xref: /minix3/lib/libc/hash/sha2/sha2.3 (revision 2fe8fb192fe7e8720e3e7a77f928da545e872a6a)
1.\" $NetBSD: sha2.3,v 1.5 2009/05/26 08:04:12 joerg Exp $
2.\"	$OpenBSD: sha2.3,v 1.11 2004/06/22 01:57:29 jfb Exp $
3.\"
4.\" Copyright (c) 2003, 2004 Todd C. Miller <Todd.Miller@courtesan.com>
5.\"
6.\" Permission to use, copy, modify, and distribute this software for any
7.\" purpose with or without fee is hereby granted, provided that the above
8.\" copyright notice and this permission notice appear in all copies.
9.\"
10.\" THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11.\" WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12.\" MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13.\" ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14.\" WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15.\" ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16.\" OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17.\"
18.\" Sponsored in part by the Defense Advanced Research Projects
19.\" Agency (DARPA) and Air Force Research Laboratory, Air Force
20.\" Materiel Command, USAF, under agreement number F39502-99-1-0512.
21.\"
22.\" See http://www.nist.gov/sha/ for the detailed standard
23.\"
24.Dd May 20, 2009
25.Dt SHA2 3
26.Os
27.Sh NAME
28.Nm SHA256_Init ,
29.Nm SHA256_Update ,
30.Nm SHA256_Pad ,
31.Nm SHA256_Final ,
32.Nm SHA256_Transform ,
33.Nm SHA256_End ,
34.Nm SHA256_File ,
35.Nm SHA256_FileChunk ,
36.Nm SHA256_Data
37.Nd calculate the NIST Secure Hash Standard (version 2)
38.Sh SYNOPSIS
39.In sys/types.h
40.In sha2.h
41.Ft void
42.Fn SHA224_Init "SHA224_CTX *context"
43.Ft void
44.Fn SHA224_Update "SHA224_CTX *context" "const uint8_t *data" "size_t len"
45.Ft void
46.Fn SHA224_Pad "SHA224_CTX *context"
47.Ft void
48.Fn SHA224_Final "uint8_t digest[SHA224_DIGEST_LENGTH]" "SHA224_CTX *context"
49.Ft void
50.Fn SHA224_Transform "uint32_t state[8]" "const uint8_t buffer[SHA224_BLOCK_LENGTH]"
51.Ft "char *"
52.Fn SHA224_End "SHA224_CTX *context" "char *buf"
53.Ft "char *"
54.Fn SHA224_File "const char *filename" "char *buf"
55.Ft "char *"
56.Fn SHA224_FileChunk "const char *filename" "char *buf" "off_t offset" "off_t length"
57.Ft "char *"
58.Fn SHA224_Data "uint8_t *data" "size_t len" "char *buf"
59.Ft void
60.Fn SHA256_Init "SHA256_CTX *context"
61.Ft void
62.Fn SHA256_Update "SHA256_CTX *context" "const uint8_t *data" "size_t len"
63.Ft void
64.Fn SHA256_Pad "SHA256_CTX *context"
65.Ft void
66.Fn SHA256_Final "uint8_t digest[SHA256_DIGEST_LENGTH]" "SHA256_CTX *context"
67.Ft void
68.Fn SHA256_Transform "uint32_t state[8]" "const uint8_t buffer[SHA256_BLOCK_LENGTH]"
69.Ft "char *"
70.Fn SHA256_End "SHA256_CTX *context" "char *buf"
71.Ft "char *"
72.Fn SHA256_File "const char *filename" "char *buf"
73.Ft "char *"
74.Fn SHA256_FileChunk "const char *filename" "char *buf" "off_t offset" "off_t length"
75.Ft "char *"
76.Fn SHA256_Data "uint8_t *data" "size_t len" "char *buf"
77.Ft void
78.Fn SHA384_Init "SHA384_CTX *context"
79.Ft void
80.Fn SHA384_Update "SHA384_CTX *context" "const uint8_t *data" "size_t len"
81.Ft void
82.Fn SHA384_Pad "SHA384_CTX *context"
83.Ft void
84.Fn SHA384_Final "uint8_t digest[SHA384_DIGEST_LENGTH]" "SHA384_CTX *context"
85.Ft void
86.Fn SHA384_Transform "uint64_t state[8]" "const uint8_t buffer[SHA384_BLOCK_LENGTH]"
87.Ft "char *"
88.Fn SHA384_End "SHA384_CTX *context" "char *buf"
89.Ft "char *"
90.Fn SHA384_File "char *filename" "char *buf"
91.Ft "char *"
92.Fn SHA384_FileChunk "char *filename" "char *buf" "off_t offset" "off_t length"
93.Ft "char *"
94.Fn SHA384_Data "uint8_t *data" "size_t len" "char *buf"
95.Ft void
96.Fn SHA512_Init "SHA512_CTX *context"
97.Ft void
98.Fn SHA512_Update "SHA512_CTX *context" "const uint8_t *data" "size_t len"
99.Ft void
100.Fn SHA512_Pad "SHA512_CTX *context"
101.Ft void
102.Fn SHA512_Final "uint8_t digest[SHA512_DIGEST_LENGTH]" "SHA512_CTX *context"
103.Ft void
104.Fn SHA512_Transform "uint64_t state[8]" "const uint8_t buffer[SHA512_BLOCK_LENGTH]"
105.Ft "char *"
106.Fn SHA512_End "SHA512_CTX *context" "char *buf"
107.Ft "char *"
108.Fn SHA512_File "char *filename" "char *buf"
109.Ft "char *"
110.Fn SHA512_FileChunk "char *filename" "char *buf" "off_t offset" "off_t length"
111.Ft "char *"
112.Fn SHA512_Data "uint8_t *data" "size_t len" "char *buf"
113.Sh DESCRIPTION
114The SHA2 functions implement the NIST Secure Hash Standard,
115FIPS PUB 180-2.
116The SHA2 functions are used to generate a condensed representation of a
117message called a message digest, suitable for use as a digital signature.
118There are four families of functions, with names corresponding to
119the number of bits in the resulting message digest.
120The SHA-224 and SHA-256 functions are limited to processing a message of less
121than 2^64 bits as input.
122The SHA-384 and SHA-512 functions can process a message of at most 2^128 - 1
123bits as input.
124.Pp
125The SHA2 functions are considered to be more secure than the
126.Xr sha1 3
127functions with which they share a similar interface.
128The 224, 256, 384, and 512-bit versions of SHA2 share the same interface.
129For brevity, only the 256-bit variants are described below.
130.Pp
131The
132.Fn SHA256_Init
133function initializes a SHA256_CTX
134.Ar context
135for use with
136.Fn SHA256_Update ,
137and
138.Fn SHA256_Final .
139The
140.Fn SHA256_Update
141function adds
142.Ar data
143of length
144.Ar len
145to the SHA256_CTX specified by
146.Ar context .
147.Fn SHA256_Final
148is called when all data has been added via
149.Fn SHA256_Update
150and stores a message digest in the
151.Ar digest
152parameter.
153.Pp
154The
155.Fn SHA256_Pad
156function can be used to apply padding to the message digest as in
157.Fn SHA256_Final ,
158but the current context can still be used with
159.Fn SHA256_Update .
160.Pp
161The
162.Fn SHA256_Transform
163function is used by
164.Fn SHA256_Update
165to hash 512-bit blocks and forms the core of the algorithm.
166Most programs should use the interface provided by
167.Fn SHA256_Init ,
168.Fn SHA256_Update ,
169and
170.Fn SHA256_Final
171instead of calling
172.Fn SHA256_Transform
173directly.
174.Pp
175The
176.Fn SHA256_End
177function is a front end for
178.Fn SHA256_Final
179which converts the digest into an
180.Tn ASCII
181representation of the digest in hexadecimal.
182.Pp
183The
184.Fn SHA256_File
185function calculates the digest for a file and returns the result via
186.Fn SHA256_End .
187If
188.Fn SHA256_File
189is unable to open the file, a
190.Dv NULL
191pointer is returned.
192.Pp
193.Fn SHA256_FileChunk
194behaves like
195.Fn SHA256_File
196but calculates the digest only for that portion of the file starting at
197.Fa offset
198and continuing for
199.Fa length
200bytes or until end of file is reached, whichever comes first.
201A zero
202.Fa length
203can be specified to read until end of file.
204A negative
205.Fa length
206or
207.Fa offset
208will be ignored.
209.Pp
210The
211.Fn SHA256_Data
212function
213calculates the digest of an arbitrary string and returns the result via
214.Fn SHA256_End .
215.Pp
216For each of the
217.Fn SHA256_End ,
218.Fn SHA256_File ,
219.Fn SHA256_FileChunk ,
220and
221.Fn SHA256_Data
222functions the
223.Ar buf
224parameter should either be a string large enough to hold the resulting digest
225(e.g.,
226.Ev SHA224_DIGEST_STRING_LENGTH ,
227.Ev SHA256_DIGEST_STRING_LENGTH ,
228.Ev SHA384_DIGEST_STRING_LENGTH ,
229or
230.Ev SHA512_DIGEST_STRING_LENGTH ,
231depending on the function being used)
232or a
233.Dv NULL
234pointer.
235In the latter case, space will be dynamically allocated via
236.Xr malloc 3
237and should be freed using
238.Xr free 3
239when it is no longer needed.
240.Sh EXAMPLES
241The following code fragment will calculate the SHA-256 digest for the string
242.Qq abc ,
243which is
244.Dq 0xba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad .
245.Bd -literal -offset indent
246SHA256_CTX ctx;
247uint8_t results[SHA256_DIGEST_LENGTH];
248char *buf;
249int n;
250
251buf = "abc";
252n = strlen(buf);
253SHA256_Init(\*[Am]ctx);
254SHA256_Update(\*[Am]ctx, (uint8_t *)buf, n);
255SHA256_Final(results, \*[Am]ctx);
256
257/* Print the digest as one long hex value */
258printf("0x");
259for (n = 0; n \*[Lt] SHA256_DIGEST_LENGTH; n++)
260	printf("%02x", results[n]);
261putchar('\en');
262.Ed
263.Pp
264Alternately, the helper functions could be used in the following way:
265.Bd -literal -offset indent
266SHA256_CTX ctx;
267uint8_t output[SHA256_DIGEST_STRING_LENGTH];
268char *buf = "abc";
269
270printf("0x%s\en", SHA256_Data(buf, strlen(buf), output));
271.Ed
272.Sh SEE ALSO
273.Xr cksum 1 ,
274.Xr md4 3 ,
275.Xr md5 3 ,
276.Xr rmd160 3 ,
277.Xr sha1 3
278.Rs
279.%T Secure Hash Standard
280.%O FIPS PUB 180-2
281.Re
282.Sh HISTORY
283The SHA2 functions appeared in
284.Ox 3.4
285and
286.Nx 3.0 .
287.Sh AUTHORS
288This implementation of the SHA functions was written by Aaron D. Gifford.
289.Pp
290The
291.Fn SHA256_End ,
292.Fn SHA256_File ,
293.Fn SHA256_FileChunk ,
294and
295.Fn SHA256_Data
296helper functions are derived from code written by Poul-Henning Kamp.
297.Sh CAVEATS
298This implementation of the Secure Hash Standard has not been validated by
299NIST and as such is not in official compliance with the standard.
300.Pp
301If a message digest is to be copied to a multi-byte type (i.e.:
302an array of five 32-bit integers) it will be necessary to
303perform byte swapping on little endian machines such as the i386, alpha,
304and vax.
305