xref: /minix3/sys/external/bsd/compiler_rt/dist/lib/builtins/floatdidf.c (revision 0a6a1f1d05b60e214de2f05a7310ddd1f0e590e7)
1  /*===-- floatdidf.c - Implement __floatdidf -------------------------------===
2   *
3   *                     The LLVM Compiler Infrastructure
4   *
5   * This file is dual licensed under the MIT and the University of Illinois Open
6   * Source Licenses. See LICENSE.TXT for details.
7   *
8   *===----------------------------------------------------------------------===
9   *
10   * This file implements __floatdidf for the compiler_rt library.
11   *
12   *===----------------------------------------------------------------------===
13   */
14  
15  #include "int_lib.h"
16  
17  /* Returns: convert a to a double, rounding toward even. */
18  
19  /* Assumption: double is a IEEE 64 bit floating point type
20   *             di_int is a 64 bit integral type
21   */
22  
23  /* seee eeee eeee mmmm mmmm mmmm mmmm mmmm | mmmm mmmm mmmm mmmm mmmm mmmm mmmm mmmm */
24  
ARM_EABI_FNALIAS(l2d,floatdidf)25  ARM_EABI_FNALIAS(l2d, floatdidf)
26  
27  #ifndef __SOFT_FP__
28  /* Support for systems that have hardware floating-point; we'll set the inexact flag
29   * as a side-effect of this computation.
30   */
31  
32  COMPILER_RT_ABI double
33  __floatdidf(di_int a)
34  {
35  	static const double twop52 = 0x1.0p52;
36  	static const double twop32 = 0x1.0p32;
37  
38  	union { int64_t x; double d; } low = { .d = twop52 };
39  
40  	const double high = (int32_t)(a >> 32) * twop32;
41  	low.x |= a & INT64_C(0x00000000ffffffff);
42  
43  	const double result = (high - twop52) + low.d;
44  	return result;
45  }
46  
47  #else
48  /* Support for systems that don't have hardware floating-point; there are no flags to
49   * set, and we don't want to code-gen to an unknown soft-float implementation.
50   */
51  
52  COMPILER_RT_ABI double
53  __floatdidf(di_int a)
54  {
55      if (a == 0)
56          return 0.0;
57      const unsigned N = sizeof(di_int) * CHAR_BIT;
58      const di_int s = a >> (N-1);
59      a = (a ^ s) - s;
60      int sd = N - __builtin_clzll(a);  /* number of significant digits */
61      int e = sd - 1;             /* exponent */
62      if (sd > DBL_MANT_DIG)
63      {
64          /*  start:  0000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQxxxxxxxxxxxxxxxxxx
65           *  finish: 000000000000000000000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQR
66           *                                                12345678901234567890123456
67           *  1 = msb 1 bit
68           *  P = bit DBL_MANT_DIG-1 bits to the right of 1
69           * Q = bit DBL_MANT_DIG bits to the right of 1
70           *  R = "or" of all bits to the right of Q
71          */
72          switch (sd)
73          {
74          case DBL_MANT_DIG + 1:
75              a <<= 1;
76              break;
77          case DBL_MANT_DIG + 2:
78              break;
79          default:
80              a = ((du_int)a >> (sd - (DBL_MANT_DIG+2))) |
81                  ((a & ((du_int)(-1) >> ((N + DBL_MANT_DIG+2) - sd))) != 0);
82          };
83          /* finish: */
84          a |= (a & 4) != 0;  /* Or P into R */
85          ++a;  /* round - this step may add a significant bit */
86          a >>= 2;  /* dump Q and R */
87          /* a is now rounded to DBL_MANT_DIG or DBL_MANT_DIG+1 bits */
88          if (a & ((du_int)1 << DBL_MANT_DIG))
89          {
90              a >>= 1;
91              ++e;
92          }
93          /* a is now rounded to DBL_MANT_DIG bits */
94      }
95      else
96      {
97          a <<= (DBL_MANT_DIG - sd);
98          /* a is now rounded to DBL_MANT_DIG bits */
99      }
100      double_bits fb;
101      fb.u.high = ((su_int)s & 0x80000000) |        /* sign */
102                  ((e + 1023) << 20)      |        /* exponent */
103                  ((su_int)(a >> 32) & 0x000FFFFF); /* mantissa-high */
104      fb.u.low = (su_int)a;                         /* mantissa-low */
105      return fb.f;
106  }
107  #endif
108