xref: /llvm-project/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_reduce_custom.mlir (revision eb206e9ea84eff0a0596fed2de8316d924f946d1)
1//--------------------------------------------------------------------------------------------------
2// WHEN CREATING A NEW TEST, PLEASE JUST COPY & PASTE WITHOUT EDITS.
3//
4// Set-up that's shared across all tests in this directory. In principle, this
5// config could be moved to lit.local.cfg. However, there are downstream users that
6//  do not use these LIT config files. Hence why this is kept inline.
7//
8// DEFINE: %{sparsifier_opts} = enable-runtime-library=true
9// DEFINE: %{sparsifier_opts_sve} = enable-arm-sve=true %{sparsifier_opts}
10// DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}"
11// DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}"
12// DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils
13// DEFINE: %{run_libs_sve} = -shared-libs=%native_mlir_runner_utils,%native_mlir_c_runner_utils
14// DEFINE: %{run_opts} = -e main -entry-point-result=void
15// DEFINE: %{run} = mlir-runner %{run_opts} %{run_libs}
16// DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs_sve}
17//
18// DEFINE: %{env} =
19//--------------------------------------------------------------------------------------------------
20
21// RUN: %{compile} | %{run} | FileCheck %s
22//
23// Do the same run, but now with direct IR generation.
24// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false enable-buffer-initialization=true
25// RUN: %{compile} | %{run} | FileCheck %s
26//
27// Do the same run, but now with direct IR generation and vectorization.
28// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false enable-buffer-initialization=true vl=2 reassociate-fp-reductions=true enable-index-optimizations=true
29// RUN: %{compile} | %{run} | FileCheck %s
30//
31// Do the same run, but now with direct IR generation and VLA vectorization.
32// RUN: %if mlir_arm_sve_tests %{ %{compile_sve} | %{run_sve} | FileCheck %s %}
33
34// Reduction in this file _are_ supported by the AArch64 SVE backend
35
36#SparseVector = #sparse_tensor.encoding<{map = (d0) -> (d0 : compressed)}>
37#CSR = #sparse_tensor.encoding<{map = (d0, d1) -> (d0 : dense, d1 : compressed)}>
38#CSC = #sparse_tensor.encoding<{
39  map = (d0, d1) -> (d1 : dense, d0 : compressed)
40}>
41
42//
43// Traits for tensor operations.
44//
45#trait_matmul = {
46  indexing_maps = [
47    affine_map<(i,j,k) -> (i,k)>, // A
48    affine_map<(i,j,k) -> (k,j)>, // B
49    affine_map<(i,j,k) -> (i,j)>  // C (out)
50  ],
51  iterator_types = ["parallel", "parallel", "reduction"],
52  doc = "C(i,j) = SUM_k A(i,k) * B(k,j)"
53}
54
55module {
56  func.func @min_plus_csrcsr(%arga: tensor<?x?xf64, #CSR>,
57                             %argb: tensor<?x?xf64, #CSR>) -> tensor<?x?xf64, #CSR> {
58    %c0 = arith.constant 0 : index
59    %c1 = arith.constant 1 : index
60    %maxf = arith.constant 1.0e999 : f64
61    %d0 = tensor.dim %arga, %c0 : tensor<?x?xf64, #CSR>
62    %d1 = tensor.dim %argb, %c1 : tensor<?x?xf64, #CSR>
63    %xm = tensor.empty(%d0, %d1) : tensor<?x?xf64, #CSR>
64    %0 = linalg.generic #trait_matmul
65       ins(%arga, %argb: tensor<?x?xf64, #CSR>, tensor<?x?xf64, #CSR>)
66        outs(%xm: tensor<?x?xf64, #CSR>) {
67        ^bb(%a: f64, %b: f64, %output: f64):
68          %1 = sparse_tensor.binary %a, %b : f64, f64 to f64
69            overlap = {
70              ^bb0(%x: f64, %y: f64):
71                %3 = arith.addf %x, %y : f64
72                sparse_tensor.yield %3 : f64
73            }
74            left={}
75            right={}
76          %2 = sparse_tensor.reduce %1, %output, %maxf : f64 {
77              ^bb0(%x: f64, %y: f64):
78                %cmp = arith.cmpf "olt", %x, %y : f64
79                %3 = arith.select %cmp, %x, %y : f64
80                sparse_tensor.yield %3 : f64
81            }
82          linalg.yield %2 : f64
83    } -> tensor<?x?xf64, #CSR>
84    return %0 : tensor<?x?xf64, #CSR>
85  }
86
87  func.func @min_plus_csrcsc(%arga: tensor<?x?xf64, #CSR>,
88                             %argb: tensor<?x?xf64, #CSC>) -> tensor<?x?xf64, #CSR> {
89    %c0 = arith.constant 0 : index
90    %c1 = arith.constant 1 : index
91    %maxf = arith.constant 1.0e999 : f64
92    %d0 = tensor.dim %arga, %c0 : tensor<?x?xf64, #CSR>
93    %d1 = tensor.dim %argb, %c1 : tensor<?x?xf64, #CSC>
94    %xm = tensor.empty(%d0, %d1) : tensor<?x?xf64, #CSR>
95    %0 = linalg.generic #trait_matmul
96       ins(%arga, %argb: tensor<?x?xf64, #CSR>, tensor<?x?xf64, #CSC>)
97        outs(%xm: tensor<?x?xf64, #CSR>) {
98        ^bb(%a: f64, %b: f64, %output: f64):
99          %1 = sparse_tensor.binary %a, %b : f64, f64 to f64
100            overlap = {
101              ^bb0(%x: f64, %y: f64):
102                %3 = arith.addf %x, %y : f64
103                sparse_tensor.yield %3 : f64
104            }
105            left={}
106            right={}
107          %2 = sparse_tensor.reduce %1, %output, %maxf : f64 {
108              ^bb0(%x: f64, %y: f64):
109                %cmp = arith.cmpf "olt", %x, %y : f64
110                %3 = arith.select %cmp, %x, %y : f64
111                sparse_tensor.yield %3 : f64
112            }
113          linalg.yield %2 : f64
114    } -> tensor<?x?xf64, #CSR>
115    return %0 : tensor<?x?xf64, #CSR>
116  }
117
118  // Driver method to call and verify vector kernels.
119  func.func @main() {
120    %c0 = arith.constant 0 : index
121
122    // Setup sparse matrices.
123    %m1 = arith.constant sparse<
124       [ [0,0], [0,1], [1,0], [2,2], [2,3], [2,4], [3,0], [3,2], [3,3] ],
125         [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0 ]
126    > : tensor<4x5xf64>
127    %m2 = arith.constant sparse<
128       [ [0,0], [1,3], [2,0], [2,3], [3,1], [4,1] ],
129         [6.0, 5.0, 4.0, 3.0, 2.0, 11.0 ]
130    > : tensor<5x4xf64>
131    %sm1 = sparse_tensor.convert %m1 : tensor<4x5xf64> to tensor<?x?xf64, #CSR>
132    %sm2r = sparse_tensor.convert %m2 : tensor<5x4xf64> to tensor<?x?xf64, #CSR>
133    %sm2c = sparse_tensor.convert %m2 : tensor<5x4xf64> to tensor<?x?xf64, #CSC>
134
135    // Call sparse matrix kernels.
136    %5 = call @min_plus_csrcsr(%sm1, %sm2r)
137      : (tensor<?x?xf64, #CSR>, tensor<?x?xf64, #CSR>) -> tensor<?x?xf64, #CSR>
138    %6 = call @min_plus_csrcsc(%sm1, %sm2c)
139      : (tensor<?x?xf64, #CSR>, tensor<?x?xf64, #CSC>) -> tensor<?x?xf64, #CSR>
140
141    //
142    // Verify the results.
143    //
144    // CHECK:      ---- Sparse Tensor ----
145    // CHECK-NEXT: nse = 9
146    // CHECK-NEXT: dim = ( 4, 5 )
147    // CHECK-NEXT: lvl = ( 4, 5 )
148    // CHECK-NEXT: pos[1] : ( 0, 2, 3, 6, 9 )
149    // CHECK-NEXT: crd[1] : ( 0, 1, 0, 2, 3, 4, 0, 2, 3 )
150    // CHECK-NEXT: values : ( 1, 2, 3, 4, 5, 6, 7, 8, 9 )
151    // CHECK-NEXT: ----
152    // CHECK:      ---- Sparse Tensor ----
153    // CHECK-NEXT: nse = 6
154    // CHECK-NEXT: dim = ( 5, 4 )
155    // CHECK-NEXT: lvl = ( 5, 4 )
156    // CHECK-NEXT: pos[1] : ( 0, 1, 2, 4, 5, 6 )
157    // CHECK-NEXT: crd[1] : ( 0, 3, 0, 3, 1, 1 )
158    // CHECK-NEXT: values : ( 6, 5, 4, 3, 2, 11 )
159    // CHECK-NEXT: ----
160    // CHECK:      ---- Sparse Tensor ----
161    // CHECK-NEXT: nse = 9
162    // CHECK-NEXT: dim = ( 4, 4 )
163    // CHECK-NEXT: lvl = ( 4, 4 )
164    // CHECK-NEXT: pos[1] : ( 0, 2, 3, 6, 9 )
165    // CHECK-NEXT: crd[1] : ( 0, 3, 0, 0, 1, 3, 0, 1, 3 )
166    // CHECK-NEXT: values : ( 7, 7, 9, 8, 7, 7, 12, 11, 11 )
167    // CHECK-NEXT: ----
168    // CHECK:      ---- Sparse Tensor ----
169    // CHECK-NEXT: nse = 9
170    // CHECK-NEXT: dim = ( 4, 4 )
171    // CHECK-NEXT: lvl = ( 4, 4 )
172    // CHECK-NEXT: pos[1] : ( 0, 2, 3, 6, 9 )
173    // CHECK-NEXT: crd[1] : ( 0, 3, 0, 0, 1, 3, 0, 1, 3 )
174    // CHECK-NEXT: values : ( 7, 7, 9, 8, 7, 7, 12, 11, 11 )
175    // CHECK-NEXT: ----
176    //
177    sparse_tensor.print %sm1 : tensor<?x?xf64, #CSR>
178    sparse_tensor.print %sm2r : tensor<?x?xf64, #CSR>
179    sparse_tensor.print %5 : tensor<?x?xf64, #CSR>
180    sparse_tensor.print %6 : tensor<?x?xf64, #CSR>
181
182    // Release the resources.
183    bufferization.dealloc_tensor %sm1 : tensor<?x?xf64, #CSR>
184    bufferization.dealloc_tensor %sm2r : tensor<?x?xf64, #CSR>
185    bufferization.dealloc_tensor %sm2c : tensor<?x?xf64, #CSC>
186    bufferization.dealloc_tensor %5 : tensor<?x?xf64, #CSR>
187    bufferization.dealloc_tensor %6 : tensor<?x?xf64, #CSR>
188    return
189  }
190}
191