand(CRI->getOperand(0), /*PrintType=*/false);
3833 
3834     Out << " unwind ";
3835     if (CRI->hasUnwindDest())
3836       writeOperand(CRI->getOperand(1), /*PrintType=*/true);
3837     else
3838       Out << "to caller";
3839   } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
3840     // Print the calling convention being used.
3841     if (CI->getCallingConv() != CallingConv::C) {
3842       Out << " ";
3843       PrintCallingConv(CI->getCallingConv(), Out);
3844     }
3845 
3846     Operand = CI->getCalledValue();
3847     FunctionType *FTy = CI->getFunctionType();
3848     Type *RetTy = FTy->getReturnType();
3849     const AttributeList &PAL = CI->getAttributes();
3850 
3851     if (PAL.hasAttributes(AttributeList::ReturnIndex))
3852       Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
3853 
3854     // Only print addrspace(N) if necessary:
3855     maybePrintCallAddrSpace(Operand, &I, Out);
3856 
3857     // If possible, print out the short form of the call instruction.  We can
3858     // only do this if the first argument is a pointer to a nonvararg function,
3859     // and if the return type is not a pointer to a function.
3860     //
3861     Out << ' ';
3862     TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
3863     Out << ' ';
3864     writeOperand(Operand, false);
3865     Out << '(';
3866     for (unsigned op = 0, Eop = CI->getNumArgOperands(); op < Eop; ++op) {
3867       if (op > 0)
3868         Out << ", ";
3869       writeParamOperand(CI->getArgOperand(op), PAL.getParamAttributes(op));
3870     }
3871 
3872     // Emit an ellipsis if this is a musttail call in a vararg function.  This
3873     // is only to aid readability, musttail calls forward varargs by default.
3874     if (CI->isMustTailCall() && CI->getParent() &&
3875         CI->getParent()->getParent() &&
3876         CI->getParent()->getParent()->isVarArg())
3877       Out << ", ...";
3878 
3879     Out << ')';
3880     if (PAL.hasAttributes(AttributeList::FunctionIndex))
3881       Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
3882 
3883     writeOperandBundles(CI);
3884   } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
3885     Operand = II->getCalledValue();
3886     FunctionType *FTy = II->getFunctionType();
3887     Type *RetTy = FTy->getReturnType();
3888     const AttributeList &PAL = II->getAttributes();
3889 
3890     // Print the calling convention being used.
3891     if (II->getCallingConv() != CallingConv::C) {
3892       Out << " ";
3893       PrintCallingConv(II->getCallingConv(), Out);
3894     }
3895 
3896     if (PAL.hasAttributes(AttributeList::ReturnIndex))
3897       Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
3898 
3899     // Only print addrspace(N) if necessary:
3900     maybePrintCallAddrSpace(Operand, &I, Out);
3901 
3902     // If possible, print out the short form of the invoke instruction. We can
3903     // only do this if the first argument is a pointer to a nonvararg function,
3904     // and if the return type is not a pointer to a function.
3905     //
3906     Out << ' ';
3907     TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
3908     Out << ' ';
3909     writeOperand(Operand, false);
3910     Out << '(';
3911     for (unsigned op = 0, Eop = II->getNumArgOperands(); op < Eop; ++op) {
3912       if (op)
3913         Out << ", ";
3914       writeParamOperand(II->getArgOperand(op), PAL.getParamAttributes(op));
3915     }
3916 
3917     Out << ')';
3918     if (PAL.hasAttributes(AttributeList::FunctionIndex))
3919       Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
3920 
3921     writeOperandBundles(II);
3922 
3923     Out << "\n          to ";
3924     writeOperand(II->getNormalDest(), true);
3925     Out << " unwind ";
3926     writeOperand(II->getUnwindDest(), true);
3927   } else if (const CallBrInst *CBI = dyn_cast<CallBrInst>(&I)) {
3928     Operand = CBI->getCalledValue();
3929     FunctionType *FTy = CBI->getFunctionType();
3930     Type *RetTy = FTy->getReturnType();
3931     const AttributeList &PAL = CBI->getAttributes();
3932 
3933     // Print the calling convention being used.
3934     if (CBI->getCallingConv() != CallingConv::C) {
3935       Out << " ";
3936       PrintCallingConv(CBI->getCallingConv(), Out);
3937     }
3938 
3939     if (PAL.hasAttributes(AttributeList::ReturnIndex))
3940       Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
3941 
3942     // If possible, print out the short form of the callbr instruction. We can
3943     // only do this if the first argument is a pointer to a nonvararg function,
3944     // and if the return type is not a pointer to a function.
3945     //
3946     Out << ' ';
3947     TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
3948     Out << ' ';
3949     writeOperand(Operand, false);
3950     Out << '(';
3951     for (unsigned op = 0, Eop = CBI->getNumArgOperands(); op < Eop; ++op) {
3952       if (op)
3953         Out << ", ";
3954       writeParamOperand(CBI->getArgOperand(op), PAL.getParamAttributes(op));
3955     }
3956 
3957     Out << ')';
3958     if (PAL.hasAttributes(AttributeList::FunctionIndex))
3959       Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
3960 
3961     writeOperandBundles(CBI);
3962 
3963     Out << "\n          to ";
3964     writeOperand(CBI->getDefaultDest(), true);
3965     Out << " [";
3966     for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) {
3967       if (i != 0)
3968         Out << ", ";
3969       writeOperand(CBI->getIndirectDest(i), true);
3970     }
3971     Out << ']';
3972   } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
3973     Out << ' ';
3974     if (AI->isUsedWithInAlloca())
3975       Out << "inalloca ";
3976     if (AI->isSwiftError())
3977       Out << "swifterror ";
3978     TypePrinter.print(AI->getAllocatedType(), Out);
3979 
3980     // Explicitly write the array size if the code is broken, if it's an array
3981     // allocation, or if the type is not canonical for scalar allocations.  The
3982     // latter case prevents the type from mutating when round-tripping through
3983     // assembly.
3984     if (!AI->getArraySize() || AI->isArrayAllocation() ||
3985         !AI->getArraySize()->getType()->isIntegerTy(32)) {
3986       Out << ", ";
3987       writeOperand(AI->getArraySize(), true);
3988     }
3989     if (AI->getAlignment()) {
3990       Out << ", align " << AI->getAlignment();
3991     }
3992 
3993     unsigned AddrSpace = AI->getType()->getAddressSpace();
3994     if (AddrSpace != 0) {
3995       Out << ", addrspace(" << AddrSpace << ')';
3996     }
3997   } else if (isa<CastInst>(I)) {
3998     if (Operand) {
3999       Out << ' ';
4000       writeOperand(Operand, true);   // Work with broken code
4001     }
4002     Out << " to ";
4003     TypePrinter.print(I.getType(), Out);
4004   } else if (isa<VAArgInst>(I)) {
4005     if (Operand) {
4006       Out << ' ';
4007       writeOperand(Operand, true);   // Work with broken code
4008     }
4009     Out << ", ";
4010     TypePrinter.print(I.getType(), Out);
4011   } else if (Operand) {   // Print the normal way.
4012     if (const auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
4013       Out << ' ';
4014       TypePrinter.print(GEP->getSourceElementType(), Out);
4015       Out << ',';
4016     } else if (const auto *LI = dyn_cast<LoadInst>(&I)) {
4017       Out << ' ';
4018       TypePrinter.print(LI->getType(), Out);
4019       Out << ',';
4020     }
4021 
4022     // PrintAllTypes - Instructions who have operands of all the same type
4023     // omit the type from all but the first operand.  If the instruction has
4024     // different type operands (for example br), then they are all printed.
4025     bool PrintAllTypes = false;
4026     Type *TheType = Operand->getType();
4027 
4028     // Select, Store and ShuffleVector always print all types.
4029     if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)
4030         || isa<ReturnInst>(I)) {
4031       PrintAllTypes = true;
4032     } else {
4033       for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
4034         Operand = I.getOperand(i);
4035         // note that Operand shouldn't be null, but the test helps make dump()
4036         // more tolerant of malformed IR
4037         if (Operand && Operand->getType() != TheType) {
4038           PrintAllTypes = true;    // We have differing types!  Print them all!
4039           break;
4040         }
4041       }
4042     }
4043 
4044     if (!PrintAllTypes) {
4045       Out << ' ';
4046       TypePrinter.print(TheType, Out);
4047     }
4048 
4049     Out << ' ';
4050     for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
4051       if (i) Out << ", ";
4052       writeOperand(I.getOperand(i), PrintAllTypes);
4053     }
4054   }
4055 
4056   // Print atomic ordering/alignment for memory operations
4057   if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
4058     if (LI->isAtomic())
4059       writeAtomic(LI->getContext(), LI->getOrdering(), LI->getSyncScopeID());
4060     if (LI->getAlignment())
4061       Out << ", align " << LI->getAlignment();
4062   } else if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
4063     if (SI->isAtomic())
4064       writeAtomic(SI->getContext(), SI->getOrdering(), SI->getSyncScopeID());
4065     if (SI->getAlignment())
4066       Out << ", align " << SI->getAlignment();
4067   } else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(&I)) {
4068     writeAtomicCmpXchg(CXI->getContext(), CXI->getSuccessOrdering(),
4069                        CXI->getFailureOrdering(), CXI->getSyncScopeID());
4070   } else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) {
4071     writeAtomic(RMWI->getContext(), RMWI->getOrdering(),
4072                 RMWI->getSyncScopeID());
4073   } else if (const FenceInst *FI = dyn_cast<FenceInst>(&I)) {
4074     writeAtomic(FI->getContext(), FI->getOrdering(), FI->getSyncScopeID());
4075   }
4076 
4077   // Print Metadata info.
4078   SmallVector<std::pair<unsigned, MDNode *>, 4> InstMD;
4079   I.getAllMetadata(InstMD);
4080   printMetadataAttachments(InstMD, ", ");
4081 
4082   // Print a nice comment.
4083   printInfoComment(I);
4084 }
4085 
4086 void AssemblyWriter::printMetadataAttachments(
4087     const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
4088     StringRef Separator) {
4089   if (MDs.empty())
4090     return;
4091 
4092   if (MDNames.empty())
4093     MDs[0].second->getContext().getMDKindNames(MDNames);
4094 
4095   for (const auto &I : MDs) {
4096     unsigned Kind = I.first;
4097     Out << Separator;
4098     if (Kind < MDNames.size()) {
4099       Out << "!";
4100       printMetadataIdentifier(MDNames[Kind], Out);
4101     } else
4102       Out << "!<unknown kind #" << Kind << ">";
4103     Out << ' ';
4104     WriteAsOperandInternal(Out, I.second, &TypePrinter, &Machine, TheModule);
4105   }
4106 }
4107 
4108 void AssemblyWriter::writeMDNode(unsigned Slot, const MDNode *Node) {
4109   Out << '!' << Slot << " = ";
4110   printMDNodeBody(Node);
4111   Out << "\n";
4112 }
4113 
4114 void AssemblyWriter::writeAllMDNodes() {
4115   SmallVector<const MDNode *, 16> Nodes;
4116   Nodes.resize(Machine.mdn_size());
4117   for (SlotTracker::mdn_iterator I = Machine.mdn_begin(), E = Machine.mdn_end();
4118        I != E; ++I)
4119     Nodes[I->second] = cast<MDNode>(I->first);
4120 
4121   for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
4122     writeMDNode(i, Nodes[i]);
4123   }
4124 }
4125 
4126 void AssemblyWriter::printMDNodeBody(const MDNode *Node) {
4127   WriteMDNodeBodyInternal(Out, Node, &TypePrinter, &Machine, TheModule);
4128 }
4129 
4130 void AssemblyWriter::writeAllAttributeGroups() {
4131   std::vector<std::pair<AttributeSet, unsigned>> asVec;
4132   asVec.resize(Machine.as_size());
4133 
4134   for (SlotTracker::as_iterator I = Machine.as_begin(), E = Machine.as_end();
4135        I != E; ++I)
4136     asVec[I->second] = *I;
4137 
4138   for (const auto &I : asVec)
4139     Out << "attributes #" << I.second << " = { "
4140         << I.first.getAsString(true) << " }\n";
4141 }
4142 
4143 void AssemblyWriter::printUseListOrder(const UseListOrder &Order) {
4144   bool IsInFunction = Machine.getFunction();
4145   if (IsInFunction)
4146     Out << "  ";
4147 
4148   Out << "uselistorder";
4149   if (const BasicBlock *BB =
4150           IsInFunction ? nullptr : dyn_cast<BasicBlock>(Order.V)) {
4151     Out << "_bb ";
4152     writeOperand(BB->getParent(), false);
4153     Out << ", ";
4154     writeOperand(BB, false);
4155   } else {
4156     Out << " ";
4157     writeOperand(Order.V, true);
4158   }
4159   Out << ", { ";
4160 
4161   assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
4162   Out << Order.Shuffle[0];
4163   for (unsigned I = 1, E = Order.Shuffle.size(); I != E; ++I)
4164     Out << ", " << Order.Shuffle[I];
4165   Out << " }\n";
4166 }
4167 
4168 void AssemblyWriter::printUseLists(const Function *F) {
4169   auto hasMore =
4170       [&]() { return !UseListOrders.empty() && UseListOrders.back().F == F; };
4171   if (!hasMore())
4172     // Nothing to do.
4173     return;
4174 
4175   Out << "\n; uselistorder directives\n";
4176   while (hasMore()) {
4177     printUseListOrder(UseListOrders.back());
4178     UseListOrders.pop_back();
4179   }
4180 }
4181 
4182 //===----------------------------------------------------------------------===//
4183 //                       External Interface declarations
4184 //===----------------------------------------------------------------------===//
4185 
4186 void Function::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
4187                      bool ShouldPreserveUseListOrder,
4188                      bool IsForDebug) const {
4189   SlotTracker SlotTable(this->getParent());
4190   formatted_raw_ostream OS(ROS);
4191   AssemblyWriter W(OS, SlotTable, this->getParent(), AAW,
4192                    IsForDebug,
4193                    ShouldPreserveUseListOrder);
4194   W.printFunction(this);
4195 }
4196 
4197 void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
4198                    bool ShouldPreserveUseListOrder, bool IsForDebug) const {
4199   SlotTracker SlotTable(this);
4200   formatted_raw_ostream OS(ROS);
4201   AssemblyWriter W(OS, SlotTable, this, AAW, IsForDebug,
4202                    ShouldPreserveUseListOrder);
4203   W.printModule(this);
4204 }
4205 
4206 void NamedMDNode::print(raw_ostream &ROS, bool IsForDebug) const {
4207   SlotTracker SlotTable(getParent());
4208   formatted_raw_ostream OS(ROS);
4209   AssemblyWriter W(OS, SlotTable, getParent(), nullptr, IsForDebug);
4210   W.printNamedMDNode(this);
4211 }
4212 
4213 void NamedMDNode::print(raw_ostream &ROS, ModuleSlotTracker &MST,
4214                         bool IsForDebug) const {
4215   Optional<SlotTracker> LocalST;
4216   SlotTracker *SlotTable;
4217   if (auto *ST = MST.getMachine())
4218     SlotTable = ST;
4219   else {
4220     LocalST.emplace(getParent());
4221     SlotTable = &*LocalST;
4222   }
4223 
4224   formatted_raw_ostream OS(ROS);
4225   AssemblyWriter W(OS, *SlotTable, getParent(), nullptr, IsForDebug);
4226   W.printNamedMDNode(this);
4227 }
4228 
4229 void Comdat::print(raw_ostream &ROS, bool /*IsForDebug*/) const {
4230   PrintLLVMName(ROS, getName(), ComdatPrefix);
4231   ROS << " = comdat ";
4232 
4233   switch (getSelectionKind()) {
4234   case Comdat::Any:
4235     ROS << "any";
4236     break;
4237   case Comdat::ExactMatch:
4238     ROS << "exactmatch";
4239     break;
4240   case Comdat::Largest:
4241     ROS << "largest";
4242     break;
4243   case Comdat::NoDuplicates:
4244     ROS << "noduplicates";
4245     break;
4246   case Comdat::SameSize:
4247     ROS << "samesize";
4248     break;
4249   }
4250 
4251   ROS << '\n';
4252 }
4253 
4254 void Type::print(raw_ostream &OS, bool /*IsForDebug*/, bool NoDetails) const {
4255   TypePrinting TP;
4256   TP.print(const_cast<Type*>(this), OS);
4257 
4258   if (NoDetails)
4259     return;
4260 
4261   // If the type is a named struct type, print the body as well.
4262   if (StructType *STy = dyn_cast<StructType>(const_cast<Type*>(this)))
4263     if (!STy->isLiteral()) {
4264       OS << " = type ";
4265       TP.printStructBody(STy, OS);
4266     }
4267 }
4268 
4269 static bool isReferencingMDNode(const Instruction &I) {
4270   if (const auto *CI = dyn_cast<CallInst>(&I))
4271     if (Function *F = CI->getCalledFunction())
4272       if (F->isIntrinsic())
4273         for (auto &Op : I.operands())
4274           if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
4275             if (isa<MDNode>(V->getMetadata()))
4276               return true;
4277   return false;
4278 }
4279 
4280 void Value::print(raw_ostream &ROS, bool IsForDebug) const {
4281   bool ShouldInitializeAllMetadata = false;
4282   if (auto *I = dyn_cast<Instruction>(this))
4283     ShouldInitializeAllMetadata = isReferencingMDNode(*I);
4284   else if (isa<Function>(this) || isa<MetadataAsValue>(this))
4285     ShouldInitializeAllMetadata = true;
4286 
4287   ModuleSlotTracker MST(getModuleFromVal(this), ShouldInitializeAllMetadata);
4288   print(ROS, MST, IsForDebug);
4289 }
4290 
4291 void Value::print(raw_ostream &ROS, ModuleSlotTracker &MST,
4292                   bool IsForDebug) const {
4293   formatted_raw_ostream OS(ROS);
4294   SlotTracker EmptySlotTable(static_cast<const Module *>(nullptr));
4295   SlotTracker &SlotTable =
4296       MST.getMachine() ? *MST.getMachine() : EmptySlotTable;
4297   auto incorporateFunction = [&](const Function *F) {
4298     if (F)
4299       MST.incorporateFunction(*F);
4300   };
4301 
4302   if (const Instruction *I = dyn_cast<Instruction>(this)) {
4303     incorporateFunction(I->getParent() ? I->getParent()->getParent() : nullptr);
4304     AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), nullptr, IsForDebug);
4305     W.printInstruction(*I);
4306   } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
4307     incorporateFunction(BB->getParent());
4308     AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), nullptr, IsForDebug);
4309     W.printBasicBlock(BB);
4310   } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
4311     AssemblyWriter W(OS, SlotTable, GV->getParent(), nullptr, IsForDebug);
4312     if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV))
4313       W.printGlobal(V);
4314     else if (const Function *F = dyn_cast<Function>(GV))
4315       W.printFunction(F);
4316     else
4317       W.printIndirectSymbol(cast<GlobalIndirectSymbol>(GV));
4318   } else if (const MetadataAsValue *V = dyn_cast<MetadataAsValue>(this)) {
4319     V->getMetadata()->print(ROS, MST, getModuleFromVal(V));
4320   } else if (const Constant *C = dyn_cast<Constant>(this)) {
4321     TypePrinting TypePrinter;
4322     TypePrinter.print(C->getType(), OS);
4323     OS << ' ';
4324     WriteConstantInternal(OS, C, TypePrinter, MST.getMachine(), nullptr);
4325   } else if (isa<InlineAsm>(this) || isa<Argument>(this)) {
4326     this->printAsOperand(OS, /* PrintType */ true, MST);
4327   } else {
4328     llvm_unreachable("Unknown value to print out!");
4329   }
4330 }
4331 
4332 /// Print without a type, skipping the TypePrinting object.
4333 ///
4334 /// \return \c true iff printing was successful.
4335 static bool printWithoutType(const Value &V, raw_ostream &O,
4336                              SlotTracker *Machine, const Module *M) {
4337   if (V.hasName() || isa<GlobalValue>(V) ||
4338       (!isa<Constant>(V) && !isa<MetadataAsValue>(V))) {
4339     WriteAsOperandInternal(O, &V, nullptr, Machine, M);
4340     return true;
4341   }
4342   return false;
4343 }
4344 
4345 static void printAsOperandImpl(const Value &V, raw_ostream &O, bool PrintType,
4346                                ModuleSlotTracker &MST) {
4347   TypePrinting TypePrinter(MST.getModule());
4348   if (PrintType) {
4349     TypePrinter.print(V.getType(), O);
4350     O << ' ';
4351   }
4352 
4353   WriteAsOperandInternal(O, &V, &TypePrinter, MST.getMachine(),
4354                          MST.getModule());
4355 }
4356 
4357 void Value::printAsOperand(raw_ostream &O, bool PrintType,
4358                            const Module *M) const {
4359   if (!M)
4360     M = getModuleFromVal(this);
4361 
4362   if (!PrintType)
4363     if (printWithoutType(*this, O, nullptr, M))
4364       return;
4365 
4366   SlotTracker Machine(
4367       M, /* ShouldInitializeAllMetadata */ isa<MetadataAsValue>(this));
4368   ModuleSlotTracker MST(Machine, M);
4369   printAsOperandImpl(*this, O, PrintType, MST);
4370 }
4371 
4372 void Value::printAsOperand(raw_ostream &O, bool PrintType,
4373                            ModuleSlotTracker &MST) const {
4374   if (!PrintType)
4375     if (printWithoutType(*this, O, MST.getMachine(), MST.getModule()))
4376       return;
4377 
4378   printAsOperandImpl(*this, O, PrintType, MST);
4379 }
4380 
4381 static void printMetadataImpl(raw_ostream &ROS, const Metadata &MD,
4382                               ModuleSlotTracker &MST, const Module *M,
4383                               bool OnlyAsOperand) {
4384   formatted_raw_ostream OS(ROS);
4385 
4386   TypePrinting TypePrinter(M);
4387 
4388   WriteAsOperandInternal(OS, &MD, &TypePrinter, MST.getMachine(), M,
4389                          /* FromValue */ true);
4390 
4391   auto *N = dyn_cast<MDNode>(&MD);
4392   if (OnlyAsOperand || !N || isa<DIExpression>(MD))
4393     return;
4394 
4395   OS << " = ";
4396   WriteMDNodeBodyInternal(OS, N, &TypePrinter, MST.getMachine(), M);
4397 }
4398 
4399 void Metadata::printAsOperand(raw_ostream &OS, const Module *M) const {
4400   ModuleSlotTracker MST(M, isa<MDNode>(this));
4401   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
4402 }
4403 
4404 void Metadata::printAsOperand(raw_ostream &OS, ModuleSlotTracker &MST,
4405                               const Module *M) const {
4406   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
4407 }
4408 
4409 void Metadata::print(raw_ostream &OS, const Module *M,
4410                      bool /*IsForDebug*/) const {
4411   ModuleSlotTracker MST(M, isa<MDNode>(this));
4412   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
4413 }
4414 
4415 void Metadata::print(raw_ostream &OS, ModuleSlotTracker &MST,
4416                      const Module *M, bool /*IsForDebug*/) const {
4417   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
4418 }
4419 
4420 void ModuleSummaryIndex::print(raw_ostream &ROS, bool IsForDebug) const {
4421   SlotTracker SlotTable(this);
4422   formatted_raw_ostream OS(ROS);
4423   AssemblyWriter W(OS, SlotTable, this, IsForDebug);
4424   W.printModuleSummaryIndex();
4425 }
4426 
4427 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4428 // Value::dump - allow easy printing of Values from the debugger.
4429 LLVM_DUMP_METHOD
4430 void Value::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
4431 
4432 // Type::dump - allow easy printing of Types from the debugger.
4433 LLVM_DUMP_METHOD
4434 void Type::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
4435 
4436 // Module::dump() - Allow printing of Modules from the debugger.
4437 LLVM_DUMP_METHOD
4438 void Module::dump() const {
4439   print(dbgs(), nullptr,
4440         /*ShouldPreserveUseListOrder=*/false, /*IsForDebug=*/true);
4441 }
4442 
4443 // Allow printing of Comdats from the debugger.
4444 LLVM_DUMP_METHOD
4445 void Comdat::dump() const { print(dbgs(), /*IsForDebug=*/true); }
4446 
4447 // NamedMDNode::dump() - Allow printing of NamedMDNodes from the debugger.
4448 LLVM_DUMP_METHOD
4449 void NamedMDNode::dump() const { print(dbgs(), /*IsForDebug=*/true); }
4450 
4451 LLVM_DUMP_METHOD
4452 void Metadata::dump() const { dump(nullptr); }
4453 
4454 LLVM_DUMP_METHOD
4455 void Metadata::dump(const Module *M) const {
4456   print(dbgs(), M, /*IsForDebug=*/true);
4457   dbgs() << '\n';
4458 }
4459 
4460 // Allow printing of ModuleSummaryIndex from the debugger.
4461 LLVM_DUMP_METHOD
4462 void ModuleSummaryIndex::dump() const { print(dbgs(), /*IsForDebug=*/true); }
4463 #endif
4464