1; RUN: opt %loadNPMPolly -polly-allow-nonaffine-branches \
2; RUN:     -polly-invariant-load-hoisting=true \
3; RUN:     -polly-allow-nonaffine-loops=true \
4; RUN:     '-passes=print<polly-detect>,print<polly-function-scops>' -disable-output < %s 2>&1 | FileCheck %s --check-prefix=INNERMOST
5; RUN: opt %loadNPMPolly -polly-allow-nonaffine \
6; RUN:     -polly-invariant-load-hoisting=true \
7; RUN:     -polly-allow-nonaffine-branches -polly-allow-nonaffine-loops=true \
8; RUN:     '-passes=print<polly-detect>,print<polly-function-scops>' -disable-output < %s 2>&1 | FileCheck %s --check-prefix=ALL
9; RUN: opt %loadNPMPolly -polly-allow-nonaffine \
10; RUN:     -polly-invariant-load-hoisting=true \
11; RUN:     -polly-process-unprofitable=false \
12; RUN:     -polly-allow-nonaffine-branches -polly-allow-nonaffine-loops=true \
13; RUN:     '-passes=print<polly-detect>,print<polly-function-scops>' -disable-output < %s 2>&1 | FileCheck %s --check-prefix=PROFIT
14;
15; Negative test for INNERMOST.
16; At the moment we will optimistically assume A[i] in the conditional before the inner
17; loop might be invariant and expand the SCoP from the loop to include the conditional. However,
18; during SCoP generation we will realize that A[i] is only sometimes invariant.
19;
20; Possible solutions could be:
21;   - Do not optimistically assume it to be invariant (as before this commit), however we would loose
22;     a lot of invariant cases due to possible aliasing.
23;   - Reduce the size of the SCoP if an assumed invariant access is in fact not invariant instead of
24;     rejecting the whole region.
25;
26; INNERMOST:         Function: f
27; INNERMOST-NEXT:    Region: %bb4---%bb3
28; INNERMOST-NEXT:    Max Loop Depth:  1
29; INNERMOST-NEXT:    Invariant Accesses: {
30; INNERMOST-NEXT:            ReadAccess :=	[Reduction Type: NONE] [Scalar: 0]
31; INNERMOST-NEXT:                [tmp6, p_1, p_2] -> { Stmt_bb4[] -> MemRef_A[p_2] };
32; INNERMOST-NEXT:            Execution Context: [tmp6, p_1, p_2] -> { : (tmp6 > 0 and p_2 >= p_1) or (tmp6 < 0 and p_2 >= p_1) or tmp6 = 0 }
33; INNERMOST-NEXT:    }
34; INNERMOST-NEXT:    Context:
35; INNERMOST-NEXT:    [tmp6, p_1, p_2] -> {  : -2147483648 <= tmp6 <= 2147483647 and -2199023255552 <= p_1 <= 2199023254528 and 0 <= p_2 <= 1024 }
36; INNERMOST-NEXT:    Assumed Context:
37; INNERMOST-NEXT:    [tmp6, p_1, p_2] -> {  :  }
38; INNERMOST-NEXT:    Invalid Context:
39; INNERMOST-NEXT:    [tmp6, p_1, p_2] -> {  : p_2 < p_1 and (tmp6 < 0 or tmp6 > 0) }
40; INNERMOST:         p0: %tmp6
41; INNERMOST-NEXT:    p1: {0,+,(sext i32 %N to i64)}<%bb3>
42; INNERMOST-NEXT:    p2: {0,+,1}<nuw><nsw><%bb3>
43; INNERMOST-NEXT:    Arrays {
44; INNERMOST-NEXT:        i32 MemRef_A[*]; // Element size 4
45; INNERMOST-NEXT:        i64 MemRef_indvars_iv_next2; // Element size 8
46; INNERMOST-NEXT:    }
47; INNERMOST-NEXT:    Arrays (Bounds as pw_affs) {
48; INNERMOST-NEXT:        i32 MemRef_A[*]; // Element size 4
49; INNERMOST-NEXT:        i64 MemRef_indvars_iv_next2; // Element size 8
50; INNERMOST-NEXT:    }
51; INNERMOST-NEXT:    Alias Groups (0):
52; INNERMOST-NEXT:        n/a
53; INNERMOST-NEXT:    Statements {
54; INNERMOST-NEXT:    	Stmt_bb12
55; INNERMOST-NEXT:            Domain :=
56; INNERMOST-NEXT:                [tmp6, p_1, p_2] -> { Stmt_bb12[i0] : 0 <= i0 < p_1 and (tmp6 < 0 or tmp6 > 0) };
57; INNERMOST-NEXT:            Schedule :=
58; INNERMOST-NEXT:                [tmp6, p_1, p_2] -> { Stmt_bb12[i0] -> [0, i0] : tmp6 < 0 or tmp6 > 0 };
59; INNERMOST-NEXT:            ReadAccess :=	[Reduction Type: +] [Scalar: 0]
60; INNERMOST-NEXT:                [tmp6, p_1, p_2] -> { Stmt_bb12[i0] -> MemRef_A[i0] };
61; INNERMOST-NEXT:            MustWriteAccess :=	[Reduction Type: +] [Scalar: 0]
62; INNERMOST-NEXT:                [tmp6, p_1, p_2] -> { Stmt_bb12[i0] -> MemRef_A[i0] };
63; INNERMOST-NEXT:    	Stmt_bb19
64; INNERMOST-NEXT:            Domain :=
65; INNERMOST-NEXT:                [tmp6, p_1, p_2] -> { Stmt_bb19[] };
66; INNERMOST-NEXT:            Schedule :=
67; INNERMOST-NEXT:                [tmp6, p_1, p_2] -> { Stmt_bb19[] -> [1, 0] };
68; INNERMOST-NEXT:            MustWriteAccess :=	[Reduction Type: NONE] [Scalar: 1]
69; INNERMOST-NEXT:                [tmp6, p_1, p_2] -> { Stmt_bb19[] -> MemRef_indvars_iv_next2[] };
70; INNERMOST-NEXT:    }
71;
72; ALL:      Function: f
73; ALL-NEXT: Region: %bb3---%bb20
74; ALL-NEXT: Max Loop Depth:  1
75; ALL-NEXT: Invariant Accesses: {
76; ALL-NEXT: }
77; ALL-NEXT: Context:
78; ALL-NEXT: {  :  }
79; ALL-NEXT: Assumed Context:
80; ALL-NEXT: {  :  }
81; ALL-NEXT: Invalid Context:
82; ALL-NEXT: {  : false }
83; ALL:      Arrays {
84; ALL-NEXT:     i32 MemRef_A[*]; // Element size 4
85; ALL-NEXT: }
86; ALL-NEXT: Arrays (Bounds as pw_affs) {
87; ALL-NEXT:     i32 MemRef_A[*]; // Element size 4
88; ALL-NEXT: }
89; ALL-NEXT: Alias Groups (0):
90; ALL-NEXT:     n/a
91; ALL-NEXT: Statements {
92; ALL-NEXT:     Stmt_bb4__TO__bb18
93; ALL-NEXT:         Domain :=
94; ALL-NEXT:             { Stmt_bb4__TO__bb18[i0] : 0 <= i0 <= 1023 };
95; ALL-NEXT:         Schedule :=
96; ALL-NEXT:             { Stmt_bb4__TO__bb18[i0] -> [i0] };
97; ALL-NEXT:         ReadAccess :=    [Reduction Type: NONE] [Scalar: 0]
98; ALL-NEXT:             { Stmt_bb4__TO__bb18[i0] -> MemRef_A[i0] };
99; ALL-NEXT:         ReadAccess :=    [Reduction Type: NONE] [Scalar: 0]
100; ALL-NEXT:             { Stmt_bb4__TO__bb18[i0] -> MemRef_A[o0] : 0 <= o0 <= 2199023254528 };
101; ALL-NEXT:         MayWriteAccess :=    [Reduction Type: NONE] [Scalar: 0]
102; ALL-NEXT:             { Stmt_bb4__TO__bb18[i0] -> MemRef_A[o0] : 0 <= o0 <= 2199023254528 };
103; ALL-NEXT: }
104;
105; PROFIT-NOT: Statements
106;
107;    void f(int *A, int N) {
108;      for (int i = 0; i < 1024; i++)
109;        if (A[i])
110;          for (int j = 0; j < N * i; j++)
111;            A[j]++;
112;    }
113;
114target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
115
116define void @f(ptr %A, i32 %N) {
117bb:
118  %tmp = sext i32 %N to i64
119  br label %bb3
120
121bb3:                                              ; preds = %bb19, %bb
122  %indvars.iv1 = phi i64 [ %indvars.iv.next2, %bb19 ], [ 0, %bb ]
123  %exitcond = icmp ne i64 %indvars.iv1, 1024
124  br i1 %exitcond, label %bb4, label %bb20
125
126bb4:                                              ; preds = %bb3
127  %tmp5 = getelementptr inbounds i32, ptr %A, i64 %indvars.iv1
128  %tmp6 = load i32, ptr %tmp5, align 4
129  %tmp7 = icmp eq i32 %tmp6, 0
130  br i1 %tmp7, label %bb18, label %bb8
131
132bb8:                                              ; preds = %bb4
133  br label %bb9
134
135bb9:                                              ; preds = %bb16, %bb8
136  %indvars.iv = phi i64 [ %indvars.iv.next, %bb16 ], [ 0, %bb8 ]
137  %tmp10 = mul nsw i64 %indvars.iv1, %tmp
138  %tmp11 = icmp slt i64 %indvars.iv, %tmp10
139  br i1 %tmp11, label %bb12, label %bb17
140
141bb12:                                             ; preds = %bb9
142  %tmp13 = getelementptr inbounds i32, ptr %A, i64 %indvars.iv
143  %tmp14 = load i32, ptr %tmp13, align 4
144  %tmp15 = add nsw i32 %tmp14, 1
145  store i32 %tmp15, ptr %tmp13, align 4
146  br label %bb16
147
148bb16:                                             ; preds = %bb12
149  %indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
150  br label %bb9
151
152bb17:                                             ; preds = %bb9
153  br label %bb18
154
155bb18:                                             ; preds = %bb4, %bb17
156  br label %bb19
157
158bb19:                                             ; preds = %bb18
159  %indvars.iv.next2 = add nuw nsw i64 %indvars.iv1, 1
160  br label %bb3
161
162bb20:                                             ; preds = %bb3
163  ret void
164}
165