xref: /minix3/sys/ufs/lfs/lfs_pages.c (revision 0a6a1f1d05b60e214de2f05a7310ddd1f0e590e7)
1 /*	$NetBSD: lfs_pages.c,v 1.7 2015/08/12 18:26:27 dholland Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Konrad E. Schroder <perseant@hhhh.org>.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 /*
32  * Copyright (c) 1986, 1989, 1991, 1993, 1995
33  *	The Regents of the University of California.  All rights reserved.
34  *
35  * Redistribution and use in source and binary forms, with or without
36  * modification, are permitted provided that the following conditions
37  * are met:
38  * 1. Redistributions of source code must retain the above copyright
39  *    notice, this list of conditions and the following disclaimer.
40  * 2. Redistributions in binary form must reproduce the above copyright
41  *    notice, this list of conditions and the following disclaimer in the
42  *    documentation and/or other materials provided with the distribution.
43  * 3. Neither the name of the University nor the names of its contributors
44  *    may be used to endorse or promote products derived from this software
45  *    without specific prior written permission.
46  *
47  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
48  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
50  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
51  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
52  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
53  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
54  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
55  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
56  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
57  * SUCH DAMAGE.
58  *
59  *	@(#)lfs_vnops.c	8.13 (Berkeley) 6/10/95
60  */
61 
62 #include <sys/cdefs.h>
63 __KERNEL_RCSID(0, "$NetBSD: lfs_pages.c,v 1.7 2015/08/12 18:26:27 dholland Exp $");
64 
65 #ifdef _KERNEL_OPT
66 #include "opt_compat_netbsd.h"
67 #include "opt_uvm_page_trkown.h"
68 #endif
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/namei.h>
73 #include <sys/resourcevar.h>
74 #include <sys/kernel.h>
75 #include <sys/file.h>
76 #include <sys/stat.h>
77 #include <sys/buf.h>
78 #include <sys/proc.h>
79 #include <sys/mount.h>
80 #include <sys/vnode.h>
81 #include <sys/pool.h>
82 #include <sys/signalvar.h>
83 #include <sys/kauth.h>
84 #include <sys/syslog.h>
85 #include <sys/fstrans.h>
86 
87 #include <miscfs/fifofs/fifo.h>
88 #include <miscfs/genfs/genfs.h>
89 #include <miscfs/specfs/specdev.h>
90 
91 #include <ufs/lfs/ulfs_inode.h>
92 #include <ufs/lfs/ulfsmount.h>
93 #include <ufs/lfs/ulfs_bswap.h>
94 #include <ufs/lfs/ulfs_extern.h>
95 
96 #include <uvm/uvm.h>
97 #include <uvm/uvm_pmap.h>
98 #include <uvm/uvm_stat.h>
99 #include <uvm/uvm_pager.h>
100 
101 #include <ufs/lfs/lfs.h>
102 #include <ufs/lfs/lfs_accessors.h>
103 #include <ufs/lfs/lfs_kernel.h>
104 #include <ufs/lfs/lfs_extern.h>
105 
106 extern pid_t lfs_writer_daemon;
107 
108 static int check_dirty(struct lfs *, struct vnode *, off_t, off_t, off_t, int, int, struct vm_page **);
109 
110 int
lfs_getpages(void * v)111 lfs_getpages(void *v)
112 {
113 	struct vop_getpages_args /* {
114 		struct vnode *a_vp;
115 		voff_t a_offset;
116 		struct vm_page **a_m;
117 		int *a_count;
118 		int a_centeridx;
119 		vm_prot_t a_access_type;
120 		int a_advice;
121 		int a_flags;
122 	} */ *ap = v;
123 
124 	if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM &&
125 	    (ap->a_access_type & VM_PROT_WRITE) != 0) {
126 		return EPERM;
127 	}
128 	if ((ap->a_access_type & VM_PROT_WRITE) != 0) {
129 		mutex_enter(&lfs_lock);
130 		LFS_SET_UINO(VTOI(ap->a_vp), IN_MODIFIED);
131 		mutex_exit(&lfs_lock);
132 	}
133 
134 	/*
135 	 * we're relying on the fact that genfs_getpages() always read in
136 	 * entire filesystem blocks.
137 	 */
138 	return genfs_getpages(v);
139 }
140 
141 /*
142  * Wait for a page to become unbusy, possibly printing diagnostic messages
143  * as well.
144  *
145  * Called with vp->v_interlock held; return with it held.
146  */
147 static void
wait_for_page(struct vnode * vp,struct vm_page * pg,const char * label)148 wait_for_page(struct vnode *vp, struct vm_page *pg, const char *label)
149 {
150 	KASSERT(mutex_owned(vp->v_interlock));
151 	if ((pg->flags & PG_BUSY) == 0)
152 		return;		/* Nothing to wait for! */
153 
154 #if defined(DEBUG) && defined(UVM_PAGE_TRKOWN)
155 	static struct vm_page *lastpg;
156 
157 	if (label != NULL && pg != lastpg) {
158 		if (pg->owner_tag) {
159 			printf("lfs_putpages[%d.%d]: %s: page %p owner %d.%d [%s]\n",
160 			       curproc->p_pid, curlwp->l_lid, label,
161 			       pg, pg->owner, pg->lowner, pg->owner_tag);
162 		} else {
163 			printf("lfs_putpages[%d.%d]: %s: page %p unowned?!\n",
164 			       curproc->p_pid, curlwp->l_lid, label, pg);
165 		}
166 	}
167 	lastpg = pg;
168 #endif
169 
170 	pg->flags |= PG_WANTED;
171 	UVM_UNLOCK_AND_WAIT(pg, vp->v_interlock, 0, "lfsput", 0);
172 	mutex_enter(vp->v_interlock);
173 }
174 
175 /*
176  * This routine is called by lfs_putpages() when it can't complete the
177  * write because a page is busy.  This means that either (1) someone,
178  * possibly the pagedaemon, is looking at this page, and will give it up
179  * presently; or (2) we ourselves are holding the page busy in the
180  * process of being written (either gathered or actually on its way to
181  * disk).  We don't need to give up the segment lock, but we might need
182  * to call lfs_writeseg() to expedite the page's journey to disk.
183  *
184  * Called with vp->v_interlock held; return with it held.
185  */
186 /* #define BUSYWAIT */
187 static void
write_and_wait(struct lfs * fs,struct vnode * vp,struct vm_page * pg,int seglocked,const char * label)188 write_and_wait(struct lfs *fs, struct vnode *vp, struct vm_page *pg,
189 	       int seglocked, const char *label)
190 {
191 	KASSERT(mutex_owned(vp->v_interlock));
192 #ifndef BUSYWAIT
193 	struct inode *ip = VTOI(vp);
194 	struct segment *sp = fs->lfs_sp;
195 	int count = 0;
196 
197 	if (pg == NULL)
198 		return;
199 
200 	while (pg->flags & PG_BUSY &&
201 	    pg->uobject == &vp->v_uobj) {
202 		mutex_exit(vp->v_interlock);
203 		if (sp->cbpp - sp->bpp > 1) {
204 			/* Write gathered pages */
205 			lfs_updatemeta(sp);
206 			lfs_release_finfo(fs);
207 			(void) lfs_writeseg(fs, sp);
208 
209 			/*
210 			 * Reinitialize FIP
211 			 */
212 			KASSERT(sp->vp == vp);
213 			lfs_acquire_finfo(fs, ip->i_number,
214 					  ip->i_gen);
215 		}
216 		++count;
217 		mutex_enter(vp->v_interlock);
218 		wait_for_page(vp, pg, label);
219 	}
220 	if (label != NULL && count > 1) {
221 		DLOG((DLOG_PAGE, "lfs_putpages[%d]: %s: %sn = %d\n",
222 		      curproc->p_pid, label, (count > 0 ? "looping, " : ""),
223 		      count));
224 	}
225 #else
226 	preempt(1);
227 #endif
228 	KASSERT(mutex_owned(vp->v_interlock));
229 }
230 
231 /*
232  * Make sure that for all pages in every block in the given range,
233  * either all are dirty or all are clean.  If any of the pages
234  * we've seen so far are dirty, put the vnode on the paging chain,
235  * and mark it IN_PAGING.
236  *
237  * If checkfirst != 0, don't check all the pages but return at the
238  * first dirty page.
239  */
240 static int
check_dirty(struct lfs * fs,struct vnode * vp,off_t startoffset,off_t endoffset,off_t blkeof,int flags,int checkfirst,struct vm_page ** pgp)241 check_dirty(struct lfs *fs, struct vnode *vp,
242 	    off_t startoffset, off_t endoffset, off_t blkeof,
243 	    int flags, int checkfirst, struct vm_page **pgp)
244 {
245 	int by_list;
246 	struct vm_page *curpg = NULL; /* XXX: gcc */
247 	struct vm_page *pgs[MAXBSIZE / PAGE_SIZE], *pg;
248 	off_t soff = 0; /* XXX: gcc */
249 	voff_t off;
250 	int i;
251 	int nonexistent;
252 	int any_dirty;	/* number of dirty pages */
253 	int dirty;	/* number of dirty pages in a block */
254 	int tdirty;
255 	int pages_per_block = lfs_sb_getbsize(fs) >> PAGE_SHIFT;
256 	int pagedaemon = (curlwp == uvm.pagedaemon_lwp);
257 
258 	KASSERT(mutex_owned(vp->v_interlock));
259 	ASSERT_MAYBE_SEGLOCK(fs);
260   top:
261 	by_list = (vp->v_uobj.uo_npages <=
262 		   ((endoffset - startoffset) >> PAGE_SHIFT) *
263 		   UVM_PAGE_TREE_PENALTY);
264 	any_dirty = 0;
265 
266 	if (by_list) {
267 		curpg = TAILQ_FIRST(&vp->v_uobj.memq);
268 	} else {
269 		soff = startoffset;
270 	}
271 	while (by_list || soff < MIN(blkeof, endoffset)) {
272 		if (by_list) {
273 			/*
274 			 * Find the first page in a block.  Skip
275 			 * blocks outside our area of interest or beyond
276 			 * the end of file.
277 			 */
278 			KASSERT(curpg == NULL
279 			    || (curpg->flags & PG_MARKER) == 0);
280 			if (pages_per_block > 1) {
281 				while (curpg &&
282 				    ((curpg->offset & lfs_sb_getbmask(fs)) ||
283 				    curpg->offset >= vp->v_size ||
284 				    curpg->offset >= endoffset)) {
285 					curpg = TAILQ_NEXT(curpg, listq.queue);
286 					KASSERT(curpg == NULL ||
287 					    (curpg->flags & PG_MARKER) == 0);
288 				}
289 			}
290 			if (curpg == NULL)
291 				break;
292 			soff = curpg->offset;
293 		}
294 
295 		/*
296 		 * Mark all pages in extended range busy; find out if any
297 		 * of them are dirty.
298 		 */
299 		nonexistent = dirty = 0;
300 		for (i = 0; i == 0 || i < pages_per_block; i++) {
301 			KASSERT(mutex_owned(vp->v_interlock));
302 			if (by_list && pages_per_block <= 1) {
303 				pgs[i] = pg = curpg;
304 			} else {
305 				off = soff + (i << PAGE_SHIFT);
306 				pgs[i] = pg = uvm_pagelookup(&vp->v_uobj, off);
307 				if (pg == NULL) {
308 					++nonexistent;
309 					continue;
310 				}
311 			}
312 			KASSERT(pg != NULL);
313 
314 			/*
315 			 * If we're holding the segment lock, we can deadlock
316 			 * against a process that has our page and is waiting
317 			 * for the cleaner, while the cleaner waits for the
318 			 * segment lock.  Just bail in that case.
319 			 */
320 			if ((pg->flags & PG_BUSY) &&
321 			    (pagedaemon || LFS_SEGLOCK_HELD(fs))) {
322 				if (i > 0)
323 					uvm_page_unbusy(pgs, i);
324 				DLOG((DLOG_PAGE, "lfs_putpages: avoiding 3-way or pagedaemon deadlock\n"));
325 				if (pgp)
326 					*pgp = pg;
327 				KASSERT(mutex_owned(vp->v_interlock));
328 				return -1;
329 			}
330 
331 			while (pg->flags & PG_BUSY) {
332 				wait_for_page(vp, pg, NULL);
333 				KASSERT(mutex_owned(vp->v_interlock));
334 				if (i > 0)
335 					uvm_page_unbusy(pgs, i);
336 				KASSERT(mutex_owned(vp->v_interlock));
337 				goto top;
338 			}
339 			pg->flags |= PG_BUSY;
340 			UVM_PAGE_OWN(pg, "lfs_putpages");
341 
342 			pmap_page_protect(pg, VM_PROT_NONE);
343 			tdirty = (pmap_clear_modify(pg) ||
344 				  (pg->flags & PG_CLEAN) == 0);
345 			dirty += tdirty;
346 		}
347 		if (pages_per_block > 0 && nonexistent >= pages_per_block) {
348 			if (by_list) {
349 				curpg = TAILQ_NEXT(curpg, listq.queue);
350 			} else {
351 				soff += lfs_sb_getbsize(fs);
352 			}
353 			continue;
354 		}
355 
356 		any_dirty += dirty;
357 		KASSERT(nonexistent == 0);
358 		KASSERT(mutex_owned(vp->v_interlock));
359 
360 		/*
361 		 * If any are dirty make all dirty; unbusy them,
362 		 * but if we were asked to clean, wire them so that
363 		 * the pagedaemon doesn't bother us about them while
364 		 * they're on their way to disk.
365 		 */
366 		for (i = 0; i == 0 || i < pages_per_block; i++) {
367 			KASSERT(mutex_owned(vp->v_interlock));
368 			pg = pgs[i];
369 			KASSERT(!((pg->flags & PG_CLEAN) && (pg->flags & PG_DELWRI)));
370 			KASSERT(pg->flags & PG_BUSY);
371 			if (dirty) {
372 				pg->flags &= ~PG_CLEAN;
373 				if (flags & PGO_FREE) {
374 					/*
375 					 * Wire the page so that
376 					 * pdaemon doesn't see it again.
377 					 */
378 					mutex_enter(&uvm_pageqlock);
379 					uvm_pagewire(pg);
380 					mutex_exit(&uvm_pageqlock);
381 
382 					/* Suspended write flag */
383 					pg->flags |= PG_DELWRI;
384 				}
385 			}
386 			if (pg->flags & PG_WANTED)
387 				wakeup(pg);
388 			pg->flags &= ~(PG_WANTED|PG_BUSY);
389 			UVM_PAGE_OWN(pg, NULL);
390 		}
391 
392 		if (checkfirst && any_dirty)
393 			break;
394 
395 		if (by_list) {
396 			curpg = TAILQ_NEXT(curpg, listq.queue);
397 		} else {
398 			soff += MAX(PAGE_SIZE, lfs_sb_getbsize(fs));
399 		}
400 	}
401 
402 	KASSERT(mutex_owned(vp->v_interlock));
403 	return any_dirty;
404 }
405 
406 /*
407  * lfs_putpages functions like genfs_putpages except that
408  *
409  * (1) It needs to bounds-check the incoming requests to ensure that
410  *     they are block-aligned; if they are not, expand the range and
411  *     do the right thing in case, e.g., the requested range is clean
412  *     but the expanded range is dirty.
413  *
414  * (2) It needs to explicitly send blocks to be written when it is done.
415  *     If VOP_PUTPAGES is called without the seglock held, we simply take
416  *     the seglock and let lfs_segunlock wait for us.
417  *     XXX There might be a bad situation if we have to flush a vnode while
418  *     XXX lfs_markv is in operation.  As of this writing we panic in this
419  *     XXX case.
420  *
421  * Assumptions:
422  *
423  * (1) The caller does not hold any pages in this vnode busy.  If it does,
424  *     there is a danger that when we expand the page range and busy the
425  *     pages we will deadlock.
426  *
427  * (2) We are called with vp->v_interlock held; we must return with it
428  *     released.
429  *
430  * (3) We don't absolutely have to free pages right away, provided that
431  *     the request does not have PGO_SYNCIO.  When the pagedaemon gives
432  *     us a request with PGO_FREE, we take the pages out of the paging
433  *     queue and wake up the writer, which will handle freeing them for us.
434  *
435  *     We ensure that for any filesystem block, all pages for that
436  *     block are either resident or not, even if those pages are higher
437  *     than EOF; that means that we will be getting requests to free
438  *     "unused" pages above EOF all the time, and should ignore them.
439  *
440  * (4) If we are called with PGO_LOCKED, the finfo array we are to write
441  *     into has been set up for us by lfs_writefile.  If not, we will
442  *     have to handle allocating and/or freeing an finfo entry.
443  *
444  * XXX note that we're (ab)using PGO_LOCKED as "seglock held".
445  */
446 
447 /* How many times to loop before we should start to worry */
448 #define TOOMANY 4
449 
450 int
lfs_putpages(void * v)451 lfs_putpages(void *v)
452 {
453 	int error;
454 	struct vop_putpages_args /* {
455 		struct vnode *a_vp;
456 		voff_t a_offlo;
457 		voff_t a_offhi;
458 		int a_flags;
459 	} */ *ap = v;
460 	struct vnode *vp;
461 	struct inode *ip;
462 	struct lfs *fs;
463 	struct segment *sp;
464 	off_t origoffset, startoffset, endoffset, origendoffset, blkeof;
465 	off_t off, max_endoffset;
466 	bool seglocked, sync, pagedaemon, reclaim;
467 	struct vm_page *pg, *busypg;
468 	UVMHIST_FUNC("lfs_putpages"); UVMHIST_CALLED(ubchist);
469 	int oreclaim = 0;
470 	int donewriting = 0;
471 #ifdef DEBUG
472 	int debug_n_again, debug_n_dirtyclean;
473 #endif
474 
475 	vp = ap->a_vp;
476 	ip = VTOI(vp);
477 	fs = ip->i_lfs;
478 	sync = (ap->a_flags & PGO_SYNCIO) != 0;
479 	reclaim = (ap->a_flags & PGO_RECLAIM) != 0;
480 	pagedaemon = (curlwp == uvm.pagedaemon_lwp);
481 
482 	KASSERT(mutex_owned(vp->v_interlock));
483 
484 	/* Putpages does nothing for metadata. */
485 	if (vp == fs->lfs_ivnode || vp->v_type != VREG) {
486 		mutex_exit(vp->v_interlock);
487 		return 0;
488 	}
489 
490 	/*
491 	 * If there are no pages, don't do anything.
492 	 */
493 	if (vp->v_uobj.uo_npages == 0) {
494 		if (TAILQ_EMPTY(&vp->v_uobj.memq) &&
495 		    (vp->v_iflag & VI_ONWORKLST) &&
496 		    LIST_FIRST(&vp->v_dirtyblkhd) == NULL) {
497 			vp->v_iflag &= ~VI_WRMAPDIRTY;
498 			vn_syncer_remove_from_worklist(vp);
499 		}
500 		mutex_exit(vp->v_interlock);
501 
502 		/* Remove us from paging queue, if we were on it */
503 		mutex_enter(&lfs_lock);
504 		if (ip->i_flags & IN_PAGING) {
505 			ip->i_flags &= ~IN_PAGING;
506 			TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
507 		}
508 		mutex_exit(&lfs_lock);
509 
510 		KASSERT(!mutex_owned(vp->v_interlock));
511 		return 0;
512 	}
513 
514 	blkeof = lfs_blkroundup(fs, ip->i_size);
515 
516 	/*
517 	 * Ignore requests to free pages past EOF but in the same block
518 	 * as EOF, unless the vnode is being reclaimed or the request
519 	 * is synchronous.  (If the request is sync, it comes from
520 	 * lfs_truncate.)
521 	 *
522 	 * To avoid being flooded with this request, make these pages
523 	 * look "active".
524 	 */
525 	if (!sync && !reclaim &&
526 	    ap->a_offlo >= ip->i_size && ap->a_offlo < blkeof) {
527 		origoffset = ap->a_offlo;
528 		for (off = origoffset; off < blkeof; off += lfs_sb_getbsize(fs)) {
529 			pg = uvm_pagelookup(&vp->v_uobj, off);
530 			KASSERT(pg != NULL);
531 			while (pg->flags & PG_BUSY) {
532 				pg->flags |= PG_WANTED;
533 				UVM_UNLOCK_AND_WAIT(pg, vp->v_interlock, 0,
534 						    "lfsput2", 0);
535 				mutex_enter(vp->v_interlock);
536 			}
537 			mutex_enter(&uvm_pageqlock);
538 			uvm_pageactivate(pg);
539 			mutex_exit(&uvm_pageqlock);
540 		}
541 		ap->a_offlo = blkeof;
542 		if (ap->a_offhi > 0 && ap->a_offhi <= ap->a_offlo) {
543 			mutex_exit(vp->v_interlock);
544 			return 0;
545 		}
546 	}
547 
548 	/*
549 	 * Extend page range to start and end at block boundaries.
550 	 * (For the purposes of VOP_PUTPAGES, fragments don't exist.)
551 	 */
552 	origoffset = ap->a_offlo;
553 	origendoffset = ap->a_offhi;
554 	startoffset = origoffset & ~(lfs_sb_getbmask(fs));
555 	max_endoffset = (trunc_page(LLONG_MAX) >> lfs_sb_getbshift(fs))
556 					       << lfs_sb_getbshift(fs);
557 
558 	if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
559 		endoffset = max_endoffset;
560 		origendoffset = endoffset;
561 	} else {
562 		origendoffset = round_page(ap->a_offhi);
563 		endoffset = round_page(lfs_blkroundup(fs, origendoffset));
564 	}
565 
566 	KASSERT(startoffset > 0 || endoffset >= startoffset);
567 	if (startoffset == endoffset) {
568 		/* Nothing to do, why were we called? */
569 		mutex_exit(vp->v_interlock);
570 		DLOG((DLOG_PAGE, "lfs_putpages: startoffset = endoffset = %"
571 		      PRId64 "\n", startoffset));
572 		return 0;
573 	}
574 
575 	ap->a_offlo = startoffset;
576 	ap->a_offhi = endoffset;
577 
578 	/*
579 	 * If not cleaning, just send the pages through genfs_putpages
580 	 * to be returned to the pool.
581 	 */
582 	if (!(ap->a_flags & PGO_CLEANIT)) {
583 		DLOG((DLOG_PAGE, "lfs_putpages: no cleanit vn %p ino %d (flags %x)\n",
584 		      vp, (int)ip->i_number, ap->a_flags));
585 		int r = genfs_putpages(v);
586 		KASSERT(!mutex_owned(vp->v_interlock));
587 		return r;
588 	}
589 
590 	/* Set PGO_BUSYFAIL to avoid deadlocks */
591 	ap->a_flags |= PGO_BUSYFAIL;
592 
593 	/*
594 	 * Likewise, if we are asked to clean but the pages are not
595 	 * dirty, we can just free them using genfs_putpages.
596 	 */
597 #ifdef DEBUG
598 	debug_n_dirtyclean = 0;
599 #endif
600 	do {
601 		int r;
602 		KASSERT(mutex_owned(vp->v_interlock));
603 
604 		/* Count the number of dirty pages */
605 		r = check_dirty(fs, vp, startoffset, endoffset, blkeof,
606 				ap->a_flags, 1, NULL);
607 		if (r < 0) {
608 			/* Pages are busy with another process */
609 			mutex_exit(vp->v_interlock);
610 			return EDEADLK;
611 		}
612 		if (r > 0) /* Some pages are dirty */
613 			break;
614 
615 		/*
616 		 * Sometimes pages are dirtied between the time that
617 		 * we check and the time we try to clean them.
618 		 * Instruct lfs_gop_write to return EDEADLK in this case
619 		 * so we can write them properly.
620 		 */
621 		ip->i_lfs_iflags |= LFSI_NO_GOP_WRITE;
622 		r = genfs_do_putpages(vp, startoffset, endoffset,
623 				       ap->a_flags & ~PGO_SYNCIO, &busypg);
624 		ip->i_lfs_iflags &= ~LFSI_NO_GOP_WRITE;
625 		if (r != EDEADLK) {
626 			KASSERT(!mutex_owned(vp->v_interlock));
627  			return r;
628 		}
629 
630 		/* One of the pages was busy.  Start over. */
631 		mutex_enter(vp->v_interlock);
632 		wait_for_page(vp, busypg, "dirtyclean");
633 #ifdef DEBUG
634 		++debug_n_dirtyclean;
635 #endif
636 	} while(1);
637 
638 #ifdef DEBUG
639 	if (debug_n_dirtyclean > TOOMANY)
640 		DLOG((DLOG_PAGE, "lfs_putpages: dirtyclean: looping, n = %d\n",
641 		      debug_n_dirtyclean));
642 #endif
643 
644 	/*
645 	 * Dirty and asked to clean.
646 	 *
647 	 * Pagedaemon can't actually write LFS pages; wake up
648 	 * the writer to take care of that.  The writer will
649 	 * notice the pager inode queue and act on that.
650 	 *
651 	 * XXX We must drop the vp->interlock before taking the lfs_lock or we
652 	 * get a nasty deadlock with lfs_flush_pchain().
653 	 */
654 	if (pagedaemon) {
655 		mutex_exit(vp->v_interlock);
656 		mutex_enter(&lfs_lock);
657 		if (!(ip->i_flags & IN_PAGING)) {
658 			ip->i_flags |= IN_PAGING;
659 			TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip, i_lfs_pchain);
660 		}
661 		wakeup(&lfs_writer_daemon);
662 		mutex_exit(&lfs_lock);
663 		preempt();
664 		KASSERT(!mutex_owned(vp->v_interlock));
665 		return EWOULDBLOCK;
666 	}
667 
668 	/*
669 	 * If this is a file created in a recent dirop, we can't flush its
670 	 * inode until the dirop is complete.  Drain dirops, then flush the
671 	 * filesystem (taking care of any other pending dirops while we're
672 	 * at it).
673 	 */
674 	if ((ap->a_flags & (PGO_CLEANIT|PGO_LOCKED)) == PGO_CLEANIT &&
675 	    (vp->v_uflag & VU_DIROP)) {
676 		DLOG((DLOG_PAGE, "lfs_putpages: flushing VU_DIROP\n"));
677 
678  		lfs_writer_enter(fs, "ppdirop");
679 
680 		/* Note if we hold the vnode locked */
681 		if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE)
682 		{
683 		    DLOG((DLOG_PAGE, "lfs_putpages: dirop inode already locked\n"));
684 		} else {
685 		    DLOG((DLOG_PAGE, "lfs_putpages: dirop inode not locked\n"));
686 		}
687 		mutex_exit(vp->v_interlock);
688 
689 		mutex_enter(&lfs_lock);
690 		lfs_flush_fs(fs, sync ? SEGM_SYNC : 0);
691 		mutex_exit(&lfs_lock);
692 
693 		mutex_enter(vp->v_interlock);
694 		lfs_writer_leave(fs);
695 
696 		/* The flush will have cleaned out this vnode as well,
697 		   no need to do more to it. */
698 	}
699 
700 	/*
701 	 * This is it.	We are going to write some pages.  From here on
702 	 * down it's all just mechanics.
703 	 *
704 	 * Don't let genfs_putpages wait; lfs_segunlock will wait for us.
705 	 */
706 	ap->a_flags &= ~PGO_SYNCIO;
707 
708 	/*
709 	 * If we've already got the seglock, flush the node and return.
710 	 * The FIP has already been set up for us by lfs_writefile,
711 	 * and FIP cleanup and lfs_updatemeta will also be done there,
712 	 * unless genfs_putpages returns EDEADLK; then we must flush
713 	 * what we have, and correct FIP and segment header accounting.
714 	 */
715   get_seglock:
716 	/*
717 	 * If we are not called with the segment locked, lock it.
718 	 * Account for a new FIP in the segment header, and set sp->vp.
719 	 * (This should duplicate the setup at the top of lfs_writefile().)
720 	 */
721 	seglocked = (ap->a_flags & PGO_LOCKED) != 0;
722 	if (!seglocked) {
723 		mutex_exit(vp->v_interlock);
724 		error = lfs_seglock(fs, SEGM_PROT | (sync ? SEGM_SYNC : 0));
725 		if (error != 0) {
726 			KASSERT(!mutex_owned(vp->v_interlock));
727  			return error;
728 		}
729 		mutex_enter(vp->v_interlock);
730 		lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
731 	}
732 	sp = fs->lfs_sp;
733 	KASSERT(sp->vp == NULL);
734 	sp->vp = vp;
735 
736 	/* Note segments written by reclaim; only for debugging */
737 	if (vdead_check(vp, VDEAD_NOWAIT) != 0) {
738 		sp->seg_flags |= SEGM_RECLAIM;
739 		fs->lfs_reclino = ip->i_number;
740 	}
741 
742 	/*
743 	 * Ensure that the partial segment is marked SS_DIROP if this
744 	 * vnode is a DIROP.
745 	 */
746 	if (!seglocked && vp->v_uflag & VU_DIROP) {
747 		SEGSUM *ssp = sp->segsum;
748 
749 		lfs_ss_setflags(fs, ssp,
750 				lfs_ss_getflags(fs, ssp) | (SS_DIROP|SS_CONT));
751 	}
752 
753 	/*
754 	 * Loop over genfs_putpages until all pages are gathered.
755 	 * genfs_putpages() drops the interlock, so reacquire it if necessary.
756 	 * Whenever we lose the interlock we have to rerun check_dirty, as
757 	 * well, since more pages might have been dirtied in our absence.
758 	 */
759 #ifdef DEBUG
760 	debug_n_again = 0;
761 #endif
762 	do {
763 		busypg = NULL;
764 		KASSERT(mutex_owned(vp->v_interlock));
765 		if (check_dirty(fs, vp, startoffset, endoffset, blkeof,
766 				ap->a_flags, 0, &busypg) < 0) {
767 			mutex_exit(vp->v_interlock);
768 			/* XXX why? --ks */
769 			mutex_enter(vp->v_interlock);
770 			write_and_wait(fs, vp, busypg, seglocked, NULL);
771 			if (!seglocked) {
772 				mutex_exit(vp->v_interlock);
773 				lfs_release_finfo(fs);
774 				lfs_segunlock(fs);
775 				mutex_enter(vp->v_interlock);
776 			}
777 			sp->vp = NULL;
778 			goto get_seglock;
779 		}
780 
781 		busypg = NULL;
782 		KASSERT(!mutex_owned(&uvm_pageqlock));
783 		oreclaim = (ap->a_flags & PGO_RECLAIM);
784 		ap->a_flags &= ~PGO_RECLAIM;
785 		error = genfs_do_putpages(vp, startoffset, endoffset,
786 					   ap->a_flags, &busypg);
787 		ap->a_flags |= oreclaim;
788 
789 		if (error == EDEADLK || error == EAGAIN) {
790 			DLOG((DLOG_PAGE, "lfs_putpages: genfs_putpages returned"
791 			      " %d ino %d off %jx (seg %d)\n", error,
792 			      ip->i_number, (uintmax_t)lfs_sb_getoffset(fs),
793 			      lfs_dtosn(fs, lfs_sb_getoffset(fs))));
794 
795 			if (oreclaim) {
796 				mutex_enter(vp->v_interlock);
797 				write_and_wait(fs, vp, busypg, seglocked, "again");
798 				mutex_exit(vp->v_interlock);
799 			} else {
800 				if ((sp->seg_flags & SEGM_SINGLE) &&
801 				    lfs_sb_getcurseg(fs) != fs->lfs_startseg)
802 					donewriting = 1;
803 			}
804 		} else if (error) {
805 			DLOG((DLOG_PAGE, "lfs_putpages: genfs_putpages returned"
806 			      " %d ino %d off %jx (seg %d)\n", error,
807 			      (int)ip->i_number, (uintmax_t)lfs_sb_getoffset(fs),
808 			      lfs_dtosn(fs, lfs_sb_getoffset(fs))));
809 		}
810 		/* genfs_do_putpages loses the interlock */
811 #ifdef DEBUG
812 		++debug_n_again;
813 #endif
814 		if (oreclaim && error == EAGAIN) {
815 			DLOG((DLOG_PAGE, "vp %p ino %d vi_flags %x a_flags %x avoiding vclean panic\n",
816 			      vp, (int)ip->i_number, vp->v_iflag, ap->a_flags));
817 			mutex_enter(vp->v_interlock);
818 		}
819 		if (error == EDEADLK)
820 			mutex_enter(vp->v_interlock);
821 	} while (error == EDEADLK || (oreclaim && error == EAGAIN));
822 #ifdef DEBUG
823 	if (debug_n_again > TOOMANY)
824 		DLOG((DLOG_PAGE, "lfs_putpages: again: looping, n = %d\n", debug_n_again));
825 #endif
826 
827 	KASSERT(sp != NULL && sp->vp == vp);
828 	if (!seglocked && !donewriting) {
829 		sp->vp = NULL;
830 
831 		/* Write indirect blocks as well */
832 		lfs_gather(fs, fs->lfs_sp, vp, lfs_match_indir);
833 		lfs_gather(fs, fs->lfs_sp, vp, lfs_match_dindir);
834 		lfs_gather(fs, fs->lfs_sp, vp, lfs_match_tindir);
835 
836 		KASSERT(sp->vp == NULL);
837 		sp->vp = vp;
838 	}
839 
840 	/*
841 	 * Blocks are now gathered into a segment waiting to be written.
842 	 * All that's left to do is update metadata, and write them.
843 	 */
844 	lfs_updatemeta(sp);
845 	KASSERT(sp->vp == vp);
846 	sp->vp = NULL;
847 
848 	/*
849 	 * If we were called from lfs_writefile, we don't need to clean up
850 	 * the FIP or unlock the segment lock.	We're done.
851 	 */
852 	if (seglocked) {
853 		KASSERT(!mutex_owned(vp->v_interlock));
854 		return error;
855 	}
856 
857 	/* Clean up FIP and send it to disk. */
858 	lfs_release_finfo(fs);
859 	lfs_writeseg(fs, fs->lfs_sp);
860 
861 	/*
862 	 * Remove us from paging queue if we wrote all our pages.
863 	 */
864 	if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
865 		mutex_enter(&lfs_lock);
866 		if (ip->i_flags & IN_PAGING) {
867 			ip->i_flags &= ~IN_PAGING;
868 			TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
869 		}
870 		mutex_exit(&lfs_lock);
871 	}
872 
873 	/*
874 	 * XXX - with the malloc/copy writeseg, the pages are freed by now
875 	 * even if we don't wait (e.g. if we hold a nested lock).  This
876 	 * will not be true if we stop using malloc/copy.
877 	 */
878 	KASSERT(fs->lfs_sp->seg_flags & SEGM_PROT);
879 	lfs_segunlock(fs);
880 
881 	/*
882 	 * Wait for v_numoutput to drop to zero.  The seglock should
883 	 * take care of this, but there is a slight possibility that
884 	 * aiodoned might not have got around to our buffers yet.
885 	 */
886 	if (sync) {
887 		mutex_enter(vp->v_interlock);
888 		while (vp->v_numoutput > 0) {
889 			DLOG((DLOG_PAGE, "lfs_putpages: ino %d sleeping on"
890 			      " num %d\n", ip->i_number, vp->v_numoutput));
891 			cv_wait(&vp->v_cv, vp->v_interlock);
892 		}
893 		mutex_exit(vp->v_interlock);
894 	}
895 	KASSERT(!mutex_owned(vp->v_interlock));
896 	return error;
897 }
898 
899