xref: /netbsd-src/crypto/external/bsd/heimdal/dist/lib/hcrypto/evp.c (revision afab4e300d3a9fb07dd8c80daf53d0feb3345706)
1 /*	$NetBSD: evp.c,v 1.3 2023/06/19 21:41:43 christos Exp $	*/
2 
3 /*
4  * Copyright (c) 2006 - 2016 Kungliga Tekniska Högskolan
5  * (Royal Institute of Technology, Stockholm, Sweden).
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  *
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * 3. Neither the name of the Institute nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 
36 #ifdef HAVE_CONFIG_H
37 #include <config.h>
38 #endif
39 #include <krb5/roken.h>
40 
41 #define HC_DEPRECATED
42 #define HC_DEPRECATED_CRYPTO
43 
44 #include <assert.h>
45 
46 #include <evp.h>
47 #include <evp-hcrypto.h>
48 #include <evp-cc.h>
49 #if defined(_WIN32)
50 #include <evp-w32.h>
51 #endif
52 #include <evp-pkcs11.h>
53 #include <evp-openssl.h>
54 
55 #include <krb5/krb5-types.h>
56 
57 #ifndef HCRYPTO_DEF_PROVIDER
58 # ifdef __APPLE__
59 #  define HCRYPTO_DEF_PROVIDER cc
60 # elif __sun
61 #  define HCRYPTO_DEF_PROVIDER pkcs11_hcrypto
62 # elif HAVE_HCRYPTO_W_OPENSSL
63 #  define HCRYPTO_DEF_PROVIDER ossl
64 # else
65 #  define HCRYPTO_DEF_PROVIDER hcrypto
66 # endif
67 #endif
68 
69 #define HC_CONCAT4(x,y,z,aa)	x ## y ## z ## aa
70 
71 
72 #define EVP_DEF_OP(_prov,_op) HC_CONCAT4(EVP_,_prov,_,_op)()
73 
74 /**
75  * @page page_evp EVP - generic crypto interface
76  *
77  * See the library functions here: @ref hcrypto_evp
78  *
79  * @section evp_cipher EVP Cipher
80  *
81  * The use of EVP_CipherInit_ex() and EVP_Cipher() is pretty easy to
82  * understand forward, then EVP_CipherUpdate() and
83  * EVP_CipherFinal_ex() really needs an example to explain @ref
84  * example_evp_cipher.c .
85  *
86  * @example example_evp_cipher.c
87  *
88  * This is an example how to use EVP_CipherInit_ex(),
89  * EVP_CipherUpdate() and EVP_CipherFinal_ex().
90  */
91 
92 struct hc_EVP_MD_CTX {
93     const EVP_MD *md;
94     ENGINE *engine;
95     void *ptr;
96 };
97 
98 
99 /**
100  * Return the output size of the message digest function.
101  *
102  * @param md the evp message
103  *
104  * @return size output size of the message digest function.
105  *
106  * @ingroup hcrypto_evp
107  */
108 
109 size_t
EVP_MD_size(const EVP_MD * md)110 EVP_MD_size(const EVP_MD *md)
111 {
112     return md->hash_size;
113 }
114 
115 /**
116  * Return the blocksize of the message digest function.
117  *
118  * @param md the evp message
119  *
120  * @return size size of the message digest block size
121  *
122  * @ingroup hcrypto_evp
123  */
124 
125 size_t
EVP_MD_block_size(const EVP_MD * md)126 EVP_MD_block_size(const EVP_MD *md)
127 {
128     return md->block_size;
129 }
130 
131 /**
132  * Allocate a messsage digest context object. Free with
133  * EVP_MD_CTX_destroy().
134  *
135  * @return a newly allocated message digest context object.
136  *
137  * @ingroup hcrypto_evp
138  */
139 
140 EVP_MD_CTX *
EVP_MD_CTX_create(void)141 EVP_MD_CTX_create(void)
142 {
143     return calloc(1, sizeof(EVP_MD_CTX));
144 }
145 
146 /**
147  * Initiate a messsage digest context object. Deallocate with
148  * EVP_MD_CTX_cleanup(). Please use EVP_MD_CTX_create() instead.
149  *
150  * @param ctx variable to initiate.
151  *
152  * @ingroup hcrypto_evp
153  */
154 
155 void
EVP_MD_CTX_init(EVP_MD_CTX * ctx)156 EVP_MD_CTX_init(EVP_MD_CTX *ctx) HC_DEPRECATED
157 {
158     memset(ctx, 0, sizeof(*ctx));
159 }
160 
161 /**
162  * Free a messsage digest context object.
163  *
164  * @param ctx context to free.
165  *
166  * @ingroup hcrypto_evp
167  */
168 
169 void
EVP_MD_CTX_destroy(EVP_MD_CTX * ctx)170 EVP_MD_CTX_destroy(EVP_MD_CTX *ctx)
171 {
172     EVP_MD_CTX_cleanup(ctx);
173     free(ctx);
174 }
175 
176 /**
177  * Free the resources used by the EVP_MD context.
178  *
179  * @param ctx the context to free the resources from.
180  *
181  * @return 1 on success.
182  *
183  * @ingroup hcrypto_evp
184  */
185 
186 int
EVP_MD_CTX_cleanup(EVP_MD_CTX * ctx)187 EVP_MD_CTX_cleanup(EVP_MD_CTX *ctx) HC_DEPRECATED
188 {
189     if (ctx->md && ctx->md->cleanup) {
190 	int ret = (ctx->md->cleanup)(ctx->ptr);
191 	if (!ret)
192 	    return ret;
193     } else if (ctx->md) {
194 	memset(ctx->ptr, 0, ctx->md->ctx_size);
195     }
196     ctx->md = NULL;
197     ctx->engine = NULL;
198     free(ctx->ptr);
199     memset(ctx, 0, sizeof(*ctx));
200     return 1;
201 }
202 
203 /**
204  * Get the EVP_MD use for a specified context.
205  *
206  * @param ctx the EVP_MD context to get the EVP_MD for.
207  *
208  * @return the EVP_MD used for the context.
209  *
210  * @ingroup hcrypto_evp
211  */
212 
213 const EVP_MD *
EVP_MD_CTX_md(EVP_MD_CTX * ctx)214 EVP_MD_CTX_md(EVP_MD_CTX *ctx)
215 {
216     return ctx->md;
217 }
218 
219 /**
220  * Return the output size of the message digest function.
221  *
222  * @param ctx the evp message digest context
223  *
224  * @return size output size of the message digest function.
225  *
226  * @ingroup hcrypto_evp
227  */
228 
229 size_t
EVP_MD_CTX_size(EVP_MD_CTX * ctx)230 EVP_MD_CTX_size(EVP_MD_CTX *ctx)
231 {
232     return EVP_MD_size(ctx->md);
233 }
234 
235 /**
236  * Return the blocksize of the message digest function.
237  *
238  * @param ctx the evp message digest context
239  *
240  * @return size size of the message digest block size
241  *
242  * @ingroup hcrypto_evp
243  */
244 
245 size_t
EVP_MD_CTX_block_size(EVP_MD_CTX * ctx)246 EVP_MD_CTX_block_size(EVP_MD_CTX *ctx)
247 {
248     return EVP_MD_block_size(ctx->md);
249 }
250 
251 /**
252  * Init a EVP_MD_CTX for use a specific message digest and engine.
253  *
254  * @param ctx the message digest context to init.
255  * @param md the message digest to use.
256  * @param engine the engine to use, NULL to use the default engine.
257  *
258  * @return 1 on success.
259  *
260  * @ingroup hcrypto_evp
261  */
262 
263 int
EVP_DigestInit_ex(EVP_MD_CTX * ctx,const EVP_MD * md,ENGINE * engine)264 EVP_DigestInit_ex(EVP_MD_CTX *ctx, const EVP_MD *md, ENGINE *engine)
265 {
266     if (ctx->md != md || ctx->engine != engine) {
267 	EVP_MD_CTX_cleanup(ctx);
268 	ctx->md = md;
269 	ctx->engine = engine;
270         if (md == NULL)
271             return 0;
272 
273 	ctx->ptr = calloc(1, md->ctx_size);
274 	if (ctx->ptr == NULL)
275 	    return 0;
276     }
277     if (ctx->md == 0)
278         return 0;
279     return (ctx->md->init)(ctx->ptr);
280 }
281 
282 /**
283  * Update the digest with some data.
284  *
285  * @param ctx the context to update
286  * @param data the data to update the context with
287  * @param size length of data
288  *
289  * @return 1 on success.
290  *
291  * @ingroup hcrypto_evp
292  */
293 
294 int
EVP_DigestUpdate(EVP_MD_CTX * ctx,const void * data,size_t size)295 EVP_DigestUpdate(EVP_MD_CTX *ctx, const void *data, size_t size)
296 {
297     (ctx->md->update)(ctx->ptr, data, size);
298     return 1;
299 }
300 
301 /**
302  * Complete the message digest.
303  *
304  * @param ctx the context to complete.
305  * @param hash the output of the message digest function. At least
306  * EVP_MD_size().
307  * @param size the output size of hash.
308  *
309  * @return 1 on success.
310  *
311  * @ingroup hcrypto_evp
312  */
313 
314 int
EVP_DigestFinal_ex(EVP_MD_CTX * ctx,void * hash,unsigned int * size)315 EVP_DigestFinal_ex(EVP_MD_CTX *ctx, void *hash, unsigned int *size)
316 {
317     (ctx->md->final)(hash, ctx->ptr);
318     if (size)
319 	*size = ctx->md->hash_size;
320     return 1;
321 }
322 
323 /**
324  * Do the whole EVP_MD_CTX_create(), EVP_DigestInit_ex(),
325  * EVP_DigestUpdate(), EVP_DigestFinal_ex(), EVP_MD_CTX_destroy()
326  * dance in one call.
327  *
328  * @param data the data to update the context with
329  * @param dsize length of data
330  * @param hash output data of at least EVP_MD_size() length.
331  * @param hsize output length of hash.
332  * @param md message digest to use
333  * @param engine engine to use, NULL for default engine.
334  *
335  * @return 1 on success.
336  *
337  * @ingroup hcrypto_evp
338  */
339 
340 int
EVP_Digest(const void * data,size_t dsize,void * hash,unsigned int * hsize,const EVP_MD * md,ENGINE * engine)341 EVP_Digest(const void *data, size_t dsize, void *hash, unsigned int *hsize,
342 	   const EVP_MD *md, ENGINE *engine)
343 {
344     EVP_MD_CTX *ctx;
345     int ret;
346 
347     ctx = EVP_MD_CTX_create();
348     if (ctx == NULL)
349 	return 0;
350     ret = EVP_DigestInit_ex(ctx, md, engine);
351     if (ret != 1) {
352 	EVP_MD_CTX_destroy(ctx);
353 	return ret;
354     }
355     ret = EVP_DigestUpdate(ctx, data, dsize);
356     if (ret != 1) {
357 	EVP_MD_CTX_destroy(ctx);
358 	return ret;
359     }
360     ret = EVP_DigestFinal_ex(ctx, hash, hsize);
361     EVP_MD_CTX_destroy(ctx);
362     return ret;
363 }
364 
365 /**
366  * The message digest SHA256
367  *
368  * @return the message digest type.
369  *
370  * @ingroup hcrypto_evp
371  */
372 
373 const EVP_MD *
EVP_sha256(void)374 EVP_sha256(void)
375 {
376     hcrypto_validate();
377     return EVP_DEF_OP(HCRYPTO_DEF_PROVIDER, sha256);
378 }
379 
380 /**
381  * The message digest SHA384
382  *
383  * @return the message digest type.
384  *
385  * @ingroup hcrypto_evp
386  */
387 
388 const EVP_MD *
EVP_sha384(void)389 EVP_sha384(void)
390 {
391     hcrypto_validate();
392     return EVP_DEF_OP(HCRYPTO_DEF_PROVIDER, sha384);
393 }
394 
395 /**
396  * The message digest SHA512
397  *
398  * @return the message digest type.
399  *
400  * @ingroup hcrypto_evp
401  */
402 
403 const EVP_MD *
EVP_sha512(void)404 EVP_sha512(void)
405 {
406     hcrypto_validate();
407     return EVP_DEF_OP(HCRYPTO_DEF_PROVIDER, sha512);
408 }
409 
410 /**
411  * The message digest SHA1
412  *
413  * @return the message digest type.
414  *
415  * @ingroup hcrypto_evp
416  */
417 
418 const EVP_MD *
EVP_sha1(void)419 EVP_sha1(void)
420 {
421     hcrypto_validate();
422     return EVP_DEF_OP(HCRYPTO_DEF_PROVIDER, sha1);
423 }
424 
425 /**
426  * The message digest SHA1
427  *
428  * @return the message digest type.
429  *
430  * @ingroup hcrypto_evp
431  */
432 
433 const EVP_MD *
EVP_sha(void)434 EVP_sha(void) HC_DEPRECATED
435 
436 {
437     hcrypto_validate();
438     return EVP_sha1();
439 }
440 
441 /**
442  * The message digest MD5
443  *
444  * @return the message digest type.
445  *
446  * @ingroup hcrypto_evp
447  */
448 
449 const EVP_MD *
EVP_md5(void)450 EVP_md5(void) HC_DEPRECATED_CRYPTO
451 {
452     hcrypto_validate();
453     return EVP_DEF_OP(HCRYPTO_DEF_PROVIDER, md5);
454 }
455 
456 /**
457  * The message digest MD4
458  *
459  * @return the message digest type.
460  *
461  * @ingroup hcrypto_evp
462  */
463 
464 const EVP_MD *
EVP_md4(void)465 EVP_md4(void) HC_DEPRECATED_CRYPTO
466 {
467     hcrypto_validate();
468     return EVP_DEF_OP(HCRYPTO_DEF_PROVIDER, md4);
469 }
470 
471 /*
472  *
473  */
474 
475 static int
null_Init(void * m)476 null_Init (void *m)
477 {
478     return -1;
479 }
480 static int
null_Update(void * m,const void * data,size_t size)481 null_Update (void *m, const void * data, size_t size)
482 {
483     return -1;
484 }
485 static int
null_Final(void * res,void * m)486 null_Final(void *res, void *m)
487 {
488     return -1;
489 }
490 
491 /**
492  * The null message digest
493  *
494  * @return the message digest type.
495  *
496  * @ingroup hcrypto_evp
497  */
498 
499 const EVP_MD *
EVP_md_null(void)500 EVP_md_null(void)
501 {
502     static const struct hc_evp_md null = {
503 	0,
504 	0,
505 	0,
506 	(hc_evp_md_init)null_Init,
507 	(hc_evp_md_update)null_Update,
508 	(hc_evp_md_final)null_Final,
509 	NULL
510     };
511     return &null;
512 }
513 
514 /**
515  * Return the block size of the cipher.
516  *
517  * @param c cipher to get the block size from.
518  *
519  * @return the block size of the cipher.
520  *
521  * @ingroup hcrypto_evp
522  */
523 
524 size_t
EVP_CIPHER_block_size(const EVP_CIPHER * c)525 EVP_CIPHER_block_size(const EVP_CIPHER *c)
526 {
527     return c->block_size;
528 }
529 
530 /**
531  * Return the key size of the cipher.
532  *
533  * @param c cipher to get the key size from.
534  *
535  * @return the key size of the cipher.
536  *
537  * @ingroup hcrypto_evp
538  */
539 
540 size_t
EVP_CIPHER_key_length(const EVP_CIPHER * c)541 EVP_CIPHER_key_length(const EVP_CIPHER *c)
542 {
543     return c->key_len;
544 }
545 
546 /**
547  * Return the IV size of the cipher.
548  *
549  * @param c cipher to get the IV size from.
550  *
551  * @return the IV size of the cipher.
552  *
553  * @ingroup hcrypto_evp
554  */
555 
556 size_t
EVP_CIPHER_iv_length(const EVP_CIPHER * c)557 EVP_CIPHER_iv_length(const EVP_CIPHER *c)
558 {
559     return c->iv_len;
560 }
561 
562 /**
563  * Initiate a EVP_CIPHER_CTX context. Clean up with
564  * EVP_CIPHER_CTX_cleanup().
565  *
566  * @param c the cipher initiate.
567  *
568  * @ingroup hcrypto_evp
569  */
570 
571 void
EVP_CIPHER_CTX_init(EVP_CIPHER_CTX * c)572 EVP_CIPHER_CTX_init(EVP_CIPHER_CTX *c)
573 {
574     memset(c, 0, sizeof(*c));
575 }
576 
577 /**
578  * Clean up the EVP_CIPHER_CTX context.
579  *
580  * @param c the cipher to clean up.
581  *
582  * @return 1 on success.
583  *
584  * @ingroup hcrypto_evp
585  */
586 
587 int
EVP_CIPHER_CTX_cleanup(EVP_CIPHER_CTX * c)588 EVP_CIPHER_CTX_cleanup(EVP_CIPHER_CTX *c)
589 {
590     if (c->cipher && c->cipher->cleanup) {
591 	int ret = c->cipher->cleanup(c);
592 	if (!ret)
593 	    return ret;
594     }
595     if (c->cipher_data) {
596         if (c->cipher)
597             memset(c->cipher_data, 0, c->cipher->ctx_size);
598 	free(c->cipher_data);
599 	c->cipher_data = NULL;
600     }
601     return 1;
602 }
603 
604 /**
605  * If the cipher type supports it, change the key length
606  *
607  * @param c the cipher context to change the key length for
608  * @param length new key length
609  *
610  * @return 1 on success.
611  *
612  * @ingroup hcrypto_evp
613  */
614 
615 int
EVP_CIPHER_CTX_set_key_length(EVP_CIPHER_CTX * c,int length)616 EVP_CIPHER_CTX_set_key_length(EVP_CIPHER_CTX *c, int length)
617 {
618     if ((c->cipher->flags & EVP_CIPH_VARIABLE_LENGTH) && length > 0) {
619 	c->key_len = length;
620 	return 1;
621     }
622     return 0;
623 }
624 
625 #if 0
626 int
627 EVP_CIPHER_CTX_set_padding(EVP_CIPHER_CTX *c, int pad)
628 {
629     return 0;
630 }
631 #endif
632 
633 /**
634  * Return the EVP_CIPHER for a EVP_CIPHER_CTX context.
635  *
636  * @param ctx the context to get the cipher type from.
637  *
638  * @return the EVP_CIPHER pointer.
639  *
640  * @ingroup hcrypto_evp
641  */
642 
643 const EVP_CIPHER *
EVP_CIPHER_CTX_cipher(EVP_CIPHER_CTX * ctx)644 EVP_CIPHER_CTX_cipher(EVP_CIPHER_CTX *ctx)
645 {
646     return ctx->cipher;
647 }
648 
649 /**
650  * Return the block size of the cipher context.
651  *
652  * @param ctx cipher context to get the block size from.
653  *
654  * @return the block size of the cipher context.
655  *
656  * @ingroup hcrypto_evp
657  */
658 
659 size_t
EVP_CIPHER_CTX_block_size(const EVP_CIPHER_CTX * ctx)660 EVP_CIPHER_CTX_block_size(const EVP_CIPHER_CTX *ctx)
661 {
662     return EVP_CIPHER_block_size(ctx->cipher);
663 }
664 
665 /**
666  * Return the key size of the cipher context.
667  *
668  * @param ctx cipher context to get the key size from.
669  *
670  * @return the key size of the cipher context.
671  *
672  * @ingroup hcrypto_evp
673  */
674 
675 size_t
EVP_CIPHER_CTX_key_length(const EVP_CIPHER_CTX * ctx)676 EVP_CIPHER_CTX_key_length(const EVP_CIPHER_CTX *ctx)
677 {
678     return EVP_CIPHER_key_length(ctx->cipher);
679 }
680 
681 /**
682  * Return the IV size of the cipher context.
683  *
684  * @param ctx cipher context to get the IV size from.
685  *
686  * @return the IV size of the cipher context.
687  *
688  * @ingroup hcrypto_evp
689  */
690 
691 size_t
EVP_CIPHER_CTX_iv_length(const EVP_CIPHER_CTX * ctx)692 EVP_CIPHER_CTX_iv_length(const EVP_CIPHER_CTX *ctx)
693 {
694     return EVP_CIPHER_iv_length(ctx->cipher);
695 }
696 
697 /**
698  * Get the flags for an EVP_CIPHER_CTX context.
699  *
700  * @param ctx the EVP_CIPHER_CTX to get the flags from
701  *
702  * @return the flags for an EVP_CIPHER_CTX.
703  *
704  * @ingroup hcrypto_evp
705  */
706 
707 unsigned long
EVP_CIPHER_CTX_flags(const EVP_CIPHER_CTX * ctx)708 EVP_CIPHER_CTX_flags(const EVP_CIPHER_CTX *ctx)
709 {
710     return ctx->cipher->flags;
711 }
712 
713 /**
714  * Get the mode for an EVP_CIPHER_CTX context.
715  *
716  * @param ctx the EVP_CIPHER_CTX to get the mode from
717  *
718  * @return the mode for an EVP_CIPHER_CTX.
719  *
720  * @ingroup hcrypto_evp
721  */
722 
723 int
EVP_CIPHER_CTX_mode(const EVP_CIPHER_CTX * ctx)724 EVP_CIPHER_CTX_mode(const EVP_CIPHER_CTX *ctx)
725 {
726     return EVP_CIPHER_CTX_flags(ctx) & EVP_CIPH_MODE;
727 }
728 
729 /**
730  * Get the app data for an EVP_CIPHER_CTX context.
731  *
732  * @param ctx the EVP_CIPHER_CTX to get the app data from
733  *
734  * @return the app data for an EVP_CIPHER_CTX.
735  *
736  * @ingroup hcrypto_evp
737  */
738 
739 void *
EVP_CIPHER_CTX_get_app_data(EVP_CIPHER_CTX * ctx)740 EVP_CIPHER_CTX_get_app_data(EVP_CIPHER_CTX *ctx)
741 {
742     return ctx->app_data;
743 }
744 
745 /**
746  * Set the app data for an EVP_CIPHER_CTX context.
747  *
748  * @param ctx the EVP_CIPHER_CTX to set the app data for
749  * @param data the app data to set for an EVP_CIPHER_CTX.
750  *
751  * @ingroup hcrypto_evp
752  */
753 
754 void
EVP_CIPHER_CTX_set_app_data(EVP_CIPHER_CTX * ctx,void * data)755 EVP_CIPHER_CTX_set_app_data(EVP_CIPHER_CTX *ctx, void *data)
756 {
757     ctx->app_data = data;
758 }
759 
760 /**
761  * Initiate the EVP_CIPHER_CTX context to encrypt or decrypt data.
762  * Clean up with EVP_CIPHER_CTX_cleanup().
763  *
764  * @param ctx context to initiate
765  * @param c cipher to use.
766  * @param engine crypto engine to use, NULL to select default.
767  * @param key the crypto key to use, NULL will use the previous value.
768  * @param iv the IV to use, NULL will use the previous value.
769  * @param encp non zero will encrypt, -1 use the previous value.
770  *
771  * @return 1 on success.
772  *
773  * @ingroup hcrypto_evp
774  */
775 
776 int
EVP_CipherInit_ex(EVP_CIPHER_CTX * ctx,const EVP_CIPHER * c,ENGINE * engine,const void * key,const void * iv,int encp)777 EVP_CipherInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *c, ENGINE *engine,
778 		  const void *key, const void *iv, int encp)
779 {
780     ctx->buf_len = 0;
781 
782     if (encp == -1)
783 	encp = ctx->encrypt;
784     else
785 	ctx->encrypt = (encp ? 1 : 0);
786 
787     if (c && (c != ctx->cipher)) {
788 	EVP_CIPHER_CTX_cleanup(ctx);
789 	ctx->cipher = c;
790 	ctx->key_len = c->key_len;
791 
792 	ctx->cipher_data = calloc(1, c->ctx_size);
793 	if (ctx->cipher_data == NULL && c->ctx_size != 0)
794 	    return 0;
795 
796 	/* assume block size is a multiple of 2 */
797 	ctx->block_mask = EVP_CIPHER_block_size(c) - 1;
798 
799         if ((ctx->cipher->flags & EVP_CIPH_CTRL_INIT) &&
800             !EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_INIT, 0, NULL))
801             return 0;
802 
803     } else if (ctx->cipher == NULL) {
804 	/* reuse of cipher, but not any cipher ever set! */
805 	return 0;
806     }
807 
808     switch (EVP_CIPHER_CTX_mode(ctx)) {
809     case EVP_CIPH_CBC_MODE:
810 
811 	assert(EVP_CIPHER_CTX_iv_length(ctx) <= sizeof(ctx->iv));
812 
813 	if (iv)
814 	    memcpy(ctx->oiv, iv, EVP_CIPHER_CTX_iv_length(ctx));
815 	memcpy(ctx->iv, ctx->oiv, EVP_CIPHER_CTX_iv_length(ctx));
816 	break;
817 
818     case EVP_CIPH_STREAM_CIPHER:
819 	break;
820     case EVP_CIPH_CFB8_MODE:
821 	if (iv)
822 	    memcpy(ctx->iv, iv, EVP_CIPHER_CTX_iv_length(ctx));
823 	break;
824 
825     default:
826 	return 0;
827     }
828 
829     if (key || (ctx->cipher->flags & EVP_CIPH_ALWAYS_CALL_INIT))
830 	return ctx->cipher->init(ctx, key, iv, encp);
831 
832     return 1;
833 }
834 
835 /**
836  * Encipher/decipher partial data
837  *
838  * @param ctx the cipher context.
839  * @param out output data from the operation.
840  * @param outlen output length
841  * @param in input data to the operation.
842  * @param inlen length of data.
843  *
844  * The output buffer length should at least be EVP_CIPHER_block_size()
845  * byte longer then the input length.
846  *
847  * See @ref evp_cipher for an example how to use this function.
848  *
849  * @return 1 on success.
850  *
851  * @ingroup hcrypto_evp
852  */
853 
854 int
EVP_CipherUpdate(EVP_CIPHER_CTX * ctx,void * out,int * outlen,void * in,size_t inlen)855 EVP_CipherUpdate(EVP_CIPHER_CTX *ctx, void *out, int *outlen,
856 		 void *in, size_t inlen)
857 {
858     int ret, left, blocksize;
859 
860     *outlen = 0;
861 
862     /**
863      * If there in no spare bytes in the left from last Update and the
864      * input length is on the block boundery, the EVP_CipherUpdate()
865      * function can take a shortcut (and preformance gain) and
866      * directly encrypt the data, otherwise we hav to fix it up and
867      * store extra it the EVP_CIPHER_CTX.
868      */
869     if (ctx->buf_len == 0 && (inlen & ctx->block_mask) == 0) {
870 	ret = (*ctx->cipher->do_cipher)(ctx, out, in, inlen);
871 	if (ret == 1)
872 	    *outlen = inlen;
873 	else
874 	    *outlen = 0;
875 	return ret;
876     }
877 
878 
879     blocksize = EVP_CIPHER_CTX_block_size(ctx);
880     left = blocksize - ctx->buf_len;
881     assert(left > 0);
882 
883     if (ctx->buf_len) {
884 
885 	/* if total buffer is smaller then input, store locally */
886 	if (inlen < left) {
887 	    memcpy(ctx->buf + ctx->buf_len, in, inlen);
888 	    ctx->buf_len += inlen;
889 	    return 1;
890 	}
891 
892 	/* fill in local buffer and encrypt */
893 	memcpy(ctx->buf + ctx->buf_len, in, left);
894 	ret = (*ctx->cipher->do_cipher)(ctx, out, ctx->buf, blocksize);
895 	memset(ctx->buf, 0, blocksize);
896 	if (ret != 1)
897 	    return ret;
898 
899 	*outlen += blocksize;
900 	inlen -= left;
901 	in = ((unsigned char *)in) + left;
902 	out = ((unsigned char *)out) + blocksize;
903 	ctx->buf_len = 0;
904     }
905 
906     if (inlen) {
907 	ctx->buf_len = (inlen & ctx->block_mask);
908 	inlen &= ~ctx->block_mask;
909 
910 	ret = (*ctx->cipher->do_cipher)(ctx, out, in, inlen);
911 	if (ret != 1)
912 	    return ret;
913 
914 	*outlen += inlen;
915 
916 	in = ((unsigned char *)in) + inlen;
917 	memcpy(ctx->buf, in, ctx->buf_len);
918     }
919 
920     return 1;
921 }
922 
923 /**
924  * Encipher/decipher final data
925  *
926  * @param ctx the cipher context.
927  * @param out output data from the operation.
928  * @param outlen output length
929  *
930  * The input length needs to be at least EVP_CIPHER_block_size() bytes
931  * long.
932  *
933  * See @ref evp_cipher for an example how to use this function.
934  *
935  * @return 1 on success.
936  *
937  * @ingroup hcrypto_evp
938  */
939 
940 int
EVP_CipherFinal_ex(EVP_CIPHER_CTX * ctx,void * out,int * outlen)941 EVP_CipherFinal_ex(EVP_CIPHER_CTX *ctx, void *out, int *outlen)
942 {
943     *outlen = 0;
944 
945     if (ctx->buf_len) {
946 	int ret, left, blocksize;
947 
948 	blocksize = EVP_CIPHER_CTX_block_size(ctx);
949 
950 	left = blocksize - ctx->buf_len;
951 	assert(left > 0);
952 
953 	/* zero fill local buffer */
954 	memset(ctx->buf + ctx->buf_len, 0, left);
955 	ret = (*ctx->cipher->do_cipher)(ctx, out, ctx->buf, blocksize);
956 	memset(ctx->buf, 0, blocksize);
957 	if (ret != 1)
958 	    return ret;
959 
960 	*outlen += blocksize;
961     }
962 
963     return 1;
964 }
965 
966 /**
967  * Encipher/decipher data
968  *
969  * @param ctx the cipher context.
970  * @param out out data from the operation.
971  * @param in in data to the operation.
972  * @param size length of data.
973  *
974  * @return 1 on success.
975  */
976 
977 int
EVP_Cipher(EVP_CIPHER_CTX * ctx,void * out,const void * in,size_t size)978 EVP_Cipher(EVP_CIPHER_CTX *ctx, void *out, const void *in,size_t size)
979 {
980     return ctx->cipher->do_cipher(ctx, out, in, size);
981 }
982 
983 /*
984  *
985  */
986 
987 static int
enc_null_init(EVP_CIPHER_CTX * ctx,const unsigned char * key,const unsigned char * iv,int encp)988 enc_null_init(EVP_CIPHER_CTX *ctx,
989 		  const unsigned char * key,
990 		  const unsigned char * iv,
991 		  int encp)
992 {
993     return 1;
994 }
995 
996 static int
enc_null_do_cipher(EVP_CIPHER_CTX * ctx,unsigned char * out,const unsigned char * in,unsigned int size)997 enc_null_do_cipher(EVP_CIPHER_CTX *ctx,
998 	      unsigned char *out,
999 	      const unsigned char *in,
1000 	      unsigned int size)
1001 {
1002     memmove(out, in, size);
1003     return 1;
1004 }
1005 
1006 static int
enc_null_cleanup(EVP_CIPHER_CTX * ctx)1007 enc_null_cleanup(EVP_CIPHER_CTX *ctx)
1008 {
1009     return 1;
1010 }
1011 
1012 /**
1013  * The NULL cipher type, does no encryption/decryption.
1014  *
1015  * @return the null EVP_CIPHER pointer.
1016  *
1017  * @ingroup hcrypto_evp
1018  */
1019 
1020 const EVP_CIPHER *
EVP_enc_null(void)1021 EVP_enc_null(void)
1022 {
1023     static const EVP_CIPHER enc_null = {
1024 	0,
1025 	0,
1026 	0,
1027 	0,
1028 	EVP_CIPH_CBC_MODE,
1029 	enc_null_init,
1030 	enc_null_do_cipher,
1031 	enc_null_cleanup,
1032 	0,
1033 	NULL,
1034 	NULL,
1035 	NULL,
1036 	NULL
1037     };
1038     return &enc_null;
1039 }
1040 
1041 /**
1042  * The RC2 cipher type
1043  *
1044  * @return the RC2 EVP_CIPHER pointer.
1045  *
1046  * @ingroup hcrypto_evp
1047  */
1048 
1049 const EVP_CIPHER *
EVP_rc2_cbc(void)1050 EVP_rc2_cbc(void)
1051 {
1052     hcrypto_validate();
1053     return EVP_DEF_OP(HCRYPTO_DEF_PROVIDER, rc2_cbc);
1054 }
1055 
1056 /**
1057  * The RC2 cipher type
1058  *
1059  * @return the RC2 EVP_CIPHER pointer.
1060  *
1061  * @ingroup hcrypto_evp
1062  */
1063 
1064 const EVP_CIPHER *
EVP_rc2_40_cbc(void)1065 EVP_rc2_40_cbc(void)
1066 {
1067     hcrypto_validate();
1068     return EVP_DEF_OP(HCRYPTO_DEF_PROVIDER, rc2_40_cbc);
1069 }
1070 
1071 /**
1072  * The RC2 cipher type
1073  *
1074  * @return the RC2 EVP_CIPHER pointer.
1075  *
1076  * @ingroup hcrypto_evp
1077  */
1078 
1079 const EVP_CIPHER *
EVP_rc2_64_cbc(void)1080 EVP_rc2_64_cbc(void)
1081 {
1082     hcrypto_validate();
1083     return EVP_DEF_OP(HCRYPTO_DEF_PROVIDER, rc2_64_cbc);
1084 }
1085 
1086 /**
1087  * The RC4 cipher type
1088  *
1089  * @return the RC4 EVP_CIPHER pointer.
1090  *
1091  * @ingroup hcrypto_evp
1092  */
1093 
1094 const EVP_CIPHER *
EVP_rc4(void)1095 EVP_rc4(void)
1096 {
1097     hcrypto_validate();
1098     return EVP_DEF_OP(HCRYPTO_DEF_PROVIDER, rc4);
1099 }
1100 
1101 /**
1102  * The RC4-40 cipher type
1103  *
1104  * @return the RC4-40 EVP_CIPHER pointer.
1105  *
1106  * @ingroup hcrypto_evp
1107  */
1108 
1109 const EVP_CIPHER *
EVP_rc4_40(void)1110 EVP_rc4_40(void)
1111 {
1112     hcrypto_validate();
1113     return EVP_DEF_OP(HCRYPTO_DEF_PROVIDER, rc4_40);
1114 }
1115 
1116 /**
1117  * The DES cipher type
1118  *
1119  * @return the DES-CBC EVP_CIPHER pointer.
1120  *
1121  * @ingroup hcrypto_evp
1122  */
1123 
1124 const EVP_CIPHER *
EVP_des_cbc(void)1125 EVP_des_cbc(void)
1126 {
1127     hcrypto_validate();
1128     return EVP_DEF_OP(HCRYPTO_DEF_PROVIDER, des_cbc);
1129 }
1130 
1131 /**
1132  * The triple DES cipher type
1133  *
1134  * @return the DES-EDE3-CBC EVP_CIPHER pointer.
1135  *
1136  * @ingroup hcrypto_evp
1137  */
1138 
1139 const EVP_CIPHER *
EVP_des_ede3_cbc(void)1140 EVP_des_ede3_cbc(void)
1141 {
1142     hcrypto_validate();
1143     return EVP_DEF_OP(HCRYPTO_DEF_PROVIDER, des_ede3_cbc);
1144 }
1145 
1146 /**
1147  * The AES-128 cipher type
1148  *
1149  * @return the AES-128 EVP_CIPHER pointer.
1150  *
1151  * @ingroup hcrypto_evp
1152  */
1153 
1154 const EVP_CIPHER *
EVP_aes_128_cbc(void)1155 EVP_aes_128_cbc(void)
1156 {
1157     hcrypto_validate();
1158     return EVP_DEF_OP(HCRYPTO_DEF_PROVIDER, aes_128_cbc);
1159 }
1160 
1161 /**
1162  * The AES-192 cipher type
1163  *
1164  * @return the AES-192 EVP_CIPHER pointer.
1165  *
1166  * @ingroup hcrypto_evp
1167  */
1168 
1169 const EVP_CIPHER *
EVP_aes_192_cbc(void)1170 EVP_aes_192_cbc(void)
1171 {
1172     hcrypto_validate();
1173     return EVP_DEF_OP(HCRYPTO_DEF_PROVIDER, aes_192_cbc);
1174 }
1175 
1176 /**
1177  * The AES-256 cipher type
1178  *
1179  * @return the AES-256 EVP_CIPHER pointer.
1180  *
1181  * @ingroup hcrypto_evp
1182  */
1183 
1184 const EVP_CIPHER *
EVP_aes_256_cbc(void)1185 EVP_aes_256_cbc(void)
1186 {
1187     hcrypto_validate();
1188     return EVP_DEF_OP(HCRYPTO_DEF_PROVIDER, aes_256_cbc);
1189 }
1190 
1191 /**
1192  * The AES-128 cipher type
1193  *
1194  * @return the AES-128 EVP_CIPHER pointer.
1195  *
1196  * @ingroup hcrypto_evp
1197  */
1198 
1199 const EVP_CIPHER *
EVP_aes_128_cfb8(void)1200 EVP_aes_128_cfb8(void)
1201 {
1202     hcrypto_validate();
1203     return EVP_DEF_OP(HCRYPTO_DEF_PROVIDER, aes_128_cfb8);
1204 }
1205 
1206 /**
1207  * The AES-192 cipher type
1208  *
1209  * @return the AES-192 EVP_CIPHER pointer.
1210  *
1211  * @ingroup hcrypto_evp
1212  */
1213 
1214 const EVP_CIPHER *
EVP_aes_192_cfb8(void)1215 EVP_aes_192_cfb8(void)
1216 {
1217     hcrypto_validate();
1218     return EVP_DEF_OP(HCRYPTO_DEF_PROVIDER, aes_192_cfb8);
1219 }
1220 
1221 /**
1222  * The AES-256 cipher type
1223  *
1224  * @return the AES-256 EVP_CIPHER pointer.
1225  *
1226  * @ingroup hcrypto_evp
1227  */
1228 
1229 const EVP_CIPHER *
EVP_aes_256_cfb8(void)1230 EVP_aes_256_cfb8(void)
1231 {
1232     hcrypto_validate();
1233     return EVP_DEF_OP(HCRYPTO_DEF_PROVIDER, aes_256_cfb8);
1234 }
1235 
1236 /**
1237  * The Camellia-128 cipher type
1238  *
1239  * @return the Camellia-128 EVP_CIPHER pointer.
1240  *
1241  * @ingroup hcrypto_evp
1242  */
1243 
1244 const EVP_CIPHER *
EVP_camellia_128_cbc(void)1245 EVP_camellia_128_cbc(void)
1246 {
1247     hcrypto_validate();
1248     return EVP_DEF_OP(HCRYPTO_DEF_PROVIDER, camellia_128_cbc);
1249 }
1250 
1251 /**
1252  * The Camellia-198 cipher type
1253  *
1254  * @return the Camellia-198 EVP_CIPHER pointer.
1255  *
1256  * @ingroup hcrypto_evp
1257  */
1258 
1259 const EVP_CIPHER *
EVP_camellia_192_cbc(void)1260 EVP_camellia_192_cbc(void)
1261 {
1262     hcrypto_validate();
1263     return EVP_DEF_OP(HCRYPTO_DEF_PROVIDER, camellia_192_cbc);
1264 }
1265 
1266 /**
1267  * The Camellia-256 cipher type
1268  *
1269  * @return the Camellia-256 EVP_CIPHER pointer.
1270  *
1271  * @ingroup hcrypto_evp
1272  */
1273 
1274 const EVP_CIPHER *
EVP_camellia_256_cbc(void)1275 EVP_camellia_256_cbc(void)
1276 {
1277     hcrypto_validate();
1278     return EVP_DEF_OP(HCRYPTO_DEF_PROVIDER, camellia_256_cbc);
1279 }
1280 
1281 /*
1282  *
1283  */
1284 
1285 static const struct cipher_name {
1286     const char *name;
1287     const EVP_CIPHER *(*func)(void);
1288 } cipher_name[] = {
1289     { "des-ede3-cbc", EVP_des_ede3_cbc },
1290     { "aes-128-cbc", EVP_aes_128_cbc },
1291     { "aes-192-cbc", EVP_aes_192_cbc },
1292     { "aes-256-cbc", EVP_aes_256_cbc },
1293     { "aes-128-cfb8", EVP_aes_128_cfb8 },
1294     { "aes-192-cfb8", EVP_aes_192_cfb8 },
1295     { "aes-256-cfb8", EVP_aes_256_cfb8 },
1296     { "camellia-128-cbc", EVP_camellia_128_cbc },
1297     { "camellia-192-cbc", EVP_camellia_192_cbc },
1298     { "camellia-256-cbc", EVP_camellia_256_cbc }
1299 };
1300 
1301 /**
1302  * Get the cipher type using their name.
1303  *
1304  * @param name the name of the cipher.
1305  *
1306  * @return the selected EVP_CIPHER pointer or NULL if not found.
1307  *
1308  * @ingroup hcrypto_evp
1309  */
1310 
1311 const EVP_CIPHER *
EVP_get_cipherbyname(const char * name)1312 EVP_get_cipherbyname(const char *name)
1313 {
1314     int i;
1315     for (i = 0; i < sizeof(cipher_name)/sizeof(cipher_name[0]); i++) {
1316 	if (strcasecmp(cipher_name[i].name, name) == 0)
1317 	    return (*cipher_name[i].func)();
1318     }
1319     return NULL;
1320 }
1321 
1322 
1323 /*
1324  *
1325  */
1326 
1327 #ifndef min
1328 #define min(a,b) (((a)>(b))?(b):(a))
1329 #endif
1330 
1331 /**
1332  * Provides a legancy string to key function, used in PEM files.
1333  *
1334  * New protocols should use new string to key functions like NIST
1335  * SP56-800A or PKCS#5 v2.0 (see PKCS5_PBKDF2_HMAC_SHA1()).
1336  *
1337  * @param type type of cipher to use
1338  * @param md message digest to use
1339  * @param salt salt salt string, should be an binary 8 byte buffer.
1340  * @param data the password/input key string.
1341  * @param datalen length of data parameter.
1342  * @param count iteration counter.
1343  * @param keydata output keydata, needs to of the size EVP_CIPHER_key_length().
1344  * @param ivdata output ivdata, needs to of the size EVP_CIPHER_block_size().
1345  *
1346  * @return the size of derived key.
1347  *
1348  * @ingroup hcrypto_evp
1349  */
1350 
1351 int
EVP_BytesToKey(const EVP_CIPHER * type,const EVP_MD * md,const void * salt,const void * data,size_t datalen,unsigned int count,void * keydata,void * ivdata)1352 EVP_BytesToKey(const EVP_CIPHER *type,
1353 	       const EVP_MD *md,
1354 	       const void *salt,
1355 	       const void *data, size_t datalen,
1356 	       unsigned int count,
1357 	       void *keydata,
1358 	       void *ivdata)
1359 {
1360     unsigned int ivlen, keylen;
1361     int first = 0;
1362     unsigned int mds = 0, i;
1363     unsigned char *key = keydata;
1364     unsigned char *iv = ivdata;
1365     unsigned char *buf;
1366     EVP_MD_CTX c;
1367 
1368     keylen = EVP_CIPHER_key_length(type);
1369     ivlen = EVP_CIPHER_iv_length(type);
1370 
1371     if (data == NULL)
1372 	return keylen;
1373 
1374     buf = malloc(EVP_MD_size(md));
1375     if (buf == NULL)
1376 	return -1;
1377 
1378     EVP_MD_CTX_init(&c);
1379 
1380     first = 1;
1381     while (1) {
1382 	EVP_DigestInit_ex(&c, md, NULL);
1383 	if (!first)
1384 	    EVP_DigestUpdate(&c, buf, mds);
1385 	first = 0;
1386 	EVP_DigestUpdate(&c,data,datalen);
1387 
1388 #define PKCS5_SALT_LEN 8
1389 
1390 	if (salt)
1391 	    EVP_DigestUpdate(&c, salt, PKCS5_SALT_LEN);
1392 
1393 	EVP_DigestFinal_ex(&c, buf, &mds);
1394 	assert(mds == EVP_MD_size(md));
1395 
1396 	for (i = 1; i < count; i++) {
1397 	    EVP_DigestInit_ex(&c, md, NULL);
1398 	    EVP_DigestUpdate(&c, buf, mds);
1399 	    EVP_DigestFinal_ex(&c, buf, &mds);
1400 	    assert(mds == EVP_MD_size(md));
1401 	}
1402 
1403 	i = 0;
1404 	if (keylen) {
1405 	    size_t sz = min(keylen, mds);
1406 	    if (key) {
1407 		memcpy(key, buf, sz);
1408 		key += sz;
1409 	    }
1410 	    keylen -= sz;
1411 	    i += sz;
1412 	}
1413 	if (ivlen && mds > i) {
1414 	    size_t sz = min(ivlen, (mds - i));
1415 	    if (iv) {
1416 		memcpy(iv, &buf[i], sz);
1417 		iv += sz;
1418 	    }
1419 	    ivlen -= sz;
1420 	}
1421 	if (keylen == 0 && ivlen == 0)
1422 	    break;
1423     }
1424 
1425     EVP_MD_CTX_cleanup(&c);
1426     free(buf);
1427 
1428     return EVP_CIPHER_key_length(type);
1429 }
1430 
1431 /**
1432  * Generate a random key for the specificed EVP_CIPHER.
1433  *
1434  * @param ctx EVP_CIPHER_CTX type to build the key for.
1435  * @param key return key, must be at least EVP_CIPHER_key_length() byte long.
1436  *
1437  * @return 1 for success, 0 for failure.
1438  *
1439  * @ingroup hcrypto_core
1440  */
1441 
1442 int
EVP_CIPHER_CTX_rand_key(EVP_CIPHER_CTX * ctx,void * key)1443 EVP_CIPHER_CTX_rand_key(EVP_CIPHER_CTX *ctx, void *key)
1444 {
1445     if (ctx->cipher->flags & EVP_CIPH_RAND_KEY)
1446 	return EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_RAND_KEY, 0, key);
1447     if (RAND_bytes(key, ctx->key_len) != 1)
1448 	return 0;
1449     return 1;
1450 }
1451 
1452 /**
1453  * Perform a operation on a ctx
1454  *
1455  * @param ctx context to perform operation on.
1456  * @param type type of operation.
1457  * @param arg argument to operation.
1458  * @param data addition data to operation.
1459 
1460  * @return 1 for success, 0 for failure.
1461  *
1462  * @ingroup hcrypto_core
1463  */
1464 
1465 int
EVP_CIPHER_CTX_ctrl(EVP_CIPHER_CTX * ctx,int type,int arg,void * data)1466 EVP_CIPHER_CTX_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg, void *data)
1467 {
1468     if (ctx->cipher == NULL || ctx->cipher->ctrl == NULL)
1469 	return 0;
1470     return (*ctx->cipher->ctrl)(ctx, type, arg, data);
1471 }
1472 
1473 /**
1474  * Add all algorithms to the crypto core.
1475  *
1476  * @ingroup hcrypto_core
1477  */
1478 
1479 void
OpenSSL_add_all_algorithms(void)1480 OpenSSL_add_all_algorithms(void)
1481 {
1482     return;
1483 }
1484 
1485 /**
1486  * Add all algorithms to the crypto core using configuration file.
1487  *
1488  * @ingroup hcrypto_core
1489  */
1490 
1491 void
OpenSSL_add_all_algorithms_conf(void)1492 OpenSSL_add_all_algorithms_conf(void)
1493 {
1494     return;
1495 }
1496 
1497 /**
1498  * Add all algorithms to the crypto core, but don't use the
1499  * configuration file.
1500  *
1501  * @ingroup hcrypto_core
1502  */
1503 
1504 void
OpenSSL_add_all_algorithms_noconf(void)1505 OpenSSL_add_all_algorithms_noconf(void)
1506 {
1507     return;
1508 }
1509