xref: /minix3/lib/libcrypt/crypt.c (revision 0a6a1f1d05b60e214de2f05a7310ddd1f0e590e7)
1 /*	$NetBSD: crypt.c,v 1.34 2015/06/17 00:15:26 christos Exp $	*/
2 
3 /*
4  * Copyright (c) 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * Tom Truscott.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 #if !defined(lint)
37 #if 0
38 static char sccsid[] = "@(#)crypt.c	8.1.1.1 (Berkeley) 8/18/93";
39 #else
40 __RCSID("$NetBSD: crypt.c,v 1.34 2015/06/17 00:15:26 christos Exp $");
41 #endif
42 #endif /* not lint */
43 
44 #include <limits.h>
45 #include <pwd.h>
46 #include <stdlib.h>
47 #include <unistd.h>
48 #if defined(DEBUG) || defined(MAIN) || defined(UNIT_TEST)
49 #include <stdio.h>
50 #endif
51 
52 #include "crypt.h"
53 
54 /*
55  * UNIX password, and DES, encryption.
56  * By Tom Truscott, trt@rti.rti.org,
57  * from algorithms by Robert W. Baldwin and James Gillogly.
58  *
59  * References:
60  * "Mathematical Cryptology for Computer Scientists and Mathematicians,"
61  * by Wayne Patterson, 1987, ISBN 0-8476-7438-X.
62  *
63  * "Password Security: A Case History," R. Morris and Ken Thompson,
64  * Communications of the ACM, vol. 22, pp. 594-597, Nov. 1979.
65  *
66  * "DES will be Totally Insecure within Ten Years," M.E. Hellman,
67  * IEEE Spectrum, vol. 16, pp. 32-39, July 1979.
68  */
69 
70 /* =====  Configuration ==================== */
71 
72 /*
73  * define "MUST_ALIGN" if your compiler cannot load/store
74  * long integers at arbitrary (e.g. odd) memory locations.
75  * (Either that or never pass unaligned addresses to des_cipher!)
76  */
77 #if !defined(__vax__) && !defined(__i386__)
78 #define	MUST_ALIGN
79 #endif
80 
81 #ifdef CHAR_BITS
82 #if CHAR_BITS != 8
83 	#error C_block structure assumes 8 bit characters
84 #endif
85 #endif
86 
87 /*
88  * define "B64" to be the declaration for a 64 bit integer.
89  * XXX this feature is currently unused, see "endian" comment below.
90  */
91 #if defined(cray)
92 #define	B64	long
93 #endif
94 #if defined(convex)
95 #define	B64	long long
96 #endif
97 
98 /*
99  * define "LARGEDATA" to get faster permutations, by using about 72 kilobytes
100  * of lookup tables.  This speeds up des_setkey() and des_cipher(), but has
101  * little effect on crypt().
102  */
103 #if defined(notdef)
104 #define	LARGEDATA
105 #endif
106 
107 /* compile with "-DSTATIC=void" when profiling */
108 #ifndef STATIC
109 #define	STATIC	static void
110 #endif
111 
112 /* ==================================== */
113 
114 /*
115  * Cipher-block representation (Bob Baldwin):
116  *
117  * DES operates on groups of 64 bits, numbered 1..64 (sigh).  One
118  * representation is to store one bit per byte in an array of bytes.  Bit N of
119  * the NBS spec is stored as the LSB of the Nth byte (index N-1) in the array.
120  * Another representation stores the 64 bits in 8 bytes, with bits 1..8 in the
121  * first byte, 9..16 in the second, and so on.  The DES spec apparently has
122  * bit 1 in the MSB of the first byte, but that is particularly noxious so we
123  * bit-reverse each byte so that bit 1 is the LSB of the first byte, bit 8 is
124  * the MSB of the first byte.  Specifically, the 64-bit input data and key are
125  * converted to LSB format, and the output 64-bit block is converted back into
126  * MSB format.
127  *
128  * DES operates internally on groups of 32 bits which are expanded to 48 bits
129  * by permutation E and shrunk back to 32 bits by the S boxes.  To speed up
130  * the computation, the expansion is applied only once, the expanded
131  * representation is maintained during the encryption, and a compression
132  * permutation is applied only at the end.  To speed up the S-box lookups,
133  * the 48 bits are maintained as eight 6 bit groups, one per byte, which
134  * directly feed the eight S-boxes.  Within each byte, the 6 bits are the
135  * most significant ones.  The low two bits of each byte are zero.  (Thus,
136  * bit 1 of the 48 bit E expansion is stored as the "4"-valued bit of the
137  * first byte in the eight byte representation, bit 2 of the 48 bit value is
138  * the "8"-valued bit, and so on.)  In fact, a combined "SPE"-box lookup is
139  * used, in which the output is the 64 bit result of an S-box lookup which
140  * has been permuted by P and expanded by E, and is ready for use in the next
141  * iteration.  Two 32-bit wide tables, SPE[0] and SPE[1], are used for this
142  * lookup.  Since each byte in the 48 bit path is a multiple of four, indexed
143  * lookup of SPE[0] and SPE[1] is simple and fast.  The key schedule and
144  * "salt" are also converted to this 8*(6+2) format.  The SPE table size is
145  * 8*64*8 = 4K bytes.
146  *
147  * To speed up bit-parallel operations (such as XOR), the 8 byte
148  * representation is "union"ed with 32 bit values "i0" and "i1", and, on
149  * machines which support it, a 64 bit value "b64".  This data structure,
150  * "C_block", has two problems.  First, alignment restrictions must be
151  * honored.  Second, the byte-order (e.g. little-endian or big-endian) of
152  * the architecture becomes visible.
153  *
154  * The byte-order problem is unfortunate, since on the one hand it is good
155  * to have a machine-independent C_block representation (bits 1..8 in the
156  * first byte, etc.), and on the other hand it is good for the LSB of the
157  * first byte to be the LSB of i0.  We cannot have both these things, so we
158  * currently use the "little-endian" representation and avoid any multi-byte
159  * operations that depend on byte order.  This largely precludes use of the
160  * 64-bit datatype since the relative order of i0 and i1 are unknown.  It
161  * also inhibits grouping the SPE table to look up 12 bits at a time.  (The
162  * 12 bits can be stored in a 16-bit field with 3 low-order zeroes and 1
163  * high-order zero, providing fast indexing into a 64-bit wide SPE.)  On the
164  * other hand, 64-bit datatypes are currently rare, and a 12-bit SPE lookup
165  * requires a 128 kilobyte table, so perhaps this is not a big loss.
166  *
167  * Permutation representation (Jim Gillogly):
168  *
169  * A transformation is defined by its effect on each of the 8 bytes of the
170  * 64-bit input.  For each byte we give a 64-bit output that has the bits in
171  * the input distributed appropriately.  The transformation is then the OR
172  * of the 8 sets of 64-bits.  This uses 8*256*8 = 16K bytes of storage for
173  * each transformation.  Unless LARGEDATA is defined, however, a more compact
174  * table is used which looks up 16 4-bit "chunks" rather than 8 8-bit chunks.
175  * The smaller table uses 16*16*8 = 2K bytes for each transformation.  This
176  * is slower but tolerable, particularly for password encryption in which
177  * the SPE transformation is iterated many times.  The small tables total 9K
178  * bytes, the large tables total 72K bytes.
179  *
180  * The transformations used are:
181  * IE3264: MSB->LSB conversion, initial permutation, and expansion.
182  *	This is done by collecting the 32 even-numbered bits and applying
183  *	a 32->64 bit transformation, and then collecting the 32 odd-numbered
184  *	bits and applying the same transformation.  Since there are only
185  *	32 input bits, the IE3264 transformation table is half the size of
186  *	the usual table.
187  * CF6464: Compression, final permutation, and LSB->MSB conversion.
188  *	This is done by two trivial 48->32 bit compressions to obtain
189  *	a 64-bit block (the bit numbering is given in the "CIFP" table)
190  *	followed by a 64->64 bit "cleanup" transformation.  (It would
191  *	be possible to group the bits in the 64-bit block so that 2
192  *	identical 32->32 bit transformations could be used instead,
193  *	saving a factor of 4 in space and possibly 2 in time, but
194  *	byte-ordering and other complications rear their ugly head.
195  *	Similar opportunities/problems arise in the key schedule
196  *	transforms.)
197  * PC1ROT: MSB->LSB, PC1 permutation, rotate, and PC2 permutation.
198  *	This admittedly baroque 64->64 bit transformation is used to
199  *	produce the first code (in 8*(6+2) format) of the key schedule.
200  * PC2ROT[0]: Inverse PC2 permutation, rotate, and PC2 permutation.
201  *	It would be possible to define 15 more transformations, each
202  *	with a different rotation, to generate the entire key schedule.
203  *	To save space, however, we instead permute each code into the
204  *	next by using a transformation that "undoes" the PC2 permutation,
205  *	rotates the code, and then applies PC2.  Unfortunately, PC2
206  *	transforms 56 bits into 48 bits, dropping 8 bits, so PC2 is not
207  *	invertible.  We get around that problem by using a modified PC2
208  *	which retains the 8 otherwise-lost bits in the unused low-order
209  *	bits of each byte.  The low-order bits are cleared when the
210  *	codes are stored into the key schedule.
211  * PC2ROT[1]: Same as PC2ROT[0], but with two rotations.
212  *	This is faster than applying PC2ROT[0] twice,
213  *
214  * The Bell Labs "salt" (Bob Baldwin):
215  *
216  * The salting is a simple permutation applied to the 48-bit result of E.
217  * Specifically, if bit i (1 <= i <= 24) of the salt is set then bits i and
218  * i+24 of the result are swapped.  The salt is thus a 24 bit number, with
219  * 16777216 possible values.  (The original salt was 12 bits and could not
220  * swap bits 13..24 with 36..48.)
221  *
222  * It is possible, but ugly, to warp the SPE table to account for the salt
223  * permutation.  Fortunately, the conditional bit swapping requires only
224  * about four machine instructions and can be done on-the-fly with about an
225  * 8% performance penalty.
226  */
227 
228 typedef union {
229 	unsigned char b[8];
230 	struct {
231 		int32_t	i0;
232 		int32_t	i1;
233 	} b32;
234 #if defined(B64)
235 	B64	b64;
236 #endif
237 } C_block;
238 
239 /*
240  * Convert twenty-four-bit long in host-order
241  * to six bits (and 2 low-order zeroes) per char little-endian format.
242  */
243 #define	TO_SIX_BIT(rslt, src) {				\
244 		C_block cvt;				\
245 		cvt.b[0] = src; src >>= 6;		\
246 		cvt.b[1] = src; src >>= 6;		\
247 		cvt.b[2] = src; src >>= 6;		\
248 		cvt.b[3] = src;				\
249 		rslt = (cvt.b32.i0 & 0x3f3f3f3fL) << 2;	\
250 	}
251 
252 /*
253  * These macros may someday permit efficient use of 64-bit integers.
254  */
255 #define	ZERO(d,d0,d1)			d0 = 0, d1 = 0
256 #define	LOAD(d,d0,d1,bl)		d0 = (bl).b32.i0, d1 = (bl).b32.i1
257 #define	LOADREG(d,d0,d1,s,s0,s1)	d0 = s0, d1 = s1
258 #define	OR(d,d0,d1,bl)			d0 |= (bl).b32.i0, d1 |= (bl).b32.i1
259 #define	STORE(s,s0,s1,bl)		(bl).b32.i0 = s0, (bl).b32.i1 = s1
260 #define	DCL_BLOCK(d,d0,d1)		int32_t d0, d1
261 
262 #if defined(LARGEDATA)
263 	/* Waste memory like crazy.  Also, do permutations in line */
264 #define	LGCHUNKBITS	3
265 #define	CHUNKBITS	(1<<LGCHUNKBITS)
266 #define	PERM6464(d,d0,d1,cpp,p)				\
267 	LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]);		\
268 	OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]);		\
269 	OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]);		\
270 	OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]);		\
271 	OR (d,d0,d1,(p)[(4<<CHUNKBITS)+(cpp)[4]]);		\
272 	OR (d,d0,d1,(p)[(5<<CHUNKBITS)+(cpp)[5]]);		\
273 	OR (d,d0,d1,(p)[(6<<CHUNKBITS)+(cpp)[6]]);		\
274 	OR (d,d0,d1,(p)[(7<<CHUNKBITS)+(cpp)[7]]);
275 #define	PERM3264(d,d0,d1,cpp,p)				\
276 	LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]);		\
277 	OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]);		\
278 	OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]);		\
279 	OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]);
280 #else
281 	/* "small data" */
282 #define	LGCHUNKBITS	2
283 #define	CHUNKBITS	(1<<LGCHUNKBITS)
284 #define	PERM6464(d,d0,d1,cpp,p)				\
285 	{ C_block tblk; permute(cpp,&tblk,p,8); LOAD (d,d0,d1,tblk); }
286 #define	PERM3264(d,d0,d1,cpp,p)				\
287 	{ C_block tblk; permute(cpp,&tblk,p,4); LOAD (d,d0,d1,tblk); }
288 #endif /* LARGEDATA */
289 
290 STATIC	init_des(void);
291 STATIC	init_perm(C_block [64/CHUNKBITS][1<<CHUNKBITS],
292 		       const unsigned char [64], int, int);
293 #ifndef LARGEDATA
294 STATIC	permute(const unsigned char *, C_block *, C_block *, int);
295 #endif
296 #ifdef DEBUG
297 STATIC	prtab(const char *, unsigned char *, int);
298 #endif
299 
300 
301 #ifndef LARGEDATA
302 STATIC
permute(const unsigned char * cp,C_block * out,C_block * p,int chars_in)303 permute(const unsigned char *cp, C_block *out, C_block *p, int chars_in)
304 {
305 	DCL_BLOCK(D,D0,D1);
306 	C_block *tp;
307 	int t;
308 
309 	ZERO(D,D0,D1);
310 	do {
311 		t = *cp++;
312 		tp = &p[t&0xf]; OR(D,D0,D1,*tp); p += (1<<CHUNKBITS);
313 		tp = &p[t>>4];  OR(D,D0,D1,*tp); p += (1<<CHUNKBITS);
314 	} while (--chars_in > 0);
315 	STORE(D,D0,D1,*out);
316 }
317 #endif /* LARGEDATA */
318 
319 
320 /* =====  (mostly) Standard DES Tables ==================== */
321 
322 static const unsigned char IP[] = {	/* initial permutation */
323 	58, 50, 42, 34, 26, 18, 10,  2,
324 	60, 52, 44, 36, 28, 20, 12,  4,
325 	62, 54, 46, 38, 30, 22, 14,  6,
326 	64, 56, 48, 40, 32, 24, 16,  8,
327 	57, 49, 41, 33, 25, 17,  9,  1,
328 	59, 51, 43, 35, 27, 19, 11,  3,
329 	61, 53, 45, 37, 29, 21, 13,  5,
330 	63, 55, 47, 39, 31, 23, 15,  7,
331 };
332 
333 /* The final permutation is the inverse of IP - no table is necessary */
334 
335 static const unsigned char ExpandTr[] = {	/* expansion operation */
336 	32,  1,  2,  3,  4,  5,
337 	 4,  5,  6,  7,  8,  9,
338 	 8,  9, 10, 11, 12, 13,
339 	12, 13, 14, 15, 16, 17,
340 	16, 17, 18, 19, 20, 21,
341 	20, 21, 22, 23, 24, 25,
342 	24, 25, 26, 27, 28, 29,
343 	28, 29, 30, 31, 32,  1,
344 };
345 
346 static const unsigned char PC1[] = {	/* permuted choice table 1 */
347 	57, 49, 41, 33, 25, 17,  9,
348 	 1, 58, 50, 42, 34, 26, 18,
349 	10,  2, 59, 51, 43, 35, 27,
350 	19, 11,  3, 60, 52, 44, 36,
351 
352 	63, 55, 47, 39, 31, 23, 15,
353 	 7, 62, 54, 46, 38, 30, 22,
354 	14,  6, 61, 53, 45, 37, 29,
355 	21, 13,  5, 28, 20, 12,  4,
356 };
357 
358 static const unsigned char Rotates[] = {/* PC1 rotation schedule */
359 	1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1,
360 };
361 
362 /* note: each "row" of PC2 is left-padded with bits that make it invertible */
363 static const unsigned char PC2[] = {	/* permuted choice table 2 */
364 	 9, 18,    14, 17, 11, 24,  1,  5,
365 	22, 25,     3, 28, 15,  6, 21, 10,
366 	35, 38,    23, 19, 12,  4, 26,  8,
367 	43, 54,    16,  7, 27, 20, 13,  2,
368 
369 	 0,  0,    41, 52, 31, 37, 47, 55,
370 	 0,  0,    30, 40, 51, 45, 33, 48,
371 	 0,  0,    44, 49, 39, 56, 34, 53,
372 	 0,  0,    46, 42, 50, 36, 29, 32,
373 };
374 
375 static const unsigned char S[8][64] = {	/* 48->32 bit substitution tables */
376 					/* S[1]			*/
377 	{ 14,  4, 13,  1,  2, 15, 11,  8,  3, 10,  6, 12,  5,  9,  0,  7,
378 	   0, 15,  7,  4, 14,  2, 13,  1, 10,  6, 12, 11,  9,  5,  3,  8,
379 	   4,  1, 14,  8, 13,  6,  2, 11, 15, 12,  9,  7,  3, 10,  5,  0,
380 	  15, 12,  8,  2,  4,  9,  1,  7,  5, 11,  3, 14, 10,  0,  6, 13 },
381 					/* S[2]			*/
382 	{ 15,  1,  8, 14,  6, 11,  3,  4,  9,  7,  2, 13, 12,  0,  5, 10,
383 	   3, 13,  4,  7, 15,  2,  8, 14, 12,  0,  1, 10,  6,  9, 11,  5,
384 	   0, 14,  7, 11, 10,  4, 13,  1,  5,  8, 12,  6,  9,  3,  2, 15,
385 	  13,  8, 10,  1,  3, 15,  4,  2, 11,  6,  7, 12,  0,  5, 14,  9 },
386 					/* S[3]			*/
387 	{ 10,  0,  9, 14,  6,  3, 15,  5,  1, 13, 12,  7, 11,  4,  2,  8,
388 	  13,  7,  0,  9,  3,  4,  6, 10,  2,  8,  5, 14, 12, 11, 15,  1,
389 	  13,  6,  4,  9,  8, 15,  3,  0, 11,  1,  2, 12,  5, 10, 14,  7,
390 	   1, 10, 13,  0,  6,  9,  8,  7,  4, 15, 14,  3, 11,  5,  2, 12 },
391 					/* S[4]			*/
392 	{  7, 13, 14,  3,  0,  6,  9, 10,  1,  2,  8,  5, 11, 12,  4, 15,
393 	  13,  8, 11,  5,  6, 15,  0,  3,  4,  7,  2, 12,  1, 10, 14,  9,
394 	  10,  6,  9,  0, 12, 11,  7, 13, 15,  1,  3, 14,  5,  2,  8,  4,
395 	   3, 15,  0,  6, 10,  1, 13,  8,  9,  4,  5, 11, 12,  7,  2, 14 },
396 					/* S[5]			*/
397 	{  2, 12,  4,  1,  7, 10, 11,  6,  8,  5,  3, 15, 13,  0, 14,  9,
398 	  14, 11,  2, 12,  4,  7, 13,  1,  5,  0, 15, 10,  3,  9,  8,  6,
399 	   4,  2,  1, 11, 10, 13,  7,  8, 15,  9, 12,  5,  6,  3,  0, 14,
400 	  11,  8, 12,  7,  1, 14,  2, 13,  6, 15,  0,  9, 10,  4,  5,  3 },
401 					/* S[6]			*/
402 	{ 12,  1, 10, 15,  9,  2,  6,  8,  0, 13,  3,  4, 14,  7,  5, 11,
403 	  10, 15,  4,  2,  7, 12,  9,  5,  6,  1, 13, 14,  0, 11,  3,  8,
404 	   9, 14, 15,  5,  2,  8, 12,  3,  7,  0,  4, 10,  1, 13, 11,  6,
405 	   4,  3,  2, 12,  9,  5, 15, 10, 11, 14,  1,  7,  6,  0,  8, 13 },
406 					/* S[7]			*/
407 	{  4, 11,  2, 14, 15,  0,  8, 13,  3, 12,  9,  7,  5, 10,  6,  1,
408 	  13,  0, 11,  7,  4,  9,  1, 10, 14,  3,  5, 12,  2, 15,  8,  6,
409 	   1,  4, 11, 13, 12,  3,  7, 14, 10, 15,  6,  8,  0,  5,  9,  2,
410 	   6, 11, 13,  8,  1,  4, 10,  7,  9,  5,  0, 15, 14,  2,  3, 12 },
411 					/* S[8]			*/
412 	{ 13,  2,  8,  4,  6, 15, 11,  1, 10,  9,  3, 14,  5,  0, 12,  7,
413 	   1, 15, 13,  8, 10,  3,  7,  4, 12,  5,  6, 11,  0, 14,  9,  2,
414 	   7, 11,  4,  1,  9, 12, 14,  2,  0,  6, 10, 13, 15,  3,  5,  8,
415 	   2,  1, 14,  7,  4, 10,  8, 13, 15, 12,  9,  0,  3,  5,  6, 11 }
416 };
417 
418 static const unsigned char P32Tr[] = {	/* 32-bit permutation function */
419 	16,  7, 20, 21,
420 	29, 12, 28, 17,
421 	 1, 15, 23, 26,
422 	 5, 18, 31, 10,
423 	 2,  8, 24, 14,
424 	32, 27,  3,  9,
425 	19, 13, 30,  6,
426 	22, 11,  4, 25,
427 };
428 
429 static const unsigned char CIFP[] = {	/* compressed/interleaved permutation */
430 	 1,  2,  3,  4,   17, 18, 19, 20,
431 	 5,  6,  7,  8,   21, 22, 23, 24,
432 	 9, 10, 11, 12,   25, 26, 27, 28,
433 	13, 14, 15, 16,   29, 30, 31, 32,
434 
435 	33, 34, 35, 36,   49, 50, 51, 52,
436 	37, 38, 39, 40,   53, 54, 55, 56,
437 	41, 42, 43, 44,   57, 58, 59, 60,
438 	45, 46, 47, 48,   61, 62, 63, 64,
439 };
440 
441 static const unsigned char itoa64[] =		/* 0..63 => ascii-64 */
442 	"./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
443 
444 
445 /* =====  Tables that are initialized at run time  ==================== */
446 
447 
448 /* Initial key schedule permutation */
449 static C_block	PC1ROT[64/CHUNKBITS][1<<CHUNKBITS];
450 
451 /* Subsequent key schedule rotation permutations */
452 static C_block	PC2ROT[2][64/CHUNKBITS][1<<CHUNKBITS];
453 
454 /* Initial permutation/expansion table */
455 static C_block	IE3264[32/CHUNKBITS][1<<CHUNKBITS];
456 
457 /* Table that combines the S, P, and E operations.  */
458 static int32_t SPE[2][8][64];
459 
460 /* compressed/interleaved => final permutation table */
461 static C_block	CF6464[64/CHUNKBITS][1<<CHUNKBITS];
462 
463 
464 /* ==================================== */
465 
466 
467 static C_block	constdatablock;			/* encryption constant */
468 static char	cryptresult[1+4+4+11+1];	/* encrypted result */
469 
470 /*
471  * We match the behavior of UFC-crypt on systems where "char" is signed by
472  * default (the majority), regardless of char's signedness on our system.
473  */
474 static inline int
ascii_to_bin(char ch)475 ascii_to_bin(char ch)
476 {
477 	signed char sch = ch;
478 	int retval;
479 
480 	if (sch >= 'a')
481 		retval = sch - ('a' - 38);
482 	else if (sch >= 'A')
483 		retval = sch - ('A' - 12);
484 	else
485 		retval = sch - '.';
486 
487 	return retval & 0x3f;
488 }
489 
490 /*
491  * When we choose to "support" invalid salts, nevertheless disallow those
492  * containing characters that would violate the passwd file format.
493  */
494 static inline int
ascii_is_unsafe(char ch)495 ascii_is_unsafe(char ch)
496 {
497 	return !ch || ch == '\n' || ch == ':';
498 }
499 
500 /*
501  * Return a pointer to static data consisting of the "setting"
502  * followed by an encryption produced by the "key" and "setting".
503  */
504 static char *
__crypt(const char * key,const char * setting)505 __crypt(const char *key, const char *setting)
506 {
507 	char *encp;
508 	int32_t i;
509 	int t;
510 	int32_t salt;
511 	int num_iter, salt_size;
512 	C_block keyblock, rsltblock;
513 
514 	/* Non-DES encryption schemes hook in here. */
515 	if (setting[0] == _PASSWORD_NONDES) {
516 		switch (setting[1]) {
517 		case '2':
518 			return (__bcrypt(key, setting));
519 		case 's':
520 			return (__crypt_sha1(key, setting));
521 		case '1':
522 		default:
523 			return (__md5crypt(key, setting));
524 		}
525 	}
526 
527 	for (i = 0; i < 8; i++) {
528 		if ((t = 2*(unsigned char)(*key)) != 0)
529 			key++;
530 		keyblock.b[i] = t;
531 	}
532 	if (des_setkey((char *)keyblock.b))
533 		return (NULL);
534 
535 	encp = &cryptresult[0];
536 	switch (*setting) {
537 	case _PASSWORD_EFMT1:
538 		/*
539 		 * Involve the rest of the password 8 characters at a time.
540 		 */
541 		while (*key) {
542 			if (des_cipher((char *)(void *)&keyblock,
543 			    (char *)(void *)&keyblock, 0L, 1))
544 				return (NULL);
545 			for (i = 0; i < 8; i++) {
546 				if ((t = 2*(unsigned char)(*key)) != 0)
547 					key++;
548 				keyblock.b[i] ^= t;
549 			}
550 			if (des_setkey((char *)keyblock.b))
551 				return (NULL);
552 		}
553 
554 		*encp++ = *setting++;
555 
556 		/* get iteration count */
557 		num_iter = 0;
558 		for (i = 4; --i >= 0; ) {
559 			int value = ascii_to_bin(setting[i]);
560 			if (itoa64[value] != setting[i])
561 				return NULL;
562 			encp[i] = setting[i];
563 			num_iter = (num_iter << 6) | value;
564 		}
565 		if (num_iter == 0)
566 			return NULL;
567 		setting += 4;
568 		encp += 4;
569 		salt_size = 4;
570 		break;
571 	default:
572 		num_iter = 25;
573 		salt_size = 2;
574 		if (ascii_is_unsafe(setting[0]) || ascii_is_unsafe(setting[1]))
575 			return NULL;
576 	}
577 
578 	salt = 0;
579 	for (i = salt_size; --i >= 0; ) {
580 		int value = ascii_to_bin(setting[i]);
581 		if (salt_size > 2 && itoa64[value] != setting[i])
582 			return NULL;
583 		encp[i] = setting[i];
584 		salt = (salt << 6) | value;
585 	}
586 	encp += salt_size;
587 	if (des_cipher((char *)(void *)&constdatablock,
588 	    (char *)(void *)&rsltblock, salt, num_iter))
589 		return (NULL);
590 
591 	/*
592 	 * Encode the 64 cipher bits as 11 ascii characters.
593 	 */
594 	i = ((int32_t)((rsltblock.b[0]<<8) | rsltblock.b[1])<<8) |
595 	    rsltblock.b[2];
596 	encp[3] = itoa64[i&0x3f];	i >>= 6;
597 	encp[2] = itoa64[i&0x3f];	i >>= 6;
598 	encp[1] = itoa64[i&0x3f];	i >>= 6;
599 	encp[0] = itoa64[i];		encp += 4;
600 	i = ((int32_t)((rsltblock.b[3]<<8) | rsltblock.b[4])<<8) |
601 	    rsltblock.b[5];
602 	encp[3] = itoa64[i&0x3f];	i >>= 6;
603 	encp[2] = itoa64[i&0x3f];	i >>= 6;
604 	encp[1] = itoa64[i&0x3f];	i >>= 6;
605 	encp[0] = itoa64[i];		encp += 4;
606 	i = ((int32_t)((rsltblock.b[6])<<8) | rsltblock.b[7])<<2;
607 	encp[2] = itoa64[i&0x3f];	i >>= 6;
608 	encp[1] = itoa64[i&0x3f];	i >>= 6;
609 	encp[0] = itoa64[i];
610 
611 	encp[3] = 0;
612 
613 	return (cryptresult);
614 }
615 
616 char *
crypt(const char * key,const char * salt)617 crypt(const char *key, const char *salt)
618 {
619 	char *res = __crypt(key, salt);
620 	if (res)
621 		return res;
622 	/* How do I handle errors ? Return "*0" or "*1" */
623 	return __UNCONST(salt[0] == '*' && salt[1] == '0' ? "*1" : "*0");
624 }
625 
626 /*
627  * The Key Schedule, filled in by des_setkey() or setkey().
628  */
629 #define	KS_SIZE	16
630 static C_block	KS[KS_SIZE];
631 
632 /*
633  * Set up the key schedule from the key.
634  */
635 int
des_setkey(const char * key)636 des_setkey(const char *key)
637 {
638 	DCL_BLOCK(K, K0, K1);
639 	C_block *help, *ptabp;
640 	int i;
641 	static int des_ready = 0;
642 
643 	if (!des_ready) {
644 		init_des();
645 		des_ready = 1;
646 	}
647 
648 	PERM6464(K,K0,K1,(const unsigned char *)key,(C_block *)PC1ROT);
649 	help = &KS[0];
650 	STORE(K&~0x03030303L, K0&~0x03030303L, K1, *help);
651 	for (i = 1; i < 16; i++) {
652 		help++;
653 		STORE(K,K0,K1,*help);
654 		ptabp = (C_block *)PC2ROT[Rotates[i]-1];
655 		PERM6464(K,K0,K1,(const unsigned char *)help,ptabp);
656 		STORE(K&~0x03030303L, K0&~0x03030303L, K1, *help);
657 	}
658 	return (0);
659 }
660 
661 /*
662  * Encrypt (or decrypt if num_iter < 0) the 8 chars at "in" with abs(num_iter)
663  * iterations of DES, using the given 24-bit salt and the pre-computed key
664  * schedule, and store the resulting 8 chars at "out" (in == out is permitted).
665  *
666  * NOTE: the performance of this routine is critically dependent on your
667  * compiler and machine architecture.
668  */
669 int
des_cipher(const char * in,char * out,long salt,int num_iter)670 des_cipher(const char *in, char *out, long salt, int num_iter)
671 {
672 	/* variables that we want in registers, most important first */
673 #if defined(pdp11)
674 	int j;
675 #endif
676 	int32_t L0, L1, R0, R1, k;
677 	C_block *kp;
678 	int ks_inc, loop_count;
679 	C_block B;
680 
681 	L0 = salt;
682 	TO_SIX_BIT(salt, L0);	/* convert to 4*(6+2) format */
683 
684 #if defined(__vax__) || defined(pdp11)
685 	salt = ~salt;	/* "x &~ y" is faster than "x & y". */
686 #define	SALT (~salt)
687 #else
688 #define	SALT salt
689 #endif
690 
691 #if defined(MUST_ALIGN)
692 	B.b[0] = in[0]; B.b[1] = in[1]; B.b[2] = in[2]; B.b[3] = in[3];
693 	B.b[4] = in[4]; B.b[5] = in[5]; B.b[6] = in[6]; B.b[7] = in[7];
694 	LOAD(L,L0,L1,B);
695 #else
696 	LOAD(L,L0,L1,*(const C_block *)in);
697 #endif
698 	LOADREG(R,R0,R1,L,L0,L1);
699 	L0 &= 0x55555555L;
700 	L1 &= 0x55555555L;
701 	L0 = (L0 << 1) | L1;	/* L0 is the even-numbered input bits */
702 	R0 &= 0xaaaaaaaaL;
703 	R1 = (R1 >> 1) & 0x55555555L;
704 	L1 = R0 | R1;		/* L1 is the odd-numbered input bits */
705 	STORE(L,L0,L1,B);
706 	PERM3264(L,L0,L1,B.b,  (C_block *)IE3264);	/* even bits */
707 	PERM3264(R,R0,R1,B.b+4,(C_block *)IE3264);	/* odd bits */
708 
709 	if (num_iter >= 0)
710 	{		/* encryption */
711 		kp = &KS[0];
712 		ks_inc  = sizeof(*kp);
713 	}
714 	else
715 	{		/* decryption */
716 		num_iter = -num_iter;
717 		kp = &KS[KS_SIZE-1];
718 		ks_inc  = -(long)sizeof(*kp);
719 	}
720 
721 	while (--num_iter >= 0) {
722 		loop_count = 8;
723 		do {
724 
725 #define	SPTAB(t, i) \
726 	    (*(int32_t *)((unsigned char *)t + i*(sizeof(int32_t)/4)))
727 #if defined(gould)
728 			/* use this if B.b[i] is evaluated just once ... */
729 #define	DOXOR(x,y,i)	x^=SPTAB(SPE[0][i],B.b[i]); y^=SPTAB(SPE[1][i],B.b[i]);
730 #else
731 #if defined(pdp11)
732 			/* use this if your "long" int indexing is slow */
733 #define	DOXOR(x,y,i)	j=B.b[i]; x^=SPTAB(SPE[0][i],j); y^=SPTAB(SPE[1][i],j);
734 #else
735 			/* use this if "k" is allocated to a register ... */
736 #define	DOXOR(x,y,i)	k=B.b[i]; x^=SPTAB(SPE[0][i],k); y^=SPTAB(SPE[1][i],k);
737 #endif
738 #endif
739 
740 #define	CRUNCH(p0, p1, q0, q1)	\
741 			k = (q0 ^ q1) & SALT;	\
742 			B.b32.i0 = k ^ q0 ^ kp->b32.i0;		\
743 			B.b32.i1 = k ^ q1 ^ kp->b32.i1;		\
744 			kp = (C_block *)((char *)kp+ks_inc);	\
745 							\
746 			DOXOR(p0, p1, 0);		\
747 			DOXOR(p0, p1, 1);		\
748 			DOXOR(p0, p1, 2);		\
749 			DOXOR(p0, p1, 3);		\
750 			DOXOR(p0, p1, 4);		\
751 			DOXOR(p0, p1, 5);		\
752 			DOXOR(p0, p1, 6);		\
753 			DOXOR(p0, p1, 7);
754 
755 			CRUNCH(L0, L1, R0, R1);
756 			CRUNCH(R0, R1, L0, L1);
757 		} while (--loop_count != 0);
758 		kp = (C_block *)((char *)kp-(ks_inc*KS_SIZE));
759 
760 
761 		/* swap L and R */
762 		L0 ^= R0;  L1 ^= R1;
763 		R0 ^= L0;  R1 ^= L1;
764 		L0 ^= R0;  L1 ^= R1;
765 	}
766 
767 	/* store the encrypted (or decrypted) result */
768 	L0 = ((L0 >> 3) & 0x0f0f0f0fL) | ((L1 << 1) & 0xf0f0f0f0L);
769 	L1 = ((R0 >> 3) & 0x0f0f0f0fL) | ((R1 << 1) & 0xf0f0f0f0L);
770 	STORE(L,L0,L1,B);
771 	PERM6464(L,L0,L1,B.b, (C_block *)CF6464);
772 #if defined(MUST_ALIGN)
773 	STORE(L,L0,L1,B);
774 	out[0] = B.b[0]; out[1] = B.b[1]; out[2] = B.b[2]; out[3] = B.b[3];
775 	out[4] = B.b[4]; out[5] = B.b[5]; out[6] = B.b[6]; out[7] = B.b[7];
776 #else
777 	STORE(L,L0,L1,*(C_block *)out);
778 #endif
779 	return (0);
780 }
781 
782 
783 /*
784  * Initialize various tables.  This need only be done once.  It could even be
785  * done at compile time, if the compiler were capable of that sort of thing.
786  */
787 STATIC
init_des(void)788 init_des(void)
789 {
790 	int i, j;
791 	int32_t k;
792 	int tableno;
793 	static unsigned char perm[64], tmp32[32];	/* "static" for speed */
794 
795 	/*
796 	 * PC1ROT - bit reverse, then PC1, then Rotate, then PC2.
797 	 */
798 	for (i = 0; i < 64; i++)
799 		perm[i] = 0;
800 	for (i = 0; i < 64; i++) {
801 		if ((k = PC2[i]) == 0)
802 			continue;
803 		k += Rotates[0]-1;
804 		if ((k%28) < Rotates[0]) k -= 28;
805 		k = PC1[k];
806 		if (k > 0) {
807 			k--;
808 			k = (k|07) - (k&07);
809 			k++;
810 		}
811 		perm[i] = k;
812 	}
813 #ifdef DEBUG
814 	prtab("pc1tab", perm, 8);
815 #endif
816 	init_perm(PC1ROT, perm, 8, 8);
817 
818 	/*
819 	 * PC2ROT - PC2 inverse, then Rotate (once or twice), then PC2.
820 	 */
821 	for (j = 0; j < 2; j++) {
822 		unsigned char pc2inv[64];
823 		for (i = 0; i < 64; i++)
824 			perm[i] = pc2inv[i] = 0;
825 		for (i = 0; i < 64; i++) {
826 			if ((k = PC2[i]) == 0)
827 				continue;
828 			pc2inv[k-1] = i+1;
829 		}
830 		for (i = 0; i < 64; i++) {
831 			if ((k = PC2[i]) == 0)
832 				continue;
833 			k += j;
834 			if ((k%28) <= j) k -= 28;
835 			perm[i] = pc2inv[k];
836 		}
837 #ifdef DEBUG
838 		prtab("pc2tab", perm, 8);
839 #endif
840 		init_perm(PC2ROT[j], perm, 8, 8);
841 	}
842 
843 	/*
844 	 * Bit reverse, then initial permutation, then expansion.
845 	 */
846 	for (i = 0; i < 8; i++) {
847 		for (j = 0; j < 8; j++) {
848 			k = (j < 2)? 0: IP[ExpandTr[i*6+j-2]-1];
849 			if (k > 32)
850 				k -= 32;
851 			else if (k > 0)
852 				k--;
853 			if (k > 0) {
854 				k--;
855 				k = (k|07) - (k&07);
856 				k++;
857 			}
858 			perm[i*8+j] = k;
859 		}
860 	}
861 #ifdef DEBUG
862 	prtab("ietab", perm, 8);
863 #endif
864 	init_perm(IE3264, perm, 4, 8);
865 
866 	/*
867 	 * Compression, then final permutation, then bit reverse.
868 	 */
869 	for (i = 0; i < 64; i++) {
870 		k = IP[CIFP[i]-1];
871 		if (k > 0) {
872 			k--;
873 			k = (k|07) - (k&07);
874 			k++;
875 		}
876 		perm[k-1] = i+1;
877 	}
878 #ifdef DEBUG
879 	prtab("cftab", perm, 8);
880 #endif
881 	init_perm(CF6464, perm, 8, 8);
882 
883 	/*
884 	 * SPE table
885 	 */
886 	for (i = 0; i < 48; i++)
887 		perm[i] = P32Tr[ExpandTr[i]-1];
888 	for (tableno = 0; tableno < 8; tableno++) {
889 		for (j = 0; j < 64; j++)  {
890 			k = (((j >> 0) &01) << 5)|
891 			    (((j >> 1) &01) << 3)|
892 			    (((j >> 2) &01) << 2)|
893 			    (((j >> 3) &01) << 1)|
894 			    (((j >> 4) &01) << 0)|
895 			    (((j >> 5) &01) << 4);
896 			k = S[tableno][k];
897 			k = (((k >> 3)&01) << 0)|
898 			    (((k >> 2)&01) << 1)|
899 			    (((k >> 1)&01) << 2)|
900 			    (((k >> 0)&01) << 3);
901 			for (i = 0; i < 32; i++)
902 				tmp32[i] = 0;
903 			for (i = 0; i < 4; i++)
904 				tmp32[4 * tableno + i] = (k >> i) & 01;
905 			k = 0;
906 			for (i = 24; --i >= 0; )
907 				k = (k<<1) | tmp32[perm[i]-1];
908 			TO_SIX_BIT(SPE[0][tableno][j], k);
909 			k = 0;
910 			for (i = 24; --i >= 0; )
911 				k = (k<<1) | tmp32[perm[i+24]-1];
912 			TO_SIX_BIT(SPE[1][tableno][j], k);
913 		}
914 	}
915 }
916 
917 /*
918  * Initialize "perm" to represent transformation "p", which rearranges
919  * (perhaps with expansion and/or contraction) one packed array of bits
920  * (of size "chars_in" characters) into another array (of size "chars_out"
921  * characters).
922  *
923  * "perm" must be all-zeroes on entry to this routine.
924  */
925 STATIC
init_perm(C_block perm[64/CHUNKBITS][1<<CHUNKBITS],const unsigned char p[64],int chars_in,int chars_out)926 init_perm(C_block perm[64/CHUNKBITS][1<<CHUNKBITS], const unsigned char p[64],
927     int chars_in, int chars_out)
928 {
929 	int i, j, k, l;
930 
931 	for (k = 0; k < chars_out*8; k++) {	/* each output bit position */
932 		l = p[k] - 1;		/* where this bit comes from */
933 		if (l < 0)
934 			continue;	/* output bit is always 0 */
935 		i = l>>LGCHUNKBITS;	/* which chunk this bit comes from */
936 		l = 1<<(l&(CHUNKBITS-1));	/* mask for this bit */
937 		for (j = 0; j < (1<<CHUNKBITS); j++) {	/* each chunk value */
938 			if ((j & l) != 0)
939 				perm[i][j].b[k>>3] |= 1<<(k&07);
940 		}
941 	}
942 }
943 
944 /*
945  * "setkey" routine (for backwards compatibility)
946  */
947 int
setkey(const char * key)948 setkey(const char *key)
949 {
950 	int i, j, k;
951 	C_block keyblock;
952 
953 	for (i = 0; i < 8; i++) {
954 		k = 0;
955 		for (j = 0; j < 8; j++) {
956 			k <<= 1;
957 			k |= (unsigned char)*key++;
958 		}
959 		keyblock.b[i] = k;
960 	}
961 	return (des_setkey((char *)keyblock.b));
962 }
963 
964 /*
965  * "encrypt" routine (for backwards compatibility)
966  */
967 int
encrypt(char * block,int flag)968 encrypt(char *block, int flag)
969 {
970 	int i, j, k;
971 	C_block cblock;
972 
973 	for (i = 0; i < 8; i++) {
974 		k = 0;
975 		for (j = 0; j < 8; j++) {
976 			k <<= 1;
977 			k |= (unsigned char)*block++;
978 		}
979 		cblock.b[i] = k;
980 	}
981 	if (des_cipher((char *)&cblock, (char *)&cblock, 0L, (flag ? -1: 1)))
982 		return (1);
983 	for (i = 7; i >= 0; i--) {
984 		k = cblock.b[i];
985 		for (j = 7; j >= 0; j--) {
986 			*--block = k&01;
987 			k >>= 1;
988 		}
989 	}
990 	return (0);
991 }
992 
993 #ifdef DEBUG
994 STATIC
prtab(const char * s,unsigned char * t,int num_rows)995 prtab(const char *s, unsigned char *t, int num_rows)
996 {
997 	int i, j;
998 
999 	(void)printf("%s:\n", s);
1000 	for (i = 0; i < num_rows; i++) {
1001 		for (j = 0; j < 8; j++) {
1002 			 (void)printf("%3d", t[i*8+j]);
1003 		}
1004 		(void)printf("\n");
1005 	}
1006 	(void)printf("\n");
1007 }
1008 #endif
1009 
1010 #if defined(MAIN) || defined(UNIT_TEST)
1011 #include <err.h>
1012 
1013 int
main(int argc,char * argv[])1014 main(int argc, char *argv[])
1015 {
1016 	if (argc < 2) {
1017 		fprintf(stderr, "Usage: %s password [salt]\n", getprogname());
1018 		return EXIT_FAILURE;
1019 	}
1020 
1021 	printf("%s\n", crypt(argv[1], (argc > 2) ? argv[2] : argv[1]));
1022 	return EXIT_SUCCESS;
1023 }
1024 #endif
1025