xref: /llvm-project/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_unary.mlir (revision eb206e9ea84eff0a0596fed2de8316d924f946d1)
1//--------------------------------------------------------------------------------------------------
2// WHEN CREATING A NEW TEST, PLEASE JUST COPY & PASTE WITHOUT EDITS.
3//
4// Set-up that's shared across all tests in this directory. In principle, this
5// config could be moved to lit.local.cfg. However, there are downstream users that
6//  do not use these LIT config files. Hence why this is kept inline.
7//
8// DEFINE: %{sparsifier_opts} = enable-runtime-library=true
9// DEFINE: %{sparsifier_opts_sve} = enable-arm-sve=true %{sparsifier_opts}
10// DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}"
11// DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}"
12// DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils
13// DEFINE: %{run_libs_sve} = -shared-libs=%native_mlir_runner_utils,%native_mlir_c_runner_utils
14// DEFINE: %{run_opts} = -e main -entry-point-result=void
15// DEFINE: %{run} = mlir-runner %{run_opts} %{run_libs}
16// DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs_sve}
17//
18// DEFINE: %{env} =
19//--------------------------------------------------------------------------------------------------
20
21// RUN: %{compile} | %{run} | FileCheck %s
22//
23// Do the same run, but now with direct IR generation.
24// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false enable-buffer-initialization=true
25// RUN: %{compile} | %{run} | FileCheck %s
26//
27// Do the same run, but now with vectorization.
28// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false enable-buffer-initialization=true vl=2 reassociate-fp-reductions=true enable-index-optimizations=true
29// RUN: %{compile} | %{run} | FileCheck %s
30//
31// Do the same run, but now with  VLA vectorization.
32// RUN: %if mlir_arm_sve_tests %{ %{compile_sve} | %{run_sve} | FileCheck %s %}
33
34#SparseVector = #sparse_tensor.encoding<{map = (d0) -> (d0 : compressed)}>
35#DCSR = #sparse_tensor.encoding<{map = (d0, d1) -> (d0 : compressed, d1 : compressed)}>
36
37//
38// Traits for tensor operations.
39//
40#trait_vec = {
41  indexing_maps = [
42    affine_map<(i) -> (i)>,  // a (in)
43    affine_map<(i) -> (i)>   // x (out)
44  ],
45  iterator_types = ["parallel"]
46}
47#trait_mat = {
48  indexing_maps = [
49    affine_map<(i,j) -> (i,j)>,  // A (in)
50    affine_map<(i,j) -> (i,j)>   // X (out)
51  ],
52  iterator_types = ["parallel", "parallel"]
53}
54
55module {
56  // Invert the structure of a sparse vector. Present values become missing.
57  // Missing values are filled with 1 (i32). Output is sparse.
58  func.func @vector_complement_sparse(%arga: tensor<?xf64, #SparseVector>) -> tensor<?xi32, #SparseVector> {
59    %c = arith.constant 0 : index
60    %ci1 = arith.constant 1 : i32
61    %d = tensor.dim %arga, %c : tensor<?xf64, #SparseVector>
62    %xv = tensor.empty(%d) : tensor<?xi32, #SparseVector>
63    %0 = linalg.generic #trait_vec
64       ins(%arga: tensor<?xf64, #SparseVector>)
65        outs(%xv: tensor<?xi32, #SparseVector>) {
66        ^bb(%a: f64, %x: i32):
67          %1 = sparse_tensor.unary %a : f64 to i32
68            present={}
69            absent={
70              sparse_tensor.yield %ci1 : i32
71            }
72          linalg.yield %1 : i32
73    } -> tensor<?xi32, #SparseVector>
74    return %0 : tensor<?xi32, #SparseVector>
75  }
76
77  // Invert the structure of a sparse vector, where missing values are
78  // filled with 1. For a dense output, the sparsifier initializes
79  // the buffer to all zero at all other places.
80  func.func @vector_complement_dense(%arga: tensor<?xf64, #SparseVector>) -> tensor<?xi32> {
81    %c = arith.constant 0 : index
82    %d = tensor.dim %arga, %c : tensor<?xf64, #SparseVector>
83    %xv = tensor.empty(%d) : tensor<?xi32>
84    %0 = linalg.generic #trait_vec
85       ins(%arga: tensor<?xf64, #SparseVector>)
86        outs(%xv: tensor<?xi32>) {
87        ^bb(%a: f64, %x: i32):
88          %1 = sparse_tensor.unary %a : f64 to i32
89            present={}
90            absent={
91              %ci1 = arith.constant 1 : i32
92              sparse_tensor.yield %ci1 : i32
93            }
94          linalg.yield %1 : i32
95    } -> tensor<?xi32>
96    return %0 : tensor<?xi32>
97  }
98
99  // Negate existing values. Fill missing ones with +1.
100  func.func @vector_negation(%arga: tensor<?xf64, #SparseVector>) -> tensor<?xf64, #SparseVector> {
101    %c = arith.constant 0 : index
102    %cf1 = arith.constant 1.0 : f64
103    %d = tensor.dim %arga, %c : tensor<?xf64, #SparseVector>
104    %xv = tensor.empty(%d) : tensor<?xf64, #SparseVector>
105    %0 = linalg.generic #trait_vec
106       ins(%arga: tensor<?xf64, #SparseVector>)
107        outs(%xv: tensor<?xf64, #SparseVector>) {
108        ^bb(%a: f64, %x: f64):
109          %1 = sparse_tensor.unary %a : f64 to f64
110            present={
111              ^bb0(%x0: f64):
112                %ret = arith.negf %x0 : f64
113                sparse_tensor.yield %ret : f64
114            }
115            absent={
116              sparse_tensor.yield %cf1 : f64
117            }
118          linalg.yield %1 : f64
119    } -> tensor<?xf64, #SparseVector>
120    return %0 : tensor<?xf64, #SparseVector>
121  }
122
123  // Performs B[i] = i * A[i].
124  func.func @vector_magnify(%arga: tensor<?xf64, #SparseVector>) -> tensor<?xf64, #SparseVector> {
125    %c = arith.constant 0 : index
126    %d = tensor.dim %arga, %c : tensor<?xf64, #SparseVector>
127    %xv = tensor.empty(%d) : tensor<?xf64, #SparseVector>
128    %0 = linalg.generic #trait_vec
129       ins(%arga: tensor<?xf64, #SparseVector>)
130        outs(%xv: tensor<?xf64, #SparseVector>) {
131        ^bb(%a: f64, %x: f64):
132          %idx = linalg.index 0 : index
133          %1 = sparse_tensor.unary %a : f64 to f64
134            present={
135              ^bb0(%x0: f64):
136                %tmp = arith.index_cast %idx : index to i64
137                %idxf = arith.uitofp %tmp : i64 to f64
138                %ret = arith.mulf %x0, %idxf : f64
139                sparse_tensor.yield %ret : f64
140            }
141            absent={}
142          linalg.yield %1 : f64
143    } -> tensor<?xf64, #SparseVector>
144    return %0 : tensor<?xf64, #SparseVector>
145  }
146
147  // Clips values to the range [3, 7].
148  func.func @matrix_clip(%argx: tensor<?x?xf64, #DCSR>) -> tensor<?x?xf64, #DCSR> {
149    %c0 = arith.constant 0 : index
150    %c1 = arith.constant 1 : index
151    %cfmin = arith.constant 3.0 : f64
152    %cfmax = arith.constant 7.0 : f64
153    %d0 = tensor.dim %argx, %c0 : tensor<?x?xf64, #DCSR>
154    %d1 = tensor.dim %argx, %c1 : tensor<?x?xf64, #DCSR>
155    %xv = tensor.empty(%d0, %d1) : tensor<?x?xf64, #DCSR>
156    %0 = linalg.generic #trait_mat
157       ins(%argx: tensor<?x?xf64, #DCSR>)
158        outs(%xv: tensor<?x?xf64, #DCSR>) {
159        ^bb(%a: f64, %x: f64):
160          %1 = sparse_tensor.unary %a: f64 to f64
161            present={
162              ^bb0(%x0: f64):
163                %mincmp = arith.cmpf "ogt", %x0, %cfmin : f64
164                %x1 = arith.select %mincmp, %x0, %cfmin : f64
165                %maxcmp = arith.cmpf "olt", %x1, %cfmax : f64
166                %x2 = arith.select %maxcmp, %x1, %cfmax : f64
167                sparse_tensor.yield %x2 : f64
168            }
169            absent={}
170          linalg.yield %1 : f64
171    } -> tensor<?x?xf64, #DCSR>
172    return %0 : tensor<?x?xf64, #DCSR>
173  }
174
175  // Slices matrix and only keep the value of the lower-right corner of the original
176  // matrix (i.e., A[2/d0 ..][2/d1 ..]), and set other values to 99.
177  func.func @matrix_slice(%argx: tensor<?x?xf64, #DCSR>) -> tensor<?x?xf64, #DCSR> {
178    %c0 = arith.constant 0 : index
179    %c1 = arith.constant 1 : index
180    %d0 = tensor.dim %argx, %c0 : tensor<?x?xf64, #DCSR>
181    %d1 = tensor.dim %argx, %c1 : tensor<?x?xf64, #DCSR>
182    %xv = tensor.empty(%d0, %d1) : tensor<?x?xf64, #DCSR>
183    %0 = linalg.generic #trait_mat
184       ins(%argx: tensor<?x?xf64, #DCSR>)
185        outs(%xv: tensor<?x?xf64, #DCSR>) {
186        ^bb(%a: f64, %x: f64):
187          %row = linalg.index 0 : index
188          %col = linalg.index 1 : index
189          %1 = sparse_tensor.unary %a: f64 to f64
190            present={
191              ^bb0(%x0: f64):
192                %v = arith.constant 99.0 : f64
193                %two = arith.constant 2 : index
194                %r = arith.muli %two, %row : index
195                %c = arith.muli %two, %col : index
196                %cmp1 = arith.cmpi "ult", %r, %d0 : index
197                %tmp = arith.select %cmp1, %v, %x0 : f64
198                %cmp2 = arith.cmpi "ult", %c, %d1 : index
199                %result = arith.select %cmp2, %v, %tmp : f64
200                sparse_tensor.yield %result : f64
201            }
202            absent={}
203          linalg.yield %1 : f64
204    } -> tensor<?x?xf64, #DCSR>
205    return %0 : tensor<?x?xf64, #DCSR>
206  }
207
208  // Driver method to call and verify vector kernels.
209  func.func @main() {
210    %cmu = arith.constant -99 : i32
211    %c0 = arith.constant 0 : index
212
213    // Setup sparse vectors.
214    %v1 = arith.constant sparse<
215       [ [0], [3], [11], [17], [20], [21], [28], [29], [31] ],
216         [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0 ]
217    > : tensor<32xf64>
218    %sv1 = sparse_tensor.convert %v1 : tensor<32xf64> to tensor<?xf64, #SparseVector>
219
220    // Setup sparse matrices.
221    %m1 = arith.constant sparse<
222       [ [0,0], [0,1], [1,7], [2,2], [2,4], [2,7], [3,0], [3,2], [3,3] ],
223         [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0 ]
224    > : tensor<4x8xf64>
225    %sm1 = sparse_tensor.convert %m1 : tensor<4x8xf64> to tensor<?x?xf64, #DCSR>
226
227    // Call sparse vector kernels.
228    %0 = call @vector_complement_sparse(%sv1)
229       : (tensor<?xf64, #SparseVector>) -> tensor<?xi32, #SparseVector>
230    %1 = call @vector_negation(%sv1)
231       : (tensor<?xf64, #SparseVector>) -> tensor<?xf64, #SparseVector>
232    %2 = call @vector_magnify(%sv1)
233       : (tensor<?xf64, #SparseVector>) -> tensor<?xf64, #SparseVector>
234
235    // Call sparse matrix kernels.
236    %3 = call @matrix_clip(%sm1)
237      : (tensor<?x?xf64, #DCSR>) -> tensor<?x?xf64, #DCSR>
238    %4 = call @matrix_slice(%sm1)
239      : (tensor<?x?xf64, #DCSR>) -> tensor<?x?xf64, #DCSR>
240
241    // Call kernel with dense output.
242    %5 = call @vector_complement_dense(%sv1) : (tensor<?xf64, #SparseVector>) -> tensor<?xi32>
243
244    //
245    // Verify the results.
246    //
247    // CHECK:      ---- Sparse Tensor ----
248    // CHECK-NEXT: nse = 9
249    // CHECK-NEXT: dim = ( 32 )
250    // CHECK-NEXT: lvl = ( 32 )
251    // CHECK-NEXT: pos[0] : ( 0, 9 )
252    // CHECK-NEXT: crd[0] : ( 0, 3, 11, 17, 20, 21, 28, 29, 31 )
253    // CHECK-NEXT: values : ( 1, 2, 3, 4, 5, 6, 7, 8, 9 )
254    // CHECK-NEXT: ----
255    // CHECK:      ---- Sparse Tensor ----
256    // CHECK-NEXT: nse = 23
257    // CHECK-NEXT: dim = ( 32 )
258    // CHECK-NEXT: lvl = ( 32 )
259    // CHECK-NEXT: pos[0] : ( 0, 23 )
260    // CHECK-NEXT: crd[0] : ( 1, 2, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 18, 19, 22, 23, 24, 25, 26, 27, 30 )
261    // CHECK-NEXT: values : ( 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 )
262    // CHECK-NEXT: ----
263    // CHECK:      ---- Sparse Tensor ----
264    // CHECK-NEXT: nse = 32
265    // CHECK-NEXT: dim = ( 32 )
266    // CHECK-NEXT: lvl = ( 32 )
267    // CHECK-NEXT: pos[0] : ( 0, 32 )
268    // CHECK-NEXT: crd[0] : ( 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 )
269    // CHECK-NEXT: values : ( -1, 1, 1, -2, 1, 1, 1, 1, 1, 1, 1, -3, 1, 1, 1, 1, 1, -4, 1, 1, -5, -6, 1, 1, 1, 1, 1, 1, -7, -8, 1, -9 )
270    // CHECK-NEXT: ----
271    // CHECK:      ---- Sparse Tensor ----
272    // CHECK-NEXT: nse = 9
273    // CHECK-NEXT: dim = ( 32 )
274    // CHECK-NEXT: lvl = ( 32 )
275    // CHECK-NEXT: pos[0] : ( 0, 9 )
276    // CHECK-NEXT: crd[0] : ( 0, 3, 11, 17, 20, 21, 28, 29, 31 )
277    // CHECK-NEXT: values : ( 0, 6, 33, 68, 100, 126, 196, 232, 279 )
278    // CHECK-NEXT: ----
279    // CHECK:      ---- Sparse Tensor ----
280    // CHECK-NEXT: nse = 9
281    // CHECK-NEXT: dim = ( 4, 8 )
282    // CHECK-NEXT: lvl = ( 4, 8 )
283    // CHECK-NEXT: pos[0] : ( 0, 4 )
284    // CHECK-NEXT: crd[0] : ( 0, 1, 2, 3 )
285    // CHECK-NEXT: pos[1] : ( 0, 2, 3, 6, 9 )
286    // CHECK-NEXT: crd[1] : ( 0, 1, 7, 2, 4, 7, 0, 2, 3 )
287    // CHECK-NEXT: values : ( 3, 3, 3, 4, 5, 6, 7, 7, 7 )
288    // CHECK-NEXT: ----
289    // CHECK:      ---- Sparse Tensor ----
290    // CHECK-NEXT: nse = 9
291    // CHECK-NEXT: dim = ( 4, 8 )
292    // CHECK-NEXT: lvl = ( 4, 8 )
293    // CHECK-NEXT: pos[0] : ( 0, 4 )
294    // CHECK-NEXT: crd[0] : ( 0, 1, 2, 3 )
295    // CHECK-NEXT: pos[1] : ( 0, 2, 3, 6, 9 )
296    // CHECK-NEXT: crd[1] : ( 0, 1, 7, 2, 4, 7, 0, 2, 3 )
297    // CHECK-NEXT: values : ( 99, 99, 99, 99, 5, 6, 99, 99, 99 )
298    // CHECK-NEXT: ----
299    // CHECK-NEXT: ( 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0 )
300    //
301    sparse_tensor.print %sv1 : tensor<?xf64, #SparseVector>
302    sparse_tensor.print %0 : tensor<?xi32, #SparseVector>
303    sparse_tensor.print %1 : tensor<?xf64, #SparseVector>
304    sparse_tensor.print %2 : tensor<?xf64, #SparseVector>
305    sparse_tensor.print %3 : tensor<?x?xf64, #DCSR>
306    sparse_tensor.print %4 : tensor<?x?xf64, #DCSR>
307    %v = vector.transfer_read %5[%c0], %cmu: tensor<?xi32>, vector<32xi32>
308    vector.print %v : vector<32xi32>
309
310    // Release the resources.
311    bufferization.dealloc_tensor %sv1 : tensor<?xf64, #SparseVector>
312    bufferization.dealloc_tensor %sm1 : tensor<?x?xf64, #DCSR>
313    bufferization.dealloc_tensor %0 : tensor<?xi32, #SparseVector>
314    bufferization.dealloc_tensor %1 : tensor<?xf64, #SparseVector>
315    bufferization.dealloc_tensor %2 : tensor<?xf64, #SparseVector>
316    bufferization.dealloc_tensor %3 : tensor<?x?xf64, #DCSR>
317    bufferization.dealloc_tensor %4 : tensor<?x?xf64, #DCSR>
318    bufferization.dealloc_tensor %5 : tensor<?xi32>
319    return
320  }
321}
322