-*- mode: troff; coding: utf-8 -*-
Automatically generated by Pod::Man 5.01 (Pod::Simple 3.43)
Standard preamble:
========================================================================
..
.... \*(C` and \*(C' are quotes in nroff, nothing in troff, for use with C<>.
. ds C` "" . ds C' "" 'br\} . ds C` . ds C' 'br\}
Escape single quotes in literal strings from groff's Unicode transform.
If the F register is >0, we'll generate index entries on stderr for
titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
entries marked with X<> in POD. Of course, you'll have to process the
output yourself in some meaningful fashion.
Avoid warning from groff about undefined register 'F'.
.. .nr rF 0 . if \nF \{\ . de IX . tm Index:\\$1\t\\n%\t"\\$2" .. . if !\nF==2 \{\ . nr % 0 . nr F 2 . \} . \} .\} .rr rF ========================================================================
Title "SHA256_Init 3"
way too many mistakes in technical documents.
The following functions have been deprecated since OpenSSL 3.0, and can be hidden entirely by defining OPENSSL_API_COMPAT with a suitable version value, see openssl_user_macros\|(7):
.Vb 3 int SHA1_Init(SHA_CTX *c); int SHA1_Update(SHA_CTX *c, const void *data, size_t len); int SHA1_Final(unsigned char *md, SHA_CTX *c); \& int SHA224_Init(SHA256_CTX *c); int SHA224_Update(SHA256_CTX *c, const void *data, size_t len); int SHA224_Final(unsigned char *md, SHA256_CTX *c); \& int SHA256_Init(SHA256_CTX *c); int SHA256_Update(SHA256_CTX *c, const void *data, size_t len); int SHA256_Final(unsigned char *md, SHA256_CTX *c); \& int SHA384_Init(SHA512_CTX *c); int SHA384_Update(SHA512_CTX *c, const void *data, size_t len); int SHA384_Final(unsigned char *md, SHA512_CTX *c); \& int SHA512_Init(SHA512_CTX *c); int SHA512_Update(SHA512_CTX *c, const void *data, size_t len); int SHA512_Final(unsigned char *md, SHA512_CTX *c); .Ve
.Vb 1 (EVP_Q_digest(d, n, md, NULL, NULL, "SHA256", NULL) ? md : NULL) .Ve
SHA-1 (Secure Hash Algorithm) is a cryptographic hash function with a 160 bit output.
\fBSHA1() computes the SHA-1 message digest of the n bytes at d and places it in md (which must have space for SHA_DIGEST_LENGTH == 20 bytes of output). If md is NULL, the digest is placed in a static array. Note: setting md to NULL is not thread safe.
The following functions may be used if the message is not completely stored in memory:
\fBSHA1_Init() initializes a SHA_CTX structure.
\fBSHA1_Update() can be called repeatedly with chunks of the message to be hashed (len bytes at data).
\fBSHA1_Final() places the message digest in md, which must have space for SHA_DIGEST_LENGTH == 20 bytes of output, and erases the SHA_CTX.
The SHA224, SHA256, SHA384 and SHA512 families of functions operate in the same way as for the SHA1 functions. Note that SHA224 and SHA256 use a \fBSHA256_CTX object instead of SHA_CTX. SHA384 and SHA512 use SHA512_CTX. The buffer md must have space for the output from the SHA variant being used (defined by SHA224_DIGEST_LENGTH, SHA256_DIGEST_LENGTH, SHA384_DIGEST_LENGTH and SHA512_DIGEST_LENGTH). Also note that, as for the SHA1() function above, the \fBSHA224(), SHA256(), SHA384() and SHA512() functions are not thread safe if \fBmd is NULL.
\fBSHA1_Init(), SHA1_Update() and SHA1_Final() and equivalent SHA224, SHA256, SHA384 and SHA512 functions return 1 for success, 0 otherwise.
Licensed under the Apache License 2.0 (the "License"). You may not use this file except in compliance with the License. You can obtain a copy in the file LICENSE in the source distribution or at <https://www.openssl.org/source/license.html>.