xref: /minix3/lib/libm/src/e_asin.c (revision 2fe8fb192fe7e8720e3e7a77f928da545e872a6a)
1 /* @(#)e_asin.c 5.1 93/09/24 */
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunPro, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12 
13 #include <sys/cdefs.h>
14 #if defined(LIBM_SCCS) && !defined(lint)
15 __RCSID("$NetBSD: e_asin.c,v 1.12 2002/05/26 22:01:48 wiz Exp $");
16 #endif
17 
18 /* __ieee754_asin(x)
19  * Method :
20  *	Since  asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...
21  *	we approximate asin(x) on [0,0.5] by
22  *		asin(x) = x + x*x^2*R(x^2)
23  *	where
24  *		R(x^2) is a rational approximation of (asin(x)-x)/x^3
25  *	and its remez error is bounded by
26  *		|(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75)
27  *
28  *	For x in [0.5,1]
29  *		asin(x) = pi/2-2*asin(sqrt((1-x)/2))
30  *	Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2;
31  *	then for x>0.98
32  *		asin(x) = pi/2 - 2*(s+s*z*R(z))
33  *			= pio2_hi - (2*(s+s*z*R(z)) - pio2_lo)
34  *	For x<=0.98, let pio4_hi = pio2_hi/2, then
35  *		f = hi part of s;
36  *		c = sqrt(z) - f = (z-f*f)/(s+f) 	...f+c=sqrt(z)
37  *	and
38  *		asin(x) = pi/2 - 2*(s+s*z*R(z))
39  *			= pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo)
40  *			= pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c))
41  *
42  * Special cases:
43  *	if x is NaN, return x itself;
44  *	if |x|>1, return NaN with invalid signal.
45  *
46  */
47 
48 
49 #include "math.h"
50 #include "math_private.h"
51 
52 static const double
53 one =  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
54 huge =  1.000e+300,
55 pio2_hi =  1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */
56 pio2_lo =  6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */
57 pio4_hi =  7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */
58 	/* coefficient for R(x^2) */
59 pS0 =  1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */
60 pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */
61 pS2 =  2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */
62 pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */
63 pS4 =  7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */
64 pS5 =  3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */
65 qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */
66 qS2 =  2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */
67 qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */
68 qS4 =  7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */
69 
70 double
__ieee754_asin(double x)71 __ieee754_asin(double x)
72 {
73 	double t,w,p,q,c,r,s;
74 	int32_t hx,ix;
75 
76 	t = 0;
77 	GET_HIGH_WORD(hx,x);
78 	ix = hx&0x7fffffff;
79 	if(ix>= 0x3ff00000) {		/* |x|>= 1 */
80 	    u_int32_t lx;
81 	    GET_LOW_WORD(lx,x);
82 	    if(((ix-0x3ff00000)|lx)==0)
83 		    /* asin(1)=+-pi/2 with inexact */
84 		return x*pio2_hi+x*pio2_lo;
85 	    return (x-x)/(x-x);		/* asin(|x|>1) is NaN */
86 	} else if (ix<0x3fe00000) {	/* |x|<0.5 */
87 	    if(ix<0x3e400000) {		/* if |x| < 2**-27 */
88 		if(huge+x>one) return x;/* return x with inexact if x!=0*/
89 	    } else
90 		t = x*x;
91 		p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));
92 		q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));
93 		w = p/q;
94 		return x+x*w;
95 	}
96 	/* 1> |x|>= 0.5 */
97 	w = one-fabs(x);
98 	t = w*0.5;
99 	p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));
100 	q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));
101 	s = __ieee754_sqrt(t);
102 	if(ix>=0x3FEF3333) { 	/* if |x| > 0.975 */
103 	    w = p/q;
104 	    t = pio2_hi-(2.0*(s+s*w)-pio2_lo);
105 	} else {
106 	    w  = s;
107 	    SET_LOW_WORD(w,0);
108 	    c  = (t-w*w)/(s+w);
109 	    r  = p/q;
110 	    p  = 2.0*s*r-(pio2_lo-2.0*c);
111 	    q  = pio4_hi-2.0*w;
112 	    t  = pio4_hi-(p-q);
113 	}
114 	if(hx>0) return t; else return -t;
115 }
116