xref: /minix3/minix/lib/libmagicrt/magic_splay_tree.c (revision b2ed49a5d83e311ee0fa9e5ff613639b1bf77aaf)
1 /* A splay-tree datatype.
2    Copyright (C) 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
3    Contributed by Mark Mitchell (mark@markmitchell.com).
4 
5 This file is part of GNU CC.
6 
7 GNU CC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11 
12 GNU CC is distributed in the hope that it will be useful, but
13 WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15 General Public License for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING.  If not, write to
19 the Free Software Foundation, 51 Franklin Street - Fifth Floor,
20 Boston, MA 02110-1301, USA.  */
21 
22 /* For an easily readable description of splay-trees, see:
23 
24      Lewis, Harry R. and Denenberg, Larry.  Data Structures and Their
25      Algorithms.  Harper-Collins, Inc.  1991.  */
26 
27 #include <stdlib.h>
28 #include <stdio.h>
29 
30 #include "magic_splay_tree.h"
31 
32 #ifndef xmalloc
33 #define xmalloc malloc
34 #endif
35 
36 static void splay_tree_delete_helper (splay_tree, splay_tree_node);
37 static inline void rotate_left (splay_tree_node *,
38                 splay_tree_node, splay_tree_node);
39 static inline void rotate_right (splay_tree_node *,
40                 splay_tree_node, splay_tree_node);
41 static void splay_tree_splay (splay_tree, splay_tree_key);
42 static int splay_tree_foreach_helper (splay_tree, splay_tree_node,
43                                       splay_tree_foreach_fn, void*);
44 
45 /* Deallocate NODE (a member of SP), and all its sub-trees.  */
46 
47 static void
splay_tree_delete_helper(splay_tree sp,splay_tree_node node)48 splay_tree_delete_helper (splay_tree sp, splay_tree_node node)
49 {
50   splay_tree_node pending = 0;
51   splay_tree_node active = 0;
52 
53   if (!node)
54     return;
55 
56 #define KDEL(x)  if (sp->delete_key) (*sp->delete_key)(x);
57 #define VDEL(x)  if (sp->delete_value) (*sp->delete_value)(x);
58 
59   KDEL (node->key);
60   VDEL (node->value);
61 
62   /* We use the "key" field to hold the "next" pointer.  */
63   node->key = (splay_tree_key)pending;
64   pending = (splay_tree_node)node;
65 
66   /* Now, keep processing the pending list until there aren't any
67      more.  This is a little more complicated than just recursing, but
68      it doesn't toast the stack for large trees.  */
69 
70   while (pending)
71     {
72       active = pending;
73       pending = 0;
74       while (active)
75     {
76       splay_tree_node temp;
77 
78       /* active points to a node which has its key and value
79          deallocated, we just need to process left and right.  */
80 
81       if (active->left)
82         {
83           KDEL (active->left->key);
84           VDEL (active->left->value);
85           active->left->key = (splay_tree_key)pending;
86           pending = (splay_tree_node)(active->left);
87         }
88       if (active->right)
89         {
90           KDEL (active->right->key);
91           VDEL (active->right->value);
92           active->right->key = (splay_tree_key)pending;
93           pending = (splay_tree_node)(active->right);
94         }
95 
96       temp = active;
97       active = (splay_tree_node)(temp->key);
98       (*sp->deallocate) ((char*) temp, sp->allocate_data);
99     }
100     }
101 #undef KDEL
102 #undef VDEL
103 }
104 
105 /* Rotate the edge joining the left child N with its parent P.  PP is the
106    grandparents pointer to P.  */
107 
108 static inline void
rotate_left(splay_tree_node * pp,splay_tree_node p,splay_tree_node n)109 rotate_left (splay_tree_node *pp, splay_tree_node p, splay_tree_node n)
110 {
111   splay_tree_node tmp;
112   tmp = n->right;
113   n->right = p;
114   p->left = tmp;
115   *pp = n;
116 }
117 
118 /* Rotate the edge joining the right child N with its parent P.  PP is the
119    grandparents pointer to P.  */
120 
121 static inline void
rotate_right(splay_tree_node * pp,splay_tree_node p,splay_tree_node n)122 rotate_right (splay_tree_node *pp, splay_tree_node p, splay_tree_node n)
123 {
124   splay_tree_node tmp;
125   tmp = n->left;
126   n->left = p;
127   p->right = tmp;
128   *pp = n;
129 }
130 
131 /* Bottom up splay of key.  */
132 
133 static void
splay_tree_splay(splay_tree sp,splay_tree_key key)134 splay_tree_splay (splay_tree sp, splay_tree_key key)
135 {
136   if (sp->root == 0)
137     return;
138 
139   do {
140     int cmp1, cmp2;
141     splay_tree_node n, c;
142 
143     n = sp->root;
144     cmp1 = (*sp->comp) (key, n->key);
145 
146     /* Found.  */
147     if (cmp1 == 0)
148       return;
149 
150     /* Left or right?  If no child, then we're done.  */
151     if (cmp1 < 0)
152       c = n->left;
153     else
154       c = n->right;
155     if (!c)
156       return;
157 
158     /* Next one left or right?  If found or no child, we're done
159        after one rotation.  */
160     cmp2 = (*sp->comp) (key, c->key);
161     if (cmp2 == 0
162         || (cmp2 < 0 && !c->left)
163         || (cmp2 > 0 && !c->right))
164       {
165     if (cmp1 < 0)
166       rotate_left (&sp->root, n, c);
167     else
168       rotate_right (&sp->root, n, c);
169         return;
170       }
171 
172     /* Now we have the four cases of double-rotation.  */
173     if (cmp1 < 0 && cmp2 < 0)
174       {
175     rotate_left (&n->left, c, c->left);
176     rotate_left (&sp->root, n, n->left);
177       }
178     else if (cmp1 > 0 && cmp2 > 0)
179       {
180     rotate_right (&n->right, c, c->right);
181     rotate_right (&sp->root, n, n->right);
182       }
183     else if (cmp1 < 0 && cmp2 > 0)
184       {
185     rotate_right (&n->left, c, c->right);
186     rotate_left (&sp->root, n, n->left);
187       }
188     else if (cmp1 > 0 && cmp2 < 0)
189       {
190     rotate_left (&n->right, c, c->left);
191     rotate_right (&sp->root, n, n->right);
192       }
193   } while (1);
194 }
195 
196 /* Call FN, passing it the DATA, for every node below NODE, all of
197    which are from SP, following an in-order traversal.  If FN every
198    returns a non-zero value, the iteration ceases immediately, and the
199    value is returned.  Otherwise, this function returns 0.  */
200 
201 static int
splay_tree_foreach_helper(splay_tree sp,splay_tree_node node,splay_tree_foreach_fn fn,void * data)202 splay_tree_foreach_helper (splay_tree sp, splay_tree_node node,
203                            splay_tree_foreach_fn fn, void *data)
204 {
205   int val;
206 
207   if (!node)
208     return 0;
209 
210   val = splay_tree_foreach_helper (sp, node->left, fn, data);
211   if (val)
212     return val;
213 
214   val = (*fn)(node, data);
215   if (val)
216     return val;
217 
218   return splay_tree_foreach_helper (sp, node->right, fn, data);
219 }
220 
221 
222 /* An allocator and deallocator based on xmalloc.  */
223 static void *
splay_tree_xmalloc_allocate(int size,void * data ATTRIBUTE_UNUSED)224 splay_tree_xmalloc_allocate (int size, void *data ATTRIBUTE_UNUSED)
225 {
226   return (void *) xmalloc (size);
227 }
228 
229 static void
splay_tree_xmalloc_deallocate(void * object,void * data ATTRIBUTE_UNUSED)230 splay_tree_xmalloc_deallocate (void *object, void *data ATTRIBUTE_UNUSED)
231 {
232   free (object);
233 }
234 
235 
236 /* Allocate a new splay tree, using COMPARE_FN to compare nodes,
237    DELETE_KEY_FN to deallocate keys, and DELETE_VALUE_FN to deallocate
238    values.  Use xmalloc to allocate the splay tree structure, and any
239    nodes added.  */
240 
241 splay_tree
splay_tree_new(splay_tree_compare_fn compare_fn,splay_tree_delete_key_fn delete_key_fn,splay_tree_delete_value_fn delete_value_fn)242 splay_tree_new (splay_tree_compare_fn compare_fn,
243                 splay_tree_delete_key_fn delete_key_fn,
244                 splay_tree_delete_value_fn delete_value_fn)
245 {
246   return (splay_tree_new_with_allocator
247           (compare_fn, delete_key_fn, delete_value_fn,
248            splay_tree_xmalloc_allocate, splay_tree_xmalloc_deallocate, 0));
249 }
250 
251 
252 /* Allocate a new splay tree, using COMPARE_FN to compare nodes,
253    DELETE_KEY_FN to deallocate keys, and DELETE_VALUE_FN to deallocate
254    values.  */
255 
256 splay_tree
splay_tree_new_with_allocator(splay_tree_compare_fn compare_fn,splay_tree_delete_key_fn delete_key_fn,splay_tree_delete_value_fn delete_value_fn,splay_tree_allocate_fn allocate_fn,splay_tree_deallocate_fn deallocate_fn,void * allocate_data)257 splay_tree_new_with_allocator (splay_tree_compare_fn compare_fn,
258                                splay_tree_delete_key_fn delete_key_fn,
259                                splay_tree_delete_value_fn delete_value_fn,
260                                splay_tree_allocate_fn allocate_fn,
261                                splay_tree_deallocate_fn deallocate_fn,
262                                void *allocate_data)
263 {
264   splay_tree sp = (splay_tree) (*allocate_fn) (sizeof (struct splay_tree_s),
265                                                allocate_data);
266   sp->root = 0;
267   sp->comp = compare_fn;
268   sp->delete_key = delete_key_fn;
269   sp->delete_value = delete_value_fn;
270   sp->allocate = allocate_fn;
271   sp->deallocate = deallocate_fn;
272   sp->allocate_data = allocate_data;
273 
274   return sp;
275 }
276 
277 /* Deallocate SP.  */
278 
279 void
splay_tree_delete(splay_tree sp)280 splay_tree_delete (splay_tree sp)
281 {
282   splay_tree_delete_helper (sp, sp->root);
283   (*sp->deallocate) ((char*) sp, sp->allocate_data);
284 }
285 
286 /* Insert a new node (associating KEY with DATA) into SP.  If a
287    previous node with the indicated KEY exists, its data is replaced
288    with the new value.  Returns the new node.  */
289 
290 splay_tree_node
splay_tree_insert(splay_tree sp,splay_tree_key key,splay_tree_value value)291 splay_tree_insert (splay_tree sp, splay_tree_key key, splay_tree_value value)
292 {
293   int comparison = 0;
294 
295   splay_tree_splay (sp, key);
296 
297   if (sp->root)
298     comparison = (*sp->comp)(sp->root->key, key);
299 
300   if (sp->root && comparison == 0)
301     {
302       /* If the root of the tree already has the indicated KEY, just
303      replace the value with VALUE.  */
304       if (sp->delete_value)
305     (*sp->delete_value)(sp->root->value);
306       sp->root->value = value;
307     }
308   else
309     {
310       /* Create a new node, and insert it at the root.  */
311       splay_tree_node node;
312 
313       node = ((splay_tree_node)
314               (*sp->allocate) (sizeof (struct splay_tree_node_s),
315                                sp->allocate_data));
316       node->key = key;
317       node->value = value;
318 
319       if (!sp->root)
320     node->left = node->right = 0;
321       else if (comparison < 0)
322     {
323       node->left = sp->root;
324       node->right = node->left->right;
325       node->left->right = 0;
326     }
327       else
328     {
329       node->right = sp->root;
330       node->left = node->right->left;
331       node->right->left = 0;
332     }
333 
334       sp->root = node;
335     }
336 
337   return sp->root;
338 }
339 
340 /* Remove KEY from SP.  It is not an error if it did not exist.  */
341 
342 void
splay_tree_remove(splay_tree sp,splay_tree_key key)343 splay_tree_remove (splay_tree sp, splay_tree_key key)
344 {
345   splay_tree_splay (sp, key);
346 
347   if (sp->root && (*sp->comp) (sp->root->key, key) == 0)
348     {
349       splay_tree_node left, right;
350 
351       left = sp->root->left;
352       right = sp->root->right;
353 
354       /* Delete the root node itself.  */
355       if (sp->delete_value)
356     (*sp->delete_value) (sp->root->value);
357       (*sp->deallocate) (sp->root, sp->allocate_data);
358 
359       /* One of the children is now the root.  Doesn't matter much
360      which, so long as we preserve the properties of the tree.  */
361       if (left)
362     {
363       sp->root = left;
364 
365       /* If there was a right child as well, hang it off the
366          right-most leaf of the left child.  */
367       if (right)
368         {
369           while (left->right)
370         left = left->right;
371           left->right = right;
372         }
373     }
374       else
375     sp->root = right;
376     }
377 }
378 
379 /* Lookup KEY in SP, returning VALUE if present, and NULL
380    otherwise.  */
381 
382 splay_tree_node
splay_tree_lookup(splay_tree sp,splay_tree_key key)383 splay_tree_lookup (splay_tree sp, splay_tree_key key)
384 {
385   splay_tree_splay (sp, key);
386 
387   if (sp->root && (*sp->comp)(sp->root->key, key) == 0)
388     return sp->root;
389   else
390     return 0;
391 }
392 
393 /* Return the node in SP with the greatest key.  */
394 
395 splay_tree_node
splay_tree_max(splay_tree sp)396 splay_tree_max (splay_tree sp)
397 {
398   splay_tree_node n = sp->root;
399 
400   if (!n)
401     return NULL;
402 
403   while (n->right)
404     n = n->right;
405 
406   return n;
407 }
408 
409 /* Return the node in SP with the smallest key.  */
410 
411 splay_tree_node
splay_tree_min(splay_tree sp)412 splay_tree_min (splay_tree sp)
413 {
414   splay_tree_node n = sp->root;
415 
416   if (!n)
417     return NULL;
418 
419   while (n->left)
420     n = n->left;
421 
422   return n;
423 }
424 
425 /* Return the immediate predecessor KEY, or NULL if there is no
426    predecessor.  KEY need not be present in the tree.  */
427 
428 splay_tree_node
splay_tree_predecessor(splay_tree sp,splay_tree_key key)429 splay_tree_predecessor (splay_tree sp, splay_tree_key key)
430 {
431   int comparison;
432   splay_tree_node node;
433 
434   /* If the tree is empty, there is certainly no predecessor.  */
435   if (!sp->root)
436     return NULL;
437 
438   /* Splay the tree around KEY.  That will leave either the KEY
439      itself, its predecessor, or its successor at the root.  */
440   splay_tree_splay (sp, key);
441   comparison = (*sp->comp)(sp->root->key, key);
442 
443   /* If the predecessor is at the root, just return it.  */
444   if (comparison < 0)
445     return sp->root;
446 
447   /* Otherwise, find the rightmost element of the left subtree.  */
448   node = sp->root->left;
449   if (node)
450     while (node->right)
451       node = node->right;
452 
453   return node;
454 }
455 
456 /* Return the immediate successor KEY, or NULL if there is no
457    successor.  KEY need not be present in the tree.  */
458 
459 splay_tree_node
splay_tree_successor(splay_tree sp,splay_tree_key key)460 splay_tree_successor (splay_tree sp, splay_tree_key key)
461 {
462   int comparison;
463   splay_tree_node node;
464 
465   /* If the tree is empty, there is certainly no successor.  */
466   if (!sp->root)
467     return NULL;
468 
469   /* Splay the tree around KEY.  That will leave either the KEY
470      itself, its predecessor, or its successor at the root.  */
471   splay_tree_splay (sp, key);
472   comparison = (*sp->comp)(sp->root->key, key);
473 
474   /* If the successor is at the root, just return it.  */
475   if (comparison > 0)
476     return sp->root;
477 
478   /* Otherwise, find the leftmost element of the right subtree.  */
479   node = sp->root->right;
480   if (node)
481     while (node->left)
482       node = node->left;
483 
484   return node;
485 }
486 
487 /* Call FN, passing it the DATA, for every node in SP, following an
488    in-order traversal.  If FN every returns a non-zero value, the
489    iteration ceases immediately, and the value is returned.
490    Otherwise, this function returns 0.  */
491 
492 int
splay_tree_foreach(splay_tree sp,splay_tree_foreach_fn fn,void * data)493 splay_tree_foreach (splay_tree sp, splay_tree_foreach_fn fn, void *data)
494 {
495   return splay_tree_foreach_helper (sp, sp->root, fn, data);
496 }
497 
498 /* Splay-tree comparison function, treating the keys as ints.  */
499 
500 int
splay_tree_compare_ints(splay_tree_key k1,splay_tree_key k2)501 splay_tree_compare_ints (splay_tree_key k1, splay_tree_key k2)
502 {
503   if ((int) k1 < (int) k2)
504     return -1;
505   else if ((int) k1 > (int) k2)
506     return 1;
507   else
508     return 0;
509 }
510 
511 /* Splay-tree comparison function, treating the keys as pointers.  */
512 
513 int
splay_tree_compare_pointers(splay_tree_key k1,splay_tree_key k2)514 splay_tree_compare_pointers (splay_tree_key k1, splay_tree_key k2)
515 {
516   if ((char*) k1 < (char*) k2)
517     return -1;
518   else if ((char*) k1 > (char*) k2)
519     return 1;
520   else
521     return 0;
522 }
523 
524