xref: /llvm-project/mlir/test/Interfaces/TilingInterface/tile-using-scfforall.mlir (revision d28a4f1fc02dc34a87fa22af0a053e8f1e7f6cea)
1// RUN: mlir-opt  -transform-interpreter -split-input-file --cse %s | FileCheck %s
2
3func.func @simple_matmul(%arg0 : tensor<?x?xf32>, %arg1 : tensor<?x?xf32>,
4    %arg2 : tensor<?x?xf32>) -> tensor<?x?xf32> {
5  %0 = linalg.matmul
6    ins(%arg0, %arg1 : tensor<?x?xf32>, tensor<?x?xf32>)
7      outs(%arg2 : tensor<?x?xf32>) -> tensor<?x?xf32>
8  return %0 : tensor<?x?xf32>
9}
10
11module attributes {transform.with_named_sequence} {
12  transform.named_sequence @__transform_main(%arg1 : !transform.any_op {transform.readonly}) {
13    %matmul = transform.structured.match ops{["linalg.matmul"]} in %arg1
14      : (!transform.any_op) -> !transform.any_op
15    %a, %b = transform.test.tile_using_forall %matmul [10, 20] mapping = [#gpu.block<y>, #gpu.block<x>]
16      : (!transform.any_op) -> (!transform.any_op, !transform.any_op)
17    transform.yield
18  }
19}
20//  CHECK-DAG: #[[MAP0:.+]] = affine_map<(d0)[s0] -> (-d0 + s0, 10)>
21//  CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0)[s0] -> (-d0 + s0, 20)>
22//      CHECK: func.func @simple_matmul(
23// CHECK-SAME:     %[[ARG0:[a-zA-Z0-9]+]]: tensor<?x?xf32>
24// CHECK-SAME:     %[[ARG1:[a-zA-Z0-9]+]]: tensor<?x?xf32>
25// CHECK-SAME:     %[[ARG2:[a-zA-Z0-9]+]]: tensor<?x?xf32>
26//  CHECK-DAG:   %[[C0:.+]] = arith.constant 0 : index
27//  CHECK-DAG:   %[[C1:.+]] = arith.constant 1 : index
28//  CHECK-DAG:   %[[M:.+]] = tensor.dim %[[ARG0]], %[[C0]]
29//  CHECK-DAG:   %[[K:.+]] = tensor.dim %[[ARG0]], %[[C1]]
30//  CHECK-DAG:   %[[N:.+]] = tensor.dim %[[ARG1]], %[[C1]]
31//      CHECK:   %[[RESULT:.+]] = scf.forall (%[[IV0:[a-zA-Z0-9]+]], %[[IV1:[a-zA-Z0-9]+]]) =
32// CHECK-SAME:       (0, 0) to (%[[M]], %[[N]]) step (10, 20) shared_outs(%[[INIT:.+]] = %[[ARG2]])
33//      CHECK:     %[[TS_Y:.+]] = affine.min #[[MAP0]](%[[IV0]])[%[[M]]]
34//      CHECK:     %[[TS_X:.+]] = affine.min #[[MAP1]](%[[IV1]])[%[[N]]]
35//      CHECK:     %[[LHS_TILE:.+]] = tensor.extract_slice %[[ARG0]]
36// CHECK-SAME:         [%[[IV0]], 0] [%[[TS_Y]], %[[K]]] [1, 1]
37//      CHECK:     %[[RHS_TILE:.+]] = tensor.extract_slice %[[ARG1]]
38// CHECK-SAME:         [0, %[[IV1]]] [%[[K]], %[[TS_X]]] [1, 1]
39//      CHECK:     %[[INIT_TILE:.+]] = tensor.extract_slice %[[INIT]]
40// CHECK-SAME:         [%[[IV0]], %[[IV1]]] [%[[TS_Y]], %[[TS_X]]] [1, 1]
41//      CHECK:     %[[GEMM_TILE:.+]] = linalg.matmul
42// CHECK-SAME:         ins(%[[LHS_TILE]], %[[RHS_TILE]] :
43// CHECK-SAME:         outs(%[[INIT_TILE]] :
44//      CHECK:     scf.forall.in_parallel {
45//      CHECK:       tensor.parallel_insert_slice %[[GEMM_TILE]] into %[[INIT]]
46// CHECK-SAME:           [%[[IV0]], %[[IV1]]] [%[[TS_Y]], %[[TS_X]]] [1, 1]
47//      CHECK:       mapping = [#gpu.block<y>, #gpu.block<x>]
48//      CHECK:   return %[[RESULT]]
49
50// -----
51
52func.func @simple_matmul_memref(%arg0 : memref<?x?xf32>, %arg1 : memref<?x?xf32>,
53    %arg2 : memref<?x?xf32>) {
54  linalg.matmul ins(%arg0, %arg1 : memref<?x?xf32>, memref<?x?xf32>)
55      outs(%arg2 : memref<?x?xf32>)
56  return
57}
58
59module attributes {transform.with_named_sequence} {
60  transform.named_sequence @__transform_main(%arg1 : !transform.any_op {transform.readonly}) {
61    %matmul = transform.structured.match ops{["linalg.matmul"]} in %arg1
62      : (!transform.any_op) -> !transform.any_op
63    %a, %b = transform.test.tile_using_forall %matmul [10, 20]
64      : (!transform.any_op) -> (!transform.any_op, !transform.any_op)
65    transform.yield
66  }
67}
68//  CHECK-DAG: #[[$MAP0:.+]] = affine_map<(d0)[s0] -> (-d0 + s0, 10)>
69//  CHECK-DAG: #[[$MAP1:.+]] = affine_map<(d0)[s0] -> (-d0 + s0, 20)>
70//      CHECK-LABEL: func.func @simple_matmul_memref(
71// CHECK-SAME:     %[[ARG0:[a-zA-Z0-9]+]]: memref<?x?xf32>
72// CHECK-SAME:     %[[ARG1:[a-zA-Z0-9]+]]: memref<?x?xf32>
73// CHECK-SAME:     %[[ARG2:[a-zA-Z0-9]+]]: memref<?x?xf32>
74//  CHECK-DAG:   %[[C0:.+]] = arith.constant 0 : index
75//  CHECK-DAG:   %[[C1:.+]] = arith.constant 1 : index
76//  CHECK-DAG:   %[[M:.+]] = memref.dim %[[ARG0]], %[[C0]]
77//  CHECK-DAG:   %[[K:.+]] = memref.dim %[[ARG0]], %[[C1]]
78//  CHECK-DAG:   %[[N:.+]] = memref.dim %[[ARG1]], %[[C1]]
79//      CHECK:   scf.forall (%[[IV0:[a-zA-Z0-9]+]], %[[IV1:[a-zA-Z0-9]+]]) = (0, 0) to (%[[M]], %[[N]]) step (10, 20) {
80//  CHECK-DAG:     %[[TS_M:.+]] = affine.min #[[$MAP0]](%[[IV0]])[%[[M]]]
81//  CHECK-DAG:     %[[TS_N:.+]] = affine.min #[[$MAP1]](%[[IV1]])[%[[N]]]
82//  CHECK-DAG:     %[[LHS_TILE:.+]] = memref.subview %[[ARG0]]
83// CHECK-SAME:         [%[[IV0]], 0] [%[[TS_M]], %[[K]]] [1, 1]
84//  CHECK-DAG:     %[[RHS_TILE:.+]] = memref.subview %[[ARG1]]
85// CHECK-SAME:         [0, %[[IV1]]] [%[[K]], %[[TS_N]]] [1, 1]
86//  CHECK-DAG:     %[[OUT_TILE:.+]] = memref.subview %[[ARG2]]
87// CHECK-SAME:         [%[[IV0]], %[[IV1]]] [%[[TS_M]], %[[TS_N]]] [1, 1]
88//      CHECK:     linalg.matmul
89// CHECK-SAME:             ins(%[[LHS_TILE]], %[[RHS_TILE]] :
90// CHECK-SAME:             outs(%[[OUT_TILE]] :
91
92// -----
93
94#map0 = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
95#map1 = affine_map<(d0, d1, d2) -> (d0, d2, d1)>
96#map2 = affine_map<(d0, d1, d2) -> (d2, d0, d1)>
97func.func @multi_result(%arg0 : tensor<128x200x300xf32>) -> (tensor<128x300x200xf32>, tensor<300x128x200xf32>) {
98  %init0 = tensor.empty() : tensor<128x300x200xf32>
99  %init1 = tensor.empty() : tensor<300x128x200xf32>
100  %0:2 = linalg.generic {
101      indexing_maps = [#map0, #map1, #map2],
102      iterator_types = ["parallel", "parallel", "parallel"]}
103      ins(%arg0 : tensor<128x200x300xf32>)
104      outs(%init0, %init1 : tensor<128x300x200xf32>, tensor<300x128x200xf32>) {
105    ^bb0(%b0 : f32, %b1 : f32, %b2 : f32):
106      linalg.yield %b0, %b0 : f32, f32
107    } -> (tensor<128x300x200xf32>, tensor<300x128x200xf32>)
108  return %0#0, %0#1 : tensor<128x300x200xf32>, tensor<300x128x200xf32>
109}
110
111module attributes {transform.with_named_sequence} {
112  transform.named_sequence @__transform_main(%arg1 : !transform.any_op {transform.readonly}) {
113    %generic = transform.structured.match ops{["linalg.generic"]} in %arg1
114      : (!transform.any_op) -> !transform.any_op
115    %a, %b = transform.test.tile_using_forall %generic [10, 0, 20]
116      : (!transform.any_op) -> (!transform.any_op, !transform.any_op)
117    transform.yield
118  }
119}
120//  CHECK-DAG: #[[$MAP0:.+]] = affine_map<(d0) -> (-d0 + 128, 10)>
121//      CHECK-LABEL: func.func @multi_result(
122// CHECK-SAME:     %[[ARG0:[a-zA-Z0-9]+]]: tensor<128x200x300xf32>)
123//  CHECK-DAG:   %[[INIT0:.+]] = tensor.empty()
124//  CHECK-DAG:   %[[INIT1:.+]] = tensor.empty()
125//      CHECK:   %[[OUTER:[a-zA-Z0-9]+]]:2 = scf.forall (%[[IV0:[a-zA-Z0-9]+]], %[[IV1:[a-zA-Z0-9]+]]) = (0, 0) to (128, 300) step (10, 20)
126// CHECK-SAME:       shared_outs(%[[ARG1:[a-zA-Z0-9]+]] = %[[INIT0]], %[[ARG2:[a-zA-Z0-9]+]] = %[[INIT1]])
127//      CHECK:     %[[TS_Y:.+]] = affine.min #[[$MAP0]](%[[IV0]])
128//      CHECK:     %[[ARG_TILE:.+]] = tensor.extract_slice %[[ARG0]]
129// CHECK-SAME:         [%[[IV0]], 0, %[[IV1]]] [%[[TS_Y]], 200, 20] [1, 1, 1]
130//  CHECK-DAG:     %[[INIT0_TILE:.+]] = tensor.extract_slice %[[ARG1]]
131// CHECK-SAME:         [%[[IV0]], %[[IV1]], 0] [%[[TS_Y]], 20, 200] [1, 1, 1]
132//  CHECK-DAG:     %[[INIT1_TILE:.+]] = tensor.extract_slice %[[ARG2]]
133// CHECK-SAME:         [%[[IV1]], %[[IV0]], 0] [20, %[[TS_Y]], 200] [1, 1, 1]
134//      CHECK:     %[[RESULT_TILE:.+]]:2 = linalg.generic
135// CHECK-SAME:         ins(%[[ARG_TILE]] :
136// CHECK-SAME:         outs(%[[INIT0_TILE]], %[[INIT1_TILE]] :
137//      CHECK:     scf.forall.in_parallel {
138//  CHECK-DAG:       tensor.parallel_insert_slice %[[RESULT_TILE]]#0 into %[[ARG1]][%[[IV0]], %[[IV1]], 0] [%[[TS_Y]], 20, 200] [1, 1, 1]
139//  CHECK-DAG:       tensor.parallel_insert_slice %[[RESULT_TILE]]#1 into %[[ARG2]][%[[IV1]], %[[IV0]], 0] [20, %[[TS_Y]], 200] [1, 1, 1]
140//      CHECK:     }
141//      CHECK:   return %[[OUTER]]#0, %[[OUTER]]#1
142
143// -----
144
145func.func @conv2D(%arg0 : tensor<?x?x?x?xf32>, %arg1 : tensor<?x?x?x?xf32>,
146    %arg2 : tensor<?x?x?x?xf32>) -> tensor<?x?x?x?xf32> {
147  %0 = linalg.conv_2d_nhwc_hwcf {
148      strides = dense<[2, 3]> : tensor<2xi64>,
149      dilation = dense<[4, 5]> : tensor<2xi64>}
150      ins(%arg0, %arg1 : tensor<?x?x?x?xf32>, tensor<?x?x?x?xf32>)
151      outs(%arg2 : tensor<?x?x?x?xf32>) -> tensor<?x?x?x?xf32>
152  return %0 : tensor<?x?x?x?xf32>
153}
154
155module attributes {transform.with_named_sequence} {
156  transform.named_sequence @__transform_main(%arg1 : !transform.any_op {transform.readonly}) {
157    %conv = transform.structured.match ops{["linalg.conv_2d_nhwc_hwcf"]} in %arg1
158      : (!transform.any_op) -> !transform.any_op
159    %a, %b = transform.test.tile_using_forall %conv [0, 0, 0, 0, 10, 20, 30]
160      : (!transform.any_op) -> (!transform.any_op, !transform.any_op)
161    transform.yield
162  }
163}
164//  CHECK-DAG: #[[$MAP0:.+]] = affine_map<(d0)[s0] -> (-d0 + s0, 10)>
165//  CHECK-DAG: #[[$MAP1:.+]] = affine_map<(d0)[s0] -> (-d0 + s0, 20)>
166//  CHECK-DAG: #[[$MAP2:.+]] = affine_map<(d0)[s0] -> (-d0 + s0, 30)>
167//  CHECK-DAG: #[[$MAP3:.+]] = affine_map<(d0)[s0] -> (d0 + s0 * 2 - 2)>
168//  CHECK-DAG: #[[$MAP4:.+]] = affine_map<(d0)[s0] -> (d0 + s0 * 3 - 3)>
169//      CHECK-LABEL: func.func @conv2D(
170// CHECK-SAME:     %[[INPUT:[a-zA-Z0-9]+]]: tensor<?x?x?x?xf32>
171// CHECK-SAME:     %[[FILTER:[a-zA-Z0-9]+]]: tensor<?x?x?x?xf32>
172// CHECK-SAME:     %[[INIT:[a-zA-Z0-9]+]]: tensor<?x?x?x?xf32>
173//  CHECK-DAG:   %[[C0:.+]] = arith.constant 0 : index
174//  CHECK-DAG:   %[[C1:.+]] = arith.constant 1 : index
175//  CHECK-DAG:   %[[C2:.+]] = arith.constant 2 : index
176//  CHECK-DAG:   %[[C3:.+]] = arith.constant 3 : index
177//  CHECK-DAG:   %[[N:.+]] = tensor.dim %[[INPUT]], %[[C0]]
178//  CHECK-DAG:   %[[C:.+]] = tensor.dim %[[INPUT]], %[[C3]]
179//  CHECK-DAG:   %[[P:.+]] = tensor.dim %[[FILTER]], %[[C0]]
180//  CHECK-DAG:   %[[Q:.+]] = tensor.dim %[[FILTER]], %[[C1]]
181//  CHECK-DAG:   %[[F:.+]] = tensor.dim %[[FILTER]], %[[C3]]
182//  CHECK-DAG:   %[[R:.+]] = tensor.dim %[[INIT]], %[[C1]]
183//  CHECK-DAG:   %[[S:.+]] = tensor.dim %[[INIT]], %[[C2]]
184//      CHECK:   %[[RESULT:.+]] = scf.forall (%[[IV0:[a-zA-Z0-9]+]], %[[IV1:[a-zA-Z0-9]+]], %[[IV2:[a-zA-Z0-9]+]]) =
185// CHECK-SAME:       (0, 0, 0) to (%[[P]], %[[Q]], %[[C]]) step (10, 20, 30) shared_outs(%[[INIT0:.+]] = %[[INIT]])
186//  CHECK-DAG:     %[[TS_P:.+]] = affine.min #[[$MAP0]](%[[IV0]])[%[[P]]]
187//  CHECK-DAG:     %[[TS_Q:.+]] = affine.min #[[$MAP1]](%[[IV1]])[%[[Q]]]
188//  CHECK-DAG:     %[[TS_C:.+]] = affine.min #[[$MAP2]](%[[IV2]])[%[[C]]]
189//  CHECK-DAG:     %[[TS_H:.+]] = affine.apply #[[$MAP3]](%[[TS_P]])[%[[R]]]
190//  CHECK-DAG:     %[[TS_W:.+]] = affine.apply #[[$MAP4]](%[[TS_Q]])[%[[S]]]
191//  CHECK-DAG:     %[[INPUT_TILE:.+]] = tensor.extract_slice %[[INPUT]]
192// CHECK-SAME:         [0, %[[IV0]], %[[IV1]], %[[IV2]]] [%[[N]], %[[TS_H]], %[[TS_W]], %[[TS_C]]]
193//  CHECK-DAG:     %[[FILTER_TILE:.+]] = tensor.extract_slice %[[FILTER]]
194// CHECK-SAME:         [%[[IV0]], %[[IV1]], %[[IV2]], 0] [%[[TS_P]], %[[TS_Q]], %[[TS_C]], %[[F]]]
195//  CHECK-DAG:     %[[INIT_TILE:.+]] = tensor.extract_slice %[[INIT0]]
196// CHECK-SAME:         [0, 0, 0, 0] [%[[N]], %[[R]], %[[S]], %[[F]]]
197//      CHECK:     %[[CONV_TILE:.+]] = linalg.conv_2d_nhwc_hwcf
198// CHECK-SAME:         dilation = dense<[4, 5]> : tensor<2xi64>, strides = dense<[2, 3]> : tensor<2xi64>
199// CHECK-SAME:         ins(%[[INPUT_TILE]], %[[FILTER_TILE]] :
200// CHECK-SAME:         outs(%[[INIT_TILE]] :
201//      CHECK:     scf.forall.in_parallel
202//      CHECK:       tensor.parallel_insert_slice %[[CONV_TILE]] into %[[INIT0]]
203// CHECK-SAME:           [0, 0, 0, 0] [%[[N]], %[[R]], %[[S]], %[[F]]] [1, 1, 1, 1]
204//      CHECK:   return %[[RESULT]]
205
206// -----
207
208// CHECK: #[[$MAP_ADD:.+]] = affine_map<(d0)[s0] -> (d0 + s0)>
209
210func.func @indexed_semantics(%arg0: tensor<?x?xf32>, %arg1: tensor<?x?xf32>) -> tensor<?x?xf32> {
211  // Check that we correctly amend "linalg.index" results.
212
213  %0 = linalg.generic {
214    indexing_maps = [affine_map<(d0, d1) -> (d0, d1)>,
215                     affine_map<(d0, d1) -> (d0, d1)>],
216    iterator_types = ["parallel", "parallel"]}
217    ins(%arg0: tensor<?x?xf32>)
218    outs(%arg1: tensor<?x?xf32>) {
219  ^bb0(%arg2: f32, %arg3: f32):
220    %1 = linalg.index 0 : index
221    %2 = linalg.index 1 : index
222    %3 = arith.addi %1, %2 : index
223    %4 = arith.index_cast %3 : index to i64
224    %5 = arith.uitofp %4 : i64 to f32
225    %6 = arith.addf %5, %arg2 : f32
226    linalg.yield %6 : f32
227  } -> (tensor<?x?xf32>)
228  return %0 : tensor<?x?xf32>
229}
230
231module attributes {transform.with_named_sequence} {
232  transform.named_sequence @__transform_main(%arg1 : !transform.any_op {transform.readonly}) {
233    %generic = transform.structured.match ops{["linalg.generic"]} in %arg1
234      : (!transform.any_op) -> !transform.any_op
235    %a, %b = transform.test.tile_using_forall %generic [10, 20]
236      : (!transform.any_op) -> (!transform.any_op, !transform.any_op)
237    transform.yield
238  }
239}
240
241// CHECK-LABEL: @indexed_semantics
242//       CHECK: scf.forall (%[[I0:.+]], %[[I1:.+]]) =
243//       CHECK:   %[[INDEX0:.+]] = linalg.index 0
244//       CHECK:   %[[INDEX0_AMENDED:.+]] = affine.apply #[[$MAP_ADD]](%[[I0]])[%[[INDEX0]]]
245//       CHECK:   %[[INDEX1:.+]] = linalg.index 1
246//       CHECK:   %[[INDEX1_AMENDED:.+]] = affine.apply #[[$MAP_ADD]](%[[I1]])[%[[INDEX1]]]
247//       CHECK:   arith.addi %[[INDEX0_AMENDED]], %[[INDEX1_AMENDED]]
248
249// -----
250
251func.func @interchange_matmul(%arg0 : tensor<?x?xf32>, %arg1 : tensor<?x?xf32>,
252    %arg2 : tensor<?x?xf32>) -> tensor<?x?xf32> {
253  %0 = linalg.matmul ins(%arg0, %arg1 : tensor<?x?xf32>, tensor<?x?xf32>)
254      outs(%arg2 : tensor<?x?xf32>) -> tensor<?x?xf32>
255  return %0 : tensor<?x?xf32>
256}
257
258module attributes {transform.with_named_sequence} {
259  transform.named_sequence @__transform_main(%arg1 : !transform.any_op {transform.readonly}) {
260    %matmul = transform.structured.match ops{["linalg.matmul"]} in %arg1
261      : (!transform.any_op) -> !transform.any_op
262    %a, %b = transform.test.tile_using_forall %matmul [10, 20] interchange = [1, 0] mapping = [#gpu.block<y>, #gpu.block<x>]
263      : (!transform.any_op) -> (!transform.any_op, !transform.any_op)
264    transform.yield
265  }
266}
267//  CHECK-DAG: #[[$MAP0:.+]] = affine_map<(d0)[s0] -> (-d0 + s0, 20)>
268//  CHECK-DAG: #[[$MAP2:.+]] = affine_map<(d0)[s0] -> (-d0 + s0, 10)>
269//      CHECK-LABEL: func.func @interchange_matmul(
270// CHECK-SAME:     %[[ARG0:[a-zA-Z0-9]+]]: tensor<?x?xf32>
271// CHECK-SAME:     %[[ARG1:[a-zA-Z0-9]+]]: tensor<?x?xf32>
272// CHECK-SAME:     %[[ARG2:[a-zA-Z0-9]+]]: tensor<?x?xf32>
273//  CHECK-DAG:   %[[C0:.+]] = arith.constant 0 : index
274//  CHECK-DAG:   %[[C1:.+]] = arith.constant 1 : index
275//  CHECK-DAG:   %[[M:.+]] = tensor.dim %[[ARG0]], %[[C0]]
276//  CHECK-DAG:   %[[K:.+]] = tensor.dim %[[ARG0]], %[[C1]]
277//  CHECK-DAG:   %[[N:.+]] = tensor.dim %[[ARG1]], %[[C1]]
278//      CHECK:   %[[OUTER:[a-zA-Z0-9]+]] = scf.forall (%[[IV0:[a-zA-Z0-9]+]], %[[IV1:[a-zA-Z0-9]+]]
279// CHECK-SAME:       (0, 0) to (%[[N]], %[[M]]) step (20, 10)
280// CHECK-SAME:       shared_outs(%[[INIT0:.+]] = %[[ARG2]])
281//  CHECK-DAG:     %[[TS_N:.+]] = affine.min #[[$MAP0]](%[[IV0]])[%[[N]]]
282//  CHECK-DAG:     %[[TS_M:.+]] = affine.min #[[$MAP2]](%[[IV1]])[%[[M]]]
283//  CHECK-DAG:     %[[LHS_TILE:.+]] = tensor.extract_slice %[[ARG0]]
284// CHECK-SAME:         [%[[IV1]], 0] [%[[TS_M]], %[[K]]] [1, 1]
285//  CHECK-DAG:     %[[RHS_TILE:.+]] = tensor.extract_slice %[[ARG1]]
286// CHECK-SAME:         [0, %[[IV0]]] [%[[K]], %[[TS_N]]] [1, 1]
287//  CHECK-DAG:     %[[INIT_TILE:.+]] = tensor.extract_slice %[[INIT0]]
288// CHECK-SAME:         [%[[IV1]], %[[IV0]]] [%[[TS_M]], %[[TS_N]]] [1, 1]
289//      CHECK:     %[[GEMM_TILE:.+]] = linalg.matmul
290// CHECK-SAME:         ins(%[[LHS_TILE]], %[[RHS_TILE]] :
291// CHECK-SAME:         outs(%[[INIT_TILE]] :
292//      CHECK:     scf.forall.in_parallel {
293//      CHECK:       tensor.parallel_insert_slice %[[GEMM_TILE]] into %[[INIT0]]
294// CHECK-SAME:           [%[[IV1]], %[[IV0]]] [%[[TS_M]], %[[TS_N]]] [1, 1]
295//      CHECK:     } {mapping = [#gpu.block<y>, #gpu.block<x>]}
296//      CHECK:   return %[[OUTER]]
297
298// -----
299
300func.func @check_scalar_operation(%arg0 : tensor<f32>) -> tensor<f32> {
301  %init = tensor.empty() : tensor<f32>
302  %0 = linalg.generic {
303      indexing_maps = [affine_map<() -> ()>, affine_map<() -> ()>],
304      iterator_types = []}
305      ins(%arg0 : tensor<f32>) outs(%init : tensor<f32>){
306    ^bb0(%b0 : f32, %b1 : f32):
307      %1 = arith.mulf %b0, %b0 : f32
308      linalg.yield %1 : f32
309  } -> tensor<f32>
310  return %0 : tensor<f32>
311}
312
313module attributes {transform.with_named_sequence} {
314  transform.named_sequence @__transform_main(%arg1 : !transform.any_op {transform.readonly}) {
315    %generic = transform.structured.match ops{["linalg.generic"]} in %arg1
316      : (!transform.any_op) -> !transform.any_op
317    %a = transform.test.tile_using_forall %generic []
318      : (!transform.any_op) -> (!transform.any_op)
319    transform.yield
320  }
321}
322// CHECK-LABEL: func @check_scalar_operation
323//   CHECK-NOT:   scf.for
324//       CHECK:   linalg.generic
325
326// -----
327
328func.func @check_scalar_memref_operation(%arg0 : memref<f32>, %arg1 : memref<f32>){
329  linalg.generic {
330      indexing_maps = [affine_map<() -> ()>, affine_map<() -> ()>],
331      iterator_types = []}
332      ins(%arg0 : memref<f32>) outs(%arg1 : memref<f32>){
333    ^bb0(%b0 : f32, %b1 : f32):
334      %1 = arith.mulf %b0, %b0 : f32
335      linalg.yield %1 : f32
336  }
337  return
338}
339
340module attributes {transform.with_named_sequence} {
341  transform.named_sequence @__transform_main(%arg1 : !transform.any_op {transform.readonly}) {
342    %generic = transform.structured.match ops{["linalg.generic"]} in %arg1
343      : (!transform.any_op) -> !transform.any_op
344    %a = transform.test.tile_using_forall %generic []
345      : (!transform.any_op) -> (!transform.any_op)
346    transform.yield
347  }
348}
349// CHECK-LABEL: func @check_scalar_memref_operation
350//   CHECK-NOT:   scf.for
351//       CHECK:   linalg.generic
352