xref: /minix3/sys/dev/videomode/vesagtf.c (revision 0a6a1f1d05b60e214de2f05a7310ddd1f0e590e7)
1 /* $NetBSD: vesagtf.c,v 1.3 2014/03/21 22:00:00 dholland Exp $ */
2 
3 /*-
4  * Copyright (c) 2006 Itronix Inc.
5  * All rights reserved.
6  *
7  * Written by Garrett D'Amore for Itronix Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. The name of Itronix Inc. may not be used to endorse
18  *    or promote products derived from this software without specific
19  *    prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY ITRONIX INC. ``AS IS'' AND ANY EXPRESS
22  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
23  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL ITRONIX INC. BE LIABLE FOR ANY
25  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
27  * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
29  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
30  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
31  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 /*
35  * This was derived from a userland GTF program supplied by NVIDIA.
36  * NVIDIA's original boilerplate follows.
37  *
38  * Note that I have heavily modified the program for use in the EDID
39  * kernel code for NetBSD, including removing the use of floating
40  * point operations and making significant adjustments to minimize
41  * error propagation while operating with integer only math.
42  *
43  * This has required the use of 64-bit integers in a few places, but
44  * the upshot is that for a calculation of 1920x1200x85 (as an
45  * example), the error deviates by only ~.004% relative to the
46  * floating point version.  This error is *well* within VESA
47  * tolerances.
48  */
49 
50 /*
51  * Copyright (c) 2001, Andy Ritger  aritger@nvidia.com
52  * All rights reserved.
53  *
54  * Redistribution and use in source and binary forms, with or without
55  * modification, are permitted provided that the following conditions
56  * are met:
57  *
58  * o Redistributions of source code must retain the above copyright
59  *   notice, this list of conditions and the following disclaimer.
60  * o Redistributions in binary form must reproduce the above copyright
61  *   notice, this list of conditions and the following disclaimer
62  *   in the documentation and/or other materials provided with the
63  *   distribution.
64  * o Neither the name of NVIDIA nor the names of its contributors
65  *   may be used to endorse or promote products derived from this
66  *   software without specific prior written permission.
67  *
68  *
69  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
70  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
71  * NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
72  * FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
73  * THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
74  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
75  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
76  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
77  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
78  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
79  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
80  * POSSIBILITY OF SUCH DAMAGE.
81  *
82  *
83  *
84  * This program is based on the Generalized Timing Formula(GTF TM)
85  * Standard Version: 1.0, Revision: 1.0
86  *
87  * The GTF Document contains the following Copyright information:
88  *
89  * Copyright (c) 1994, 1995, 1996 - Video Electronics Standards
90  * Association. Duplication of this document within VESA member
91  * companies for review purposes is permitted. All other rights
92  * reserved.
93  *
94  * While every precaution has been taken in the preparation
95  * of this standard, the Video Electronics Standards Association and
96  * its contributors assume no responsibility for errors or omissions,
97  * and make no warranties, expressed or implied, of functionality
98  * of suitability for any purpose. The sample code contained within
99  * this standard may be used without restriction.
100  *
101  *
102  *
103  * The GTF EXCEL(TM) SPREADSHEET, a sample (and the definitive)
104  * implementation of the GTF Timing Standard, is available at:
105  *
106  * ftp://ftp.vesa.org/pub/GTF/GTF_V1R1.xls
107  *
108  *
109  *
110  * This program takes a desired resolution and vertical refresh rate,
111  * and computes mode timings according to the GTF Timing Standard.
112  * These mode timings can then be formatted as an XFree86 modeline
113  * or a mode description for use by fbset(8).
114  *
115  *
116  *
117  * NOTES:
118  *
119  * The GTF allows for computation of "margins" (the visible border
120  * surrounding the addressable video); on most non-overscan type
121  * systems, the margin period is zero.  I've implemented the margin
122  * computations but not enabled it because 1) I don't really have
123  * any experience with this, and 2) neither XFree86 modelines nor
124  * fbset fb.modes provide an obvious way for margin timings to be
125  * included in their mode descriptions (needs more investigation).
126  *
127  * The GTF provides for computation of interlaced mode timings;
128  * I've implemented the computations but not enabled them, yet.
129  * I should probably enable and test this at some point.
130  *
131  *
132  *
133  * TODO:
134  *
135  * o Add support for interlaced modes.
136  *
137  * o Implement the other portions of the GTF: compute mode timings
138  *   given either the desired pixel clock or the desired horizontal
139  *   frequency.
140  *
141  * o It would be nice if this were more general purpose to do things
142  *   outside the scope of the GTF: like generate double scan mode
143  *   timings, for example.
144  *
145  * o Printing digits to the right of the decimal point when the
146  *   digits are 0 annoys me.
147  *
148  * o Error checking.
149  *
150  */
151 
152 
153 #ifdef	_KERNEL
154 #include <sys/cdefs.h>
155 
156 __KERNEL_RCSID(0, "$NetBSD: vesagtf.c,v 1.3 2014/03/21 22:00:00 dholland Exp $");
157 #include <sys/types.h>
158 #include <sys/param.h>
159 #include <sys/systm.h>
160 #include <dev/videomode/videomode.h>
161 #include <dev/videomode/vesagtf.h>
162 #else
163 #include <stdio.h>
164 #include <stdlib.h>
165 #include <sys/types.h>
166 #include "videomode.h"
167 #include "vesagtf.h"
168 
169 void print_xf86_mode(struct videomode *m);
170 #endif
171 
172 #define CELL_GRAN         8     /* assumed character cell granularity        */
173 
174 /* C' and M' are part of the Blanking Duty Cycle computation */
175 /*
176  * #define C_PRIME           (((C - J) * K/256.0) + J)
177  * #define M_PRIME           (K/256.0 * M)
178  */
179 
180 /*
181  * C' and M' multiplied by 256 to give integer math.  Make sure to
182  * scale results using these back down, appropriately.
183  */
184 #define	C_PRIME256(p)	  (((p->C - p->J) * p->K) + (p->J * 256))
185 #define	M_PRIME256(p)	  (p->K * p->M)
186 
187 #define	DIVIDE(x,y)	(((x) + ((y) / 2)) / (y))
188 
189 /*
190  * print_value() - print the result of the named computation; this is
191  * useful when comparing against the GTF EXCEL spreadsheet.
192  */
193 
194 #ifdef GTFDEBUG
195 
196 static void
print_value(int n,const char * name,unsigned val)197 print_value(int n, const char *name, unsigned val)
198 {
199         printf("%2d: %-27s: %u\n", n, name, val);
200 }
201 #else
202 #define	print_value(n, name, val)
203 #endif
204 
205 
206 /*
207  * vert_refresh() - as defined by the GTF Timing Standard, compute the
208  * Stage 1 Parameters using the vertical refresh frequency.  In other
209  * words: input a desired resolution and desired refresh rate, and
210  * output the GTF mode timings.
211  *
212  * XXX All the code is in place to compute interlaced modes, but I don't
213  * feel like testing it right now.
214  *
215  * XXX margin computations are implemented but not tested (nor used by
216  * XFree86 of fbset mode descriptions, from what I can tell).
217  */
218 
219 void
vesagtf_mode_params(unsigned h_pixels,unsigned v_lines,unsigned freq,struct vesagtf_params * params,int flags,struct videomode * vmp)220 vesagtf_mode_params(unsigned h_pixels, unsigned v_lines, unsigned freq,
221     struct vesagtf_params *params, int flags, struct videomode *vmp)
222 {
223     unsigned v_field_rqd;
224     unsigned top_margin;
225     unsigned bottom_margin;
226     unsigned interlace;
227     uint64_t h_period_est;
228     unsigned vsync_plus_bp;
229     unsigned v_back_porch __unused;
230     unsigned total_v_lines;
231     uint64_t v_field_est;
232     uint64_t h_period;
233     unsigned v_field_rate;
234     unsigned v_frame_rate __unused;
235     unsigned left_margin;
236     unsigned right_margin;
237     unsigned total_active_pixels;
238     uint64_t ideal_duty_cycle;
239     unsigned h_blank;
240     unsigned total_pixels;
241     unsigned pixel_freq;
242 
243     unsigned h_sync;
244     unsigned h_front_porch;
245     unsigned v_odd_front_porch_lines;
246 
247 #ifdef	GTFDEBUG
248     unsigned h_freq;
249 #endif
250 
251     /*  1. In order to give correct results, the number of horizontal
252      *  pixels requested is first processed to ensure that it is divisible
253      *  by the character size, by rounding it to the nearest character
254      *  cell boundary:
255      *
256      *  [H PIXELS RND] = ((ROUND([H PIXELS]/[CELL GRAN RND],0))*[CELLGRAN RND])
257      */
258 
259     h_pixels = DIVIDE(h_pixels, CELL_GRAN) * CELL_GRAN;
260 
261     print_value(1, "[H PIXELS RND]", h_pixels);
262 
263 
264     /*  2. If interlace is requested, the number of vertical lines assumed
265      *  by the calculation must be halved, as the computation calculates
266      *  the number of vertical lines per field. In either case, the
267      *  number of lines is rounded to the nearest integer.
268      *
269      *  [V LINES RND] = IF([INT RQD?]="y", ROUND([V LINES]/2,0),
270      *                                     ROUND([V LINES],0))
271      */
272 
273     v_lines = (flags & VESAGTF_FLAG_ILACE) ? DIVIDE(v_lines, 2) : v_lines;
274 
275     print_value(2, "[V LINES RND]", v_lines);
276 
277 
278     /*  3. Find the frame rate required:
279      *
280      *  [V FIELD RATE RQD] = IF([INT RQD?]="y", [I/P FREQ RQD]*2,
281      *                                          [I/P FREQ RQD])
282      */
283 
284     v_field_rqd = (flags & VESAGTF_FLAG_ILACE) ? (freq * 2) : (freq);
285 
286     print_value(3, "[V FIELD RATE RQD]", v_field_rqd);
287 
288 
289     /*  4. Find number of lines in Top margin:
290      *  5. Find number of lines in Bottom margin:
291      *
292      *  [TOP MARGIN (LINES)] = IF([MARGINS RQD?]="Y",
293      *          ROUND(([MARGIN%]/100*[V LINES RND]),0),
294      *          0)
295      *
296      *  Ditto for bottom margin.  Note that instead of %, we use PPT, which
297      *  is parts per thousand.  This helps us with integer math.
298      */
299 
300     top_margin = bottom_margin = (flags & VESAGTF_FLAG_MARGINS) ?
301 	DIVIDE(v_lines * params->margin_ppt, 1000) : 0;
302 
303     print_value(4, "[TOP MARGIN (LINES)]", top_margin);
304     print_value(5, "[BOT MARGIN (LINES)]", bottom_margin);
305 
306 
307     /*  6. If interlace is required, then set variable [INTERLACE]=0.5:
308      *
309      *  [INTERLACE]=(IF([INT RQD?]="y",0.5,0))
310      *
311      *  To make this integer friendly, we use some special hacks in step
312      *  7 below.  Please read those comments to understand why I am using
313      *  a whole number of 1.0 instead of 0.5 here.
314      */
315     interlace = (flags & VESAGTF_FLAG_ILACE) ? 1 : 0;
316 
317     print_value(6, "[2*INTERLACE]", interlace);
318 
319 
320     /*  7. Estimate the Horizontal period
321      *
322      *  [H PERIOD EST] = ((1/[V FIELD RATE RQD]) - [MIN VSYNC+BP]/1000000) /
323      *                    ([V LINES RND] + (2*[TOP MARGIN (LINES)]) +
324      *                     [MIN PORCH RND]+[INTERLACE]) * 1000000
325      *
326      *  To make it integer friendly, we pre-multiply the 1000000 to get to
327      *  usec.  This gives us:
328      *
329      *  [H PERIOD EST] = ((1000000/[V FIELD RATE RQD]) - [MIN VSYNC+BP]) /
330      *			([V LINES RND] + (2 * [TOP MARGIN (LINES)]) +
331      *			 [MIN PORCH RND]+[INTERLACE])
332      *
333      *  The other problem is that the interlace value is wrong.  To get
334      *  the interlace to a whole number, we multiply both the numerator and
335      *  divisor by 2, so we can use a value of either 1 or 0 for the interlace
336      *  factor.
337      *
338      * This gives us:
339      *
340      * [H PERIOD EST] = ((2*((1000000/[V FIELD RATE RQD]) - [MIN VSYNC+BP])) /
341      *			 (2*([V LINES RND] + (2*[TOP MARGIN (LINES)]) +
342      *			  [MIN PORCH RND]) + [2*INTERLACE]))
343      *
344      * Finally we multiply by another 1000, to get value in picosec.
345      * Why picosec?  To minimize rounding errors.  Gotta love integer
346      * math and error propagation.
347      */
348 
349     h_period_est = DIVIDE(((DIVIDE(2000000000000ULL, v_field_rqd)) -
350 			      (2000000 * params->min_vsbp)),
351 	((2 * (v_lines + (2 * top_margin) + params->min_porch)) + interlace));
352 
353     print_value(7, "[H PERIOD EST (ps)]", h_period_est);
354 
355 
356     /*  8. Find the number of lines in V sync + back porch:
357      *
358      *  [V SYNC+BP] = ROUND(([MIN VSYNC+BP]/[H PERIOD EST]),0)
359      *
360      *  But recall that h_period_est is in psec. So multiply by 1000000.
361      */
362 
363     vsync_plus_bp = DIVIDE(params->min_vsbp * 1000000, h_period_est);
364 
365     print_value(8, "[V SYNC+BP]", vsync_plus_bp);
366 
367 
368     /*  9. Find the number of lines in V back porch alone:
369      *
370      *  [V BACK PORCH] = [V SYNC+BP] - [V SYNC RND]
371      *
372      *  XXX is "[V SYNC RND]" a typo? should be [V SYNC RQD]?
373      */
374 
375     v_back_porch = vsync_plus_bp - params->vsync_rqd;
376 
377     print_value(9, "[V BACK PORCH]", v_back_porch);
378 
379 
380     /*  10. Find the total number of lines in Vertical field period:
381      *
382      *  [TOTAL V LINES] = [V LINES RND] + [TOP MARGIN (LINES)] +
383      *                    [BOT MARGIN (LINES)] + [V SYNC+BP] + [INTERLACE] +
384      *                    [MIN PORCH RND]
385      */
386 
387     total_v_lines = v_lines + top_margin + bottom_margin + vsync_plus_bp +
388         interlace + params->min_porch;
389 
390     print_value(10, "[TOTAL V LINES]", total_v_lines);
391 
392 
393     /*  11. Estimate the Vertical field frequency:
394      *
395      *  [V FIELD RATE EST] = 1 / [H PERIOD EST] / [TOTAL V LINES] * 1000000
396      *
397      *  Again, we want to pre multiply by 10^9 to convert for nsec, thereby
398      *  making it usable in integer math.
399      *
400      *  So we get:
401      *
402      *  [V FIELD RATE EST] = 1000000000 / [H PERIOD EST] / [TOTAL V LINES]
403      *
404      *  This is all scaled to get the result in uHz.  Again, we're trying to
405      *  minimize error propagation.
406      */
407     v_field_est = DIVIDE(DIVIDE(1000000000000000ULL, h_period_est),
408 	total_v_lines);
409 
410     print_value(11, "[V FIELD RATE EST(uHz)]", v_field_est);
411 
412 
413     /*  12. Find the actual horizontal period:
414      *
415      *  [H PERIOD] = [H PERIOD EST] / ([V FIELD RATE RQD] / [V FIELD RATE EST])
416      */
417 
418     h_period = DIVIDE(h_period_est * v_field_est, v_field_rqd * 1000);
419 
420     print_value(12, "[H PERIOD(ps)]", h_period);
421 
422 
423     /*  13. Find the actual Vertical field frequency:
424      *
425      *  [V FIELD RATE] = 1 / [H PERIOD] / [TOTAL V LINES] * 1000000
426      *
427      *  And again, we convert to nsec ahead of time, giving us:
428      *
429      *  [V FIELD RATE] = 1000000 / [H PERIOD] / [TOTAL V LINES]
430      *
431      *  And another rescaling back to mHz.  Gotta love it.
432      */
433 
434     v_field_rate = DIVIDE(1000000000000ULL, h_period * total_v_lines);
435 
436     print_value(13, "[V FIELD RATE]", v_field_rate);
437 
438 
439     /*  14. Find the Vertical frame frequency:
440      *
441      *  [V FRAME RATE] = (IF([INT RQD?]="y", [V FIELD RATE]/2, [V FIELD RATE]))
442      *
443      *  N.B. that the result here is in mHz.
444      */
445 
446     v_frame_rate = (flags & VESAGTF_FLAG_ILACE) ?
447 	v_field_rate / 2 : v_field_rate;
448 
449     print_value(14, "[V FRAME RATE]", v_frame_rate);
450 
451 
452     /*  15. Find number of pixels in left margin:
453      *  16. Find number of pixels in right margin:
454      *
455      *  [LEFT MARGIN (PIXELS)] = (IF( [MARGINS RQD?]="Y",
456      *          (ROUND( ([H PIXELS RND] * [MARGIN%] / 100 /
457      *                   [CELL GRAN RND]),0)) * [CELL GRAN RND],
458      *          0))
459      *
460      *  Again, we deal with margin percentages as PPT (parts per thousand).
461      *  And the calculations for left and right are the same.
462      */
463 
464     left_margin = right_margin = (flags & VESAGTF_FLAG_MARGINS) ?
465 	DIVIDE(DIVIDE(h_pixels * params->margin_ppt, 1000),
466 	    CELL_GRAN) * CELL_GRAN : 0;
467 
468     print_value(15, "[LEFT MARGIN (PIXELS)]", left_margin);
469     print_value(16, "[RIGHT MARGIN (PIXELS)]", right_margin);
470 
471 
472     /*  17. Find total number of active pixels in image and left and right
473      *  margins:
474      *
475      *  [TOTAL ACTIVE PIXELS] = [H PIXELS RND] + [LEFT MARGIN (PIXELS)] +
476      *                          [RIGHT MARGIN (PIXELS)]
477      */
478 
479     total_active_pixels = h_pixels + left_margin + right_margin;
480 
481     print_value(17, "[TOTAL ACTIVE PIXELS]", total_active_pixels);
482 
483 
484     /*  18. Find the ideal blanking duty cycle from the blanking duty cycle
485      *  equation:
486      *
487      *  [IDEAL DUTY CYCLE] = [C'] - ([M']*[H PERIOD]/1000)
488      *
489      *  However, we have modified values for [C'] as [256*C'] and
490      *  [M'] as [256*M'].  Again the idea here is to get good scaling.
491      *  We use 256 as the factor to make the math fast.
492      *
493      *  Note that this means that we have to scale it appropriately in
494      *  later calculations.
495      *
496      *  The ending result is that our ideal_duty_cycle is 256000x larger
497      *  than the duty cycle used by VESA.  But again, this reduces error
498      *  propagation.
499      */
500 
501     ideal_duty_cycle =
502 	((C_PRIME256(params) * 1000) -
503 	    (M_PRIME256(params) * h_period / 1000000));
504 
505     print_value(18, "[IDEAL DUTY CYCLE]", ideal_duty_cycle);
506 
507 
508     /*  19. Find the number of pixels in the blanking time to the nearest
509      *  double character cell:
510      *
511      *  [H BLANK (PIXELS)] = (ROUND(([TOTAL ACTIVE PIXELS] *
512      *                               [IDEAL DUTY CYCLE] /
513      *                               (100-[IDEAL DUTY CYCLE]) /
514      *                               (2*[CELL GRAN RND])), 0))
515      *                       * (2*[CELL GRAN RND])
516      *
517      *  Of course, we adjust to make this rounding work in integer math.
518      */
519 
520     h_blank = DIVIDE(DIVIDE(total_active_pixels * ideal_duty_cycle,
521 			 (256000 * 100ULL) - ideal_duty_cycle),
522 	2 * CELL_GRAN) * (2 * CELL_GRAN);
523 
524     print_value(19, "[H BLANK (PIXELS)]", h_blank);
525 
526 
527     /*  20. Find total number of pixels:
528      *
529      *  [TOTAL PIXELS] = [TOTAL ACTIVE PIXELS] + [H BLANK (PIXELS)]
530      */
531 
532     total_pixels = total_active_pixels + h_blank;
533 
534     print_value(20, "[TOTAL PIXELS]", total_pixels);
535 
536 
537     /*  21. Find pixel clock frequency:
538      *
539      *  [PIXEL FREQ] = [TOTAL PIXELS] / [H PERIOD]
540      *
541      *  We calculate this in Hz rather than MHz, to get a value that
542      *  is usable with integer math.  Recall that the [H PERIOD] is in
543      *  nsec.
544      */
545 
546     pixel_freq = DIVIDE(total_pixels * 1000000, DIVIDE(h_period, 1000));
547 
548     print_value(21, "[PIXEL FREQ]", pixel_freq);
549 
550 
551     /*  22. Find horizontal frequency:
552      *
553      *  [H FREQ] = 1000 / [H PERIOD]
554      *
555      *  I've ifdef'd this out, because we don't need it for any of
556      *  our calculations.
557      *  We calculate this in Hz rather than kHz, to avoid rounding
558      *  errors.  Recall that the [H PERIOD] is in usec.
559      */
560 
561 #ifdef	GTFDEBUG
562     h_freq = 1000000000 / h_period;
563 
564     print_value(22, "[H FREQ]", h_freq);
565 #endif
566 
567 
568 
569     /* Stage 1 computations are now complete; I should really pass
570        the results to another function and do the Stage 2
571        computations, but I only need a few more values so I'll just
572        append the computations here for now */
573 
574 
575 
576     /*  17. Find the number of pixels in the horizontal sync period:
577      *
578      *  [H SYNC (PIXELS)] =(ROUND(([H SYNC%] / 100 * [TOTAL PIXELS] /
579      *                             [CELL GRAN RND]),0))*[CELL GRAN RND]
580      *
581      *  Rewriting for integer math:
582      *
583      *  [H SYNC (PIXELS)]=(ROUND((H SYNC%] * [TOTAL PIXELS] / 100 /
584      *				   [CELL GRAN RND),0))*[CELL GRAN RND]
585      */
586 
587     h_sync = DIVIDE(((params->hsync_pct * total_pixels) / 100), CELL_GRAN) *
588 	CELL_GRAN;
589 
590     print_value(17, "[H SYNC (PIXELS)]", h_sync);
591 
592 
593     /*  18. Find the number of pixels in the horizontal front porch period:
594      *
595      *  [H FRONT PORCH (PIXELS)] = ([H BLANK (PIXELS)]/2)-[H SYNC (PIXELS)]
596      *
597      *  Note that h_blank is always an even number of characters (i.e.
598      *  h_blank % (CELL_GRAN * 2) == 0)
599      */
600 
601     h_front_porch = (h_blank / 2) - h_sync;
602 
603     print_value(18, "[H FRONT PORCH (PIXELS)]", h_front_porch);
604 
605 
606     /*  36. Find the number of lines in the odd front porch period:
607      *
608      *  [V ODD FRONT PORCH(LINES)]=([MIN PORCH RND]+[INTERLACE])
609      *
610      *  Adjusting for the fact that the interlace is scaled:
611      *
612      *  [V ODD FRONT PORCH(LINES)]=(([MIN PORCH RND] * 2) + [2*INTERLACE]) / 2
613      */
614 
615     v_odd_front_porch_lines = ((2 * params->min_porch) + interlace) / 2;
616 
617     print_value(36, "[V ODD FRONT PORCH(LINES)]", v_odd_front_porch_lines);
618 
619 
620     /* finally, pack the results in the mode struct */
621 
622     vmp->hsync_start = h_pixels + h_front_porch;
623     vmp->hsync_end = vmp->hsync_start + h_sync;
624     vmp->htotal = total_pixels;
625     vmp->hdisplay = h_pixels;
626 
627     vmp->vsync_start = v_lines + v_odd_front_porch_lines;
628     vmp->vsync_end = vmp->vsync_start + params->vsync_rqd;
629     vmp->vtotal = total_v_lines;
630     vmp->vdisplay = v_lines;
631 
632     vmp->dot_clock = pixel_freq;
633 
634 }
635 
636 void
vesagtf_mode(unsigned x,unsigned y,unsigned refresh,struct videomode * vmp)637 vesagtf_mode(unsigned x, unsigned y, unsigned refresh, struct videomode *vmp)
638 {
639 	struct vesagtf_params	params;
640 
641 	params.margin_ppt = VESAGTF_MARGIN_PPT;
642 	params.min_porch = VESAGTF_MIN_PORCH;
643 	params.vsync_rqd = VESAGTF_VSYNC_RQD;
644 	params.hsync_pct = VESAGTF_HSYNC_PCT;
645 	params.min_vsbp = VESAGTF_MIN_VSBP;
646 	params.M = VESAGTF_M;
647 	params.C = VESAGTF_C;
648 	params.K = VESAGTF_K;
649 	params.J = VESAGTF_J;
650 
651 	vesagtf_mode_params(x, y, refresh, &params, 0, vmp);
652 }
653 
654 /*
655  * The tidbit here is so that you can compile this file as a
656  * standalone user program to generate X11 modelines using VESA GTF.
657  * This also allows for testing of the code itself, without
658  * necessitating a full kernel recompile.
659  */
660 
661 /* print_xf86_mode() - print the XFree86 modeline, given mode timings. */
662 
663 #if !defined(__minix)
664 #ifndef _KERNEL
665 void
print_xf86_mode(struct videomode * vmp)666 print_xf86_mode (struct videomode *vmp)
667 {
668 	float	vf, hf;
669 
670 	hf = 1000.0 * vmp->dot_clock / vmp->htotal;
671 	vf = 1.0 * hf / vmp->vtotal;
672 
673     printf("\n");
674     printf("  # %dx%d @ %.2f Hz (GTF) hsync: %.2f kHz; pclk: %.2f MHz\n",
675 	vmp->hdisplay, vmp->vdisplay, vf, hf, vmp->dot_clock / 1000.0);
676 
677     printf("  Modeline \"%dx%d_%.2f\"  %.2f"
678 	"  %d %d %d %d"
679 	"  %d %d %d %d"
680 	"  -HSync +Vsync\n\n",
681 	vmp->hdisplay, vmp->vdisplay, vf, (vmp->dot_clock / 1000.0),
682 	vmp->hdisplay, vmp->hsync_start, vmp->hsync_end, vmp->htotal,
683 	vmp->vdisplay, vmp->vsync_start, vmp->vsync_end, vmp->vtotal);
684 }
685 
686 int
main(int argc,char * argv[])687 main (int argc, char *argv[])
688 {
689 	struct videomode m;
690 
691 	if (argc != 4) {
692 		printf("usage: %s x y refresh\n", argv[0]);
693 		exit(1);
694 	}
695 
696 	vesagtf_mode(atoi(argv[1]), atoi(argv[2]), atoi(argv[3]), &m);
697 
698         print_xf86_mode(&m);
699 
700 	return 0;
701 
702 }
703 #endif
704 #endif /* !defined(__minix) */
705