xref: /minix3/external/bsd/bind/dist/doc/arm/Bv9ARM.ch04.html (revision 00b67f09dd46474d133c95011a48590a8e8f94c7)
1<!--
2 - Copyright (C) 2004-2015 Internet Systems Consortium, Inc. ("ISC")
3 - Copyright (C) 2000-2003 Internet Software Consortium.
4 -
5 - Permission to use, copy, modify, and/or distribute this software for any
6 - purpose with or without fee is hereby granted, provided that the above
7 - copyright notice and this permission notice appear in all copies.
8 -
9 - THE SOFTWARE IS PROVIDED "AS IS" AND ISC DISCLAIMS ALL WARRANTIES WITH
10 - REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
11 - AND FITNESS. IN NO EVENT SHALL ISC BE LIABLE FOR ANY SPECIAL, DIRECT,
12 - INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
13 - LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE
14 - OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
15 - PERFORMANCE OF THIS SOFTWARE.
16-->
17<!-- $Id: Bv9ARM.ch04.html,v 1.5 2015/09/03 07:33:34 christos Exp $ -->
18<html>
19<head>
20<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
21<title>Chapter�4.�Advanced DNS Features</title>
22<meta name="generator" content="DocBook XSL Stylesheets V1.71.1">
23<link rel="start" href="Bv9ARM.html" title="BIND 9 Administrator Reference Manual">
24<link rel="up" href="Bv9ARM.html" title="BIND 9 Administrator Reference Manual">
25<link rel="prev" href="Bv9ARM.ch03.html" title="Chapter�3.�Name Server Configuration">
26<link rel="next" href="Bv9ARM.ch05.html" title="Chapter�5.�The BIND 9 Lightweight Resolver">
27</head>
28<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
29<div class="navheader">
30<table width="100%" summary="Navigation header">
31<tr><th colspan="3" align="center">Chapter�4.�Advanced DNS Features</th></tr>
32<tr>
33<td width="20%" align="left">
34<a accesskey="p" href="Bv9ARM.ch03.html">Prev</a>�</td>
35<th width="60%" align="center">�</th>
36<td width="20%" align="right">�<a accesskey="n" href="Bv9ARM.ch05.html">Next</a>
37</td>
38</tr>
39</table>
40<hr>
41</div>
42<div class="chapter" lang="en">
43<div class="titlepage"><div><div><h2 class="title">
44<a name="Bv9ARM.ch04"></a>Chapter�4.�Advanced DNS Features</h2></div></div></div>
45<div class="toc">
46<p><b>Table of Contents</b></p>
47<dl>
48<dt><span class="sect1"><a href="Bv9ARM.ch04.html#notify">Notify</a></span></dt>
49<dt><span class="sect1"><a href="Bv9ARM.ch04.html#dynamic_update">Dynamic Update</a></span></dt>
50<dd><dl><dt><span class="sect2"><a href="Bv9ARM.ch04.html#journal">The journal file</a></span></dt></dl></dd>
51<dt><span class="sect1"><a href="Bv9ARM.ch04.html#incremental_zone_transfers">Incremental Zone Transfers (IXFR)</a></span></dt>
52<dt><span class="sect1"><a href="Bv9ARM.ch04.html#id2569920">Split DNS</a></span></dt>
53<dd><dl><dt><span class="sect2"><a href="Bv9ARM.ch04.html#id2569938">Example split DNS setup</a></span></dt></dl></dd>
54<dt><span class="sect1"><a href="Bv9ARM.ch04.html#tsig">TSIG</a></span></dt>
55<dd><dl>
56<dt><span class="sect2"><a href="Bv9ARM.ch04.html#id2570439">Generate Shared Keys for Each Pair of Hosts</a></span></dt>
57<dt><span class="sect2"><a href="Bv9ARM.ch04.html#id2570581">Copying the Shared Secret to Both Machines</a></span></dt>
58<dt><span class="sect2"><a href="Bv9ARM.ch04.html#id2570592">Informing the Servers of the Key's Existence</a></span></dt>
59<dt><span class="sect2"><a href="Bv9ARM.ch04.html#id2570628">Instructing the Server to Use the Key</a></span></dt>
60<dt><span class="sect2"><a href="Bv9ARM.ch04.html#id2570685">TSIG Key Based Access Control</a></span></dt>
61<dt><span class="sect2"><a href="Bv9ARM.ch04.html#id2570734">Errors</a></span></dt>
62</dl></dd>
63<dt><span class="sect1"><a href="Bv9ARM.ch04.html#id2570748">TKEY</a></span></dt>
64<dt><span class="sect1"><a href="Bv9ARM.ch04.html#id2570797">SIG(0)</a></span></dt>
65<dt><span class="sect1"><a href="Bv9ARM.ch04.html#DNSSEC">DNSSEC</a></span></dt>
66<dd><dl>
67<dt><span class="sect2"><a href="Bv9ARM.ch04.html#id2570934">Generating Keys</a></span></dt>
68<dt><span class="sect2"><a href="Bv9ARM.ch04.html#id2571218">Signing the Zone</a></span></dt>
69<dt><span class="sect2"><a href="Bv9ARM.ch04.html#id2571299">Configuring Servers</a></span></dt>
70</dl></dd>
71<dt><span class="sect1"><a href="Bv9ARM.ch04.html#dnssec.dynamic.zones">DNSSEC, Dynamic Zones, and Automatic Signing</a></span></dt>
72<dd><dl>
73<dt><span class="sect2"><a href="Bv9ARM.ch04.html#id2611126">Converting from insecure to secure</a></span></dt>
74<dt><span class="sect2"><a href="Bv9ARM.ch04.html#id2563650">Dynamic DNS update method</a></span></dt>
75<dt><span class="sect2"><a href="Bv9ARM.ch04.html#id2563686">Fully automatic zone signing</a></span></dt>
76<dt><span class="sect2"><a href="Bv9ARM.ch04.html#id2563933">Private-type records</a></span></dt>
77<dt><span class="sect2"><a href="Bv9ARM.ch04.html#id2582676">DNSKEY rollovers</a></span></dt>
78<dt><span class="sect2"><a href="Bv9ARM.ch04.html#id2582689">Dynamic DNS update method</a></span></dt>
79<dt><span class="sect2"><a href="Bv9ARM.ch04.html#id2582722">Automatic key rollovers</a></span></dt>
80<dt><span class="sect2"><a href="Bv9ARM.ch04.html#id2582748">NSEC3PARAM rollovers via UPDATE</a></span></dt>
81<dt><span class="sect2"><a href="Bv9ARM.ch04.html#id2582758">Converting from NSEC to NSEC3</a></span></dt>
82<dt><span class="sect2"><a href="Bv9ARM.ch04.html#id2582768">Converting from NSEC3 to NSEC</a></span></dt>
83<dt><span class="sect2"><a href="Bv9ARM.ch04.html#id2582780">Converting from secure to insecure</a></span></dt>
84<dt><span class="sect2"><a href="Bv9ARM.ch04.html#id2582818">Periodic re-signing</a></span></dt>
85<dt><span class="sect2"><a href="Bv9ARM.ch04.html#id2582827">NSEC3 and OPTOUT</a></span></dt>
86</dl></dd>
87<dt><span class="sect1"><a href="Bv9ARM.ch04.html#rfc5011.support">Dynamic Trust Anchor Management</a></span></dt>
88<dd><dl>
89<dt><span class="sect2"><a href="Bv9ARM.ch04.html#id2610708">Validating Resolver</a></span></dt>
90<dt><span class="sect2"><a href="Bv9ARM.ch04.html#id2610730">Authoritative Server</a></span></dt>
91</dl></dd>
92<dt><span class="sect1"><a href="Bv9ARM.ch04.html#pkcs11">PKCS#11 (Cryptoki) support</a></span></dt>
93<dd><dl>
94<dt><span class="sect2"><a href="Bv9ARM.ch04.html#id2666121">Prerequisites</a></span></dt>
95<dt><span class="sect2"><a href="Bv9ARM.ch04.html#id2666131">Native PKCS#11</a></span></dt>
96<dt><span class="sect2"><a href="Bv9ARM.ch04.html#id2611390">OpenSSL-based PKCS#11</a></span></dt>
97<dt><span class="sect2"><a href="Bv9ARM.ch04.html#id2638570">PKCS#11 Tools</a></span></dt>
98<dt><span class="sect2"><a href="Bv9ARM.ch04.html#id2638606">Using the HSM</a></span></dt>
99<dt><span class="sect2"><a href="Bv9ARM.ch04.html#id2638892">Specifying the engine on the command line</a></span></dt>
100<dt><span class="sect2"><a href="Bv9ARM.ch04.html#id2639009">Running named with automatic zone re-signing</a></span></dt>
101</dl></dd>
102<dt><span class="sect1"><a href="Bv9ARM.ch04.html#dlz-info">DLZ (Dynamically Loadable Zones)</a></span></dt>
103<dd><dl>
104<dt><span class="sect2"><a href="Bv9ARM.ch04.html#id2639074">Configuring DLZ</a></span></dt>
105<dt><span class="sect2"><a href="Bv9ARM.ch04.html#id2611909">Sample DLZ Driver</a></span></dt>
106</dl></dd>
107<dt><span class="sect1"><a href="Bv9ARM.ch04.html#id2571523">IPv6 Support in <acronym class="acronym">BIND</acronym> 9</a></span></dt>
108<dd><dl>
109<dt><span class="sect2"><a href="Bv9ARM.ch04.html#id2571789">Address Lookups Using AAAA Records</a></span></dt>
110<dt><span class="sect2"><a href="Bv9ARM.ch04.html#id2571811">Address to Name Lookups Using Nibble Format</a></span></dt>
111</dl></dd>
112</dl>
113</div>
114<div class="sect1" lang="en">
115<div class="titlepage"><div><div><h2 class="title" style="clear: both">
116<a name="notify"></a>Notify</h2></div></div></div>
117<p>
118        <acronym class="acronym">DNS</acronym> NOTIFY is a mechanism that allows master
119        servers to notify their slave servers of changes to a zone's data. In
120        response to a <span><strong class="command">NOTIFY</strong></span> from a master server, the
121        slave will check to see that its version of the zone is the
122        current version and, if not, initiate a zone transfer.
123      </p>
124<p>
125        For more information about <acronym class="acronym">DNS</acronym>
126        <span><strong class="command">NOTIFY</strong></span>, see the description of the
127        <span><strong class="command">notify</strong></span> option in <a href="Bv9ARM.ch06.html#boolean_options" title="Boolean Options">the section called &#8220;Boolean Options&#8221;</a> and
128        the description of the zone option <span><strong class="command">also-notify</strong></span> in
129        <a href="Bv9ARM.ch06.html#zone_transfers" title="Zone Transfers">the section called &#8220;Zone Transfers&#8221;</a>.  The <span><strong class="command">NOTIFY</strong></span>
130        protocol is specified in RFC 1996.
131      </p>
132<div class="note" style="margin-left: 0.5in; margin-right: 0.5in;">
133<h3 class="title">Note</h3>
134        As a slave zone can also be a master to other slaves, <span><strong class="command">named</strong></span>,
135        by default, sends <span><strong class="command">NOTIFY</strong></span> messages for every zone
136        it loads.  Specifying <span><strong class="command">notify master-only;</strong></span> will
137        cause <span><strong class="command">named</strong></span> to only send <span><strong class="command">NOTIFY</strong></span> for master
138        zones that it loads.
139      </div>
140</div>
141<div class="sect1" lang="en">
142<div class="titlepage"><div><div><h2 class="title" style="clear: both">
143<a name="dynamic_update"></a>Dynamic Update</h2></div></div></div>
144<p>
145        Dynamic Update is a method for adding, replacing or deleting
146        records in a master server by sending it a special form of DNS
147        messages.  The format and meaning of these messages is specified
148        in RFC 2136.
149      </p>
150<p>
151        Dynamic update is enabled by including an
152        <span><strong class="command">allow-update</strong></span> or an <span><strong class="command">update-policy</strong></span>
153        clause in the <span><strong class="command">zone</strong></span> statement.
154      </p>
155<p>
156        If the zone's <span><strong class="command">update-policy</strong></span> is set to
157        <strong class="userinput"><code>local</code></strong>, updates to the zone
158        will be permitted for the key <code class="varname">local-ddns</code>,
159        which will be generated by <span><strong class="command">named</strong></span> at startup.
160        See <a href="Bv9ARM.ch06.html#dynamic_update_policies" title="Dynamic Update Policies">the section called &#8220;Dynamic Update Policies&#8221;</a> for more details.
161      </p>
162<p>
163        Dynamic updates using Kerberos signed requests can be made
164        using the TKEY/GSS protocol by setting either the
165        <span><strong class="command">tkey-gssapi-keytab</strong></span> option, or alternatively
166        by setting both the <span><strong class="command">tkey-gssapi-credential</strong></span>
167        and <span><strong class="command">tkey-domain</strong></span> options. Once enabled,
168        Kerberos signed requests will be matched against the update
169        policies for the zone, using the Kerberos principal as the
170        signer for the request.
171      </p>
172<p>
173        Updating of secure zones (zones using DNSSEC) follows RFC
174        3007: RRSIG, NSEC and NSEC3 records affected by updates are
175        automatically regenerated by the server using an online
176        zone key.  Update authorization is based on transaction
177        signatures and an explicit server policy.
178      </p>
179<div class="sect2" lang="en">
180<div class="titlepage"><div><div><h3 class="title">
181<a name="journal"></a>The journal file</h3></div></div></div>
182<p>
183          All changes made to a zone using dynamic update are stored
184          in the zone's journal file.  This file is automatically created
185          by the server when the first dynamic update takes place.
186          The name of the journal file is formed by appending the extension
187          <code class="filename">.jnl</code> to the name of the
188          corresponding zone
189          file unless specifically overridden.  The journal file is in a
190          binary format and should not be edited manually.
191        </p>
192<p>
193          The server will also occasionally write ("dump")
194          the complete contents of the updated zone to its zone file.
195          This is not done immediately after
196          each dynamic update, because that would be too slow when a large
197          zone is updated frequently.  Instead, the dump is delayed by
198          up to 15 minutes, allowing additional updates to take place.
199          During the dump process, transient files will be created
200          with the extensions <code class="filename">.jnw</code> and
201          <code class="filename">.jbk</code>; under ordinary circumstances, these
202          will be removed when the dump is complete, and can be safely
203          ignored.
204        </p>
205<p>
206          When a server is restarted after a shutdown or crash, it will replay
207              the journal file to incorporate into the zone any updates that
208          took
209          place after the last zone dump.
210        </p>
211<p>
212          Changes that result from incoming incremental zone transfers are
213          also
214          journalled in a similar way.
215        </p>
216<p>
217          The zone files of dynamic zones cannot normally be edited by
218          hand because they are not guaranteed to contain the most recent
219          dynamic changes &#8212; those are only in the journal file.
220          The only way to ensure that the zone file of a dynamic zone
221          is up to date is to run <span><strong class="command">rndc stop</strong></span>.
222        </p>
223<p>
224          If you have to make changes to a dynamic zone
225          manually, the following procedure will work:
226          Disable dynamic updates to the zone using
227          <span><strong class="command">rndc freeze <em class="replaceable"><code>zone</code></em></strong></span>.
228          This will update the zone's master file with the changes
229          stored in its <code class="filename">.jnl</code> file.
230          Edit the zone file.  Run
231          <span><strong class="command">rndc thaw <em class="replaceable"><code>zone</code></em></strong></span>
232          to reload the changed zone and re-enable dynamic updates.
233        </p>
234<p>
235          <span><strong class="command">rndc sync <em class="replaceable"><code>zone</code></em></strong></span>
236          will update the zone file with changes from the journal file
237          without stopping dynamic updates; this may be useful for viewing
238          the current zone state.  To remove the <code class="filename">.jnl</code>
239          file after updating the zone file, use
240          <span><strong class="command">rndc sync -clean</strong></span>.
241        </p>
242</div>
243</div>
244<div class="sect1" lang="en">
245<div class="titlepage"><div><div><h2 class="title" style="clear: both">
246<a name="incremental_zone_transfers"></a>Incremental Zone Transfers (IXFR)</h2></div></div></div>
247<p>
248        The incremental zone transfer (IXFR) protocol is a way for
249        slave servers to transfer only changed data, instead of having to
250        transfer the entire zone. The IXFR protocol is specified in RFC
251        1995. See <a href="Bv9ARM.ch11.html#proposed_standards">Proposed Standards</a>.
252      </p>
253<p>
254        When acting as a master, <acronym class="acronym">BIND</acronym> 9
255        supports IXFR for those zones
256        where the necessary change history information is available. These
257        include master zones maintained by dynamic update and slave zones
258        whose data was obtained by IXFR.  For manually maintained master
259        zones, and for slave zones obtained by performing a full zone
260        transfer (AXFR), IXFR is supported only if the option
261        <span><strong class="command">ixfr-from-differences</strong></span> is set
262        to <strong class="userinput"><code>yes</code></strong>.
263      </p>
264<p>
265        When acting as a slave, <acronym class="acronym">BIND</acronym> 9 will
266        attempt to use IXFR unless
267        it is explicitly disabled. For more information about disabling
268        IXFR, see the description of the <span><strong class="command">request-ixfr</strong></span> clause
269        of the <span><strong class="command">server</strong></span> statement.
270      </p>
271</div>
272<div class="sect1" lang="en">
273<div class="titlepage"><div><div><h2 class="title" style="clear: both">
274<a name="id2569920"></a>Split DNS</h2></div></div></div>
275<p>
276        Setting up different views, or visibility, of the DNS space to
277        internal and external resolvers is usually referred to as a
278        <span class="emphasis"><em>Split DNS</em></span> setup. There are several
279        reasons an organization would want to set up its DNS this way.
280      </p>
281<p>
282        One common reason for setting up a DNS system this way is
283        to hide "internal" DNS information from "external" clients on the
284        Internet. There is some debate as to whether or not this is actually
285        useful.
286        Internal DNS information leaks out in many ways (via email headers,
287        for example) and most savvy "attackers" can find the information
288        they need using other means.
289        However, since listing addresses of internal servers that
290        external clients cannot possibly reach can result in
291        connection delays and other annoyances, an organization may
292        choose to use a Split DNS to present a consistent view of itself
293        to the outside world.
294      </p>
295<p>
296        Another common reason for setting up a Split DNS system is
297        to allow internal networks that are behind filters or in RFC 1918
298        space (reserved IP space, as documented in RFC 1918) to resolve DNS
299        on the Internet. Split DNS can also be used to allow mail from outside
300        back in to the internal network.
301      </p>
302<div class="sect2" lang="en">
303<div class="titlepage"><div><div><h3 class="title">
304<a name="id2569938"></a>Example split DNS setup</h3></div></div></div>
305<p>
306        Let's say a company named <span class="emphasis"><em>Example, Inc.</em></span>
307        (<code class="literal">example.com</code>)
308        has several corporate sites that have an internal network with
309        reserved
310        Internet Protocol (IP) space and an external demilitarized zone (DMZ),
311        or "outside" section of a network, that is available to the public.
312      </p>
313<p>
314        <span class="emphasis"><em>Example, Inc.</em></span> wants its internal clients
315        to be able to resolve external hostnames and to exchange mail with
316        people on the outside. The company also wants its internal resolvers
317        to have access to certain internal-only zones that are not available
318        at all outside of the internal network.
319      </p>
320<p>
321        In order to accomplish this, the company will set up two sets
322        of name servers. One set will be on the inside network (in the
323        reserved
324        IP space) and the other set will be on bastion hosts, which are
325        "proxy"
326        hosts that can talk to both sides of its network, in the DMZ.
327      </p>
328<p>
329        The internal servers will be configured to forward all queries,
330        except queries for <code class="filename">site1.internal</code>, <code class="filename">site2.internal</code>, <code class="filename">site1.example.com</code>,
331        and <code class="filename">site2.example.com</code>, to the servers
332        in the
333        DMZ. These internal servers will have complete sets of information
334        for <code class="filename">site1.example.com</code>, <code class="filename">site2.example.com</code>, <code class="filename">site1.internal</code>,
335        and <code class="filename">site2.internal</code>.
336      </p>
337<p>
338        To protect the <code class="filename">site1.internal</code> and <code class="filename">site2.internal</code> domains,
339        the internal name servers must be configured to disallow all queries
340        to these domains from any external hosts, including the bastion
341        hosts.
342      </p>
343<p>
344        The external servers, which are on the bastion hosts, will
345        be configured to serve the "public" version of the <code class="filename">site1</code> and <code class="filename">site2.example.com</code> zones.
346        This could include things such as the host records for public servers
347        (<code class="filename">www.example.com</code> and <code class="filename">ftp.example.com</code>),
348        and mail exchange (MX)  records (<code class="filename">a.mx.example.com</code> and <code class="filename">b.mx.example.com</code>).
349      </p>
350<p>
351        In addition, the public <code class="filename">site1</code> and <code class="filename">site2.example.com</code> zones
352        should have special MX records that contain wildcard (`*') records
353        pointing to the bastion hosts. This is needed because external mail
354        servers do not have any other way of looking up how to deliver mail
355        to those internal hosts. With the wildcard records, the mail will
356        be delivered to the bastion host, which can then forward it on to
357        internal hosts.
358      </p>
359<p>
360        Here's an example of a wildcard MX record:
361      </p>
362<pre class="programlisting">*   IN MX 10 external1.example.com.</pre>
363<p>
364        Now that they accept mail on behalf of anything in the internal
365        network, the bastion hosts will need to know how to deliver mail
366        to internal hosts. In order for this to work properly, the resolvers
367        on
368        the bastion hosts will need to be configured to point to the internal
369        name servers for DNS resolution.
370      </p>
371<p>
372        Queries for internal hostnames will be answered by the internal
373        servers, and queries for external hostnames will be forwarded back
374        out to the DNS servers on the bastion hosts.
375      </p>
376<p>
377        In order for all this to work properly, internal clients will
378        need to be configured to query <span class="emphasis"><em>only</em></span> the internal
379        name servers for DNS queries. This could also be enforced via
380        selective
381        filtering on the network.
382      </p>
383<p>
384        If everything has been set properly, <span class="emphasis"><em>Example, Inc.</em></span>'s
385        internal clients will now be able to:
386      </p>
387<div class="itemizedlist"><ul type="disc">
388<li>
389            Look up any hostnames in the <code class="literal">site1</code>
390            and
391            <code class="literal">site2.example.com</code> zones.
392          </li>
393<li>
394            Look up any hostnames in the <code class="literal">site1.internal</code> and
395            <code class="literal">site2.internal</code> domains.
396          </li>
397<li>Look up any hostnames on the Internet.</li>
398<li>Exchange mail with both internal and external people.</li>
399</ul></div>
400<p>
401        Hosts on the Internet will be able to:
402      </p>
403<div class="itemizedlist"><ul type="disc">
404<li>
405            Look up any hostnames in the <code class="literal">site1</code>
406            and
407            <code class="literal">site2.example.com</code> zones.
408          </li>
409<li>
410            Exchange mail with anyone in the <code class="literal">site1</code> and
411            <code class="literal">site2.example.com</code> zones.
412          </li>
413</ul></div>
414<p>
415        Here is an example configuration for the setup we just
416        described above. Note that this is only configuration information;
417        for information on how to configure your zone files, see <a href="Bv9ARM.ch03.html#sample_configuration" title="Sample Configurations">the section called &#8220;Sample Configurations&#8221;</a>.
418      </p>
419<p>
420        Internal DNS server config:
421      </p>
422<pre class="programlisting">
423
424acl internals { 172.16.72.0/24; 192.168.1.0/24; };
425
426acl externals { <code class="varname">bastion-ips-go-here</code>; };
427
428options {
429    ...
430    ...
431    forward only;
432    // forward to external servers
433    forwarders {
434        <code class="varname">bastion-ips-go-here</code>;
435    };
436    // sample allow-transfer (no one)
437    allow-transfer { none; };
438    // restrict query access
439    allow-query { internals; externals; };
440    // restrict recursion
441    allow-recursion { internals; };
442    ...
443    ...
444};
445
446// sample master zone
447zone "site1.example.com" {
448  type master;
449  file "m/site1.example.com";
450  // do normal iterative resolution (do not forward)
451  forwarders { };
452  allow-query { internals; externals; };
453  allow-transfer { internals; };
454};
455
456// sample slave zone
457zone "site2.example.com" {
458  type slave;
459  file "s/site2.example.com";
460  masters { 172.16.72.3; };
461  forwarders { };
462  allow-query { internals; externals; };
463  allow-transfer { internals; };
464};
465
466zone "site1.internal" {
467  type master;
468  file "m/site1.internal";
469  forwarders { };
470  allow-query { internals; };
471  allow-transfer { internals; }
472};
473
474zone "site2.internal" {
475  type slave;
476  file "s/site2.internal";
477  masters { 172.16.72.3; };
478  forwarders { };
479  allow-query { internals };
480  allow-transfer { internals; }
481};
482</pre>
483<p>
484        External (bastion host) DNS server config:
485      </p>
486<pre class="programlisting">
487acl internals { 172.16.72.0/24; 192.168.1.0/24; };
488
489acl externals { bastion-ips-go-here; };
490
491options {
492  ...
493  ...
494  // sample allow-transfer (no one)
495  allow-transfer { none; };
496  // default query access
497  allow-query { any; };
498  // restrict cache access
499  allow-query-cache { internals; externals; };
500  // restrict recursion
501  allow-recursion { internals; externals; };
502  ...
503  ...
504};
505
506// sample slave zone
507zone "site1.example.com" {
508  type master;
509  file "m/site1.foo.com";
510  allow-transfer { internals; externals; };
511};
512
513zone "site2.example.com" {
514  type slave;
515  file "s/site2.foo.com";
516  masters { another_bastion_host_maybe; };
517  allow-transfer { internals; externals; }
518};
519</pre>
520<p>
521        In the <code class="filename">resolv.conf</code> (or equivalent) on
522        the bastion host(s):
523      </p>
524<pre class="programlisting">
525search ...
526nameserver 172.16.72.2
527nameserver 172.16.72.3
528nameserver 172.16.72.4
529</pre>
530</div>
531</div>
532<div class="sect1" lang="en">
533<div class="titlepage"><div><div><h2 class="title" style="clear: both">
534<a name="tsig"></a>TSIG</h2></div></div></div>
535<p>
536        This is a short guide to setting up Transaction SIGnatures
537        (TSIG) based transaction security in <acronym class="acronym">BIND</acronym>. It describes changes
538        to the configuration file as well as what changes are required for
539        different features, including the process of creating transaction
540        keys and using transaction signatures with <acronym class="acronym">BIND</acronym>.
541      </p>
542<p>
543        <acronym class="acronym">BIND</acronym> primarily supports TSIG for server
544        to server communication.
545        This includes zone transfer, notify, and recursive query messages.
546        Resolvers based on newer versions of <acronym class="acronym">BIND</acronym> 8 have limited support
547        for TSIG.
548      </p>
549<p>
550        TSIG can also be useful for dynamic update. A primary
551        server for a dynamic zone should control access to the dynamic
552        update service, but IP-based access control is insufficient.
553        The cryptographic access control provided by TSIG
554        is far superior. The <span><strong class="command">nsupdate</strong></span>
555        program supports TSIG via the <code class="option">-k</code> and
556        <code class="option">-y</code> command line options or inline by use
557        of the <span><strong class="command">key</strong></span>.
558      </p>
559<div class="sect2" lang="en">
560<div class="titlepage"><div><div><h3 class="title">
561<a name="id2570439"></a>Generate Shared Keys for Each Pair of Hosts</h3></div></div></div>
562<p>
563          A shared secret is generated to be shared between <span class="emphasis"><em>host1</em></span> and <span class="emphasis"><em>host2</em></span>.
564          An arbitrary key name is chosen: "host1-host2.". The key name must
565          be the same on both hosts.
566        </p>
567<div class="sect3" lang="en">
568<div class="titlepage"><div><div><h4 class="title">
569<a name="id2570524"></a>Automatic Generation</h4></div></div></div>
570<p>
571            The following command will generate a 128-bit (16 byte) HMAC-SHA256
572            key as described above. Longer keys are better, but shorter keys
573            are easier to read. Note that the maximum key length is the digest
574            length, here 256 bits.
575          </p>
576<p>
577            <strong class="userinput"><code>dnssec-keygen -a hmac-sha256 -b 128 -n HOST host1-host2.</code></strong>
578          </p>
579<p>
580            The key is in the file <code class="filename">Khost1-host2.+163+00000.private</code>.
581            Nothing directly uses this file, but the base-64 encoded string
582            following "<code class="literal">Key:</code>"
583            can be extracted from the file and used as a shared secret:
584          </p>
585<pre class="programlisting">Key: La/E5CjG9O+os1jq0a2jdA==</pre>
586<p>
587            The string "<code class="literal">La/E5CjG9O+os1jq0a2jdA==</code>" can
588            be used as the shared secret.
589          </p>
590</div>
591<div class="sect3" lang="en">
592<div class="titlepage"><div><div><h4 class="title">
593<a name="id2570563"></a>Manual Generation</h4></div></div></div>
594<p>
595            The shared secret is simply a random sequence of bits, encoded
596            in base-64. Most ASCII strings are valid base-64 strings (assuming
597            the length is a multiple of 4 and only valid characters are used),
598            so the shared secret can be manually generated.
599          </p>
600<p>
601            Also, a known string can be run through <span><strong class="command">mmencode</strong></span> or
602            a similar program to generate base-64 encoded data.
603          </p>
604</div>
605</div>
606<div class="sect2" lang="en">
607<div class="titlepage"><div><div><h3 class="title">
608<a name="id2570581"></a>Copying the Shared Secret to Both Machines</h3></div></div></div>
609<p>
610          This is beyond the scope of DNS. A secure transport mechanism
611          should be used. This could be secure FTP, ssh, telephone, etc.
612        </p>
613</div>
614<div class="sect2" lang="en">
615<div class="titlepage"><div><div><h3 class="title">
616<a name="id2570592"></a>Informing the Servers of the Key's Existence</h3></div></div></div>
617<p>
618          Imagine <span class="emphasis"><em>host1</em></span> and <span class="emphasis"><em>host 2</em></span>
619          are
620          both servers. The following is added to each server's <code class="filename">named.conf</code> file:
621        </p>
622<pre class="programlisting">
623key host1-host2. {
624  algorithm hmac-sha256;
625  secret "La/E5CjG9O+os1jq0a2jdA==";
626};
627</pre>
628<p>
629          The secret is the one generated above. Since this is a secret, it
630          is recommended that either <code class="filename">named.conf</code> be
631          non-world readable, or the key directive be added to a non-world
632          readable file that is included by <code class="filename">named.conf</code>.
633        </p>
634<p>
635          At this point, the key is recognized. This means that if the
636          server receives a message signed by this key, it can verify the
637          signature. If the signature is successfully verified, the
638          response is signed by the same key.
639        </p>
640</div>
641<div class="sect2" lang="en">
642<div class="titlepage"><div><div><h3 class="title">
643<a name="id2570628"></a>Instructing the Server to Use the Key</h3></div></div></div>
644<p>
645          Since keys are shared between two hosts only, the server must
646          be told when keys are to be used. The following is added to the <code class="filename">named.conf</code> file
647          for <span class="emphasis"><em>host1</em></span>, if the IP address of <span class="emphasis"><em>host2</em></span> is
648          10.1.2.3:
649        </p>
650<pre class="programlisting">
651server 10.1.2.3 {
652  keys { host1-host2. ;};
653};
654</pre>
655<p>
656          Multiple keys may be present, but only the first is used.
657          This directive does not contain any secrets, so it may be in a
658          world-readable
659          file.
660        </p>
661<p>
662          If <span class="emphasis"><em>host1</em></span> sends a message that is a request
663          to that address, the message will be signed with the specified key. <span class="emphasis"><em>host1</em></span> will
664          expect any responses to signed messages to be signed with the same
665          key.
666        </p>
667<p>
668          A similar statement must be present in <span class="emphasis"><em>host2</em></span>'s
669          configuration file (with <span class="emphasis"><em>host1</em></span>'s address) for <span class="emphasis"><em>host2</em></span> to
670          sign request messages to <span class="emphasis"><em>host1</em></span>.
671        </p>
672</div>
673<div class="sect2" lang="en">
674<div class="titlepage"><div><div><h3 class="title">
675<a name="id2570685"></a>TSIG Key Based Access Control</h3></div></div></div>
676<p>
677          <acronym class="acronym">BIND</acronym> allows IP addresses and ranges
678          to be specified in ACL
679          definitions and
680          <span><strong class="command">allow-{ query | transfer | update }</strong></span>
681          directives.
682          This has been extended to allow TSIG keys also. The above key would
683          be denoted <span><strong class="command">key host1-host2.</strong></span>
684        </p>
685<p>
686          An example of an <span><strong class="command">allow-update</strong></span> directive would be:
687        </p>
688<pre class="programlisting">
689allow-update { key host1-host2. ;};
690</pre>
691<p>
692          This allows dynamic updates to succeed only if the request
693          was signed by a key named "<span><strong class="command">host1-host2.</strong></span>".
694        </p>
695<p>
696          See <a href="Bv9ARM.ch06.html#dynamic_update_policies" title="Dynamic Update Policies">the section called &#8220;Dynamic Update Policies&#8221;</a> for a discussion of
697          the more flexible <span><strong class="command">update-policy</strong></span> statement.
698        </p>
699</div>
700<div class="sect2" lang="en">
701<div class="titlepage"><div><div><h3 class="title">
702<a name="id2570734"></a>Errors</h3></div></div></div>
703<p>
704          The processing of TSIG signed messages can result in
705          several errors. If a signed message is sent to a non-TSIG aware
706          server, a FORMERR (format error) will be returned, since the server will not
707          understand the record. This is a result of misconfiguration,
708          since the server must be explicitly configured to send a TSIG
709          signed message to a specific server.
710        </p>
711<p>
712          If a TSIG aware server receives a message signed by an
713          unknown key, the response will be unsigned with the TSIG
714          extended error code set to BADKEY. If a TSIG aware server
715          receives a message with a signature that does not validate, the
716          response will be unsigned with the TSIG extended error code set
717          to BADSIG. If a TSIG aware server receives a message with a time
718          outside of the allowed range, the response will be signed with
719          the TSIG extended error code set to BADTIME, and the time values
720          will be adjusted so that the response can be successfully
721          verified. In any of these cases, the message's rcode (response code) is set to
722          NOTAUTH (not authenticated).
723        </p>
724</div>
725</div>
726<div class="sect1" lang="en">
727<div class="titlepage"><div><div><h2 class="title" style="clear: both">
728<a name="id2570748"></a>TKEY</h2></div></div></div>
729<p><span><strong class="command">TKEY</strong></span>
730        is a mechanism for automatically generating a shared secret
731        between two hosts.  There are several "modes" of
732        <span><strong class="command">TKEY</strong></span> that specify how the key is generated
733        or assigned.  <acronym class="acronym">BIND</acronym> 9 implements only one of
734        these modes, the Diffie-Hellman key exchange.  Both hosts are
735        required to have a Diffie-Hellman KEY record (although this
736        record is not required to be present in a zone).  The
737        <span><strong class="command">TKEY</strong></span> process must use signed messages,
738        signed either by TSIG or SIG(0).  The result of
739        <span><strong class="command">TKEY</strong></span> is a shared secret that can be used to
740        sign messages with TSIG.  <span><strong class="command">TKEY</strong></span> can also be
741        used to delete shared secrets that it had previously
742        generated.
743      </p>
744<p>
745        The <span><strong class="command">TKEY</strong></span> process is initiated by a
746        client
747        or server by sending a signed <span><strong class="command">TKEY</strong></span>
748        query
749        (including any appropriate KEYs) to a TKEY-aware server.  The
750        server response, if it indicates success, will contain a
751        <span><strong class="command">TKEY</strong></span> record and any appropriate keys.
752        After
753        this exchange, both participants have enough information to
754        determine the shared secret; the exact process depends on the
755        <span><strong class="command">TKEY</strong></span> mode.  When using the
756        Diffie-Hellman
757        <span><strong class="command">TKEY</strong></span> mode, Diffie-Hellman keys are
758        exchanged,
759        and the shared secret is derived by both participants.
760      </p>
761</div>
762<div class="sect1" lang="en">
763<div class="titlepage"><div><div><h2 class="title" style="clear: both">
764<a name="id2570797"></a>SIG(0)</h2></div></div></div>
765<p>
766        <acronym class="acronym">BIND</acronym> 9 partially supports DNSSEC SIG(0)
767            transaction signatures as specified in RFC 2535 and RFC 2931.
768        SIG(0)
769        uses public/private keys to authenticate messages.  Access control
770        is performed in the same manner as TSIG keys; privileges can be
771        granted or denied based on the key name.
772      </p>
773<p>
774        When a SIG(0) signed message is received, it will only be
775        verified if the key is known and trusted by the server; the server
776        will not attempt to locate and/or validate the key.
777      </p>
778<p>
779        SIG(0) signing of multiple-message TCP streams is not
780        supported.
781      </p>
782<p>
783        The only tool shipped with <acronym class="acronym">BIND</acronym> 9 that
784        generates SIG(0) signed messages is <span><strong class="command">nsupdate</strong></span>.
785      </p>
786</div>
787<div class="sect1" lang="en">
788<div class="titlepage"><div><div><h2 class="title" style="clear: both">
789<a name="DNSSEC"></a>DNSSEC</h2></div></div></div>
790<p>
791        Cryptographic authentication of DNS information is possible
792        through the DNS Security (<span class="emphasis"><em>DNSSEC-bis</em></span>) extensions,
793        defined in RFC 4033, RFC 4034, and RFC 4035.
794        This section describes the creation and use of DNSSEC signed zones.
795      </p>
796<p>
797        In order to set up a DNSSEC secure zone, there are a series
798        of steps which must be followed.  <acronym class="acronym">BIND</acronym>
799        9 ships
800        with several tools
801        that are used in this process, which are explained in more detail
802        below.  In all cases, the <code class="option">-h</code> option prints a
803        full list of parameters.  Note that the DNSSEC tools require the
804        keyset files to be in the working directory or the
805        directory specified by the <code class="option">-d</code> option, and
806        that the tools shipped with BIND 9.2.x and earlier are not compatible
807        with the current ones.
808      </p>
809<p>
810        There must also be communication with the administrators of
811        the parent and/or child zone to transmit keys.  A zone's security
812        status must be indicated by the parent zone for a DNSSEC capable
813        resolver to trust its data.  This is done through the presence
814        or absence of a <code class="literal">DS</code> record at the
815        delegation
816        point.
817      </p>
818<p>
819        For other servers to trust data in this zone, they must
820        either be statically configured with this zone's zone key or the
821        zone key of another zone above this one in the DNS tree.
822      </p>
823<div class="sect2" lang="en">
824<div class="titlepage"><div><div><h3 class="title">
825<a name="id2570934"></a>Generating Keys</h3></div></div></div>
826<p>
827          The <span><strong class="command">dnssec-keygen</strong></span> program is used to
828          generate keys.
829        </p>
830<p>
831          A secure zone must contain one or more zone keys.  The
832          zone keys will sign all other records in the zone, as well as
833          the zone keys of any secure delegated zones.  Zone keys must
834          have the same name as the zone, a name type of
835          <span><strong class="command">ZONE</strong></span>, and must be usable for
836          authentication.
837          It is recommended that zone keys use a cryptographic algorithm
838          designated as "mandatory to implement" by the IETF; currently
839          the only one is RSASHA1.
840        </p>
841<p>
842          The following command will generate a 768-bit RSASHA1 key for
843          the <code class="filename">child.example</code> zone:
844        </p>
845<p>
846          <strong class="userinput"><code>dnssec-keygen -a RSASHA1 -b 768 -n ZONE child.example.</code></strong>
847        </p>
848<p>
849          Two output files will be produced:
850          <code class="filename">Kchild.example.+005+12345.key</code> and
851          <code class="filename">Kchild.example.+005+12345.private</code>
852          (where
853          12345 is an example of a key tag).  The key filenames contain
854          the key name (<code class="filename">child.example.</code>),
855          algorithm (3
856          is DSA, 1 is RSAMD5, 5 is RSASHA1, etc.), and the key tag (12345 in
857          this case).
858          The private key (in the <code class="filename">.private</code>
859          file) is
860          used to generate signatures, and the public key (in the
861          <code class="filename">.key</code> file) is used for signature
862          verification.
863        </p>
864<p>
865          To generate another key with the same properties (but with
866          a different key tag), repeat the above command.
867        </p>
868<p>
869          The <span><strong class="command">dnssec-keyfromlabel</strong></span> program is used
870          to get a key pair from a crypto hardware and build the key
871          files. Its usage is similar to <span><strong class="command">dnssec-keygen</strong></span>.
872        </p>
873<p>
874          The public keys should be inserted into the zone file by
875          including the <code class="filename">.key</code> files using
876          <span><strong class="command">$INCLUDE</strong></span> statements.
877        </p>
878</div>
879<div class="sect2" lang="en">
880<div class="titlepage"><div><div><h3 class="title">
881<a name="id2571218"></a>Signing the Zone</h3></div></div></div>
882<p>
883          The <span><strong class="command">dnssec-signzone</strong></span> program is used
884          to sign a zone.
885        </p>
886<p>
887          Any <code class="filename">keyset</code> files corresponding to
888          secure subzones should be present.  The zone signer will
889          generate <code class="literal">NSEC</code>, <code class="literal">NSEC3</code>
890          and <code class="literal">RRSIG</code> records for the zone, as
891          well as <code class="literal">DS</code> for the child zones if
892          <code class="literal">'-g'</code> is specified.  If <code class="literal">'-g'</code>
893          is not specified, then DS RRsets for the secure child
894          zones need to be added manually.
895        </p>
896<p>
897          The following command signs the zone, assuming it is in a
898          file called <code class="filename">zone.child.example</code>.  By
899                default, all zone keys which have an available private key are
900                used to generate signatures.
901        </p>
902<p>
903          <strong class="userinput"><code>dnssec-signzone -o child.example zone.child.example</code></strong>
904        </p>
905<p>
906          One output file is produced:
907          <code class="filename">zone.child.example.signed</code>.  This
908          file
909          should be referenced by <code class="filename">named.conf</code>
910          as the
911          input file for the zone.
912        </p>
913<p><span><strong class="command">dnssec-signzone</strong></span>
914          will also produce a keyset and dsset files and optionally a
915          dlvset file.  These are used to provide the parent zone
916          administrators with the <code class="literal">DNSKEYs</code> (or their
917          corresponding <code class="literal">DS</code> records) that are the
918          secure entry point to the zone.
919        </p>
920</div>
921<div class="sect2" lang="en">
922<div class="titlepage"><div><div><h3 class="title">
923<a name="id2571299"></a>Configuring Servers</h3></div></div></div>
924<p>
925          To enable <span><strong class="command">named</strong></span> to respond appropriately
926          to DNS requests from DNSSEC aware clients,
927          <span><strong class="command">dnssec-enable</strong></span> must be set to yes.
928          (This is the default setting.)
929        </p>
930<p>
931          To enable <span><strong class="command">named</strong></span> to validate answers from
932          other servers, the <span><strong class="command">dnssec-enable</strong></span> option
933          must be set to <strong class="userinput"><code>yes</code></strong>, and the
934          <span><strong class="command">dnssec-validation</strong></span> options must be set to
935          <strong class="userinput"><code>yes</code></strong> or <strong class="userinput"><code>auto</code></strong>.
936        </p>
937<p>
938          If <span><strong class="command">dnssec-validation</strong></span> is set to
939          <strong class="userinput"><code>auto</code></strong>, then a default
940          trust anchor for the DNS root zone will be used.
941          If it is set to <strong class="userinput"><code>yes</code></strong>, however,
942          then at least one trust anchor must be configured
943          with a <span><strong class="command">trusted-keys</strong></span> or
944          <span><strong class="command">managed-keys</strong></span> statement in
945          <code class="filename">named.conf</code>, or DNSSEC validation
946          will not occur.  The default setting is
947          <strong class="userinput"><code>yes</code></strong>.
948        </p>
949<p>
950          <span><strong class="command">trusted-keys</strong></span> are copies of DNSKEY RRs
951          for zones that are used to form the first link in the
952          cryptographic chain of trust.  All keys listed in
953          <span><strong class="command">trusted-keys</strong></span> (and corresponding zones)
954          are deemed to exist and only the listed keys will be used
955          to validated the DNSKEY RRset that they are from.
956        </p>
957<p>
958          <span><strong class="command">managed-keys</strong></span> are trusted keys which are
959          automatically kept up to date via RFC 5011 trust anchor
960          maintenance.
961        </p>
962<p>
963          <span><strong class="command">trusted-keys</strong></span> and
964          <span><strong class="command">managed-keys</strong></span> are described in more detail
965          later in this document.
966        </p>
967<p>
968          Unlike <acronym class="acronym">BIND</acronym> 8, <acronym class="acronym">BIND</acronym>
969          9 does not verify signatures on load, so zone keys for
970          authoritative zones do not need to be specified in the
971          configuration file.
972        </p>
973<p>
974          After DNSSEC gets established, a typical DNSSEC configuration
975          will look something like the following.  It has one or
976          more public keys for the root.  This allows answers from
977          outside the organization to be validated.  It will also
978          have several keys for parts of the namespace the organization
979          controls.  These are here to ensure that <span><strong class="command">named</strong></span>
980          is immune to compromises in the DNSSEC components of the security
981          of parent zones.
982        </p>
983<pre class="programlisting">
984managed-keys {
985        /* Root Key */
986        "." initial-key 257 3 3 "BNY4wrWM1nCfJ+CXd0rVXyYmobt7sEEfK3clRbGaTwS
987                                 JxrGkxJWoZu6I7PzJu/E9gx4UC1zGAHlXKdE4zYIpRh
988                                 aBKnvcC2U9mZhkdUpd1Vso/HAdjNe8LmMlnzY3zy2Xy
989                                 4klWOADTPzSv9eamj8V18PHGjBLaVtYvk/ln5ZApjYg
990                                 hf+6fElrmLkdaz MQ2OCnACR817DF4BBa7UR/beDHyp
991                                 5iWTXWSi6XmoJLbG9Scqc7l70KDqlvXR3M/lUUVRbke
992                                 g1IPJSidmK3ZyCllh4XSKbje/45SKucHgnwU5jefMtq
993                                 66gKodQj+MiA21AfUVe7u99WzTLzY3qlxDhxYQQ20FQ
994                                 97S+LKUTpQcq27R7AT3/V5hRQxScINqwcz4jYqZD2fQ
995                                 dgxbcDTClU0CRBdiieyLMNzXG3";
996};
997
998trusted-keys {
999        /* Key for our organization's forward zone */
1000        example.com. 257 3 5 "AwEAAaxPMcR2x0HbQV4WeZB6oEDX+r0QM6
1001                              5KbhTjrW1ZaARmPhEZZe3Y9ifgEuq7vZ/z
1002                              GZUdEGNWy+JZzus0lUptwgjGwhUS1558Hb
1003                              4JKUbbOTcM8pwXlj0EiX3oDFVmjHO444gL
1004                              kBOUKUf/mC7HvfwYH/Be22GnClrinKJp1O
1005                              g4ywzO9WglMk7jbfW33gUKvirTHr25GL7S
1006                              TQUzBb5Usxt8lgnyTUHs1t3JwCY5hKZ6Cq
1007                              FxmAVZP20igTixin/1LcrgX/KMEGd/biuv
1008                              F4qJCyduieHukuY3H4XMAcR+xia2nIUPvm
1009                              /oyWR8BW/hWdzOvnSCThlHf3xiYleDbt/o
1010                              1OTQ09A0=";
1011
1012        /* Key for our reverse zone. */
1013        2.0.192.IN-ADDRPA.NET. 257 3 5 "AQOnS4xn/IgOUpBPJ3bogzwc
1014                                       xOdNax071L18QqZnQQQAVVr+i
1015                                       LhGTnNGp3HoWQLUIzKrJVZ3zg
1016                                       gy3WwNT6kZo6c0tszYqbtvchm
1017                                       gQC8CzKojM/W16i6MG/eafGU3
1018                                       siaOdS0yOI6BgPsw+YZdzlYMa
1019                                       IJGf4M4dyoKIhzdZyQ2bYQrjy
1020                                       Q4LB0lC7aOnsMyYKHHYeRvPxj
1021                                       IQXmdqgOJGq+vsevG06zW+1xg
1022                                       YJh9rCIfnm1GX/KMgxLPG2vXT
1023                                       D/RnLX+D3T3UL7HJYHJhAZD5L
1024                                       59VvjSPsZJHeDCUyWYrvPZesZ
1025                                       DIRvhDD52SKvbheeTJUm6Ehkz
1026                                       ytNN2SN96QRk8j/iI8ib";
1027};
1028
1029options {
1030        ...
1031        dnssec-enable yes;
1032        dnssec-validation yes;
1033};
1034</pre>
1035<div class="note" style="margin-left: 0.5in; margin-right: 0.5in;">
1036<h3 class="title">Note</h3>
1037          None of the keys listed in this example are valid.  In particular,
1038          the root key is not valid.
1039        </div>
1040<p>
1041          When DNSSEC validation is enabled and properly configured,
1042          the resolver will reject any answers from signed, secure zones
1043          which fail to validate, and will return SERVFAIL to the client.
1044        </p>
1045<p>
1046          Responses may fail to validate for any of several reasons,
1047          including missing, expired, or invalid signatures, a key which
1048          does not match the DS RRset in the parent zone, or an insecure
1049          response from a zone which, according to its parent, should have
1050          been secure.
1051        </p>
1052<div class="note" style="margin-left: 0.5in; margin-right: 0.5in;">
1053<h3 class="title">Note</h3>
1054<p>
1055            When the validator receives a response from an unsigned zone
1056            that has a signed parent, it must confirm with the parent
1057            that the zone was intentionally left unsigned.  It does
1058            this by verifying, via signed and validated NSEC/NSEC3 records,
1059            that the parent zone contains no DS records for the child.
1060          </p>
1061<p>
1062            If the validator <span class="emphasis"><em>can</em></span> prove that the zone
1063            is insecure, then the response is accepted.  However, if it
1064            cannot, then it must assume an insecure response to be a
1065            forgery; it rejects the response and logs an error.
1066          </p>
1067<p>
1068            The logged error reads "insecurity proof failed" and
1069            "got insecure response; parent indicates it should be secure".
1070            (Prior to BIND 9.7, the logged error was "not insecure".
1071            This referred to the zone, not the response.)
1072          </p>
1073</div>
1074</div>
1075</div>
1076<div class="sect1" lang="en">
1077<div class="titlepage"><div><div><h2 class="title" style="clear: both">
1078<a name="dnssec.dynamic.zones"></a>DNSSEC, Dynamic Zones, and Automatic Signing</h2></div></div></div>
1079<p>As of BIND 9.7.0 it is possible to change a dynamic zone
1080  from insecure to signed and back again. A secure zone can use
1081  either NSEC or NSEC3 chains.</p>
1082<div class="sect2" lang="en"><div class="titlepage"><div><div><h3 class="title">
1083<a name="id2611126"></a>Converting from insecure to secure</h3></div></div></div></div>
1084<p>Changing a zone from insecure to secure can be done in two
1085  ways: using a dynamic DNS update, or the
1086  <span><strong class="command">auto-dnssec</strong></span> zone option.</p>
1087<p>For either method, you need to configure
1088  <span><strong class="command">named</strong></span> so that it can see the
1089  <code class="filename">K*</code> files which contain the public and private
1090  parts of the keys that will be used to sign the zone. These files
1091  will have been generated by
1092  <span><strong class="command">dnssec-keygen</strong></span>. You can do this by placing them
1093  in the key-directory, as specified in
1094  <code class="filename">named.conf</code>:</p>
1095<pre class="programlisting">
1096        zone example.net {
1097                type master;
1098                update-policy local;
1099                file "dynamic/example.net/example.net";
1100                key-directory "dynamic/example.net";
1101        };
1102</pre>
1103<p>If one KSK and one ZSK DNSKEY key have been generated, this
1104  configuration will cause all records in the zone to be signed
1105  with the ZSK, and the DNSKEY RRset to be signed with the KSK as
1106  well. An NSEC chain will be generated as part of the initial
1107  signing process.</p>
1108<div class="sect2" lang="en"><div class="titlepage"><div><div><h3 class="title">
1109<a name="id2563650"></a>Dynamic DNS update method</h3></div></div></div></div>
1110<p>To insert the keys via dynamic update:</p>
1111<pre class="screen">
1112        % nsupdate
1113        &gt; ttl 3600
1114        &gt; update add example.net DNSKEY 256 3 7 AwEAAZn17pUF0KpbPA2c7Gz76Vb18v0teKT3EyAGfBfL8eQ8al35zz3Y I1m/SAQBxIqMfLtIwqWPdgthsu36azGQAX8=
1115        &gt; update add example.net DNSKEY 257 3 7 AwEAAd/7odU/64o2LGsifbLtQmtO8dFDtTAZXSX2+X3e/UNlq9IHq3Y0 XtC0Iuawl/qkaKVxXe2lo8Ct+dM6UehyCqk=
1116        &gt; send
1117</pre>
1118<p>While the update request will complete almost immediately,
1119  the zone will not be completely signed until
1120  <span><strong class="command">named</strong></span> has had time to walk the zone and
1121  generate the NSEC and RRSIG records. The NSEC record at the apex
1122  will be added last, to signal that there is a complete NSEC
1123  chain.</p>
1124<p>If you wish to sign using NSEC3 instead of NSEC, you should
1125  add an NSEC3PARAM record to the initial update request. If you
1126  wish the NSEC3 chain to have the OPTOUT bit set, set it in the
1127  flags field of the NSEC3PARAM record.</p>
1128<pre class="screen">
1129        % nsupdate
1130        &gt; ttl 3600
1131        &gt; update add example.net DNSKEY 256 3 7 AwEAAZn17pUF0KpbPA2c7Gz76Vb18v0teKT3EyAGfBfL8eQ8al35zz3Y I1m/SAQBxIqMfLtIwqWPdgthsu36azGQAX8=
1132        &gt; update add example.net DNSKEY 257 3 7 AwEAAd/7odU/64o2LGsifbLtQmtO8dFDtTAZXSX2+X3e/UNlq9IHq3Y0 XtC0Iuawl/qkaKVxXe2lo8Ct+dM6UehyCqk=
1133        &gt; update add example.net NSEC3PARAM 1 1 100 1234567890
1134        &gt; send
1135</pre>
1136<p>Again, this update request will complete almost
1137  immediately; however, the record won't show up until
1138  <span><strong class="command">named</strong></span> has had a chance to build/remove the
1139  relevant chain. A private type record will be created to record
1140  the state of the operation (see below for more details), and will
1141  be removed once the operation completes.</p>
1142<p>While the initial signing and NSEC/NSEC3 chain generation
1143  is happening, other updates are possible as well.</p>
1144<div class="sect2" lang="en"><div class="titlepage"><div><div><h3 class="title">
1145<a name="id2563686"></a>Fully automatic zone signing</h3></div></div></div></div>
1146<p>To enable automatic signing, add the
1147  <span><strong class="command">auto-dnssec</strong></span> option to the zone statement in
1148  <code class="filename">named.conf</code>.
1149  <span><strong class="command">auto-dnssec</strong></span> has two possible arguments:
1150  <code class="constant">allow</code> or
1151  <code class="constant">maintain</code>.</p>
1152<p>With
1153  <span><strong class="command">auto-dnssec allow</strong></span>,
1154  <span><strong class="command">named</strong></span> can search the key directory for keys
1155  matching the zone, insert them into the zone, and use them to
1156  sign the zone. It will do so only when it receives an
1157  <span><strong class="command">rndc sign &lt;zonename&gt;</strong></span>.</p>
1158<p>
1159
1160  <span><strong class="command">auto-dnssec maintain</strong></span> includes the above
1161  functionality, but will also automatically adjust the zone's
1162  DNSKEY records on schedule according to the keys' timing metadata.
1163  (See <a href="man.dnssec-keygen.html" title="dnssec-keygen"><span class="refentrytitle"><span class="application">dnssec-keygen</span></span>(8)</a> and
1164  <a href="man.dnssec-settime.html" title="dnssec-settime"><span class="refentrytitle"><span class="application">dnssec-settime</span></span>(8)</a> for more information.)
1165  </p>
1166<p>
1167  <span><strong class="command">named</strong></span> will periodically search the key directory
1168  for keys matching the zone, and if the keys' metadata indicates
1169  that any change should be made the zone, such as adding, removing,
1170  or revoking a key, then that action will be carried out.  By default,
1171  the key directory is checked for changes every 60 minutes; this period
1172  can be adjusted with the <code class="option">dnssec-loadkeys-interval</code>, up
1173  to a maximum of 24 hours.  The <span><strong class="command">rndc loadkeys</strong></span> forces
1174  <span><strong class="command">named</strong></span> to check for key updates immediately.
1175  </p>
1176<p>
1177  If keys are present in the key directory the first time the zone
1178  is loaded, the zone will be signed immediately, without waiting for an
1179  <span><strong class="command">rndc sign</strong></span> or <span><strong class="command">rndc loadkeys</strong></span>
1180  command. (Those commands can still be used when there are unscheduled
1181  key changes, however.)
1182  </p>
1183<p>
1184  When new keys are added to a zone, the TTL is set to match that
1185  of any existing DNSKEY RRset. If there is no existing DNSKEY RRset,
1186  then the TTL will be set to the TTL specified when the key was
1187  created (using the <span><strong class="command">dnssec-keygen -L</strong></span> option), if
1188  any, or to the SOA TTL.
1189  </p>
1190<p>
1191  If you wish the zone to be signed using NSEC3 instead of NSEC,
1192  submit an NSEC3PARAM record via dynamic update prior to the
1193  scheduled publication and activation of the keys.  If you wish the
1194  NSEC3 chain to have the OPTOUT bit set, set it in the flags field
1195  of the NSEC3PARAM record.  The NSEC3PARAM record will not appear in
1196  the zone immediately, but it will be stored for later reference.  When
1197  the zone is signed and the NSEC3 chain is completed, the NSEC3PARAM
1198  record will appear in the zone.
1199  </p>
1200<p>Using the
1201  <span><strong class="command">auto-dnssec</strong></span> option requires the zone to be
1202  configured to allow dynamic updates, by adding an
1203  <span><strong class="command">allow-update</strong></span> or
1204  <span><strong class="command">update-policy</strong></span> statement to the zone
1205  configuration. If this has not been done, the configuration will
1206  fail.</p>
1207<div class="sect2" lang="en"><div class="titlepage"><div><div><h3 class="title">
1208<a name="id2563933"></a>Private-type records</h3></div></div></div></div>
1209<p>The state of the signing process is signaled by
1210  private-type records (with a default type value of 65534). When
1211  signing is complete, these records will have a nonzero value for
1212  the final octet (for those records which have a nonzero initial
1213  octet).</p>
1214<p>The private type record format: If the first octet is
1215  non-zero then the record indicates that the zone needs to be
1216  signed with the key matching the record, or that all signatures
1217  that match the record should be removed.</p>
1218<p>
1219    </p>
1220<div class="literallayout"><p><br>
1221<br>
1222��algorithm�(octet�1)<br>
1223��key�id�in�network�order�(octet�2�and�3)<br>
1224��removal�flag�(octet�4)<br>
1225��complete�flag�(octet�5)<br>
1226</p></div>
1227<p>
1228  </p>
1229<p>Only records flagged as "complete" can be removed via
1230  dynamic update. Attempts to remove other private type records
1231  will be silently ignored.</p>
1232<p>If the first octet is zero (this is a reserved algorithm
1233  number that should never appear in a DNSKEY record) then the
1234  record indicates changes to the NSEC3 chains are in progress. The
1235  rest of the record contains an NSEC3PARAM record. The flag field
1236  tells what operation to perform based on the flag bits.</p>
1237<p>
1238    </p>
1239<div class="literallayout"><p><br>
1240<br>
1241��0x01�OPTOUT<br>
1242��0x80�CREATE<br>
1243��0x40�REMOVE<br>
1244��0x20�NONSEC<br>
1245</p></div>
1246<p>
1247  </p>
1248<div class="sect2" lang="en"><div class="titlepage"><div><div><h3 class="title">
1249<a name="id2582676"></a>DNSKEY rollovers</h3></div></div></div></div>
1250<p>As with insecure-to-secure conversions, rolling DNSSEC
1251  keys can be done in two ways: using a dynamic DNS update, or the
1252  <span><strong class="command">auto-dnssec</strong></span> zone option.</p>
1253<div class="sect2" lang="en"><div class="titlepage"><div><div><h3 class="title">
1254<a name="id2582689"></a>Dynamic DNS update method</h3></div></div></div></div>
1255<p> To perform key rollovers via dynamic update, you need to add
1256  the <code class="filename">K*</code> files for the new keys so that
1257  <span><strong class="command">named</strong></span> can find them. You can then add the new
1258  DNSKEY RRs via dynamic update.
1259  <span><strong class="command">named</strong></span> will then cause the zone to be signed
1260  with the new keys. When the signing is complete the private type
1261  records will be updated so that the last octet is non
1262  zero.</p>
1263<p>If this is for a KSK you need to inform the parent and any
1264  trust anchor repositories of the new KSK.</p>
1265<p>You should then wait for the maximum TTL in the zone before
1266  removing the old DNSKEY. If it is a KSK that is being updated,
1267  you also need to wait for the DS RRset in the parent to be
1268  updated and its TTL to expire. This ensures that all clients will
1269  be able to verify at least one signature when you remove the old
1270  DNSKEY.</p>
1271<p>The old DNSKEY can be removed via UPDATE. Take care to
1272  specify the correct key.
1273  <span><strong class="command">named</strong></span> will clean out any signatures generated
1274  by the old key after the update completes.</p>
1275<div class="sect2" lang="en"><div class="titlepage"><div><div><h3 class="title">
1276<a name="id2582722"></a>Automatic key rollovers</h3></div></div></div></div>
1277<p>When a new key reaches its activation date (as set by
1278  <span><strong class="command">dnssec-keygen</strong></span> or <span><strong class="command">dnssec-settime</strong></span>),
1279  if the <span><strong class="command">auto-dnssec</strong></span> zone option is set to
1280  <code class="constant">maintain</code>, <span><strong class="command">named</strong></span> will
1281  automatically carry out the key rollover.  If the key's algorithm
1282  has not previously been used to sign the zone, then the zone will
1283  be fully signed as quickly as possible.  However, if the new key
1284  is replacing an existing key of the same algorithm, then the
1285  zone will be re-signed incrementally, with signatures from the
1286  old key being replaced with signatures from the new key as their
1287  signature validity periods expire.  By default, this rollover
1288  completes in 30 days, after which it will be safe to remove the
1289  old key from the DNSKEY RRset.</p>
1290<div class="sect2" lang="en"><div class="titlepage"><div><div><h3 class="title">
1291<a name="id2582748"></a>NSEC3PARAM rollovers via UPDATE</h3></div></div></div></div>
1292<p>Add the new NSEC3PARAM record via dynamic update. When the
1293  new NSEC3 chain has been generated, the NSEC3PARAM flag field
1294  will be zero. At this point you can remove the old NSEC3PARAM
1295  record. The old chain will be removed after the update request
1296  completes.</p>
1297<div class="sect2" lang="en"><div class="titlepage"><div><div><h3 class="title">
1298<a name="id2582758"></a>Converting from NSEC to NSEC3</h3></div></div></div></div>
1299<p>To do this, you just need to add an NSEC3PARAM record. When
1300  the conversion is complete, the NSEC chain will have been removed
1301  and the NSEC3PARAM record will have a zero flag field. The NSEC3
1302  chain will be generated before the NSEC chain is
1303  destroyed.</p>
1304<div class="sect2" lang="en"><div class="titlepage"><div><div><h3 class="title">
1305<a name="id2582768"></a>Converting from NSEC3 to NSEC</h3></div></div></div></div>
1306<p>To do this, use <span><strong class="command">nsupdate</strong></span> to
1307  remove all NSEC3PARAM records with a zero flag
1308  field. The NSEC chain will be generated before the NSEC3 chain is
1309  removed.</p>
1310<div class="sect2" lang="en"><div class="titlepage"><div><div><h3 class="title">
1311<a name="id2582780"></a>Converting from secure to insecure</h3></div></div></div></div>
1312<p>To convert a signed zone to unsigned using dynamic DNS,
1313  delete all the DNSKEY records from the zone apex using
1314  <span><strong class="command">nsupdate</strong></span>. All signatures, NSEC or NSEC3 chains,
1315  and associated NSEC3PARAM records will be removed automatically.
1316  This will take place after the update request completes.</p>
1317<p> This requires the
1318  <span><strong class="command">dnssec-secure-to-insecure</strong></span> option to be set to
1319  <strong class="userinput"><code>yes</code></strong> in
1320  <code class="filename">named.conf</code>.</p>
1321<p>In addition, if the <span><strong class="command">auto-dnssec maintain</strong></span>
1322  zone statement is used, it should be removed or changed to
1323  <span><strong class="command">allow</strong></span> instead (or it will re-sign).
1324  </p>
1325<div class="sect2" lang="en"><div class="titlepage"><div><div><h3 class="title">
1326<a name="id2582818"></a>Periodic re-signing</h3></div></div></div></div>
1327<p>In any secure zone which supports dynamic updates, named
1328  will periodically re-sign RRsets which have not been re-signed as
1329  a result of some update action. The signature lifetimes will be
1330  adjusted so as to spread the re-sign load over time rather than
1331  all at once.</p>
1332<div class="sect2" lang="en"><div class="titlepage"><div><div><h3 class="title">
1333<a name="id2582827"></a>NSEC3 and OPTOUT</h3></div></div></div></div>
1334<p>
1335  <span><strong class="command">named</strong></span> only supports creating new NSEC3 chains
1336  where all the NSEC3 records in the zone have the same OPTOUT
1337  state.
1338  <span><strong class="command">named</strong></span> supports UPDATES to zones where the NSEC3
1339  records in the chain have mixed OPTOUT state.
1340  <span><strong class="command">named</strong></span> does not support changing the OPTOUT
1341  state of an individual NSEC3 record, the entire chain needs to be
1342  changed if the OPTOUT state of an individual NSEC3 needs to be
1343  changed.</p>
1344</div>
1345<div class="sect1" lang="en">
1346<div class="titlepage"><div><div><h2 class="title" style="clear: both">
1347<a name="rfc5011.support"></a>Dynamic Trust Anchor Management</h2></div></div></div>
1348<p>BIND 9.7.0 introduces support for RFC 5011, dynamic trust
1349  anchor management. Using this feature allows
1350  <span><strong class="command">named</strong></span> to keep track of changes to critical
1351  DNSSEC keys without any need for the operator to make changes to
1352  configuration files.</p>
1353<div class="sect2" lang="en">
1354<div class="titlepage"><div><div><h3 class="title">
1355<a name="id2610708"></a>Validating Resolver</h3></div></div></div>
1356<p>To configure a validating resolver to use RFC 5011 to
1357    maintain a trust anchor, configure the trust anchor using a
1358    <span><strong class="command">managed-keys</strong></span> statement. Information about
1359    this can be found in
1360    <a href="Bv9ARM.ch06.html#managed-keys" title="managed-keys Statement Definition
1361            and Usage">the section called &#8220;<span><strong class="command">managed-keys</strong></span> Statement Definition
1362            and Usage&#8221;</a>.</p>
1363</div>
1364<div class="sect2" lang="en">
1365<div class="titlepage"><div><div><h3 class="title">
1366<a name="id2610730"></a>Authoritative Server</h3></div></div></div>
1367<p>To set up an authoritative zone for RFC 5011 trust anchor
1368    maintenance, generate two (or more) key signing keys (KSKs) for
1369    the zone. Sign the zone with one of them; this is the "active"
1370    KSK. All KSK's which do not sign the zone are "stand-by"
1371    keys.</p>
1372<p>Any validating resolver which is configured to use the
1373    active KSK as an RFC 5011-managed trust anchor will take note
1374    of the stand-by KSKs in the zone's DNSKEY RRset, and store them
1375    for future reference. The resolver will recheck the zone
1376    periodically, and after 30 days, if the new key is still there,
1377    then the key will be accepted by the resolver as a valid trust
1378    anchor for the zone. Any time after this 30-day acceptance
1379    timer has completed, the active KSK can be revoked, and the
1380    zone can be "rolled over" to the newly accepted key.</p>
1381<p>The easiest way to place a stand-by key in a zone is to
1382    use the "smart signing" features of
1383    <span><strong class="command">dnssec-keygen</strong></span> and
1384    <span><strong class="command">dnssec-signzone</strong></span>. If a key with a publication
1385    date in the past, but an activation date which is unset or in
1386    the future, "
1387    <span><strong class="command">dnssec-signzone -S</strong></span>" will include the DNSKEY
1388    record in the zone, but will not sign with it:</p>
1389<pre class="screen">
1390$ <strong class="userinput"><code>dnssec-keygen -K keys -f KSK -P now -A now+2y example.net</code></strong>
1391$ <strong class="userinput"><code>dnssec-signzone -S -K keys example.net</code></strong>
1392</pre>
1393<p>To revoke a key, the new command
1394    <span><strong class="command">dnssec-revoke</strong></span> has been added. This adds the
1395    REVOKED bit to the key flags and re-generates the
1396    <code class="filename">K*.key</code> and
1397    <code class="filename">K*.private</code> files.</p>
1398<p>After revoking the active key, the zone must be signed
1399    with both the revoked KSK and the new active KSK. (Smart
1400    signing takes care of this automatically.)</p>
1401<p>Once a key has been revoked and used to sign the DNSKEY
1402    RRset in which it appears, that key will never again be
1403    accepted as a valid trust anchor by the resolver. However,
1404    validation can proceed using the new active key (which had been
1405    accepted by the resolver when it was a stand-by key).</p>
1406<p>See RFC 5011 for more details on key rollover
1407    scenarios.</p>
1408<p>When a key has been revoked, its key ID changes,
1409    increasing by 128, and wrapping around at 65535. So, for
1410    example, the key "<code class="filename">Kexample.com.+005+10000</code>" becomes
1411    "<code class="filename">Kexample.com.+005+10128</code>".</p>
1412<p>If two keys have ID's exactly 128 apart, and one is
1413    revoked, then the two key ID's will collide, causing several
1414    problems. To prevent this,
1415    <span><strong class="command">dnssec-keygen</strong></span> will not generate a new key if
1416    another key is present which may collide. This checking will
1417    only occur if the new keys are written to the same directory
1418    which holds all other keys in use for that zone.</p>
1419<p>Older versions of BIND 9 did not have this precaution.
1420    Exercise caution if using key revocation on keys that were
1421    generated by previous releases, or if using keys stored in
1422    multiple directories or on multiple machines.</p>
1423<p>It is expected that a future release of BIND 9 will
1424    address this problem in a different way, by storing revoked
1425    keys with their original unrevoked key ID's.</p>
1426</div>
1427</div>
1428<div class="sect1" lang="en">
1429<div class="titlepage"><div><div><h2 class="title" style="clear: both">
1430<a name="pkcs11"></a>PKCS#11 (Cryptoki) support</h2></div></div></div>
1431<p>
1432    PKCS#11 (Public Key Cryptography Standard #11) defines a
1433    platform-independent API for the control of hardware security
1434    modules (HSMs) and other cryptographic support devices.
1435  </p>
1436<p>
1437    BIND 9 is known to work with three HSMs: The AEP Keyper, which has
1438    been tested with Debian Linux, Solaris x86 and Windows Server 2003;
1439    the Thales nShield, tested with Debian Linux; and the Sun SCA 6000
1440    cryptographic acceleration board, tested with Solaris x86.  In
1441    addition, BIND can be used with all current versions of SoftHSM,
1442    a software-based HSM simulator library produced by the OpenDNSSEC
1443    project.
1444  </p>
1445<p>
1446    PKCS#11 makes use of a "provider library": a dynamically loadable
1447    library which provides a low-level PKCS#11 interface to drive the HSM
1448    hardware.  The PKCS#11 provider library comes from the HSM vendor, and
1449    it is specific to the HSM to be controlled.
1450  </p>
1451<p>
1452    There are two available mechanisms for PKCS#11 support in BIND 9:
1453    OpenSSL-based PKCS#11 and native PKCS#11.  When using the first
1454    mechanism, BIND uses a modified version of OpenSSL, which loads
1455    the provider library and operates the HSM indirectly; any
1456    cryptographic operations not supported by the HSM can be carried
1457    out by OpenSSL instead.  The second mechanism enables BIND to bypass
1458    OpenSSL completely; BIND loads the provider library itself, and uses
1459    the PKCS#11 API to drive the HSM directly.
1460  </p>
1461<div class="sect2" lang="en">
1462<div class="titlepage"><div><div><h3 class="title">
1463<a name="id2666121"></a>Prerequisites</h3></div></div></div>
1464<p>
1465      See the documentation provided by your HSM vendor for
1466      information about installing, initializing, testing and
1467      troubleshooting the HSM.
1468    </p>
1469</div>
1470<div class="sect2" lang="en">
1471<div class="titlepage"><div><div><h3 class="title">
1472<a name="id2666131"></a>Native PKCS#11</h3></div></div></div>
1473<p>
1474      Native PKCS#11 mode will only work with an HSM capable of carrying
1475      out <span class="emphasis"><em>every</em></span> cryptographic operation BIND 9 may
1476      need. The HSM's provider library must have a complete implementation
1477      of the PKCS#11 API, so that all these functions are accessible. As of
1478      this writing, only the Thales nShield HSM and SoftHSMv2 can be used
1479      in this fashion.  For other HSMs, including the AEP Keyper, Sun SCA
1480      6000 and older versions of SoftHSM, use OpenSSL-based PKCS#11.
1481      (Note: Eventually, when more HSMs become capable of supporting
1482      native PKCS#11, it is expected that OpenSSL-based PKCS#11 will
1483      be deprecated.)
1484    </p>
1485<p>
1486      To build BIND with native PKCS#11, configure as follows:
1487    </p>
1488<pre class="screen">
1489$ <strong class="userinput"><code>cd bind9</code></strong>
1490$ <strong class="userinput"><code>./configure --enable-native-pkcs11 \
1491    --with-pkcs11=<em class="replaceable"><code>provider-library-path</code></em></code></strong>
1492    </pre>
1493<p>
1494      This will cause all BIND tools, including <span><strong class="command">named</strong></span>
1495      and the <span><strong class="command">dnssec-*</strong></span> and <span><strong class="command">pkcs11-*</strong></span>
1496      tools, to use the PKCS#11 provider library specified in
1497      <em class="replaceable"><code>provider-library-path</code></em> for cryptography.
1498      (The provider library path can be overridden using the
1499      <code class="option">-E</code> in <span><strong class="command">named</strong></span> and the
1500      <span><strong class="command">dnssec-*</strong></span> tools, or the <code class="option">-m</code> in
1501      the <span><strong class="command">pkcs11-*</strong></span> tools.)
1502    </p>
1503<div class="sect3" lang="en">
1504<div class="titlepage"><div><div><h4 class="title">
1505<a name="id2610983"></a>Building SoftHSMv2</h4></div></div></div>
1506<p>
1507	SoftHSMv2, the latest development version of SoftHSM, is available
1508	from
1509	<a href="https://github.com/opendnssec/SoftHSMv2" target="_top">
1510	  https://github.com/opendnssec/SoftHSMv2
1511	</a>.
1512	It is a software library developed by the OpenDNSSEC project
1513	(<a href="http://www.opendnssec.org" target="_top">
1514	  http://www.opendnssec.org
1515	</a>)
1516	which provides a PKCS#11 interface to a virtual HSM, implemented in
1517	the form of a SQLite3 database on the local filesystem.  It provides
1518	less security than a true HSM, but it allows you to experiment with
1519	native PKCS#11 when an HSM is not available.  SoftHSMv2 can be
1520	configured to use either OpenSSL or the Botan library to perform
1521	cryptographic functions, but when using it for native PKCS#11 in
1522	BIND, OpenSSL is required.
1523      </p>
1524<p>
1525	By default, the SoftHSMv2 configuration file is
1526	<em class="replaceable"><code>prefix</code></em>/etc/softhsm2.conf (where
1527	<em class="replaceable"><code>prefix</code></em> is configured at compile time).
1528	This location can be overridden by the SOFTHSM2_CONF environment
1529	variable.  The SoftHSMv2 cryptographic store must be installed and
1530	initialized before using it with BIND.
1531      </p>
1532<pre class="screen">
1533$ <strong class="userinput"><code> cd SoftHSMv2 </code></strong>
1534$ <strong class="userinput"><code> configure --with-crypto-backend=openssl --prefix=/opt/pkcs11/usr --enable-gost </code></strong>
1535$ <strong class="userinput"><code> make </code></strong>
1536$ <strong class="userinput"><code> make install </code></strong>
1537$ <strong class="userinput"><code> /opt/pkcs11/usr/bin/softhsm-util --init-token 0 --slot 0 --label softhsmv2 </code></strong>
1538      </pre>
1539</div>
1540</div>
1541<div class="sect2" lang="en">
1542<div class="titlepage"><div><div><h3 class="title">
1543<a name="id2611390"></a>OpenSSL-based PKCS#11</h3></div></div></div>
1544<p>
1545      OpenSSL-based PKCS#11 mode uses a modified version of the
1546      OpenSSL library; stock OpenSSL does not fully support PKCS#11.
1547      ISC provides a patch to OpenSSL to correct this.  This patch is
1548      based on work originally done by the OpenSolaris project; it has been
1549      modified by ISC to provide new features such as PIN management and
1550      key-by-reference.
1551    </p>
1552<p>
1553      There are two "flavors" of PKCS#11 support provided by
1554      the patched OpenSSL, one of which must be chosen at
1555      configuration time. The correct choice depends on the HSM
1556      hardware:
1557    </p>
1558<div class="itemizedlist"><ul type="disc">
1559<li><p>
1560	  Use 'crypto-accelerator' with HSMs that have hardware
1561	  cryptographic acceleration features, such as the SCA 6000
1562	  board. This causes OpenSSL to run all supported
1563	  cryptographic operations in the HSM.
1564	</p></li>
1565<li><p>
1566	  Use 'sign-only' with HSMs that are designed to
1567	  function primarily as secure key storage devices, but lack
1568	  hardware acceleration. These devices are highly secure, but
1569	  are not necessarily any faster at cryptography than the
1570	  system CPU &#8212; often, they are slower. It is therefore
1571	  most efficient to use them only for those cryptographic
1572	  functions that require access to the secured private key,
1573	  such as zone signing, and to use the system CPU for all
1574	  other computationally-intensive operations. The AEP Keyper
1575	  is an example of such a device.
1576	</p></li>
1577</ul></div>
1578<p>
1579      The modified OpenSSL code is included in the BIND 9 release,
1580      in the form of a context diff against the latest versions of
1581      OpenSSL.  OpenSSL 0.9.8, 1.0.0, and 1.0.1 are supported; there are
1582      separate diffs for each version.  In the examples to follow,
1583      we use OpenSSL 0.9.8, but the same methods work with OpenSSL
1584      1.0.0 and 1.0.1.
1585    </p>
1586<div class="note" style="margin-left: 0.5in; margin-right: 0.5in;">
1587<h3 class="title">Note</h3>
1588      The latest OpenSSL versions as of this writing (January 2015)
1589      are 0.9.8zc, 1.0.0o, and 1.0.1j.
1590      ISC will provide updated patches as new versions of OpenSSL
1591      are released. The version number in the following examples
1592      is expected to change.
1593    </div>
1594<p>
1595      Before building BIND 9 with PKCS#11 support, it will be
1596      necessary to build OpenSSL with the patch in place, and configure
1597      it with the path to your HSM's PKCS#11 provider library.
1598    </p>
1599<div class="sect3" lang="en">
1600<div class="titlepage"><div><div><h4 class="title">
1601<a name="id2611564"></a>Patching OpenSSL</h4></div></div></div>
1602<pre class="screen">
1603$ <strong class="userinput"><code>wget <a href="" target="_top">http://www.openssl.org/source/openssl-0.9.8zc.tar.gz</a></code></strong>
1604  </pre>
1605<p>Extract the tarball:</p>
1606<pre class="screen">
1607$ <strong class="userinput"><code>tar zxf openssl-0.9.8zc.tar.gz</code></strong>
1608</pre>
1609<p>Apply the patch from the BIND 9 release:</p>
1610<pre class="screen">
1611$ <strong class="userinput"><code>patch -p1 -d openssl-0.9.8zc \
1612	      &lt; bind9/bin/pkcs11/openssl-0.9.8zc-patch</code></strong>
1613</pre>
1614<div class="note" style="margin-left: 0.5in; margin-right: 0.5in;">
1615<h3 class="title">Note</h3>
1616	Note that the patch file may not be compatible with the
1617	"patch" utility on all operating systems. You may need to
1618	install GNU patch.
1619      </div>
1620<p>
1621	When building OpenSSL, place it in a non-standard
1622	location so that it does not interfere with OpenSSL libraries
1623	elsewhere on the system. In the following examples, we choose
1624	to install into "/opt/pkcs11/usr". We will use this location
1625	when we configure BIND 9.
1626      </p>
1627<p>
1628	Later, when building BIND 9, the location of the custom-built
1629	OpenSSL library will need to be specified via configure.
1630      </p>
1631</div>
1632<div class="sect3" lang="en">
1633<div class="titlepage"><div><div><h4 class="title">
1634<a name="id2611760"></a>Building OpenSSL for the AEP Keyper on Linux</h4></div></div></div>
1635<p>
1636	The AEP Keyper is a highly secure key storage device,
1637	but does not provide hardware cryptographic acceleration. It
1638	can carry out cryptographic operations, but it is probably
1639	slower than your system's CPU. Therefore, we choose the
1640	'sign-only' flavor when building OpenSSL.
1641      </p>
1642<p>
1643	The Keyper-specific PKCS#11 provider library is
1644	delivered with the Keyper software. In this example, we place
1645	it /opt/pkcs11/usr/lib:
1646      </p>
1647<pre class="screen">
1648$ <strong class="userinput"><code>cp pkcs11.GCC4.0.2.so.4.05 /opt/pkcs11/usr/lib/libpkcs11.so</code></strong>
1649</pre>
1650<p>
1651	This library is only available for Linux as a 32-bit
1652	binary. If we are compiling on a 64-bit Linux system, it is
1653	necessary to force a 32-bit build, by specifying -m32 in the
1654	build options.
1655      </p>
1656<p>
1657	Finally, the Keyper library requires threads, so we
1658	must specify -pthread.
1659      </p>
1660<pre class="screen">
1661$ <strong class="userinput"><code>cd openssl-0.9.8zc</code></strong>
1662$ <strong class="userinput"><code>./Configure linux-generic32 -m32 -pthread \
1663	    --pk11-libname=/opt/pkcs11/usr/lib/libpkcs11.so \
1664	    --pk11-flavor=sign-only \
1665	    --prefix=/opt/pkcs11/usr</code></strong>
1666</pre>
1667<p>
1668	After configuring, run "<span><strong class="command">make</strong></span>"
1669	and "<span><strong class="command">make test</strong></span>". If "<span><strong class="command">make
1670	test</strong></span>" fails with "pthread_atfork() not found", you forgot to
1671	add the -pthread above.
1672      </p>
1673</div>
1674<div class="sect3" lang="en">
1675<div class="titlepage"><div><div><h4 class="title">
1676<a name="id2611829"></a>Building OpenSSL for the SCA 6000 on Solaris</h4></div></div></div>
1677<p>
1678	The SCA-6000 PKCS#11 provider is installed as a system
1679	library, libpkcs11. It is a true crypto accelerator, up to 4
1680	times faster than any CPU, so the flavor shall be
1681	'crypto-accelerator'.
1682      </p>
1683<p>
1684	In this example, we are building on Solaris x86 on an
1685	AMD64 system.
1686      </p>
1687<pre class="screen">
1688$ <strong class="userinput"><code>cd openssl-0.9.8zc</code></strong>
1689$ <strong class="userinput"><code>./Configure solaris64-x86_64-cc \
1690	    --pk11-libname=/usr/lib/64/libpkcs11.so \
1691	    --pk11-flavor=crypto-accelerator \
1692	    --prefix=/opt/pkcs11/usr</code></strong>
1693</pre>
1694<p>
1695	(For a 32-bit build, use "solaris-x86-cc" and /usr/lib/libpkcs11.so.)
1696      </p>
1697<p>
1698	After configuring, run
1699	<span><strong class="command">make</strong></span> and
1700	<span><strong class="command">make test</strong></span>.
1701      </p>
1702</div>
1703<div class="sect3" lang="en">
1704<div class="titlepage"><div><div><h4 class="title">
1705<a name="id2611878"></a>Building OpenSSL for SoftHSM</h4></div></div></div>
1706<p>
1707	SoftHSM (version 1) is a software library developed by the
1708	OpenDNSSEC project
1709	(<a href="http://www.opendnssec.org" target="_top">
1710	  http://www.opendnssec.org
1711	</a>)
1712	which provides a
1713	PKCS#11 interface to a virtual HSM, implemented in the form of
1714	a SQLite3 database on the local filesystem.  SoftHSM uses
1715	the Botan library to perform cryptographic functions.  Though
1716	less secure than a true HSM, it can allow you to experiment
1717	with PKCS#11 when an HSM is not available.
1718      </p>
1719<p>
1720	The SoftHSM cryptographic store must be installed and
1721	initialized before using it with OpenSSL, and the SOFTHSM_CONF
1722	environment variable must always point to the SoftHSM configuration
1723	file:
1724      </p>
1725<pre class="screen">
1726$ <strong class="userinput"><code> cd softhsm-1.3.7 </code></strong>
1727$ <strong class="userinput"><code> configure --prefix=/opt/pkcs11/usr </code></strong>
1728$ <strong class="userinput"><code> make </code></strong>
1729$ <strong class="userinput"><code> make install </code></strong>
1730$ <strong class="userinput"><code> export SOFTHSM_CONF=/opt/pkcs11/softhsm.conf </code></strong>
1731$ <strong class="userinput"><code> echo "0:/opt/pkcs11/softhsm.db" &gt; $SOFTHSM_CONF </code></strong>
1732$ <strong class="userinput"><code> /opt/pkcs11/usr/bin/softhsm --init-token 0 --slot 0 --label softhsm </code></strong>
1733</pre>
1734<p>
1735	SoftHSM can perform all cryptographic operations, but
1736	since it only uses your system CPU, there is no advantage to using
1737	it for anything but signing.  Therefore, we choose the 'sign-only'
1738	flavor when building OpenSSL.
1739      </p>
1740<pre class="screen">
1741$ <strong class="userinput"><code>cd openssl-0.9.8zc</code></strong>
1742$ <strong class="userinput"><code>./Configure linux-x86_64 -pthread \
1743	    --pk11-libname=/opt/pkcs11/usr/lib/libsofthsm.so \
1744	    --pk11-flavor=sign-only \
1745	    --prefix=/opt/pkcs11/usr</code></strong>
1746</pre>
1747<p>
1748	After configuring, run "<span><strong class="command">make</strong></span>"
1749	and "<span><strong class="command">make test</strong></span>".
1750      </p>
1751</div>
1752<p>
1753      Once you have built OpenSSL, run
1754      "<span><strong class="command">apps/openssl engine pkcs11</strong></span>" to confirm
1755      that PKCS#11 support was compiled in correctly. The output
1756      should be one of the following lines, depending on the flavor
1757      selected:
1758    </p>
1759<pre class="screen">
1760	(pkcs11) PKCS #11 engine support (sign only)
1761</pre>
1762<p>Or:</p>
1763<pre class="screen">
1764	(pkcs11) PKCS #11 engine support (crypto accelerator)
1765</pre>
1766<p>
1767      Next, run
1768      "<span><strong class="command">apps/openssl engine pkcs11 -t</strong></span>". This will
1769      attempt to initialize the PKCS#11 engine. If it is able to
1770      do so successfully, it will report
1771      &#8220;<span class="quote"><code class="literal">[ available ]</code></span>&#8221;.
1772    </p>
1773<p>
1774      If the output is correct, run
1775      "<span><strong class="command">make install</strong></span>" which will install the
1776      modified OpenSSL suite to <code class="filename">/opt/pkcs11/usr</code>.
1777    </p>
1778<div class="sect3" lang="en">
1779<div class="titlepage"><div><div><h4 class="title">
1780<a name="id2638385"></a>Configuring BIND 9 for Linux with the AEP Keyper</h4></div></div></div>
1781<p>
1782	To link with the PKCS#11 provider, threads must be
1783	enabled in the BIND 9 build.
1784      </p>
1785<p>
1786	The PKCS#11 library for the AEP Keyper is currently
1787	only available as a 32-bit binary. If we are building on a
1788	64-bit host, we must force a 32-bit build by adding "-m32" to
1789	the CC options on the "configure" command line.
1790      </p>
1791<pre class="screen">
1792$ <strong class="userinput"><code>cd ../bind9</code></strong>
1793$ <strong class="userinput"><code>./configure CC="gcc -m32" --enable-threads \
1794	   --with-openssl=/opt/pkcs11/usr \
1795	   --with-pkcs11=/opt/pkcs11/usr/lib/libpkcs11.so</code></strong>
1796</pre>
1797</div>
1798<div class="sect3" lang="en">
1799<div class="titlepage"><div><div><h4 class="title">
1800<a name="id2638417"></a>Configuring BIND 9 for Solaris with the SCA 6000</h4></div></div></div>
1801<p>
1802	To link with the PKCS#11 provider, threads must be
1803	enabled in the BIND 9 build.
1804      </p>
1805<pre class="screen">
1806$ <strong class="userinput"><code>cd ../bind9</code></strong>
1807$ <strong class="userinput"><code>./configure CC="cc -xarch=amd64" --enable-threads \
1808	    --with-openssl=/opt/pkcs11/usr \
1809	    --with-pkcs11=/usr/lib/64/libpkcs11.so</code></strong>
1810</pre>
1811<p>(For a 32-bit build, omit CC="cc -xarch=amd64".)</p>
1812<p>
1813	If configure complains about OpenSSL not working, you
1814	may have a 32/64-bit architecture mismatch. Or, you may have
1815	incorrectly specified the path to OpenSSL (it should be the
1816	same as the --prefix argument to the OpenSSL
1817	Configure).
1818      </p>
1819</div>
1820<div class="sect3" lang="en">
1821<div class="titlepage"><div><div><h4 class="title">
1822<a name="id2638521"></a>Configuring BIND 9 for SoftHSM</h4></div></div></div>
1823<pre class="screen">
1824$ <strong class="userinput"><code>cd ../bind9</code></strong>
1825$ <strong class="userinput"><code>./configure --enable-threads \
1826	   --with-openssl=/opt/pkcs11/usr \
1827	   --with-pkcs11=/opt/pkcs11/usr/lib/libsofthsm.so</code></strong>
1828</pre>
1829</div>
1830<p>
1831      After configuring, run
1832      "<span><strong class="command">make</strong></span>",
1833      "<span><strong class="command">make test</strong></span>" and
1834      "<span><strong class="command">make install</strong></span>".
1835    </p>
1836<p>
1837      (Note: If "make test" fails in the "pkcs11" system test, you may
1838      have forgotten to set the SOFTHSM_CONF environment variable.)
1839    </p>
1840</div>
1841<div class="sect2" lang="en">
1842<div class="titlepage"><div><div><h3 class="title">
1843<a name="id2638570"></a>PKCS#11 Tools</h3></div></div></div>
1844<p>
1845      BIND 9 includes a minimal set of tools to operate the
1846      HSM, including
1847      <span><strong class="command">pkcs11-keygen</strong></span> to generate a new key pair
1848      within the HSM,
1849      <span><strong class="command">pkcs11-list</strong></span> to list objects currently
1850      available,
1851      <span><strong class="command">pkcs11-destroy</strong></span> to remove objects, and
1852      <span><strong class="command">pkcs11-tokens</strong></span> to list available tokens.
1853    </p>
1854<p>
1855      In UNIX/Linux builds, these tools are built only if BIND
1856      9 is configured with the --with-pkcs11 option. (Note: If
1857      --with-pkcs11 is set to "yes", rather than to the path of the
1858      PKCS#11 provider, then the tools will be built but the
1859      provider will be left undefined. Use the -m option or the
1860      PKCS11_PROVIDER environment variable to specify the path to the
1861      provider.)
1862    </p>
1863</div>
1864<div class="sect2" lang="en">
1865<div class="titlepage"><div><div><h3 class="title">
1866<a name="id2638606"></a>Using the HSM</h3></div></div></div>
1867<p>
1868      For OpenSSL-based PKCS#11, we must first set up the runtime
1869      environment so the OpenSSL and PKCS#11 libraries can be loaded:
1870    </p>
1871<pre class="screen">
1872$ <strong class="userinput"><code>export LD_LIBRARY_PATH=/opt/pkcs11/usr/lib:${LD_LIBRARY_PATH}</code></strong>
1873</pre>
1874<p>
1875      This causes <span><strong class="command">named</strong></span> and other binaries to load
1876      the OpenSSL library from <code class="filename">/opt/pkcs11/usr/lib</code>
1877      rather than from the default location.  This step is not necessary
1878      when using native PKCS#11.
1879    </p>
1880<p>
1881      Some HSMs require other environment variables to be set.
1882      For example, when operating an AEP Keyper, it is necessary to
1883      specify the location of the "machine" file, which stores
1884      information about the Keyper for use by the provider
1885      library. If the machine file is in
1886      <code class="filename">/opt/Keyper/PKCS11Provider/machine</code>,
1887      use:
1888    </p>
1889<pre class="screen">
1890$ <strong class="userinput"><code>export KEYPER_LIBRARY_PATH=/opt/Keyper/PKCS11Provider</code></strong>
1891</pre>
1892<p>
1893      Such environment variables must be set whenever running
1894      any tool that uses the HSM, including
1895      <span><strong class="command">pkcs11-keygen</strong></span>,
1896      <span><strong class="command">pkcs11-list</strong></span>,
1897      <span><strong class="command">pkcs11-destroy</strong></span>,
1898      <span><strong class="command">dnssec-keyfromlabel</strong></span>,
1899      <span><strong class="command">dnssec-signzone</strong></span>,
1900      <span><strong class="command">dnssec-keygen</strong></span>, and
1901      <span><strong class="command">named</strong></span>.
1902    </p>
1903<p>
1904      We can now create and use keys in the HSM. In this case,
1905      we will create a 2048 bit key and give it the label
1906      "sample-ksk":
1907    </p>
1908<pre class="screen">
1909$ <strong class="userinput"><code>pkcs11-keygen -b 2048 -l sample-ksk</code></strong>
1910</pre>
1911<p>To confirm that the key exists:</p>
1912<pre class="screen">
1913$ <strong class="userinput"><code>pkcs11-list</code></strong>
1914Enter PIN:
1915object[0]: handle 2147483658 class 3 label[8] 'sample-ksk' id[0]
1916object[1]: handle 2147483657 class 2 label[8] 'sample-ksk' id[0]
1917</pre>
1918<p>
1919      Before using this key to sign a zone, we must create a
1920      pair of BIND 9 key files. The "dnssec-keyfromlabel" utility
1921      does this. In this case, we will be using the HSM key
1922      "sample-ksk" as the key-signing key for "example.net":
1923    </p>
1924<pre class="screen">
1925$ <strong class="userinput"><code>dnssec-keyfromlabel -l sample-ksk -f KSK example.net</code></strong>
1926</pre>
1927<p>
1928      The resulting K*.key and K*.private files can now be used
1929      to sign the zone. Unlike normal K* files, which contain both
1930      public and private key data, these files will contain only the
1931      public key data, plus an identifier for the private key which
1932      remains stored within the HSM. Signing with the private key takes
1933      place inside the HSM.
1934    </p>
1935<p>
1936      If you wish to generate a second key in the HSM for use
1937      as a zone-signing key, follow the same procedure above, using a
1938      different keylabel, a smaller key size, and omitting "-f KSK"
1939      from the dnssec-keyfromlabel arguments:
1940    </p>
1941<p>
1942      (Note: When using OpenSSL-based PKCS#11 the label is an arbitrary
1943      string which identifies the key.  With native PKCS#11, the label is
1944      a PKCS#11 URI string which may include other details about the key
1945      and the HSM, including its PIN. See
1946      <a href="man.dnssec-keyfromlabel.html" title="dnssec-keyfromlabel"><span class="refentrytitle"><span class="application">dnssec-keyfromlabel</span></span>(8)</a> for details.)
1947    </p>
1948<pre class="screen">
1949$ <strong class="userinput"><code>pkcs11-keygen -b 1024 -l sample-zsk</code></strong>
1950$ <strong class="userinput"><code>dnssec-keyfromlabel -l sample-zsk example.net</code></strong>
1951</pre>
1952<p>
1953      Alternatively, you may prefer to generate a conventional
1954      on-disk key, using dnssec-keygen:
1955    </p>
1956<pre class="screen">
1957$ <strong class="userinput"><code>dnssec-keygen example.net</code></strong>
1958</pre>
1959<p>
1960      This provides less security than an HSM key, but since
1961      HSMs can be slow or cumbersome to use for security reasons, it
1962      may be more efficient to reserve HSM keys for use in the less
1963      frequent key-signing operation. The zone-signing key can be
1964      rolled more frequently, if you wish, to compensate for a
1965      reduction in key security.  (Note: When using native PKCS#11,
1966      there is no speed advantage to using on-disk keys, as cryptographic
1967      operations will be done by the HSM regardless.)
1968    </p>
1969<p>
1970      Now you can sign the zone. (Note: If not using the -S
1971      option to <span><strong class="command">dnssec-signzone</strong></span>, it will be
1972      necessary to add the contents of both <code class="filename">K*.key</code>
1973      files to the zone master file before signing it.)
1974    </p>
1975<pre class="screen">
1976$ <strong class="userinput"><code>dnssec-signzone -S example.net</code></strong>
1977Enter PIN:
1978Verifying the zone using the following algorithms:
1979NSEC3RSASHA1.
1980Zone signing complete:
1981Algorithm: NSEC3RSASHA1: ZSKs: 1, KSKs: 1 active, 0 revoked, 0 stand-by
1982example.net.signed
1983</pre>
1984</div>
1985<div class="sect2" lang="en">
1986<div class="titlepage"><div><div><h3 class="title">
1987<a name="id2638892"></a>Specifying the engine on the command line</h3></div></div></div>
1988<p>
1989      When using OpenSSL-based PKCS#11, the "engine" to be used by
1990      OpenSSL can be specified in <span><strong class="command">named</strong></span> and all of
1991      the BIND <span><strong class="command">dnssec-*</strong></span> tools by using the "-E
1992      &lt;engine&gt;" command line option. If BIND 9 is built with
1993      the --with-pkcs11 option, this option defaults to "pkcs11".
1994      Specifying the engine will generally not be necessary unless
1995      for some reason you wish to use a different OpenSSL
1996      engine.
1997    </p>
1998<p>
1999      If you wish to disable use of the "pkcs11" engine &#8212;
2000      for troubleshooting purposes, or because the HSM is unavailable
2001      &#8212; set the engine to the empty string. For example:
2002    </p>
2003<pre class="screen">
2004$ <strong class="userinput"><code>dnssec-signzone -E '' -S example.net</code></strong>
2005</pre>
2006<p>
2007      This causes
2008      <span><strong class="command">dnssec-signzone</strong></span> to run as if it were compiled
2009      without the --with-pkcs11 option.
2010    </p>
2011<p>
2012      When built with native PKCS#11 mode, the "engine" option has a
2013      different meaning: it specifies the path to the PKCS#11 provider
2014      library.  This may be useful when testing a new provider library.
2015    </p>
2016</div>
2017<div class="sect2" lang="en">
2018<div class="titlepage"><div><div><h3 class="title">
2019<a name="id2639009"></a>Running named with automatic zone re-signing</h3></div></div></div>
2020<p>
2021      If you want <span><strong class="command">named</strong></span> to dynamically re-sign zones
2022      using HSM keys, and/or to to sign new records inserted via nsupdate,
2023      then named must have access to the HSM PIN. In OpenSSL-based PKCS#11,
2024      this is accomplished by placing the PIN into the openssl.cnf file
2025      (in the above examples,
2026      <code class="filename">/opt/pkcs11/usr/ssl/openssl.cnf</code>).
2027    </p>
2028<p>
2029      The location of the openssl.cnf file can be overridden by
2030      setting the OPENSSL_CONF environment variable before running
2031      named.
2032    </p>
2033<p>Sample openssl.cnf:</p>
2034<pre class="programlisting">
2035	openssl_conf = openssl_def
2036	[ openssl_def ]
2037	engines = engine_section
2038	[ engine_section ]
2039	pkcs11 = pkcs11_section
2040	[ pkcs11_section ]
2041	PIN = <em class="replaceable"><code>&lt;PLACE PIN HERE&gt;</code></em>
2042</pre>
2043<p>
2044      This will also allow the dnssec-* tools to access the HSM
2045      without PIN entry. (The pkcs11-* tools access the HSM directly,
2046      not via OpenSSL, so a PIN will still be required to use
2047      them.)
2048    </p>
2049<p>
2050      In native PKCS#11 mode, the PIN can be provided in a file specified
2051      as an attribute of the key's label.  For example, if a key had the label
2052      <strong class="userinput"><code>pkcs11:object=local-zsk;pin-source=/etc/hsmpin</code></strong>,
2053      then the PIN would be read from the file
2054      <code class="filename">/etc/hsmpin</code>.
2055    </p>
2056<div class="warning" style="margin-left: 0.5in; margin-right: 0.5in;">
2057<h3 class="title">Warning</h3>
2058<p>
2059	Placing the HSM's PIN in a text file in this manner may reduce the
2060	security advantage of using an HSM. Be sure this is what you want to
2061	do before configuring the system in this way.
2062      </p>
2063</div>
2064</div>
2065</div>
2066<div class="sect1" lang="en">
2067<div class="titlepage"><div><div><h2 class="title" style="clear: both">
2068<a name="dlz-info"></a>DLZ (Dynamically Loadable Zones)</h2></div></div></div>
2069<p>
2070    DLZ (Dynamically Loadable Zones) is an extension to BIND 9 that allows
2071    zone data to be retrieved directly from an external database.  There is
2072    no required format or schema.  DLZ drivers exist for several different
2073    database backends including PostgreSQL, MySQL, and LDAP and can be
2074    written for any other.
2075  </p>
2076<p>
2077    Historically, DLZ drivers had to be statically linked with the named
2078    binary and were turned on via a configure option at compile time (for
2079    example, <strong class="userinput"><code>"configure --with-dlz-ldap"</code></strong>).
2080    Currently, the drivers provided in the BIND 9 tarball in
2081    <code class="filename">contrib/dlz/drivers</code> are still linked this
2082    way.
2083  </p>
2084<p>
2085    In BIND 9.8 and higher, it is possible to link some DLZ modules
2086    dynamically at runtime, via the DLZ "dlopen" driver, which acts as a
2087    generic wrapper around a shared object implementing the DLZ API.  The
2088    "dlopen" driver is linked into named by default, so configure options
2089    are no longer necessary when using these dynamically linkable drivers,
2090    but are still needed for the older drivers in
2091    <code class="filename">contrib/dlz/drivers</code>.
2092  </p>
2093<p>
2094    When the DLZ module provides data to named, it does so in text format.
2095    The response is converted to DNS wire format by named.  This
2096    conversion, and the lack of any internal caching, places significant
2097    limits on the query performance of DLZ modules.  Consequently, DLZ is
2098    not recommended for use on high-volume servers.  However, it can be
2099    used in a hidden master configuration, with slaves retrieving zone
2100    updates via AXFR.  (Note, however, that DLZ has no built-in support for
2101    DNS notify; slaves are not automatically informed of changes to the
2102    zones in the database.)
2103  </p>
2104<div class="sect2" lang="en">
2105<div class="titlepage"><div><div><h3 class="title">
2106<a name="id2639074"></a>Configuring DLZ</h3></div></div></div>
2107<p>
2108      A DLZ database is configured with a <span><strong class="command">dlz</strong></span>
2109      statement in <code class="filename">named.conf</code>:
2110    </p>
2111<pre class="screen">
2112    dlz example {
2113        database "dlopen driver.so <code class="option">args</code>";
2114        search yes;
2115    };
2116    </pre>
2117<p>
2118      This specifies a DLZ module to search when answering queries; the
2119      module is implemented in <code class="filename">driver.so</code> and is
2120      loaded at runtime by the dlopen DLZ driver.  Multiple
2121      <span><strong class="command">dlz</strong></span> statements can be specified; when
2122      answering a query, all DLZ modules with <code class="option">search</code>
2123      set to <code class="literal">yes</code> will be queried to find out if
2124      they contain an answer for the query name; the best available
2125      answer will be returned to the client.
2126    </p>
2127<p>
2128      The <code class="option">search</code> option in the above example can be
2129      omitted, because <code class="literal">yes</code> is the default value.
2130    </p>
2131<p>
2132      If <code class="option">search</code> is set to <code class="literal">no</code>, then
2133      this DLZ module is <span class="emphasis"><em>not</em></span> searched for the best
2134      match when a query is received.  Instead, zones in this DLZ must be
2135      separately specified in a zone statement.  This allows you to
2136      configure a zone normally using standard zone option semantics,
2137      but specify a different database back-end for storage of the
2138      zone's data.  For example, to implement NXDOMAIN redirection using
2139      a DLZ module for back-end storage of redirection rules:
2140    </p>
2141<pre class="screen">
2142    dlz other {
2143        database "dlopen driver.so <code class="option">args</code>";
2144        search no;
2145    };
2146
2147    zone "." {
2148        type redirect;
2149        dlz other;
2150    };
2151    </pre>
2152</div>
2153<div class="sect2" lang="en">
2154<div class="titlepage"><div><div><h3 class="title">
2155<a name="id2611909"></a>Sample DLZ Driver</h3></div></div></div>
2156<p>
2157      For guidance in implementation of DLZ modules, the directory
2158      <code class="filename">contrib/dlz/example</code> contains a basic
2159      dynamically-linkable DLZ module--i.e., one which can be
2160      loaded at runtime by the "dlopen" DLZ driver.
2161      The example sets up a single zone, whose name is passed
2162      to the module as an argument in the <span><strong class="command">dlz</strong></span>
2163      statement:
2164    </p>
2165<pre class="screen">
2166    dlz other {
2167        database "dlopen driver.so example.nil";
2168    };
2169    </pre>
2170<p>
2171      In the above example, the module is configured to create a zone
2172      "example.nil", which can answer queries and AXFR requests, and
2173      accept DDNS updates.  At runtime, prior to any updates, the zone
2174      contains an SOA, NS, and a single A record at the apex:
2175    </p>
2176<pre class="screen">
2177 example.nil.  3600    IN      SOA     example.nil. hostmaster.example.nil. (
2178                                               123 900 600 86400 3600
2179                                       )
2180 example.nil.  3600    IN      NS      example.nil.
2181 example.nil.  1800    IN      A       10.53.0.1
2182    </pre>
2183<p>
2184      The sample driver is capable of retrieving information about the
2185      querying client, and altering its response on the basis of this
2186      information.  To demonstrate this feature, the example driver
2187      responds to queries for "source-addr.<code class="option">zonename</code>&gt;/TXT"
2188      with the source address of the query.  Note, however, that this
2189      record will *not* be included in AXFR or ANY responses.  Normally,
2190      this feature would be used to alter responses in some other fashion,
2191      e.g., by providing different address records for a particular name
2192      depending on the network from which the query arrived.
2193    </p>
2194<p>
2195      Documentation of the DLZ module API can be found in
2196      <code class="filename">contrib/dlz/example/README</code>.  This directory also
2197      contains the header file <code class="filename">dlz_minimal.h</code>, which
2198      defines the API and should be included by any dynamically-linkable
2199      DLZ module.
2200    </p>
2201</div>
2202</div>
2203<div class="sect1" lang="en">
2204<div class="titlepage"><div><div><h2 class="title" style="clear: both">
2205<a name="id2571523"></a>IPv6 Support in <acronym class="acronym">BIND</acronym> 9</h2></div></div></div>
2206<p>
2207        <acronym class="acronym">BIND</acronym> 9 fully supports all currently
2208        defined forms of IPv6 name to address and address to name
2209        lookups.  It will also use IPv6 addresses to make queries when
2210        running on an IPv6 capable system.
2211      </p>
2212<p>
2213        For forward lookups, <acronym class="acronym">BIND</acronym> 9 supports
2214        only AAAA records.  RFC 3363 deprecated the use of A6 records,
2215        and client-side support for A6 records was accordingly removed
2216        from <acronym class="acronym">BIND</acronym> 9.
2217        However, authoritative <acronym class="acronym">BIND</acronym> 9 name servers still
2218        load zone files containing A6 records correctly, answer queries
2219        for A6 records, and accept zone transfer for a zone containing A6
2220        records.
2221      </p>
2222<p>
2223        For IPv6 reverse lookups, <acronym class="acronym">BIND</acronym> 9 supports
2224        the traditional "nibble" format used in the
2225        <span class="emphasis"><em>ip6.arpa</em></span> domain, as well as the older, deprecated
2226        <span class="emphasis"><em>ip6.int</em></span> domain.
2227        Older versions of <acronym class="acronym">BIND</acronym> 9
2228        supported the "binary label" (also known as "bitstring") format,
2229        but support of binary labels has been completely removed per
2230        RFC 3363.
2231        Many applications in <acronym class="acronym">BIND</acronym> 9 do not understand
2232        the binary label format at all any more, and will return an
2233        error if given.
2234        In particular, an authoritative <acronym class="acronym">BIND</acronym> 9
2235        name server will not load a zone file containing binary labels.
2236      </p>
2237<p>
2238        For an overview of the format and structure of IPv6 addresses,
2239        see <a href="Bv9ARM.ch11.html#ipv6addresses" title="IPv6 addresses (AAAA)">the section called &#8220;IPv6 addresses (AAAA)&#8221;</a>.
2240      </p>
2241<div class="sect2" lang="en">
2242<div class="titlepage"><div><div><h3 class="title">
2243<a name="id2571789"></a>Address Lookups Using AAAA Records</h3></div></div></div>
2244<p>
2245          The IPv6 AAAA record is a parallel to the IPv4 A record,
2246          and, unlike the deprecated A6 record, specifies the entire
2247          IPv6 address in a single record.  For example,
2248        </p>
2249<pre class="programlisting">
2250$ORIGIN example.com.
2251host            3600    IN      AAAA    2001:db8::1
2252</pre>
2253<p>
2254          Use of IPv4-in-IPv6 mapped addresses is not recommended.
2255          If a host has an IPv4 address, use an A record, not
2256          a AAAA, with <code class="literal">::ffff:192.168.42.1</code> as
2257          the address.
2258        </p>
2259</div>
2260<div class="sect2" lang="en">
2261<div class="titlepage"><div><div><h3 class="title">
2262<a name="id2571811"></a>Address to Name Lookups Using Nibble Format</h3></div></div></div>
2263<p>
2264          When looking up an address in nibble format, the address
2265          components are simply reversed, just as in IPv4, and
2266          <code class="literal">ip6.arpa.</code> is appended to the
2267          resulting name.
2268          For example, the following would provide reverse name lookup for
2269          a host with address
2270          <code class="literal">2001:db8::1</code>.
2271        </p>
2272<pre class="programlisting">
2273$ORIGIN 0.0.0.0.0.0.0.0.8.b.d.0.1.0.0.2.ip6.arpa.
22741.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0  14400   IN    PTR    (
2275                                    host.example.com. )
2276</pre>
2277</div>
2278</div>
2279</div>
2280<div class="navfooter">
2281<hr>
2282<table width="100%" summary="Navigation footer">
2283<tr>
2284<td width="40%" align="left">
2285<a accesskey="p" href="Bv9ARM.ch03.html">Prev</a>�</td>
2286<td width="20%" align="center">�</td>
2287<td width="40%" align="right">�<a accesskey="n" href="Bv9ARM.ch05.html">Next</a>
2288</td>
2289</tr>
2290<tr>
2291<td width="40%" align="left" valign="top">Chapter�3.�Name Server Configuration�</td>
2292<td width="20%" align="center"><a accesskey="h" href="Bv9ARM.html">Home</a></td>
2293<td width="40%" align="right" valign="top">�Chapter�5.�The <acronym class="acronym">BIND</acronym> 9 Lightweight Resolver</td>
2294</tr>
2295</table>
2296</div>
2297<p style="text-align: center;">BIND 9.10.2-P4</p>
2298</body>
2299</html>
2300