1 /* A splay-tree datatype.
2 Copyright (C) 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
3 Contributed by Mark Mitchell (mark@markmitchell.com).
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful, but
13 WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 51 Franklin Street - Fifth Floor,
20 Boston, MA 02110-1301, USA. */
21
22 /* For an easily readable description of splay-trees, see:
23
24 Lewis, Harry R. and Denenberg, Larry. Data Structures and Their
25 Algorithms. Harper-Collins, Inc. 1991. */
26
27 #include <stdlib.h>
28 #include <stdio.h>
29
30 #include "magic_splay_tree.h"
31
32 #ifndef xmalloc
33 #define xmalloc malloc
34 #endif
35
36 static void splay_tree_delete_helper (splay_tree, splay_tree_node);
37 static inline void rotate_left (splay_tree_node *,
38 splay_tree_node, splay_tree_node);
39 static inline void rotate_right (splay_tree_node *,
40 splay_tree_node, splay_tree_node);
41 static void splay_tree_splay (splay_tree, splay_tree_key);
42 static int splay_tree_foreach_helper (splay_tree, splay_tree_node,
43 splay_tree_foreach_fn, void*);
44
45 /* Deallocate NODE (a member of SP), and all its sub-trees. */
46
47 static void
splay_tree_delete_helper(splay_tree sp,splay_tree_node node)48 splay_tree_delete_helper (splay_tree sp, splay_tree_node node)
49 {
50 splay_tree_node pending = 0;
51 splay_tree_node active = 0;
52
53 if (!node)
54 return;
55
56 #define KDEL(x) if (sp->delete_key) (*sp->delete_key)(x);
57 #define VDEL(x) if (sp->delete_value) (*sp->delete_value)(x);
58
59 KDEL (node->key);
60 VDEL (node->value);
61
62 /* We use the "key" field to hold the "next" pointer. */
63 node->key = (splay_tree_key)pending;
64 pending = (splay_tree_node)node;
65
66 /* Now, keep processing the pending list until there aren't any
67 more. This is a little more complicated than just recursing, but
68 it doesn't toast the stack for large trees. */
69
70 while (pending)
71 {
72 active = pending;
73 pending = 0;
74 while (active)
75 {
76 splay_tree_node temp;
77
78 /* active points to a node which has its key and value
79 deallocated, we just need to process left and right. */
80
81 if (active->left)
82 {
83 KDEL (active->left->key);
84 VDEL (active->left->value);
85 active->left->key = (splay_tree_key)pending;
86 pending = (splay_tree_node)(active->left);
87 }
88 if (active->right)
89 {
90 KDEL (active->right->key);
91 VDEL (active->right->value);
92 active->right->key = (splay_tree_key)pending;
93 pending = (splay_tree_node)(active->right);
94 }
95
96 temp = active;
97 active = (splay_tree_node)(temp->key);
98 (*sp->deallocate) ((char*) temp, sp->allocate_data);
99 }
100 }
101 #undef KDEL
102 #undef VDEL
103 }
104
105 /* Rotate the edge joining the left child N with its parent P. PP is the
106 grandparents pointer to P. */
107
108 static inline void
rotate_left(splay_tree_node * pp,splay_tree_node p,splay_tree_node n)109 rotate_left (splay_tree_node *pp, splay_tree_node p, splay_tree_node n)
110 {
111 splay_tree_node tmp;
112 tmp = n->right;
113 n->right = p;
114 p->left = tmp;
115 *pp = n;
116 }
117
118 /* Rotate the edge joining the right child N with its parent P. PP is the
119 grandparents pointer to P. */
120
121 static inline void
rotate_right(splay_tree_node * pp,splay_tree_node p,splay_tree_node n)122 rotate_right (splay_tree_node *pp, splay_tree_node p, splay_tree_node n)
123 {
124 splay_tree_node tmp;
125 tmp = n->left;
126 n->left = p;
127 p->right = tmp;
128 *pp = n;
129 }
130
131 /* Bottom up splay of key. */
132
133 static void
splay_tree_splay(splay_tree sp,splay_tree_key key)134 splay_tree_splay (splay_tree sp, splay_tree_key key)
135 {
136 if (sp->root == 0)
137 return;
138
139 do {
140 int cmp1, cmp2;
141 splay_tree_node n, c;
142
143 n = sp->root;
144 cmp1 = (*sp->comp) (key, n->key);
145
146 /* Found. */
147 if (cmp1 == 0)
148 return;
149
150 /* Left or right? If no child, then we're done. */
151 if (cmp1 < 0)
152 c = n->left;
153 else
154 c = n->right;
155 if (!c)
156 return;
157
158 /* Next one left or right? If found or no child, we're done
159 after one rotation. */
160 cmp2 = (*sp->comp) (key, c->key);
161 if (cmp2 == 0
162 || (cmp2 < 0 && !c->left)
163 || (cmp2 > 0 && !c->right))
164 {
165 if (cmp1 < 0)
166 rotate_left (&sp->root, n, c);
167 else
168 rotate_right (&sp->root, n, c);
169 return;
170 }
171
172 /* Now we have the four cases of double-rotation. */
173 if (cmp1 < 0 && cmp2 < 0)
174 {
175 rotate_left (&n->left, c, c->left);
176 rotate_left (&sp->root, n, n->left);
177 }
178 else if (cmp1 > 0 && cmp2 > 0)
179 {
180 rotate_right (&n->right, c, c->right);
181 rotate_right (&sp->root, n, n->right);
182 }
183 else if (cmp1 < 0 && cmp2 > 0)
184 {
185 rotate_right (&n->left, c, c->right);
186 rotate_left (&sp->root, n, n->left);
187 }
188 else if (cmp1 > 0 && cmp2 < 0)
189 {
190 rotate_left (&n->right, c, c->left);
191 rotate_right (&sp->root, n, n->right);
192 }
193 } while (1);
194 }
195
196 /* Call FN, passing it the DATA, for every node below NODE, all of
197 which are from SP, following an in-order traversal. If FN every
198 returns a non-zero value, the iteration ceases immediately, and the
199 value is returned. Otherwise, this function returns 0. */
200
201 static int
splay_tree_foreach_helper(splay_tree sp,splay_tree_node node,splay_tree_foreach_fn fn,void * data)202 splay_tree_foreach_helper (splay_tree sp, splay_tree_node node,
203 splay_tree_foreach_fn fn, void *data)
204 {
205 int val;
206
207 if (!node)
208 return 0;
209
210 val = splay_tree_foreach_helper (sp, node->left, fn, data);
211 if (val)
212 return val;
213
214 val = (*fn)(node, data);
215 if (val)
216 return val;
217
218 return splay_tree_foreach_helper (sp, node->right, fn, data);
219 }
220
221
222 /* An allocator and deallocator based on xmalloc. */
223 static void *
splay_tree_xmalloc_allocate(int size,void * data ATTRIBUTE_UNUSED)224 splay_tree_xmalloc_allocate (int size, void *data ATTRIBUTE_UNUSED)
225 {
226 return (void *) xmalloc (size);
227 }
228
229 static void
splay_tree_xmalloc_deallocate(void * object,void * data ATTRIBUTE_UNUSED)230 splay_tree_xmalloc_deallocate (void *object, void *data ATTRIBUTE_UNUSED)
231 {
232 free (object);
233 }
234
235
236 /* Allocate a new splay tree, using COMPARE_FN to compare nodes,
237 DELETE_KEY_FN to deallocate keys, and DELETE_VALUE_FN to deallocate
238 values. Use xmalloc to allocate the splay tree structure, and any
239 nodes added. */
240
241 splay_tree
splay_tree_new(splay_tree_compare_fn compare_fn,splay_tree_delete_key_fn delete_key_fn,splay_tree_delete_value_fn delete_value_fn)242 splay_tree_new (splay_tree_compare_fn compare_fn,
243 splay_tree_delete_key_fn delete_key_fn,
244 splay_tree_delete_value_fn delete_value_fn)
245 {
246 return (splay_tree_new_with_allocator
247 (compare_fn, delete_key_fn, delete_value_fn,
248 splay_tree_xmalloc_allocate, splay_tree_xmalloc_deallocate, 0));
249 }
250
251
252 /* Allocate a new splay tree, using COMPARE_FN to compare nodes,
253 DELETE_KEY_FN to deallocate keys, and DELETE_VALUE_FN to deallocate
254 values. */
255
256 splay_tree
splay_tree_new_with_allocator(splay_tree_compare_fn compare_fn,splay_tree_delete_key_fn delete_key_fn,splay_tree_delete_value_fn delete_value_fn,splay_tree_allocate_fn allocate_fn,splay_tree_deallocate_fn deallocate_fn,void * allocate_data)257 splay_tree_new_with_allocator (splay_tree_compare_fn compare_fn,
258 splay_tree_delete_key_fn delete_key_fn,
259 splay_tree_delete_value_fn delete_value_fn,
260 splay_tree_allocate_fn allocate_fn,
261 splay_tree_deallocate_fn deallocate_fn,
262 void *allocate_data)
263 {
264 splay_tree sp = (splay_tree) (*allocate_fn) (sizeof (struct splay_tree_s),
265 allocate_data);
266 sp->root = 0;
267 sp->comp = compare_fn;
268 sp->delete_key = delete_key_fn;
269 sp->delete_value = delete_value_fn;
270 sp->allocate = allocate_fn;
271 sp->deallocate = deallocate_fn;
272 sp->allocate_data = allocate_data;
273
274 return sp;
275 }
276
277 /* Deallocate SP. */
278
279 void
splay_tree_delete(splay_tree sp)280 splay_tree_delete (splay_tree sp)
281 {
282 splay_tree_delete_helper (sp, sp->root);
283 (*sp->deallocate) ((char*) sp, sp->allocate_data);
284 }
285
286 /* Insert a new node (associating KEY with DATA) into SP. If a
287 previous node with the indicated KEY exists, its data is replaced
288 with the new value. Returns the new node. */
289
290 splay_tree_node
splay_tree_insert(splay_tree sp,splay_tree_key key,splay_tree_value value)291 splay_tree_insert (splay_tree sp, splay_tree_key key, splay_tree_value value)
292 {
293 int comparison = 0;
294
295 splay_tree_splay (sp, key);
296
297 if (sp->root)
298 comparison = (*sp->comp)(sp->root->key, key);
299
300 if (sp->root && comparison == 0)
301 {
302 /* If the root of the tree already has the indicated KEY, just
303 replace the value with VALUE. */
304 if (sp->delete_value)
305 (*sp->delete_value)(sp->root->value);
306 sp->root->value = value;
307 }
308 else
309 {
310 /* Create a new node, and insert it at the root. */
311 splay_tree_node node;
312
313 node = ((splay_tree_node)
314 (*sp->allocate) (sizeof (struct splay_tree_node_s),
315 sp->allocate_data));
316 node->key = key;
317 node->value = value;
318
319 if (!sp->root)
320 node->left = node->right = 0;
321 else if (comparison < 0)
322 {
323 node->left = sp->root;
324 node->right = node->left->right;
325 node->left->right = 0;
326 }
327 else
328 {
329 node->right = sp->root;
330 node->left = node->right->left;
331 node->right->left = 0;
332 }
333
334 sp->root = node;
335 }
336
337 return sp->root;
338 }
339
340 /* Remove KEY from SP. It is not an error if it did not exist. */
341
342 void
splay_tree_remove(splay_tree sp,splay_tree_key key)343 splay_tree_remove (splay_tree sp, splay_tree_key key)
344 {
345 splay_tree_splay (sp, key);
346
347 if (sp->root && (*sp->comp) (sp->root->key, key) == 0)
348 {
349 splay_tree_node left, right;
350
351 left = sp->root->left;
352 right = sp->root->right;
353
354 /* Delete the root node itself. */
355 if (sp->delete_value)
356 (*sp->delete_value) (sp->root->value);
357 (*sp->deallocate) (sp->root, sp->allocate_data);
358
359 /* One of the children is now the root. Doesn't matter much
360 which, so long as we preserve the properties of the tree. */
361 if (left)
362 {
363 sp->root = left;
364
365 /* If there was a right child as well, hang it off the
366 right-most leaf of the left child. */
367 if (right)
368 {
369 while (left->right)
370 left = left->right;
371 left->right = right;
372 }
373 }
374 else
375 sp->root = right;
376 }
377 }
378
379 /* Lookup KEY in SP, returning VALUE if present, and NULL
380 otherwise. */
381
382 splay_tree_node
splay_tree_lookup(splay_tree sp,splay_tree_key key)383 splay_tree_lookup (splay_tree sp, splay_tree_key key)
384 {
385 splay_tree_splay (sp, key);
386
387 if (sp->root && (*sp->comp)(sp->root->key, key) == 0)
388 return sp->root;
389 else
390 return 0;
391 }
392
393 /* Return the node in SP with the greatest key. */
394
395 splay_tree_node
splay_tree_max(splay_tree sp)396 splay_tree_max (splay_tree sp)
397 {
398 splay_tree_node n = sp->root;
399
400 if (!n)
401 return NULL;
402
403 while (n->right)
404 n = n->right;
405
406 return n;
407 }
408
409 /* Return the node in SP with the smallest key. */
410
411 splay_tree_node
splay_tree_min(splay_tree sp)412 splay_tree_min (splay_tree sp)
413 {
414 splay_tree_node n = sp->root;
415
416 if (!n)
417 return NULL;
418
419 while (n->left)
420 n = n->left;
421
422 return n;
423 }
424
425 /* Return the immediate predecessor KEY, or NULL if there is no
426 predecessor. KEY need not be present in the tree. */
427
428 splay_tree_node
splay_tree_predecessor(splay_tree sp,splay_tree_key key)429 splay_tree_predecessor (splay_tree sp, splay_tree_key key)
430 {
431 int comparison;
432 splay_tree_node node;
433
434 /* If the tree is empty, there is certainly no predecessor. */
435 if (!sp->root)
436 return NULL;
437
438 /* Splay the tree around KEY. That will leave either the KEY
439 itself, its predecessor, or its successor at the root. */
440 splay_tree_splay (sp, key);
441 comparison = (*sp->comp)(sp->root->key, key);
442
443 /* If the predecessor is at the root, just return it. */
444 if (comparison < 0)
445 return sp->root;
446
447 /* Otherwise, find the rightmost element of the left subtree. */
448 node = sp->root->left;
449 if (node)
450 while (node->right)
451 node = node->right;
452
453 return node;
454 }
455
456 /* Return the immediate successor KEY, or NULL if there is no
457 successor. KEY need not be present in the tree. */
458
459 splay_tree_node
splay_tree_successor(splay_tree sp,splay_tree_key key)460 splay_tree_successor (splay_tree sp, splay_tree_key key)
461 {
462 int comparison;
463 splay_tree_node node;
464
465 /* If the tree is empty, there is certainly no successor. */
466 if (!sp->root)
467 return NULL;
468
469 /* Splay the tree around KEY. That will leave either the KEY
470 itself, its predecessor, or its successor at the root. */
471 splay_tree_splay (sp, key);
472 comparison = (*sp->comp)(sp->root->key, key);
473
474 /* If the successor is at the root, just return it. */
475 if (comparison > 0)
476 return sp->root;
477
478 /* Otherwise, find the leftmost element of the right subtree. */
479 node = sp->root->right;
480 if (node)
481 while (node->left)
482 node = node->left;
483
484 return node;
485 }
486
487 /* Call FN, passing it the DATA, for every node in SP, following an
488 in-order traversal. If FN every returns a non-zero value, the
489 iteration ceases immediately, and the value is returned.
490 Otherwise, this function returns 0. */
491
492 int
splay_tree_foreach(splay_tree sp,splay_tree_foreach_fn fn,void * data)493 splay_tree_foreach (splay_tree sp, splay_tree_foreach_fn fn, void *data)
494 {
495 return splay_tree_foreach_helper (sp, sp->root, fn, data);
496 }
497
498 /* Splay-tree comparison function, treating the keys as ints. */
499
500 int
splay_tree_compare_ints(splay_tree_key k1,splay_tree_key k2)501 splay_tree_compare_ints (splay_tree_key k1, splay_tree_key k2)
502 {
503 if ((int) k1 < (int) k2)
504 return -1;
505 else if ((int) k1 > (int) k2)
506 return 1;
507 else
508 return 0;
509 }
510
511 /* Splay-tree comparison function, treating the keys as pointers. */
512
513 int
splay_tree_compare_pointers(splay_tree_key k1,splay_tree_key k2)514 splay_tree_compare_pointers (splay_tree_key k1, splay_tree_key k2)
515 {
516 if ((char*) k1 < (char*) k2)
517 return -1;
518 else if ((char*) k1 > (char*) k2)
519 return 1;
520 else
521 return 0;
522 }
523
524