xref: /llvm-project/polly/lib/CodeGen/BlockGenerators.cpp (revision 6292a808b3524d9ba6f4ce55bc5b9e547b088dd8)
1 //===--- BlockGenerators.cpp - Generate code for statements -----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the BlockGenerator and VectorBlockGenerator classes,
10 // which generate sequential code and vectorized code for a polyhedral
11 // statement, respectively.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "polly/CodeGen/BlockGenerators.h"
16 #include "polly/CodeGen/IslExprBuilder.h"
17 #include "polly/CodeGen/RuntimeDebugBuilder.h"
18 #include "polly/Options.h"
19 #include "polly/ScopInfo.h"
20 #include "polly/Support/ISLTools.h"
21 #include "polly/Support/ScopHelper.h"
22 #include "polly/Support/VirtualInstruction.h"
23 #include "llvm/Analysis/DomTreeUpdater.h"
24 #include "llvm/Analysis/LoopInfo.h"
25 #include "llvm/Analysis/RegionInfo.h"
26 #include "llvm/Analysis/ScalarEvolution.h"
27 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
28 #include "llvm/Transforms/Utils/Local.h"
29 #include "isl/ast.h"
30 #include <deque>
31 
32 using namespace llvm;
33 using namespace polly;
34 
35 static cl::opt<bool> Aligned("enable-polly-aligned",
36                              cl::desc("Assumed aligned memory accesses."),
37                              cl::Hidden, cl::cat(PollyCategory));
38 
39 bool PollyDebugPrinting;
40 static cl::opt<bool, true> DebugPrintingX(
41     "polly-codegen-add-debug-printing",
42     cl::desc("Add printf calls that show the values loaded/stored."),
43     cl::location(PollyDebugPrinting), cl::Hidden, cl::cat(PollyCategory));
44 
45 static cl::opt<bool> TraceStmts(
46     "polly-codegen-trace-stmts",
47     cl::desc("Add printf calls that print the statement being executed"),
48     cl::Hidden, cl::cat(PollyCategory));
49 
50 static cl::opt<bool> TraceScalars(
51     "polly-codegen-trace-scalars",
52     cl::desc("Add printf calls that print the values of all scalar values "
53              "used in a statement. Requires -polly-codegen-trace-stmts."),
54     cl::Hidden, cl::cat(PollyCategory));
55 
56 BlockGenerator::BlockGenerator(
57     PollyIRBuilder &B, LoopInfo &LI, ScalarEvolution &SE, DominatorTree &DT,
58     AllocaMapTy &ScalarMap, EscapeUsersAllocaMapTy &EscapeMap,
59     ValueMapT &GlobalMap, IslExprBuilder *ExprBuilder, BasicBlock *StartBlock)
60     : Builder(B), LI(LI), SE(SE), ExprBuilder(ExprBuilder), DT(DT), GenDT(&DT),
61       GenLI(&LI), GenSE(&SE), ScalarMap(ScalarMap), EscapeMap(EscapeMap),
62       GlobalMap(GlobalMap), StartBlock(StartBlock) {}
63 
64 Value *BlockGenerator::trySynthesizeNewValue(ScopStmt &Stmt, Value *Old,
65                                              ValueMapT &BBMap,
66                                              LoopToScevMapT &LTS,
67                                              Loop *L) const {
68   if (!SE.isSCEVable(Old->getType()))
69     return nullptr;
70 
71   const SCEV *Scev = SE.getSCEVAtScope(Old, L);
72   if (!Scev)
73     return nullptr;
74 
75   if (isa<SCEVCouldNotCompute>(Scev))
76     return nullptr;
77 
78   ValueMapT VTV;
79   VTV.insert(BBMap.begin(), BBMap.end());
80   VTV.insert(GlobalMap.begin(), GlobalMap.end());
81 
82   Scop &S = *Stmt.getParent();
83   const DataLayout &DL = S.getFunction().getDataLayout();
84   auto IP = Builder.GetInsertPoint();
85 
86   assert(IP != Builder.GetInsertBlock()->end() &&
87          "Only instructions can be insert points for SCEVExpander");
88   Value *Expanded = expandCodeFor(
89       S, SE, Builder.GetInsertBlock()->getParent(), *GenSE, DL, "polly", Scev,
90       Old->getType(), &*IP, &VTV, &LTS, StartBlock->getSinglePredecessor());
91 
92   BBMap[Old] = Expanded;
93   return Expanded;
94 }
95 
96 Value *BlockGenerator::getNewValue(ScopStmt &Stmt, Value *Old, ValueMapT &BBMap,
97                                    LoopToScevMapT &LTS, Loop *L) const {
98 
99   auto lookupGlobally = [this](Value *Old) -> Value * {
100     Value *New = GlobalMap.lookup(Old);
101     if (!New)
102       return nullptr;
103 
104     // Required by:
105     // * Isl/CodeGen/OpenMP/invariant_base_pointer_preloaded.ll
106     // * Isl/CodeGen/OpenMP/invariant_base_pointer_preloaded_different_bb.ll
107     // * Isl/CodeGen/OpenMP/invariant_base_pointer_preloaded_pass_only_needed.ll
108     // * Isl/CodeGen/OpenMP/invariant_base_pointers_preloaded.ll
109     // * Isl/CodeGen/OpenMP/loop-body-references-outer-values-3.ll
110     // * Isl/CodeGen/OpenMP/single_loop_with_loop_invariant_baseptr.ll
111     // GlobalMap should be a mapping from (value in original SCoP) to (copied
112     // value in generated SCoP), without intermediate mappings, which might
113     // easily require transitiveness as well.
114     if (Value *NewRemapped = GlobalMap.lookup(New))
115       New = NewRemapped;
116 
117     // No test case for this code.
118     if (Old->getType()->getScalarSizeInBits() <
119         New->getType()->getScalarSizeInBits())
120       New = Builder.CreateTruncOrBitCast(New, Old->getType());
121 
122     return New;
123   };
124 
125   Value *New = nullptr;
126   auto VUse = VirtualUse::create(&Stmt, L, Old, true);
127   switch (VUse.getKind()) {
128   case VirtualUse::Block:
129     // BasicBlock are constants, but the BlockGenerator copies them.
130     New = BBMap.lookup(Old);
131     break;
132 
133   case VirtualUse::Constant:
134     // Used by:
135     // * Isl/CodeGen/OpenMP/reference-argument-from-non-affine-region.ll
136     // Constants should not be redefined. In this case, the GlobalMap just
137     // contains a mapping to the same constant, which is unnecessary, but
138     // harmless.
139     if ((New = lookupGlobally(Old)))
140       break;
141 
142     assert(!BBMap.count(Old));
143     New = Old;
144     break;
145 
146   case VirtualUse::ReadOnly:
147     assert(!GlobalMap.count(Old));
148 
149     // Required for:
150     // * Isl/CodeGen/MemAccess/create_arrays.ll
151     // * Isl/CodeGen/read-only-scalars.ll
152     // * ScheduleOptimizer/pattern-matching-based-opts_10.ll
153     // For some reason these reload a read-only value. The reloaded value ends
154     // up in BBMap, buts its value should be identical.
155     //
156     // Required for:
157     // * Isl/CodeGen/OpenMP/single_loop_with_param.ll
158     // The parallel subfunctions need to reference the read-only value from the
159     // parent function, this is done by reloading them locally.
160     if ((New = BBMap.lookup(Old)))
161       break;
162 
163     New = Old;
164     break;
165 
166   case VirtualUse::Synthesizable:
167     // Used by:
168     // * Isl/CodeGen/OpenMP/loop-body-references-outer-values-3.ll
169     // * Isl/CodeGen/OpenMP/recomputed-srem.ll
170     // * Isl/CodeGen/OpenMP/reference-other-bb.ll
171     // * Isl/CodeGen/OpenMP/two-parallel-loops-reference-outer-indvar.ll
172     // For some reason synthesizable values end up in GlobalMap. Their values
173     // are the same as trySynthesizeNewValue would return. The legacy
174     // implementation prioritized GlobalMap, so this is what we do here as well.
175     // Ideally, synthesizable values should not end up in GlobalMap.
176     if ((New = lookupGlobally(Old)))
177       break;
178 
179     // Required for:
180     // * Isl/CodeGen/RuntimeDebugBuilder/combine_different_values.ll
181     // * Isl/CodeGen/getNumberOfIterations.ll
182     // * Isl/CodeGen/non_affine_float_compare.ll
183     // * ScheduleOptimizer/pattern-matching-based-opts_10.ll
184     // Ideally, synthesizable values are synthesized by trySynthesizeNewValue,
185     // not precomputed (SCEVExpander has its own caching mechanism).
186     // These tests fail without this, but I think trySynthesizeNewValue would
187     // just re-synthesize the same instructions.
188     if ((New = BBMap.lookup(Old)))
189       break;
190 
191     New = trySynthesizeNewValue(Stmt, Old, BBMap, LTS, L);
192     break;
193 
194   case VirtualUse::Hoisted:
195     // TODO: Hoisted invariant loads should be found in GlobalMap only, but not
196     // redefined locally (which will be ignored anyway). That is, the following
197     // assertion should apply: assert(!BBMap.count(Old))
198 
199     New = lookupGlobally(Old);
200     break;
201 
202   case VirtualUse::Intra:
203   case VirtualUse::Inter:
204     assert(!GlobalMap.count(Old) &&
205            "Intra and inter-stmt values are never global");
206     New = BBMap.lookup(Old);
207     break;
208   }
209   assert(New && "Unexpected scalar dependence in region!");
210   return New;
211 }
212 
213 void BlockGenerator::copyInstScalar(ScopStmt &Stmt, Instruction *Inst,
214                                     ValueMapT &BBMap, LoopToScevMapT &LTS) {
215   // We do not generate debug intrinsics as we did not investigate how to
216   // copy them correctly. At the current state, they just crash the code
217   // generation as the meta-data operands are not correctly copied.
218   if (isa<DbgInfoIntrinsic>(Inst))
219     return;
220 
221   Instruction *NewInst = Inst->clone();
222 
223   // Replace old operands with the new ones.
224   for (Value *OldOperand : Inst->operands()) {
225     Value *NewOperand =
226         getNewValue(Stmt, OldOperand, BBMap, LTS, getLoopForStmt(Stmt));
227 
228     if (!NewOperand) {
229       assert(!isa<StoreInst>(NewInst) &&
230              "Store instructions are always needed!");
231       NewInst->deleteValue();
232       return;
233     }
234 
235     // FIXME: We will encounter "NewOperand" again if used twice. getNewValue()
236     // is meant to be called on old values only.
237     NewInst->replaceUsesOfWith(OldOperand, NewOperand);
238   }
239 
240   Builder.Insert(NewInst);
241   BBMap[Inst] = NewInst;
242 
243   assert(NewInst->getModule() == Inst->getModule() &&
244          "Expecting instructions to be in the same module");
245 
246   if (!NewInst->getType()->isVoidTy())
247     NewInst->setName("p_" + Inst->getName());
248 }
249 
250 Value *
251 BlockGenerator::generateLocationAccessed(ScopStmt &Stmt, MemAccInst Inst,
252                                          ValueMapT &BBMap, LoopToScevMapT &LTS,
253                                          isl_id_to_ast_expr *NewAccesses) {
254   const MemoryAccess &MA = Stmt.getArrayAccessFor(Inst);
255   return generateLocationAccessed(
256       Stmt, getLoopForStmt(Stmt),
257       Inst.isNull() ? nullptr : Inst.getPointerOperand(), BBMap, LTS,
258       NewAccesses, MA.getId().release(), MA.getAccessValue()->getType());
259 }
260 
261 Value *BlockGenerator::generateLocationAccessed(
262     ScopStmt &Stmt, Loop *L, Value *Pointer, ValueMapT &BBMap,
263     LoopToScevMapT &LTS, isl_id_to_ast_expr *NewAccesses, __isl_take isl_id *Id,
264     Type *ExpectedType) {
265   isl_ast_expr *AccessExpr = isl_id_to_ast_expr_get(NewAccesses, Id);
266 
267   if (AccessExpr) {
268     AccessExpr = isl_ast_expr_address_of(AccessExpr);
269     return ExprBuilder->create(AccessExpr);
270   }
271   assert(
272       Pointer &&
273       "If expression was not generated, must use the original pointer value");
274   return getNewValue(Stmt, Pointer, BBMap, LTS, L);
275 }
276 
277 Value *
278 BlockGenerator::getImplicitAddress(MemoryAccess &Access, Loop *L,
279                                    LoopToScevMapT &LTS, ValueMapT &BBMap,
280                                    __isl_keep isl_id_to_ast_expr *NewAccesses) {
281   if (Access.isLatestArrayKind())
282     return generateLocationAccessed(*Access.getStatement(), L, nullptr, BBMap,
283                                     LTS, NewAccesses, Access.getId().release(),
284                                     Access.getAccessValue()->getType());
285 
286   return getOrCreateAlloca(Access);
287 }
288 
289 Loop *BlockGenerator::getLoopForStmt(const ScopStmt &Stmt) const {
290   auto *StmtBB = Stmt.getEntryBlock();
291   return LI.getLoopFor(StmtBB);
292 }
293 
294 Value *BlockGenerator::generateArrayLoad(ScopStmt &Stmt, LoadInst *Load,
295                                          ValueMapT &BBMap, LoopToScevMapT &LTS,
296                                          isl_id_to_ast_expr *NewAccesses) {
297   if (Value *PreloadLoad = GlobalMap.lookup(Load))
298     return PreloadLoad;
299 
300   Value *NewPointer =
301       generateLocationAccessed(Stmt, Load, BBMap, LTS, NewAccesses);
302   Value *ScalarLoad =
303       Builder.CreateAlignedLoad(Load->getType(), NewPointer, Load->getAlign(),
304                                 Load->getName() + "_p_scalar_");
305 
306   if (PollyDebugPrinting)
307     RuntimeDebugBuilder::createCPUPrinter(Builder, "Load from ", NewPointer,
308                                           ": ", ScalarLoad, "\n");
309 
310   return ScalarLoad;
311 }
312 
313 void BlockGenerator::generateArrayStore(ScopStmt &Stmt, StoreInst *Store,
314                                         ValueMapT &BBMap, LoopToScevMapT &LTS,
315                                         isl_id_to_ast_expr *NewAccesses) {
316   MemoryAccess &MA = Stmt.getArrayAccessFor(Store);
317   isl::set AccDom = MA.getAccessRelation().domain();
318   std::string Subject = MA.getId().get_name();
319 
320   generateConditionalExecution(Stmt, AccDom, Subject.c_str(), [&, this]() {
321     Value *NewPointer =
322         generateLocationAccessed(Stmt, Store, BBMap, LTS, NewAccesses);
323     Value *ValueOperand = getNewValue(Stmt, Store->getValueOperand(), BBMap,
324                                       LTS, getLoopForStmt(Stmt));
325 
326     if (PollyDebugPrinting)
327       RuntimeDebugBuilder::createCPUPrinter(Builder, "Store to  ", NewPointer,
328                                             ": ", ValueOperand, "\n");
329 
330     Builder.CreateAlignedStore(ValueOperand, NewPointer, Store->getAlign());
331   });
332 }
333 
334 bool BlockGenerator::canSyntheziseInStmt(ScopStmt &Stmt, Instruction *Inst) {
335   Loop *L = getLoopForStmt(Stmt);
336   return (Stmt.isBlockStmt() || !Stmt.getRegion()->contains(L)) &&
337          canSynthesize(Inst, *Stmt.getParent(), &SE, L);
338 }
339 
340 void BlockGenerator::copyInstruction(ScopStmt &Stmt, Instruction *Inst,
341                                      ValueMapT &BBMap, LoopToScevMapT &LTS,
342                                      isl_id_to_ast_expr *NewAccesses) {
343   // Terminator instructions control the control flow. They are explicitly
344   // expressed in the clast and do not need to be copied.
345   if (Inst->isTerminator())
346     return;
347 
348   // Synthesizable statements will be generated on-demand.
349   if (canSyntheziseInStmt(Stmt, Inst))
350     return;
351 
352   if (auto *Load = dyn_cast<LoadInst>(Inst)) {
353     Value *NewLoad = generateArrayLoad(Stmt, Load, BBMap, LTS, NewAccesses);
354     // Compute NewLoad before its insertion in BBMap to make the insertion
355     // deterministic.
356     BBMap[Load] = NewLoad;
357     return;
358   }
359 
360   if (auto *Store = dyn_cast<StoreInst>(Inst)) {
361     // Identified as redundant by -polly-simplify.
362     if (!Stmt.getArrayAccessOrNULLFor(Store))
363       return;
364 
365     generateArrayStore(Stmt, Store, BBMap, LTS, NewAccesses);
366     return;
367   }
368 
369   if (auto *PHI = dyn_cast<PHINode>(Inst)) {
370     copyPHIInstruction(Stmt, PHI, BBMap, LTS);
371     return;
372   }
373 
374   // Skip some special intrinsics for which we do not adjust the semantics to
375   // the new schedule. All others are handled like every other instruction.
376   if (isIgnoredIntrinsic(Inst))
377     return;
378 
379   copyInstScalar(Stmt, Inst, BBMap, LTS);
380 }
381 
382 void BlockGenerator::removeDeadInstructions(BasicBlock *BB, ValueMapT &BBMap) {
383   auto NewBB = Builder.GetInsertBlock();
384   for (auto I = NewBB->rbegin(); I != NewBB->rend(); I++) {
385     Instruction *NewInst = &*I;
386 
387     if (!isInstructionTriviallyDead(NewInst))
388       continue;
389 
390     for (auto Pair : BBMap)
391       if (Pair.second == NewInst) {
392         BBMap.erase(Pair.first);
393       }
394 
395     NewInst->eraseFromParent();
396     I = NewBB->rbegin();
397   }
398 }
399 
400 void BlockGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT &LTS,
401                               __isl_keep isl_id_to_ast_expr *NewAccesses) {
402   assert(Stmt.isBlockStmt() &&
403          "Only block statements can be copied by the block generator");
404 
405   ValueMapT BBMap;
406 
407   BasicBlock *BB = Stmt.getBasicBlock();
408   copyBB(Stmt, BB, BBMap, LTS, NewAccesses);
409   removeDeadInstructions(BB, BBMap);
410 }
411 
412 BasicBlock *BlockGenerator::splitBB(BasicBlock *BB) {
413   BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(),
414                                   &*Builder.GetInsertPoint(), GenDT, GenLI);
415   CopyBB->setName("polly.stmt." + BB->getName());
416   return CopyBB;
417 }
418 
419 BasicBlock *BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB,
420                                    ValueMapT &BBMap, LoopToScevMapT &LTS,
421                                    isl_id_to_ast_expr *NewAccesses) {
422   BasicBlock *CopyBB = splitBB(BB);
423   Builder.SetInsertPoint(&CopyBB->front());
424   generateScalarLoads(Stmt, LTS, BBMap, NewAccesses);
425   generateBeginStmtTrace(Stmt, LTS, BBMap);
426 
427   copyBB(Stmt, BB, CopyBB, BBMap, LTS, NewAccesses);
428 
429   // After a basic block was copied store all scalars that escape this block in
430   // their alloca.
431   generateScalarStores(Stmt, LTS, BBMap, NewAccesses);
432   return CopyBB;
433 }
434 
435 void BlockGenerator::switchGeneratedFunc(Function *GenFn, DominatorTree *GenDT,
436                                          LoopInfo *GenLI,
437                                          ScalarEvolution *GenSE) {
438   assert(GenFn == GenDT->getRoot()->getParent());
439   assert(GenLI->getTopLevelLoops().empty() ||
440          GenFn == GenLI->getTopLevelLoops().front()->getHeader()->getParent());
441   this->GenDT = GenDT;
442   this->GenLI = GenLI;
443   this->GenSE = GenSE;
444 }
445 
446 void BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB, BasicBlock *CopyBB,
447                             ValueMapT &BBMap, LoopToScevMapT &LTS,
448                             isl_id_to_ast_expr *NewAccesses) {
449   // Block statements and the entry blocks of region statement are code
450   // generated from instruction lists. This allow us to optimize the
451   // instructions that belong to a certain scop statement. As the code
452   // structure of region statements might be arbitrary complex, optimizing the
453   // instruction list is not yet supported.
454   if (Stmt.isBlockStmt() || (Stmt.isRegionStmt() && Stmt.getEntryBlock() == BB))
455     for (Instruction *Inst : Stmt.getInstructions())
456       copyInstruction(Stmt, Inst, BBMap, LTS, NewAccesses);
457   else
458     for (Instruction &Inst : *BB)
459       copyInstruction(Stmt, &Inst, BBMap, LTS, NewAccesses);
460 }
461 
462 Value *BlockGenerator::getOrCreateAlloca(const MemoryAccess &Access) {
463   assert(!Access.isLatestArrayKind() && "Trying to get alloca for array kind");
464 
465   return getOrCreateAlloca(Access.getLatestScopArrayInfo());
466 }
467 
468 Value *BlockGenerator::getOrCreateAlloca(const ScopArrayInfo *Array) {
469   assert(!Array->isArrayKind() && "Trying to get alloca for array kind");
470 
471   auto &Addr = ScalarMap[Array];
472 
473   if (Addr) {
474     // Allow allocas to be (temporarily) redirected once by adding a new
475     // old-alloca-addr to new-addr mapping to GlobalMap. This functionality
476     // is used for example by the OpenMP code generation where a first use
477     // of a scalar while still in the host code allocates a normal alloca with
478     // getOrCreateAlloca. When the values of this scalar are accessed during
479     // the generation of the parallel subfunction, these values are copied over
480     // to the parallel subfunction and each request for a scalar alloca slot
481     // must be forwarded to the temporary in-subfunction slot. This mapping is
482     // removed when the subfunction has been generated and again normal host
483     // code is generated. Due to the following reasons it is not possible to
484     // perform the GlobalMap lookup right after creating the alloca below, but
485     // instead we need to check GlobalMap at each call to getOrCreateAlloca:
486     //
487     //   1) GlobalMap may be changed multiple times (for each parallel loop),
488     //   2) The temporary mapping is commonly only known after the initial
489     //      alloca has already been generated, and
490     //   3) The original alloca value must be restored after leaving the
491     //      sub-function.
492     if (Value *NewAddr = GlobalMap.lookup(&*Addr))
493       return NewAddr;
494     return Addr;
495   }
496 
497   Type *Ty = Array->getElementType();
498   Value *ScalarBase = Array->getBasePtr();
499   std::string NameExt;
500   if (Array->isPHIKind())
501     NameExt = ".phiops";
502   else
503     NameExt = ".s2a";
504 
505   const DataLayout &DL = Builder.GetInsertBlock()->getDataLayout();
506 
507   Addr =
508       new AllocaInst(Ty, DL.getAllocaAddrSpace(), nullptr,
509                      DL.getPrefTypeAlign(Ty), ScalarBase->getName() + NameExt);
510   BasicBlock *EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock();
511   Addr->insertBefore(EntryBB->getFirstInsertionPt());
512 
513   return Addr;
514 }
515 
516 void BlockGenerator::handleOutsideUsers(const Scop &S, ScopArrayInfo *Array) {
517   Instruction *Inst = cast<Instruction>(Array->getBasePtr());
518 
519   // If there are escape users we get the alloca for this instruction and put it
520   // in the EscapeMap for later finalization. Lastly, if the instruction was
521   // copied multiple times we already did this and can exit.
522   if (EscapeMap.count(Inst))
523     return;
524 
525   EscapeUserVectorTy EscapeUsers;
526   for (User *U : Inst->users()) {
527 
528     // Non-instruction user will never escape.
529     Instruction *UI = dyn_cast<Instruction>(U);
530     if (!UI)
531       continue;
532 
533     if (S.contains(UI))
534       continue;
535 
536     EscapeUsers.push_back(UI);
537   }
538 
539   // Exit if no escape uses were found.
540   if (EscapeUsers.empty())
541     return;
542 
543   // Get or create an escape alloca for this instruction.
544   auto *ScalarAddr = getOrCreateAlloca(Array);
545 
546   // Remember that this instruction has escape uses and the escape alloca.
547   EscapeMap[Inst] = std::make_pair(ScalarAddr, std::move(EscapeUsers));
548 }
549 
550 void BlockGenerator::generateScalarLoads(
551     ScopStmt &Stmt, LoopToScevMapT &LTS, ValueMapT &BBMap,
552     __isl_keep isl_id_to_ast_expr *NewAccesses) {
553   for (MemoryAccess *MA : Stmt) {
554     if (MA->isOriginalArrayKind() || MA->isWrite())
555       continue;
556 
557 #ifndef NDEBUG
558     auto StmtDom =
559         Stmt.getDomain().intersect_params(Stmt.getParent()->getContext());
560     auto AccDom = MA->getAccessRelation().domain();
561     assert(!StmtDom.is_subset(AccDom).is_false() &&
562            "Scalar must be loaded in all statement instances");
563 #endif
564 
565     auto *Address =
566         getImplicitAddress(*MA, getLoopForStmt(Stmt), LTS, BBMap, NewAccesses);
567     BBMap[MA->getAccessValue()] = Builder.CreateLoad(
568         MA->getElementType(), Address, Address->getName() + ".reload");
569   }
570 }
571 
572 Value *BlockGenerator::buildContainsCondition(ScopStmt &Stmt,
573                                               const isl::set &Subdomain) {
574   isl::ast_build AstBuild = Stmt.getAstBuild();
575   isl::set Domain = Stmt.getDomain();
576 
577   isl::union_map USchedule = AstBuild.get_schedule();
578   USchedule = USchedule.intersect_domain(Domain);
579 
580   assert(!USchedule.is_empty());
581   isl::map Schedule = isl::map::from_union_map(USchedule);
582 
583   isl::set ScheduledDomain = Schedule.range();
584   isl::set ScheduledSet = Subdomain.apply(Schedule);
585 
586   isl::ast_build RestrictedBuild = AstBuild.restrict(ScheduledDomain);
587 
588   isl::ast_expr IsInSet = RestrictedBuild.expr_from(ScheduledSet);
589   Value *IsInSetExpr = ExprBuilder->create(IsInSet.copy());
590   IsInSetExpr = Builder.CreateICmpNE(
591       IsInSetExpr, ConstantInt::get(IsInSetExpr->getType(), 0));
592 
593   return IsInSetExpr;
594 }
595 
596 void BlockGenerator::generateConditionalExecution(
597     ScopStmt &Stmt, const isl::set &Subdomain, StringRef Subject,
598     const std::function<void()> &GenThenFunc) {
599   isl::set StmtDom = Stmt.getDomain();
600 
601   // If the condition is a tautology, don't generate a condition around the
602   // code.
603   bool IsPartialWrite =
604       !StmtDom.intersect_params(Stmt.getParent()->getContext())
605            .is_subset(Subdomain);
606   if (!IsPartialWrite) {
607     GenThenFunc();
608     return;
609   }
610 
611   // Generate the condition.
612   Value *Cond = buildContainsCondition(Stmt, Subdomain);
613 
614   // Don't call GenThenFunc if it is never executed. An ast index expression
615   // might not be defined in this case.
616   if (auto *Const = dyn_cast<ConstantInt>(Cond))
617     if (Const->isZero())
618       return;
619 
620   BasicBlock *HeadBlock = Builder.GetInsertBlock();
621   StringRef BlockName = HeadBlock->getName();
622 
623   // Generate the conditional block.
624   DomTreeUpdater DTU(GenDT, DomTreeUpdater::UpdateStrategy::Eager);
625   SplitBlockAndInsertIfThen(Cond, &*Builder.GetInsertPoint(), false, nullptr,
626                             &DTU, GenLI);
627   BranchInst *Branch = cast<BranchInst>(HeadBlock->getTerminator());
628   BasicBlock *ThenBlock = Branch->getSuccessor(0);
629   BasicBlock *TailBlock = Branch->getSuccessor(1);
630 
631   // Assign descriptive names.
632   if (auto *CondInst = dyn_cast<Instruction>(Cond))
633     CondInst->setName("polly." + Subject + ".cond");
634   ThenBlock->setName(BlockName + "." + Subject + ".partial");
635   TailBlock->setName(BlockName + ".cont");
636 
637   // Put the client code into the conditional block and continue in the merge
638   // block afterwards.
639   Builder.SetInsertPoint(ThenBlock, ThenBlock->getFirstInsertionPt());
640   GenThenFunc();
641   Builder.SetInsertPoint(TailBlock, TailBlock->getFirstInsertionPt());
642 }
643 
644 static std::string getInstName(Value *Val) {
645   std::string Result;
646   raw_string_ostream OS(Result);
647   Val->printAsOperand(OS, false);
648   return Result;
649 }
650 
651 void BlockGenerator::generateBeginStmtTrace(ScopStmt &Stmt, LoopToScevMapT &LTS,
652                                             ValueMapT &BBMap) {
653   if (!TraceStmts)
654     return;
655 
656   Scop *S = Stmt.getParent();
657   const char *BaseName = Stmt.getBaseName();
658 
659   isl::ast_build AstBuild = Stmt.getAstBuild();
660   isl::set Domain = Stmt.getDomain();
661 
662   isl::union_map USchedule = AstBuild.get_schedule().intersect_domain(Domain);
663   isl::map Schedule = isl::map::from_union_map(USchedule);
664   assert(Schedule.is_empty().is_false() &&
665          "The stmt must have a valid instance");
666 
667   isl::multi_pw_aff ScheduleMultiPwAff =
668       isl::pw_multi_aff::from_map(Schedule.reverse());
669   isl::ast_build RestrictedBuild = AstBuild.restrict(Schedule.range());
670 
671   // Sequence of strings to print.
672   SmallVector<llvm::Value *, 8> Values;
673 
674   // Print the name of the statement.
675   // TODO: Indent by the depth of the statement instance in the schedule tree.
676   Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, BaseName));
677   Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, "("));
678 
679   // Add the coordinate of the statement instance.
680   for (unsigned i : rangeIslSize(0, ScheduleMultiPwAff.dim(isl::dim::out))) {
681     if (i > 0)
682       Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, ","));
683 
684     isl::ast_expr IsInSet = RestrictedBuild.expr_from(ScheduleMultiPwAff.at(i));
685     Values.push_back(ExprBuilder->create(IsInSet.copy()));
686   }
687 
688   if (TraceScalars) {
689     Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, ")"));
690     DenseSet<Instruction *> Encountered;
691 
692     // Add the value of each scalar (and the result of PHIs) used in the
693     // statement.
694     // TODO: Values used in region-statements.
695     for (Instruction *Inst : Stmt.insts()) {
696       if (!RuntimeDebugBuilder::isPrintable(Inst->getType()))
697         continue;
698 
699       if (isa<PHINode>(Inst)) {
700         Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, " "));
701         Values.push_back(RuntimeDebugBuilder::getPrintableString(
702             Builder, getInstName(Inst)));
703         Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, "="));
704         Values.push_back(getNewValue(Stmt, Inst, BBMap, LTS,
705                                      LI.getLoopFor(Inst->getParent())));
706       } else {
707         for (Value *Op : Inst->operand_values()) {
708           // Do not print values that cannot change during the execution of the
709           // SCoP.
710           auto *OpInst = dyn_cast<Instruction>(Op);
711           if (!OpInst)
712             continue;
713           if (!S->contains(OpInst))
714             continue;
715 
716           // Print each scalar at most once, and exclude values defined in the
717           // statement itself.
718           if (Encountered.count(OpInst))
719             continue;
720 
721           Values.push_back(
722               RuntimeDebugBuilder::getPrintableString(Builder, " "));
723           Values.push_back(RuntimeDebugBuilder::getPrintableString(
724               Builder, getInstName(OpInst)));
725           Values.push_back(
726               RuntimeDebugBuilder::getPrintableString(Builder, "="));
727           Values.push_back(getNewValue(Stmt, OpInst, BBMap, LTS,
728                                        LI.getLoopFor(Inst->getParent())));
729           Encountered.insert(OpInst);
730         }
731       }
732 
733       Encountered.insert(Inst);
734     }
735 
736     Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, "\n"));
737   } else {
738     Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, ")\n"));
739   }
740 
741   RuntimeDebugBuilder::createCPUPrinter(Builder, ArrayRef<Value *>(Values));
742 }
743 
744 void BlockGenerator::generateScalarStores(
745     ScopStmt &Stmt, LoopToScevMapT &LTS, ValueMapT &BBMap,
746     __isl_keep isl_id_to_ast_expr *NewAccesses) {
747   Loop *L = LI.getLoopFor(Stmt.getBasicBlock());
748 
749   assert(Stmt.isBlockStmt() &&
750          "Region statements need to use the generateScalarStores() function in "
751          "the RegionGenerator");
752 
753   for (MemoryAccess *MA : Stmt) {
754     if (MA->isOriginalArrayKind() || MA->isRead())
755       continue;
756 
757     isl::set AccDom = MA->getAccessRelation().domain();
758     std::string Subject = MA->getId().get_name();
759 
760     generateConditionalExecution(
761         Stmt, AccDom, Subject.c_str(), [&, this, MA]() {
762           Value *Val = MA->getAccessValue();
763           if (MA->isAnyPHIKind()) {
764             assert(MA->getIncoming().size() >= 1 &&
765                    "Block statements have exactly one exiting block, or "
766                    "multiple but "
767                    "with same incoming block and value");
768             assert(std::all_of(MA->getIncoming().begin(),
769                                MA->getIncoming().end(),
770                                [&](std::pair<BasicBlock *, Value *> p) -> bool {
771                                  return p.first == Stmt.getBasicBlock();
772                                }) &&
773                    "Incoming block must be statement's block");
774             Val = MA->getIncoming()[0].second;
775           }
776           auto Address = getImplicitAddress(*MA, getLoopForStmt(Stmt), LTS,
777                                             BBMap, NewAccesses);
778 
779           Val = getNewValue(Stmt, Val, BBMap, LTS, L);
780           assert((!isa<Instruction>(Val) ||
781                   DT.dominates(cast<Instruction>(Val)->getParent(),
782                                Builder.GetInsertBlock())) &&
783                  "Domination violation");
784           assert((!isa<Instruction>(Address) ||
785                   DT.dominates(cast<Instruction>(Address)->getParent(),
786                                Builder.GetInsertBlock())) &&
787                  "Domination violation");
788 
789           Builder.CreateStore(Val, Address);
790         });
791   }
792 }
793 
794 void BlockGenerator::createScalarInitialization(Scop &S) {
795   BasicBlock *ExitBB = S.getExit();
796   BasicBlock *PreEntryBB = S.getEnteringBlock();
797 
798   Builder.SetInsertPoint(&*StartBlock->begin());
799 
800   for (auto &Array : S.arrays()) {
801     if (Array->getNumberOfDimensions() != 0)
802       continue;
803     if (Array->isPHIKind()) {
804       // For PHI nodes, the only values we need to store are the ones that
805       // reach the PHI node from outside the region. In general there should
806       // only be one such incoming edge and this edge should enter through
807       // 'PreEntryBB'.
808       auto PHI = cast<PHINode>(Array->getBasePtr());
809 
810       for (auto BI = PHI->block_begin(), BE = PHI->block_end(); BI != BE; BI++)
811         if (!S.contains(*BI) && *BI != PreEntryBB)
812           llvm_unreachable("Incoming edges from outside the scop should always "
813                            "come from PreEntryBB");
814 
815       int Idx = PHI->getBasicBlockIndex(PreEntryBB);
816       if (Idx < 0)
817         continue;
818 
819       Value *ScalarValue = PHI->getIncomingValue(Idx);
820 
821       Builder.CreateStore(ScalarValue, getOrCreateAlloca(Array));
822       continue;
823     }
824 
825     auto *Inst = dyn_cast<Instruction>(Array->getBasePtr());
826 
827     if (Inst && S.contains(Inst))
828       continue;
829 
830     // PHI nodes that are not marked as such in their SAI object are either exit
831     // PHI nodes we model as common scalars but without initialization, or
832     // incoming phi nodes that need to be initialized. Check if the first is the
833     // case for Inst and do not create and initialize memory if so.
834     if (auto *PHI = dyn_cast_or_null<PHINode>(Inst))
835       if (!S.hasSingleExitEdge() && PHI->getBasicBlockIndex(ExitBB) >= 0)
836         continue;
837 
838     Builder.CreateStore(Array->getBasePtr(), getOrCreateAlloca(Array));
839   }
840 }
841 
842 void BlockGenerator::createScalarFinalization(Scop &S) {
843   // The exit block of the __unoptimized__ region.
844   BasicBlock *ExitBB = S.getExitingBlock();
845   // The merge block __just after__ the region and the optimized region.
846   BasicBlock *MergeBB = S.getExit();
847 
848   // The exit block of the __optimized__ region.
849   BasicBlock *OptExitBB = *(pred_begin(MergeBB));
850   if (OptExitBB == ExitBB)
851     OptExitBB = *(++pred_begin(MergeBB));
852 
853   Builder.SetInsertPoint(OptExitBB->getTerminator());
854   for (const auto &EscapeMapping : EscapeMap) {
855     // Extract the escaping instruction and the escaping users as well as the
856     // alloca the instruction was demoted to.
857     Instruction *EscapeInst = EscapeMapping.first;
858     const auto &EscapeMappingValue = EscapeMapping.second;
859     const EscapeUserVectorTy &EscapeUsers = EscapeMappingValue.second;
860     auto *ScalarAddr = cast<AllocaInst>(&*EscapeMappingValue.first);
861 
862     // Reload the demoted instruction in the optimized version of the SCoP.
863     Value *EscapeInstReload =
864         Builder.CreateLoad(ScalarAddr->getAllocatedType(), ScalarAddr,
865                            EscapeInst->getName() + ".final_reload");
866     EscapeInstReload =
867         Builder.CreateBitOrPointerCast(EscapeInstReload, EscapeInst->getType());
868 
869     // Create the merge PHI that merges the optimized and unoptimized version.
870     PHINode *MergePHI = PHINode::Create(EscapeInst->getType(), 2,
871                                         EscapeInst->getName() + ".merge");
872     MergePHI->insertBefore(MergeBB->getFirstInsertionPt());
873 
874     // Add the respective values to the merge PHI.
875     MergePHI->addIncoming(EscapeInstReload, OptExitBB);
876     MergePHI->addIncoming(EscapeInst, ExitBB);
877 
878     // The information of scalar evolution about the escaping instruction needs
879     // to be revoked so the new merged instruction will be used.
880     if (SE.isSCEVable(EscapeInst->getType()))
881       SE.forgetValue(EscapeInst);
882 
883     // Replace all uses of the demoted instruction with the merge PHI.
884     for (Instruction *EUser : EscapeUsers)
885       EUser->replaceUsesOfWith(EscapeInst, MergePHI);
886   }
887 }
888 
889 void BlockGenerator::findOutsideUsers(Scop &S) {
890   for (auto &Array : S.arrays()) {
891 
892     if (Array->getNumberOfDimensions() != 0)
893       continue;
894 
895     if (Array->isPHIKind())
896       continue;
897 
898     auto *Inst = dyn_cast<Instruction>(Array->getBasePtr());
899 
900     if (!Inst)
901       continue;
902 
903     // Scop invariant hoisting moves some of the base pointers out of the scop.
904     // We can ignore these, as the invariant load hoisting already registers the
905     // relevant outside users.
906     if (!S.contains(Inst))
907       continue;
908 
909     handleOutsideUsers(S, Array);
910   }
911 }
912 
913 void BlockGenerator::createExitPHINodeMerges(Scop &S) {
914   if (S.hasSingleExitEdge())
915     return;
916 
917   auto *ExitBB = S.getExitingBlock();
918   auto *MergeBB = S.getExit();
919   auto *AfterMergeBB = MergeBB->getSingleSuccessor();
920   BasicBlock *OptExitBB = *(pred_begin(MergeBB));
921   if (OptExitBB == ExitBB)
922     OptExitBB = *(++pred_begin(MergeBB));
923 
924   Builder.SetInsertPoint(OptExitBB->getTerminator());
925 
926   for (auto &SAI : S.arrays()) {
927     auto *Val = SAI->getBasePtr();
928 
929     // Only Value-like scalars need a merge PHI. Exit block PHIs receive either
930     // the original PHI's value or the reloaded incoming values from the
931     // generated code. An llvm::Value is merged between the original code's
932     // value or the generated one.
933     if (!SAI->isExitPHIKind())
934       continue;
935 
936     PHINode *PHI = dyn_cast<PHINode>(Val);
937     if (!PHI)
938       continue;
939 
940     if (PHI->getParent() != AfterMergeBB)
941       continue;
942 
943     std::string Name = PHI->getName().str();
944     Value *ScalarAddr = getOrCreateAlloca(SAI);
945     Value *Reload = Builder.CreateLoad(SAI->getElementType(), ScalarAddr,
946                                        Name + ".ph.final_reload");
947     Reload = Builder.CreateBitOrPointerCast(Reload, PHI->getType());
948     Value *OriginalValue = PHI->getIncomingValueForBlock(MergeBB);
949     assert((!isa<Instruction>(OriginalValue) ||
950             cast<Instruction>(OriginalValue)->getParent() != MergeBB) &&
951            "Original value must no be one we just generated.");
952     auto *MergePHI = PHINode::Create(PHI->getType(), 2, Name + ".ph.merge");
953     MergePHI->insertBefore(MergeBB->getFirstInsertionPt());
954     MergePHI->addIncoming(Reload, OptExitBB);
955     MergePHI->addIncoming(OriginalValue, ExitBB);
956     int Idx = PHI->getBasicBlockIndex(MergeBB);
957     PHI->setIncomingValue(Idx, MergePHI);
958   }
959 }
960 
961 void BlockGenerator::invalidateScalarEvolution(Scop &S) {
962   for (auto &Stmt : S)
963     if (Stmt.isCopyStmt())
964       continue;
965     else if (Stmt.isBlockStmt())
966       for (auto &Inst : *Stmt.getBasicBlock())
967         SE.forgetValue(&Inst);
968     else if (Stmt.isRegionStmt())
969       for (auto *BB : Stmt.getRegion()->blocks())
970         for (auto &Inst : *BB)
971           SE.forgetValue(&Inst);
972     else
973       llvm_unreachable("Unexpected statement type found");
974 
975   // Invalidate SCEV of loops surrounding the EscapeUsers.
976   for (const auto &EscapeMapping : EscapeMap) {
977     const EscapeUserVectorTy &EscapeUsers = EscapeMapping.second.second;
978     for (Instruction *EUser : EscapeUsers) {
979       if (Loop *L = LI.getLoopFor(EUser->getParent()))
980         while (L) {
981           SE.forgetLoop(L);
982           L = L->getParentLoop();
983         }
984     }
985   }
986 }
987 
988 void BlockGenerator::finalizeSCoP(Scop &S) {
989   findOutsideUsers(S);
990   createScalarInitialization(S);
991   createExitPHINodeMerges(S);
992   createScalarFinalization(S);
993   invalidateScalarEvolution(S);
994 }
995 
996 BasicBlock *RegionGenerator::repairDominance(BasicBlock *BB,
997                                              BasicBlock *BBCopy) {
998 
999   BasicBlock *BBIDom = DT.getNode(BB)->getIDom()->getBlock();
1000   BasicBlock *BBCopyIDom = EndBlockMap.lookup(BBIDom);
1001 
1002   if (BBCopyIDom)
1003     GenDT->changeImmediateDominator(BBCopy, BBCopyIDom);
1004 
1005   return StartBlockMap.lookup(BBIDom);
1006 }
1007 
1008 // This is to determine whether an llvm::Value (defined in @p BB) is usable when
1009 // leaving a subregion. The straight-forward DT.dominates(BB, R->getExitBlock())
1010 // does not work in cases where the exit block has edges from outside the
1011 // region. In that case the llvm::Value would never be usable in in the exit
1012 // block. The RegionGenerator however creates an new exit block ('ExitBBCopy')
1013 // for the subregion's exiting edges only. We need to determine whether an
1014 // llvm::Value is usable in there. We do this by checking whether it dominates
1015 // all exiting blocks individually.
1016 static bool isDominatingSubregionExit(const DominatorTree &DT, Region *R,
1017                                       BasicBlock *BB) {
1018   for (auto ExitingBB : predecessors(R->getExit())) {
1019     // Check for non-subregion incoming edges.
1020     if (!R->contains(ExitingBB))
1021       continue;
1022 
1023     if (!DT.dominates(BB, ExitingBB))
1024       return false;
1025   }
1026 
1027   return true;
1028 }
1029 
1030 // Find the direct dominator of the subregion's exit block if the subregion was
1031 // simplified.
1032 static BasicBlock *findExitDominator(DominatorTree &DT, Region *R) {
1033   BasicBlock *Common = nullptr;
1034   for (auto ExitingBB : predecessors(R->getExit())) {
1035     // Check for non-subregion incoming edges.
1036     if (!R->contains(ExitingBB))
1037       continue;
1038 
1039     // First exiting edge.
1040     if (!Common) {
1041       Common = ExitingBB;
1042       continue;
1043     }
1044 
1045     Common = DT.findNearestCommonDominator(Common, ExitingBB);
1046   }
1047 
1048   assert(Common && R->contains(Common));
1049   return Common;
1050 }
1051 
1052 void RegionGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT &LTS,
1053                                __isl_keep isl_id_to_ast_expr *IdToAstExp) {
1054   assert(Stmt.isRegionStmt() &&
1055          "Only region statements can be copied by the region generator");
1056 
1057   // Forget all old mappings.
1058   StartBlockMap.clear();
1059   EndBlockMap.clear();
1060   RegionMaps.clear();
1061   IncompletePHINodeMap.clear();
1062 
1063   // Collection of all values related to this subregion.
1064   ValueMapT ValueMap;
1065 
1066   // The region represented by the statement.
1067   Region *R = Stmt.getRegion();
1068 
1069   // Create a dedicated entry for the region where we can reload all demoted
1070   // inputs.
1071   BasicBlock *EntryBB = R->getEntry();
1072   BasicBlock *EntryBBCopy = SplitBlock(
1073       Builder.GetInsertBlock(), &*Builder.GetInsertPoint(), GenDT, GenLI);
1074   EntryBBCopy->setName("polly.stmt." + EntryBB->getName() + ".entry");
1075   Builder.SetInsertPoint(&EntryBBCopy->front());
1076 
1077   ValueMapT &EntryBBMap = RegionMaps[EntryBBCopy];
1078   generateScalarLoads(Stmt, LTS, EntryBBMap, IdToAstExp);
1079   generateBeginStmtTrace(Stmt, LTS, EntryBBMap);
1080 
1081   for (auto PI = pred_begin(EntryBB), PE = pred_end(EntryBB); PI != PE; ++PI)
1082     if (!R->contains(*PI)) {
1083       StartBlockMap[*PI] = EntryBBCopy;
1084       EndBlockMap[*PI] = EntryBBCopy;
1085     }
1086 
1087   // Iterate over all blocks in the region in a breadth-first search.
1088   std::deque<BasicBlock *> Blocks;
1089   SmallSetVector<BasicBlock *, 8> SeenBlocks;
1090   Blocks.push_back(EntryBB);
1091   SeenBlocks.insert(EntryBB);
1092 
1093   while (!Blocks.empty()) {
1094     BasicBlock *BB = Blocks.front();
1095     Blocks.pop_front();
1096 
1097     // First split the block and update dominance information.
1098     BasicBlock *BBCopy = splitBB(BB);
1099     BasicBlock *BBCopyIDom = repairDominance(BB, BBCopy);
1100 
1101     // Get the mapping for this block and initialize it with either the scalar
1102     // loads from the generated entering block (which dominates all blocks of
1103     // this subregion) or the maps of the immediate dominator, if part of the
1104     // subregion. The latter necessarily includes the former.
1105     ValueMapT *InitBBMap;
1106     if (BBCopyIDom) {
1107       assert(RegionMaps.count(BBCopyIDom));
1108       InitBBMap = &RegionMaps[BBCopyIDom];
1109     } else
1110       InitBBMap = &EntryBBMap;
1111     auto Inserted = RegionMaps.insert(std::make_pair(BBCopy, *InitBBMap));
1112     ValueMapT &RegionMap = Inserted.first->second;
1113 
1114     // Copy the block with the BlockGenerator.
1115     Builder.SetInsertPoint(&BBCopy->front());
1116     copyBB(Stmt, BB, BBCopy, RegionMap, LTS, IdToAstExp);
1117 
1118     // In order to remap PHI nodes we store also basic block mappings.
1119     StartBlockMap[BB] = BBCopy;
1120     EndBlockMap[BB] = Builder.GetInsertBlock();
1121 
1122     // Add values to incomplete PHI nodes waiting for this block to be copied.
1123     for (const PHINodePairTy &PHINodePair : IncompletePHINodeMap[BB])
1124       addOperandToPHI(Stmt, PHINodePair.first, PHINodePair.second, BB, LTS);
1125     IncompletePHINodeMap[BB].clear();
1126 
1127     // And continue with new successors inside the region.
1128     for (auto SI = succ_begin(BB), SE = succ_end(BB); SI != SE; SI++)
1129       if (R->contains(*SI) && SeenBlocks.insert(*SI))
1130         Blocks.push_back(*SI);
1131 
1132     // Remember value in case it is visible after this subregion.
1133     if (isDominatingSubregionExit(DT, R, BB))
1134       ValueMap.insert(RegionMap.begin(), RegionMap.end());
1135   }
1136 
1137   // Now create a new dedicated region exit block and add it to the region map.
1138   BasicBlock *ExitBBCopy = SplitBlock(Builder.GetInsertBlock(),
1139                                       &*Builder.GetInsertPoint(), GenDT, GenLI);
1140   ExitBBCopy->setName("polly.stmt." + R->getExit()->getName() + ".exit");
1141   StartBlockMap[R->getExit()] = ExitBBCopy;
1142   EndBlockMap[R->getExit()] = ExitBBCopy;
1143 
1144   BasicBlock *ExitDomBBCopy = EndBlockMap.lookup(findExitDominator(DT, R));
1145   assert(ExitDomBBCopy &&
1146          "Common exit dominator must be within region; at least the entry node "
1147          "must match");
1148   GenDT->changeImmediateDominator(ExitBBCopy, ExitDomBBCopy);
1149 
1150   // As the block generator doesn't handle control flow we need to add the
1151   // region control flow by hand after all blocks have been copied.
1152   for (BasicBlock *BB : SeenBlocks) {
1153 
1154     BasicBlock *BBCopyStart = StartBlockMap[BB];
1155     BasicBlock *BBCopyEnd = EndBlockMap[BB];
1156     Instruction *TI = BB->getTerminator();
1157     if (isa<UnreachableInst>(TI)) {
1158       while (!BBCopyEnd->empty())
1159         BBCopyEnd->begin()->eraseFromParent();
1160       new UnreachableInst(BBCopyEnd->getContext(), BBCopyEnd);
1161       continue;
1162     }
1163 
1164     Instruction *BICopy = BBCopyEnd->getTerminator();
1165 
1166     ValueMapT &RegionMap = RegionMaps[BBCopyStart];
1167     RegionMap.insert(StartBlockMap.begin(), StartBlockMap.end());
1168 
1169     Builder.SetInsertPoint(BICopy);
1170     copyInstScalar(Stmt, TI, RegionMap, LTS);
1171     BICopy->eraseFromParent();
1172   }
1173 
1174   // Add counting PHI nodes to all loops in the region that can be used as
1175   // replacement for SCEVs referring to the old loop.
1176   for (BasicBlock *BB : SeenBlocks) {
1177     Loop *L = LI.getLoopFor(BB);
1178     if (L == nullptr || L->getHeader() != BB || !R->contains(L))
1179       continue;
1180 
1181     BasicBlock *BBCopy = StartBlockMap[BB];
1182     Value *NullVal = Builder.getInt32(0);
1183     PHINode *LoopPHI =
1184         PHINode::Create(Builder.getInt32Ty(), 2, "polly.subregion.iv");
1185     Instruction *LoopPHIInc = BinaryOperator::CreateAdd(
1186         LoopPHI, Builder.getInt32(1), "polly.subregion.iv.inc");
1187     LoopPHI->insertBefore(BBCopy->begin());
1188     LoopPHIInc->insertBefore(BBCopy->getTerminator()->getIterator());
1189 
1190     for (auto *PredBB : predecessors(BB)) {
1191       if (!R->contains(PredBB))
1192         continue;
1193       if (L->contains(PredBB))
1194         LoopPHI->addIncoming(LoopPHIInc, EndBlockMap[PredBB]);
1195       else
1196         LoopPHI->addIncoming(NullVal, EndBlockMap[PredBB]);
1197     }
1198 
1199     for (auto *PredBBCopy : predecessors(BBCopy))
1200       if (LoopPHI->getBasicBlockIndex(PredBBCopy) < 0)
1201         LoopPHI->addIncoming(NullVal, PredBBCopy);
1202 
1203     LTS[L] = SE.getUnknown(LoopPHI);
1204   }
1205 
1206   // Continue generating code in the exit block.
1207   Builder.SetInsertPoint(&*ExitBBCopy->getFirstInsertionPt());
1208 
1209   // Write values visible to other statements.
1210   generateScalarStores(Stmt, LTS, ValueMap, IdToAstExp);
1211   StartBlockMap.clear();
1212   EndBlockMap.clear();
1213   RegionMaps.clear();
1214   IncompletePHINodeMap.clear();
1215 }
1216 
1217 PHINode *RegionGenerator::buildExitPHI(MemoryAccess *MA, LoopToScevMapT &LTS,
1218                                        ValueMapT &BBMap, Loop *L) {
1219   ScopStmt *Stmt = MA->getStatement();
1220   Region *SubR = Stmt->getRegion();
1221   auto Incoming = MA->getIncoming();
1222 
1223   PollyIRBuilder::InsertPointGuard IPGuard(Builder);
1224   PHINode *OrigPHI = cast<PHINode>(MA->getAccessInstruction());
1225   BasicBlock *NewSubregionExit = Builder.GetInsertBlock();
1226 
1227   // This can happen if the subregion is simplified after the ScopStmts
1228   // have been created; simplification happens as part of CodeGeneration.
1229   if (OrigPHI->getParent() != SubR->getExit()) {
1230     BasicBlock *FormerExit = SubR->getExitingBlock();
1231     if (FormerExit)
1232       NewSubregionExit = StartBlockMap.lookup(FormerExit);
1233   }
1234 
1235   PHINode *NewPHI = PHINode::Create(OrigPHI->getType(), Incoming.size(),
1236                                     "polly." + OrigPHI->getName(),
1237                                     NewSubregionExit->getFirstNonPHIIt());
1238 
1239   // Add the incoming values to the PHI.
1240   for (auto &Pair : Incoming) {
1241     BasicBlock *OrigIncomingBlock = Pair.first;
1242     BasicBlock *NewIncomingBlockStart = StartBlockMap.lookup(OrigIncomingBlock);
1243     BasicBlock *NewIncomingBlockEnd = EndBlockMap.lookup(OrigIncomingBlock);
1244     Builder.SetInsertPoint(NewIncomingBlockEnd->getTerminator());
1245     assert(RegionMaps.count(NewIncomingBlockStart));
1246     assert(RegionMaps.count(NewIncomingBlockEnd));
1247     ValueMapT *LocalBBMap = &RegionMaps[NewIncomingBlockStart];
1248 
1249     Value *OrigIncomingValue = Pair.second;
1250     Value *NewIncomingValue =
1251         getNewValue(*Stmt, OrigIncomingValue, *LocalBBMap, LTS, L);
1252     NewPHI->addIncoming(NewIncomingValue, NewIncomingBlockEnd);
1253   }
1254 
1255   return NewPHI;
1256 }
1257 
1258 Value *RegionGenerator::getExitScalar(MemoryAccess *MA, LoopToScevMapT &LTS,
1259                                       ValueMapT &BBMap) {
1260   ScopStmt *Stmt = MA->getStatement();
1261 
1262   // TODO: Add some test cases that ensure this is really the right choice.
1263   Loop *L = LI.getLoopFor(Stmt->getRegion()->getExit());
1264 
1265   if (MA->isAnyPHIKind()) {
1266     auto Incoming = MA->getIncoming();
1267     assert(!Incoming.empty() &&
1268            "PHI WRITEs must have originate from at least one incoming block");
1269 
1270     // If there is only one incoming value, we do not need to create a PHI.
1271     if (Incoming.size() == 1) {
1272       Value *OldVal = Incoming[0].second;
1273       return getNewValue(*Stmt, OldVal, BBMap, LTS, L);
1274     }
1275 
1276     return buildExitPHI(MA, LTS, BBMap, L);
1277   }
1278 
1279   // MemoryKind::Value accesses leaving the subregion must dominate the exit
1280   // block; just pass the copied value.
1281   Value *OldVal = MA->getAccessValue();
1282   return getNewValue(*Stmt, OldVal, BBMap, LTS, L);
1283 }
1284 
1285 void RegionGenerator::generateScalarStores(
1286     ScopStmt &Stmt, LoopToScevMapT &LTS, ValueMapT &BBMap,
1287     __isl_keep isl_id_to_ast_expr *NewAccesses) {
1288   assert(Stmt.getRegion() &&
1289          "Block statements need to use the generateScalarStores() "
1290          "function in the BlockGenerator");
1291 
1292   // Get the exit scalar values before generating the writes.
1293   // This is necessary because RegionGenerator::getExitScalar may insert
1294   // PHINodes that depend on the region's exiting blocks. But
1295   // BlockGenerator::generateConditionalExecution may insert a new basic block
1296   // such that the current basic block is not a direct successor of the exiting
1297   // blocks anymore. Hence, build the PHINodes while the current block is still
1298   // the direct successor.
1299   SmallDenseMap<MemoryAccess *, Value *> NewExitScalars;
1300   for (MemoryAccess *MA : Stmt) {
1301     if (MA->isOriginalArrayKind() || MA->isRead())
1302       continue;
1303 
1304     Value *NewVal = getExitScalar(MA, LTS, BBMap);
1305     NewExitScalars[MA] = NewVal;
1306   }
1307 
1308   for (MemoryAccess *MA : Stmt) {
1309     if (MA->isOriginalArrayKind() || MA->isRead())
1310       continue;
1311 
1312     isl::set AccDom = MA->getAccessRelation().domain();
1313     std::string Subject = MA->getId().get_name();
1314     generateConditionalExecution(
1315         Stmt, AccDom, Subject.c_str(), [&, this, MA]() {
1316           Value *NewVal = NewExitScalars.lookup(MA);
1317           assert(NewVal && "The exit scalar must be determined before");
1318           Value *Address = getImplicitAddress(*MA, getLoopForStmt(Stmt), LTS,
1319                                               BBMap, NewAccesses);
1320           assert((!isa<Instruction>(NewVal) ||
1321                   DT.dominates(cast<Instruction>(NewVal)->getParent(),
1322                                Builder.GetInsertBlock())) &&
1323                  "Domination violation");
1324           assert((!isa<Instruction>(Address) ||
1325                   DT.dominates(cast<Instruction>(Address)->getParent(),
1326                                Builder.GetInsertBlock())) &&
1327                  "Domination violation");
1328           Builder.CreateStore(NewVal, Address);
1329         });
1330   }
1331 }
1332 
1333 void RegionGenerator::addOperandToPHI(ScopStmt &Stmt, PHINode *PHI,
1334                                       PHINode *PHICopy, BasicBlock *IncomingBB,
1335                                       LoopToScevMapT &LTS) {
1336   // If the incoming block was not yet copied mark this PHI as incomplete.
1337   // Once the block will be copied the incoming value will be added.
1338   BasicBlock *BBCopyStart = StartBlockMap[IncomingBB];
1339   BasicBlock *BBCopyEnd = EndBlockMap[IncomingBB];
1340   if (!BBCopyStart) {
1341     assert(!BBCopyEnd);
1342     assert(Stmt.represents(IncomingBB) &&
1343            "Bad incoming block for PHI in non-affine region");
1344     IncompletePHINodeMap[IncomingBB].push_back(std::make_pair(PHI, PHICopy));
1345     return;
1346   }
1347 
1348   assert(RegionMaps.count(BBCopyStart) &&
1349          "Incoming PHI block did not have a BBMap");
1350   ValueMapT &BBCopyMap = RegionMaps[BBCopyStart];
1351 
1352   Value *OpCopy = nullptr;
1353 
1354   if (Stmt.represents(IncomingBB)) {
1355     Value *Op = PHI->getIncomingValueForBlock(IncomingBB);
1356 
1357     // If the current insert block is different from the PHIs incoming block
1358     // change it, otherwise do not.
1359     auto IP = Builder.GetInsertPoint();
1360     if (IP->getParent() != BBCopyEnd)
1361       Builder.SetInsertPoint(BBCopyEnd->getTerminator());
1362     OpCopy = getNewValue(Stmt, Op, BBCopyMap, LTS, getLoopForStmt(Stmt));
1363     if (IP->getParent() != BBCopyEnd)
1364       Builder.SetInsertPoint(&*IP);
1365   } else {
1366     // All edges from outside the non-affine region become a single edge
1367     // in the new copy of the non-affine region. Make sure to only add the
1368     // corresponding edge the first time we encounter a basic block from
1369     // outside the non-affine region.
1370     if (PHICopy->getBasicBlockIndex(BBCopyEnd) >= 0)
1371       return;
1372 
1373     // Get the reloaded value.
1374     OpCopy = getNewValue(Stmt, PHI, BBCopyMap, LTS, getLoopForStmt(Stmt));
1375   }
1376 
1377   assert(OpCopy && "Incoming PHI value was not copied properly");
1378   PHICopy->addIncoming(OpCopy, BBCopyEnd);
1379 }
1380 
1381 void RegionGenerator::copyPHIInstruction(ScopStmt &Stmt, PHINode *PHI,
1382                                          ValueMapT &BBMap,
1383                                          LoopToScevMapT &LTS) {
1384   unsigned NumIncoming = PHI->getNumIncomingValues();
1385   PHINode *PHICopy =
1386       Builder.CreatePHI(PHI->getType(), NumIncoming, "polly." + PHI->getName());
1387   PHICopy->moveBefore(PHICopy->getParent()->getFirstNonPHIIt());
1388   BBMap[PHI] = PHICopy;
1389 
1390   for (BasicBlock *IncomingBB : PHI->blocks())
1391     addOperandToPHI(Stmt, PHI, PHICopy, IncomingBB, LTS);
1392 }
1393