1; RUN: opt %loadNPMPolly -polly-allow-nonaffine-branches \ 2; RUN: -polly-invariant-load-hoisting=true \ 3; RUN: -polly-allow-nonaffine-loops=true \ 4; RUN: '-passes=print<polly-detect>,print<polly-function-scops>' -disable-output < %s 2>&1 | FileCheck %s --check-prefix=INNERMOST 5; RUN: opt %loadNPMPolly -polly-allow-nonaffine \ 6; RUN: -polly-invariant-load-hoisting=true \ 7; RUN: -polly-allow-nonaffine-branches -polly-allow-nonaffine-loops=true \ 8; RUN: '-passes=print<polly-detect>,print<polly-function-scops>' -disable-output < %s 2>&1 | FileCheck %s --check-prefix=ALL 9; RUN: opt %loadNPMPolly -polly-allow-nonaffine \ 10; RUN: -polly-invariant-load-hoisting=true \ 11; RUN: -polly-process-unprofitable=false \ 12; RUN: -polly-allow-nonaffine-branches -polly-allow-nonaffine-loops=true \ 13; RUN: '-passes=print<polly-detect>,print<polly-function-scops>' -disable-output < %s 2>&1 | FileCheck %s --check-prefix=PROFIT 14; 15; Negative test for INNERMOST. 16; At the moment we will optimistically assume A[i] in the conditional before the inner 17; loop might be invariant and expand the SCoP from the loop to include the conditional. However, 18; during SCoP generation we will realize that A[i] is only sometimes invariant. 19; 20; Possible solutions could be: 21; - Do not optimistically assume it to be invariant (as before this commit), however we would loose 22; a lot of invariant cases due to possible aliasing. 23; - Reduce the size of the SCoP if an assumed invariant access is in fact not invariant instead of 24; rejecting the whole region. 25; 26; INNERMOST: Function: f 27; INNERMOST-NEXT: Region: %bb4---%bb3 28; INNERMOST-NEXT: Max Loop Depth: 1 29; INNERMOST-NEXT: Invariant Accesses: { 30; INNERMOST-NEXT: ReadAccess := [Reduction Type: NONE] [Scalar: 0] 31; INNERMOST-NEXT: [tmp6, p_1, p_2] -> { Stmt_bb4[] -> MemRef_A[p_2] }; 32; INNERMOST-NEXT: Execution Context: [tmp6, p_1, p_2] -> { : (tmp6 > 0 and p_2 >= p_1) or (tmp6 < 0 and p_2 >= p_1) or tmp6 = 0 } 33; INNERMOST-NEXT: } 34; INNERMOST-NEXT: Context: 35; INNERMOST-NEXT: [tmp6, p_1, p_2] -> { : -2147483648 <= tmp6 <= 2147483647 and -2199023255552 <= p_1 <= 2199023254528 and 0 <= p_2 <= 1024 } 36; INNERMOST-NEXT: Assumed Context: 37; INNERMOST-NEXT: [tmp6, p_1, p_2] -> { : } 38; INNERMOST-NEXT: Invalid Context: 39; INNERMOST-NEXT: [tmp6, p_1, p_2] -> { : p_2 < p_1 and (tmp6 < 0 or tmp6 > 0) } 40; INNERMOST: p0: %tmp6 41; INNERMOST-NEXT: p1: {0,+,(sext i32 %N to i64)}<%bb3> 42; INNERMOST-NEXT: p2: {0,+,1}<nuw><nsw><%bb3> 43; INNERMOST-NEXT: Arrays { 44; INNERMOST-NEXT: i32 MemRef_A[*]; // Element size 4 45; INNERMOST-NEXT: i64 MemRef_indvars_iv_next2; // Element size 8 46; INNERMOST-NEXT: } 47; INNERMOST-NEXT: Arrays (Bounds as pw_affs) { 48; INNERMOST-NEXT: i32 MemRef_A[*]; // Element size 4 49; INNERMOST-NEXT: i64 MemRef_indvars_iv_next2; // Element size 8 50; INNERMOST-NEXT: } 51; INNERMOST-NEXT: Alias Groups (0): 52; INNERMOST-NEXT: n/a 53; INNERMOST-NEXT: Statements { 54; INNERMOST-NEXT: Stmt_bb12 55; INNERMOST-NEXT: Domain := 56; INNERMOST-NEXT: [tmp6, p_1, p_2] -> { Stmt_bb12[i0] : 0 <= i0 < p_1 and (tmp6 < 0 or tmp6 > 0) }; 57; INNERMOST-NEXT: Schedule := 58; INNERMOST-NEXT: [tmp6, p_1, p_2] -> { Stmt_bb12[i0] -> [0, i0] : tmp6 < 0 or tmp6 > 0 }; 59; INNERMOST-NEXT: ReadAccess := [Reduction Type: +] [Scalar: 0] 60; INNERMOST-NEXT: [tmp6, p_1, p_2] -> { Stmt_bb12[i0] -> MemRef_A[i0] }; 61; INNERMOST-NEXT: MustWriteAccess := [Reduction Type: +] [Scalar: 0] 62; INNERMOST-NEXT: [tmp6, p_1, p_2] -> { Stmt_bb12[i0] -> MemRef_A[i0] }; 63; INNERMOST-NEXT: Stmt_bb19 64; INNERMOST-NEXT: Domain := 65; INNERMOST-NEXT: [tmp6, p_1, p_2] -> { Stmt_bb19[] }; 66; INNERMOST-NEXT: Schedule := 67; INNERMOST-NEXT: [tmp6, p_1, p_2] -> { Stmt_bb19[] -> [1, 0] }; 68; INNERMOST-NEXT: MustWriteAccess := [Reduction Type: NONE] [Scalar: 1] 69; INNERMOST-NEXT: [tmp6, p_1, p_2] -> { Stmt_bb19[] -> MemRef_indvars_iv_next2[] }; 70; INNERMOST-NEXT: } 71; 72; ALL: Function: f 73; ALL-NEXT: Region: %bb3---%bb20 74; ALL-NEXT: Max Loop Depth: 1 75; ALL-NEXT: Invariant Accesses: { 76; ALL-NEXT: } 77; ALL-NEXT: Context: 78; ALL-NEXT: { : } 79; ALL-NEXT: Assumed Context: 80; ALL-NEXT: { : } 81; ALL-NEXT: Invalid Context: 82; ALL-NEXT: { : false } 83; ALL: Arrays { 84; ALL-NEXT: i32 MemRef_A[*]; // Element size 4 85; ALL-NEXT: } 86; ALL-NEXT: Arrays (Bounds as pw_affs) { 87; ALL-NEXT: i32 MemRef_A[*]; // Element size 4 88; ALL-NEXT: } 89; ALL-NEXT: Alias Groups (0): 90; ALL-NEXT: n/a 91; ALL-NEXT: Statements { 92; ALL-NEXT: Stmt_bb4__TO__bb18 93; ALL-NEXT: Domain := 94; ALL-NEXT: { Stmt_bb4__TO__bb18[i0] : 0 <= i0 <= 1023 }; 95; ALL-NEXT: Schedule := 96; ALL-NEXT: { Stmt_bb4__TO__bb18[i0] -> [i0] }; 97; ALL-NEXT: ReadAccess := [Reduction Type: NONE] [Scalar: 0] 98; ALL-NEXT: { Stmt_bb4__TO__bb18[i0] -> MemRef_A[i0] }; 99; ALL-NEXT: ReadAccess := [Reduction Type: NONE] [Scalar: 0] 100; ALL-NEXT: { Stmt_bb4__TO__bb18[i0] -> MemRef_A[o0] : 0 <= o0 <= 2199023254528 }; 101; ALL-NEXT: MayWriteAccess := [Reduction Type: NONE] [Scalar: 0] 102; ALL-NEXT: { Stmt_bb4__TO__bb18[i0] -> MemRef_A[o0] : 0 <= o0 <= 2199023254528 }; 103; ALL-NEXT: } 104; 105; PROFIT-NOT: Statements 106; 107; void f(int *A, int N) { 108; for (int i = 0; i < 1024; i++) 109; if (A[i]) 110; for (int j = 0; j < N * i; j++) 111; A[j]++; 112; } 113; 114target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128" 115 116define void @f(ptr %A, i32 %N) { 117bb: 118 %tmp = sext i32 %N to i64 119 br label %bb3 120 121bb3: ; preds = %bb19, %bb 122 %indvars.iv1 = phi i64 [ %indvars.iv.next2, %bb19 ], [ 0, %bb ] 123 %exitcond = icmp ne i64 %indvars.iv1, 1024 124 br i1 %exitcond, label %bb4, label %bb20 125 126bb4: ; preds = %bb3 127 %tmp5 = getelementptr inbounds i32, ptr %A, i64 %indvars.iv1 128 %tmp6 = load i32, ptr %tmp5, align 4 129 %tmp7 = icmp eq i32 %tmp6, 0 130 br i1 %tmp7, label %bb18, label %bb8 131 132bb8: ; preds = %bb4 133 br label %bb9 134 135bb9: ; preds = %bb16, %bb8 136 %indvars.iv = phi i64 [ %indvars.iv.next, %bb16 ], [ 0, %bb8 ] 137 %tmp10 = mul nsw i64 %indvars.iv1, %tmp 138 %tmp11 = icmp slt i64 %indvars.iv, %tmp10 139 br i1 %tmp11, label %bb12, label %bb17 140 141bb12: ; preds = %bb9 142 %tmp13 = getelementptr inbounds i32, ptr %A, i64 %indvars.iv 143 %tmp14 = load i32, ptr %tmp13, align 4 144 %tmp15 = add nsw i32 %tmp14, 1 145 store i32 %tmp15, ptr %tmp13, align 4 146 br label %bb16 147 148bb16: ; preds = %bb12 149 %indvars.iv.next = add nuw nsw i64 %indvars.iv, 1 150 br label %bb9 151 152bb17: ; preds = %bb9 153 br label %bb18 154 155bb18: ; preds = %bb4, %bb17 156 br label %bb19 157 158bb19: ; preds = %bb18 159 %indvars.iv.next2 = add nuw nsw i64 %indvars.iv1, 1 160 br label %bb3 161 162bb20: ; preds = %bb3 163 ret void 164} 165