xref: /llvm-project/mlir/test/Integration/Dialect/SparseTensor/GPU/CUDA/sparse-matvec.mlir (revision eb206e9ea84eff0a0596fed2de8316d924f946d1)
1//
2// NOTE: this test requires gpu-sm80
3//
4// RUN: mlir-opt %s \
5// RUN:   --sparsifier="enable-runtime-library=false parallelization-strategy=dense-outer-loop gpu-triple=nvptx64-nvidia-cuda gpu-chip=sm_80 gpu-features=+ptx71 gpu-format=%gpu_compilation_format" \
6// RUN: | mlir-runner \
7// RUN:   --shared-libs=%mlir_cuda_runtime \
8// RUN:   --shared-libs=%mlir_c_runner_utils \
9// RUN:   --e main --entry-point-result=void \
10// RUN: | FileCheck %s
11
12#CSR = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : dense, d1 : compressed) }>
13
14module {
15  // Compute matrix vector y = Ax
16  func.func @matvec(%A: tensor<?x?xf64, #CSR>, %x: tensor<?xf64>, %y_in: tensor<?xf64>) -> tensor<?xf64> {
17    %y_out = linalg.matvec
18      ins(%A, %x: tensor<?x?xf64, #CSR>, tensor<?xf64>)
19      outs(%y_in: tensor<?xf64>) -> tensor<?xf64>
20    return %y_out : tensor<?xf64>
21  }
22
23  func.func @main() {
24    %f0 = arith.constant 0.0 : f64
25    %c0 = arith.constant 0 : index
26    %c1 = arith.constant 1 : index
27
28    // Stress test with a dense matrix DA.
29    %DA = tensor.generate {
30    ^bb0(%i: index, %j: index):
31      %k = arith.addi %i, %j : index
32      %l = arith.index_cast %k : index to i64
33      %f = arith.uitofp %l : i64 to f64
34      tensor.yield %f : f64
35    } : tensor<1024x64xf64>
36
37    // Convert to a "sparse" m x n matrix A.
38    %A = sparse_tensor.convert %DA : tensor<1024x64xf64> to tensor<?x?xf64, #CSR>
39
40    // Initialize dense vector with n elements:
41    //   (1, 2, 3, 4, ..., n)
42    %d1 = tensor.dim %A, %c1 : tensor<?x?xf64, #CSR>
43    %x = tensor.generate %d1 {
44    ^bb0(%i : index):
45      %k = arith.addi %i, %c1 : index
46      %j = arith.index_cast %k : index to i64
47      %f = arith.uitofp %j : i64 to f64
48      tensor.yield %f : f64
49    } : tensor<?xf64>
50
51    // Initialize dense vector to m zeros.
52    %d0 = tensor.dim %A, %c0 : tensor<?x?xf64, #CSR>
53    %y = tensor.generate %d0 {
54    ^bb0(%i : index):
55      tensor.yield %f0 : f64
56    } : tensor<?xf64>
57
58    // Call the kernel.
59    %0 = call @matvec(%A, %x, %y) : (tensor<?x?xf64, #CSR>, tensor<?xf64>, tensor<?xf64>) -> tensor<?xf64>
60
61    //
62    // Sanity check on results.
63    //
64    // CHECK: ( 87360, 89440, 91520, 93600, 95680, 97760, 99840, 101920, 104000, 106080, 108160, 110240, 112320, 114400, 116480, 118560, 120640, 122720, 124800, 126880, 128960, 131040, 133120, 135200, 137280, 139360, 141440, 143520, 145600, 147680, 149760, 151840, 153920, 156000, 158080, 160160, 162240, 164320, 166400, 168480, 170560, 172640, 174720, 176800, 178880, 180960, 183040, 185120, 187200, 189280, 191360, 193440, 195520, 197600, 199680, 201760, 203840, 205920, 208000, 210080, 212160, 214240, 216320, 218400 )
65    //
66    %pb0 = vector.transfer_read %0[%c0], %f0 : tensor<?xf64>, vector<64xf64>
67    vector.print %pb0 : vector<64xf64>
68
69    // Release the resources.
70    bufferization.dealloc_tensor %A : tensor<?x?xf64, #CSR>
71    return
72  }
73}
74