1 /* 2 * kmp_affinity.cpp -- affinity management 3 */ 4 5 //===----------------------------------------------------------------------===// 6 // 7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 8 // See https://llvm.org/LICENSE.txt for license information. 9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "kmp.h" 14 #include "kmp_affinity.h" 15 #include "kmp_i18n.h" 16 #include "kmp_io.h" 17 #include "kmp_str.h" 18 #include "kmp_wrapper_getpid.h" 19 #if KMP_USE_HIER_SCHED 20 #include "kmp_dispatch_hier.h" 21 #endif 22 #if KMP_USE_HWLOC 23 // Copied from hwloc 24 #define HWLOC_GROUP_KIND_INTEL_MODULE 102 25 #define HWLOC_GROUP_KIND_INTEL_TILE 103 26 #define HWLOC_GROUP_KIND_INTEL_DIE 104 27 #define HWLOC_GROUP_KIND_WINDOWS_PROCESSOR_GROUP 220 28 #endif 29 #include <ctype.h> 30 31 // The machine topology 32 kmp_topology_t *__kmp_topology = nullptr; 33 // KMP_HW_SUBSET environment variable 34 kmp_hw_subset_t *__kmp_hw_subset = nullptr; 35 36 // Store the real or imagined machine hierarchy here 37 static hierarchy_info machine_hierarchy; 38 39 void __kmp_cleanup_hierarchy() { machine_hierarchy.fini(); } 40 41 #if KMP_AFFINITY_SUPPORTED 42 // Helper class to see if place lists further restrict the fullMask 43 class kmp_full_mask_modifier_t { 44 kmp_affin_mask_t *mask; 45 46 public: 47 kmp_full_mask_modifier_t() { 48 KMP_CPU_ALLOC(mask); 49 KMP_CPU_ZERO(mask); 50 } 51 ~kmp_full_mask_modifier_t() { 52 KMP_CPU_FREE(mask); 53 mask = nullptr; 54 } 55 void include(const kmp_affin_mask_t *other) { KMP_CPU_UNION(mask, other); } 56 // If the new full mask is different from the current full mask, 57 // then switch them. Returns true if full mask was affected, false otherwise. 58 bool restrict_to_mask() { 59 // See if the new mask further restricts or changes the full mask 60 if (KMP_CPU_EQUAL(__kmp_affin_fullMask, mask) || KMP_CPU_ISEMPTY(mask)) 61 return false; 62 return __kmp_topology->restrict_to_mask(mask); 63 } 64 }; 65 66 static inline const char * 67 __kmp_get_affinity_env_var(const kmp_affinity_t &affinity, 68 bool for_binding = false) { 69 if (affinity.flags.omp_places) { 70 if (for_binding) 71 return "OMP_PROC_BIND"; 72 return "OMP_PLACES"; 73 } 74 return affinity.env_var; 75 } 76 #endif // KMP_AFFINITY_SUPPORTED 77 78 void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar) { 79 kmp_uint32 depth; 80 // The test below is true if affinity is available, but set to "none". Need to 81 // init on first use of hierarchical barrier. 82 if (TCR_1(machine_hierarchy.uninitialized)) 83 machine_hierarchy.init(nproc); 84 85 // Adjust the hierarchy in case num threads exceeds original 86 if (nproc > machine_hierarchy.base_num_threads) 87 machine_hierarchy.resize(nproc); 88 89 depth = machine_hierarchy.depth; 90 KMP_DEBUG_ASSERT(depth > 0); 91 92 thr_bar->depth = depth; 93 __kmp_type_convert(machine_hierarchy.numPerLevel[0] - 1, 94 &(thr_bar->base_leaf_kids)); 95 thr_bar->skip_per_level = machine_hierarchy.skipPerLevel; 96 } 97 98 static int nCoresPerPkg, nPackages; 99 static int __kmp_nThreadsPerCore; 100 #ifndef KMP_DFLT_NTH_CORES 101 static int __kmp_ncores; 102 #endif 103 104 const char *__kmp_hw_get_catalog_string(kmp_hw_t type, bool plural) { 105 switch (type) { 106 case KMP_HW_SOCKET: 107 return ((plural) ? KMP_I18N_STR(Sockets) : KMP_I18N_STR(Socket)); 108 case KMP_HW_DIE: 109 return ((plural) ? KMP_I18N_STR(Dice) : KMP_I18N_STR(Die)); 110 case KMP_HW_MODULE: 111 return ((plural) ? KMP_I18N_STR(Modules) : KMP_I18N_STR(Module)); 112 case KMP_HW_TILE: 113 return ((plural) ? KMP_I18N_STR(Tiles) : KMP_I18N_STR(Tile)); 114 case KMP_HW_NUMA: 115 return ((plural) ? KMP_I18N_STR(NumaDomains) : KMP_I18N_STR(NumaDomain)); 116 case KMP_HW_L3: 117 return ((plural) ? KMP_I18N_STR(L3Caches) : KMP_I18N_STR(L3Cache)); 118 case KMP_HW_L2: 119 return ((plural) ? KMP_I18N_STR(L2Caches) : KMP_I18N_STR(L2Cache)); 120 case KMP_HW_L1: 121 return ((plural) ? KMP_I18N_STR(L1Caches) : KMP_I18N_STR(L1Cache)); 122 case KMP_HW_LLC: 123 return ((plural) ? KMP_I18N_STR(LLCaches) : KMP_I18N_STR(LLCache)); 124 case KMP_HW_CORE: 125 return ((plural) ? KMP_I18N_STR(Cores) : KMP_I18N_STR(Core)); 126 case KMP_HW_THREAD: 127 return ((plural) ? KMP_I18N_STR(Threads) : KMP_I18N_STR(Thread)); 128 case KMP_HW_PROC_GROUP: 129 return ((plural) ? KMP_I18N_STR(ProcGroups) : KMP_I18N_STR(ProcGroup)); 130 case KMP_HW_UNKNOWN: 131 case KMP_HW_LAST: 132 return KMP_I18N_STR(Unknown); 133 } 134 KMP_ASSERT2(false, "Unhandled kmp_hw_t enumeration"); 135 KMP_BUILTIN_UNREACHABLE; 136 } 137 138 const char *__kmp_hw_get_keyword(kmp_hw_t type, bool plural) { 139 switch (type) { 140 case KMP_HW_SOCKET: 141 return ((plural) ? "sockets" : "socket"); 142 case KMP_HW_DIE: 143 return ((plural) ? "dice" : "die"); 144 case KMP_HW_MODULE: 145 return ((plural) ? "modules" : "module"); 146 case KMP_HW_TILE: 147 return ((plural) ? "tiles" : "tile"); 148 case KMP_HW_NUMA: 149 return ((plural) ? "numa_domains" : "numa_domain"); 150 case KMP_HW_L3: 151 return ((plural) ? "l3_caches" : "l3_cache"); 152 case KMP_HW_L2: 153 return ((plural) ? "l2_caches" : "l2_cache"); 154 case KMP_HW_L1: 155 return ((plural) ? "l1_caches" : "l1_cache"); 156 case KMP_HW_LLC: 157 return ((plural) ? "ll_caches" : "ll_cache"); 158 case KMP_HW_CORE: 159 return ((plural) ? "cores" : "core"); 160 case KMP_HW_THREAD: 161 return ((plural) ? "threads" : "thread"); 162 case KMP_HW_PROC_GROUP: 163 return ((plural) ? "proc_groups" : "proc_group"); 164 case KMP_HW_UNKNOWN: 165 case KMP_HW_LAST: 166 return ((plural) ? "unknowns" : "unknown"); 167 } 168 KMP_ASSERT2(false, "Unhandled kmp_hw_t enumeration"); 169 KMP_BUILTIN_UNREACHABLE; 170 } 171 172 const char *__kmp_hw_get_core_type_string(kmp_hw_core_type_t type) { 173 switch (type) { 174 case KMP_HW_CORE_TYPE_UNKNOWN: 175 case KMP_HW_MAX_NUM_CORE_TYPES: 176 return "unknown"; 177 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 178 case KMP_HW_CORE_TYPE_ATOM: 179 return "Intel Atom(R) processor"; 180 case KMP_HW_CORE_TYPE_CORE: 181 return "Intel(R) Core(TM) processor"; 182 #endif 183 } 184 KMP_ASSERT2(false, "Unhandled kmp_hw_core_type_t enumeration"); 185 KMP_BUILTIN_UNREACHABLE; 186 } 187 188 #if KMP_AFFINITY_SUPPORTED 189 // If affinity is supported, check the affinity 190 // verbose and warning flags before printing warning 191 #define KMP_AFF_WARNING(s, ...) \ 192 if (s.flags.verbose || (s.flags.warnings && (s.type != affinity_none))) { \ 193 KMP_WARNING(__VA_ARGS__); \ 194 } 195 #else 196 #define KMP_AFF_WARNING(s, ...) KMP_WARNING(__VA_ARGS__) 197 #endif 198 199 //////////////////////////////////////////////////////////////////////////////// 200 // kmp_hw_thread_t methods 201 int kmp_hw_thread_t::compare_ids(const void *a, const void *b) { 202 const kmp_hw_thread_t *ahwthread = (const kmp_hw_thread_t *)a; 203 const kmp_hw_thread_t *bhwthread = (const kmp_hw_thread_t *)b; 204 int depth = __kmp_topology->get_depth(); 205 for (int level = 0; level < depth; ++level) { 206 // Reverse sort (higher efficiencies earlier in list) cores by core 207 // efficiency if available. 208 if (__kmp_is_hybrid_cpu() && 209 __kmp_topology->get_type(level) == KMP_HW_CORE && 210 ahwthread->attrs.is_core_eff_valid() && 211 bhwthread->attrs.is_core_eff_valid()) { 212 if (ahwthread->attrs.get_core_eff() < bhwthread->attrs.get_core_eff()) 213 return 1; 214 if (ahwthread->attrs.get_core_eff() > bhwthread->attrs.get_core_eff()) 215 return -1; 216 } 217 if (ahwthread->ids[level] == bhwthread->ids[level]) 218 continue; 219 // If the hardware id is unknown for this level, then place hardware thread 220 // further down in the sorted list as it should take last priority 221 if (ahwthread->ids[level] == UNKNOWN_ID) 222 return 1; 223 else if (bhwthread->ids[level] == UNKNOWN_ID) 224 return -1; 225 else if (ahwthread->ids[level] < bhwthread->ids[level]) 226 return -1; 227 else if (ahwthread->ids[level] > bhwthread->ids[level]) 228 return 1; 229 } 230 if (ahwthread->os_id < bhwthread->os_id) 231 return -1; 232 else if (ahwthread->os_id > bhwthread->os_id) 233 return 1; 234 return 0; 235 } 236 237 #if KMP_AFFINITY_SUPPORTED 238 int kmp_hw_thread_t::compare_compact(const void *a, const void *b) { 239 int i; 240 const kmp_hw_thread_t *aa = (const kmp_hw_thread_t *)a; 241 const kmp_hw_thread_t *bb = (const kmp_hw_thread_t *)b; 242 int depth = __kmp_topology->get_depth(); 243 int compact = __kmp_topology->compact; 244 KMP_DEBUG_ASSERT(compact >= 0); 245 KMP_DEBUG_ASSERT(compact <= depth); 246 for (i = 0; i < compact; i++) { 247 int j = depth - i - 1; 248 if (aa->sub_ids[j] < bb->sub_ids[j]) 249 return -1; 250 if (aa->sub_ids[j] > bb->sub_ids[j]) 251 return 1; 252 } 253 for (; i < depth; i++) { 254 int j = i - compact; 255 if (aa->sub_ids[j] < bb->sub_ids[j]) 256 return -1; 257 if (aa->sub_ids[j] > bb->sub_ids[j]) 258 return 1; 259 } 260 return 0; 261 } 262 #endif 263 264 void kmp_hw_thread_t::print() const { 265 int depth = __kmp_topology->get_depth(); 266 printf("%4d ", os_id); 267 for (int i = 0; i < depth; ++i) { 268 printf("%4d (%d) ", ids[i], sub_ids[i]); 269 } 270 if (attrs) { 271 if (attrs.is_core_type_valid()) 272 printf(" (%s)", __kmp_hw_get_core_type_string(attrs.get_core_type())); 273 if (attrs.is_core_eff_valid()) 274 printf(" (eff=%d)", attrs.get_core_eff()); 275 } 276 if (leader) 277 printf(" (leader)"); 278 printf("\n"); 279 } 280 281 //////////////////////////////////////////////////////////////////////////////// 282 // kmp_topology_t methods 283 284 // Add a layer to the topology based on the ids. Assume the topology 285 // is perfectly nested (i.e., so no object has more than one parent) 286 void kmp_topology_t::insert_layer(kmp_hw_t type, const int *ids) { 287 // Figure out where the layer should go by comparing the ids of the current 288 // layers with the new ids 289 int target_layer; 290 int previous_id = kmp_hw_thread_t::UNKNOWN_ID; 291 int previous_new_id = kmp_hw_thread_t::UNKNOWN_ID; 292 293 // Start from the highest layer and work down to find target layer 294 // If new layer is equal to another layer then put the new layer above 295 for (target_layer = 0; target_layer < depth; ++target_layer) { 296 bool layers_equal = true; 297 bool strictly_above_target_layer = false; 298 for (int i = 0; i < num_hw_threads; ++i) { 299 int id = hw_threads[i].ids[target_layer]; 300 int new_id = ids[i]; 301 if (id != previous_id && new_id == previous_new_id) { 302 // Found the layer we are strictly above 303 strictly_above_target_layer = true; 304 layers_equal = false; 305 break; 306 } else if (id == previous_id && new_id != previous_new_id) { 307 // Found a layer we are below. Move to next layer and check. 308 layers_equal = false; 309 break; 310 } 311 previous_id = id; 312 previous_new_id = new_id; 313 } 314 if (strictly_above_target_layer || layers_equal) 315 break; 316 } 317 318 // Found the layer we are above. Now move everything to accommodate the new 319 // layer. And put the new ids and type into the topology. 320 for (int i = depth - 1, j = depth; i >= target_layer; --i, --j) 321 types[j] = types[i]; 322 types[target_layer] = type; 323 for (int k = 0; k < num_hw_threads; ++k) { 324 for (int i = depth - 1, j = depth; i >= target_layer; --i, --j) 325 hw_threads[k].ids[j] = hw_threads[k].ids[i]; 326 hw_threads[k].ids[target_layer] = ids[k]; 327 } 328 equivalent[type] = type; 329 depth++; 330 } 331 332 #if KMP_GROUP_AFFINITY 333 // Insert the Windows Processor Group structure into the topology 334 void kmp_topology_t::_insert_windows_proc_groups() { 335 // Do not insert the processor group structure for a single group 336 if (__kmp_num_proc_groups == 1) 337 return; 338 kmp_affin_mask_t *mask; 339 int *ids = (int *)__kmp_allocate(sizeof(int) * num_hw_threads); 340 KMP_CPU_ALLOC(mask); 341 for (int i = 0; i < num_hw_threads; ++i) { 342 KMP_CPU_ZERO(mask); 343 KMP_CPU_SET(hw_threads[i].os_id, mask); 344 ids[i] = __kmp_get_proc_group(mask); 345 } 346 KMP_CPU_FREE(mask); 347 insert_layer(KMP_HW_PROC_GROUP, ids); 348 __kmp_free(ids); 349 350 // sort topology after adding proc groups 351 __kmp_topology->sort_ids(); 352 } 353 #endif 354 355 // Remove layers that don't add information to the topology. 356 // This is done by having the layer take on the id = UNKNOWN_ID (-1) 357 void kmp_topology_t::_remove_radix1_layers() { 358 int preference[KMP_HW_LAST]; 359 int top_index1, top_index2; 360 // Set up preference associative array 361 preference[KMP_HW_SOCKET] = 110; 362 preference[KMP_HW_PROC_GROUP] = 100; 363 preference[KMP_HW_CORE] = 95; 364 preference[KMP_HW_THREAD] = 90; 365 preference[KMP_HW_NUMA] = 85; 366 preference[KMP_HW_DIE] = 80; 367 preference[KMP_HW_TILE] = 75; 368 preference[KMP_HW_MODULE] = 73; 369 preference[KMP_HW_L3] = 70; 370 preference[KMP_HW_L2] = 65; 371 preference[KMP_HW_L1] = 60; 372 preference[KMP_HW_LLC] = 5; 373 top_index1 = 0; 374 top_index2 = 1; 375 while (top_index1 < depth - 1 && top_index2 < depth) { 376 kmp_hw_t type1 = types[top_index1]; 377 kmp_hw_t type2 = types[top_index2]; 378 KMP_ASSERT_VALID_HW_TYPE(type1); 379 KMP_ASSERT_VALID_HW_TYPE(type2); 380 // Do not allow the three main topology levels (sockets, cores, threads) to 381 // be compacted down 382 if ((type1 == KMP_HW_THREAD || type1 == KMP_HW_CORE || 383 type1 == KMP_HW_SOCKET) && 384 (type2 == KMP_HW_THREAD || type2 == KMP_HW_CORE || 385 type2 == KMP_HW_SOCKET)) { 386 top_index1 = top_index2++; 387 continue; 388 } 389 bool radix1 = true; 390 bool all_same = true; 391 int id1 = hw_threads[0].ids[top_index1]; 392 int id2 = hw_threads[0].ids[top_index2]; 393 int pref1 = preference[type1]; 394 int pref2 = preference[type2]; 395 for (int hwidx = 1; hwidx < num_hw_threads; ++hwidx) { 396 if (hw_threads[hwidx].ids[top_index1] == id1 && 397 hw_threads[hwidx].ids[top_index2] != id2) { 398 radix1 = false; 399 break; 400 } 401 if (hw_threads[hwidx].ids[top_index2] != id2) 402 all_same = false; 403 id1 = hw_threads[hwidx].ids[top_index1]; 404 id2 = hw_threads[hwidx].ids[top_index2]; 405 } 406 if (radix1) { 407 // Select the layer to remove based on preference 408 kmp_hw_t remove_type, keep_type; 409 int remove_layer, remove_layer_ids; 410 if (pref1 > pref2) { 411 remove_type = type2; 412 remove_layer = remove_layer_ids = top_index2; 413 keep_type = type1; 414 } else { 415 remove_type = type1; 416 remove_layer = remove_layer_ids = top_index1; 417 keep_type = type2; 418 } 419 // If all the indexes for the second (deeper) layer are the same. 420 // e.g., all are zero, then make sure to keep the first layer's ids 421 if (all_same) 422 remove_layer_ids = top_index2; 423 // Remove radix one type by setting the equivalence, removing the id from 424 // the hw threads and removing the layer from types and depth 425 set_equivalent_type(remove_type, keep_type); 426 for (int idx = 0; idx < num_hw_threads; ++idx) { 427 kmp_hw_thread_t &hw_thread = hw_threads[idx]; 428 for (int d = remove_layer_ids; d < depth - 1; ++d) 429 hw_thread.ids[d] = hw_thread.ids[d + 1]; 430 } 431 for (int idx = remove_layer; idx < depth - 1; ++idx) 432 types[idx] = types[idx + 1]; 433 depth--; 434 } else { 435 top_index1 = top_index2++; 436 } 437 } 438 KMP_ASSERT(depth > 0); 439 } 440 441 void kmp_topology_t::_set_last_level_cache() { 442 if (get_equivalent_type(KMP_HW_L3) != KMP_HW_UNKNOWN) 443 set_equivalent_type(KMP_HW_LLC, KMP_HW_L3); 444 else if (get_equivalent_type(KMP_HW_L2) != KMP_HW_UNKNOWN) 445 set_equivalent_type(KMP_HW_LLC, KMP_HW_L2); 446 #if KMP_MIC_SUPPORTED 447 else if (__kmp_mic_type == mic3) { 448 if (get_equivalent_type(KMP_HW_L2) != KMP_HW_UNKNOWN) 449 set_equivalent_type(KMP_HW_LLC, KMP_HW_L2); 450 else if (get_equivalent_type(KMP_HW_TILE) != KMP_HW_UNKNOWN) 451 set_equivalent_type(KMP_HW_LLC, KMP_HW_TILE); 452 // L2/Tile wasn't detected so just say L1 453 else 454 set_equivalent_type(KMP_HW_LLC, KMP_HW_L1); 455 } 456 #endif 457 else if (get_equivalent_type(KMP_HW_L1) != KMP_HW_UNKNOWN) 458 set_equivalent_type(KMP_HW_LLC, KMP_HW_L1); 459 // Fallback is to set last level cache to socket or core 460 if (get_equivalent_type(KMP_HW_LLC) == KMP_HW_UNKNOWN) { 461 if (get_equivalent_type(KMP_HW_SOCKET) != KMP_HW_UNKNOWN) 462 set_equivalent_type(KMP_HW_LLC, KMP_HW_SOCKET); 463 else if (get_equivalent_type(KMP_HW_CORE) != KMP_HW_UNKNOWN) 464 set_equivalent_type(KMP_HW_LLC, KMP_HW_CORE); 465 } 466 KMP_ASSERT(get_equivalent_type(KMP_HW_LLC) != KMP_HW_UNKNOWN); 467 } 468 469 // Gather the count of each topology layer and the ratio 470 void kmp_topology_t::_gather_enumeration_information() { 471 int previous_id[KMP_HW_LAST]; 472 int max[KMP_HW_LAST]; 473 474 for (int i = 0; i < depth; ++i) { 475 previous_id[i] = kmp_hw_thread_t::UNKNOWN_ID; 476 max[i] = 0; 477 count[i] = 0; 478 ratio[i] = 0; 479 } 480 int core_level = get_level(KMP_HW_CORE); 481 for (int i = 0; i < num_hw_threads; ++i) { 482 kmp_hw_thread_t &hw_thread = hw_threads[i]; 483 for (int layer = 0; layer < depth; ++layer) { 484 int id = hw_thread.ids[layer]; 485 if (id != previous_id[layer]) { 486 // Add an additional increment to each count 487 for (int l = layer; l < depth; ++l) { 488 if (hw_thread.ids[l] != kmp_hw_thread_t::UNKNOWN_ID) 489 count[l]++; 490 } 491 // Keep track of topology layer ratio statistics 492 if (hw_thread.ids[layer] != kmp_hw_thread_t::UNKNOWN_ID) 493 max[layer]++; 494 for (int l = layer + 1; l < depth; ++l) { 495 if (max[l] > ratio[l]) 496 ratio[l] = max[l]; 497 max[l] = 1; 498 } 499 // Figure out the number of different core types 500 // and efficiencies for hybrid CPUs 501 if (__kmp_is_hybrid_cpu() && core_level >= 0 && layer <= core_level) { 502 if (hw_thread.attrs.is_core_eff_valid() && 503 hw_thread.attrs.core_eff >= num_core_efficiencies) { 504 // Because efficiencies can range from 0 to max efficiency - 1, 505 // the number of efficiencies is max efficiency + 1 506 num_core_efficiencies = hw_thread.attrs.core_eff + 1; 507 } 508 if (hw_thread.attrs.is_core_type_valid()) { 509 bool found = false; 510 for (int j = 0; j < num_core_types; ++j) { 511 if (hw_thread.attrs.get_core_type() == core_types[j]) { 512 found = true; 513 break; 514 } 515 } 516 if (!found) { 517 KMP_ASSERT(num_core_types < KMP_HW_MAX_NUM_CORE_TYPES); 518 core_types[num_core_types++] = hw_thread.attrs.get_core_type(); 519 } 520 } 521 } 522 break; 523 } 524 } 525 for (int layer = 0; layer < depth; ++layer) { 526 previous_id[layer] = hw_thread.ids[layer]; 527 } 528 } 529 for (int layer = 0; layer < depth; ++layer) { 530 if (max[layer] > ratio[layer]) 531 ratio[layer] = max[layer]; 532 } 533 } 534 535 int kmp_topology_t::_get_ncores_with_attr(const kmp_hw_attr_t &attr, 536 int above_level, 537 bool find_all) const { 538 int current, current_max; 539 int previous_id[KMP_HW_LAST]; 540 for (int i = 0; i < depth; ++i) 541 previous_id[i] = kmp_hw_thread_t::UNKNOWN_ID; 542 int core_level = get_level(KMP_HW_CORE); 543 if (find_all) 544 above_level = -1; 545 KMP_ASSERT(above_level < core_level); 546 current_max = 0; 547 current = 0; 548 for (int i = 0; i < num_hw_threads; ++i) { 549 kmp_hw_thread_t &hw_thread = hw_threads[i]; 550 if (!find_all && hw_thread.ids[above_level] != previous_id[above_level]) { 551 if (current > current_max) 552 current_max = current; 553 current = hw_thread.attrs.contains(attr); 554 } else { 555 for (int level = above_level + 1; level <= core_level; ++level) { 556 if (hw_thread.ids[level] != previous_id[level]) { 557 if (hw_thread.attrs.contains(attr)) 558 current++; 559 break; 560 } 561 } 562 } 563 for (int level = 0; level < depth; ++level) 564 previous_id[level] = hw_thread.ids[level]; 565 } 566 if (current > current_max) 567 current_max = current; 568 return current_max; 569 } 570 571 // Find out if the topology is uniform 572 void kmp_topology_t::_discover_uniformity() { 573 int num = 1; 574 for (int level = 0; level < depth; ++level) 575 num *= ratio[level]; 576 flags.uniform = (num == count[depth - 1]); 577 } 578 579 // Set all the sub_ids for each hardware thread 580 void kmp_topology_t::_set_sub_ids() { 581 int previous_id[KMP_HW_LAST]; 582 int sub_id[KMP_HW_LAST]; 583 584 for (int i = 0; i < depth; ++i) { 585 previous_id[i] = -1; 586 sub_id[i] = -1; 587 } 588 for (int i = 0; i < num_hw_threads; ++i) { 589 kmp_hw_thread_t &hw_thread = hw_threads[i]; 590 // Setup the sub_id 591 for (int j = 0; j < depth; ++j) { 592 if (hw_thread.ids[j] != previous_id[j]) { 593 sub_id[j]++; 594 for (int k = j + 1; k < depth; ++k) { 595 sub_id[k] = 0; 596 } 597 break; 598 } 599 } 600 // Set previous_id 601 for (int j = 0; j < depth; ++j) { 602 previous_id[j] = hw_thread.ids[j]; 603 } 604 // Set the sub_ids field 605 for (int j = 0; j < depth; ++j) { 606 hw_thread.sub_ids[j] = sub_id[j]; 607 } 608 } 609 } 610 611 void kmp_topology_t::_set_globals() { 612 // Set nCoresPerPkg, nPackages, __kmp_nThreadsPerCore, __kmp_ncores 613 int core_level, thread_level, package_level; 614 package_level = get_level(KMP_HW_SOCKET); 615 #if KMP_GROUP_AFFINITY 616 if (package_level == -1) 617 package_level = get_level(KMP_HW_PROC_GROUP); 618 #endif 619 core_level = get_level(KMP_HW_CORE); 620 thread_level = get_level(KMP_HW_THREAD); 621 622 KMP_ASSERT(core_level != -1); 623 KMP_ASSERT(thread_level != -1); 624 625 __kmp_nThreadsPerCore = calculate_ratio(thread_level, core_level); 626 if (package_level != -1) { 627 nCoresPerPkg = calculate_ratio(core_level, package_level); 628 nPackages = get_count(package_level); 629 } else { 630 // assume one socket 631 nCoresPerPkg = get_count(core_level); 632 nPackages = 1; 633 } 634 #ifndef KMP_DFLT_NTH_CORES 635 __kmp_ncores = get_count(core_level); 636 #endif 637 } 638 639 kmp_topology_t *kmp_topology_t::allocate(int nproc, int ndepth, 640 const kmp_hw_t *types) { 641 kmp_topology_t *retval; 642 // Allocate all data in one large allocation 643 size_t size = sizeof(kmp_topology_t) + sizeof(kmp_hw_thread_t) * nproc + 644 sizeof(int) * (size_t)KMP_HW_LAST * 3; 645 char *bytes = (char *)__kmp_allocate(size); 646 retval = (kmp_topology_t *)bytes; 647 if (nproc > 0) { 648 retval->hw_threads = (kmp_hw_thread_t *)(bytes + sizeof(kmp_topology_t)); 649 } else { 650 retval->hw_threads = nullptr; 651 } 652 retval->num_hw_threads = nproc; 653 retval->depth = ndepth; 654 int *arr = 655 (int *)(bytes + sizeof(kmp_topology_t) + sizeof(kmp_hw_thread_t) * nproc); 656 retval->types = (kmp_hw_t *)arr; 657 retval->ratio = arr + (size_t)KMP_HW_LAST; 658 retval->count = arr + 2 * (size_t)KMP_HW_LAST; 659 retval->num_core_efficiencies = 0; 660 retval->num_core_types = 0; 661 retval->compact = 0; 662 for (int i = 0; i < KMP_HW_MAX_NUM_CORE_TYPES; ++i) 663 retval->core_types[i] = KMP_HW_CORE_TYPE_UNKNOWN; 664 KMP_FOREACH_HW_TYPE(type) { retval->equivalent[type] = KMP_HW_UNKNOWN; } 665 for (int i = 0; i < ndepth; ++i) { 666 retval->types[i] = types[i]; 667 retval->equivalent[types[i]] = types[i]; 668 } 669 return retval; 670 } 671 672 void kmp_topology_t::deallocate(kmp_topology_t *topology) { 673 if (topology) 674 __kmp_free(topology); 675 } 676 677 bool kmp_topology_t::check_ids() const { 678 // Assume ids have been sorted 679 if (num_hw_threads == 0) 680 return true; 681 for (int i = 1; i < num_hw_threads; ++i) { 682 kmp_hw_thread_t ¤t_thread = hw_threads[i]; 683 kmp_hw_thread_t &previous_thread = hw_threads[i - 1]; 684 bool unique = false; 685 for (int j = 0; j < depth; ++j) { 686 if (previous_thread.ids[j] != current_thread.ids[j]) { 687 unique = true; 688 break; 689 } 690 } 691 if (unique) 692 continue; 693 return false; 694 } 695 return true; 696 } 697 698 void kmp_topology_t::dump() const { 699 printf("***********************\n"); 700 printf("*** __kmp_topology: ***\n"); 701 printf("***********************\n"); 702 printf("* depth: %d\n", depth); 703 704 printf("* types: "); 705 for (int i = 0; i < depth; ++i) 706 printf("%15s ", __kmp_hw_get_keyword(types[i])); 707 printf("\n"); 708 709 printf("* ratio: "); 710 for (int i = 0; i < depth; ++i) { 711 printf("%15d ", ratio[i]); 712 } 713 printf("\n"); 714 715 printf("* count: "); 716 for (int i = 0; i < depth; ++i) { 717 printf("%15d ", count[i]); 718 } 719 printf("\n"); 720 721 printf("* num_core_eff: %d\n", num_core_efficiencies); 722 printf("* num_core_types: %d\n", num_core_types); 723 printf("* core_types: "); 724 for (int i = 0; i < num_core_types; ++i) 725 printf("%3d ", core_types[i]); 726 printf("\n"); 727 728 printf("* equivalent map:\n"); 729 KMP_FOREACH_HW_TYPE(i) { 730 const char *key = __kmp_hw_get_keyword(i); 731 const char *value = __kmp_hw_get_keyword(equivalent[i]); 732 printf("%-15s -> %-15s\n", key, value); 733 } 734 735 printf("* uniform: %s\n", (is_uniform() ? "Yes" : "No")); 736 737 printf("* num_hw_threads: %d\n", num_hw_threads); 738 printf("* hw_threads:\n"); 739 for (int i = 0; i < num_hw_threads; ++i) { 740 hw_threads[i].print(); 741 } 742 printf("***********************\n"); 743 } 744 745 void kmp_topology_t::print(const char *env_var) const { 746 kmp_str_buf_t buf; 747 int print_types_depth; 748 __kmp_str_buf_init(&buf); 749 kmp_hw_t print_types[KMP_HW_LAST + 2]; 750 751 // Num Available Threads 752 if (num_hw_threads) { 753 KMP_INFORM(AvailableOSProc, env_var, num_hw_threads); 754 } else { 755 KMP_INFORM(AvailableOSProc, env_var, __kmp_xproc); 756 } 757 758 // Uniform or not 759 if (is_uniform()) { 760 KMP_INFORM(Uniform, env_var); 761 } else { 762 KMP_INFORM(NonUniform, env_var); 763 } 764 765 // Equivalent types 766 KMP_FOREACH_HW_TYPE(type) { 767 kmp_hw_t eq_type = equivalent[type]; 768 if (eq_type != KMP_HW_UNKNOWN && eq_type != type) { 769 KMP_INFORM(AffEqualTopologyTypes, env_var, 770 __kmp_hw_get_catalog_string(type), 771 __kmp_hw_get_catalog_string(eq_type)); 772 } 773 } 774 775 // Quick topology 776 KMP_ASSERT(depth > 0 && depth <= (int)KMP_HW_LAST); 777 // Create a print types array that always guarantees printing 778 // the core and thread level 779 print_types_depth = 0; 780 for (int level = 0; level < depth; ++level) 781 print_types[print_types_depth++] = types[level]; 782 if (equivalent[KMP_HW_CORE] != KMP_HW_CORE) { 783 // Force in the core level for quick topology 784 if (print_types[print_types_depth - 1] == KMP_HW_THREAD) { 785 // Force core before thread e.g., 1 socket X 2 threads/socket 786 // becomes 1 socket X 1 core/socket X 2 threads/socket 787 print_types[print_types_depth - 1] = KMP_HW_CORE; 788 print_types[print_types_depth++] = KMP_HW_THREAD; 789 } else { 790 print_types[print_types_depth++] = KMP_HW_CORE; 791 } 792 } 793 // Always put threads at very end of quick topology 794 if (equivalent[KMP_HW_THREAD] != KMP_HW_THREAD) 795 print_types[print_types_depth++] = KMP_HW_THREAD; 796 797 __kmp_str_buf_clear(&buf); 798 kmp_hw_t numerator_type; 799 kmp_hw_t denominator_type = KMP_HW_UNKNOWN; 800 int core_level = get_level(KMP_HW_CORE); 801 int ncores = get_count(core_level); 802 803 for (int plevel = 0, level = 0; plevel < print_types_depth; ++plevel) { 804 int c; 805 bool plural; 806 numerator_type = print_types[plevel]; 807 KMP_ASSERT_VALID_HW_TYPE(numerator_type); 808 if (equivalent[numerator_type] != numerator_type) 809 c = 1; 810 else 811 c = get_ratio(level++); 812 plural = (c > 1); 813 if (plevel == 0) { 814 __kmp_str_buf_print(&buf, "%d %s", c, 815 __kmp_hw_get_catalog_string(numerator_type, plural)); 816 } else { 817 __kmp_str_buf_print(&buf, " x %d %s/%s", c, 818 __kmp_hw_get_catalog_string(numerator_type, plural), 819 __kmp_hw_get_catalog_string(denominator_type)); 820 } 821 denominator_type = numerator_type; 822 } 823 KMP_INFORM(TopologyGeneric, env_var, buf.str, ncores); 824 825 // Hybrid topology information 826 if (__kmp_is_hybrid_cpu()) { 827 for (int i = 0; i < num_core_types; ++i) { 828 kmp_hw_core_type_t core_type = core_types[i]; 829 kmp_hw_attr_t attr; 830 attr.clear(); 831 attr.set_core_type(core_type); 832 int ncores = get_ncores_with_attr(attr); 833 if (ncores > 0) { 834 KMP_INFORM(TopologyHybrid, env_var, ncores, 835 __kmp_hw_get_core_type_string(core_type)); 836 KMP_ASSERT(num_core_efficiencies <= KMP_HW_MAX_NUM_CORE_EFFS) 837 for (int eff = 0; eff < num_core_efficiencies; ++eff) { 838 attr.set_core_eff(eff); 839 int ncores_with_eff = get_ncores_with_attr(attr); 840 if (ncores_with_eff > 0) { 841 KMP_INFORM(TopologyHybridCoreEff, env_var, ncores_with_eff, eff); 842 } 843 } 844 } 845 } 846 } 847 848 if (num_hw_threads <= 0) { 849 __kmp_str_buf_free(&buf); 850 return; 851 } 852 853 // Full OS proc to hardware thread map 854 KMP_INFORM(OSProcToPhysicalThreadMap, env_var); 855 for (int i = 0; i < num_hw_threads; i++) { 856 __kmp_str_buf_clear(&buf); 857 for (int level = 0; level < depth; ++level) { 858 if (hw_threads[i].ids[level] == kmp_hw_thread_t::UNKNOWN_ID) 859 continue; 860 kmp_hw_t type = types[level]; 861 __kmp_str_buf_print(&buf, "%s ", __kmp_hw_get_catalog_string(type)); 862 __kmp_str_buf_print(&buf, "%d ", hw_threads[i].ids[level]); 863 } 864 if (__kmp_is_hybrid_cpu()) 865 __kmp_str_buf_print( 866 &buf, "(%s)", 867 __kmp_hw_get_core_type_string(hw_threads[i].attrs.get_core_type())); 868 KMP_INFORM(OSProcMapToPack, env_var, hw_threads[i].os_id, buf.str); 869 } 870 871 __kmp_str_buf_free(&buf); 872 } 873 874 #if KMP_AFFINITY_SUPPORTED 875 void kmp_topology_t::set_granularity(kmp_affinity_t &affinity) const { 876 const char *env_var = __kmp_get_affinity_env_var(affinity); 877 // If requested hybrid CPU attributes for granularity (either OMP_PLACES or 878 // KMP_AFFINITY), but none exist, then reset granularity and have below method 879 // select a granularity and warn user. 880 if (!__kmp_is_hybrid_cpu()) { 881 if (affinity.core_attr_gran.valid) { 882 // OMP_PLACES with cores:<attribute> but non-hybrid arch, use cores 883 // instead 884 KMP_AFF_WARNING( 885 affinity, AffIgnoringNonHybrid, env_var, 886 __kmp_hw_get_catalog_string(KMP_HW_CORE, /*plural=*/true)); 887 affinity.gran = KMP_HW_CORE; 888 affinity.gran_levels = -1; 889 affinity.core_attr_gran = KMP_AFFINITY_ATTRS_UNKNOWN; 890 affinity.flags.core_types_gran = affinity.flags.core_effs_gran = 0; 891 } else if (affinity.flags.core_types_gran || 892 affinity.flags.core_effs_gran) { 893 // OMP_PLACES=core_types|core_effs but non-hybrid, use cores instead 894 if (affinity.flags.omp_places) { 895 KMP_AFF_WARNING( 896 affinity, AffIgnoringNonHybrid, env_var, 897 __kmp_hw_get_catalog_string(KMP_HW_CORE, /*plural=*/true)); 898 } else { 899 // KMP_AFFINITY=granularity=core_type|core_eff,... 900 KMP_AFF_WARNING(affinity, AffGranularityBad, env_var, 901 "Intel(R) Hybrid Technology core attribute", 902 __kmp_hw_get_catalog_string(KMP_HW_CORE)); 903 } 904 affinity.gran = KMP_HW_CORE; 905 affinity.gran_levels = -1; 906 affinity.core_attr_gran = KMP_AFFINITY_ATTRS_UNKNOWN; 907 affinity.flags.core_types_gran = affinity.flags.core_effs_gran = 0; 908 } 909 } 910 // Set the number of affinity granularity levels 911 if (affinity.gran_levels < 0) { 912 kmp_hw_t gran_type = get_equivalent_type(affinity.gran); 913 // Check if user's granularity request is valid 914 if (gran_type == KMP_HW_UNKNOWN) { 915 // First try core, then thread, then package 916 kmp_hw_t gran_types[3] = {KMP_HW_CORE, KMP_HW_THREAD, KMP_HW_SOCKET}; 917 for (auto g : gran_types) { 918 if (get_equivalent_type(g) != KMP_HW_UNKNOWN) { 919 gran_type = g; 920 break; 921 } 922 } 923 KMP_ASSERT(gran_type != KMP_HW_UNKNOWN); 924 // Warn user what granularity setting will be used instead 925 KMP_AFF_WARNING(affinity, AffGranularityBad, env_var, 926 __kmp_hw_get_catalog_string(affinity.gran), 927 __kmp_hw_get_catalog_string(gran_type)); 928 affinity.gran = gran_type; 929 } 930 #if KMP_GROUP_AFFINITY 931 // If more than one processor group exists, and the level of 932 // granularity specified by the user is too coarse, then the 933 // granularity must be adjusted "down" to processor group affinity 934 // because threads can only exist within one processor group. 935 // For example, if a user sets granularity=socket and there are two 936 // processor groups that cover a socket, then the runtime must 937 // restrict the granularity down to the processor group level. 938 if (__kmp_num_proc_groups > 1) { 939 int gran_depth = get_level(gran_type); 940 int proc_group_depth = get_level(KMP_HW_PROC_GROUP); 941 if (gran_depth >= 0 && proc_group_depth >= 0 && 942 gran_depth < proc_group_depth) { 943 KMP_AFF_WARNING(affinity, AffGranTooCoarseProcGroup, env_var, 944 __kmp_hw_get_catalog_string(affinity.gran)); 945 affinity.gran = gran_type = KMP_HW_PROC_GROUP; 946 } 947 } 948 #endif 949 affinity.gran_levels = 0; 950 for (int i = depth - 1; i >= 0 && get_type(i) != gran_type; --i) 951 affinity.gran_levels++; 952 } 953 } 954 #endif 955 956 void kmp_topology_t::canonicalize() { 957 #if KMP_GROUP_AFFINITY 958 _insert_windows_proc_groups(); 959 #endif 960 _remove_radix1_layers(); 961 _gather_enumeration_information(); 962 _discover_uniformity(); 963 _set_sub_ids(); 964 _set_globals(); 965 _set_last_level_cache(); 966 967 #if KMP_MIC_SUPPORTED 968 // Manually Add L2 = Tile equivalence 969 if (__kmp_mic_type == mic3) { 970 if (get_level(KMP_HW_L2) != -1) 971 set_equivalent_type(KMP_HW_TILE, KMP_HW_L2); 972 else if (get_level(KMP_HW_TILE) != -1) 973 set_equivalent_type(KMP_HW_L2, KMP_HW_TILE); 974 } 975 #endif 976 977 // Perform post canonicalization checking 978 KMP_ASSERT(depth > 0); 979 for (int level = 0; level < depth; ++level) { 980 // All counts, ratios, and types must be valid 981 KMP_ASSERT(count[level] > 0 && ratio[level] > 0); 982 KMP_ASSERT_VALID_HW_TYPE(types[level]); 983 // Detected types must point to themselves 984 KMP_ASSERT(equivalent[types[level]] == types[level]); 985 } 986 } 987 988 // Canonicalize an explicit packages X cores/pkg X threads/core topology 989 void kmp_topology_t::canonicalize(int npackages, int ncores_per_pkg, 990 int nthreads_per_core, int ncores) { 991 int ndepth = 3; 992 depth = ndepth; 993 KMP_FOREACH_HW_TYPE(i) { equivalent[i] = KMP_HW_UNKNOWN; } 994 for (int level = 0; level < depth; ++level) { 995 count[level] = 0; 996 ratio[level] = 0; 997 } 998 count[0] = npackages; 999 count[1] = ncores; 1000 count[2] = __kmp_xproc; 1001 ratio[0] = npackages; 1002 ratio[1] = ncores_per_pkg; 1003 ratio[2] = nthreads_per_core; 1004 equivalent[KMP_HW_SOCKET] = KMP_HW_SOCKET; 1005 equivalent[KMP_HW_CORE] = KMP_HW_CORE; 1006 equivalent[KMP_HW_THREAD] = KMP_HW_THREAD; 1007 types[0] = KMP_HW_SOCKET; 1008 types[1] = KMP_HW_CORE; 1009 types[2] = KMP_HW_THREAD; 1010 //__kmp_avail_proc = __kmp_xproc; 1011 _discover_uniformity(); 1012 } 1013 1014 #if KMP_AFFINITY_SUPPORTED 1015 static kmp_str_buf_t * 1016 __kmp_hw_get_catalog_core_string(const kmp_hw_attr_t &attr, kmp_str_buf_t *buf, 1017 bool plural) { 1018 __kmp_str_buf_init(buf); 1019 if (attr.is_core_type_valid()) 1020 __kmp_str_buf_print(buf, "%s %s", 1021 __kmp_hw_get_core_type_string(attr.get_core_type()), 1022 __kmp_hw_get_catalog_string(KMP_HW_CORE, plural)); 1023 else 1024 __kmp_str_buf_print(buf, "%s eff=%d", 1025 __kmp_hw_get_catalog_string(KMP_HW_CORE, plural), 1026 attr.get_core_eff()); 1027 return buf; 1028 } 1029 1030 bool kmp_topology_t::restrict_to_mask(const kmp_affin_mask_t *mask) { 1031 // Apply the filter 1032 bool affected; 1033 int new_index = 0; 1034 for (int i = 0; i < num_hw_threads; ++i) { 1035 int os_id = hw_threads[i].os_id; 1036 if (KMP_CPU_ISSET(os_id, mask)) { 1037 if (i != new_index) 1038 hw_threads[new_index] = hw_threads[i]; 1039 new_index++; 1040 } else { 1041 KMP_CPU_CLR(os_id, __kmp_affin_fullMask); 1042 __kmp_avail_proc--; 1043 } 1044 } 1045 1046 KMP_DEBUG_ASSERT(new_index <= num_hw_threads); 1047 affected = (num_hw_threads != new_index); 1048 num_hw_threads = new_index; 1049 1050 // Post hardware subset canonicalization 1051 if (affected) { 1052 _gather_enumeration_information(); 1053 _discover_uniformity(); 1054 _set_globals(); 1055 _set_last_level_cache(); 1056 #if KMP_OS_WINDOWS 1057 // Copy filtered full mask if topology has single processor group 1058 if (__kmp_num_proc_groups <= 1) 1059 #endif 1060 __kmp_affin_origMask->copy(__kmp_affin_fullMask); 1061 } 1062 return affected; 1063 } 1064 1065 // Apply the KMP_HW_SUBSET envirable to the topology 1066 // Returns true if KMP_HW_SUBSET filtered any processors 1067 // otherwise, returns false 1068 bool kmp_topology_t::filter_hw_subset() { 1069 // If KMP_HW_SUBSET wasn't requested, then do nothing. 1070 if (!__kmp_hw_subset) 1071 return false; 1072 1073 // First, sort the KMP_HW_SUBSET items by the machine topology 1074 __kmp_hw_subset->sort(); 1075 1076 __kmp_hw_subset->canonicalize(__kmp_topology); 1077 1078 // Check to see if KMP_HW_SUBSET is a valid subset of the detected topology 1079 bool using_core_types = false; 1080 bool using_core_effs = false; 1081 bool is_absolute = __kmp_hw_subset->is_absolute(); 1082 int hw_subset_depth = __kmp_hw_subset->get_depth(); 1083 kmp_hw_t specified[KMP_HW_LAST]; 1084 int *topology_levels = (int *)KMP_ALLOCA(sizeof(int) * hw_subset_depth); 1085 KMP_ASSERT(hw_subset_depth > 0); 1086 KMP_FOREACH_HW_TYPE(i) { specified[i] = KMP_HW_UNKNOWN; } 1087 int core_level = get_level(KMP_HW_CORE); 1088 for (int i = 0; i < hw_subset_depth; ++i) { 1089 int max_count; 1090 const kmp_hw_subset_t::item_t &item = __kmp_hw_subset->at(i); 1091 int num = item.num[0]; 1092 int offset = item.offset[0]; 1093 kmp_hw_t type = item.type; 1094 kmp_hw_t equivalent_type = equivalent[type]; 1095 int level = get_level(type); 1096 topology_levels[i] = level; 1097 1098 // Check to see if current layer is in detected machine topology 1099 if (equivalent_type != KMP_HW_UNKNOWN) { 1100 __kmp_hw_subset->at(i).type = equivalent_type; 1101 } else { 1102 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetNotExistGeneric, 1103 __kmp_hw_get_catalog_string(type)); 1104 return false; 1105 } 1106 1107 // Check to see if current layer has already been 1108 // specified either directly or through an equivalent type 1109 if (specified[equivalent_type] != KMP_HW_UNKNOWN) { 1110 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetEqvLayers, 1111 __kmp_hw_get_catalog_string(type), 1112 __kmp_hw_get_catalog_string(specified[equivalent_type])); 1113 return false; 1114 } 1115 specified[equivalent_type] = type; 1116 1117 // Check to see if each layer's num & offset parameters are valid 1118 max_count = get_ratio(level); 1119 if (!is_absolute) { 1120 if (max_count < 0 || 1121 (num != kmp_hw_subset_t::USE_ALL && num + offset > max_count)) { 1122 bool plural = (num > 1); 1123 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetManyGeneric, 1124 __kmp_hw_get_catalog_string(type, plural)); 1125 return false; 1126 } 1127 } 1128 1129 // Check to see if core attributes are consistent 1130 if (core_level == level) { 1131 // Determine which core attributes are specified 1132 for (int j = 0; j < item.num_attrs; ++j) { 1133 if (item.attr[j].is_core_type_valid()) 1134 using_core_types = true; 1135 if (item.attr[j].is_core_eff_valid()) 1136 using_core_effs = true; 1137 } 1138 1139 // Check if using a single core attribute on non-hybrid arch. 1140 // Do not ignore all of KMP_HW_SUBSET, just ignore the attribute. 1141 // 1142 // Check if using multiple core attributes on non-hyrbid arch. 1143 // Ignore all of KMP_HW_SUBSET if this is the case. 1144 if ((using_core_effs || using_core_types) && !__kmp_is_hybrid_cpu()) { 1145 if (item.num_attrs == 1) { 1146 if (using_core_effs) { 1147 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetIgnoringAttr, 1148 "efficiency"); 1149 } else { 1150 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetIgnoringAttr, 1151 "core_type"); 1152 } 1153 using_core_effs = false; 1154 using_core_types = false; 1155 } else { 1156 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetAttrsNonHybrid); 1157 return false; 1158 } 1159 } 1160 1161 // Check if using both core types and core efficiencies together 1162 if (using_core_types && using_core_effs) { 1163 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetIncompat, "core_type", 1164 "efficiency"); 1165 return false; 1166 } 1167 1168 // Check that core efficiency values are valid 1169 if (using_core_effs) { 1170 for (int j = 0; j < item.num_attrs; ++j) { 1171 if (item.attr[j].is_core_eff_valid()) { 1172 int core_eff = item.attr[j].get_core_eff(); 1173 if (core_eff < 0 || core_eff >= num_core_efficiencies) { 1174 kmp_str_buf_t buf; 1175 __kmp_str_buf_init(&buf); 1176 __kmp_str_buf_print(&buf, "%d", item.attr[j].get_core_eff()); 1177 __kmp_msg(kmp_ms_warning, 1178 KMP_MSG(AffHWSubsetAttrInvalid, "efficiency", buf.str), 1179 KMP_HNT(ValidValuesRange, 0, num_core_efficiencies - 1), 1180 __kmp_msg_null); 1181 __kmp_str_buf_free(&buf); 1182 return false; 1183 } 1184 } 1185 } 1186 } 1187 1188 // Check that the number of requested cores with attributes is valid 1189 if ((using_core_types || using_core_effs) && !is_absolute) { 1190 for (int j = 0; j < item.num_attrs; ++j) { 1191 int num = item.num[j]; 1192 int offset = item.offset[j]; 1193 int level_above = core_level - 1; 1194 if (level_above >= 0) { 1195 max_count = get_ncores_with_attr_per(item.attr[j], level_above); 1196 if (max_count <= 0 || 1197 (num != kmp_hw_subset_t::USE_ALL && num + offset > max_count)) { 1198 kmp_str_buf_t buf; 1199 __kmp_hw_get_catalog_core_string(item.attr[j], &buf, num > 0); 1200 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetManyGeneric, buf.str); 1201 __kmp_str_buf_free(&buf); 1202 return false; 1203 } 1204 } 1205 } 1206 } 1207 1208 if ((using_core_types || using_core_effs) && item.num_attrs > 1) { 1209 for (int j = 0; j < item.num_attrs; ++j) { 1210 // Ambiguous use of specific core attribute + generic core 1211 // e.g., 4c & 3c:intel_core or 4c & 3c:eff1 1212 if (!item.attr[j]) { 1213 kmp_hw_attr_t other_attr; 1214 for (int k = 0; k < item.num_attrs; ++k) { 1215 if (item.attr[k] != item.attr[j]) { 1216 other_attr = item.attr[k]; 1217 break; 1218 } 1219 } 1220 kmp_str_buf_t buf; 1221 __kmp_hw_get_catalog_core_string(other_attr, &buf, item.num[j] > 0); 1222 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetIncompat, 1223 __kmp_hw_get_catalog_string(KMP_HW_CORE), buf.str); 1224 __kmp_str_buf_free(&buf); 1225 return false; 1226 } 1227 // Allow specifying a specific core type or core eff exactly once 1228 for (int k = 0; k < j; ++k) { 1229 if (!item.attr[j] || !item.attr[k]) 1230 continue; 1231 if (item.attr[k] == item.attr[j]) { 1232 kmp_str_buf_t buf; 1233 __kmp_hw_get_catalog_core_string(item.attr[j], &buf, 1234 item.num[j] > 0); 1235 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetAttrRepeat, buf.str); 1236 __kmp_str_buf_free(&buf); 1237 return false; 1238 } 1239 } 1240 } 1241 } 1242 } 1243 } 1244 1245 // For keeping track of sub_ids for an absolute KMP_HW_SUBSET 1246 // or core attributes (core type or efficiency) 1247 int prev_sub_ids[KMP_HW_LAST]; 1248 int abs_sub_ids[KMP_HW_LAST]; 1249 int core_eff_sub_ids[KMP_HW_MAX_NUM_CORE_EFFS]; 1250 int core_type_sub_ids[KMP_HW_MAX_NUM_CORE_TYPES]; 1251 for (size_t i = 0; i < KMP_HW_LAST; ++i) { 1252 abs_sub_ids[i] = -1; 1253 prev_sub_ids[i] = -1; 1254 } 1255 for (size_t i = 0; i < KMP_HW_MAX_NUM_CORE_EFFS; ++i) 1256 core_eff_sub_ids[i] = -1; 1257 for (size_t i = 0; i < KMP_HW_MAX_NUM_CORE_TYPES; ++i) 1258 core_type_sub_ids[i] = -1; 1259 1260 // Determine which hardware threads should be filtered. 1261 1262 // Helpful to determine if a topology layer is targeted by an absolute subset 1263 auto is_targeted = [&](int level) { 1264 if (is_absolute) { 1265 for (int i = 0; i < hw_subset_depth; ++i) 1266 if (topology_levels[i] == level) 1267 return true; 1268 return false; 1269 } 1270 // If not absolute KMP_HW_SUBSET, then every layer is seen as targeted 1271 return true; 1272 }; 1273 1274 // Helpful to index into core type sub Ids array 1275 auto get_core_type_index = [](const kmp_hw_thread_t &t) { 1276 switch (t.attrs.get_core_type()) { 1277 case KMP_HW_CORE_TYPE_UNKNOWN: 1278 case KMP_HW_MAX_NUM_CORE_TYPES: 1279 return 0; 1280 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 1281 case KMP_HW_CORE_TYPE_ATOM: 1282 return 1; 1283 case KMP_HW_CORE_TYPE_CORE: 1284 return 2; 1285 #endif 1286 } 1287 KMP_ASSERT2(false, "Unhandled kmp_hw_thread_t enumeration"); 1288 KMP_BUILTIN_UNREACHABLE; 1289 }; 1290 1291 // Helpful to index into core efficiencies sub Ids array 1292 auto get_core_eff_index = [](const kmp_hw_thread_t &t) { 1293 return t.attrs.get_core_eff(); 1294 }; 1295 1296 int num_filtered = 0; 1297 kmp_affin_mask_t *filtered_mask; 1298 KMP_CPU_ALLOC(filtered_mask); 1299 KMP_CPU_COPY(filtered_mask, __kmp_affin_fullMask); 1300 for (int i = 0; i < num_hw_threads; ++i) { 1301 kmp_hw_thread_t &hw_thread = hw_threads[i]; 1302 1303 // Figure out the absolute sub ids and core eff/type sub ids 1304 if (is_absolute || using_core_effs || using_core_types) { 1305 for (int level = 0; level < get_depth(); ++level) { 1306 if (hw_thread.sub_ids[level] != prev_sub_ids[level]) { 1307 bool found_targeted = false; 1308 for (int j = level; j < get_depth(); ++j) { 1309 bool targeted = is_targeted(j); 1310 if (!found_targeted && targeted) { 1311 found_targeted = true; 1312 abs_sub_ids[j]++; 1313 if (j == core_level && using_core_effs) 1314 core_eff_sub_ids[get_core_eff_index(hw_thread)]++; 1315 if (j == core_level && using_core_types) 1316 core_type_sub_ids[get_core_type_index(hw_thread)]++; 1317 } else if (targeted) { 1318 abs_sub_ids[j] = 0; 1319 if (j == core_level && using_core_effs) 1320 core_eff_sub_ids[get_core_eff_index(hw_thread)] = 0; 1321 if (j == core_level && using_core_types) 1322 core_type_sub_ids[get_core_type_index(hw_thread)] = 0; 1323 } 1324 } 1325 break; 1326 } 1327 } 1328 for (int level = 0; level < get_depth(); ++level) 1329 prev_sub_ids[level] = hw_thread.sub_ids[level]; 1330 } 1331 1332 // Check to see if this hardware thread should be filtered 1333 bool should_be_filtered = false; 1334 for (int hw_subset_index = 0; hw_subset_index < hw_subset_depth; 1335 ++hw_subset_index) { 1336 const auto &hw_subset_item = __kmp_hw_subset->at(hw_subset_index); 1337 int level = topology_levels[hw_subset_index]; 1338 if (level == -1) 1339 continue; 1340 if ((using_core_effs || using_core_types) && level == core_level) { 1341 // Look for the core attribute in KMP_HW_SUBSET which corresponds 1342 // to this hardware thread's core attribute. Use this num,offset plus 1343 // the running sub_id for the particular core attribute of this hardware 1344 // thread to determine if the hardware thread should be filtered or not. 1345 int attr_idx; 1346 kmp_hw_core_type_t core_type = hw_thread.attrs.get_core_type(); 1347 int core_eff = hw_thread.attrs.get_core_eff(); 1348 for (attr_idx = 0; attr_idx < hw_subset_item.num_attrs; ++attr_idx) { 1349 if (using_core_types && 1350 hw_subset_item.attr[attr_idx].get_core_type() == core_type) 1351 break; 1352 if (using_core_effs && 1353 hw_subset_item.attr[attr_idx].get_core_eff() == core_eff) 1354 break; 1355 } 1356 // This core attribute isn't in the KMP_HW_SUBSET so always filter it. 1357 if (attr_idx == hw_subset_item.num_attrs) { 1358 should_be_filtered = true; 1359 break; 1360 } 1361 int sub_id; 1362 int num = hw_subset_item.num[attr_idx]; 1363 int offset = hw_subset_item.offset[attr_idx]; 1364 if (using_core_types) 1365 sub_id = core_type_sub_ids[get_core_type_index(hw_thread)]; 1366 else 1367 sub_id = core_eff_sub_ids[get_core_eff_index(hw_thread)]; 1368 if (sub_id < offset || 1369 (num != kmp_hw_subset_t::USE_ALL && sub_id >= offset + num)) { 1370 should_be_filtered = true; 1371 break; 1372 } 1373 } else { 1374 int sub_id; 1375 int num = hw_subset_item.num[0]; 1376 int offset = hw_subset_item.offset[0]; 1377 if (is_absolute) 1378 sub_id = abs_sub_ids[level]; 1379 else 1380 sub_id = hw_thread.sub_ids[level]; 1381 if (hw_thread.ids[level] == kmp_hw_thread_t::UNKNOWN_ID || 1382 sub_id < offset || 1383 (num != kmp_hw_subset_t::USE_ALL && sub_id >= offset + num)) { 1384 should_be_filtered = true; 1385 break; 1386 } 1387 } 1388 } 1389 // Collect filtering information 1390 if (should_be_filtered) { 1391 KMP_CPU_CLR(hw_thread.os_id, filtered_mask); 1392 num_filtered++; 1393 } 1394 } 1395 1396 // One last check that we shouldn't allow filtering entire machine 1397 if (num_filtered == num_hw_threads) { 1398 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetAllFiltered); 1399 return false; 1400 } 1401 1402 // Apply the filter 1403 restrict_to_mask(filtered_mask); 1404 return true; 1405 } 1406 1407 bool kmp_topology_t::is_close(int hwt1, int hwt2, 1408 const kmp_affinity_t &stgs) const { 1409 int hw_level = stgs.gran_levels; 1410 if (hw_level >= depth) 1411 return true; 1412 bool retval = true; 1413 const kmp_hw_thread_t &t1 = hw_threads[hwt1]; 1414 const kmp_hw_thread_t &t2 = hw_threads[hwt2]; 1415 if (stgs.flags.core_types_gran) 1416 return t1.attrs.get_core_type() == t2.attrs.get_core_type(); 1417 if (stgs.flags.core_effs_gran) 1418 return t1.attrs.get_core_eff() == t2.attrs.get_core_eff(); 1419 for (int i = 0; i < (depth - hw_level); ++i) { 1420 if (t1.ids[i] != t2.ids[i]) 1421 return false; 1422 } 1423 return retval; 1424 } 1425 1426 //////////////////////////////////////////////////////////////////////////////// 1427 1428 bool KMPAffinity::picked_api = false; 1429 1430 void *KMPAffinity::Mask::operator new(size_t n) { return __kmp_allocate(n); } 1431 void *KMPAffinity::Mask::operator new[](size_t n) { return __kmp_allocate(n); } 1432 void KMPAffinity::Mask::operator delete(void *p) { __kmp_free(p); } 1433 void KMPAffinity::Mask::operator delete[](void *p) { __kmp_free(p); } 1434 void *KMPAffinity::operator new(size_t n) { return __kmp_allocate(n); } 1435 void KMPAffinity::operator delete(void *p) { __kmp_free(p); } 1436 1437 void KMPAffinity::pick_api() { 1438 KMPAffinity *affinity_dispatch; 1439 if (picked_api) 1440 return; 1441 #if KMP_USE_HWLOC 1442 // Only use Hwloc if affinity isn't explicitly disabled and 1443 // user requests Hwloc topology method 1444 if (__kmp_affinity_top_method == affinity_top_method_hwloc && 1445 __kmp_affinity.type != affinity_disabled) { 1446 affinity_dispatch = new KMPHwlocAffinity(); 1447 } else 1448 #endif 1449 { 1450 affinity_dispatch = new KMPNativeAffinity(); 1451 } 1452 __kmp_affinity_dispatch = affinity_dispatch; 1453 picked_api = true; 1454 } 1455 1456 void KMPAffinity::destroy_api() { 1457 if (__kmp_affinity_dispatch != NULL) { 1458 delete __kmp_affinity_dispatch; 1459 __kmp_affinity_dispatch = NULL; 1460 picked_api = false; 1461 } 1462 } 1463 1464 #define KMP_ADVANCE_SCAN(scan) \ 1465 while (*scan != '\0') { \ 1466 scan++; \ 1467 } 1468 1469 // Print the affinity mask to the character array in a pretty format. 1470 // The format is a comma separated list of non-negative integers or integer 1471 // ranges: e.g., 1,2,3-5,7,9-15 1472 // The format can also be the string "{<empty>}" if no bits are set in mask 1473 char *__kmp_affinity_print_mask(char *buf, int buf_len, 1474 kmp_affin_mask_t *mask) { 1475 int start = 0, finish = 0, previous = 0; 1476 bool first_range; 1477 KMP_ASSERT(buf); 1478 KMP_ASSERT(buf_len >= 40); 1479 KMP_ASSERT(mask); 1480 char *scan = buf; 1481 char *end = buf + buf_len - 1; 1482 1483 // Check for empty set. 1484 if (mask->begin() == mask->end()) { 1485 KMP_SNPRINTF(scan, end - scan + 1, "{<empty>}"); 1486 KMP_ADVANCE_SCAN(scan); 1487 KMP_ASSERT(scan <= end); 1488 return buf; 1489 } 1490 1491 first_range = true; 1492 start = mask->begin(); 1493 while (1) { 1494 // Find next range 1495 // [start, previous] is inclusive range of contiguous bits in mask 1496 for (finish = mask->next(start), previous = start; 1497 finish == previous + 1 && finish != mask->end(); 1498 finish = mask->next(finish)) { 1499 previous = finish; 1500 } 1501 1502 // The first range does not need a comma printed before it, but the rest 1503 // of the ranges do need a comma beforehand 1504 if (!first_range) { 1505 KMP_SNPRINTF(scan, end - scan + 1, "%s", ","); 1506 KMP_ADVANCE_SCAN(scan); 1507 } else { 1508 first_range = false; 1509 } 1510 // Range with three or more contiguous bits in the affinity mask 1511 if (previous - start > 1) { 1512 KMP_SNPRINTF(scan, end - scan + 1, "%u-%u", start, previous); 1513 } else { 1514 // Range with one or two contiguous bits in the affinity mask 1515 KMP_SNPRINTF(scan, end - scan + 1, "%u", start); 1516 KMP_ADVANCE_SCAN(scan); 1517 if (previous - start > 0) { 1518 KMP_SNPRINTF(scan, end - scan + 1, ",%u", previous); 1519 } 1520 } 1521 KMP_ADVANCE_SCAN(scan); 1522 // Start over with new start point 1523 start = finish; 1524 if (start == mask->end()) 1525 break; 1526 // Check for overflow 1527 if (end - scan < 2) 1528 break; 1529 } 1530 1531 // Check for overflow 1532 KMP_ASSERT(scan <= end); 1533 return buf; 1534 } 1535 #undef KMP_ADVANCE_SCAN 1536 1537 // Print the affinity mask to the string buffer object in a pretty format 1538 // The format is a comma separated list of non-negative integers or integer 1539 // ranges: e.g., 1,2,3-5,7,9-15 1540 // The format can also be the string "{<empty>}" if no bits are set in mask 1541 kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf, 1542 kmp_affin_mask_t *mask) { 1543 int start = 0, finish = 0, previous = 0; 1544 bool first_range; 1545 KMP_ASSERT(buf); 1546 KMP_ASSERT(mask); 1547 1548 __kmp_str_buf_clear(buf); 1549 1550 // Check for empty set. 1551 if (mask->begin() == mask->end()) { 1552 __kmp_str_buf_print(buf, "%s", "{<empty>}"); 1553 return buf; 1554 } 1555 1556 first_range = true; 1557 start = mask->begin(); 1558 while (1) { 1559 // Find next range 1560 // [start, previous] is inclusive range of contiguous bits in mask 1561 for (finish = mask->next(start), previous = start; 1562 finish == previous + 1 && finish != mask->end(); 1563 finish = mask->next(finish)) { 1564 previous = finish; 1565 } 1566 1567 // The first range does not need a comma printed before it, but the rest 1568 // of the ranges do need a comma beforehand 1569 if (!first_range) { 1570 __kmp_str_buf_print(buf, "%s", ","); 1571 } else { 1572 first_range = false; 1573 } 1574 // Range with three or more contiguous bits in the affinity mask 1575 if (previous - start > 1) { 1576 __kmp_str_buf_print(buf, "%u-%u", start, previous); 1577 } else { 1578 // Range with one or two contiguous bits in the affinity mask 1579 __kmp_str_buf_print(buf, "%u", start); 1580 if (previous - start > 0) { 1581 __kmp_str_buf_print(buf, ",%u", previous); 1582 } 1583 } 1584 // Start over with new start point 1585 start = finish; 1586 if (start == mask->end()) 1587 break; 1588 } 1589 return buf; 1590 } 1591 1592 static kmp_affin_mask_t *__kmp_parse_cpu_list(const char *path) { 1593 kmp_affin_mask_t *mask; 1594 KMP_CPU_ALLOC(mask); 1595 KMP_CPU_ZERO(mask); 1596 #if KMP_OS_LINUX 1597 int n, begin_cpu, end_cpu; 1598 kmp_safe_raii_file_t file; 1599 auto skip_ws = [](FILE *f) { 1600 int c; 1601 do { 1602 c = fgetc(f); 1603 } while (isspace(c)); 1604 if (c != EOF) 1605 ungetc(c, f); 1606 }; 1607 // File contains CSV of integer ranges representing the CPUs 1608 // e.g., 1,2,4-7,9,11-15 1609 int status = file.try_open(path, "r"); 1610 if (status != 0) 1611 return mask; 1612 while (!feof(file)) { 1613 skip_ws(file); 1614 n = fscanf(file, "%d", &begin_cpu); 1615 if (n != 1) 1616 break; 1617 skip_ws(file); 1618 int c = fgetc(file); 1619 if (c == EOF || c == ',') { 1620 // Just single CPU 1621 end_cpu = begin_cpu; 1622 } else if (c == '-') { 1623 // Range of CPUs 1624 skip_ws(file); 1625 n = fscanf(file, "%d", &end_cpu); 1626 if (n != 1) 1627 break; 1628 skip_ws(file); 1629 c = fgetc(file); // skip ',' 1630 } else { 1631 // Syntax problem 1632 break; 1633 } 1634 // Ensure a valid range of CPUs 1635 if (begin_cpu < 0 || begin_cpu >= __kmp_xproc || end_cpu < 0 || 1636 end_cpu >= __kmp_xproc || begin_cpu > end_cpu) { 1637 continue; 1638 } 1639 // Insert [begin_cpu, end_cpu] into mask 1640 for (int cpu = begin_cpu; cpu <= end_cpu; ++cpu) { 1641 KMP_CPU_SET(cpu, mask); 1642 } 1643 } 1644 #endif 1645 return mask; 1646 } 1647 1648 // Return (possibly empty) affinity mask representing the offline CPUs 1649 // Caller must free the mask 1650 kmp_affin_mask_t *__kmp_affinity_get_offline_cpus() { 1651 return __kmp_parse_cpu_list("/sys/devices/system/cpu/offline"); 1652 } 1653 1654 // Return the number of available procs 1655 int __kmp_affinity_entire_machine_mask(kmp_affin_mask_t *mask) { 1656 int avail_proc = 0; 1657 KMP_CPU_ZERO(mask); 1658 1659 #if KMP_GROUP_AFFINITY 1660 1661 if (__kmp_num_proc_groups > 1) { 1662 int group; 1663 KMP_DEBUG_ASSERT(__kmp_GetActiveProcessorCount != NULL); 1664 for (group = 0; group < __kmp_num_proc_groups; group++) { 1665 int i; 1666 int num = __kmp_GetActiveProcessorCount(group); 1667 for (i = 0; i < num; i++) { 1668 KMP_CPU_SET(i + group * (CHAR_BIT * sizeof(DWORD_PTR)), mask); 1669 avail_proc++; 1670 } 1671 } 1672 } else 1673 1674 #endif /* KMP_GROUP_AFFINITY */ 1675 1676 { 1677 int proc; 1678 kmp_affin_mask_t *offline_cpus = __kmp_affinity_get_offline_cpus(); 1679 for (proc = 0; proc < __kmp_xproc; proc++) { 1680 // Skip offline CPUs 1681 if (KMP_CPU_ISSET(proc, offline_cpus)) 1682 continue; 1683 KMP_CPU_SET(proc, mask); 1684 avail_proc++; 1685 } 1686 KMP_CPU_FREE(offline_cpus); 1687 } 1688 1689 return avail_proc; 1690 } 1691 1692 // All of the __kmp_affinity_create_*_map() routines should allocate the 1693 // internal topology object and set the layer ids for it. Each routine 1694 // returns a boolean on whether it was successful at doing so. 1695 kmp_affin_mask_t *__kmp_affin_fullMask = NULL; 1696 // Original mask is a subset of full mask in multiple processor groups topology 1697 kmp_affin_mask_t *__kmp_affin_origMask = NULL; 1698 1699 #if KMP_USE_HWLOC 1700 static inline bool __kmp_hwloc_is_cache_type(hwloc_obj_t obj) { 1701 #if HWLOC_API_VERSION >= 0x00020000 1702 return hwloc_obj_type_is_cache(obj->type); 1703 #else 1704 return obj->type == HWLOC_OBJ_CACHE; 1705 #endif 1706 } 1707 1708 // Returns KMP_HW_* type derived from HWLOC_* type 1709 static inline kmp_hw_t __kmp_hwloc_type_2_topology_type(hwloc_obj_t obj) { 1710 1711 if (__kmp_hwloc_is_cache_type(obj)) { 1712 if (obj->attr->cache.type == HWLOC_OBJ_CACHE_INSTRUCTION) 1713 return KMP_HW_UNKNOWN; 1714 switch (obj->attr->cache.depth) { 1715 case 1: 1716 return KMP_HW_L1; 1717 case 2: 1718 #if KMP_MIC_SUPPORTED 1719 if (__kmp_mic_type == mic3) { 1720 return KMP_HW_TILE; 1721 } 1722 #endif 1723 return KMP_HW_L2; 1724 case 3: 1725 return KMP_HW_L3; 1726 } 1727 return KMP_HW_UNKNOWN; 1728 } 1729 1730 switch (obj->type) { 1731 case HWLOC_OBJ_PACKAGE: 1732 return KMP_HW_SOCKET; 1733 case HWLOC_OBJ_NUMANODE: 1734 return KMP_HW_NUMA; 1735 case HWLOC_OBJ_CORE: 1736 return KMP_HW_CORE; 1737 case HWLOC_OBJ_PU: 1738 return KMP_HW_THREAD; 1739 case HWLOC_OBJ_GROUP: 1740 #if HWLOC_API_VERSION >= 0x00020000 1741 if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_DIE) 1742 return KMP_HW_DIE; 1743 else if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_TILE) 1744 return KMP_HW_TILE; 1745 else if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_MODULE) 1746 return KMP_HW_MODULE; 1747 else if (obj->attr->group.kind == HWLOC_GROUP_KIND_WINDOWS_PROCESSOR_GROUP) 1748 return KMP_HW_PROC_GROUP; 1749 #endif 1750 return KMP_HW_UNKNOWN; 1751 #if HWLOC_API_VERSION >= 0x00020100 1752 case HWLOC_OBJ_DIE: 1753 return KMP_HW_DIE; 1754 #endif 1755 } 1756 return KMP_HW_UNKNOWN; 1757 } 1758 1759 // Returns the number of objects of type 'type' below 'obj' within the topology 1760 // tree structure. e.g., if obj is a HWLOC_OBJ_PACKAGE object, and type is 1761 // HWLOC_OBJ_PU, then this will return the number of PU's under the SOCKET 1762 // object. 1763 static int __kmp_hwloc_get_nobjs_under_obj(hwloc_obj_t obj, 1764 hwloc_obj_type_t type) { 1765 int retval = 0; 1766 hwloc_obj_t first; 1767 for (first = hwloc_get_obj_below_by_type(__kmp_hwloc_topology, obj->type, 1768 obj->logical_index, type, 0); 1769 first != NULL && hwloc_get_ancestor_obj_by_type(__kmp_hwloc_topology, 1770 obj->type, first) == obj; 1771 first = hwloc_get_next_obj_by_type(__kmp_hwloc_topology, first->type, 1772 first)) { 1773 ++retval; 1774 } 1775 return retval; 1776 } 1777 1778 // This gets the sub_id for a lower object under a higher object in the 1779 // topology tree 1780 static int __kmp_hwloc_get_sub_id(hwloc_topology_t t, hwloc_obj_t higher, 1781 hwloc_obj_t lower) { 1782 hwloc_obj_t obj; 1783 hwloc_obj_type_t ltype = lower->type; 1784 int lindex = lower->logical_index - 1; 1785 int sub_id = 0; 1786 // Get the previous lower object 1787 obj = hwloc_get_obj_by_type(t, ltype, lindex); 1788 while (obj && lindex >= 0 && 1789 hwloc_bitmap_isincluded(obj->cpuset, higher->cpuset)) { 1790 if (obj->userdata) { 1791 sub_id = (int)(RCAST(kmp_intptr_t, obj->userdata)); 1792 break; 1793 } 1794 sub_id++; 1795 lindex--; 1796 obj = hwloc_get_obj_by_type(t, ltype, lindex); 1797 } 1798 // store sub_id + 1 so that 0 is differed from NULL 1799 lower->userdata = RCAST(void *, sub_id + 1); 1800 return sub_id; 1801 } 1802 1803 static bool __kmp_affinity_create_hwloc_map(kmp_i18n_id_t *const msg_id) { 1804 kmp_hw_t type; 1805 int hw_thread_index, sub_id; 1806 int depth; 1807 hwloc_obj_t pu, obj, root, prev; 1808 kmp_hw_t types[KMP_HW_LAST]; 1809 hwloc_obj_type_t hwloc_types[KMP_HW_LAST]; 1810 1811 hwloc_topology_t tp = __kmp_hwloc_topology; 1812 *msg_id = kmp_i18n_null; 1813 if (__kmp_affinity.flags.verbose) { 1814 KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY"); 1815 } 1816 1817 if (!KMP_AFFINITY_CAPABLE()) { 1818 // Hack to try and infer the machine topology using only the data 1819 // available from hwloc on the current thread, and __kmp_xproc. 1820 KMP_ASSERT(__kmp_affinity.type == affinity_none); 1821 // hwloc only guarantees existance of PU object, so check PACKAGE and CORE 1822 hwloc_obj_t o = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PACKAGE, 0); 1823 if (o != NULL) 1824 nCoresPerPkg = __kmp_hwloc_get_nobjs_under_obj(o, HWLOC_OBJ_CORE); 1825 else 1826 nCoresPerPkg = 1; // no PACKAGE found 1827 o = hwloc_get_obj_by_type(tp, HWLOC_OBJ_CORE, 0); 1828 if (o != NULL) 1829 __kmp_nThreadsPerCore = __kmp_hwloc_get_nobjs_under_obj(o, HWLOC_OBJ_PU); 1830 else 1831 __kmp_nThreadsPerCore = 1; // no CORE found 1832 if (__kmp_nThreadsPerCore == 0) 1833 __kmp_nThreadsPerCore = 1; 1834 __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore; 1835 if (nCoresPerPkg == 0) 1836 nCoresPerPkg = 1; // to prevent possible division by 0 1837 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; 1838 return true; 1839 } 1840 1841 #if HWLOC_API_VERSION >= 0x00020400 1842 // Handle multiple types of cores if they exist on the system 1843 int nr_cpu_kinds = hwloc_cpukinds_get_nr(tp, 0); 1844 1845 typedef struct kmp_hwloc_cpukinds_info_t { 1846 int efficiency; 1847 kmp_hw_core_type_t core_type; 1848 hwloc_bitmap_t mask; 1849 } kmp_hwloc_cpukinds_info_t; 1850 kmp_hwloc_cpukinds_info_t *cpukinds = nullptr; 1851 1852 if (nr_cpu_kinds > 0) { 1853 unsigned nr_infos; 1854 struct hwloc_info_s *infos; 1855 cpukinds = (kmp_hwloc_cpukinds_info_t *)__kmp_allocate( 1856 sizeof(kmp_hwloc_cpukinds_info_t) * nr_cpu_kinds); 1857 for (unsigned idx = 0; idx < (unsigned)nr_cpu_kinds; ++idx) { 1858 cpukinds[idx].efficiency = -1; 1859 cpukinds[idx].core_type = KMP_HW_CORE_TYPE_UNKNOWN; 1860 cpukinds[idx].mask = hwloc_bitmap_alloc(); 1861 if (hwloc_cpukinds_get_info(tp, idx, cpukinds[idx].mask, 1862 &cpukinds[idx].efficiency, &nr_infos, &infos, 1863 0) == 0) { 1864 for (unsigned i = 0; i < nr_infos; ++i) { 1865 if (__kmp_str_match("CoreType", 8, infos[i].name)) { 1866 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 1867 if (__kmp_str_match("IntelAtom", 9, infos[i].value)) { 1868 cpukinds[idx].core_type = KMP_HW_CORE_TYPE_ATOM; 1869 break; 1870 } else if (__kmp_str_match("IntelCore", 9, infos[i].value)) { 1871 cpukinds[idx].core_type = KMP_HW_CORE_TYPE_CORE; 1872 break; 1873 } 1874 #endif 1875 } 1876 } 1877 } 1878 } 1879 } 1880 #endif 1881 1882 root = hwloc_get_root_obj(tp); 1883 1884 // Figure out the depth and types in the topology 1885 depth = 0; 1886 obj = hwloc_get_pu_obj_by_os_index(tp, __kmp_affin_fullMask->begin()); 1887 while (obj && obj != root) { 1888 #if HWLOC_API_VERSION >= 0x00020000 1889 if (obj->memory_arity) { 1890 hwloc_obj_t memory; 1891 for (memory = obj->memory_first_child; memory; 1892 memory = hwloc_get_next_child(tp, obj, memory)) { 1893 if (memory->type == HWLOC_OBJ_NUMANODE) 1894 break; 1895 } 1896 if (memory && memory->type == HWLOC_OBJ_NUMANODE) { 1897 types[depth] = KMP_HW_NUMA; 1898 hwloc_types[depth] = memory->type; 1899 depth++; 1900 } 1901 } 1902 #endif 1903 type = __kmp_hwloc_type_2_topology_type(obj); 1904 if (type != KMP_HW_UNKNOWN) { 1905 types[depth] = type; 1906 hwloc_types[depth] = obj->type; 1907 depth++; 1908 } 1909 obj = obj->parent; 1910 } 1911 KMP_ASSERT(depth > 0); 1912 1913 // Get the order for the types correct 1914 for (int i = 0, j = depth - 1; i < j; ++i, --j) { 1915 hwloc_obj_type_t hwloc_temp = hwloc_types[i]; 1916 kmp_hw_t temp = types[i]; 1917 types[i] = types[j]; 1918 types[j] = temp; 1919 hwloc_types[i] = hwloc_types[j]; 1920 hwloc_types[j] = hwloc_temp; 1921 } 1922 1923 // Allocate the data structure to be returned. 1924 __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types); 1925 1926 hw_thread_index = 0; 1927 pu = NULL; 1928 while ((pu = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, pu))) { 1929 int index = depth - 1; 1930 bool included = KMP_CPU_ISSET(pu->os_index, __kmp_affin_fullMask); 1931 kmp_hw_thread_t &hw_thread = __kmp_topology->at(hw_thread_index); 1932 if (included) { 1933 hw_thread.clear(); 1934 hw_thread.ids[index] = pu->logical_index; 1935 hw_thread.os_id = pu->os_index; 1936 hw_thread.original_idx = hw_thread_index; 1937 // If multiple core types, then set that attribute for the hardware thread 1938 #if HWLOC_API_VERSION >= 0x00020400 1939 if (cpukinds) { 1940 int cpukind_index = -1; 1941 for (int i = 0; i < nr_cpu_kinds; ++i) { 1942 if (hwloc_bitmap_isset(cpukinds[i].mask, hw_thread.os_id)) { 1943 cpukind_index = i; 1944 break; 1945 } 1946 } 1947 if (cpukind_index >= 0) { 1948 hw_thread.attrs.set_core_type(cpukinds[cpukind_index].core_type); 1949 hw_thread.attrs.set_core_eff(cpukinds[cpukind_index].efficiency); 1950 } 1951 } 1952 #endif 1953 index--; 1954 } 1955 obj = pu; 1956 prev = obj; 1957 while (obj != root && obj != NULL) { 1958 obj = obj->parent; 1959 #if HWLOC_API_VERSION >= 0x00020000 1960 // NUMA Nodes are handled differently since they are not within the 1961 // parent/child structure anymore. They are separate children 1962 // of obj (memory_first_child points to first memory child) 1963 if (obj->memory_arity) { 1964 hwloc_obj_t memory; 1965 for (memory = obj->memory_first_child; memory; 1966 memory = hwloc_get_next_child(tp, obj, memory)) { 1967 if (memory->type == HWLOC_OBJ_NUMANODE) 1968 break; 1969 } 1970 if (memory && memory->type == HWLOC_OBJ_NUMANODE) { 1971 sub_id = __kmp_hwloc_get_sub_id(tp, memory, prev); 1972 if (included) { 1973 hw_thread.ids[index] = memory->logical_index; 1974 hw_thread.ids[index + 1] = sub_id; 1975 index--; 1976 } 1977 } 1978 prev = obj; 1979 } 1980 #endif 1981 type = __kmp_hwloc_type_2_topology_type(obj); 1982 if (type != KMP_HW_UNKNOWN) { 1983 sub_id = __kmp_hwloc_get_sub_id(tp, obj, prev); 1984 if (included) { 1985 hw_thread.ids[index] = obj->logical_index; 1986 hw_thread.ids[index + 1] = sub_id; 1987 index--; 1988 } 1989 prev = obj; 1990 } 1991 } 1992 if (included) 1993 hw_thread_index++; 1994 } 1995 1996 #if HWLOC_API_VERSION >= 0x00020400 1997 // Free the core types information 1998 if (cpukinds) { 1999 for (int idx = 0; idx < nr_cpu_kinds; ++idx) 2000 hwloc_bitmap_free(cpukinds[idx].mask); 2001 __kmp_free(cpukinds); 2002 } 2003 #endif 2004 __kmp_topology->sort_ids(); 2005 return true; 2006 } 2007 #endif // KMP_USE_HWLOC 2008 2009 // If we don't know how to retrieve the machine's processor topology, or 2010 // encounter an error in doing so, this routine is called to form a "flat" 2011 // mapping of os thread id's <-> processor id's. 2012 static bool __kmp_affinity_create_flat_map(kmp_i18n_id_t *const msg_id) { 2013 *msg_id = kmp_i18n_null; 2014 int depth = 3; 2015 kmp_hw_t types[] = {KMP_HW_SOCKET, KMP_HW_CORE, KMP_HW_THREAD}; 2016 2017 if (__kmp_affinity.flags.verbose) { 2018 KMP_INFORM(UsingFlatOS, "KMP_AFFINITY"); 2019 } 2020 2021 // Even if __kmp_affinity.type == affinity_none, this routine might still 2022 // be called to set __kmp_ncores, as well as 2023 // __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 2024 if (!KMP_AFFINITY_CAPABLE()) { 2025 KMP_ASSERT(__kmp_affinity.type == affinity_none); 2026 __kmp_ncores = nPackages = __kmp_xproc; 2027 __kmp_nThreadsPerCore = nCoresPerPkg = 1; 2028 return true; 2029 } 2030 2031 // When affinity is off, this routine will still be called to set 2032 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 2033 // Make sure all these vars are set correctly, and return now if affinity is 2034 // not enabled. 2035 __kmp_ncores = nPackages = __kmp_avail_proc; 2036 __kmp_nThreadsPerCore = nCoresPerPkg = 1; 2037 2038 // Construct the data structure to be returned. 2039 __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types); 2040 int avail_ct = 0; 2041 int i; 2042 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 2043 // Skip this proc if it is not included in the machine model. 2044 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 2045 continue; 2046 } 2047 kmp_hw_thread_t &hw_thread = __kmp_topology->at(avail_ct); 2048 hw_thread.clear(); 2049 hw_thread.os_id = i; 2050 hw_thread.original_idx = avail_ct; 2051 hw_thread.ids[0] = i; 2052 hw_thread.ids[1] = 0; 2053 hw_thread.ids[2] = 0; 2054 avail_ct++; 2055 } 2056 if (__kmp_affinity.flags.verbose) { 2057 KMP_INFORM(OSProcToPackage, "KMP_AFFINITY"); 2058 } 2059 return true; 2060 } 2061 2062 #if KMP_GROUP_AFFINITY 2063 // If multiple Windows* OS processor groups exist, we can create a 2-level 2064 // topology map with the groups at level 0 and the individual procs at level 1. 2065 // This facilitates letting the threads float among all procs in a group, 2066 // if granularity=group (the default when there are multiple groups). 2067 static bool __kmp_affinity_create_proc_group_map(kmp_i18n_id_t *const msg_id) { 2068 *msg_id = kmp_i18n_null; 2069 int depth = 3; 2070 kmp_hw_t types[] = {KMP_HW_PROC_GROUP, KMP_HW_CORE, KMP_HW_THREAD}; 2071 const static size_t BITS_PER_GROUP = CHAR_BIT * sizeof(DWORD_PTR); 2072 2073 if (__kmp_affinity.flags.verbose) { 2074 KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY"); 2075 } 2076 2077 // If we aren't affinity capable, then use flat topology 2078 if (!KMP_AFFINITY_CAPABLE()) { 2079 KMP_ASSERT(__kmp_affinity.type == affinity_none); 2080 nPackages = __kmp_num_proc_groups; 2081 __kmp_nThreadsPerCore = 1; 2082 __kmp_ncores = __kmp_xproc; 2083 nCoresPerPkg = nPackages / __kmp_ncores; 2084 return true; 2085 } 2086 2087 // Construct the data structure to be returned. 2088 __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types); 2089 int avail_ct = 0; 2090 int i; 2091 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 2092 // Skip this proc if it is not included in the machine model. 2093 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 2094 continue; 2095 } 2096 kmp_hw_thread_t &hw_thread = __kmp_topology->at(avail_ct); 2097 hw_thread.clear(); 2098 hw_thread.os_id = i; 2099 hw_thread.original_idx = avail_ct; 2100 hw_thread.ids[0] = i / BITS_PER_GROUP; 2101 hw_thread.ids[1] = hw_thread.ids[2] = i % BITS_PER_GROUP; 2102 avail_ct++; 2103 } 2104 return true; 2105 } 2106 #endif /* KMP_GROUP_AFFINITY */ 2107 2108 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 2109 2110 template <kmp_uint32 LSB, kmp_uint32 MSB> 2111 static inline unsigned __kmp_extract_bits(kmp_uint32 v) { 2112 const kmp_uint32 SHIFT_LEFT = sizeof(kmp_uint32) * 8 - 1 - MSB; 2113 const kmp_uint32 SHIFT_RIGHT = LSB; 2114 kmp_uint32 retval = v; 2115 retval <<= SHIFT_LEFT; 2116 retval >>= (SHIFT_LEFT + SHIFT_RIGHT); 2117 return retval; 2118 } 2119 2120 static int __kmp_cpuid_mask_width(int count) { 2121 int r = 0; 2122 2123 while ((1 << r) < count) 2124 ++r; 2125 return r; 2126 } 2127 2128 class apicThreadInfo { 2129 public: 2130 unsigned osId; // param to __kmp_affinity_bind_thread 2131 unsigned apicId; // from cpuid after binding 2132 unsigned maxCoresPerPkg; // "" 2133 unsigned maxThreadsPerPkg; // "" 2134 unsigned pkgId; // inferred from above values 2135 unsigned coreId; // "" 2136 unsigned threadId; // "" 2137 }; 2138 2139 static int __kmp_affinity_cmp_apicThreadInfo_phys_id(const void *a, 2140 const void *b) { 2141 const apicThreadInfo *aa = (const apicThreadInfo *)a; 2142 const apicThreadInfo *bb = (const apicThreadInfo *)b; 2143 if (aa->pkgId < bb->pkgId) 2144 return -1; 2145 if (aa->pkgId > bb->pkgId) 2146 return 1; 2147 if (aa->coreId < bb->coreId) 2148 return -1; 2149 if (aa->coreId > bb->coreId) 2150 return 1; 2151 if (aa->threadId < bb->threadId) 2152 return -1; 2153 if (aa->threadId > bb->threadId) 2154 return 1; 2155 return 0; 2156 } 2157 2158 class cpuid_cache_info_t { 2159 public: 2160 struct info_t { 2161 unsigned level = 0; 2162 unsigned mask = 0; 2163 bool operator==(const info_t &rhs) const { 2164 return level == rhs.level && mask == rhs.mask; 2165 } 2166 bool operator!=(const info_t &rhs) const { return !operator==(rhs); } 2167 }; 2168 cpuid_cache_info_t() : depth(0) { 2169 table[MAX_CACHE_LEVEL].level = 0; 2170 table[MAX_CACHE_LEVEL].mask = 0; 2171 } 2172 size_t get_depth() const { return depth; } 2173 info_t &operator[](size_t index) { return table[index]; } 2174 const info_t &operator[](size_t index) const { return table[index]; } 2175 bool operator==(const cpuid_cache_info_t &rhs) const { 2176 if (rhs.depth != depth) 2177 return false; 2178 for (size_t i = 0; i < depth; ++i) 2179 if (table[i] != rhs.table[i]) 2180 return false; 2181 return true; 2182 } 2183 bool operator!=(const cpuid_cache_info_t &rhs) const { 2184 return !operator==(rhs); 2185 } 2186 // Get cache information assocaited with L1, L2, L3 cache, etc. 2187 // If level does not exist, then return the "NULL" level (level 0) 2188 const info_t &get_level(unsigned level) const { 2189 for (size_t i = 0; i < depth; ++i) { 2190 if (table[i].level == level) 2191 return table[i]; 2192 } 2193 return table[MAX_CACHE_LEVEL]; 2194 } 2195 2196 static kmp_hw_t get_topology_type(unsigned level) { 2197 KMP_DEBUG_ASSERT(level >= 1 && level <= MAX_CACHE_LEVEL); 2198 switch (level) { 2199 case 1: 2200 return KMP_HW_L1; 2201 case 2: 2202 return KMP_HW_L2; 2203 case 3: 2204 return KMP_HW_L3; 2205 } 2206 return KMP_HW_UNKNOWN; 2207 } 2208 void get_leaf4_levels() { 2209 unsigned level = 0; 2210 while (depth < MAX_CACHE_LEVEL) { 2211 unsigned cache_type, max_threads_sharing; 2212 unsigned cache_level, cache_mask_width; 2213 kmp_cpuid buf2; 2214 __kmp_x86_cpuid(4, level, &buf2); 2215 cache_type = __kmp_extract_bits<0, 4>(buf2.eax); 2216 if (!cache_type) 2217 break; 2218 // Skip instruction caches 2219 if (cache_type == 2) { 2220 level++; 2221 continue; 2222 } 2223 max_threads_sharing = __kmp_extract_bits<14, 25>(buf2.eax) + 1; 2224 cache_mask_width = __kmp_cpuid_mask_width(max_threads_sharing); 2225 cache_level = __kmp_extract_bits<5, 7>(buf2.eax); 2226 table[depth].level = cache_level; 2227 table[depth].mask = ((-1) << cache_mask_width); 2228 depth++; 2229 level++; 2230 } 2231 } 2232 static const int MAX_CACHE_LEVEL = 3; 2233 2234 private: 2235 size_t depth; 2236 info_t table[MAX_CACHE_LEVEL + 1]; 2237 }; 2238 2239 // On IA-32 architecture and Intel(R) 64 architecture, we attempt to use 2240 // an algorithm which cycles through the available os threads, setting 2241 // the current thread's affinity mask to that thread, and then retrieves 2242 // the Apic Id for each thread context using the cpuid instruction. 2243 static bool __kmp_affinity_create_apicid_map(kmp_i18n_id_t *const msg_id) { 2244 kmp_cpuid buf; 2245 *msg_id = kmp_i18n_null; 2246 2247 if (__kmp_affinity.flags.verbose) { 2248 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(DecodingLegacyAPIC)); 2249 } 2250 2251 // Check if cpuid leaf 4 is supported. 2252 __kmp_x86_cpuid(0, 0, &buf); 2253 if (buf.eax < 4) { 2254 *msg_id = kmp_i18n_str_NoLeaf4Support; 2255 return false; 2256 } 2257 2258 // The algorithm used starts by setting the affinity to each available thread 2259 // and retrieving info from the cpuid instruction, so if we are not capable of 2260 // calling __kmp_get_system_affinity() and _kmp_get_system_affinity(), then we 2261 // need to do something else - use the defaults that we calculated from 2262 // issuing cpuid without binding to each proc. 2263 if (!KMP_AFFINITY_CAPABLE()) { 2264 // Hack to try and infer the machine topology using only the data 2265 // available from cpuid on the current thread, and __kmp_xproc. 2266 KMP_ASSERT(__kmp_affinity.type == affinity_none); 2267 2268 // Get an upper bound on the number of threads per package using cpuid(1). 2269 // On some OS/chps combinations where HT is supported by the chip but is 2270 // disabled, this value will be 2 on a single core chip. Usually, it will be 2271 // 2 if HT is enabled and 1 if HT is disabled. 2272 __kmp_x86_cpuid(1, 0, &buf); 2273 int maxThreadsPerPkg = (buf.ebx >> 16) & 0xff; 2274 if (maxThreadsPerPkg == 0) { 2275 maxThreadsPerPkg = 1; 2276 } 2277 2278 // The num cores per pkg comes from cpuid(4). 1 must be added to the encoded 2279 // value. 2280 // 2281 // The author of cpu_count.cpp treated this only an upper bound on the 2282 // number of cores, but I haven't seen any cases where it was greater than 2283 // the actual number of cores, so we will treat it as exact in this block of 2284 // code. 2285 // 2286 // First, we need to check if cpuid(4) is supported on this chip. To see if 2287 // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n or 2288 // greater. 2289 __kmp_x86_cpuid(0, 0, &buf); 2290 if (buf.eax >= 4) { 2291 __kmp_x86_cpuid(4, 0, &buf); 2292 nCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1; 2293 } else { 2294 nCoresPerPkg = 1; 2295 } 2296 2297 // There is no way to reliably tell if HT is enabled without issuing the 2298 // cpuid instruction from every thread, can correlating the cpuid info, so 2299 // if the machine is not affinity capable, we assume that HT is off. We have 2300 // seen quite a few machines where maxThreadsPerPkg is 2, yet the machine 2301 // does not support HT. 2302 // 2303 // - Older OSes are usually found on machines with older chips, which do not 2304 // support HT. 2305 // - The performance penalty for mistakenly identifying a machine as HT when 2306 // it isn't (which results in blocktime being incorrectly set to 0) is 2307 // greater than the penalty when for mistakenly identifying a machine as 2308 // being 1 thread/core when it is really HT enabled (which results in 2309 // blocktime being incorrectly set to a positive value). 2310 __kmp_ncores = __kmp_xproc; 2311 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; 2312 __kmp_nThreadsPerCore = 1; 2313 return true; 2314 } 2315 2316 // From here on, we can assume that it is safe to call 2317 // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if 2318 // __kmp_affinity.type = affinity_none. 2319 2320 // Save the affinity mask for the current thread. 2321 kmp_affinity_raii_t previous_affinity; 2322 2323 // Run through each of the available contexts, binding the current thread 2324 // to it, and obtaining the pertinent information using the cpuid instr. 2325 // 2326 // The relevant information is: 2327 // - Apic Id: Bits 24:31 of ebx after issuing cpuid(1) - each thread context 2328 // has a uniqie Apic Id, which is of the form pkg# : core# : thread#. 2329 // - Max Threads Per Pkg: Bits 16:23 of ebx after issuing cpuid(1). The value 2330 // of this field determines the width of the core# + thread# fields in the 2331 // Apic Id. It is also an upper bound on the number of threads per 2332 // package, but it has been verified that situations happen were it is not 2333 // exact. In particular, on certain OS/chip combinations where Intel(R) 2334 // Hyper-Threading Technology is supported by the chip but has been 2335 // disabled, the value of this field will be 2 (for a single core chip). 2336 // On other OS/chip combinations supporting Intel(R) Hyper-Threading 2337 // Technology, the value of this field will be 1 when Intel(R) 2338 // Hyper-Threading Technology is disabled and 2 when it is enabled. 2339 // - Max Cores Per Pkg: Bits 26:31 of eax after issuing cpuid(4). The value 2340 // of this field (+1) determines the width of the core# field in the Apic 2341 // Id. The comments in "cpucount.cpp" say that this value is an upper 2342 // bound, but the IA-32 architecture manual says that it is exactly the 2343 // number of cores per package, and I haven't seen any case where it 2344 // wasn't. 2345 // 2346 // From this information, deduce the package Id, core Id, and thread Id, 2347 // and set the corresponding fields in the apicThreadInfo struct. 2348 unsigned i; 2349 apicThreadInfo *threadInfo = (apicThreadInfo *)__kmp_allocate( 2350 __kmp_avail_proc * sizeof(apicThreadInfo)); 2351 unsigned nApics = 0; 2352 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 2353 // Skip this proc if it is not included in the machine model. 2354 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 2355 continue; 2356 } 2357 KMP_DEBUG_ASSERT((int)nApics < __kmp_avail_proc); 2358 2359 __kmp_affinity_dispatch->bind_thread(i); 2360 threadInfo[nApics].osId = i; 2361 2362 // The apic id and max threads per pkg come from cpuid(1). 2363 __kmp_x86_cpuid(1, 0, &buf); 2364 if (((buf.edx >> 9) & 1) == 0) { 2365 __kmp_free(threadInfo); 2366 *msg_id = kmp_i18n_str_ApicNotPresent; 2367 return false; 2368 } 2369 threadInfo[nApics].apicId = (buf.ebx >> 24) & 0xff; 2370 threadInfo[nApics].maxThreadsPerPkg = (buf.ebx >> 16) & 0xff; 2371 if (threadInfo[nApics].maxThreadsPerPkg == 0) { 2372 threadInfo[nApics].maxThreadsPerPkg = 1; 2373 } 2374 2375 // Max cores per pkg comes from cpuid(4). 1 must be added to the encoded 2376 // value. 2377 // 2378 // First, we need to check if cpuid(4) is supported on this chip. To see if 2379 // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n 2380 // or greater. 2381 __kmp_x86_cpuid(0, 0, &buf); 2382 if (buf.eax >= 4) { 2383 __kmp_x86_cpuid(4, 0, &buf); 2384 threadInfo[nApics].maxCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1; 2385 } else { 2386 threadInfo[nApics].maxCoresPerPkg = 1; 2387 } 2388 2389 // Infer the pkgId / coreId / threadId using only the info obtained locally. 2390 int widthCT = __kmp_cpuid_mask_width(threadInfo[nApics].maxThreadsPerPkg); 2391 threadInfo[nApics].pkgId = threadInfo[nApics].apicId >> widthCT; 2392 2393 int widthC = __kmp_cpuid_mask_width(threadInfo[nApics].maxCoresPerPkg); 2394 int widthT = widthCT - widthC; 2395 if (widthT < 0) { 2396 // I've never seen this one happen, but I suppose it could, if the cpuid 2397 // instruction on a chip was really screwed up. Make sure to restore the 2398 // affinity mask before the tail call. 2399 __kmp_free(threadInfo); 2400 *msg_id = kmp_i18n_str_InvalidCpuidInfo; 2401 return false; 2402 } 2403 2404 int maskC = (1 << widthC) - 1; 2405 threadInfo[nApics].coreId = (threadInfo[nApics].apicId >> widthT) & maskC; 2406 2407 int maskT = (1 << widthT) - 1; 2408 threadInfo[nApics].threadId = threadInfo[nApics].apicId & maskT; 2409 2410 nApics++; 2411 } 2412 2413 // We've collected all the info we need. 2414 // Restore the old affinity mask for this thread. 2415 previous_affinity.restore(); 2416 2417 // Sort the threadInfo table by physical Id. 2418 qsort(threadInfo, nApics, sizeof(*threadInfo), 2419 __kmp_affinity_cmp_apicThreadInfo_phys_id); 2420 2421 // The table is now sorted by pkgId / coreId / threadId, but we really don't 2422 // know the radix of any of the fields. pkgId's may be sparsely assigned among 2423 // the chips on a system. Although coreId's are usually assigned 2424 // [0 .. coresPerPkg-1] and threadId's are usually assigned 2425 // [0..threadsPerCore-1], we don't want to make any such assumptions. 2426 // 2427 // For that matter, we don't know what coresPerPkg and threadsPerCore (or the 2428 // total # packages) are at this point - we want to determine that now. We 2429 // only have an upper bound on the first two figures. 2430 // 2431 // We also perform a consistency check at this point: the values returned by 2432 // the cpuid instruction for any thread bound to a given package had better 2433 // return the same info for maxThreadsPerPkg and maxCoresPerPkg. 2434 nPackages = 1; 2435 nCoresPerPkg = 1; 2436 __kmp_nThreadsPerCore = 1; 2437 unsigned nCores = 1; 2438 2439 unsigned pkgCt = 1; // to determine radii 2440 unsigned lastPkgId = threadInfo[0].pkgId; 2441 unsigned coreCt = 1; 2442 unsigned lastCoreId = threadInfo[0].coreId; 2443 unsigned threadCt = 1; 2444 unsigned lastThreadId = threadInfo[0].threadId; 2445 2446 // intra-pkg consist checks 2447 unsigned prevMaxCoresPerPkg = threadInfo[0].maxCoresPerPkg; 2448 unsigned prevMaxThreadsPerPkg = threadInfo[0].maxThreadsPerPkg; 2449 2450 for (i = 1; i < nApics; i++) { 2451 if (threadInfo[i].pkgId != lastPkgId) { 2452 nCores++; 2453 pkgCt++; 2454 lastPkgId = threadInfo[i].pkgId; 2455 if ((int)coreCt > nCoresPerPkg) 2456 nCoresPerPkg = coreCt; 2457 coreCt = 1; 2458 lastCoreId = threadInfo[i].coreId; 2459 if ((int)threadCt > __kmp_nThreadsPerCore) 2460 __kmp_nThreadsPerCore = threadCt; 2461 threadCt = 1; 2462 lastThreadId = threadInfo[i].threadId; 2463 2464 // This is a different package, so go on to the next iteration without 2465 // doing any consistency checks. Reset the consistency check vars, though. 2466 prevMaxCoresPerPkg = threadInfo[i].maxCoresPerPkg; 2467 prevMaxThreadsPerPkg = threadInfo[i].maxThreadsPerPkg; 2468 continue; 2469 } 2470 2471 if (threadInfo[i].coreId != lastCoreId) { 2472 nCores++; 2473 coreCt++; 2474 lastCoreId = threadInfo[i].coreId; 2475 if ((int)threadCt > __kmp_nThreadsPerCore) 2476 __kmp_nThreadsPerCore = threadCt; 2477 threadCt = 1; 2478 lastThreadId = threadInfo[i].threadId; 2479 } else if (threadInfo[i].threadId != lastThreadId) { 2480 threadCt++; 2481 lastThreadId = threadInfo[i].threadId; 2482 } else { 2483 __kmp_free(threadInfo); 2484 *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique; 2485 return false; 2486 } 2487 2488 // Check to make certain that the maxCoresPerPkg and maxThreadsPerPkg 2489 // fields agree between all the threads bounds to a given package. 2490 if ((prevMaxCoresPerPkg != threadInfo[i].maxCoresPerPkg) || 2491 (prevMaxThreadsPerPkg != threadInfo[i].maxThreadsPerPkg)) { 2492 __kmp_free(threadInfo); 2493 *msg_id = kmp_i18n_str_InconsistentCpuidInfo; 2494 return false; 2495 } 2496 } 2497 // When affinity is off, this routine will still be called to set 2498 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 2499 // Make sure all these vars are set correctly 2500 nPackages = pkgCt; 2501 if ((int)coreCt > nCoresPerPkg) 2502 nCoresPerPkg = coreCt; 2503 if ((int)threadCt > __kmp_nThreadsPerCore) 2504 __kmp_nThreadsPerCore = threadCt; 2505 __kmp_ncores = nCores; 2506 KMP_DEBUG_ASSERT(nApics == (unsigned)__kmp_avail_proc); 2507 2508 // Now that we've determined the number of packages, the number of cores per 2509 // package, and the number of threads per core, we can construct the data 2510 // structure that is to be returned. 2511 int idx = 0; 2512 int pkgLevel = 0; 2513 int coreLevel = 1; 2514 int threadLevel = 2; 2515 //(__kmp_nThreadsPerCore <= 1) ? -1 : ((coreLevel >= 0) ? 2 : 1); 2516 int depth = (pkgLevel >= 0) + (coreLevel >= 0) + (threadLevel >= 0); 2517 kmp_hw_t types[3]; 2518 if (pkgLevel >= 0) 2519 types[idx++] = KMP_HW_SOCKET; 2520 if (coreLevel >= 0) 2521 types[idx++] = KMP_HW_CORE; 2522 if (threadLevel >= 0) 2523 types[idx++] = KMP_HW_THREAD; 2524 2525 KMP_ASSERT(depth > 0); 2526 __kmp_topology = kmp_topology_t::allocate(nApics, depth, types); 2527 2528 for (i = 0; i < nApics; ++i) { 2529 idx = 0; 2530 unsigned os = threadInfo[i].osId; 2531 kmp_hw_thread_t &hw_thread = __kmp_topology->at(i); 2532 hw_thread.clear(); 2533 2534 if (pkgLevel >= 0) { 2535 hw_thread.ids[idx++] = threadInfo[i].pkgId; 2536 } 2537 if (coreLevel >= 0) { 2538 hw_thread.ids[idx++] = threadInfo[i].coreId; 2539 } 2540 if (threadLevel >= 0) { 2541 hw_thread.ids[idx++] = threadInfo[i].threadId; 2542 } 2543 hw_thread.os_id = os; 2544 hw_thread.original_idx = i; 2545 } 2546 2547 __kmp_free(threadInfo); 2548 __kmp_topology->sort_ids(); 2549 if (!__kmp_topology->check_ids()) { 2550 kmp_topology_t::deallocate(__kmp_topology); 2551 __kmp_topology = nullptr; 2552 *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique; 2553 return false; 2554 } 2555 return true; 2556 } 2557 2558 // Hybrid cpu detection using CPUID.1A 2559 // Thread should be pinned to processor already 2560 static void __kmp_get_hybrid_info(kmp_hw_core_type_t *type, int *efficiency, 2561 unsigned *native_model_id) { 2562 kmp_cpuid buf; 2563 __kmp_x86_cpuid(0x1a, 0, &buf); 2564 *type = (kmp_hw_core_type_t)__kmp_extract_bits<24, 31>(buf.eax); 2565 switch (*type) { 2566 case KMP_HW_CORE_TYPE_ATOM: 2567 *efficiency = 0; 2568 break; 2569 case KMP_HW_CORE_TYPE_CORE: 2570 *efficiency = 1; 2571 break; 2572 default: 2573 *efficiency = 0; 2574 } 2575 *native_model_id = __kmp_extract_bits<0, 23>(buf.eax); 2576 } 2577 2578 // Intel(R) microarchitecture code name Nehalem, Dunnington and later 2579 // architectures support a newer interface for specifying the x2APIC Ids, 2580 // based on CPUID.B or CPUID.1F 2581 /* 2582 * CPUID.B or 1F, Input ECX (sub leaf # aka level number) 2583 Bits Bits Bits Bits 2584 31-16 15-8 7-4 4-0 2585 ---+-----------+--------------+-------------+-----------------+ 2586 EAX| reserved | reserved | reserved | Bits to Shift | 2587 ---+-----------|--------------+-------------+-----------------| 2588 EBX| reserved | Num logical processors at level (16 bits) | 2589 ---+-----------|--------------+-------------------------------| 2590 ECX| reserved | Level Type | Level Number (8 bits) | 2591 ---+-----------+--------------+-------------------------------| 2592 EDX| X2APIC ID (32 bits) | 2593 ---+----------------------------------------------------------+ 2594 */ 2595 2596 enum { 2597 INTEL_LEVEL_TYPE_INVALID = 0, // Package level 2598 INTEL_LEVEL_TYPE_SMT = 1, 2599 INTEL_LEVEL_TYPE_CORE = 2, 2600 INTEL_LEVEL_TYPE_MODULE = 3, 2601 INTEL_LEVEL_TYPE_TILE = 4, 2602 INTEL_LEVEL_TYPE_DIE = 5, 2603 INTEL_LEVEL_TYPE_LAST = 6, 2604 }; 2605 KMP_BUILD_ASSERT(INTEL_LEVEL_TYPE_LAST < sizeof(unsigned) * CHAR_BIT); 2606 #define KMP_LEAF_1F_KNOWN_LEVELS ((1u << INTEL_LEVEL_TYPE_LAST) - 1u) 2607 2608 static kmp_hw_t __kmp_intel_type_2_topology_type(int intel_type) { 2609 switch (intel_type) { 2610 case INTEL_LEVEL_TYPE_INVALID: 2611 return KMP_HW_SOCKET; 2612 case INTEL_LEVEL_TYPE_SMT: 2613 return KMP_HW_THREAD; 2614 case INTEL_LEVEL_TYPE_CORE: 2615 return KMP_HW_CORE; 2616 case INTEL_LEVEL_TYPE_TILE: 2617 return KMP_HW_TILE; 2618 case INTEL_LEVEL_TYPE_MODULE: 2619 return KMP_HW_MODULE; 2620 case INTEL_LEVEL_TYPE_DIE: 2621 return KMP_HW_DIE; 2622 } 2623 return KMP_HW_UNKNOWN; 2624 } 2625 2626 static int __kmp_topology_type_2_intel_type(kmp_hw_t type) { 2627 switch (type) { 2628 case KMP_HW_SOCKET: 2629 return INTEL_LEVEL_TYPE_INVALID; 2630 case KMP_HW_THREAD: 2631 return INTEL_LEVEL_TYPE_SMT; 2632 case KMP_HW_CORE: 2633 return INTEL_LEVEL_TYPE_CORE; 2634 case KMP_HW_TILE: 2635 return INTEL_LEVEL_TYPE_TILE; 2636 case KMP_HW_MODULE: 2637 return INTEL_LEVEL_TYPE_MODULE; 2638 case KMP_HW_DIE: 2639 return INTEL_LEVEL_TYPE_DIE; 2640 default: 2641 return INTEL_LEVEL_TYPE_INVALID; 2642 } 2643 } 2644 2645 struct cpuid_level_info_t { 2646 unsigned level_type, mask, mask_width, nitems, cache_mask; 2647 }; 2648 2649 class cpuid_topo_desc_t { 2650 unsigned desc = 0; 2651 2652 public: 2653 void clear() { desc = 0; } 2654 bool contains(int intel_type) const { 2655 KMP_DEBUG_ASSERT(intel_type >= 0 && intel_type < INTEL_LEVEL_TYPE_LAST); 2656 if ((1u << intel_type) & desc) 2657 return true; 2658 return false; 2659 } 2660 bool contains_topology_type(kmp_hw_t type) const { 2661 KMP_DEBUG_ASSERT(type >= 0 && type < KMP_HW_LAST); 2662 int intel_type = __kmp_topology_type_2_intel_type(type); 2663 return contains(intel_type); 2664 } 2665 bool contains(cpuid_topo_desc_t rhs) const { 2666 return ((desc | rhs.desc) == desc); 2667 } 2668 void add(int intel_type) { desc |= (1u << intel_type); } 2669 void add(cpuid_topo_desc_t rhs) { desc |= rhs.desc; } 2670 }; 2671 2672 struct cpuid_proc_info_t { 2673 // Topology info 2674 int os_id; 2675 unsigned apic_id; 2676 unsigned depth; 2677 // Hybrid info 2678 unsigned native_model_id; 2679 int efficiency; 2680 kmp_hw_core_type_t type; 2681 cpuid_topo_desc_t description; 2682 2683 cpuid_level_info_t levels[INTEL_LEVEL_TYPE_LAST]; 2684 }; 2685 2686 // This function takes the topology leaf, an info pointer to store the levels 2687 // detected, and writable descriptors for the total topology. 2688 // Returns whether total types, depth, or description were modified. 2689 static bool __kmp_x2apicid_get_levels(int leaf, cpuid_proc_info_t *info, 2690 kmp_hw_t total_types[KMP_HW_LAST], 2691 int *total_depth, 2692 cpuid_topo_desc_t *total_description) { 2693 unsigned level, levels_index; 2694 unsigned level_type, mask_width, nitems; 2695 kmp_cpuid buf; 2696 cpuid_level_info_t(&levels)[INTEL_LEVEL_TYPE_LAST] = info->levels; 2697 bool retval = false; 2698 2699 // New algorithm has known topology layers act as highest unknown topology 2700 // layers when unknown topology layers exist. 2701 // e.g., Suppose layers were SMT <X> CORE <Y> <Z> PACKAGE, where <X> <Y> <Z> 2702 // are unknown topology layers, Then SMT will take the characteristics of 2703 // (SMT x <X>) and CORE will take the characteristics of (CORE x <Y> x <Z>). 2704 // This eliminates unknown portions of the topology while still keeping the 2705 // correct structure. 2706 level = levels_index = 0; 2707 do { 2708 __kmp_x86_cpuid(leaf, level, &buf); 2709 level_type = __kmp_extract_bits<8, 15>(buf.ecx); 2710 mask_width = __kmp_extract_bits<0, 4>(buf.eax); 2711 nitems = __kmp_extract_bits<0, 15>(buf.ebx); 2712 if (level_type != INTEL_LEVEL_TYPE_INVALID && nitems == 0) { 2713 info->depth = 0; 2714 return retval; 2715 } 2716 2717 if (KMP_LEAF_1F_KNOWN_LEVELS & (1u << level_type)) { 2718 // Add a new level to the topology 2719 KMP_ASSERT(levels_index < INTEL_LEVEL_TYPE_LAST); 2720 levels[levels_index].level_type = level_type; 2721 levels[levels_index].mask_width = mask_width; 2722 levels[levels_index].nitems = nitems; 2723 levels_index++; 2724 } else { 2725 // If it is an unknown level, then logically move the previous layer up 2726 if (levels_index > 0) { 2727 levels[levels_index - 1].mask_width = mask_width; 2728 levels[levels_index - 1].nitems = nitems; 2729 } 2730 } 2731 level++; 2732 } while (level_type != INTEL_LEVEL_TYPE_INVALID); 2733 KMP_ASSERT(levels_index <= INTEL_LEVEL_TYPE_LAST); 2734 info->description.clear(); 2735 info->depth = levels_index; 2736 2737 // If types, depth, and total_description are uninitialized, 2738 // then initialize them now 2739 if (*total_depth == 0) { 2740 *total_depth = info->depth; 2741 total_description->clear(); 2742 for (int i = *total_depth - 1, j = 0; i >= 0; --i, ++j) { 2743 total_types[j] = 2744 __kmp_intel_type_2_topology_type(info->levels[i].level_type); 2745 total_description->add(info->levels[i].level_type); 2746 } 2747 retval = true; 2748 } 2749 2750 // Ensure the INTEL_LEVEL_TYPE_INVALID (Socket) layer isn't first 2751 if (levels_index == 0 || levels[0].level_type == INTEL_LEVEL_TYPE_INVALID) 2752 return 0; 2753 2754 // Set the masks to & with apicid 2755 for (unsigned i = 0; i < levels_index; ++i) { 2756 if (levels[i].level_type != INTEL_LEVEL_TYPE_INVALID) { 2757 levels[i].mask = ~((-1) << levels[i].mask_width); 2758 levels[i].cache_mask = (-1) << levels[i].mask_width; 2759 for (unsigned j = 0; j < i; ++j) 2760 levels[i].mask ^= levels[j].mask; 2761 } else { 2762 KMP_DEBUG_ASSERT(i > 0); 2763 levels[i].mask = (-1) << levels[i - 1].mask_width; 2764 levels[i].cache_mask = 0; 2765 } 2766 info->description.add(info->levels[i].level_type); 2767 } 2768 2769 // If this processor has level type not on other processors, then make 2770 // sure to include it in total types, depth, and description. 2771 // One assumption here is that the first type, i.e. socket, is known. 2772 // Another assumption is that types array is always large enough to fit any 2773 // new layers since its length is KMP_HW_LAST. 2774 if (!total_description->contains(info->description)) { 2775 for (int i = info->depth - 1, j = 0; i >= 0; --i, ++j) { 2776 // If this level is known already, then skip it. 2777 if (total_description->contains(levels[i].level_type)) 2778 continue; 2779 // Unknown level, insert before last known level 2780 kmp_hw_t curr_type = 2781 __kmp_intel_type_2_topology_type(levels[i].level_type); 2782 KMP_ASSERT(j != 0 && "Bad APIC Id information"); 2783 // Move over all known levels to make room for new level 2784 for (int k = info->depth - 1; k >= j; --k) { 2785 KMP_DEBUG_ASSERT(k + 1 < KMP_HW_LAST); 2786 total_types[k + 1] = total_types[k]; 2787 } 2788 // Insert new level 2789 total_types[j] = curr_type; 2790 (*total_depth)++; 2791 } 2792 total_description->add(info->description); 2793 retval = true; 2794 } 2795 return retval; 2796 } 2797 2798 static bool __kmp_affinity_create_x2apicid_map(kmp_i18n_id_t *const msg_id) { 2799 2800 kmp_hw_t types[INTEL_LEVEL_TYPE_LAST]; 2801 kmp_cpuid buf; 2802 int topology_leaf, highest_leaf; 2803 int num_leaves; 2804 int depth = 0; 2805 cpuid_topo_desc_t total_description; 2806 static int leaves[] = {0, 0}; 2807 2808 // If affinity is disabled, __kmp_avail_proc may be zero 2809 int ninfos = (__kmp_avail_proc > 0 ? __kmp_avail_proc : 1); 2810 cpuid_proc_info_t *proc_info = (cpuid_proc_info_t *)__kmp_allocate( 2811 (sizeof(cpuid_proc_info_t) + sizeof(cpuid_cache_info_t)) * ninfos); 2812 cpuid_cache_info_t *cache_info = (cpuid_cache_info_t *)(proc_info + ninfos); 2813 2814 kmp_i18n_id_t leaf_message_id; 2815 2816 *msg_id = kmp_i18n_null; 2817 if (__kmp_affinity.flags.verbose) { 2818 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC)); 2819 } 2820 2821 // Get the highest cpuid leaf supported 2822 __kmp_x86_cpuid(0, 0, &buf); 2823 highest_leaf = buf.eax; 2824 2825 // If a specific topology method was requested, only allow that specific leaf 2826 // otherwise, try both leaves 31 and 11 in that order 2827 num_leaves = 0; 2828 if (__kmp_affinity_top_method == affinity_top_method_x2apicid) { 2829 num_leaves = 1; 2830 leaves[0] = 11; 2831 leaf_message_id = kmp_i18n_str_NoLeaf11Support; 2832 } else if (__kmp_affinity_top_method == affinity_top_method_x2apicid_1f) { 2833 num_leaves = 1; 2834 leaves[0] = 31; 2835 leaf_message_id = kmp_i18n_str_NoLeaf31Support; 2836 } else { 2837 num_leaves = 2; 2838 leaves[0] = 31; 2839 leaves[1] = 11; 2840 leaf_message_id = kmp_i18n_str_NoLeaf11Support; 2841 } 2842 2843 // Check to see if cpuid leaf 31 or 11 is supported. 2844 __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1; 2845 topology_leaf = -1; 2846 for (int i = 0; i < num_leaves; ++i) { 2847 int leaf = leaves[i]; 2848 if (highest_leaf < leaf) 2849 continue; 2850 __kmp_x86_cpuid(leaf, 0, &buf); 2851 if (buf.ebx == 0) 2852 continue; 2853 topology_leaf = leaf; 2854 __kmp_x2apicid_get_levels(leaf, &proc_info[0], types, &depth, 2855 &total_description); 2856 if (depth == 0) 2857 continue; 2858 break; 2859 } 2860 if (topology_leaf == -1 || depth == 0) { 2861 *msg_id = leaf_message_id; 2862 __kmp_free(proc_info); 2863 return false; 2864 } 2865 KMP_ASSERT(depth <= INTEL_LEVEL_TYPE_LAST); 2866 2867 // The algorithm used starts by setting the affinity to each available thread 2868 // and retrieving info from the cpuid instruction, so if we are not capable of 2869 // calling __kmp_get_system_affinity() and __kmp_get_system_affinity(), then 2870 // we need to do something else - use the defaults that we calculated from 2871 // issuing cpuid without binding to each proc. 2872 if (!KMP_AFFINITY_CAPABLE()) { 2873 // Hack to try and infer the machine topology using only the data 2874 // available from cpuid on the current thread, and __kmp_xproc. 2875 KMP_ASSERT(__kmp_affinity.type == affinity_none); 2876 for (int i = 0; i < depth; ++i) { 2877 if (proc_info[0].levels[i].level_type == INTEL_LEVEL_TYPE_SMT) { 2878 __kmp_nThreadsPerCore = proc_info[0].levels[i].nitems; 2879 } else if (proc_info[0].levels[i].level_type == INTEL_LEVEL_TYPE_CORE) { 2880 nCoresPerPkg = proc_info[0].levels[i].nitems; 2881 } 2882 } 2883 __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore; 2884 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; 2885 __kmp_free(proc_info); 2886 return true; 2887 } 2888 2889 // From here on, we can assume that it is safe to call 2890 // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if 2891 // __kmp_affinity.type = affinity_none. 2892 2893 // Save the affinity mask for the current thread. 2894 kmp_affinity_raii_t previous_affinity; 2895 2896 // Run through each of the available contexts, binding the current thread 2897 // to it, and obtaining the pertinent information using the cpuid instr. 2898 unsigned int proc; 2899 int hw_thread_index = 0; 2900 bool uniform_caches = true; 2901 2902 KMP_CPU_SET_ITERATE(proc, __kmp_affin_fullMask) { 2903 // Skip this proc if it is not included in the machine model. 2904 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 2905 continue; 2906 } 2907 KMP_DEBUG_ASSERT(hw_thread_index < __kmp_avail_proc); 2908 2909 // Gather topology information 2910 __kmp_affinity_dispatch->bind_thread(proc); 2911 __kmp_x86_cpuid(topology_leaf, 0, &buf); 2912 proc_info[hw_thread_index].os_id = proc; 2913 proc_info[hw_thread_index].apic_id = buf.edx; 2914 __kmp_x2apicid_get_levels(topology_leaf, &proc_info[hw_thread_index], types, 2915 &depth, &total_description); 2916 if (proc_info[hw_thread_index].depth == 0) { 2917 *msg_id = kmp_i18n_str_InvalidCpuidInfo; 2918 __kmp_free(proc_info); 2919 return false; 2920 } 2921 // Gather cache information and insert afterwards 2922 cache_info[hw_thread_index].get_leaf4_levels(); 2923 if (uniform_caches && hw_thread_index > 0) 2924 if (cache_info[0] != cache_info[hw_thread_index]) 2925 uniform_caches = false; 2926 // Hybrid information 2927 if (__kmp_is_hybrid_cpu() && highest_leaf >= 0x1a) { 2928 __kmp_get_hybrid_info(&proc_info[hw_thread_index].type, 2929 &proc_info[hw_thread_index].efficiency, 2930 &proc_info[hw_thread_index].native_model_id); 2931 } 2932 hw_thread_index++; 2933 } 2934 KMP_ASSERT(hw_thread_index > 0); 2935 previous_affinity.restore(); 2936 2937 // Allocate the data structure to be returned. 2938 __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types); 2939 2940 // Create topology Ids and hybrid types in __kmp_topology 2941 for (int i = 0; i < __kmp_topology->get_num_hw_threads(); ++i) { 2942 kmp_hw_thread_t &hw_thread = __kmp_topology->at(i); 2943 hw_thread.clear(); 2944 hw_thread.os_id = proc_info[i].os_id; 2945 hw_thread.original_idx = i; 2946 unsigned apic_id = proc_info[i].apic_id; 2947 // Put in topology information 2948 for (int j = 0, idx = depth - 1; j < depth; ++j, --idx) { 2949 if (!(proc_info[i].description.contains_topology_type( 2950 __kmp_topology->get_type(j)))) { 2951 hw_thread.ids[idx] = kmp_hw_thread_t::UNKNOWN_ID; 2952 } else { 2953 hw_thread.ids[idx] = apic_id & proc_info[i].levels[j].mask; 2954 if (j > 0) { 2955 hw_thread.ids[idx] >>= proc_info[i].levels[j - 1].mask_width; 2956 } 2957 } 2958 } 2959 hw_thread.attrs.set_core_type(proc_info[i].type); 2960 hw_thread.attrs.set_core_eff(proc_info[i].efficiency); 2961 } 2962 2963 __kmp_topology->sort_ids(); 2964 2965 // Change Ids to logical Ids 2966 for (int j = 0; j < depth - 1; ++j) { 2967 int new_id = 0; 2968 int prev_id = __kmp_topology->at(0).ids[j]; 2969 int curr_id = __kmp_topology->at(0).ids[j + 1]; 2970 __kmp_topology->at(0).ids[j + 1] = new_id; 2971 for (int i = 1; i < __kmp_topology->get_num_hw_threads(); ++i) { 2972 kmp_hw_thread_t &hw_thread = __kmp_topology->at(i); 2973 if (hw_thread.ids[j] == prev_id && hw_thread.ids[j + 1] == curr_id) { 2974 hw_thread.ids[j + 1] = new_id; 2975 } else if (hw_thread.ids[j] == prev_id && 2976 hw_thread.ids[j + 1] != curr_id) { 2977 curr_id = hw_thread.ids[j + 1]; 2978 hw_thread.ids[j + 1] = ++new_id; 2979 } else { 2980 prev_id = hw_thread.ids[j]; 2981 curr_id = hw_thread.ids[j + 1]; 2982 hw_thread.ids[j + 1] = ++new_id; 2983 } 2984 } 2985 } 2986 2987 // First check for easy cache placement. This occurs when caches are 2988 // equivalent to a layer in the CPUID leaf 0xb or 0x1f topology. 2989 if (uniform_caches) { 2990 for (size_t i = 0; i < cache_info[0].get_depth(); ++i) { 2991 unsigned cache_mask = cache_info[0][i].mask; 2992 unsigned cache_level = cache_info[0][i].level; 2993 KMP_ASSERT(cache_level <= cpuid_cache_info_t::MAX_CACHE_LEVEL); 2994 kmp_hw_t cache_type = cpuid_cache_info_t::get_topology_type(cache_level); 2995 __kmp_topology->set_equivalent_type(cache_type, cache_type); 2996 for (int j = 0; j < depth; ++j) { 2997 unsigned hw_cache_mask = proc_info[0].levels[j].cache_mask; 2998 if (hw_cache_mask == cache_mask && j < depth - 1) { 2999 kmp_hw_t type = __kmp_intel_type_2_topology_type( 3000 proc_info[0].levels[j + 1].level_type); 3001 __kmp_topology->set_equivalent_type(cache_type, type); 3002 } 3003 } 3004 } 3005 } else { 3006 // If caches are non-uniform, then record which caches exist. 3007 for (int i = 0; i < __kmp_topology->get_num_hw_threads(); ++i) { 3008 for (size_t j = 0; j < cache_info[i].get_depth(); ++j) { 3009 unsigned cache_level = cache_info[i][j].level; 3010 kmp_hw_t cache_type = 3011 cpuid_cache_info_t::get_topology_type(cache_level); 3012 if (__kmp_topology->get_equivalent_type(cache_type) == KMP_HW_UNKNOWN) 3013 __kmp_topology->set_equivalent_type(cache_type, cache_type); 3014 } 3015 } 3016 } 3017 3018 // See if any cache level needs to be added manually through cache Ids 3019 bool unresolved_cache_levels = false; 3020 for (unsigned level = 1; level <= cpuid_cache_info_t::MAX_CACHE_LEVEL; 3021 ++level) { 3022 kmp_hw_t cache_type = cpuid_cache_info_t::get_topology_type(level); 3023 // This also filters out caches which may not be in the topology 3024 // since the equivalent type might be KMP_HW_UNKNOWN. 3025 if (__kmp_topology->get_equivalent_type(cache_type) == cache_type) { 3026 unresolved_cache_levels = true; 3027 break; 3028 } 3029 } 3030 3031 // Insert unresolved cache layers into machine topology using cache Ids 3032 if (unresolved_cache_levels) { 3033 int num_hw_threads = __kmp_topology->get_num_hw_threads(); 3034 int *ids = (int *)__kmp_allocate(sizeof(int) * num_hw_threads); 3035 for (unsigned l = 1; l <= cpuid_cache_info_t::MAX_CACHE_LEVEL; ++l) { 3036 kmp_hw_t cache_type = cpuid_cache_info_t::get_topology_type(l); 3037 if (__kmp_topology->get_equivalent_type(cache_type) != cache_type) 3038 continue; 3039 for (int i = 0; i < num_hw_threads; ++i) { 3040 int original_idx = __kmp_topology->at(i).original_idx; 3041 ids[i] = kmp_hw_thread_t::UNKNOWN_ID; 3042 const cpuid_cache_info_t::info_t &info = 3043 cache_info[original_idx].get_level(l); 3044 // if cache level not in topology for this processor, then skip 3045 if (info.level == 0) 3046 continue; 3047 ids[i] = info.mask & proc_info[original_idx].apic_id; 3048 } 3049 __kmp_topology->insert_layer(cache_type, ids); 3050 } 3051 } 3052 3053 if (!__kmp_topology->check_ids()) { 3054 kmp_topology_t::deallocate(__kmp_topology); 3055 __kmp_topology = nullptr; 3056 *msg_id = kmp_i18n_str_x2ApicIDsNotUnique; 3057 __kmp_free(proc_info); 3058 return false; 3059 } 3060 __kmp_free(proc_info); 3061 return true; 3062 } 3063 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 3064 3065 #define osIdIndex 0 3066 #define threadIdIndex 1 3067 #define coreIdIndex 2 3068 #define pkgIdIndex 3 3069 #define nodeIdIndex 4 3070 3071 typedef unsigned *ProcCpuInfo; 3072 static unsigned maxIndex = pkgIdIndex; 3073 3074 static int __kmp_affinity_cmp_ProcCpuInfo_phys_id(const void *a, 3075 const void *b) { 3076 unsigned i; 3077 const unsigned *aa = *(unsigned *const *)a; 3078 const unsigned *bb = *(unsigned *const *)b; 3079 for (i = maxIndex;; i--) { 3080 if (aa[i] < bb[i]) 3081 return -1; 3082 if (aa[i] > bb[i]) 3083 return 1; 3084 if (i == osIdIndex) 3085 break; 3086 } 3087 return 0; 3088 } 3089 3090 #if KMP_USE_HIER_SCHED 3091 // Set the array sizes for the hierarchy layers 3092 static void __kmp_dispatch_set_hierarchy_values() { 3093 // Set the maximum number of L1's to number of cores 3094 // Set the maximum number of L2's to either number of cores / 2 for 3095 // Intel(R) Xeon Phi(TM) coprocessor formally codenamed Knights Landing 3096 // Or the number of cores for Intel(R) Xeon(R) processors 3097 // Set the maximum number of NUMA nodes and L3's to number of packages 3098 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1] = 3099 nPackages * nCoresPerPkg * __kmp_nThreadsPerCore; 3100 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L1 + 1] = __kmp_ncores; 3101 #if KMP_ARCH_X86_64 && \ 3102 (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD || KMP_OS_DRAGONFLY || \ 3103 KMP_OS_WINDOWS) && \ 3104 KMP_MIC_SUPPORTED 3105 if (__kmp_mic_type >= mic3) 3106 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores / 2; 3107 else 3108 #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) 3109 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores; 3110 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L3 + 1] = nPackages; 3111 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_NUMA + 1] = nPackages; 3112 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_LOOP + 1] = 1; 3113 // Set the number of threads per unit 3114 // Number of hardware threads per L1/L2/L3/NUMA/LOOP 3115 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_THREAD + 1] = 1; 3116 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L1 + 1] = 3117 __kmp_nThreadsPerCore; 3118 #if KMP_ARCH_X86_64 && \ 3119 (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD || KMP_OS_DRAGONFLY || \ 3120 KMP_OS_WINDOWS) && \ 3121 KMP_MIC_SUPPORTED 3122 if (__kmp_mic_type >= mic3) 3123 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] = 3124 2 * __kmp_nThreadsPerCore; 3125 else 3126 #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) 3127 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] = 3128 __kmp_nThreadsPerCore; 3129 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L3 + 1] = 3130 nCoresPerPkg * __kmp_nThreadsPerCore; 3131 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_NUMA + 1] = 3132 nCoresPerPkg * __kmp_nThreadsPerCore; 3133 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_LOOP + 1] = 3134 nPackages * nCoresPerPkg * __kmp_nThreadsPerCore; 3135 } 3136 3137 // Return the index into the hierarchy for this tid and layer type (L1, L2, etc) 3138 // i.e., this thread's L1 or this thread's L2, etc. 3139 int __kmp_dispatch_get_index(int tid, kmp_hier_layer_e type) { 3140 int index = type + 1; 3141 int num_hw_threads = __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1]; 3142 KMP_DEBUG_ASSERT(type != kmp_hier_layer_e::LAYER_LAST); 3143 if (type == kmp_hier_layer_e::LAYER_THREAD) 3144 return tid; 3145 else if (type == kmp_hier_layer_e::LAYER_LOOP) 3146 return 0; 3147 KMP_DEBUG_ASSERT(__kmp_hier_max_units[index] != 0); 3148 if (tid >= num_hw_threads) 3149 tid = tid % num_hw_threads; 3150 return (tid / __kmp_hier_threads_per[index]) % __kmp_hier_max_units[index]; 3151 } 3152 3153 // Return the number of t1's per t2 3154 int __kmp_dispatch_get_t1_per_t2(kmp_hier_layer_e t1, kmp_hier_layer_e t2) { 3155 int i1 = t1 + 1; 3156 int i2 = t2 + 1; 3157 KMP_DEBUG_ASSERT(i1 <= i2); 3158 KMP_DEBUG_ASSERT(t1 != kmp_hier_layer_e::LAYER_LAST); 3159 KMP_DEBUG_ASSERT(t2 != kmp_hier_layer_e::LAYER_LAST); 3160 KMP_DEBUG_ASSERT(__kmp_hier_threads_per[i1] != 0); 3161 // (nthreads/t2) / (nthreads/t1) = t1 / t2 3162 return __kmp_hier_threads_per[i2] / __kmp_hier_threads_per[i1]; 3163 } 3164 #endif // KMP_USE_HIER_SCHED 3165 3166 static inline const char *__kmp_cpuinfo_get_filename() { 3167 const char *filename; 3168 if (__kmp_cpuinfo_file != nullptr) 3169 filename = __kmp_cpuinfo_file; 3170 else 3171 filename = "/proc/cpuinfo"; 3172 return filename; 3173 } 3174 3175 static inline const char *__kmp_cpuinfo_get_envvar() { 3176 const char *envvar = nullptr; 3177 if (__kmp_cpuinfo_file != nullptr) 3178 envvar = "KMP_CPUINFO_FILE"; 3179 return envvar; 3180 } 3181 3182 static bool __kmp_package_id_from_core_siblings_list(unsigned **threadInfo, 3183 unsigned num_avail, 3184 unsigned idx) { 3185 if (!KMP_AFFINITY_CAPABLE()) 3186 return false; 3187 3188 char path[256]; 3189 KMP_SNPRINTF(path, sizeof(path), 3190 "/sys/devices/system/cpu/cpu%u/topology/core_siblings_list", 3191 threadInfo[idx][osIdIndex]); 3192 kmp_affin_mask_t *siblings = __kmp_parse_cpu_list(path); 3193 for (unsigned i = 0; i < num_avail; ++i) { 3194 unsigned cpu_id = threadInfo[i][osIdIndex]; 3195 KMP_ASSERT(cpu_id < __kmp_affin_mask_size * CHAR_BIT); 3196 if (!KMP_CPU_ISSET(cpu_id, siblings)) 3197 continue; 3198 if (threadInfo[i][pkgIdIndex] == UINT_MAX) { 3199 // Arbitrarily pick the first index we encounter, it only matters that 3200 // the value is the same for all siblings. 3201 threadInfo[i][pkgIdIndex] = idx; 3202 } else if (threadInfo[i][pkgIdIndex] != idx) { 3203 // Contradictory sibling lists. 3204 KMP_CPU_FREE(siblings); 3205 return false; 3206 } 3207 } 3208 KMP_ASSERT(threadInfo[idx][pkgIdIndex] != UINT_MAX); 3209 KMP_CPU_FREE(siblings); 3210 return true; 3211 } 3212 3213 // Parse /proc/cpuinfo (or an alternate file in the same format) to obtain the 3214 // affinity map. On AIX, the map is obtained through system SRAD (Scheduler 3215 // Resource Allocation Domain). 3216 static bool __kmp_affinity_create_cpuinfo_map(int *line, 3217 kmp_i18n_id_t *const msg_id) { 3218 *msg_id = kmp_i18n_null; 3219 3220 #if KMP_OS_AIX 3221 unsigned num_records = __kmp_xproc; 3222 #else 3223 const char *filename = __kmp_cpuinfo_get_filename(); 3224 const char *envvar = __kmp_cpuinfo_get_envvar(); 3225 3226 if (__kmp_affinity.flags.verbose) { 3227 KMP_INFORM(AffParseFilename, "KMP_AFFINITY", filename); 3228 } 3229 3230 kmp_safe_raii_file_t f(filename, "r", envvar); 3231 3232 // Scan of the file, and count the number of "processor" (osId) fields, 3233 // and find the highest value of <n> for a node_<n> field. 3234 char buf[256]; 3235 unsigned num_records = 0; 3236 while (!feof(f)) { 3237 buf[sizeof(buf) - 1] = 1; 3238 if (!fgets(buf, sizeof(buf), f)) { 3239 // Read errors presumably because of EOF 3240 break; 3241 } 3242 3243 char s1[] = "processor"; 3244 if (strncmp(buf, s1, sizeof(s1) - 1) == 0) { 3245 num_records++; 3246 continue; 3247 } 3248 3249 // FIXME - this will match "node_<n> <garbage>" 3250 unsigned level; 3251 if (KMP_SSCANF(buf, "node_%u id", &level) == 1) { 3252 // validate the input fisrt: 3253 if (level > (unsigned)__kmp_xproc) { // level is too big 3254 level = __kmp_xproc; 3255 } 3256 if (nodeIdIndex + level >= maxIndex) { 3257 maxIndex = nodeIdIndex + level; 3258 } 3259 continue; 3260 } 3261 } 3262 3263 // Check for empty file / no valid processor records, or too many. The number 3264 // of records can't exceed the number of valid bits in the affinity mask. 3265 if (num_records == 0) { 3266 *msg_id = kmp_i18n_str_NoProcRecords; 3267 return false; 3268 } 3269 if (num_records > (unsigned)__kmp_xproc) { 3270 *msg_id = kmp_i18n_str_TooManyProcRecords; 3271 return false; 3272 } 3273 3274 // Set the file pointer back to the beginning, so that we can scan the file 3275 // again, this time performing a full parse of the data. Allocate a vector of 3276 // ProcCpuInfo object, where we will place the data. Adding an extra element 3277 // at the end allows us to remove a lot of extra checks for termination 3278 // conditions. 3279 if (fseek(f, 0, SEEK_SET) != 0) { 3280 *msg_id = kmp_i18n_str_CantRewindCpuinfo; 3281 return false; 3282 } 3283 #endif // KMP_OS_AIX 3284 3285 // Allocate the array of records to store the proc info in. The dummy 3286 // element at the end makes the logic in filling them out easier to code. 3287 unsigned **threadInfo = 3288 (unsigned **)__kmp_allocate((num_records + 1) * sizeof(unsigned *)); 3289 unsigned i; 3290 for (i = 0; i <= num_records; i++) { 3291 threadInfo[i] = 3292 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 3293 } 3294 3295 #define CLEANUP_THREAD_INFO \ 3296 for (i = 0; i <= num_records; i++) { \ 3297 __kmp_free(threadInfo[i]); \ 3298 } \ 3299 __kmp_free(threadInfo); 3300 3301 // A value of UINT_MAX means that we didn't find the field 3302 unsigned __index; 3303 3304 #define INIT_PROC_INFO(p) \ 3305 for (__index = 0; __index <= maxIndex; __index++) { \ 3306 (p)[__index] = UINT_MAX; \ 3307 } 3308 3309 for (i = 0; i <= num_records; i++) { 3310 INIT_PROC_INFO(threadInfo[i]); 3311 } 3312 3313 #if KMP_OS_AIX 3314 int smt_threads; 3315 lpar_info_format1_t cpuinfo; 3316 unsigned num_avail = __kmp_xproc; 3317 3318 if (__kmp_affinity.flags.verbose) 3319 KMP_INFORM(AffParseFilename, "KMP_AFFINITY", "system info for topology"); 3320 3321 // Get the number of SMT threads per core. 3322 smt_threads = syssmt(GET_NUMBER_SMT_SETS, 0, 0, NULL); 3323 3324 // Allocate a resource set containing available system resourses. 3325 rsethandle_t sys_rset = rs_alloc(RS_SYSTEM); 3326 if (sys_rset == NULL) { 3327 CLEANUP_THREAD_INFO; 3328 *msg_id = kmp_i18n_str_UnknownTopology; 3329 return false; 3330 } 3331 // Allocate a resource set for the SRAD info. 3332 rsethandle_t srad = rs_alloc(RS_EMPTY); 3333 if (srad == NULL) { 3334 rs_free(sys_rset); 3335 CLEANUP_THREAD_INFO; 3336 *msg_id = kmp_i18n_str_UnknownTopology; 3337 return false; 3338 } 3339 3340 // Get the SRAD system detail level. 3341 int sradsdl = rs_getinfo(NULL, R_SRADSDL, 0); 3342 if (sradsdl < 0) { 3343 rs_free(sys_rset); 3344 rs_free(srad); 3345 CLEANUP_THREAD_INFO; 3346 *msg_id = kmp_i18n_str_UnknownTopology; 3347 return false; 3348 } 3349 // Get the number of RADs at that SRAD SDL. 3350 int num_rads = rs_numrads(sys_rset, sradsdl, 0); 3351 if (num_rads < 0) { 3352 rs_free(sys_rset); 3353 rs_free(srad); 3354 CLEANUP_THREAD_INFO; 3355 *msg_id = kmp_i18n_str_UnknownTopology; 3356 return false; 3357 } 3358 3359 // Get the maximum number of procs that may be contained in a resource set. 3360 int max_procs = rs_getinfo(NULL, R_MAXPROCS, 0); 3361 if (max_procs < 0) { 3362 rs_free(sys_rset); 3363 rs_free(srad); 3364 CLEANUP_THREAD_INFO; 3365 *msg_id = kmp_i18n_str_UnknownTopology; 3366 return false; 3367 } 3368 3369 int cur_rad = 0; 3370 int num_set = 0; 3371 for (int srad_idx = 0; cur_rad < num_rads && srad_idx < VMI_MAXRADS; 3372 ++srad_idx) { 3373 // Check if the SRAD is available in the RSET. 3374 if (rs_getrad(sys_rset, srad, sradsdl, srad_idx, 0) < 0) 3375 continue; 3376 3377 for (int cpu = 0; cpu < max_procs; cpu++) { 3378 // Set the info for the cpu if it is in the SRAD. 3379 if (rs_op(RS_TESTRESOURCE, srad, NULL, R_PROCS, cpu)) { 3380 threadInfo[cpu][osIdIndex] = cpu; 3381 threadInfo[cpu][pkgIdIndex] = cur_rad; 3382 threadInfo[cpu][coreIdIndex] = cpu / smt_threads; 3383 ++num_set; 3384 if (num_set >= num_avail) { 3385 // Done if all available CPUs have been set. 3386 break; 3387 } 3388 } 3389 } 3390 ++cur_rad; 3391 } 3392 rs_free(sys_rset); 3393 rs_free(srad); 3394 3395 // The topology is already sorted. 3396 3397 #else // !KMP_OS_AIX 3398 unsigned num_avail = 0; 3399 *line = 0; 3400 #if KMP_ARCH_S390X 3401 bool reading_s390x_sys_info = true; 3402 #endif 3403 while (!feof(f)) { 3404 // Create an inner scoping level, so that all the goto targets at the end of 3405 // the loop appear in an outer scoping level. This avoids warnings about 3406 // jumping past an initialization to a target in the same block. 3407 { 3408 buf[sizeof(buf) - 1] = 1; 3409 bool long_line = false; 3410 if (!fgets(buf, sizeof(buf), f)) { 3411 // Read errors presumably because of EOF 3412 // If there is valid data in threadInfo[num_avail], then fake 3413 // a blank line in ensure that the last address gets parsed. 3414 bool valid = false; 3415 for (i = 0; i <= maxIndex; i++) { 3416 if (threadInfo[num_avail][i] != UINT_MAX) { 3417 valid = true; 3418 } 3419 } 3420 if (!valid) { 3421 break; 3422 } 3423 buf[0] = 0; 3424 } else if (!buf[sizeof(buf) - 1]) { 3425 // The line is longer than the buffer. Set a flag and don't 3426 // emit an error if we were going to ignore the line, anyway. 3427 long_line = true; 3428 3429 #define CHECK_LINE \ 3430 if (long_line) { \ 3431 CLEANUP_THREAD_INFO; \ 3432 *msg_id = kmp_i18n_str_LongLineCpuinfo; \ 3433 return false; \ 3434 } 3435 } 3436 (*line)++; 3437 3438 #if KMP_ARCH_LOONGARCH64 3439 // The parsing logic of /proc/cpuinfo in this function highly depends on 3440 // the blank lines between each processor info block. But on LoongArch a 3441 // blank line exists before the first processor info block (i.e. after the 3442 // "system type" line). This blank line was added because the "system 3443 // type" line is unrelated to any of the CPUs. We must skip this line so 3444 // that the original logic works on LoongArch. 3445 if (*buf == '\n' && *line == 2) 3446 continue; 3447 #endif 3448 #if KMP_ARCH_S390X 3449 // s390x /proc/cpuinfo starts with a variable number of lines containing 3450 // the overall system information. Skip them. 3451 if (reading_s390x_sys_info) { 3452 if (*buf == '\n') 3453 reading_s390x_sys_info = false; 3454 continue; 3455 } 3456 #endif 3457 3458 #if KMP_ARCH_S390X 3459 char s1[] = "cpu number"; 3460 #else 3461 char s1[] = "processor"; 3462 #endif 3463 if (strncmp(buf, s1, sizeof(s1) - 1) == 0) { 3464 CHECK_LINE; 3465 char *p = strchr(buf + sizeof(s1) - 1, ':'); 3466 unsigned val; 3467 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 3468 goto no_val; 3469 if (threadInfo[num_avail][osIdIndex] != UINT_MAX) 3470 #if KMP_ARCH_AARCH64 3471 // Handle the old AArch64 /proc/cpuinfo layout differently, 3472 // it contains all of the 'processor' entries listed in a 3473 // single 'Processor' section, therefore the normal looking 3474 // for duplicates in that section will always fail. 3475 num_avail++; 3476 #else 3477 goto dup_field; 3478 #endif 3479 threadInfo[num_avail][osIdIndex] = val; 3480 #if KMP_OS_LINUX && !(KMP_ARCH_X86 || KMP_ARCH_X86_64) 3481 char path[256]; 3482 KMP_SNPRINTF( 3483 path, sizeof(path), 3484 "/sys/devices/system/cpu/cpu%u/topology/physical_package_id", 3485 threadInfo[num_avail][osIdIndex]); 3486 __kmp_read_from_file(path, "%u", &threadInfo[num_avail][pkgIdIndex]); 3487 3488 #if KMP_ARCH_S390X 3489 // Disambiguate physical_package_id. 3490 unsigned book_id; 3491 KMP_SNPRINTF(path, sizeof(path), 3492 "/sys/devices/system/cpu/cpu%u/topology/book_id", 3493 threadInfo[num_avail][osIdIndex]); 3494 __kmp_read_from_file(path, "%u", &book_id); 3495 threadInfo[num_avail][pkgIdIndex] |= (book_id << 8); 3496 3497 unsigned drawer_id; 3498 KMP_SNPRINTF(path, sizeof(path), 3499 "/sys/devices/system/cpu/cpu%u/topology/drawer_id", 3500 threadInfo[num_avail][osIdIndex]); 3501 __kmp_read_from_file(path, "%u", &drawer_id); 3502 threadInfo[num_avail][pkgIdIndex] |= (drawer_id << 16); 3503 #endif 3504 3505 KMP_SNPRINTF(path, sizeof(path), 3506 "/sys/devices/system/cpu/cpu%u/topology/core_id", 3507 threadInfo[num_avail][osIdIndex]); 3508 __kmp_read_from_file(path, "%u", &threadInfo[num_avail][coreIdIndex]); 3509 continue; 3510 #else 3511 } 3512 char s2[] = "physical id"; 3513 if (strncmp(buf, s2, sizeof(s2) - 1) == 0) { 3514 CHECK_LINE; 3515 char *p = strchr(buf + sizeof(s2) - 1, ':'); 3516 unsigned val; 3517 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 3518 goto no_val; 3519 if (threadInfo[num_avail][pkgIdIndex] != UINT_MAX) 3520 goto dup_field; 3521 threadInfo[num_avail][pkgIdIndex] = val; 3522 continue; 3523 } 3524 char s3[] = "core id"; 3525 if (strncmp(buf, s3, sizeof(s3) - 1) == 0) { 3526 CHECK_LINE; 3527 char *p = strchr(buf + sizeof(s3) - 1, ':'); 3528 unsigned val; 3529 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 3530 goto no_val; 3531 if (threadInfo[num_avail][coreIdIndex] != UINT_MAX) 3532 goto dup_field; 3533 threadInfo[num_avail][coreIdIndex] = val; 3534 continue; 3535 #endif // KMP_OS_LINUX && USE_SYSFS_INFO 3536 } 3537 char s4[] = "thread id"; 3538 if (strncmp(buf, s4, sizeof(s4) - 1) == 0) { 3539 CHECK_LINE; 3540 char *p = strchr(buf + sizeof(s4) - 1, ':'); 3541 unsigned val; 3542 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 3543 goto no_val; 3544 if (threadInfo[num_avail][threadIdIndex] != UINT_MAX) 3545 goto dup_field; 3546 threadInfo[num_avail][threadIdIndex] = val; 3547 continue; 3548 } 3549 unsigned level; 3550 if (KMP_SSCANF(buf, "node_%u id", &level) == 1) { 3551 CHECK_LINE; 3552 char *p = strchr(buf + sizeof(s4) - 1, ':'); 3553 unsigned val; 3554 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 3555 goto no_val; 3556 // validate the input before using level: 3557 if (level > (unsigned)__kmp_xproc) { // level is too big 3558 level = __kmp_xproc; 3559 } 3560 if (threadInfo[num_avail][nodeIdIndex + level] != UINT_MAX) 3561 goto dup_field; 3562 threadInfo[num_avail][nodeIdIndex + level] = val; 3563 continue; 3564 } 3565 3566 // We didn't recognize the leading token on the line. There are lots of 3567 // leading tokens that we don't recognize - if the line isn't empty, go on 3568 // to the next line. 3569 if ((*buf != 0) && (*buf != '\n')) { 3570 // If the line is longer than the buffer, read characters 3571 // until we find a newline. 3572 if (long_line) { 3573 int ch; 3574 while (((ch = fgetc(f)) != EOF) && (ch != '\n')) 3575 ; 3576 } 3577 continue; 3578 } 3579 3580 // A newline has signalled the end of the processor record. 3581 // Check that there aren't too many procs specified. 3582 if ((int)num_avail == __kmp_xproc) { 3583 CLEANUP_THREAD_INFO; 3584 *msg_id = kmp_i18n_str_TooManyEntries; 3585 return false; 3586 } 3587 3588 // Check for missing fields. The osId field must be there. The physical 3589 // id field will be checked later. 3590 if (threadInfo[num_avail][osIdIndex] == UINT_MAX) { 3591 CLEANUP_THREAD_INFO; 3592 *msg_id = kmp_i18n_str_MissingProcField; 3593 return false; 3594 } 3595 3596 // Skip this proc if it is not included in the machine model. 3597 if (KMP_AFFINITY_CAPABLE() && 3598 !KMP_CPU_ISSET(threadInfo[num_avail][osIdIndex], 3599 __kmp_affin_fullMask)) { 3600 INIT_PROC_INFO(threadInfo[num_avail]); 3601 continue; 3602 } 3603 3604 // We have a successful parse of this proc's info. 3605 // Increment the counter, and prepare for the next proc. 3606 num_avail++; 3607 KMP_ASSERT(num_avail <= num_records); 3608 INIT_PROC_INFO(threadInfo[num_avail]); 3609 } 3610 continue; 3611 3612 no_val: 3613 CLEANUP_THREAD_INFO; 3614 *msg_id = kmp_i18n_str_MissingValCpuinfo; 3615 return false; 3616 3617 dup_field: 3618 CLEANUP_THREAD_INFO; 3619 *msg_id = kmp_i18n_str_DuplicateFieldCpuinfo; 3620 return false; 3621 } 3622 *line = 0; 3623 3624 // At least on powerpc, Linux may return -1 for physical_package_id. Try 3625 // to reconstruct topology from core_siblings_list in that case. 3626 for (i = 0; i < num_avail; ++i) { 3627 if (threadInfo[i][pkgIdIndex] == UINT_MAX) { 3628 if (!__kmp_package_id_from_core_siblings_list(threadInfo, num_avail, i)) { 3629 CLEANUP_THREAD_INFO; 3630 *msg_id = kmp_i18n_str_MissingPhysicalIDField; 3631 return false; 3632 } 3633 } 3634 } 3635 3636 #if KMP_MIC && REDUCE_TEAM_SIZE 3637 unsigned teamSize = 0; 3638 #endif // KMP_MIC && REDUCE_TEAM_SIZE 3639 3640 // check for num_records == __kmp_xproc ??? 3641 3642 // If it is configured to omit the package level when there is only a single 3643 // package, the logic at the end of this routine won't work if there is only a 3644 // single thread 3645 KMP_ASSERT(num_avail > 0); 3646 KMP_ASSERT(num_avail <= num_records); 3647 3648 // Sort the threadInfo table by physical Id. 3649 qsort(threadInfo, num_avail, sizeof(*threadInfo), 3650 __kmp_affinity_cmp_ProcCpuInfo_phys_id); 3651 3652 #endif // KMP_OS_AIX 3653 3654 // The table is now sorted by pkgId / coreId / threadId, but we really don't 3655 // know the radix of any of the fields. pkgId's may be sparsely assigned among 3656 // the chips on a system. Although coreId's are usually assigned 3657 // [0 .. coresPerPkg-1] and threadId's are usually assigned 3658 // [0..threadsPerCore-1], we don't want to make any such assumptions. 3659 // 3660 // For that matter, we don't know what coresPerPkg and threadsPerCore (or the 3661 // total # packages) are at this point - we want to determine that now. We 3662 // only have an upper bound on the first two figures. 3663 unsigned *counts = 3664 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 3665 unsigned *maxCt = 3666 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 3667 unsigned *totals = 3668 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 3669 unsigned *lastId = 3670 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 3671 3672 bool assign_thread_ids = false; 3673 unsigned threadIdCt; 3674 unsigned index; 3675 3676 restart_radix_check: 3677 threadIdCt = 0; 3678 3679 // Initialize the counter arrays with data from threadInfo[0]. 3680 if (assign_thread_ids) { 3681 if (threadInfo[0][threadIdIndex] == UINT_MAX) { 3682 threadInfo[0][threadIdIndex] = threadIdCt++; 3683 } else if (threadIdCt <= threadInfo[0][threadIdIndex]) { 3684 threadIdCt = threadInfo[0][threadIdIndex] + 1; 3685 } 3686 } 3687 for (index = 0; index <= maxIndex; index++) { 3688 counts[index] = 1; 3689 maxCt[index] = 1; 3690 totals[index] = 1; 3691 lastId[index] = threadInfo[0][index]; 3692 ; 3693 } 3694 3695 // Run through the rest of the OS procs. 3696 for (i = 1; i < num_avail; i++) { 3697 // Find the most significant index whose id differs from the id for the 3698 // previous OS proc. 3699 for (index = maxIndex; index >= threadIdIndex; index--) { 3700 if (assign_thread_ids && (index == threadIdIndex)) { 3701 // Auto-assign the thread id field if it wasn't specified. 3702 if (threadInfo[i][threadIdIndex] == UINT_MAX) { 3703 threadInfo[i][threadIdIndex] = threadIdCt++; 3704 } 3705 // Apparently the thread id field was specified for some entries and not 3706 // others. Start the thread id counter off at the next higher thread id. 3707 else if (threadIdCt <= threadInfo[i][threadIdIndex]) { 3708 threadIdCt = threadInfo[i][threadIdIndex] + 1; 3709 } 3710 } 3711 if (threadInfo[i][index] != lastId[index]) { 3712 // Run through all indices which are less significant, and reset the 3713 // counts to 1. At all levels up to and including index, we need to 3714 // increment the totals and record the last id. 3715 unsigned index2; 3716 for (index2 = threadIdIndex; index2 < index; index2++) { 3717 totals[index2]++; 3718 if (counts[index2] > maxCt[index2]) { 3719 maxCt[index2] = counts[index2]; 3720 } 3721 counts[index2] = 1; 3722 lastId[index2] = threadInfo[i][index2]; 3723 } 3724 counts[index]++; 3725 totals[index]++; 3726 lastId[index] = threadInfo[i][index]; 3727 3728 if (assign_thread_ids && (index > threadIdIndex)) { 3729 3730 #if KMP_MIC && REDUCE_TEAM_SIZE 3731 // The default team size is the total #threads in the machine 3732 // minus 1 thread for every core that has 3 or more threads. 3733 teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1); 3734 #endif // KMP_MIC && REDUCE_TEAM_SIZE 3735 3736 // Restart the thread counter, as we are on a new core. 3737 threadIdCt = 0; 3738 3739 // Auto-assign the thread id field if it wasn't specified. 3740 if (threadInfo[i][threadIdIndex] == UINT_MAX) { 3741 threadInfo[i][threadIdIndex] = threadIdCt++; 3742 } 3743 3744 // Apparently the thread id field was specified for some entries and 3745 // not others. Start the thread id counter off at the next higher 3746 // thread id. 3747 else if (threadIdCt <= threadInfo[i][threadIdIndex]) { 3748 threadIdCt = threadInfo[i][threadIdIndex] + 1; 3749 } 3750 } 3751 break; 3752 } 3753 } 3754 if (index < threadIdIndex) { 3755 // If thread ids were specified, it is an error if they are not unique. 3756 // Also, check that we waven't already restarted the loop (to be safe - 3757 // shouldn't need to). 3758 if ((threadInfo[i][threadIdIndex] != UINT_MAX) || assign_thread_ids) { 3759 __kmp_free(lastId); 3760 __kmp_free(totals); 3761 __kmp_free(maxCt); 3762 __kmp_free(counts); 3763 CLEANUP_THREAD_INFO; 3764 *msg_id = kmp_i18n_str_PhysicalIDsNotUnique; 3765 return false; 3766 } 3767 3768 // If the thread ids were not specified and we see entries that 3769 // are duplicates, start the loop over and assign the thread ids manually. 3770 assign_thread_ids = true; 3771 goto restart_radix_check; 3772 } 3773 } 3774 3775 #if KMP_MIC && REDUCE_TEAM_SIZE 3776 // The default team size is the total #threads in the machine 3777 // minus 1 thread for every core that has 3 or more threads. 3778 teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1); 3779 #endif // KMP_MIC && REDUCE_TEAM_SIZE 3780 3781 for (index = threadIdIndex; index <= maxIndex; index++) { 3782 if (counts[index] > maxCt[index]) { 3783 maxCt[index] = counts[index]; 3784 } 3785 } 3786 3787 __kmp_nThreadsPerCore = maxCt[threadIdIndex]; 3788 nCoresPerPkg = maxCt[coreIdIndex]; 3789 nPackages = totals[pkgIdIndex]; 3790 3791 // When affinity is off, this routine will still be called to set 3792 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 3793 // Make sure all these vars are set correctly, and return now if affinity is 3794 // not enabled. 3795 __kmp_ncores = totals[coreIdIndex]; 3796 if (!KMP_AFFINITY_CAPABLE()) { 3797 KMP_ASSERT(__kmp_affinity.type == affinity_none); 3798 return true; 3799 } 3800 3801 #if KMP_MIC && REDUCE_TEAM_SIZE 3802 // Set the default team size. 3803 if ((__kmp_dflt_team_nth == 0) && (teamSize > 0)) { 3804 __kmp_dflt_team_nth = teamSize; 3805 KA_TRACE(20, ("__kmp_affinity_create_cpuinfo_map: setting " 3806 "__kmp_dflt_team_nth = %d\n", 3807 __kmp_dflt_team_nth)); 3808 } 3809 #endif // KMP_MIC && REDUCE_TEAM_SIZE 3810 3811 KMP_DEBUG_ASSERT(num_avail == (unsigned)__kmp_avail_proc); 3812 3813 // Count the number of levels which have more nodes at that level than at the 3814 // parent's level (with there being an implicit root node of the top level). 3815 // This is equivalent to saying that there is at least one node at this level 3816 // which has a sibling. These levels are in the map, and the package level is 3817 // always in the map. 3818 bool *inMap = (bool *)__kmp_allocate((maxIndex + 1) * sizeof(bool)); 3819 for (index = threadIdIndex; index < maxIndex; index++) { 3820 KMP_ASSERT(totals[index] >= totals[index + 1]); 3821 inMap[index] = (totals[index] > totals[index + 1]); 3822 } 3823 inMap[maxIndex] = (totals[maxIndex] > 1); 3824 inMap[pkgIdIndex] = true; 3825 inMap[coreIdIndex] = true; 3826 inMap[threadIdIndex] = true; 3827 3828 int depth = 0; 3829 int idx = 0; 3830 kmp_hw_t types[KMP_HW_LAST]; 3831 int pkgLevel = -1; 3832 int coreLevel = -1; 3833 int threadLevel = -1; 3834 for (index = threadIdIndex; index <= maxIndex; index++) { 3835 if (inMap[index]) { 3836 depth++; 3837 } 3838 } 3839 if (inMap[pkgIdIndex]) { 3840 pkgLevel = idx; 3841 types[idx++] = KMP_HW_SOCKET; 3842 } 3843 if (inMap[coreIdIndex]) { 3844 coreLevel = idx; 3845 types[idx++] = KMP_HW_CORE; 3846 } 3847 if (inMap[threadIdIndex]) { 3848 threadLevel = idx; 3849 types[idx++] = KMP_HW_THREAD; 3850 } 3851 KMP_ASSERT(depth > 0); 3852 3853 // Construct the data structure that is to be returned. 3854 __kmp_topology = kmp_topology_t::allocate(num_avail, depth, types); 3855 3856 for (i = 0; i < num_avail; ++i) { 3857 unsigned os = threadInfo[i][osIdIndex]; 3858 int src_index; 3859 kmp_hw_thread_t &hw_thread = __kmp_topology->at(i); 3860 hw_thread.clear(); 3861 hw_thread.os_id = os; 3862 hw_thread.original_idx = i; 3863 3864 idx = 0; 3865 for (src_index = maxIndex; src_index >= threadIdIndex; src_index--) { 3866 if (!inMap[src_index]) { 3867 continue; 3868 } 3869 if (src_index == pkgIdIndex) { 3870 hw_thread.ids[pkgLevel] = threadInfo[i][src_index]; 3871 } else if (src_index == coreIdIndex) { 3872 hw_thread.ids[coreLevel] = threadInfo[i][src_index]; 3873 } else if (src_index == threadIdIndex) { 3874 hw_thread.ids[threadLevel] = threadInfo[i][src_index]; 3875 } 3876 } 3877 } 3878 3879 __kmp_free(inMap); 3880 __kmp_free(lastId); 3881 __kmp_free(totals); 3882 __kmp_free(maxCt); 3883 __kmp_free(counts); 3884 CLEANUP_THREAD_INFO; 3885 __kmp_topology->sort_ids(); 3886 3887 int tlevel = __kmp_topology->get_level(KMP_HW_THREAD); 3888 if (tlevel > 0) { 3889 // If the thread level does not have ids, then put them in. 3890 if (__kmp_topology->at(0).ids[tlevel] == kmp_hw_thread_t::UNKNOWN_ID) { 3891 __kmp_topology->at(0).ids[tlevel] = 0; 3892 } 3893 for (int i = 1; i < __kmp_topology->get_num_hw_threads(); ++i) { 3894 kmp_hw_thread_t &hw_thread = __kmp_topology->at(i); 3895 if (hw_thread.ids[tlevel] != kmp_hw_thread_t::UNKNOWN_ID) 3896 continue; 3897 kmp_hw_thread_t &prev_hw_thread = __kmp_topology->at(i - 1); 3898 // Check if socket, core, anything above thread level changed. 3899 // If the ids did change, then restart thread id at 0 3900 // Otherwise, set thread id to prev thread's id + 1 3901 for (int j = 0; j < tlevel; ++j) { 3902 if (hw_thread.ids[j] != prev_hw_thread.ids[j]) { 3903 hw_thread.ids[tlevel] = 0; 3904 break; 3905 } 3906 } 3907 if (hw_thread.ids[tlevel] == kmp_hw_thread_t::UNKNOWN_ID) 3908 hw_thread.ids[tlevel] = prev_hw_thread.ids[tlevel] + 1; 3909 } 3910 } 3911 3912 if (!__kmp_topology->check_ids()) { 3913 kmp_topology_t::deallocate(__kmp_topology); 3914 __kmp_topology = nullptr; 3915 *msg_id = kmp_i18n_str_PhysicalIDsNotUnique; 3916 return false; 3917 } 3918 return true; 3919 } 3920 3921 // Create and return a table of affinity masks, indexed by OS thread ID. 3922 // This routine handles OR'ing together all the affinity masks of threads 3923 // that are sufficiently close, if granularity > fine. 3924 template <typename FindNextFunctionType> 3925 static void __kmp_create_os_id_masks(unsigned *numUnique, 3926 kmp_affinity_t &affinity, 3927 FindNextFunctionType find_next) { 3928 // First form a table of affinity masks in order of OS thread id. 3929 int maxOsId; 3930 int i; 3931 int numAddrs = __kmp_topology->get_num_hw_threads(); 3932 int depth = __kmp_topology->get_depth(); 3933 const char *env_var = __kmp_get_affinity_env_var(affinity); 3934 KMP_ASSERT(numAddrs); 3935 KMP_ASSERT(depth); 3936 3937 i = find_next(-1); 3938 // If could not find HW thread location that satisfies find_next conditions, 3939 // then return and fallback to increment find_next. 3940 if (i >= numAddrs) 3941 return; 3942 3943 maxOsId = 0; 3944 for (i = numAddrs - 1;; --i) { 3945 int osId = __kmp_topology->at(i).os_id; 3946 if (osId > maxOsId) { 3947 maxOsId = osId; 3948 } 3949 if (i == 0) 3950 break; 3951 } 3952 affinity.num_os_id_masks = maxOsId + 1; 3953 KMP_CPU_ALLOC_ARRAY(affinity.os_id_masks, affinity.num_os_id_masks); 3954 KMP_ASSERT(affinity.gran_levels >= 0); 3955 if (affinity.flags.verbose && (affinity.gran_levels > 0)) { 3956 KMP_INFORM(ThreadsMigrate, env_var, affinity.gran_levels); 3957 } 3958 if (affinity.gran_levels >= (int)depth) { 3959 KMP_AFF_WARNING(affinity, AffThreadsMayMigrate); 3960 } 3961 3962 // Run through the table, forming the masks for all threads on each core. 3963 // Threads on the same core will have identical kmp_hw_thread_t objects, not 3964 // considering the last level, which must be the thread id. All threads on a 3965 // core will appear consecutively. 3966 int unique = 0; 3967 int j = 0; // index of 1st thread on core 3968 int leader = 0; 3969 kmp_affin_mask_t *sum; 3970 KMP_CPU_ALLOC_ON_STACK(sum); 3971 KMP_CPU_ZERO(sum); 3972 3973 i = j = leader = find_next(-1); 3974 KMP_CPU_SET(__kmp_topology->at(i).os_id, sum); 3975 kmp_full_mask_modifier_t full_mask; 3976 for (i = find_next(i); i < numAddrs; i = find_next(i)) { 3977 // If this thread is sufficiently close to the leader (within the 3978 // granularity setting), then set the bit for this os thread in the 3979 // affinity mask for this group, and go on to the next thread. 3980 if (__kmp_topology->is_close(leader, i, affinity)) { 3981 KMP_CPU_SET(__kmp_topology->at(i).os_id, sum); 3982 continue; 3983 } 3984 3985 // For every thread in this group, copy the mask to the thread's entry in 3986 // the OS Id mask table. Mark the first address as a leader. 3987 for (; j < i; j = find_next(j)) { 3988 int osId = __kmp_topology->at(j).os_id; 3989 KMP_DEBUG_ASSERT(osId <= maxOsId); 3990 kmp_affin_mask_t *mask = KMP_CPU_INDEX(affinity.os_id_masks, osId); 3991 KMP_CPU_COPY(mask, sum); 3992 __kmp_topology->at(j).leader = (j == leader); 3993 } 3994 unique++; 3995 3996 // Start a new mask. 3997 leader = i; 3998 full_mask.include(sum); 3999 KMP_CPU_ZERO(sum); 4000 KMP_CPU_SET(__kmp_topology->at(i).os_id, sum); 4001 } 4002 4003 // For every thread in last group, copy the mask to the thread's 4004 // entry in the OS Id mask table. 4005 for (; j < i; j = find_next(j)) { 4006 int osId = __kmp_topology->at(j).os_id; 4007 KMP_DEBUG_ASSERT(osId <= maxOsId); 4008 kmp_affin_mask_t *mask = KMP_CPU_INDEX(affinity.os_id_masks, osId); 4009 KMP_CPU_COPY(mask, sum); 4010 __kmp_topology->at(j).leader = (j == leader); 4011 } 4012 full_mask.include(sum); 4013 unique++; 4014 KMP_CPU_FREE_FROM_STACK(sum); 4015 4016 // See if the OS Id mask table further restricts or changes the full mask 4017 if (full_mask.restrict_to_mask() && affinity.flags.verbose) { 4018 __kmp_topology->print(env_var); 4019 } 4020 4021 *numUnique = unique; 4022 } 4023 4024 // Stuff for the affinity proclist parsers. It's easier to declare these vars 4025 // as file-static than to try and pass them through the calling sequence of 4026 // the recursive-descent OMP_PLACES parser. 4027 static kmp_affin_mask_t *newMasks; 4028 static int numNewMasks; 4029 static int nextNewMask; 4030 4031 #define ADD_MASK(_mask) \ 4032 { \ 4033 if (nextNewMask >= numNewMasks) { \ 4034 int i; \ 4035 numNewMasks *= 2; \ 4036 kmp_affin_mask_t *temp; \ 4037 KMP_CPU_INTERNAL_ALLOC_ARRAY(temp, numNewMasks); \ 4038 for (i = 0; i < numNewMasks / 2; i++) { \ 4039 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); \ 4040 kmp_affin_mask_t *dest = KMP_CPU_INDEX(temp, i); \ 4041 KMP_CPU_COPY(dest, src); \ 4042 } \ 4043 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks / 2); \ 4044 newMasks = temp; \ 4045 } \ 4046 KMP_CPU_COPY(KMP_CPU_INDEX(newMasks, nextNewMask), (_mask)); \ 4047 nextNewMask++; \ 4048 } 4049 4050 #define ADD_MASK_OSID(_osId, _osId2Mask, _maxOsId) \ 4051 { \ 4052 if (((_osId) > _maxOsId) || \ 4053 (!KMP_CPU_ISSET((_osId), KMP_CPU_INDEX((_osId2Mask), (_osId))))) { \ 4054 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, _osId); \ 4055 } else { \ 4056 ADD_MASK(KMP_CPU_INDEX(_osId2Mask, (_osId))); \ 4057 } \ 4058 } 4059 4060 // Re-parse the proclist (for the explicit affinity type), and form the list 4061 // of affinity newMasks indexed by gtid. 4062 static void __kmp_affinity_process_proclist(kmp_affinity_t &affinity) { 4063 int i; 4064 kmp_affin_mask_t **out_masks = &affinity.masks; 4065 unsigned *out_numMasks = &affinity.num_masks; 4066 const char *proclist = affinity.proclist; 4067 kmp_affin_mask_t *osId2Mask = affinity.os_id_masks; 4068 int maxOsId = affinity.num_os_id_masks - 1; 4069 const char *scan = proclist; 4070 const char *next = proclist; 4071 4072 // We use malloc() for the temporary mask vector, so that we can use 4073 // realloc() to extend it. 4074 numNewMasks = 2; 4075 KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks); 4076 nextNewMask = 0; 4077 kmp_affin_mask_t *sumMask; 4078 KMP_CPU_ALLOC(sumMask); 4079 int setSize = 0; 4080 4081 for (;;) { 4082 int start, end, stride; 4083 4084 SKIP_WS(scan); 4085 next = scan; 4086 if (*next == '\0') { 4087 break; 4088 } 4089 4090 if (*next == '{') { 4091 int num; 4092 setSize = 0; 4093 next++; // skip '{' 4094 SKIP_WS(next); 4095 scan = next; 4096 4097 // Read the first integer in the set. 4098 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad proclist"); 4099 SKIP_DIGITS(next); 4100 num = __kmp_str_to_int(scan, *next); 4101 KMP_ASSERT2(num >= 0, "bad explicit proc list"); 4102 4103 // Copy the mask for that osId to the sum (union) mask. 4104 if ((num > maxOsId) || 4105 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { 4106 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, num); 4107 KMP_CPU_ZERO(sumMask); 4108 } else { 4109 KMP_CPU_COPY(sumMask, KMP_CPU_INDEX(osId2Mask, num)); 4110 setSize = 1; 4111 } 4112 4113 for (;;) { 4114 // Check for end of set. 4115 SKIP_WS(next); 4116 if (*next == '}') { 4117 next++; // skip '}' 4118 break; 4119 } 4120 4121 // Skip optional comma. 4122 if (*next == ',') { 4123 next++; 4124 } 4125 SKIP_WS(next); 4126 4127 // Read the next integer in the set. 4128 scan = next; 4129 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); 4130 4131 SKIP_DIGITS(next); 4132 num = __kmp_str_to_int(scan, *next); 4133 KMP_ASSERT2(num >= 0, "bad explicit proc list"); 4134 4135 // Add the mask for that osId to the sum mask. 4136 if ((num > maxOsId) || 4137 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { 4138 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, num); 4139 } else { 4140 KMP_CPU_UNION(sumMask, KMP_CPU_INDEX(osId2Mask, num)); 4141 setSize++; 4142 } 4143 } 4144 if (setSize > 0) { 4145 ADD_MASK(sumMask); 4146 } 4147 4148 SKIP_WS(next); 4149 if (*next == ',') { 4150 next++; 4151 } 4152 scan = next; 4153 continue; 4154 } 4155 4156 // Read the first integer. 4157 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); 4158 SKIP_DIGITS(next); 4159 start = __kmp_str_to_int(scan, *next); 4160 KMP_ASSERT2(start >= 0, "bad explicit proc list"); 4161 SKIP_WS(next); 4162 4163 // If this isn't a range, then add a mask to the list and go on. 4164 if (*next != '-') { 4165 ADD_MASK_OSID(start, osId2Mask, maxOsId); 4166 4167 // Skip optional comma. 4168 if (*next == ',') { 4169 next++; 4170 } 4171 scan = next; 4172 continue; 4173 } 4174 4175 // This is a range. Skip over the '-' and read in the 2nd int. 4176 next++; // skip '-' 4177 SKIP_WS(next); 4178 scan = next; 4179 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); 4180 SKIP_DIGITS(next); 4181 end = __kmp_str_to_int(scan, *next); 4182 KMP_ASSERT2(end >= 0, "bad explicit proc list"); 4183 4184 // Check for a stride parameter 4185 stride = 1; 4186 SKIP_WS(next); 4187 if (*next == ':') { 4188 // A stride is specified. Skip over the ':" and read the 3rd int. 4189 int sign = +1; 4190 next++; // skip ':' 4191 SKIP_WS(next); 4192 scan = next; 4193 if (*next == '-') { 4194 sign = -1; 4195 next++; 4196 SKIP_WS(next); 4197 scan = next; 4198 } 4199 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); 4200 SKIP_DIGITS(next); 4201 stride = __kmp_str_to_int(scan, *next); 4202 KMP_ASSERT2(stride >= 0, "bad explicit proc list"); 4203 stride *= sign; 4204 } 4205 4206 // Do some range checks. 4207 KMP_ASSERT2(stride != 0, "bad explicit proc list"); 4208 if (stride > 0) { 4209 KMP_ASSERT2(start <= end, "bad explicit proc list"); 4210 } else { 4211 KMP_ASSERT2(start >= end, "bad explicit proc list"); 4212 } 4213 KMP_ASSERT2((end - start) / stride <= 65536, "bad explicit proc list"); 4214 4215 // Add the mask for each OS proc # to the list. 4216 if (stride > 0) { 4217 do { 4218 ADD_MASK_OSID(start, osId2Mask, maxOsId); 4219 start += stride; 4220 } while (start <= end); 4221 } else { 4222 do { 4223 ADD_MASK_OSID(start, osId2Mask, maxOsId); 4224 start += stride; 4225 } while (start >= end); 4226 } 4227 4228 // Skip optional comma. 4229 SKIP_WS(next); 4230 if (*next == ',') { 4231 next++; 4232 } 4233 scan = next; 4234 } 4235 4236 *out_numMasks = nextNewMask; 4237 if (nextNewMask == 0) { 4238 *out_masks = NULL; 4239 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 4240 return; 4241 } 4242 KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask); 4243 for (i = 0; i < nextNewMask; i++) { 4244 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); 4245 kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i); 4246 KMP_CPU_COPY(dest, src); 4247 } 4248 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 4249 KMP_CPU_FREE(sumMask); 4250 } 4251 4252 /*----------------------------------------------------------------------------- 4253 Re-parse the OMP_PLACES proc id list, forming the newMasks for the different 4254 places. Again, Here is the grammar: 4255 4256 place_list := place 4257 place_list := place , place_list 4258 place := num 4259 place := place : num 4260 place := place : num : signed 4261 place := { subplacelist } 4262 place := ! place // (lowest priority) 4263 subplace_list := subplace 4264 subplace_list := subplace , subplace_list 4265 subplace := num 4266 subplace := num : num 4267 subplace := num : num : signed 4268 signed := num 4269 signed := + signed 4270 signed := - signed 4271 -----------------------------------------------------------------------------*/ 4272 static void __kmp_process_subplace_list(const char **scan, 4273 kmp_affinity_t &affinity, int maxOsId, 4274 kmp_affin_mask_t *tempMask, 4275 int *setSize) { 4276 const char *next; 4277 kmp_affin_mask_t *osId2Mask = affinity.os_id_masks; 4278 4279 for (;;) { 4280 int start, count, stride, i; 4281 4282 // Read in the starting proc id 4283 SKIP_WS(*scan); 4284 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list"); 4285 next = *scan; 4286 SKIP_DIGITS(next); 4287 start = __kmp_str_to_int(*scan, *next); 4288 KMP_ASSERT(start >= 0); 4289 *scan = next; 4290 4291 // valid follow sets are ',' ':' and '}' 4292 SKIP_WS(*scan); 4293 if (**scan == '}' || **scan == ',') { 4294 if ((start > maxOsId) || 4295 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { 4296 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, start); 4297 } else { 4298 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); 4299 (*setSize)++; 4300 } 4301 if (**scan == '}') { 4302 break; 4303 } 4304 (*scan)++; // skip ',' 4305 continue; 4306 } 4307 KMP_ASSERT2(**scan == ':', "bad explicit places list"); 4308 (*scan)++; // skip ':' 4309 4310 // Read count parameter 4311 SKIP_WS(*scan); 4312 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list"); 4313 next = *scan; 4314 SKIP_DIGITS(next); 4315 count = __kmp_str_to_int(*scan, *next); 4316 KMP_ASSERT(count >= 0); 4317 *scan = next; 4318 4319 // valid follow sets are ',' ':' and '}' 4320 SKIP_WS(*scan); 4321 if (**scan == '}' || **scan == ',') { 4322 for (i = 0; i < count; i++) { 4323 if ((start > maxOsId) || 4324 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { 4325 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, start); 4326 break; // don't proliferate warnings for large count 4327 } else { 4328 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); 4329 start++; 4330 (*setSize)++; 4331 } 4332 } 4333 if (**scan == '}') { 4334 break; 4335 } 4336 (*scan)++; // skip ',' 4337 continue; 4338 } 4339 KMP_ASSERT2(**scan == ':', "bad explicit places list"); 4340 (*scan)++; // skip ':' 4341 4342 // Read stride parameter 4343 int sign = +1; 4344 for (;;) { 4345 SKIP_WS(*scan); 4346 if (**scan == '+') { 4347 (*scan)++; // skip '+' 4348 continue; 4349 } 4350 if (**scan == '-') { 4351 sign *= -1; 4352 (*scan)++; // skip '-' 4353 continue; 4354 } 4355 break; 4356 } 4357 SKIP_WS(*scan); 4358 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list"); 4359 next = *scan; 4360 SKIP_DIGITS(next); 4361 stride = __kmp_str_to_int(*scan, *next); 4362 KMP_ASSERT(stride >= 0); 4363 *scan = next; 4364 stride *= sign; 4365 4366 // valid follow sets are ',' and '}' 4367 SKIP_WS(*scan); 4368 if (**scan == '}' || **scan == ',') { 4369 for (i = 0; i < count; i++) { 4370 if ((start > maxOsId) || 4371 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { 4372 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, start); 4373 break; // don't proliferate warnings for large count 4374 } else { 4375 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); 4376 start += stride; 4377 (*setSize)++; 4378 } 4379 } 4380 if (**scan == '}') { 4381 break; 4382 } 4383 (*scan)++; // skip ',' 4384 continue; 4385 } 4386 4387 KMP_ASSERT2(0, "bad explicit places list"); 4388 } 4389 } 4390 4391 static void __kmp_process_place(const char **scan, kmp_affinity_t &affinity, 4392 int maxOsId, kmp_affin_mask_t *tempMask, 4393 int *setSize) { 4394 const char *next; 4395 kmp_affin_mask_t *osId2Mask = affinity.os_id_masks; 4396 4397 // valid follow sets are '{' '!' and num 4398 SKIP_WS(*scan); 4399 if (**scan == '{') { 4400 (*scan)++; // skip '{' 4401 __kmp_process_subplace_list(scan, affinity, maxOsId, tempMask, setSize); 4402 KMP_ASSERT2(**scan == '}', "bad explicit places list"); 4403 (*scan)++; // skip '}' 4404 } else if (**scan == '!') { 4405 (*scan)++; // skip '!' 4406 __kmp_process_place(scan, affinity, maxOsId, tempMask, setSize); 4407 KMP_CPU_COMPLEMENT(maxOsId, tempMask); 4408 } else if ((**scan >= '0') && (**scan <= '9')) { 4409 next = *scan; 4410 SKIP_DIGITS(next); 4411 int num = __kmp_str_to_int(*scan, *next); 4412 KMP_ASSERT(num >= 0); 4413 if ((num > maxOsId) || 4414 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { 4415 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, num); 4416 } else { 4417 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, num)); 4418 (*setSize)++; 4419 } 4420 *scan = next; // skip num 4421 } else { 4422 KMP_ASSERT2(0, "bad explicit places list"); 4423 } 4424 } 4425 4426 // static void 4427 void __kmp_affinity_process_placelist(kmp_affinity_t &affinity) { 4428 int i, j, count, stride, sign; 4429 kmp_affin_mask_t **out_masks = &affinity.masks; 4430 unsigned *out_numMasks = &affinity.num_masks; 4431 const char *placelist = affinity.proclist; 4432 kmp_affin_mask_t *osId2Mask = affinity.os_id_masks; 4433 int maxOsId = affinity.num_os_id_masks - 1; 4434 const char *scan = placelist; 4435 const char *next = placelist; 4436 4437 numNewMasks = 2; 4438 KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks); 4439 nextNewMask = 0; 4440 4441 // tempMask is modified based on the previous or initial 4442 // place to form the current place 4443 // previousMask contains the previous place 4444 kmp_affin_mask_t *tempMask; 4445 kmp_affin_mask_t *previousMask; 4446 KMP_CPU_ALLOC(tempMask); 4447 KMP_CPU_ZERO(tempMask); 4448 KMP_CPU_ALLOC(previousMask); 4449 KMP_CPU_ZERO(previousMask); 4450 int setSize = 0; 4451 4452 for (;;) { 4453 __kmp_process_place(&scan, affinity, maxOsId, tempMask, &setSize); 4454 4455 // valid follow sets are ',' ':' and EOL 4456 SKIP_WS(scan); 4457 if (*scan == '\0' || *scan == ',') { 4458 if (setSize > 0) { 4459 ADD_MASK(tempMask); 4460 } 4461 KMP_CPU_ZERO(tempMask); 4462 setSize = 0; 4463 if (*scan == '\0') { 4464 break; 4465 } 4466 scan++; // skip ',' 4467 continue; 4468 } 4469 4470 KMP_ASSERT2(*scan == ':', "bad explicit places list"); 4471 scan++; // skip ':' 4472 4473 // Read count parameter 4474 SKIP_WS(scan); 4475 KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list"); 4476 next = scan; 4477 SKIP_DIGITS(next); 4478 count = __kmp_str_to_int(scan, *next); 4479 KMP_ASSERT(count >= 0); 4480 scan = next; 4481 4482 // valid follow sets are ',' ':' and EOL 4483 SKIP_WS(scan); 4484 if (*scan == '\0' || *scan == ',') { 4485 stride = +1; 4486 } else { 4487 KMP_ASSERT2(*scan == ':', "bad explicit places list"); 4488 scan++; // skip ':' 4489 4490 // Read stride parameter 4491 sign = +1; 4492 for (;;) { 4493 SKIP_WS(scan); 4494 if (*scan == '+') { 4495 scan++; // skip '+' 4496 continue; 4497 } 4498 if (*scan == '-') { 4499 sign *= -1; 4500 scan++; // skip '-' 4501 continue; 4502 } 4503 break; 4504 } 4505 SKIP_WS(scan); 4506 KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list"); 4507 next = scan; 4508 SKIP_DIGITS(next); 4509 stride = __kmp_str_to_int(scan, *next); 4510 KMP_DEBUG_ASSERT(stride >= 0); 4511 scan = next; 4512 stride *= sign; 4513 } 4514 4515 // Add places determined by initial_place : count : stride 4516 for (i = 0; i < count; i++) { 4517 if (setSize == 0) { 4518 break; 4519 } 4520 // Add the current place, then build the next place (tempMask) from that 4521 KMP_CPU_COPY(previousMask, tempMask); 4522 ADD_MASK(previousMask); 4523 KMP_CPU_ZERO(tempMask); 4524 setSize = 0; 4525 KMP_CPU_SET_ITERATE(j, previousMask) { 4526 if (!KMP_CPU_ISSET(j, previousMask)) { 4527 continue; 4528 } 4529 if ((j + stride > maxOsId) || (j + stride < 0) || 4530 (!KMP_CPU_ISSET(j, __kmp_affin_fullMask)) || 4531 (!KMP_CPU_ISSET(j + stride, 4532 KMP_CPU_INDEX(osId2Mask, j + stride)))) { 4533 if (i < count - 1) { 4534 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, j + stride); 4535 } 4536 continue; 4537 } 4538 KMP_CPU_SET(j + stride, tempMask); 4539 setSize++; 4540 } 4541 } 4542 KMP_CPU_ZERO(tempMask); 4543 setSize = 0; 4544 4545 // valid follow sets are ',' and EOL 4546 SKIP_WS(scan); 4547 if (*scan == '\0') { 4548 break; 4549 } 4550 if (*scan == ',') { 4551 scan++; // skip ',' 4552 continue; 4553 } 4554 4555 KMP_ASSERT2(0, "bad explicit places list"); 4556 } 4557 4558 *out_numMasks = nextNewMask; 4559 if (nextNewMask == 0) { 4560 *out_masks = NULL; 4561 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 4562 return; 4563 } 4564 KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask); 4565 KMP_CPU_FREE(tempMask); 4566 KMP_CPU_FREE(previousMask); 4567 for (i = 0; i < nextNewMask; i++) { 4568 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); 4569 kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i); 4570 KMP_CPU_COPY(dest, src); 4571 } 4572 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 4573 } 4574 4575 #undef ADD_MASK 4576 #undef ADD_MASK_OSID 4577 4578 // This function figures out the deepest level at which there is at least one 4579 // cluster/core with more than one processing unit bound to it. 4580 static int __kmp_affinity_find_core_level(int nprocs, int bottom_level) { 4581 int core_level = 0; 4582 4583 for (int i = 0; i < nprocs; i++) { 4584 const kmp_hw_thread_t &hw_thread = __kmp_topology->at(i); 4585 for (int j = bottom_level; j > 0; j--) { 4586 if (hw_thread.ids[j] > 0) { 4587 if (core_level < (j - 1)) { 4588 core_level = j - 1; 4589 } 4590 } 4591 } 4592 } 4593 return core_level; 4594 } 4595 4596 // This function counts number of clusters/cores at given level. 4597 static int __kmp_affinity_compute_ncores(int nprocs, int bottom_level, 4598 int core_level) { 4599 return __kmp_topology->get_count(core_level); 4600 } 4601 // This function finds to which cluster/core given processing unit is bound. 4602 static int __kmp_affinity_find_core(int proc, int bottom_level, 4603 int core_level) { 4604 int core = 0; 4605 KMP_DEBUG_ASSERT(proc >= 0 && proc < __kmp_topology->get_num_hw_threads()); 4606 for (int i = 0; i <= proc; ++i) { 4607 if (i + 1 <= proc) { 4608 for (int j = 0; j <= core_level; ++j) { 4609 if (__kmp_topology->at(i + 1).sub_ids[j] != 4610 __kmp_topology->at(i).sub_ids[j]) { 4611 core++; 4612 break; 4613 } 4614 } 4615 } 4616 } 4617 return core; 4618 } 4619 4620 // This function finds maximal number of processing units bound to a 4621 // cluster/core at given level. 4622 static int __kmp_affinity_max_proc_per_core(int nprocs, int bottom_level, 4623 int core_level) { 4624 if (core_level >= bottom_level) 4625 return 1; 4626 int thread_level = __kmp_topology->get_level(KMP_HW_THREAD); 4627 return __kmp_topology->calculate_ratio(thread_level, core_level); 4628 } 4629 4630 static int *procarr = NULL; 4631 static int __kmp_aff_depth = 0; 4632 static int *__kmp_osid_to_hwthread_map = NULL; 4633 4634 static void __kmp_affinity_get_mask_topology_info(const kmp_affin_mask_t *mask, 4635 kmp_affinity_ids_t &ids, 4636 kmp_affinity_attrs_t &attrs) { 4637 if (!KMP_AFFINITY_CAPABLE()) 4638 return; 4639 4640 // Initiailze ids and attrs thread data 4641 for (int i = 0; i < KMP_HW_LAST; ++i) 4642 ids.ids[i] = kmp_hw_thread_t::UNKNOWN_ID; 4643 attrs = KMP_AFFINITY_ATTRS_UNKNOWN; 4644 4645 // Iterate through each os id within the mask and determine 4646 // the topology id and attribute information 4647 int cpu; 4648 int depth = __kmp_topology->get_depth(); 4649 KMP_CPU_SET_ITERATE(cpu, mask) { 4650 int osid_idx = __kmp_osid_to_hwthread_map[cpu]; 4651 ids.os_id = cpu; 4652 const kmp_hw_thread_t &hw_thread = __kmp_topology->at(osid_idx); 4653 for (int level = 0; level < depth; ++level) { 4654 kmp_hw_t type = __kmp_topology->get_type(level); 4655 int id = hw_thread.sub_ids[level]; 4656 if (ids.ids[type] == kmp_hw_thread_t::UNKNOWN_ID || ids.ids[type] == id) { 4657 ids.ids[type] = id; 4658 } else { 4659 // This mask spans across multiple topology units, set it as such 4660 // and mark every level below as such as well. 4661 ids.ids[type] = kmp_hw_thread_t::MULTIPLE_ID; 4662 for (; level < depth; ++level) { 4663 kmp_hw_t type = __kmp_topology->get_type(level); 4664 ids.ids[type] = kmp_hw_thread_t::MULTIPLE_ID; 4665 } 4666 } 4667 } 4668 if (!attrs.valid) { 4669 attrs.core_type = hw_thread.attrs.get_core_type(); 4670 attrs.core_eff = hw_thread.attrs.get_core_eff(); 4671 attrs.valid = 1; 4672 } else { 4673 // This mask spans across multiple attributes, set it as such 4674 if (attrs.core_type != hw_thread.attrs.get_core_type()) 4675 attrs.core_type = KMP_HW_CORE_TYPE_UNKNOWN; 4676 if (attrs.core_eff != hw_thread.attrs.get_core_eff()) 4677 attrs.core_eff = kmp_hw_attr_t::UNKNOWN_CORE_EFF; 4678 } 4679 } 4680 } 4681 4682 static void __kmp_affinity_get_thread_topology_info(kmp_info_t *th) { 4683 if (!KMP_AFFINITY_CAPABLE()) 4684 return; 4685 const kmp_affin_mask_t *mask = th->th.th_affin_mask; 4686 kmp_affinity_ids_t &ids = th->th.th_topology_ids; 4687 kmp_affinity_attrs_t &attrs = th->th.th_topology_attrs; 4688 __kmp_affinity_get_mask_topology_info(mask, ids, attrs); 4689 } 4690 4691 // Assign the topology information to each place in the place list 4692 // A thread can then grab not only its affinity mask, but the topology 4693 // information associated with that mask. e.g., Which socket is a thread on 4694 static void __kmp_affinity_get_topology_info(kmp_affinity_t &affinity) { 4695 if (!KMP_AFFINITY_CAPABLE()) 4696 return; 4697 if (affinity.type != affinity_none) { 4698 KMP_ASSERT(affinity.num_os_id_masks); 4699 KMP_ASSERT(affinity.os_id_masks); 4700 } 4701 KMP_ASSERT(affinity.num_masks); 4702 KMP_ASSERT(affinity.masks); 4703 KMP_ASSERT(__kmp_affin_fullMask); 4704 4705 int max_cpu = __kmp_affin_fullMask->get_max_cpu(); 4706 int num_hw_threads = __kmp_topology->get_num_hw_threads(); 4707 4708 // Allocate thread topology information 4709 if (!affinity.ids) { 4710 affinity.ids = (kmp_affinity_ids_t *)__kmp_allocate( 4711 sizeof(kmp_affinity_ids_t) * affinity.num_masks); 4712 } 4713 if (!affinity.attrs) { 4714 affinity.attrs = (kmp_affinity_attrs_t *)__kmp_allocate( 4715 sizeof(kmp_affinity_attrs_t) * affinity.num_masks); 4716 } 4717 if (!__kmp_osid_to_hwthread_map) { 4718 // Want the +1 because max_cpu should be valid index into map 4719 __kmp_osid_to_hwthread_map = 4720 (int *)__kmp_allocate(sizeof(int) * (max_cpu + 1)); 4721 } 4722 4723 // Create the OS proc to hardware thread map 4724 for (int hw_thread = 0; hw_thread < num_hw_threads; ++hw_thread) { 4725 int os_id = __kmp_topology->at(hw_thread).os_id; 4726 if (KMP_CPU_ISSET(os_id, __kmp_affin_fullMask)) 4727 __kmp_osid_to_hwthread_map[os_id] = hw_thread; 4728 } 4729 4730 for (unsigned i = 0; i < affinity.num_masks; ++i) { 4731 kmp_affinity_ids_t &ids = affinity.ids[i]; 4732 kmp_affinity_attrs_t &attrs = affinity.attrs[i]; 4733 kmp_affin_mask_t *mask = KMP_CPU_INDEX(affinity.masks, i); 4734 __kmp_affinity_get_mask_topology_info(mask, ids, attrs); 4735 } 4736 } 4737 4738 // Called when __kmp_topology is ready 4739 static void __kmp_aux_affinity_initialize_other_data(kmp_affinity_t &affinity) { 4740 // Initialize other data structures which depend on the topology 4741 if (__kmp_topology && __kmp_topology->get_num_hw_threads()) { 4742 machine_hierarchy.init(__kmp_topology->get_num_hw_threads()); 4743 __kmp_affinity_get_topology_info(affinity); 4744 #if KMP_WEIGHTED_ITERATIONS_SUPPORTED 4745 __kmp_first_osid_with_ecore = __kmp_get_first_osid_with_ecore(); 4746 #endif 4747 } 4748 } 4749 4750 // Create a one element mask array (set of places) which only contains the 4751 // initial process's affinity mask 4752 static void __kmp_create_affinity_none_places(kmp_affinity_t &affinity) { 4753 KMP_ASSERT(__kmp_affin_fullMask != NULL); 4754 KMP_ASSERT(affinity.type == affinity_none); 4755 KMP_ASSERT(__kmp_avail_proc == __kmp_topology->get_num_hw_threads()); 4756 affinity.num_masks = 1; 4757 KMP_CPU_ALLOC_ARRAY(affinity.masks, affinity.num_masks); 4758 kmp_affin_mask_t *dest = KMP_CPU_INDEX(affinity.masks, 0); 4759 KMP_CPU_COPY(dest, __kmp_affin_fullMask); 4760 __kmp_aux_affinity_initialize_other_data(affinity); 4761 } 4762 4763 static void __kmp_aux_affinity_initialize_masks(kmp_affinity_t &affinity) { 4764 // Create the "full" mask - this defines all of the processors that we 4765 // consider to be in the machine model. If respect is set, then it is the 4766 // initialization thread's affinity mask. Otherwise, it is all processors that 4767 // we know about on the machine. 4768 int verbose = affinity.flags.verbose; 4769 const char *env_var = affinity.env_var; 4770 4771 // Already initialized 4772 if (__kmp_affin_fullMask && __kmp_affin_origMask) 4773 return; 4774 4775 if (__kmp_affin_fullMask == NULL) { 4776 KMP_CPU_ALLOC(__kmp_affin_fullMask); 4777 } 4778 if (__kmp_affin_origMask == NULL) { 4779 KMP_CPU_ALLOC(__kmp_affin_origMask); 4780 } 4781 if (KMP_AFFINITY_CAPABLE()) { 4782 __kmp_get_system_affinity(__kmp_affin_fullMask, TRUE); 4783 // Make a copy before possible expanding to the entire machine mask 4784 __kmp_affin_origMask->copy(__kmp_affin_fullMask); 4785 if (affinity.flags.respect) { 4786 // Count the number of available processors. 4787 unsigned i; 4788 __kmp_avail_proc = 0; 4789 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 4790 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 4791 continue; 4792 } 4793 __kmp_avail_proc++; 4794 } 4795 if (__kmp_avail_proc > __kmp_xproc) { 4796 KMP_AFF_WARNING(affinity, ErrorInitializeAffinity); 4797 affinity.type = affinity_none; 4798 KMP_AFFINITY_DISABLE(); 4799 return; 4800 } 4801 4802 if (verbose) { 4803 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4804 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4805 __kmp_affin_fullMask); 4806 KMP_INFORM(InitOSProcSetRespect, env_var, buf); 4807 } 4808 } else { 4809 if (verbose) { 4810 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4811 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4812 __kmp_affin_fullMask); 4813 KMP_INFORM(InitOSProcSetNotRespect, env_var, buf); 4814 } 4815 __kmp_avail_proc = 4816 __kmp_affinity_entire_machine_mask(__kmp_affin_fullMask); 4817 #if KMP_OS_WINDOWS 4818 if (__kmp_num_proc_groups <= 1) { 4819 // Copy expanded full mask if topology has single processor group 4820 __kmp_affin_origMask->copy(__kmp_affin_fullMask); 4821 } 4822 // Set the process affinity mask since threads' affinity 4823 // masks must be subset of process mask in Windows* OS 4824 __kmp_affin_fullMask->set_process_affinity(true); 4825 #endif 4826 } 4827 } 4828 } 4829 4830 static bool __kmp_aux_affinity_initialize_topology(kmp_affinity_t &affinity) { 4831 bool success = false; 4832 const char *env_var = affinity.env_var; 4833 kmp_i18n_id_t msg_id = kmp_i18n_null; 4834 int verbose = affinity.flags.verbose; 4835 4836 // For backward compatibility, setting KMP_CPUINFO_FILE => 4837 // KMP_TOPOLOGY_METHOD=cpuinfo 4838 if ((__kmp_cpuinfo_file != NULL) && 4839 (__kmp_affinity_top_method == affinity_top_method_all)) { 4840 __kmp_affinity_top_method = affinity_top_method_cpuinfo; 4841 } 4842 4843 if (__kmp_affinity_top_method == affinity_top_method_all) { 4844 // In the default code path, errors are not fatal - we just try using 4845 // another method. We only emit a warning message if affinity is on, or the 4846 // verbose flag is set, an the nowarnings flag was not set. 4847 #if KMP_USE_HWLOC 4848 if (!success && 4849 __kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC) { 4850 if (!__kmp_hwloc_error) { 4851 success = __kmp_affinity_create_hwloc_map(&msg_id); 4852 if (!success && verbose) { 4853 KMP_INFORM(AffIgnoringHwloc, env_var); 4854 } 4855 } else if (verbose) { 4856 KMP_INFORM(AffIgnoringHwloc, env_var); 4857 } 4858 } 4859 #endif 4860 4861 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 4862 if (!success) { 4863 success = __kmp_affinity_create_x2apicid_map(&msg_id); 4864 if (!success && verbose && msg_id != kmp_i18n_null) { 4865 KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id)); 4866 } 4867 } 4868 if (!success) { 4869 success = __kmp_affinity_create_apicid_map(&msg_id); 4870 if (!success && verbose && msg_id != kmp_i18n_null) { 4871 KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id)); 4872 } 4873 } 4874 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 4875 4876 #if KMP_OS_LINUX || KMP_OS_AIX 4877 if (!success) { 4878 int line = 0; 4879 success = __kmp_affinity_create_cpuinfo_map(&line, &msg_id); 4880 if (!success && verbose && msg_id != kmp_i18n_null) { 4881 KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id)); 4882 } 4883 } 4884 #endif /* KMP_OS_LINUX */ 4885 4886 #if KMP_GROUP_AFFINITY 4887 if (!success && (__kmp_num_proc_groups > 1)) { 4888 success = __kmp_affinity_create_proc_group_map(&msg_id); 4889 if (!success && verbose && msg_id != kmp_i18n_null) { 4890 KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id)); 4891 } 4892 } 4893 #endif /* KMP_GROUP_AFFINITY */ 4894 4895 if (!success) { 4896 success = __kmp_affinity_create_flat_map(&msg_id); 4897 if (!success && verbose && msg_id != kmp_i18n_null) { 4898 KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id)); 4899 } 4900 KMP_ASSERT(success); 4901 } 4902 } 4903 4904 // If the user has specified that a paricular topology discovery method is to be 4905 // used, then we abort if that method fails. The exception is group affinity, 4906 // which might have been implicitly set. 4907 #if KMP_USE_HWLOC 4908 else if (__kmp_affinity_top_method == affinity_top_method_hwloc) { 4909 KMP_ASSERT(__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC); 4910 success = __kmp_affinity_create_hwloc_map(&msg_id); 4911 if (!success) { 4912 KMP_ASSERT(msg_id != kmp_i18n_null); 4913 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); 4914 } 4915 } 4916 #endif // KMP_USE_HWLOC 4917 4918 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 4919 else if (__kmp_affinity_top_method == affinity_top_method_x2apicid || 4920 __kmp_affinity_top_method == affinity_top_method_x2apicid_1f) { 4921 success = __kmp_affinity_create_x2apicid_map(&msg_id); 4922 if (!success) { 4923 KMP_ASSERT(msg_id != kmp_i18n_null); 4924 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); 4925 } 4926 } else if (__kmp_affinity_top_method == affinity_top_method_apicid) { 4927 success = __kmp_affinity_create_apicid_map(&msg_id); 4928 if (!success) { 4929 KMP_ASSERT(msg_id != kmp_i18n_null); 4930 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); 4931 } 4932 } 4933 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 4934 4935 else if (__kmp_affinity_top_method == affinity_top_method_cpuinfo) { 4936 int line = 0; 4937 success = __kmp_affinity_create_cpuinfo_map(&line, &msg_id); 4938 if (!success) { 4939 KMP_ASSERT(msg_id != kmp_i18n_null); 4940 const char *filename = __kmp_cpuinfo_get_filename(); 4941 if (line > 0) { 4942 KMP_FATAL(FileLineMsgExiting, filename, line, 4943 __kmp_i18n_catgets(msg_id)); 4944 } else { 4945 KMP_FATAL(FileMsgExiting, filename, __kmp_i18n_catgets(msg_id)); 4946 } 4947 } 4948 } 4949 4950 #if KMP_GROUP_AFFINITY 4951 else if (__kmp_affinity_top_method == affinity_top_method_group) { 4952 success = __kmp_affinity_create_proc_group_map(&msg_id); 4953 KMP_ASSERT(success); 4954 if (!success) { 4955 KMP_ASSERT(msg_id != kmp_i18n_null); 4956 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); 4957 } 4958 } 4959 #endif /* KMP_GROUP_AFFINITY */ 4960 4961 else if (__kmp_affinity_top_method == affinity_top_method_flat) { 4962 success = __kmp_affinity_create_flat_map(&msg_id); 4963 // should not fail 4964 KMP_ASSERT(success); 4965 } 4966 4967 // Early exit if topology could not be created 4968 if (!__kmp_topology) { 4969 if (KMP_AFFINITY_CAPABLE()) { 4970 KMP_AFF_WARNING(affinity, ErrorInitializeAffinity); 4971 } 4972 if (nPackages > 0 && nCoresPerPkg > 0 && __kmp_nThreadsPerCore > 0 && 4973 __kmp_ncores > 0) { 4974 __kmp_topology = kmp_topology_t::allocate(0, 0, NULL); 4975 __kmp_topology->canonicalize(nPackages, nCoresPerPkg, 4976 __kmp_nThreadsPerCore, __kmp_ncores); 4977 if (verbose) { 4978 __kmp_topology->print(env_var); 4979 } 4980 } 4981 return false; 4982 } 4983 4984 // Canonicalize, print (if requested), apply KMP_HW_SUBSET 4985 __kmp_topology->canonicalize(); 4986 if (verbose) 4987 __kmp_topology->print(env_var); 4988 bool filtered = __kmp_topology->filter_hw_subset(); 4989 if (filtered && verbose) 4990 __kmp_topology->print("KMP_HW_SUBSET"); 4991 return success; 4992 } 4993 4994 static void __kmp_aux_affinity_initialize(kmp_affinity_t &affinity) { 4995 bool is_regular_affinity = (&affinity == &__kmp_affinity); 4996 bool is_hidden_helper_affinity = (&affinity == &__kmp_hh_affinity); 4997 const char *env_var = __kmp_get_affinity_env_var(affinity); 4998 4999 if (affinity.flags.initialized) { 5000 KMP_ASSERT(__kmp_affin_fullMask != NULL); 5001 return; 5002 } 5003 5004 if (is_regular_affinity && (!__kmp_affin_fullMask || !__kmp_affin_origMask)) 5005 __kmp_aux_affinity_initialize_masks(affinity); 5006 5007 if (is_regular_affinity && !__kmp_topology) { 5008 bool success = __kmp_aux_affinity_initialize_topology(affinity); 5009 if (success) { 5010 KMP_ASSERT(__kmp_avail_proc == __kmp_topology->get_num_hw_threads()); 5011 } else { 5012 affinity.type = affinity_none; 5013 KMP_AFFINITY_DISABLE(); 5014 } 5015 } 5016 5017 // If KMP_AFFINITY=none, then only create the single "none" place 5018 // which is the process's initial affinity mask or the number of 5019 // hardware threads depending on respect,norespect 5020 if (affinity.type == affinity_none) { 5021 __kmp_create_affinity_none_places(affinity); 5022 #if KMP_USE_HIER_SCHED 5023 __kmp_dispatch_set_hierarchy_values(); 5024 #endif 5025 affinity.flags.initialized = TRUE; 5026 return; 5027 } 5028 5029 __kmp_topology->set_granularity(affinity); 5030 int depth = __kmp_topology->get_depth(); 5031 5032 // Create the table of masks, indexed by thread Id. 5033 unsigned numUnique = 0; 5034 int numAddrs = __kmp_topology->get_num_hw_threads(); 5035 // If OMP_PLACES=cores:<attribute> specified, then attempt 5036 // to make OS Id mask table using those attributes 5037 if (affinity.core_attr_gran.valid) { 5038 __kmp_create_os_id_masks(&numUnique, affinity, [&](int idx) { 5039 KMP_ASSERT(idx >= -1); 5040 for (int i = idx + 1; i < numAddrs; ++i) 5041 if (__kmp_topology->at(i).attrs.contains(affinity.core_attr_gran)) 5042 return i; 5043 return numAddrs; 5044 }); 5045 if (!affinity.os_id_masks) { 5046 const char *core_attribute; 5047 if (affinity.core_attr_gran.core_eff != kmp_hw_attr_t::UNKNOWN_CORE_EFF) 5048 core_attribute = "core_efficiency"; 5049 else 5050 core_attribute = "core_type"; 5051 KMP_AFF_WARNING(affinity, AffIgnoringNotAvailable, env_var, 5052 core_attribute, 5053 __kmp_hw_get_catalog_string(KMP_HW_CORE, /*plural=*/true)) 5054 } 5055 } 5056 // If core attributes did not work, or none were specified, 5057 // then make OS Id mask table using typical incremental way with 5058 // checking for validity of each id at granularity level specified. 5059 if (!affinity.os_id_masks) { 5060 int gran = affinity.gran_levels; 5061 int gran_level = depth - 1 - affinity.gran_levels; 5062 if (gran >= 0 && gran_level >= 0 && gran_level < depth) { 5063 __kmp_create_os_id_masks( 5064 &numUnique, affinity, [depth, numAddrs, &affinity](int idx) { 5065 KMP_ASSERT(idx >= -1); 5066 int gran = affinity.gran_levels; 5067 int gran_level = depth - 1 - affinity.gran_levels; 5068 for (int i = idx + 1; i < numAddrs; ++i) 5069 if ((gran >= depth) || 5070 (gran < depth && __kmp_topology->at(i).ids[gran_level] != 5071 kmp_hw_thread_t::UNKNOWN_ID)) 5072 return i; 5073 return numAddrs; 5074 }); 5075 } 5076 } 5077 // Final attempt to make OS Id mask table using typical incremental way. 5078 if (!affinity.os_id_masks) { 5079 __kmp_create_os_id_masks(&numUnique, affinity, [](int idx) { 5080 KMP_ASSERT(idx >= -1); 5081 return idx + 1; 5082 }); 5083 } 5084 5085 switch (affinity.type) { 5086 5087 case affinity_explicit: 5088 KMP_DEBUG_ASSERT(affinity.proclist != NULL); 5089 if (is_hidden_helper_affinity || 5090 __kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) { 5091 __kmp_affinity_process_proclist(affinity); 5092 } else { 5093 __kmp_affinity_process_placelist(affinity); 5094 } 5095 if (affinity.num_masks == 0) { 5096 KMP_AFF_WARNING(affinity, AffNoValidProcID); 5097 affinity.type = affinity_none; 5098 __kmp_create_affinity_none_places(affinity); 5099 affinity.flags.initialized = TRUE; 5100 return; 5101 } 5102 break; 5103 5104 // The other affinity types rely on sorting the hardware threads according to 5105 // some permutation of the machine topology tree. Set affinity.compact 5106 // and affinity.offset appropriately, then jump to a common code 5107 // fragment to do the sort and create the array of affinity masks. 5108 case affinity_logical: 5109 affinity.compact = 0; 5110 if (affinity.offset) { 5111 affinity.offset = 5112 __kmp_nThreadsPerCore * affinity.offset % __kmp_avail_proc; 5113 } 5114 goto sortTopology; 5115 5116 case affinity_physical: 5117 if (__kmp_nThreadsPerCore > 1) { 5118 affinity.compact = 1; 5119 if (affinity.compact >= depth) { 5120 affinity.compact = 0; 5121 } 5122 } else { 5123 affinity.compact = 0; 5124 } 5125 if (affinity.offset) { 5126 affinity.offset = 5127 __kmp_nThreadsPerCore * affinity.offset % __kmp_avail_proc; 5128 } 5129 goto sortTopology; 5130 5131 case affinity_scatter: 5132 if (affinity.compact >= depth) { 5133 affinity.compact = 0; 5134 } else { 5135 affinity.compact = depth - 1 - affinity.compact; 5136 } 5137 goto sortTopology; 5138 5139 case affinity_compact: 5140 if (affinity.compact >= depth) { 5141 affinity.compact = depth - 1; 5142 } 5143 goto sortTopology; 5144 5145 case affinity_balanced: 5146 if (depth <= 1 || is_hidden_helper_affinity) { 5147 KMP_AFF_WARNING(affinity, AffBalancedNotAvail, env_var); 5148 affinity.type = affinity_none; 5149 __kmp_create_affinity_none_places(affinity); 5150 affinity.flags.initialized = TRUE; 5151 return; 5152 } else if (!__kmp_topology->is_uniform()) { 5153 // Save the depth for further usage 5154 __kmp_aff_depth = depth; 5155 5156 int core_level = 5157 __kmp_affinity_find_core_level(__kmp_avail_proc, depth - 1); 5158 int ncores = __kmp_affinity_compute_ncores(__kmp_avail_proc, depth - 1, 5159 core_level); 5160 int maxprocpercore = __kmp_affinity_max_proc_per_core( 5161 __kmp_avail_proc, depth - 1, core_level); 5162 5163 int nproc = ncores * maxprocpercore; 5164 if ((nproc < 2) || (nproc < __kmp_avail_proc)) { 5165 KMP_AFF_WARNING(affinity, AffBalancedNotAvail, env_var); 5166 affinity.type = affinity_none; 5167 __kmp_create_affinity_none_places(affinity); 5168 affinity.flags.initialized = TRUE; 5169 return; 5170 } 5171 5172 procarr = (int *)__kmp_allocate(sizeof(int) * nproc); 5173 for (int i = 0; i < nproc; i++) { 5174 procarr[i] = -1; 5175 } 5176 5177 int lastcore = -1; 5178 int inlastcore = 0; 5179 for (int i = 0; i < __kmp_avail_proc; i++) { 5180 int proc = __kmp_topology->at(i).os_id; 5181 int core = __kmp_affinity_find_core(i, depth - 1, core_level); 5182 5183 if (core == lastcore) { 5184 inlastcore++; 5185 } else { 5186 inlastcore = 0; 5187 } 5188 lastcore = core; 5189 5190 procarr[core * maxprocpercore + inlastcore] = proc; 5191 } 5192 } 5193 if (affinity.compact >= depth) { 5194 affinity.compact = depth - 1; 5195 } 5196 5197 sortTopology: 5198 // Allocate the gtid->affinity mask table. 5199 if (affinity.flags.dups) { 5200 affinity.num_masks = __kmp_avail_proc; 5201 } else { 5202 affinity.num_masks = numUnique; 5203 } 5204 5205 if ((__kmp_nested_proc_bind.bind_types[0] != proc_bind_intel) && 5206 (__kmp_affinity_num_places > 0) && 5207 ((unsigned)__kmp_affinity_num_places < affinity.num_masks) && 5208 !is_hidden_helper_affinity) { 5209 affinity.num_masks = __kmp_affinity_num_places; 5210 } 5211 5212 KMP_CPU_ALLOC_ARRAY(affinity.masks, affinity.num_masks); 5213 5214 // Sort the topology table according to the current setting of 5215 // affinity.compact, then fill out affinity.masks. 5216 __kmp_topology->sort_compact(affinity); 5217 { 5218 int i; 5219 unsigned j; 5220 int num_hw_threads = __kmp_topology->get_num_hw_threads(); 5221 kmp_full_mask_modifier_t full_mask; 5222 for (i = 0, j = 0; i < num_hw_threads; i++) { 5223 if ((!affinity.flags.dups) && (!__kmp_topology->at(i).leader)) { 5224 continue; 5225 } 5226 int osId = __kmp_topology->at(i).os_id; 5227 5228 kmp_affin_mask_t *src = KMP_CPU_INDEX(affinity.os_id_masks, osId); 5229 if (KMP_CPU_ISEMPTY(src)) 5230 continue; 5231 kmp_affin_mask_t *dest = KMP_CPU_INDEX(affinity.masks, j); 5232 KMP_ASSERT(KMP_CPU_ISSET(osId, src)); 5233 KMP_CPU_COPY(dest, src); 5234 full_mask.include(src); 5235 if (++j >= affinity.num_masks) { 5236 break; 5237 } 5238 } 5239 KMP_DEBUG_ASSERT(j == affinity.num_masks); 5240 // See if the places list further restricts or changes the full mask 5241 if (full_mask.restrict_to_mask() && affinity.flags.verbose) { 5242 __kmp_topology->print(env_var); 5243 } 5244 } 5245 // Sort the topology back using ids 5246 __kmp_topology->sort_ids(); 5247 break; 5248 5249 default: 5250 KMP_ASSERT2(0, "Unexpected affinity setting"); 5251 } 5252 __kmp_aux_affinity_initialize_other_data(affinity); 5253 affinity.flags.initialized = TRUE; 5254 } 5255 5256 void __kmp_affinity_initialize(kmp_affinity_t &affinity) { 5257 // Much of the code above was written assuming that if a machine was not 5258 // affinity capable, then affinity type == affinity_none. 5259 // We now explicitly represent this as affinity type == affinity_disabled. 5260 // There are too many checks for affinity type == affinity_none in this code. 5261 // Instead of trying to change them all, check if 5262 // affinity type == affinity_disabled, and if so, slam it with affinity_none, 5263 // call the real initialization routine, then restore affinity type to 5264 // affinity_disabled. 5265 int disabled = (affinity.type == affinity_disabled); 5266 if (!KMP_AFFINITY_CAPABLE()) 5267 KMP_ASSERT(disabled); 5268 if (disabled) 5269 affinity.type = affinity_none; 5270 __kmp_aux_affinity_initialize(affinity); 5271 if (disabled) 5272 affinity.type = affinity_disabled; 5273 } 5274 5275 void __kmp_affinity_uninitialize(void) { 5276 for (kmp_affinity_t *affinity : __kmp_affinities) { 5277 if (affinity->masks != NULL) 5278 KMP_CPU_FREE_ARRAY(affinity->masks, affinity->num_masks); 5279 if (affinity->os_id_masks != NULL) 5280 KMP_CPU_FREE_ARRAY(affinity->os_id_masks, affinity->num_os_id_masks); 5281 if (affinity->proclist != NULL) 5282 __kmp_free(affinity->proclist); 5283 if (affinity->ids != NULL) 5284 __kmp_free(affinity->ids); 5285 if (affinity->attrs != NULL) 5286 __kmp_free(affinity->attrs); 5287 *affinity = KMP_AFFINITY_INIT(affinity->env_var); 5288 } 5289 if (__kmp_affin_origMask != NULL) { 5290 if (KMP_AFFINITY_CAPABLE()) { 5291 #if KMP_OS_AIX 5292 // Uninitialize by unbinding the thread. 5293 bindprocessor(BINDTHREAD, thread_self(), PROCESSOR_CLASS_ANY); 5294 #else 5295 __kmp_set_system_affinity(__kmp_affin_origMask, FALSE); 5296 #endif 5297 } 5298 KMP_CPU_FREE(__kmp_affin_origMask); 5299 __kmp_affin_origMask = NULL; 5300 } 5301 __kmp_affinity_num_places = 0; 5302 if (procarr != NULL) { 5303 __kmp_free(procarr); 5304 procarr = NULL; 5305 } 5306 if (__kmp_osid_to_hwthread_map) { 5307 __kmp_free(__kmp_osid_to_hwthread_map); 5308 __kmp_osid_to_hwthread_map = NULL; 5309 } 5310 #if KMP_USE_HWLOC 5311 if (__kmp_hwloc_topology != NULL) { 5312 hwloc_topology_destroy(__kmp_hwloc_topology); 5313 __kmp_hwloc_topology = NULL; 5314 } 5315 #endif 5316 if (__kmp_hw_subset) { 5317 kmp_hw_subset_t::deallocate(__kmp_hw_subset); 5318 __kmp_hw_subset = nullptr; 5319 } 5320 if (__kmp_topology) { 5321 kmp_topology_t::deallocate(__kmp_topology); 5322 __kmp_topology = nullptr; 5323 } 5324 KMPAffinity::destroy_api(); 5325 } 5326 5327 static void __kmp_select_mask_by_gtid(int gtid, const kmp_affinity_t *affinity, 5328 int *place, kmp_affin_mask_t **mask) { 5329 int mask_idx; 5330 bool is_hidden_helper = KMP_HIDDEN_HELPER_THREAD(gtid); 5331 if (is_hidden_helper) 5332 // The first gtid is the regular primary thread, the second gtid is the main 5333 // thread of hidden team which does not participate in task execution. 5334 mask_idx = gtid - 2; 5335 else 5336 mask_idx = __kmp_adjust_gtid_for_hidden_helpers(gtid); 5337 KMP_DEBUG_ASSERT(affinity->num_masks > 0); 5338 *place = (mask_idx + affinity->offset) % affinity->num_masks; 5339 *mask = KMP_CPU_INDEX(affinity->masks, *place); 5340 } 5341 5342 // This function initializes the per-thread data concerning affinity including 5343 // the mask and topology information 5344 void __kmp_affinity_set_init_mask(int gtid, int isa_root) { 5345 5346 kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]); 5347 5348 // Set the thread topology information to default of unknown 5349 for (int id = 0; id < KMP_HW_LAST; ++id) 5350 th->th.th_topology_ids.ids[id] = kmp_hw_thread_t::UNKNOWN_ID; 5351 th->th.th_topology_attrs = KMP_AFFINITY_ATTRS_UNKNOWN; 5352 5353 if (!KMP_AFFINITY_CAPABLE()) { 5354 return; 5355 } 5356 5357 if (th->th.th_affin_mask == NULL) { 5358 KMP_CPU_ALLOC(th->th.th_affin_mask); 5359 } else { 5360 KMP_CPU_ZERO(th->th.th_affin_mask); 5361 } 5362 5363 // Copy the thread mask to the kmp_info_t structure. If 5364 // __kmp_affinity.type == affinity_none, copy the "full" mask, i.e. 5365 // one that has all of the OS proc ids set, or if 5366 // __kmp_affinity.flags.respect is set, then the full mask is the 5367 // same as the mask of the initialization thread. 5368 kmp_affin_mask_t *mask; 5369 int i; 5370 const kmp_affinity_t *affinity; 5371 bool is_hidden_helper = KMP_HIDDEN_HELPER_THREAD(gtid); 5372 5373 if (is_hidden_helper) 5374 affinity = &__kmp_hh_affinity; 5375 else 5376 affinity = &__kmp_affinity; 5377 5378 if (KMP_AFFINITY_NON_PROC_BIND || is_hidden_helper) { 5379 if ((affinity->type == affinity_none) || 5380 (affinity->type == affinity_balanced) || 5381 KMP_HIDDEN_HELPER_MAIN_THREAD(gtid)) { 5382 #if KMP_GROUP_AFFINITY 5383 if (__kmp_num_proc_groups > 1) { 5384 return; 5385 } 5386 #endif 5387 KMP_ASSERT(__kmp_affin_fullMask != NULL); 5388 i = 0; 5389 mask = __kmp_affin_fullMask; 5390 } else { 5391 __kmp_select_mask_by_gtid(gtid, affinity, &i, &mask); 5392 } 5393 } else { 5394 if (!isa_root || __kmp_nested_proc_bind.bind_types[0] == proc_bind_false) { 5395 #if KMP_GROUP_AFFINITY 5396 if (__kmp_num_proc_groups > 1) { 5397 return; 5398 } 5399 #endif 5400 KMP_ASSERT(__kmp_affin_fullMask != NULL); 5401 i = KMP_PLACE_ALL; 5402 mask = __kmp_affin_fullMask; 5403 } else { 5404 __kmp_select_mask_by_gtid(gtid, affinity, &i, &mask); 5405 } 5406 } 5407 5408 th->th.th_current_place = i; 5409 if (isa_root && !is_hidden_helper) { 5410 th->th.th_new_place = i; 5411 th->th.th_first_place = 0; 5412 th->th.th_last_place = affinity->num_masks - 1; 5413 } else if (KMP_AFFINITY_NON_PROC_BIND) { 5414 // When using a Non-OMP_PROC_BIND affinity method, 5415 // set all threads' place-partition-var to the entire place list 5416 th->th.th_first_place = 0; 5417 th->th.th_last_place = affinity->num_masks - 1; 5418 } 5419 // Copy topology information associated with the place 5420 if (i >= 0) { 5421 th->th.th_topology_ids = __kmp_affinity.ids[i]; 5422 th->th.th_topology_attrs = __kmp_affinity.attrs[i]; 5423 } 5424 5425 if (i == KMP_PLACE_ALL) { 5426 KA_TRACE(100, ("__kmp_affinity_set_init_mask: setting T#%d to all places\n", 5427 gtid)); 5428 } else { 5429 KA_TRACE(100, ("__kmp_affinity_set_init_mask: setting T#%d to place %d\n", 5430 gtid, i)); 5431 } 5432 5433 KMP_CPU_COPY(th->th.th_affin_mask, mask); 5434 } 5435 5436 void __kmp_affinity_bind_init_mask(int gtid) { 5437 if (!KMP_AFFINITY_CAPABLE()) { 5438 return; 5439 } 5440 kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]); 5441 const kmp_affinity_t *affinity; 5442 const char *env_var; 5443 bool is_hidden_helper = KMP_HIDDEN_HELPER_THREAD(gtid); 5444 5445 if (is_hidden_helper) 5446 affinity = &__kmp_hh_affinity; 5447 else 5448 affinity = &__kmp_affinity; 5449 env_var = __kmp_get_affinity_env_var(*affinity, /*for_binding=*/true); 5450 /* to avoid duplicate printing (will be correctly printed on barrier) */ 5451 if (affinity->flags.verbose && (affinity->type == affinity_none || 5452 (th->th.th_current_place != KMP_PLACE_ALL && 5453 affinity->type != affinity_balanced)) && 5454 !KMP_HIDDEN_HELPER_MAIN_THREAD(gtid)) { 5455 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5456 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 5457 th->th.th_affin_mask); 5458 KMP_INFORM(BoundToOSProcSet, env_var, (kmp_int32)getpid(), __kmp_gettid(), 5459 gtid, buf); 5460 } 5461 5462 #if KMP_OS_WINDOWS 5463 // On Windows* OS, the process affinity mask might have changed. If the user 5464 // didn't request affinity and this call fails, just continue silently. 5465 // See CQ171393. 5466 if (affinity->type == affinity_none) { 5467 __kmp_set_system_affinity(th->th.th_affin_mask, FALSE); 5468 } else 5469 #endif 5470 #ifndef KMP_OS_AIX 5471 // Do not set the full mask as the init mask on AIX. 5472 __kmp_set_system_affinity(th->th.th_affin_mask, TRUE); 5473 #endif 5474 } 5475 5476 void __kmp_affinity_bind_place(int gtid) { 5477 // Hidden helper threads should not be affected by OMP_PLACES/OMP_PROC_BIND 5478 if (!KMP_AFFINITY_CAPABLE() || KMP_HIDDEN_HELPER_THREAD(gtid)) { 5479 return; 5480 } 5481 5482 kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]); 5483 5484 KA_TRACE(100, ("__kmp_affinity_bind_place: binding T#%d to place %d (current " 5485 "place = %d)\n", 5486 gtid, th->th.th_new_place, th->th.th_current_place)); 5487 5488 // Check that the new place is within this thread's partition. 5489 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); 5490 KMP_ASSERT(th->th.th_new_place >= 0); 5491 KMP_ASSERT((unsigned)th->th.th_new_place <= __kmp_affinity.num_masks); 5492 if (th->th.th_first_place <= th->th.th_last_place) { 5493 KMP_ASSERT((th->th.th_new_place >= th->th.th_first_place) && 5494 (th->th.th_new_place <= th->th.th_last_place)); 5495 } else { 5496 KMP_ASSERT((th->th.th_new_place <= th->th.th_first_place) || 5497 (th->th.th_new_place >= th->th.th_last_place)); 5498 } 5499 5500 // Copy the thread mask to the kmp_info_t structure, 5501 // and set this thread's affinity. 5502 kmp_affin_mask_t *mask = 5503 KMP_CPU_INDEX(__kmp_affinity.masks, th->th.th_new_place); 5504 KMP_CPU_COPY(th->th.th_affin_mask, mask); 5505 th->th.th_current_place = th->th.th_new_place; 5506 5507 if (__kmp_affinity.flags.verbose) { 5508 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5509 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 5510 th->th.th_affin_mask); 5511 KMP_INFORM(BoundToOSProcSet, "OMP_PROC_BIND", (kmp_int32)getpid(), 5512 __kmp_gettid(), gtid, buf); 5513 } 5514 __kmp_set_system_affinity(th->th.th_affin_mask, TRUE); 5515 } 5516 5517 int __kmp_aux_set_affinity(void **mask) { 5518 int gtid; 5519 kmp_info_t *th; 5520 int retval; 5521 5522 if (!KMP_AFFINITY_CAPABLE()) { 5523 return -1; 5524 } 5525 5526 gtid = __kmp_entry_gtid(); 5527 KA_TRACE( 5528 1000, (""); { 5529 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5530 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 5531 (kmp_affin_mask_t *)(*mask)); 5532 __kmp_debug_printf( 5533 "kmp_set_affinity: setting affinity mask for thread %d = %s\n", 5534 gtid, buf); 5535 }); 5536 5537 if (__kmp_env_consistency_check) { 5538 if ((mask == NULL) || (*mask == NULL)) { 5539 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 5540 } else { 5541 unsigned proc; 5542 int num_procs = 0; 5543 5544 KMP_CPU_SET_ITERATE(proc, ((kmp_affin_mask_t *)(*mask))) { 5545 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 5546 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 5547 } 5548 if (!KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask))) { 5549 continue; 5550 } 5551 num_procs++; 5552 } 5553 if (num_procs == 0) { 5554 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 5555 } 5556 5557 #if KMP_GROUP_AFFINITY 5558 if (__kmp_get_proc_group((kmp_affin_mask_t *)(*mask)) < 0) { 5559 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 5560 } 5561 #endif /* KMP_GROUP_AFFINITY */ 5562 } 5563 } 5564 5565 th = __kmp_threads[gtid]; 5566 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); 5567 retval = __kmp_set_system_affinity((kmp_affin_mask_t *)(*mask), FALSE); 5568 if (retval == 0) { 5569 KMP_CPU_COPY(th->th.th_affin_mask, (kmp_affin_mask_t *)(*mask)); 5570 } 5571 5572 th->th.th_current_place = KMP_PLACE_UNDEFINED; 5573 th->th.th_new_place = KMP_PLACE_UNDEFINED; 5574 th->th.th_first_place = 0; 5575 th->th.th_last_place = __kmp_affinity.num_masks - 1; 5576 5577 // Turn off 4.0 affinity for the current tread at this parallel level. 5578 th->th.th_current_task->td_icvs.proc_bind = proc_bind_false; 5579 5580 return retval; 5581 } 5582 5583 int __kmp_aux_get_affinity(void **mask) { 5584 int gtid; 5585 int retval; 5586 #if KMP_OS_WINDOWS || KMP_OS_AIX || KMP_DEBUG 5587 kmp_info_t *th; 5588 #endif 5589 if (!KMP_AFFINITY_CAPABLE()) { 5590 return -1; 5591 } 5592 5593 gtid = __kmp_entry_gtid(); 5594 #if KMP_OS_WINDOWS || KMP_OS_AIX || KMP_DEBUG 5595 th = __kmp_threads[gtid]; 5596 #else 5597 (void)gtid; // unused variable 5598 #endif 5599 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); 5600 5601 KA_TRACE( 5602 1000, (""); { 5603 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5604 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 5605 th->th.th_affin_mask); 5606 __kmp_printf( 5607 "kmp_get_affinity: stored affinity mask for thread %d = %s\n", gtid, 5608 buf); 5609 }); 5610 5611 if (__kmp_env_consistency_check) { 5612 if ((mask == NULL) || (*mask == NULL)) { 5613 KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity"); 5614 } 5615 } 5616 5617 #if !KMP_OS_WINDOWS && !KMP_OS_AIX 5618 5619 retval = __kmp_get_system_affinity((kmp_affin_mask_t *)(*mask), FALSE); 5620 KA_TRACE( 5621 1000, (""); { 5622 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5623 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 5624 (kmp_affin_mask_t *)(*mask)); 5625 __kmp_printf( 5626 "kmp_get_affinity: system affinity mask for thread %d = %s\n", gtid, 5627 buf); 5628 }); 5629 return retval; 5630 5631 #else 5632 (void)retval; 5633 5634 KMP_CPU_COPY((kmp_affin_mask_t *)(*mask), th->th.th_affin_mask); 5635 return 0; 5636 5637 #endif /* !KMP_OS_WINDOWS && !KMP_OS_AIX */ 5638 } 5639 5640 int __kmp_aux_get_affinity_max_proc() { 5641 if (!KMP_AFFINITY_CAPABLE()) { 5642 return 0; 5643 } 5644 #if KMP_GROUP_AFFINITY 5645 if (__kmp_num_proc_groups > 1) { 5646 return (int)(__kmp_num_proc_groups * sizeof(DWORD_PTR) * CHAR_BIT); 5647 } 5648 #endif 5649 return __kmp_xproc; 5650 } 5651 5652 int __kmp_aux_set_affinity_mask_proc(int proc, void **mask) { 5653 if (!KMP_AFFINITY_CAPABLE()) { 5654 return -1; 5655 } 5656 5657 KA_TRACE( 5658 1000, (""); { 5659 int gtid = __kmp_entry_gtid(); 5660 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5661 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 5662 (kmp_affin_mask_t *)(*mask)); 5663 __kmp_debug_printf("kmp_set_affinity_mask_proc: setting proc %d in " 5664 "affinity mask for thread %d = %s\n", 5665 proc, gtid, buf); 5666 }); 5667 5668 if (__kmp_env_consistency_check) { 5669 if ((mask == NULL) || (*mask == NULL)) { 5670 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity_mask_proc"); 5671 } 5672 } 5673 5674 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { 5675 return -1; 5676 } 5677 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 5678 return -2; 5679 } 5680 5681 KMP_CPU_SET(proc, (kmp_affin_mask_t *)(*mask)); 5682 return 0; 5683 } 5684 5685 int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask) { 5686 if (!KMP_AFFINITY_CAPABLE()) { 5687 return -1; 5688 } 5689 5690 KA_TRACE( 5691 1000, (""); { 5692 int gtid = __kmp_entry_gtid(); 5693 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5694 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 5695 (kmp_affin_mask_t *)(*mask)); 5696 __kmp_debug_printf("kmp_unset_affinity_mask_proc: unsetting proc %d in " 5697 "affinity mask for thread %d = %s\n", 5698 proc, gtid, buf); 5699 }); 5700 5701 if (__kmp_env_consistency_check) { 5702 if ((mask == NULL) || (*mask == NULL)) { 5703 KMP_FATAL(AffinityInvalidMask, "kmp_unset_affinity_mask_proc"); 5704 } 5705 } 5706 5707 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { 5708 return -1; 5709 } 5710 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 5711 return -2; 5712 } 5713 5714 KMP_CPU_CLR(proc, (kmp_affin_mask_t *)(*mask)); 5715 return 0; 5716 } 5717 5718 int __kmp_aux_get_affinity_mask_proc(int proc, void **mask) { 5719 if (!KMP_AFFINITY_CAPABLE()) { 5720 return -1; 5721 } 5722 5723 KA_TRACE( 5724 1000, (""); { 5725 int gtid = __kmp_entry_gtid(); 5726 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5727 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 5728 (kmp_affin_mask_t *)(*mask)); 5729 __kmp_debug_printf("kmp_get_affinity_mask_proc: getting proc %d in " 5730 "affinity mask for thread %d = %s\n", 5731 proc, gtid, buf); 5732 }); 5733 5734 if (__kmp_env_consistency_check) { 5735 if ((mask == NULL) || (*mask == NULL)) { 5736 KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity_mask_proc"); 5737 } 5738 } 5739 5740 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { 5741 return -1; 5742 } 5743 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 5744 return 0; 5745 } 5746 5747 return KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask)); 5748 } 5749 5750 #if KMP_WEIGHTED_ITERATIONS_SUPPORTED 5751 // Returns first os proc id with ATOM core 5752 int __kmp_get_first_osid_with_ecore(void) { 5753 int low = 0; 5754 int high = __kmp_topology->get_num_hw_threads() - 1; 5755 int mid = 0; 5756 while (high - low > 1) { 5757 mid = (high + low) / 2; 5758 if (__kmp_topology->at(mid).attrs.get_core_type() == 5759 KMP_HW_CORE_TYPE_CORE) { 5760 low = mid + 1; 5761 } else { 5762 high = mid; 5763 } 5764 } 5765 if (__kmp_topology->at(mid).attrs.get_core_type() == KMP_HW_CORE_TYPE_ATOM) { 5766 return mid; 5767 } 5768 return -1; 5769 } 5770 #endif 5771 5772 // Dynamic affinity settings - Affinity balanced 5773 void __kmp_balanced_affinity(kmp_info_t *th, int nthreads) { 5774 KMP_DEBUG_ASSERT(th); 5775 bool fine_gran = true; 5776 int tid = th->th.th_info.ds.ds_tid; 5777 const char *env_var = "KMP_AFFINITY"; 5778 5779 // Do not perform balanced affinity for the hidden helper threads 5780 if (KMP_HIDDEN_HELPER_THREAD(__kmp_gtid_from_thread(th))) 5781 return; 5782 5783 switch (__kmp_affinity.gran) { 5784 case KMP_HW_THREAD: 5785 break; 5786 case KMP_HW_CORE: 5787 if (__kmp_nThreadsPerCore > 1) { 5788 fine_gran = false; 5789 } 5790 break; 5791 case KMP_HW_SOCKET: 5792 if (nCoresPerPkg > 1) { 5793 fine_gran = false; 5794 } 5795 break; 5796 default: 5797 fine_gran = false; 5798 } 5799 5800 if (__kmp_topology->is_uniform()) { 5801 int coreID; 5802 int threadID; 5803 // Number of hyper threads per core in HT machine 5804 int __kmp_nth_per_core = __kmp_avail_proc / __kmp_ncores; 5805 // Number of cores 5806 int ncores = __kmp_ncores; 5807 if ((nPackages > 1) && (__kmp_nth_per_core <= 1)) { 5808 __kmp_nth_per_core = __kmp_avail_proc / nPackages; 5809 ncores = nPackages; 5810 } 5811 // How many threads will be bound to each core 5812 int chunk = nthreads / ncores; 5813 // How many cores will have an additional thread bound to it - "big cores" 5814 int big_cores = nthreads % ncores; 5815 // Number of threads on the big cores 5816 int big_nth = (chunk + 1) * big_cores; 5817 if (tid < big_nth) { 5818 coreID = tid / (chunk + 1); 5819 threadID = (tid % (chunk + 1)) % __kmp_nth_per_core; 5820 } else { // tid >= big_nth 5821 coreID = (tid - big_cores) / chunk; 5822 threadID = ((tid - big_cores) % chunk) % __kmp_nth_per_core; 5823 } 5824 KMP_DEBUG_ASSERT2(KMP_AFFINITY_CAPABLE(), 5825 "Illegal set affinity operation when not capable"); 5826 5827 kmp_affin_mask_t *mask = th->th.th_affin_mask; 5828 KMP_CPU_ZERO(mask); 5829 5830 if (fine_gran) { 5831 int osID = 5832 __kmp_topology->at(coreID * __kmp_nth_per_core + threadID).os_id; 5833 KMP_CPU_SET(osID, mask); 5834 } else { 5835 for (int i = 0; i < __kmp_nth_per_core; i++) { 5836 int osID; 5837 osID = __kmp_topology->at(coreID * __kmp_nth_per_core + i).os_id; 5838 KMP_CPU_SET(osID, mask); 5839 } 5840 } 5841 if (__kmp_affinity.flags.verbose) { 5842 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5843 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask); 5844 KMP_INFORM(BoundToOSProcSet, env_var, (kmp_int32)getpid(), __kmp_gettid(), 5845 tid, buf); 5846 } 5847 __kmp_affinity_get_thread_topology_info(th); 5848 __kmp_set_system_affinity(mask, TRUE); 5849 } else { // Non-uniform topology 5850 5851 kmp_affin_mask_t *mask = th->th.th_affin_mask; 5852 KMP_CPU_ZERO(mask); 5853 5854 int core_level = 5855 __kmp_affinity_find_core_level(__kmp_avail_proc, __kmp_aff_depth - 1); 5856 int ncores = __kmp_affinity_compute_ncores(__kmp_avail_proc, 5857 __kmp_aff_depth - 1, core_level); 5858 int nth_per_core = __kmp_affinity_max_proc_per_core( 5859 __kmp_avail_proc, __kmp_aff_depth - 1, core_level); 5860 5861 // For performance gain consider the special case nthreads == 5862 // __kmp_avail_proc 5863 if (nthreads == __kmp_avail_proc) { 5864 if (fine_gran) { 5865 int osID = __kmp_topology->at(tid).os_id; 5866 KMP_CPU_SET(osID, mask); 5867 } else { 5868 int core = 5869 __kmp_affinity_find_core(tid, __kmp_aff_depth - 1, core_level); 5870 for (int i = 0; i < __kmp_avail_proc; i++) { 5871 int osID = __kmp_topology->at(i).os_id; 5872 if (__kmp_affinity_find_core(i, __kmp_aff_depth - 1, core_level) == 5873 core) { 5874 KMP_CPU_SET(osID, mask); 5875 } 5876 } 5877 } 5878 } else if (nthreads <= ncores) { 5879 5880 int core = 0; 5881 for (int i = 0; i < ncores; i++) { 5882 // Check if this core from procarr[] is in the mask 5883 int in_mask = 0; 5884 for (int j = 0; j < nth_per_core; j++) { 5885 if (procarr[i * nth_per_core + j] != -1) { 5886 in_mask = 1; 5887 break; 5888 } 5889 } 5890 if (in_mask) { 5891 if (tid == core) { 5892 for (int j = 0; j < nth_per_core; j++) { 5893 int osID = procarr[i * nth_per_core + j]; 5894 if (osID != -1) { 5895 KMP_CPU_SET(osID, mask); 5896 // For fine granularity it is enough to set the first available 5897 // osID for this core 5898 if (fine_gran) { 5899 break; 5900 } 5901 } 5902 } 5903 break; 5904 } else { 5905 core++; 5906 } 5907 } 5908 } 5909 } else { // nthreads > ncores 5910 // Array to save the number of processors at each core 5911 int *nproc_at_core = (int *)KMP_ALLOCA(sizeof(int) * ncores); 5912 // Array to save the number of cores with "x" available processors; 5913 int *ncores_with_x_procs = 5914 (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1)); 5915 // Array to save the number of cores with # procs from x to nth_per_core 5916 int *ncores_with_x_to_max_procs = 5917 (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1)); 5918 5919 for (int i = 0; i <= nth_per_core; i++) { 5920 ncores_with_x_procs[i] = 0; 5921 ncores_with_x_to_max_procs[i] = 0; 5922 } 5923 5924 for (int i = 0; i < ncores; i++) { 5925 int cnt = 0; 5926 for (int j = 0; j < nth_per_core; j++) { 5927 if (procarr[i * nth_per_core + j] != -1) { 5928 cnt++; 5929 } 5930 } 5931 nproc_at_core[i] = cnt; 5932 ncores_with_x_procs[cnt]++; 5933 } 5934 5935 for (int i = 0; i <= nth_per_core; i++) { 5936 for (int j = i; j <= nth_per_core; j++) { 5937 ncores_with_x_to_max_procs[i] += ncores_with_x_procs[j]; 5938 } 5939 } 5940 5941 // Max number of processors 5942 int nproc = nth_per_core * ncores; 5943 // An array to keep number of threads per each context 5944 int *newarr = (int *)__kmp_allocate(sizeof(int) * nproc); 5945 for (int i = 0; i < nproc; i++) { 5946 newarr[i] = 0; 5947 } 5948 5949 int nth = nthreads; 5950 int flag = 0; 5951 while (nth > 0) { 5952 for (int j = 1; j <= nth_per_core; j++) { 5953 int cnt = ncores_with_x_to_max_procs[j]; 5954 for (int i = 0; i < ncores; i++) { 5955 // Skip the core with 0 processors 5956 if (nproc_at_core[i] == 0) { 5957 continue; 5958 } 5959 for (int k = 0; k < nth_per_core; k++) { 5960 if (procarr[i * nth_per_core + k] != -1) { 5961 if (newarr[i * nth_per_core + k] == 0) { 5962 newarr[i * nth_per_core + k] = 1; 5963 cnt--; 5964 nth--; 5965 break; 5966 } else { 5967 if (flag != 0) { 5968 newarr[i * nth_per_core + k]++; 5969 cnt--; 5970 nth--; 5971 break; 5972 } 5973 } 5974 } 5975 } 5976 if (cnt == 0 || nth == 0) { 5977 break; 5978 } 5979 } 5980 if (nth == 0) { 5981 break; 5982 } 5983 } 5984 flag = 1; 5985 } 5986 int sum = 0; 5987 for (int i = 0; i < nproc; i++) { 5988 sum += newarr[i]; 5989 if (sum > tid) { 5990 if (fine_gran) { 5991 int osID = procarr[i]; 5992 KMP_CPU_SET(osID, mask); 5993 } else { 5994 int coreID = i / nth_per_core; 5995 for (int ii = 0; ii < nth_per_core; ii++) { 5996 int osID = procarr[coreID * nth_per_core + ii]; 5997 if (osID != -1) { 5998 KMP_CPU_SET(osID, mask); 5999 } 6000 } 6001 } 6002 break; 6003 } 6004 } 6005 __kmp_free(newarr); 6006 } 6007 6008 if (__kmp_affinity.flags.verbose) { 6009 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 6010 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask); 6011 KMP_INFORM(BoundToOSProcSet, env_var, (kmp_int32)getpid(), __kmp_gettid(), 6012 tid, buf); 6013 } 6014 __kmp_affinity_get_thread_topology_info(th); 6015 __kmp_set_system_affinity(mask, TRUE); 6016 } 6017 } 6018 6019 #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD || KMP_OS_DRAGONFLY || \ 6020 KMP_OS_AIX 6021 // We don't need this entry for Windows because 6022 // there is GetProcessAffinityMask() api 6023 // 6024 // The intended usage is indicated by these steps: 6025 // 1) The user gets the current affinity mask 6026 // 2) Then sets the affinity by calling this function 6027 // 3) Error check the return value 6028 // 4) Use non-OpenMP parallelization 6029 // 5) Reset the affinity to what was stored in step 1) 6030 #ifdef __cplusplus 6031 extern "C" 6032 #endif 6033 int 6034 kmp_set_thread_affinity_mask_initial() 6035 // the function returns 0 on success, 6036 // -1 if we cannot bind thread 6037 // >0 (errno) if an error happened during binding 6038 { 6039 int gtid = __kmp_get_gtid(); 6040 if (gtid < 0) { 6041 // Do not touch non-omp threads 6042 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: " 6043 "non-omp thread, returning\n")); 6044 return -1; 6045 } 6046 if (!KMP_AFFINITY_CAPABLE() || !__kmp_init_middle) { 6047 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: " 6048 "affinity not initialized, returning\n")); 6049 return -1; 6050 } 6051 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: " 6052 "set full mask for thread %d\n", 6053 gtid)); 6054 KMP_DEBUG_ASSERT(__kmp_affin_fullMask != NULL); 6055 #if KMP_OS_AIX 6056 return bindprocessor(BINDTHREAD, thread_self(), PROCESSOR_CLASS_ANY); 6057 #else 6058 return __kmp_set_system_affinity(__kmp_affin_fullMask, FALSE); 6059 #endif 6060 } 6061 #endif 6062 6063 #endif // KMP_AFFINITY_SUPPORTED 6064